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ABSTRACT

Tripunitara, Mahesh V. Ph.D., Purdue University, DecemB@65. A Theory Based on
Security Analysis for Comparing the Expressive Power ofésscControl Models. Major
Professor: Ninghui Li.

We present a theory for comparing the expressive power adsaccontrol models.
Our theory is based on reductions that preserve the redudescarity analysis. Security
analysis is an approach to the verification of security jpedicn access control systems.
We demonstrate the effectiveness of the theory by applyimg several cases. Also,
we present related results on safety analysis in DiscratjoAccess Control (DAC) and

security analysis in Role-Based Access Control (RBAC).
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1 INTRODUCTION

In this dissertation, we show the existence of a theory baseskcurity analysis for com-
paring access control models. We justify the design of te®mh and demonstrate its
effectiveness.

Access control enables the controlled sharing of resowcesmg principals. Itis “the
traditional center of gravity” of computer security [1] argdrecognized as an important
area of research in computer security. #gtess control systedecides whether an entity
may access another entity. The entity that initiates adsessled a principal, subject or
user. The entity to which access is initiated is called aussoor object. When a subject
requests access to an object, it specifies also the mannérdh iwdesires such access; for
example, read, write or execute. A manner of access is cafl@gcess right An access
right and an object are sometimes together referred to asigson. An access control
system makes its decision based opretection stateat any given time, the protection
state includes all information needed by the access cosysieEm to make its decision
should a subject request access.

The protection state of an access control system can soewtm changed by sub-
jects in the system. In such a case, the rule by which the giiotestate can be changed
is specified along with the protection state. Such a rulells¢a state chang®er anad-
ministrativerule. Thus, an access control system is a state-changersgateis specified
by a double(, ), wherey is the start or current state agids the state-change rule.

An example of an access control system is shown in Figure Thk.access matrix
M represents the state The commands comprise the state-change zuldn ~, two
subjects exist, Alice and Bob. The rows &f are indexed by subjects and columns by
objects. Every subject is also an object. Each ceMotontains the set of rights a subject
possesses to an object. For example, Alice hasidheright to Bob, and Bob has thead

right to File;. Each command iny takes parameters that are instantiated by subjects or



command grantWrite(sy, o, s2)
if own € M[s1,o0] then

Alice Bob File; M]sa, 0] < M|s2,0] U {write}
Alice | control | own | own,
write command transferOwn(sy, 0, s2)
Bob own read if own € M{sy, 0] then

M][sa,0] < M]sa,0] U {own}
M]sy,0] < M]|s1,0] — {own}

Figure 1.1. An access control system with the state represented as assacc
matrix, M, and state-change rule represented as a set of commahtas two
subjects, Alice and Bob, and an objétle; besides the two subjects. There are
two command associated with this systegrantWrite andtransferOwn. Each
command in the state-change rule takes parameters, eadtiobf i instantiated
by a subject or an object.

objects. For example, theansferOwn command is used by the subjegtto transfer the
own right over the objecd to the subjecks,.

An access control system is in aecess control schema scheme is specified by a
double(I", ), wherel is a (possibly infinite) set of states, afdis a (possibly infinite)
set of state-change rules. A systém)) is said to be in a schemi{€&, ¥) whenv € I"and
1 € V. The access control system in Figure 1.1 is in the schemepeajby Harrison et
al. [2] that we call the HRU scheme. A scheme is ina@gess control modeAn access
control model is generally associated with the represiematf the state for schemes in
the model. An example of an access control model is the acoagsx model [2—4], in
which a state is represented by a matrix in which each celexad by & subject, object)
pair, contains a set of rights. A scheme in the access matrdeirhas as its set of states

I" all possible instances of access matrices.

1.1 The need for safety and security analysis

Given an access control system in a scheme, a natural guéséibarises is the “state
reachability” question; that is, whether the system canhlr@gparticular state based on its

start statey and state-change rule For example, in the system in Figure 1.1, we may ask



whether the system can reach a state in which the subject &othwrite right to File;.
The question of whether a subject can acquire a right ovebgtbis called thesafety
guestion, and the corresponding analysis in the contexgsieéms in a scheme is called
safety analysis [2]. More generally, the question of whe#lreaccess control system in a
scheme can reach a state in whidijueryis true is calledsecurity analysi$s—7]. A query
specifies some property of the state.

The need for safety and security analysis is articulateddmed [8]: “Security poli-
cies are generally formulated as predicates relating thgests and passive objects of a
protection state. In contrast, most [access control sygtane phrased in a procedural,
not a predicate, form. Though procedural definitions makieszidual system state transi-
tions easy to understand and to implement, they combinerio fosystem that exhibits
complex behavior. It is difficult to intuit and to express thehavior of a procedurally de-
fined system. ...the predicate defines a security policys;TWe bridge the gap between
mechanism and policy.”

