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Abstract

To investigate the exploitation and contamination by self-propagating Internet worms, a provenance-
aware tracing mechanism is highly desirable. Provenance unawareness causes difficulties in fast and accu-
rate identification of a worm’s break-in point (namely, a remotely-accessible vulnerable service running in
the infected host), and incurs significant log data inspection overhead. This paper presents the design, im-
plementation, and evaluation of process coloring, an efficient provenance-aware approach to worm break-
in and contamination tracing. More specifically, process coloring assigns a “color”, a unique system-wide
identifier, to each remotely-accessible server or process. The color will then be either inherited by spawned
child processes or diffused indirectly through process actions (e.g., read or write operations).

Process coloring brings two major advantages: (1) It enables fast color-based identification of the
break-in point exploited by a worm even before detailed log analysis; (2) It naturally partitions log data
according to their associated colors, effectively reducing the volume of log data that need to be examined
and correspondingly, log processing overhead for worm investigation. A tamper-resistant log collection
method is developed based on the virtual machine introspection technique. Our experiments with a number
of real-world worms demonstrate the advantages of processing coloring. For example, to reveal detailed
SARS worm contamination, only 12.1% of the entire log data need to be processed. Beyond the virtual
machine platform of our prototype, process coloring and logging mechanisms only incur a very small
additional performance penalty.
Keywords Intrusion Detection, Worm Infection and Investigation, Process Coloring

1 Introduction

Internet worms have become more stealthy and sophisticated in their infection, exploitation, and con-

tamination. The recent absence of large-scale worm outbreaks does not indicate that Internet worms are

eliminated. Quite on the contrary, there have been reports [8, 9] suggesting that worms may deliberately

avoid fast massive propagation. Instead, they attempt to lurk in infected machines and surreptitiously inflict

malign contaminations such as rootkit and backdoor installation [1, 34, 45]. In the combat against worms,

the following tasks are critical to the understanding of a worm’s exploitation details and to the recovery of an

infected host from worm contaminations: (1) identifying the break-in point, namely the vulnerable, remotely

accessible service via which the worm infects the victim and (2) determining all contaminations and damages

inflicted by the worm during its residence in the victim. To perform these tasks, various intrusion analysis



tools can be used [12, 31, 35, 36]. For example, BackTracker [36] is an advanced forensic tool that traces

back an intrusion starting from a “detection point” and identifies files and processes that could have affected

that detection point. The tool takes the entire log file of the host as input for the back-tracking.

Log-based intrusion analysis tools face the following challenges: (1) Many tools [13, 36, 56] rely on

an externally-determined detection point, from which a forensic investigation will be initiated towards the

break-in point of the intrusion. However, due to a worm’s possibly long “infection-to-detection” duration,

it may be days or even weeks later when such a detection point is identified. It is therefore desirable that

the log data carry more information and provide “leads” to initiate more timely investigations. (2) Current

operating systems lack a provenance-aware mechanism to pre-classify the log data before log analysis. On

the other hand, log data generated by the system may be of large volume. As reported in [36], log data as

large as 1.2GB can be generated within one day and need to be examined for an intrusion back-track. The

uncategorized bulk log data are likely to result in long duration and high overhead in worm investigation.

Although human investigators can provide heuristics (such as the “filtering rules” in [36]) to reduce the log

space to be examined, such heuristics may lead to inaccuracy or incompleteness in worm investigation results.

(3) Many log-based tools do not address tamper-resistant log collection, which is essential in dealing with

advanced worms. As shown in Section 2.3, a commonly adopted mechanism, i.e., syscall-wrapping, for

collecting system call traces can be easily circumvented during an attack.

In this paper, we present the design, implementation, and evaluation of process coloring, an efficient

provenance-aware approach to worm break-in and contamination investigation. More specifically, process

coloring associates a “color”, a unique system-wide identifier, to each remotely-accessible server or process -

a potential worm break-in point. The color will be either inherited directly by any spawned child process, or

diffused indirectly through the processes’ actions (e.g., read or write operations). As a result, any process or

object (e.g., a file or directory) affected by a colored process will be tainted with the same color, as recorded

in the corresponding log entry. Process coloring naturally leads to the following two key advantages:

Color-based identification of a worm’s break-in point All worm-infected processes and contaminated ob-

jects will be tainted with the same color as the original vulnerable service, which is exploited by the worm as

the break-in point. By simply examining the color of any worm-related log entry or any worm-affected object,

the break-in point of the corresponding worm can be immediately identified before detailed log analysis.

Natural partition of log data The colors of log entries provide a natural way to partition the log. To reveal

the contaminations caused by a worm, it is no longer necessary to examine the entire log file. Instead, only log

entries with the same color as the worm’s entry point will need to be inspected. Such partition can substantially
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reduce the volume of relevant log data, and thereby improve the efficiency of worm investigation.

The practicality and effectiveness of process coloring are demonstrated using a number of real-world self-

propagating worms and their variants. For each of these worms, we are able to fast identify the vulnerable

networked service exploited by the worm. Moreover, reduction of inspected log data is achieved in each

worm experiment. For example, for a detailed SARS worm [11] break-in and contamination investigation,

only 12.1% of the entire log data need to be inspected. Our prototype also addresses the important requirement

of tamper-resistant log data recording. Virtual machine techniques such as VMware [10], Denali [54], Xen

[24], and User-Mode Linux (UML) [22] provide a better instrumentation facility than the system call hooking

mechanism to safely obtain and collect internal states, including the worm exploitation and contamination

information. We adopt a technique similar to Livewire [28] and develop an extension to the UML virtual

machine monitor (VMM) for tamper-resistant logging.

We in this paper focus on the application of process coloring to the investigation of Internet worms.

However, we also note that process coloring is a generic, extensible mechanism and some of its potentials

will be presented in Section 5.1. The rest of the paper is organized as follows: Section 2 provides an overview

of the process coloring scheme, whose implementation is presented in Section 3. Experimental evaluation

results are presented in Section 4. Other applications and possible attacks are addressed in Section 5. Section

6 discusses related work. Finally, Section 7 concludes this paper.

2 Process Coloring Approach

2.1 Initial Coloring

Figure 1 shows a process coloring view of a networked host system running multiple servers. A unique

system-wide identifier called color is assigned to each server process. The color assignment takes place after

the server processes have started but before serving client requests. A worm breaking into the system will need

to exploit a certain vulnerability of a (colored) server process. Because any action performed by the exploited

process will lead to a corresponding color diffusion in the host (Section 2.2), the break-in and contaminations

by the worm will be evidenced by the color of the affected processes and system resources and by the color

of the corresponding log entries.