A query in security analysis is a predicate; examples ofigaén the context of an ac-
cess matrix system are: “does Alice have access to an obgctdoes Bob not have the
‘own’ right over o?” and “does some subject have some right over some object@tyS
and security analysis are forms of policy verification; tlistermine whether policies,
stated as queries, hold in some reachable state, or in allaibke states.

The assertion in Jones [8] on the difficulty of intuiting thehlavior of an access control
system is substantiated by the work of Harrison et al. [2}ylmch it is demonstrated that
the safety question of whether some subject can gain a plartiight to some object is
undecidable for systems in what appears to be a relativalylsiand natural access matrix

scheme, the HRU scheme.

1.2 On comparing access control models and schemes

There are three compelling motivations for comparing ascestrol models and schemes

with one another.



The first is simply that there exists more than one model, hackfore it is natural to
ask how two models compare with one another. For exampletrioducing the Schematic
Protection Model (SPM) [9], Sandhu [10] considers aétgressive power Expressive
power in this context is informally characterized as thegeaof policies a model can ex-
press. Sandhu [10] specifically compares SPM to the HRU sel2nSimilarly, Osborn
et al. [11] compares the Role-Based Access Control (RBACG)ehfl2, 13] to Manda-
tory [14, 15] and Discretionary Access Control [3, 4, 16] (MAand DAC, respectively)
models.

The motivation discussed above applies especially whemtaaels are claimed to be
“policy neutral”; that is, when it is claimed that a wide \et§i of security policies can be
expressed by the two models. An example is the comparisorB&iCRwith the access
matrix model.

The second motivation is to understand whether a partidalture adds expressive
power to a scheme. For example, Ammann et al. [17] addreksaguestion of whether
the Extended Schematic Protection Model (ESPM) is moressgire than SPM. ESPM is
exactly like SPM except for one feature: the ability to spetwo “parents” in the creation
of a new object (SPM allows for the specification of only onegpd). Similarly, Sandhu
and Ganta [18] addresses a similar question in the contéxédugmented Typed Access
Matrix (ATAM) scheme in comparison to the Typed Access Ma(iiAM) scheme. The
only difference between ATAM and TAM is that ATAM allows us¢beck for the absence
of rights in a cell of the access matrix, while TAM does not.

The third motivation for comparing access control modeld achemes is the need
to infer results regarding safety and security analysis sct®eme, given that results are
known in another scheme. For example, given that safety decidable in the HRU
scheme [2], a mapping that preserves the results of safetlysas to another scheme
would indicate that safety is undecidable in the latter sehas well. We use this ap-
proach in Chapter 4 to infer complexity results for a variefygueries in two RBAC
schemes, based on known results for corresponding analyditems in a trust manage-

ment scheme.



We argue that for a scheme to be at least as expressive aggribthust express all
policies that the latter can. Our notion of a policy is ad@éted in Section 1.1; it is those
predicates that are considered to be meaningful for systethe scheme. Consequently,
we say that an access control schefhis at least as expressive as a schehikthere ex-
ists a mapping of systems frorhto B that preserves the results of security analysid.in
When we say preserves the results of security analysis, ve@ that if security analysis
returns “true” for a query in the system it then it must return “true” for the correspond-
ing query in the system il and vice versa. To compare models, we compare the schemes
in the models. This characterizes our notion of expressveep in the context of access
control schemes and models.

What we seek is a kind géduction Our notion of a reduction is similar to that used,
for example, in structural complexity theory [19, 20]. Inraase, however, a reduction
is a mapping that preserves results of security analysis.nibt necessarily efficient; we

seek only that the mapping is computable.

1.3 Thesis statement

Our thesis is that there exists a theory based on reductiatgteserve the results of
security analysis for comparing the expressive power oéskcontrol models. Our ap-
proach to proving the thesis is by construction; we presgatsuch reductions in Chap-
ter 5. We demonstrate the effectiveness of the reductioapplying them in several cases

to compare access control schemes.

1.4 Organization

The remainder of this dissertation is organized as follolmsChapter 2, we discuss
related work on access control models and schemes, safdtgemurity analysis, and
comparing access control models and schemes. In ChaptempBasent a new result on
safety analysis in DAC and critique a mapping from one DACescgé to another that

has been presented in the literature. This chapter serve®tgtion for our theory. In



Chapter 4 we present new results on security analysis in RB\Ghis chapter, we use
a weaker version of a reduction from our theory. In ChaptereSntroduce our theory,

justify its design and present applications. We concludb Whapter 6.