Each remotely-accessible service is performed by one or more active processes in the host. For example,

the Samba service will start with two different processes smbd and nmbd; and both portmap and rpc.statd

processes belong to the NFS/RPC service. Such processes can be assigned the same color. However, if we
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Apache Sendmail NFS/RPCMySQL

Figure 1: Process coloring view of a system running multiple servers

need to further differentiate each individual process (e.g., “which Apache process is exploited by a Slapper

worm?”), different colors can be assigned to processes belonging to the same service. One benefit of such

assignment is that it provides a finer granularity in log data partition. Alternatively, it is possible to define a

color with two fields: a major field indicating the service and a minor field differentiating between individual

working processes of the same service. For simplicity, we consider each color as having only one single field

in this paper.

We note that although the process identifier (PID) uniquely identifies a process, it is not suitable for coloring

purpose. Firstly, PIDs are generated without any awareness of break-in points. Consider a zombie process, it

is not possible to tell its break-in point simply by its PID or parent’s PID. Secondly, it is possible that a process

dynamically injects a customized code (e.g., a whole library) into the code space of another active process. In

this case, the PID is not capable of reflecting the impact of the former process on the latter. Such an attack has

become popular on Windows platform (e.g., the hxdef rootkit[1]) and there exist open-source libraries (e.g.,

Injectso [2]) which provide similar functionality for Linux and Solaris platforms. In our design, a new field is

defined in the operating system kernel to record the current colors of active processes.

2.2 Color Diffusion Model

After the service processes are initially colored, the colors will be diffused to other processes according

to the operations performed by the processes. To reveal worm contaminations, we are especially interested in

process color diffusion via system-wide shared resources, such as files, directories, and sockets. For a worm

to inflict contamination (e.g., backdoor installation), it needs to go through a number of system calls. Hence

the process colors are diffused to the affected system resources via the operations performed by the system

calls. Table 1 shows a simplified color diffusion model with respect to several abstract operations. A worm

contamination example will be described later in this section.

The color diffusion model is based on our more general process label framework [15], where audit in-

formation (defined as process label) is propagated and preserved in a system. We also note that process color
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Abstract Operation Color Diffusion Description Example Events/Actions

create < s1, o > color(o) = color(s1) Subject s1 creates a new object o create, mkdir, link,
mknod, pipe, symlink

create < s1, s2 > color(s2) = color(s1) Subject s1 creates a new subject s2 fork, vfork, clone,
execve

read < s1, o > color(s1)∪ = color(o) Subject s1 reads from object o read, readv, recv,
access, stat, fstat, msgrcv

read < s1, s2 > color(s1)∪ = color(s2) Subject s1 reads from subject s2 ptrace
write < s1, o > color(o)∪ = color(s1) Subject s1 writes into object o write, writev, truncate,

chmod, chown, fchown,
send, sendfile

write < s1, s2 > color(s2)∪ = color(s1) Subject s1 writes into subject s2 ptrace, kill,
destroy < s1, o > - Subject s1 destroys the object o unlink, rmdir, close
destroy < s1, s2 > - Subject s1 destroys the subject s2 kill, exit

Table 1: A simplified color diffusion model. A subject is a process while an object is a shared resource.

diffusion reflects various information flow models [14, 20, 21] in many aspects such as explicit/implicit infor-

mation flows [30]. In this paper, we only consider the information flow through syscall interfaces, with the

processes as subjects and intermediate resources as objects. Other means such as using CPU utilization or

disk space availability to convey information are beyond the scope of this paper. In the following, we describe

two types of syscall-based color diffusion:

Direct diffusion involves one process directly affecting the color of another process. It can happen in a

number of ways: (1) Process spawning: If a process issues the fork, vfork, or clone system call, a new

child process will usually be spawned and it will inherit the color of the parent process. (2) Code injection: A

process may use code injection (e.g. via ptrace system call) to modify the memory space of another process to

change its functionality. The color of the injected process will be updated accordingly. (3) Signal processing:

A process may send a special signal (e.g., the kill command) to another process. If received and authorized,

the signal will invoke corresponding signal handling and thus affect the execution flow of the signaled process.

Indirect diffusion from process s1 to s2 can be represented as s1 ⇒ o ⇒ s2, where o is an intermediate

resource (object). Various types of intermediate resources exist: some resources are dynamically created and

will not exist after the process is terminated (e.g., UNIX sockets); other resources such as files can persis-

tently exist and may later affect another process if that process acquires some input from these resources. To

support indirect diffusion, the system data structure for an intermediate resource will be enhanced to record

the influence of a process (i.e. its color). Later, when another process gets input from the “tainted” resource,

the process will be tainted the same color 1. Common resource types supported in current Linux systems

1To determine which input actually leads to an output, we show in [16] that such problem is equivalent to solving the Halting
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include files, directories, network sockets (including UNIX sockets), named pipes (FIFO), and IPC (messages,

semaphores, and shared memory). We also note the existence of special system-wide control resources like

system timer/clock, which could be used to indirectly influence another process. However, as the information

flow through the influence is usually limited (i.e., low-bandwidth channel) and we are not aware of any worm

utilizing these special resources to affect other processes, we do not explicitly address them in this paper.

2568: httpd

fd 5

accept

2568(execve): /bin//sh

execve

inet sock(80)

recv

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...)

2568(execve): /bin/bash −i

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...)

2587: /bin/cat

dup2(5, 0); dup2(5, 1); dup2(5,2) read(0, ...) execve

unix sock("/var/run/.nscd_socket")

connect

fork, execve

2586: /bin/rm −rf /tmp/.bugtraq.c

fork, execve

unix sock("/var/run/.nscd_socket")

connect

/tmp/.uubugtraq

open, dup2, write

/tmp/.bugtraq.c

unlink

Figure 2: A coloring diffusion view showing the initial break-in of the Slapper worm

A worm example Figure 2 illustrates the process color diffusion during the break-in of the Slapper worm

[42], which exploits a vulnerable Apache service as its break-in point. In Figure 2, an oval represents a

running process, a rectangle represents a file, and a diamond represents a network socket. The number inside

the oval is the PID while the following string is the name of the process. Initially, all Apache “httpd” processes

are colored “RED”. Right after the successful exploitation, the exploited “httpd” process (PID: 2568, color:

RED) executes (sys execve syscall) the program “/bin//sh” (2568, RED), which then executes (sys execve

syscall) the program “/bin/bash -i” (2568, RED). The “/bin/bash -i” process further spawns (by sys fork) two

child processes: process “/bin/rm -rf /tmp/.bugtraq.c” (2586, RED) and process “/bin/cat” (2587, RED) - their

colors are inherited from their parent process via direct diffusion. Later on, the WRITE operation (sys write)

of process “/bin/cat” (2587, RED) updates the file (/tmp/.uubugtraq), which is thus tainted “RED”. As we

will show in Section 4, this file will be used to generate (sys read syscall) the worm process to infect other

vulnerable hosts. Via indirect diffusion, the worm process will also be colored “RED”.

problem [50, 51]. To be conservative, we consider that once a process reads from a tainted source, it will also be tainted.
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Figure 3: Various hooking points intercepting system calls

2.3 Log Information Collection

Process coloring employs system call (syscall) interception to generate log entries and tag them with

process colors. As demonstrated in [6, 7, 29, 36, 39, 44], syscall interception is effective in revealing and

understanding intrusion steps and actions. However, a simple syscall-based hooking mechanism may be

vulnerable to the re-hooking attack, where attackers can easily avoid or even subvert [23] the log collection

function. Figure 3 compares various hooking points for syscall intercepting. Figure 3(a) shows the original

implementation in the current Linux kernel. Figure 3(b) demonstrates the popular syscall wrapping technique

to intercept system calls. Syscall wrapping modifies the system call table and redirects the corresponding

calls to its own implementation. Unfortunately, if the system call table is later modified, previous interception

and redirection will be invalid. This type of syscall interception is used in [6, 31, 36], which are therefore

vulnerable to this re-hooking attack. Figure 3(c) shows a more advanced technique, which intercepts system

calls before or while invoking the system call dispatcher. Systrace [44] implements this type of interception by

modifying the system call dispatcher and thus achieves better tamper-resistance. However, it is still possible

[31] for an advanced intruder to avoid the interception if the corresponding syscall interrupt handler (e.g., “int

0x80” in Linux) is hooked in the first place.

Our design is based on the virtual machine introspection technique [28]. Though similar to Figure 3(c),

the interception happens not in the syscall dispatcher, but on the virtual machine virtualization path. As such,

the interceptor is an integral part of the underlying virtual machine implementation (Section 3) achieving

stronger tamper-resistance. Information about each intercepted system call (e.g. current process, syscall

number, parameters, return value, and return address) forms a log entry, which is tagged with the color of the

current process.
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3 Implementation

In this section, we present key aspects of process coloring implementation. Our prototype leverages User-

Mode Linux (UML), an open-source VM implementation where the guest OS runs directly in the unmodifi

ed user space of the host OS, and only considers the ext2 file system2. In order to support process coloring,

a number of key data structures (e.g., task struct, ext2 inode info) are modified to accommodate the color

information.

3.1 Process Color Setting

In our prototype, a new field color is added to the process control block (PCB) structure, i.e., task struct,

in Linux kernel. To facilitate the setting and retrieval of the color field, two additional system calls (sys setcolor

and sys getcolor) are implemented. There exists a possibility that these two new syscalls might be abused to

undermine process coloring. Suppose their syscall interfaces are exposed, it would be easy for worm authors

to add additional code to corrupt the color assignment. Though a strong authentication scheme may be used to

restrict the usage of these two syscalls, it is not desirable as it essentially achieves security by obscurity. Our

solution to this problem is to create and maintain a separate color mapping table within the syscall interceptor,

which allows process color setting only within a certain time period after a service starts.

3.2 Color Diffusion

Direct diffusion If a new process is created by the fork/vfork/clone system call, it will inherit the color of

its parent process. When a process is being manipulated via the ptrace system call, the diffusion of color will

depend on the system call parameter. If the call has parameter PTRACE PEEKTEXT, PTRACE PEEKDATA, or

PTRACE PEEKUSER, the color(s) of the ptraced process will be diffused to the ptracing process. Conversely, if

the call has parameter PTRACE POKETEXT, PTRACE POKEDATA, or PTRACE POKEUSER, the color(s) of the

ptracing process will be diffused to the ptraced process. For signal processing, the color(s) of the signaling

process will be diffused to the signaled process. Finally, there are system calls (sys waitpid and sys wait4)

that will lead to color diffusion from the child process to the parent process.

Indirect diffusion Indirection diffusion involves an intermediate resource (object). In principle, it is feasi-

ble that the system data structure for the corresponding resource be extended to record the color information.

Among all possible intermediate resources, files and directories are the two most exploited by worms. Since

2We are currently implementing process coloring on another VM platform Xen [24] and we expect even better performance than
our UML-based prototype due to Xen’s para-virtualization approach.
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they are persistent resources, their colors also need to be persistently recorded. Intuitively, we can extend the

corresponding inode data structure to accommodate the color attribute. However, adding a color field may es-

sentially change the implementation of reading/writing files from/to a hard disk or even corrupt the underlying

file system. After carefully examining all fields in current inode data structure, i.e., ext2 inode info, we fi

nd that the field i file acl is intended to record the corresponding access control flags (ACL) but is not used

in the ext2 file system. In our current prototype, this field is leveraged to save the color value (represented as

bitmap) of the corresponding file or directory. Note that there is another possible field, i.e., i dir acl, which is

intended to record the access control flags for the corresponding directory. However, this field has already been

borrowed to serve as an additional 32-bit field for a 64-bit file size representation for files larger than 4GB. For

non-persistent resources (e.g., IPC and network sockets), our current prototype only supports sockets, shared

memory, and pipes. However, for other non-persistent resources, adding a new field is not too challenging.

3.3 Log Collection

Safe log
collection

Guest User Space

Guest OS Kernel/UML

Pt
ra

ce

Host OS Kernel

Log file

Figure 4: Tamper-resistant log collection by positioning the interceptor on the system call virtualization path

The log collection mechanism is based on the underlying virtual machine implementation, i.e. UML, as

shown in Figure 4. UML adopts a system call-based virtualization approach and supports VMs in the user

space of the host OS. Leveraging the capability of ptrace, a special thread is created to intercept the system

calls made by any process in the VM, and to redirect them to the guest OS kernel. The interceptor for system

call log collection is located on the system call virtualization path. Therefore, it is tamper-resistant from

malicious processes running inside the VM. Moreover, once the interceptor has collected a certain amount of

log data (e.g., 16K), the log data will be pushed down to the host domain. One important benefit is that the

analysis on the log file within the host domain will not interrupt the normal execution of the VM. This creates

the possibility of external runtime system monitoring based on colored log data. Applications benefiting from

this opportunity will be discussed in Section 5.1.
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4 Evaluation

4.1 Evaluation of Run-Time Overhead

To measure the overhead introduced by process coloring, we perform a number of experiments using

McVoy’s LMbench [40], a suite of benchmarks targeting various subsystems of UNIX platforms. The exper-

iments are conducted using a Dell PowerEdge 2650 server running Linux 2.4.18 with a 2.6GHz Intel Xeon

processor and 2GB RAM. Three sets of experiments are performed: running LMbench on the original Linux

kernel (Linux), on the unmodified UML kernel (UML), and on the modified UML kernel with process coloring

capability (COLOR). The results are shown in Table 2.