2 RELATED WORK

In this chapter, we survey work related to our thesis. Iniac.1, we discuss access
control models schemes that have been proposed in thediterdn Section 2.2, we dis-
cuss work on safety and security analysis. In Section 2.3Jis@iss work on comparing

access control models and schemes.

2.1 Access control models and schemes

The first formal access control model to have been proposédeititerature is by
Lampson [3]. It introduces the access matrix model, andudses how the protection
state may be changed by subjects in the system. Graham amihQg#4] has built upon
Lampson [3] and provides a comprehensive description of & Bgheme. In a DAC
scheme, subjects grant rights to objects they own at thearelion. Graham and Den-
ning [4] discusses two distinguished rightsyn and control, that empower subjects to
make changes to the protection state at their discretiore cHaracterization of DAC
that we use in Chapter 3 is from [16], an earlier version ofchhappears as a research
paper [21]. Griffiths and Wade [22] introduces a DAC schemedtational database sys-
tems. Solworth and Sloan [23] introduces a DAC scheme basé¢abels and relabelling
rules and argues that it captures all known DAC schemes. ¥éeiss the scheme and the
claim in detail in Chapter 3.

Harrison et al. [2] presents a different access matrix seh&fom that proposed by
Graham and Denning [4]. In the HRU scheme [2], there are ntondisished rights, and a
state-change rule consists of an arbitrary set of commaadsa a particular form.

Subsequently, several access control schemes have bg@sedo Jones et al. [24,25]
introduces the take-grant scheme. Sandhu introduces SPMrfmann and Sandhu [26]

introduces ESPM, which extends SPM with multi-parent ¢omat Sandhu [27] intro-



duces TAM, which extends the HRU scheme [2] by requiring shdijects and objects be
strongly typed. Soshi et al. [28, 29] introduces the dynayped access matrix model, in
which the types of subject and objects may change.

Ferraiolo et al. [30, 31] introduces RBAC. Sandhu et al. [d8kusses the RBAC96
family of models, which provides a more precise characition of the RBAC protection
state. RBAC is described in detail also by Ferraiolo et a2].[1Koch et al. [32, 33]
presents a graph-based formalism for RBAC, and Nyancham@aborn [34] presents
the role graph model, both of which use graphs to represer®BAC protection state.

Sandhu et al. [35—-37] introduces the ARBAC97 administesdtheme for RBAC. AR-
BAC97 [37] is the first and most comprehensive administeasisheme to have been pro-
posed for RBAC, and we discuss its safety properties inldat@hapter 4. Subsequently,
administrative schemes for RBAC have been proposed by Goamamd Loizou [38—-40],
and by Koch et al. [32,33,41] in the context of a graph-baseshélism for RBAC, and
Wang and Osborn [42] for the role graph framework.

There has been work also on MAC schemes [14, 15, 43, 44]. In idysfems, rights
cannot be granted to subjects at the discretion of otheestsjMAC schemes can cer-
tainly be compared to DAC and RBAC schemes. We argue howhegithis is not as
interesting, as MAC schemes are designed to enforce a spgaiity, for example, mul-

tilevel security [45].

2.2 Safety and security analysis

Safety is a fundamental property that was first proposedcsicdimtext of access control
by Harrison et al. [2]. That work demonstrates that safetyndecidable in general for
the HRU scheme [2]. Harrison and Ruzzo [46] presents safetlysis results for several
restricted cases of the HRU scheme. Subsequently, theleeleasconsiderable work on
safety in various contexts related to security [5,7,9, B62B, 47-51].

Jones et al. [24, 25] shows that safety is decidable in litieae in the take-grant

scheme. Sandhu [51] shows that safety is undecidable in SRktdhu [9] demonstrates



that safety is decidable for a restricted version of SPMHKwitly “acyclic creation” al-

lowed). Ammann and Sandhu [47] discusses safety analy&EiSHM. Soshi et al. [28,29]
discusses safety in the dynamic typed access matrix sch&wiecorth and Sloan [23]
shows that safety is decidable in the DAC scheme introdutéuhit work.

Koch et al. [41] shows that safety is decidable in a resuicteheme in the graph
based formalism for RBAC [32, 33]. Li and Tripunitara [7] dissses security analysis in
two RBAC schemes based on the ARBAC97 scheme [37]. The asdlheye is based on
results from security analysis in a trust management fraoney, 6].

Safety analysis has been studied in other contexts as wel,as grammatical protec-

tion systems [48] and trust negotiation [52].