Configuration null cal open close signal handler fork exec
Linux 0.47 2.11 2.47 117 363
UML 11.0 146 28.5 4707 8016
COLOR 11.0 147 29.0 4910 8221

(a) Process-related times in µs

Configuration 2p/0K 2p/16K 2p/64K 16p/16K 16p/64K
Linux 0.81 1.17 1.19 3.48 22.2
UML 9.11 8.75 9.67 16.7 46.7
COLOR 10.9 11.5 10.7 19.1 47.2

(b) Context switching times in µs

Configuration create (10K) delete (10K) mmap page fault select (100fd)
Linux 58.8 10.5 141.0 1.35 3.197
UML 226.2 90.2 772.0 15.0 21.9
COLOR 228.6 90.2 792.0 15.1 21.9

(c) File and VM system latencies in µs

Table 2: LMBench results showing low additional process coloring overhead

Table 2(a) shows process operation overhead. Table 2(b) shows context switch times under varying num-

ber of processes and working set sizes. File system and virtual memory latency results are shown in Table

2(c). The results show that UML suffers a significant performance penalty due to its user-level implementa-

tion. However, process coloring only incurs a very small extra performance degradation beyond the original

UML. The reason lies in the interceptor placement. By positioning the interceptor within the system call vir-

tualization path, our prototype is able to avoid an additional context switch per system call, which is needed

in other syscall interception schemes [39]. Also, the log data push-down is not performed upon every in-

vocation of system call. Instead, an internal cache (16K) is maintained to amortize the overall disk write

operations. Finally, we note that process coloring is not dependent on a specific VM platform. Moreover, we
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expect that the performance penalty caused by virtualization (not by the design of process coloring) be signif-

icantly reduced with more efficient VM platforms (e.g., Xen [24] with para-virtualization) and the upcoming

architecture support for VMs (e.g., Intel’s Vanderpool technology [27]).

4.2 Experiments with Real-World Worms

We evaluate the effectiveness of process coloring using a number of real-world Internet worms: Adore

[3], Ramen [4], Lion [5], Slapper [42], SARS [11], and their variants. Each worm experiment is conducted

in a virtual distributed worm playground called vGround [32], which is a realistic, confined, and scaled-down

Internet environment consisting of network entities and end hosts realized as VMs with process coloring

capability. vGround makes it easy and efficient to create VMs running real-world services as well as VMs

running as service clients. vGround enables safe worm experiments by confining all traffic within the vGround.

It also facilitates experiments with a multi-vector worm (e.g., Ramen worm [4]), which infects different hosts

(VMs) via different break-in points 3.

Lion Worm Slapper Worm SARS Worm

Exploited Service BIND (bind-8.2.2 P5-9) Apache (apache-1.3.19-5) Samba (samba-2.2.5-10)
(CVE references) (CVE-2001-0010) (CAN-2002-0656) (CAN-2003-0201)

Time period being analyzed 24 hours 24 hours 24 hours
Number of log entries 129,386 293,759 166,646

Size of log data 8.0M 18.5MB 10.7MB
Number of worm-relevant log entries 66,504 195,884 19,494

Size of worm-relevant log data 3.9MB 12.2MB 1.3MB
Number of files “touched” by the worm 120,342 62 200

Percentage of worm-relevant logs 48.7% 65.9% 12.1%

Table 3: Statistics of process coloring log data in three worm experiments

Due to space constraint, we only present experiments with Lion, Slapper, and SARS worms. Table 3 shows

key statistics of their respective log data. Each log file contains log entries collected during a 24-hour period,

including both worm-related and normal service access entries. During each experiment, process coloring

demonstrates its key benefits: (1) We are able to identify the worms’ break-in points before performing detailed

log analysis. The break-in points are the BIND server (bind-8.2.2 P5-9) for Lion worm, the Apache server

(apache-1.3.19-5 with openssl-0.9.6b-8 package) for Slapper worm, and the Samba server (samba-2.2.5-10)

for SARS worm. (2) The log data that need to be inspected for detailed worm investigation is only 48.7%

(Lion worm), 65.9% (Slapper worm), and 12.1% (SARS worm) of the total logged events, respectively. We

note that, since log entries are naturally partitioned by their colors, increasing background service accesses

3For example, Ramen worm has three possible break-in points: LPRng (CVE-2000-0917), rpc.statd (CVE-2000-0666), and wu-ftp
(CVE-2000-0573) - the last one cannot lead to a successful exploitation as our vGround experiment shows.
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(i.e. accesses to unrelated services) in the experiments will further reduce the percentage of worm-related log.

(3) Since the worm break-in point (vulnerable service) is identified before log analysis, it is possible to further

filter the log entries that record normal accesses to the vulnerable service, which have known and different

footprint from that of a worm infection.

4.2.1 Lion Worm Contamination Investigation

NFS/RPC Service

xinetd Service

LPD Service

Sendmail Service

DNS Service

353: portmap

378: rpc.statd

497: xinetd

533: lpd

31122: named

1: init

581: sendmail

Figure 5: A process coloring view of a vulnerable system BEFORE Lion infection

Figure 5 shows a process coloring view of an uninfected system running a BIND server vulnerable to the

Lion worm. There are also a number of other services hosted at the same system: NFS/RPC service (portmap

and rpc.statd), printer service (lpd), and mail service (sendmail). A different color is assigned to each service.

Process named has the color “RED” 4. The Lion worm is unleashed from a different VM in the vGround5.

After the experiment, we obtain a log file whose entries are conveniently partitioned by their colors. Among

the “RED” entries whose provenance is the named process, we observe an abnormal event that a shell process

was spawned. This is one of the contaminations inflicted by the Lion worm. To further reduce the inspected

log volume, entries generated by normal accesses to the BIND server from other legitimate VM clients in

the vGround are filtered. We then use the remaining “RED” log entries to derive a Lion worm contamination

graph as shown in Figure 66.

We confirm that Figure 6 reveals all Lion worm contaminations by comparing our results with a detailed

Lion worm report [5]. The leftmost oval is the vulnerable named daemon (PID: 31122). After a successful

exploitation of the named process, a worm replica is downloaded (Circle 2 in Figure 6). The worm then

overwrites all HTML files named index.html in the system with a self-carried HTML file for web defacement

(Circle 3). Interestingly, we observe from the log that the worm attempts to execute the file replacement twice

4Due to the nature of process coloring, we would suggest color printing of the manuscript for review convenience.
5This “seed” worm is instrumented to target the vulnerable VM for infection. However, the worm copy transferred is unmodified.
6To view details of the worm contamination graph, we would suggest using the zoom-in feature of the Adobe Acrobat Reader R©.
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- a detail not reported in [5]. The first attempt to replace files is within the shell code (PID: 31181) after

executing the malicious buffer overrun code (Circle 2 and Circle 3). The second attempt happens when the

driving script ./1i0n.sh (PID: 31347) is executed (Circle 4). The worm then tries to initiate the next round

of infection (Circle 4). In the thick dotted circle inside Circle 4, we find two “RED” dangling files bind and

bindx.sh, which are introduced by the worm but never accessed by any worm-related process. Such anomaly

deserves a further investigation (Section 5.1). A forensic analysis of the VM reveals that these two files

contain the exploitation code for the BIND vulnerability. As there is only one VM running the vulnerable

BIND service in the vGround, the worm cannot find another host to infect and the file bindname.log storing IP

addresses of possible victims is empty. As a result, the exploitation code is never launched.

4.2.2 Slapper Worm Contamination Investigation

The Slapper worm experiment is conducted in a different vGround. We initially assign colors to service

processes in an uninfected VM. Especially, the vulnerable Apache service is assigned “RED”. Through direct

diffusion, all spawned httpd worker processes are also colored “RED”. A process coloring view of the system

before the Slapper infection is shown in Figure 7. The experiment involves accesses to the other services as

well as normal web accesses requesting a 2890-byte index.html file.

Sendmail Service

crond Service

Apache Service

xinetd Service

NFS/RPC Service

453: portmap

633: xinetd

673: sendmail

697: crond

2182: crond 2183: run−parts 2193: awk

2523: httpd

2555: httpd

2556: httpd

2557: httpd

2558: httpd

2559: httpd

2560: httpd

2561: httpd

2562: httpd

2563: httpd

1: init

Figure 7: A process coloring view of a Slapper-vulnerable system BEFORE infection

After the experiment, an examination on the log file shows a flurry of “RED” log entries (> 10000) within

a very short period (1 minute) - an anomaly indicating a possible infection. As the “RED” color is associated

with the Apache web server, we select all “RED” log entries, which constitute 65.9% of the entire log file.

A quick review of these log entries shows that the Slapper worm infection has a large and distinct footprint

in the infected host. During the transmission of a Slapper worm, an uuencoded source file is sent from the
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2: Recovering the original
source file by uudecoding it

1: Downloading the worm
as a uuencoded file

4: Activating the worm to start next round of infection

A

B

C

A: /tmp/.uubugtraq               B: /tmp/.bugtraq.c              C: /tmp/.bugtraq

3: Generating the Slapper worm binary by locally compiling the source

2568: httpd

2568(execve): /bin/bash −i

2595: /tm
p/.bugtraq 192.168.2.2

2568: httpd

fd 5 after accept

2568(execve): /bin//sh

inet sock(80)

2568(execve): /bin/bash −i

2587: /bin/cat

unix sock("/var/run/.nscd_socket")

2586: /bin/rm −rf /tmp/.bugtraq.c

2588: /usr/bin/uudecode −o /tmp/.bugtraq.c /tmp/.uubugtraq

2589: /usr/bin/gcc −o /tmp/.bugtraq /tmp/.bugtraq.c −lcrypto

2595: /tmp/.bugtraq 192.168.2.2

unix sock("/var/run/.nscd_socket")

/tmp/.uubugtraq

/tmp/.bugtraq.c

2590: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cpp0

2591: /usr/lib/gcc−lib/i386−redhat−linux/2.96/cc1

2592: /usr/bin/gcc 2593: /usr/lib/gcc−lib/i386−redhat−linux/2.96/collect2

/tmp/cc7Bh66a.i

/tmp/ccGXrYjN.s

/tmp/cc0u8DTM.ld2592(execve): /usr/local/bin/as2592(execve): /bin/as

2592(execve): /usr/bin/as

2594: /usr/bin/ld

/tmp/ccYTx5k2.c/tmp/ccu4v8yU.o
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/tmp/cccAZX4s.o
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RED: 2523["httpd"]: 2_fork(void) = 2567 (rule 2)
RED: 2567["httpd"]: 214_setgid(48) = 0 (rule 16)
RED: 2567["httpd"]: 5_open("/etc/group", 0, 438) = 5 (rule 3)
...
RED: 2567["httpd"]: 5_open("/var/nis/NIS_COL...", 0, 438) = −2 (rule 3)
RED: 2567["httpd"]: 206_setgroups(1, 081eb4c0) = 0 (rule 49)
RED: 2567["httpd"]: 213_setuid(48) = 0 (rule 15)
...
BROWN: 673["sendmail"]: 5_open("/proc/loadavg", 0, 438) = 5 (rule 3)
BROWN: 673["sendmail"]: 192_mmap2(0, 4096, 3, 34, 4294967295, 0) = 1073868800 (rule 44)
BROWN: 673["sendmail"]: 3_read(5, "0.26 0.10 0.03 2...", 4096) = 25 (rule 4)
BROWN: 673["sendmail"]: 6_close(5) = 0 (rule 6)
BROWN: 673["sendmail"]: 91_munmap(1073868800, 4096) = 0 (rule 34)
...
RED: 2567["httpd"]: 102_accept(16, sockaddr{2, cac91f3a}, cac91f38) = 5 (rule 55)
RED: 2567["httpd"]: 3_read(5, "\1281\1\0\2\0\24...", 11) = 11 (rule 4)
RED: 2567["httpd"]: 3_read(5, "\7\0À\5\0\128\3\...", 40) = 40 (rule 4)
RED: 2567["httpd"]: 4_write(5, "\132@\4\0\1\0\2\...", 1090) = 1090 (rule 5)
RED: 2567["httpd"]: 3_read(5, "\128Ê", 2) = 2 (rule 4)
RED: 2567["httpd"]: 3_read(5, "\2\1\0\128\0\0\0...", 202) = 202 (rule 4)
RED: 2567["httpd"]: 4_write(5, "\128!\132ýFÞ\7B| ...", 35) = 35 (rule 5)
RED: 2567["httpd"]: 3_read(5, "\128!", 2) = 2 (rule 4)
RED: 2567["httpd"]: 3_read(5, "\0RØÔþn-A¸÷?(\1\...", 33) = 33 (rule 4)
RED: 2567["httpd"]: 4_write(5, "\128\129ôh¸\132«...", 131) = 131 (rule 5)
RED: 2567["httpd"]: 3_read(5, "(nil", 32769) = 0 (rule 4)
RED: 2567["httpd"]: 6_close(5) = 0 (rule 6)

Figure 9: Log excerpt showing the first exploitation of the Slapper worm attempting to get the over-writable
heap address in the vulnerable Apache server. BROWN log entries are not related.

constructing the Slapper worm contamination graph (Figure 8)7.