2.3 Comparing access control models and schemes

Comparing the expressive power of access control modebkrgnized as a funda-
mental problem in computer security and is studied extehsin the literature [10,11,17,
18,53-55]. A common methodology used for comparing acoassa models in previ-
ous work issimulation When a schemd is simulated in a schem®@, each system inl is
mapped to a corresponding systenAn If every scheme in one model can be simulated
by some scheme in another model, then the latter model iddmresl to be at least as
expressive as the former. Furthermore, if there exists amsehn the latter model that
cannot be simulated by any scheme in the former, then the latbdel is strictly more ex-
pressive than the former. Different definitions for simidas are used in the literature on
comparing access control models. We discuss related wattki®problem by identifying

three axes along which the definitions used in such workrdiffe

e The first axis is whether the simulation maps only the stataelsw the state-change
rule. The approach of Bertino et al. [56] is to map only thdestaof two access
control models to a common language based on mathematiga) &md to compare
the results to determine whether one model is at least ag&sipe as the other, or

whether the two models are incomparable. Other work, su¢h®47, 18,53, 54]
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however, require both the state and the state-change ride toapped under the

simulation.

An advantage with an approach such as the one that is adopietrtino et al. [56]
is that it captures “structural” differences in how the puiton state is represented
in a system based on an access control model. For instareebgerved in [56] that
the existence of an indirection (the notion of a role) betwesers and permissions
in RBAC gives it more expressive power than an access matdein Such “struc-
tural” differences are not captured by our theory, or othgaraaches that consider

both the state and the state-change rule.

We point out, however, that the state-change rule is an itappcomponent of an
access control system, and therefore assert that a meahingbry for expressive
power must consider it as well. In fact, it is often the cas# this the state-change
rule that endows considerable power to an access contri@rsy£onsider, for ex-
ample, the access matrix schemes proposed by Graham anihD¢ahand by
Harrison et al. [2]. In both schemes, the state is repredeloyean access ma-
trix. However, the state-change rules are quite differémthe Graham-Denning
scheme [4], there are only specific ways in which rights mayréesferred, while
in the HRU scheme [2], one may define arbitrary commands iata-shange rule.
It has also been demonstrated [57] that safety is decidalg®lynomial time in
the Graham-Denning scheme, while it is known to be undetad@h in the HRU
scheme. Such differences cannot be captured by an appteaaoes not consider

both the state and the state-change rule.

The second axis is whether a simulation is required to pvessafety properties.
In the comparison of different schemes based on the accesx madel [10, 17,
18, 54], the preservation of safety properties is requiteal schemeA is simulated

in a schemeB, then a system in schem& reaches an unsafe state if and only if

the image of the system under the simulation (which is a systeschemeB)



11

reaches an unsafe state. By an “unsafe state” we mean arstaltéch a particular

unauthorized subject has a right that she must not possess.

On the other hand, the preservation of safety propertiestisaguired in the simu-
lations used for comparing MAC (Mandatary Access ContidAC (Discretionary
Access Control), and RBAC (Role-Based Access Control) $5158]. Nor is it
required in the simulations used for the comparison of As€&sntrol Lists (ACL),
Capabilities, and Trust Management (TM) systems [53]. #séhcomparisons, the
requirement for a simulation of in B is that it should be possible to use an imple-
mentation of the schem@ to implement the schemé. We call this thamplemen-

tation paradigmof simulations.

e The third axis is whether to restrict the number of stateditgons that the simu-
lating scheme needs to make in order to simulate one statsition in the scheme
being simulated. [53] define the notions of strong and wealukitions. A strong
simulation of A in B requires thatB makes one state-transition whenmakes
one state-transition. A weak simulation requires tBahakes a bounded (by a con-
stant) number of state-transitions to simulate one statesition inA. A main result
in [53] is that a specific TM scheme considered there is mopeessive than ACL
because there exists no (strong or weak) simulation of thes@idme in ACL. The
proof is based on the observation that an unbounded (butrstd) number of state-

transitions in ACL is required to simulate one state-traosiin the TM scheme.

On the other hand, an unbounded number of state-transisoaitowed by [18].
That work uses a simulation that involves an unbounded nupflstate-transitions
to prove that ATAM (Augmented Typed Access Matrix) is eqlave in expressive
power to TAM (Typed Access Matrix).

Existing work on comparing access control models and schémme severe shortcom-
ings. First, different definitions of simulations make itgossible to put different results
and claims about expressive power of access control modtigsai single context. For

example, the result that RBAC is at least as expressive as [RAGS] is qualitatively
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different from the result that TAM is at least as expressw8AM [18], as the former
does not require the preservation of safety propertiess& hesults are again qualitatively
different from the result that ACL is less expressive thansTiManagement [53], as the
latter requires a bounded number of state-transitionshmilsitions.