By comparing our results with a detailed Slapper worm analysis [42], we confirm that Figure 8 reveals

all contaminations by the Slapper worm. We first observe that the worm exploits an httpd worker process

(PID:2568) to gain system access. After that, an uuencoded version of the worm source code is downloaded

(Circle 1 in Figure 8) and uudecoded (Circle 2) to reconstruct the original code, which is then compiled

(Circle 3) to generate the worm binary. The binary is executed (Circle 4) to attempt to infect other hosts.

The collected log data further reveal that the exploitation of the Slapper worm is rather sophisticated. Before

the httpd worker process (PID: 2568) is exploited, 23 TCP connections have already been established with

different http worker processes between the infecter and the victim. Interestingly, 21 connections among them

have no payload; one connection is an invalid HTTP request, which turns out to be a request to obtain the

Apache server version; and the last connection has a short interaction as shown in the log excerpt in Figure

9. From [42], we know that one of the 21 plain connections is used to validate the reachability of the Apache

server, while the other 20 connections are made for depleting the Apache server pool to make sure that the

two subsequent exploitations will have the same heap layout. The first exploitation aims at reliably deriving

the over-writable heap address in the vulnerable Apache server. This heap address is then reused in the second

exploitation. All these connections and interactions are recorded by “RED” log entries.

7We note that a general intrusion may mimic the normal sequence of service access actions [52]. However, it is more difficult for
self-propagating worms to do so because their outgoing propagation behavior is semantically different from a normal service access.
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4.2.3 SARS Worm Contamination Investigation

The SARS worm is a multi-platform worm, which is able to propagate across all major distributions of

Linux platforms (Redhat, Debian, SuSE, Mandrake, and Gentoo) and BSD platforms (FreeBSD, OpenBSD,

and NetBSD). As our current prototype is based on UML virtual machines, our experiment is conducted in a

Linux-based vGround. The vulnerable Samba service is assigned “RED”.

Sambe Service − the Entry Point of SARS Worm

NFS/RPC Service

SSH Service

DHCP Service

xinetd Service

Sendmail Service

5721: smbd 6277: smb

5725: nmbd

6279: /bin//sh

6280: /bin//sh

6282: /bin/tar zxvf sars.tar.gz

6284: /bin/rm −rf sars.tar.gz

6285: ./start.sh669: sendmail

679: sendmail

494: portmap

513: rpc.statd

632: sshd

6411: dhclient

1: init

646: xinetd

6281: /usr/bin/wget http://xxx.xxx.xxx/xxx/sars.tar.gz

Figure 10: A process coloring view of a Redhat 8.0 system running multiple servers right after it is infected
by the SARS worm

After the experiment, only 12.1% of the entire log data are “RED”, because of the large number of log

entries generated by other background services (e.g. sendmail, sshd, and dhclient) running in the Redhat 8.0

system. Derived from the “RED” log entries, Figure 10 shows the Redhat 8.0-based system right after the

infection of the SARS worm. Process smbd (PID: 5721) and process nmbd (PID: 5725) have the same color

(“RED”) as both of them belong to the Samba service. From the figure, it seems that the exploitation code

contains some redundancy as two “/bin//sh” processes are executed and one just quits immediately after its

creation. Note that these two shell processes are spawned when the buffer overrun code is executed.

Continuing from process start.sh (PID: 6285, shown in Figure 10), Figure 11 further reveals the contami-

nations inflicted by the SARS worm. For readability, certain edges and nodes describing intermediate files are

omitted. From the figure, we observe that the SARS worm contains a very primitive user-level rootkit (Circle

4 and Circle 5 in Figure 11), whose purpose is to hide the existence of worm-related files, directories, active

processes, and network connections. Also, the SARS worm plants a number of backdoors such as a web

server and an ICMP-based backdoor, which allow an attacker to access the infected host later. System-wide

information such as host IP address, and configuration files including /etc/hosts and /etc/passwd is collected

by the worm and sent to a hard-coded mail account (Circle 6). The integration of advanced payloads, such

as the rootkit in the SARS worm, indicates a recent trend in the underground evolution of more stealthy
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./start.sh

   and an ICMP−based backdoor
4: Compiling a trojan ps command

5: Contaminating system
with a rootkit installation
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1: Collecting local host information

2: Contaminating xinetd

3: Contaminating crond

7: Starting next round of worm infection

6313: /bin/mv thttpd /etc/xinetd.d

6314: /bin/mv shttpd /usr/lib

Legend: 