Second, some definitions of simulations that are used initd@ture are too weak
to distinguish access control models from one another in anmgful way. Sandhu et
al. [11,55,58] argues that various forms of DAC (includingdM, in which simple safety
is undecidable) can be simulated in RBAC, using the notiosirofulations derived from
the implementation paradigm. However, no concrete pragsedre articulated for the
notion of simulations used in such work. Thus, this notiosiaifulations is not useful in
differentiating models based on expressive power.

Finally, the rationale for some choices made in existingnitedins of simulations is
often not clearly stated or justified. It is unclear why cert@quirements are made or not
made for simulations when comparing the expressive powacadss control models. For
instance, when a simulation involves an unbounded numlstatd-transitions, Ganta [54]
considers this to be a “weak” simulation, while Chander ef5d] does not consider this

to be a simulation at all. Neither decision is justified in @g®4] and Chander et al. [53].
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3 SAFETY ANALYSIS IN DISCRETIONARY ACCESS CONTROL

In this chapter, we consider safety analysis in DAC. We répece the characterization
of DAC from [16], and argue that the Graham-Denning DAC schd#j subsumes all
known DAC schemes from the standpoint of safety analysis.pW¥sent the new result
that safety is efficiently decidable in the Graham-Dennicigesne [4] and thereby counter
the assertion in the literature that safety is undecidabBAC [23,59]. We then assess
a mapping from the literature that is used to argue that a n&@ §cheme proposed by
Solworth and Sloan [23] captures all known DAC schemes. #fpam presenting new
results, this chapter provides additional background aotivattion for our theory that we

introduce in Chapter 5.

3.1 Characterizing DAC and safety analysis

The NCSC guide titled ‘A Guide To Understanding Discretignaccess Control in
Trusted Systems’ [16], portions of which were published assgarch paper [21], states
that “the basis for (DAC) is that an individual user, or praxgr operating on the user’s
behalf, is allowed to specify explicitly the types of accetier users (or programs execut-
ing on their behalf) may have to information under the usewistrol.” We point out two
specific properties from this characterization of DAC: (heThotion of “control” — there
is a notion that users exercise control over resources trathser that controls a resource
gets to dictate the sorts of rights other users have overegwurce, and (2) the notion of
initiation of an action by a user to change the protectiotestasuch state changes occur
because particular users initiate such changes. A repeggenof a DAC scheme needs
to capture both these properties.

Some literature (for example, [59,60]) appears to equat€ vah the HRU scheme [2].

This is incorrect, as there exist systems based on the HReéhselthat are not DAC sys-
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tems. For instance, consider an HRU system in which theralisane command, and
that command has no condition. This system is not a DAC syateindoes not have the
first property from above on the control of resources by aesttbjin addition, there are
DAC schemes that do not have natural representations as ldRé&s. For instance,
the Graham-Denning scheme [4] (see Section 3.2.1) is a DA€nse in which a subject
may be ‘owned’ or ‘controlled’ by at most one other subjecsystem based on the HRU

scheme cannot capture this feature in a natural way.

Definition 3.1.1 (Safety Analysis)Given a DAC schemél’, V), let the set of subjects
that can exist in a system based on the schems, bet the set of objects b@, and let
the set of rights bék. Assume that there exists a functibasRight: S x O x R —
{true, false} such thahasRight(s, o, ) returnstrue if in the current states ando exist,r

is a right in the system, andhas the right- overo, and false otherwise. A safety analysis
instance has the fornfy, ¢, 7, O—-hasRight(s, 0,7)) for somey € I', ¢ € ¥, T C S,

s € §,0 € O andr € R. The safety analysis instance is trugagRight(s, o, r) is false in

every reachable state, with no state change initiated bgiafisn 7, and false otherwise.

In the above definitionJ stands for “in the current and all future states,” and is an
operator from temporal logic [61].

Each instance of the analysis is associated with & s#ttrusted subjects. The mean-
ing of a trusted subject is that we preclude state-changgstéd by any subject frori”
in our analysis. The intuition is that we expect these subjecbe “well-behaved”. That
is, while such subjects may effect state-changes, they do soch a way that the state
that results from the state-changes they effect satisfegatide properties (that is, safety).
Harrison et al. [2] does consider trusted subjects as pdneaf safety analysis. However,
as pointed out by Li et al. [5], the way [2] deals with trustedjects is incorrect. Harrison
et al. [2] requires that we delete the rows and columns cporeding to trusted subjects
prior to the analysis. While a trusted subject is not allowethitiate a state-change, she
may be used as an intermediary, and the way Harrison et aleg@$ with trusted subjects

does not consider this possibility. We require only that armoer of the set of trusted
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subjects not initiate a state-change. In all other waységlseibjects continue to be part of

the system.