6400: ./start

6285: ./start.sh    

6288: /bin/chmod 777 samd shttpd ranip.pl

6289: ./getip    

6308: /bin/chmod 777 myipb getip start

6309: /bin/chmod a+r thttpd index.html 

6310: /usr/bin/killall −9 xinetd  

6311: /usr/bin/killall −9 httpd  

6312: /usr/bin/killall −9 httpd  

6315: /usr/sbin/xinetd    

6320: /bin/touch −r 0anacron.bak /etc/cron.daily/0anacron 

6326: /bin/chmod 777 mail.sh mail2.sh run

6327: /bin/chmod a+r icmp.c ps.c 

6333: /usr/bin/cc −o ps ps.c 

6338: /bin/cp /usr/bin/sars /bin/ps  

6340: /bin/mv /usr/lib/.lib/rc.local.bak /etc/rc.d/rc.local  

6341: /bin/cp /bin/ps /usr/bin/sars  

6342: /bin/cp ps /bin  

6344: /bin/cp /etc/rc.d/rc.local rc.local.bak  

6345: /bin/touch −r /usr/lib/.lib/rc.local.bak /etc/rc.d/rc.local 

6346: /bin/chown root.root /bin/ps /usr/bin/sars 

6347: /bin/rm −rf /usr/lib/lib/  

6349: /usr/bin/killall −9 samd  

6350: /usr/bin/killall −9 sama  

6352: /usr/bin/killall −9 samc  

6353: /usr/bin/killall −9 same  

6354: /usr/bin/killall −9 samf  

6355: /usr/bin/killall −9 ddos  

6356: ./mkip.pl    

6357: /usr/bin/nohup ./ddos   

6358: /bin/chmod a+rx /etc/cron.hourly/0anacron  

6359: /usr/bin/killall −9 crond  

6361: /usr/sbin/crond    

6364: /bin/cp /sbin/klogd /usr/lib/klogd.so  

6365: /bin/cp icmp /sbin/klogd  

6366: /bin/touch −r /usr/lib/klogd.so /sbin/klogd 

6367: /bin/chown root.root /sbin/klogd /usr/lib/klogd.so 

6368: /sbin/klogd    

6370: /sbin/ifconfig    

6371: /bin/cat /etc/hosts   

6372: /bin/cat /etc/passwd   

6373: /bin/cat /etc/shadow   

6374: ./mail.sh    

6290: /sbin/route −n   

6297: /usr/bin/awk {printf("%s",$1)}   

6300: /usr/bin/awk {printf("%s",$1)}   

6334: /usr/lib/gcc−lib/i386−redhat−linux/3.2/cc1 −lang−c −D__GNUC__=3 −D__GNUC_MINOR__=2 −D__GNUC_PATCHLEVEL__=0

6336: /usr/lib/gcc−lib/i386−redhat−linux/3.2/collect2

6332: /usr/bin/ld

6337: /usr/bin/ld

6375: ./getip    

6390: /usr/bin/clear    

6391: /bin/cat myip   

6393: /usr/bin/clear    

6394: /bin/cat myip   

6396: /bin/chmod 755 go go2 

6397: ./go    

6398: ./go2    

6376: /sbin/route −n   

6380: /usr/bin/awk {printf("%s",$1)}   

6383: /usr/bin/awk {printf("%s",$1)}   

6386: /usr/bin/awk {printf("%s",$1)}   

6389: /usr/bin/awk {printf("%s",$1)}   

6401: /bin/rm −rf .log .log1 .log2

6402: /bin/cp samd sama  

6403: /bin/cp samd samb  

6404: /bin/cp samd samc  

6405: /bin/cp samd same  

6406: /bin/cp samd samf  

6407: ./ranip.pl    

6408: /usr/bin/nohup ./sama −S 27.234 

6409: ./ranip.pl    

6411: /usr/bin/nohup ./samb −S 100.93 

6412: ./ranip.pl    

6414: /usr/bin/nohup ./samc −S 82.181 

6415: /bin/cat myip   

6418: ./myipb    

6428: /usr/bin/nohup ./samf −S . 

6421: /usr/bin/id −gn   

6423: /usr/bin/id −un   

6425: /usr/bin/id −u   

6426: /bin/cut −d. −f 1 myip

6427: /bin/cut −d. −f 2 myip

6400: ./start    

6363: /usr/bin/killall −9 klogd  

6313: /bin/mv thttpd /etc/xinetd.d  

6319: /bin/cp /etc/cron.daily/0anacron 0anacron.bak  

6339: /bin/cp /usr/lib/klogd.so /usr/sbin/klogd  

6399: /bin/rm −rf go* mail.txt 

6351: /usr/bin/killall −9 samb  

6348: /bin/rm −rf /dev/.lib  

6343: /bin/touch −r /usr/bin/sars /bin/ps 

6335: /sbin/as −Qy −o /tmp/ccUkMYNt.o /tmp/cclV7MtJ.s

6331: /usr/lib/gcc−lib/i386−redhat−linux/3.2/collect2

6330: /sbin/as −Qy −o /tmp/ccyEFikA.o /tmp/cc4Cl6Uc.s

6328: /usr/bin/cc −o icmp icmp.c 

6318: /bin/mv 0anacron.bak /etc/cron.daily/0anacron  

6314: /bin/mv shttpd /usr/lib  

6303: /usr/bin/awk {printf("%s",$1)}   

6294: /usr/bin/awk {printf("%s",$1)}   

6329: /usr/lib/gcc−lib/i386−redhat−linux/3.2/cc1 −lang−c −D__GNUC__=3 −D__GNUC_MINOR__=2 −D__GNUC_PATCHLEVEL__=0

Figure 11: SARS worm contaminations reconstructed from “RED” log entries
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self-propagating worms.

5 Other Applications and Possible Attacks

5.1 Other Applications

Malware investigation Process coloring can be naturally extended to support general malware investigation.

The goal is to understand the possible malicious actions and their impact on the infected system, which

can further guide the recovery from the malware’s contaminations. In particular, process coloring is highly

effective in exposing the following two interesting anomaly points:

• Color mixing: Color mixing refers to the situation where a different color is diffused to an already-

colored process. Based on the rationale of color diffusion, coloring mixing indicates that the process

is influenced by another process with a different color. Considering the initial assignment of different

colors to mutually unrelated service processes, such cross-service influence is mostly likely an anomaly

and warrants further investigation. For example, in one of our experiments, we run BIND and Apache

services in one VM and let the Lion worm infect the VM via the BIND vulnerability. The Lion worm

then contaminates the system by replacing index.html files with its own. We observe that log entries

recording subsequent web accesses bear the colors of both BIND and Apache.

• Dangling file: A dangling file is created by a malware infection, but is not accessed during the same

infection session. For example, if we re-examine Figures 6 and 11, some dangling files belong to

rootkits/backdoors installed by worms: /sbin/asp by the Lion worm (Figure 6) and /etc/xinetd.d/thttpd

and /usr/lib/shttpd by the SARS worm (Figure 11). Though these rootkits are usually installed by

stealthy worms/malware to hide their presence, identification of dangling files can actually help to reveal

the presence of the rootkits.

Run-time monitoring and log visualization As mentioned in Section 3.3, the log push-down mechanism

and color-based log partition provide a convenient means to externally monitor the running state of a net-

worked server system, without interrupting the operations of the system. Process coloring can be used to

identify possible anomalies revealed by log colors (e.g., color mixing, deviating log pattern for a particular

color/service) during runtime and thus raise more timely alarms. We are currently extending our prototype

with a log visualization tool, which makes it more intuitive for administrators to monitor system states.
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5.2 Possible Attacks and Counter-Measures

Jamming attack A worm could intentionally introduce many noise log entries to hide its actual intention.