3.2 Safety analysis in the Graham-Denning scheme

In this section, we study safety analysis in the Graham-D@nDAC scheme [4]. We
first present a description of the scheme in the followingisac Our description clearly
describes the states and state-change rules in the sche®ection 3.2.2, we present an
algorithm to decide safety in the scheme, and show that goilim is correct. We assert

also that the algorithm is efficient.

3.2.1 The Graham-Denning Scheme

In this section, We present a precise representation foGtabam-Denning scheme.
We define what data are stored in a protection state, and htateachange rule changes

a state.

Assumptions We postulate the existence of the following countably indisiets:O, the
set of objectsS, the set of subjectsS(C O); andR, the set of rights.

Note that the set of objects (or subjects) in any given statdheé Graham-Denning
scheme is finite; however, the number of objects that couladaed in some future state
is unbounded. Similarly, the set of rights in any given ascs@ntrol system is finite;
however, different access control systems may use diffesets of rights. Therefore, we
assumeS, O, andR are countably infinite.

We assume a naming convention so that we can determine, stagdrtime, whether
a given objecto, is a subject (i.e.p € S) or not (i.e.,o € O — S). There exists a
special “universal subjecti € S; the role ofu will be explained later. The set of rights
‘R contains two special rightsywn and control, a countably infinite seR, of “basic”
rights, and a countably infinite S&; of basic rights with the copy flag denoted byi.e.,
R; = {r*|r € Rp}. In other wordsR = {own, control} U R, U R;. The meaning of the
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copy flag is clarified when we discuss the state-change rolethé scheme. An access
control system based on the Graham-Denning scheme is assibwaiith a protection state,

and a state-change rule.

States,I’ A state in the Graham-Denning schemgis associated with the tup(e),,, S,
M,[]), whereO, C O is a finite set of objects that exist in the state5, C S is a finite
set of subjects that exist in, and S, is a subset oD,. M, [] is the access matrix, and
M,[]: S, x O, — 2%, Thatis,M,[s, o] C R is the finite set of rights the subjectc S,
has over the objeet € O,,.

Every stateyy = (O,, S, M,[]), in the Graham-Denning scheme satisfies the follow-

ing seven properties.

1. Every object must be owned by at least one subjectvies O, 3s € S, (own €
M., s, o]).

2. Objects are not controlled, only subjects are,V.e.c (O, — S,) Vs € S, (control ¢
M., s, o]).

3. The special subjeat exists in the state, is not owned by any subject, and is not
controlled by any other subject, i.e.,c S, AVs € S, (own & M,[s,u]) AVs €
S, — {u}(control & M,[s, ul).

4. A subject other tham is owned by exactly one other subject, i.e., for everyg

S, — {u}, there exists exactly oné € S, such that’ # s andown € M, [, s];
5. Every subject controls itself, i.e/s € S, (control € M,[s, s]).

6. A subject other than is controlled by at most one other subject, i.e., for every

S, — {u}, there exists at most oné € S, such thats’ # s and control € M, [¢', s].

7. There exists no set of subjects such that they form a “tycterms of ownership of
each other (and in particular, a subject does not own itsedf)~(3 {s1,...,s,} C
S,(own € M,[sa,s1] N own € M,[s3,s9] A -+ N own € M,[Sy, Sp—1] A own €
M, [s1, 5a])-
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These state invariants are maintained by the state-chatege r

State-Change Rulesy@  Each membery, of the set of state-change rules, in the
Graham-Denning scheme, is a set of commands parameteryzadsét of rights,R,,.
These commands are shown in Figure 3.1. Where possible, evthesyntax for com-
mands from the HRU scheme [2], but as we mention in Sectiopm&Ilcannot represent
all aspects of DAC schemes using only constructs for comsamdhe HRU scheme.
We use some additional well-known constructs suck aand 3 in these commands. A
state-change is the successful execution of one of the cousnaWNe assume that the
state subsequent to the execution of a command i8Ve denote such a state-change as
v Fy(s) ', Wheres is the initiator of the command. When the rule and initiater ian-
plied or not important, we write simply — +/, and to denote zero or more state-changes,
we write y +, 7. We point out that for each command, unless specified otiserwi
Sy =8,, 0, = 0,, andM, s, o] = M,[s, o] for everys € S, ando € O,. We use—

to denote assignment, i.e:.,<— y means that the value inis replaced with the value in

y. The commands in the Graham-Denning scheme are the folljpwine first parameter
to each command is namedand is the subject that is the initiator of the executiorhef t

command.

e transfer_r(7, s,0) This command is used to grant the righby an initiator that has
the rightr* overo. There is one such command for everg R, NR;. The initiator,
17, must possess the right overo, and the subject must exist for this command

execution to succeed.

e transfer_r*(i, s, 0) This command is used to grant the rigtitby an initiator that
has the right* overo. There is one such command for evetye R, NR;. The
initiator, ¢, must possess the right over o, and the subject must exist for this

command execution to succeed.

e transfer_own(i, s, 0) This command is used to transfer ownership evigom i to s.

For this command to succeednust have thewn right overo, s must exist, and the
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transfer of ownership must not violate invariant (7) frore tist of state invariants
we discuss above. After the execution of this commanwd]l no longer have the

own right overo (but s will).

grant_r(i, s,0) This command is used to grant the righbvero by the owner ob.
There is one such command for everg R, N'R,,. For this command execution to

succeed; must have thewn right overo, ands must exist.

grant_r*(i, s, o) This command is very similar to the previous command, exttept

the owner grants* ¢ R, N R;.

grant_control(i, s, 0) This command is used to grant thentrol right overo by its
owner. For the execution of this command to succeeal)st have the rightontrol
overo, s must existp must be a subject, and another subject must not already have
the right control overo. These checks are needed to maintain the state invariants

related to thecontrol right that we discuss above.

grant_own(, s, 0) This command is used to grant then right overo. This is dif-
ferent from thetransfer_own command in that in this caséeretains (joint) ownership
overo. For the execution of this command to succeenhust have the righbwn

overo, o must not be a subject, andnust exist.

delete_r(i, s, 0) This command is used to delete a right a subject has @véhere
is one such command for everye R, NR,. For the execution of this command to

succeed; must have the rightwn overo, ands must exist.

delete_r*(i, s, 0) This command is similar to the previous command, exceptdhat

rightr* € R, N'R; is deleted.

create_object(i, 0) This command is used to create an object that is not a subject.
For the execution of this command to succeadust exist, an@d must be an object
that is not a subject, that does not exist. An effect of thimeand is that gets the

own right overo in the new state.
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e destroy object(z, 0) This command is used to destroy an object that exists. For the
execution of this command to succeedjust have the rightwn overo, ando must

be an object that is not a subject.

e create_subject(i, s) This command is used to create a subject. For the execution of
this command to succeedmust exist, and must be a subject that does not exist.

In the new state;, has theown right overs, ands has thecontrol right over itself.

e destroy subject(z, s) This command is used to destroy a subject. For the execution
of this command to succeedmust have thewn right overs. An effect of this

command is that ownership over any object owned s/transferred ta.

3.2.2 Safety analysis

An algorithm to decide whether a system based on the GrahemmiBg scheme is safe
is shown in Figure 3.2. A system based on the Graham-Dengimgnse is characterized
by a start-statey, and state-change rule, (which is a set of commands). The algorithm
takes as input, v, a triple,w = (s,0,z) € S x O x R, and a finite setl C S, of
trusted subjects. The algorithm outputs “true” if the systtisfies the safety property
with respect to the subjeet objecto and rightx, and “false” otherwise. We first discuss
the algorithm, and then its correctness and time-complexit

In lines 5-10 of the algorithm, we check the cases for whiclieaot have to consider
potential state-changes before we are able to decide whéhsystem is safe or not. In
lines 5-6, we consider the case that a subject may have (airagthe right with the copy
flag. For this, we need to exclude/n and control from consideration, as those rights do
not have counterparts with the copy flag. We use the mnemanicid to indicate this.

In line 7, we check that the right is indeed in the system. In line 8, we check whether
we are being asked whetheican get thecontrol right overo, whereo is an object that
is not a subject (we know does not have and cannot get the right, by property (2) of

the seven properties we discuss in the previous sectionndr®, we check whether the



command transfer_r(z, s, 0)
if T € M,[i,0o] As € Sy then
M.[s,0] «— M,[s,o] U{r}

command transfer_own(i, s, 0)
if own € My[i,o]No€ S, ANseS, then
if #{s1,...,8.} € S, such that
own € M,[s1,s] A own € M,[s2,s1]
A=A own € My[sp, Sp—1]
A own € Mo, s,] then
M,/ [s,0] — M,[s, 0] U{own}
M, [i,0] — M,[i, o] — {own}