For example, a worm could invoke a large number of “innocuous” or unrelated syscalls just to hide its real

infection attempts. However, tactically speaking, these actions still need to be considered as a part of the

worm’s behavior in the infected system, even though they may not contribute to any real damage. Also, to the

worm’s disadvantage, these noise log entries deviate from the normal log pattern of a specific color and will

trigger an alarm. Finally, the capability of color-based identification of a worm’s entry point is still valid under

this attack, though it will take a more careful analysis to uncover the obfuscated intention.

Low-level attack The integrity of colors associated with active processes and intermediate resources are

critical to worm investigation. As the current prototype maintains the color information within the kernel

of the system under inspection, it is possible that this information be manipulated through certain low-level

attacks. For example, if the process color is associated with the task struct PCB structure, a method called

direct kernel object manipulation (DKOM) [17] can be leveraged to explicitly change the color value (e.g.,

by writing to the special device file /dev/kmem). Fortunately, solutions such as CoPilot[43], Livewire[28], and

Pioneer [46] have been proposed to address the issue of kernel integrity. Another possible counter-measure

is to create a shadow structure, which is instead maintained by the virtual machine monitor (VMM) and is

totally inaccessible from inside the VM. Compared with the current prototype, the shadow solution poses

significantly greater challenge in deriving VM operation semantics from low-level information collected via

virtual machine introspection, which may affect the accuracy and completeness of worm investigation results.

Diffusion-cutting attack It is possible that a worm might use a hidden channel to undermine the diffusion.

For example, a worm could use an initial part of an attack to crack a weak password, which is later used in

a separate session to gain the system access and complete the rest of worm contamination. Process coloring

can track any action performed within each break-in, but it cannot automatically associate the second break-in

with the first one. However, any anomaly within the second break-in will immediately expose the responsible

login session, which may lead to the identification of the cracked password. Based on the log data from the fi

rst break-in, the administrator may still be able to correlate those two disjunct break-ins.

Color saturation attack If a worm is aware of the coloring scheme, it might attempt to acquire more colors

from different services right after its break-in. As a result, the associated colors can not uniquely identify the

break-in point. However, to the worm’s disadvantage, the color saturation attack will immediately lead to

an alarm of color mixing (Section 5.1) - an anomaly triggering further investigation. Color saturation attack

does expose a weakness of our current prototype, which uses a single color field. Although our prototype is
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able to accommodate multiple colors (each bit in the color field represents a different color), it is not able to

differentiate between an inherited color and a diffused color. The inherited color of a process can only be

inherited from its parent and will not be changed by its own or others’ behavior. The diffused colors, on the

other hand, reflect the color diffusions through its own or others’ actions (e.g., sys read and sys write). With

this distinction, the inherited colors can be used to partition the log data, while the diffused colors can be

used to detect a color saturation attack and naturally identify all color-mixing points for further examination

in affected partitions.

6 Related Work

The development of process coloring technique is inspired by the concept of transitive dependency track-

ing [26, 47, 49] originally proposed for failure recovery in fault tolerant systems. Process coloring also

reflects various information flow models [14, 20, 21]. With these concepts and models as theoretical under-

pinnings, a spectrum of taint-based techniques have recently been proposed for different aspects of system

security: Process coloring operates at the system call level to reveal worm break-in and contamination seman-

tics; TaintCheck [41] works at the instruction level to detect overwrite attacks and generate exploit signatures;

TaintBochs [18] focuses on the lifetime tracking of sensitive data (e.g., passwords) in a system. While sharing

the same design philosophy, these techniques differ in their goals, design, implementation, and usage.

Process coloring can be integrated into existing log-based intrusion investigation tools [36, 38] so that

they become provenance-aware. BackTracker [36] is able to automatically reconstruct the sequences of steps

that occurred during an intrusion based on log data. More specifically, starting with an external detection point

(e.g., a corrupted file), BackTracker identifies files and processes that could have affected this detection point

and displays chains of events in a dependency graph. The follow-up work [38] of Backtracker proposes a

forward tracking capability that identifies all possible damages caused by the intrusion after the back-tracking

session. Both BackTracker and its forward tracking extension require the entire log data as input. With

process coloring enhancement, the break-in point of a worm can first be identified by the color of the detection

point, and the volume of input log data will be reduced by color-based log partition, resulting in more efficient

back-tracking and forward-tracking sessions. In addition, the colors and patterns of log entries may provide

alerts at runtime, leading to more timely investigations.

Process coloring can also be applied to enhance file and transaction repair/recovery systems. The Re-

pairable File Service [56] aims to identify possible file system level corruptions caused by a root process, as-

suming that the administrator has already identified the root process that starts an attack or a human-involved

21



error. It then uses the log data to identify the files that may have been contaminated by that process. The

repairable file service implements a limited version of the forward tracking capability mentioned earlier by

only tracking file system-level corruptions. Meanwhile, there has been technique in the database area [13] that

is capable of recording contaminations at the transaction level and rolling back the damages if the transaction

is later found malicious. This technique also requires external identification of malicious processes or transac-

tions. Process coloring can enhance these techniques by tracking more sophisticated contamination behavior

via color diffusion, raising anomaly alarms based on log colors and patterns, and achieving tamper-resistant

log collection.

Recent advances in virtual machine technologies have created tremendous opportunities for intrusion

monitoring and replay [7, 25, 28, 33], system problem diagnosis [37, 53, 55], attack recovery and avoidance

[25, 48], and data life-time tracking [18, 19]. For example, ReVirt [25] is able to replay a system’s execu-

tion at the instruction level. Time-traveling virtual machines such as [37, 53, 55] provide a highly effective

means of re-examining and troubleshooting system execution or configuration. Process coloring complements

these efforts by leveraging virtual machine technologies for worm break-in and contamination investigation.

In addition, process coloring, as an advanced logging mechanism, can be integrated into other VM-based

networked systems to add provenance-awareness to these systems.

7 Conclusion

We have presented the design, implementation, and evaluation of process coloring, a novel systematic

approach to provenance-aware tracing of worm break-in and contaminations. By associating a unique color

to each remotely-accessible service and diffusing the color based on actions performed by processes in the

system, process coloring achieves two key benefits: (1) color-based identification of a worm’s break-in point

before detailed log analysis and (2) color-based partitioning of log data. Process coloring improves log-based

worm investigation tools by reducing the amount of log entries to be processed and by providing color-related

“leads” for more timely investigation. Experiments with a number of real-world Internet worms demonstrate

the practicality and effectiveness of process coloring.
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