command grant_control(z, s, 0)
if own € My[i,0o] Ao € S, Ns €S, then
ifp s’ € S, such that
s’ # o A control € M,[s', o] then
M,[s,0] «— M,[s, o] U {control}

command delete_r(i, s, 0)
if (own € M,li,o] \s € S,)
V control € M., i, s| then
My[s, 0] — Ms[s, 0] = {r}

command create_object(i, 0)
ifog OyNi€eS,Noe O —S§ then
O,y/ — O,y U {O}
M.,/[i, 0] — own

command create_subject(i, s)
if s¢OyNi €S, NseS then
O,y/ — O,y U {S}
S’Y’ — SV U {S}
M,[i,s] — {own}
M., [s, s] < {control}
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command transfer_r*(i, s, o)
if r* € M,[i,o] As € Sy then
Myi[s, 0] <= My[s, 0] U {r"}

command grant_r(i, s, 0)
if own € My[i,o] A\'s € Sy then
Myi[s, 0] <= My[s,0] U {r}

command grant_r*(i, s, 0)
if own € M,[i,0o] A's € Sy then
MV/[Sa o] — M’Y[Sa o u{r*}

command grant_own(i, s, 0)
if own € M,[i,0] Ao & S,
As € S, then
M, [s,0] — M,[s, 0] U{own}

command delete_r*(i, s, 0)
if (own € M,[i,0]As € Sy)
V control € M., i, s] then
MV/[Svo] - M’Y[S’O] —{r}

command destroy_object (i, 0)
if own € My[i,o] Ao & S, then
0 — 0, = {o}

command destroy_subject(i, s)
if own € M,[i,s] As € S, then
Vo€ O,,if own € M,[s,o] then
M, [i,0] — M[i,ol U {own}
Oy — Oy —{s}
Sy —= 8y —{s}

Figure 3.1. The set of commands that constitutes the skatege rule,

1, for a system based on the Graham-Denning scheme. Each camma
has a name (e.gtransfer_own), and a sequence of parameters. The first
parameter is always namedand is the initiator of the command, i.e., the
subject that executes the command. There istesafer_r, grant_r, and
delete_r command for each € R, N R, and onetransfer_r*, grant_r*,
anddelete_r* command for each* € R, N R;.
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1 Subrouti ne isSafeGD(~,4,w,T)

2 [/* inputs: v, ¢, w={(s,0,x), TCS */

3 [+ output: true or false */

4 if reRj thenlet y«—=z

5 el se if xz# own A x+# control then let y«— z*

6 el se let y« invalid /* No copy flags for own or control */
7 if x¢ R, then return true

8 if x=controlNo€ O—S then return true

9 if zeM,[s,0] then return false
10 if ye M,[s,o] then return false
11 if 7258, then return true

12 if oZO, then return false
13 if 35€S5,—-7 such that ye M,[5,0] then return fal se

14 for each sequence U,s,,...,s2,s1 such that
15 own € M,[s1,0] A--- A own € M,[sy, Sn—1] A own € M,[u,s,] do
16 if ds; € {s1,...,s,} such that s;€S,—7 then return false

17 return true

Figure 3.2. The subroutingSafeGD returns “true” if the system based
on the Graham-Denning scheme, characterized by the set-g and
state-change rule), satisfies the safety property with respect.t@nd

7. Otherwise, it returns “false”. In line 6, we assigh somealit/value

to y, as there is not corresponding right with the copy flag forrtpbts
own and control. In this case, the algorithm will not return in line 10 or
13. The subject appears in line 15 only to emphasize that the “chain”
of ownership is terminal.
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right  has already been acquired byvero. In line 10, we check that if the right has
already been acquired yovero (the check in line 10 is needed where R,, as then,
the possession af* implies the possession of in the case that € R}, the lines 9 and
10 are identical). Whem = own or x = control, the condition of line 10 will never be
true, and we will not return from that line. In the remaindéthe algorithm, we consider
those cases in which a state-change is needed befmaa getr overo (if it can at all).
In line 11, we check whether there is at least one subjectcdrainitiate state-changes,
and if not, we know that the system is safe. In line 12, we clvelo&thero exists, and if
it does not, given that there exists a subject that can cre@tem our check in line 11),
the subject can then grantto s overo. In line 13, we check whether there is a subject
that can initiate state-changes, and that:hasth the copy-flag (ot itself, if z € R;).
If x = own or x = control, the condition of line 13 cannot be true. In lines 14-16, we
check whether there is a sequence of subjects with the plartiproperty that each owns
the next in the sequence, and the last subject in the seqoamse. If any one of those
subjects can initiate state-changes, then we concludé&thai/stem is not safe and return
false. In all other cases, we conclude that the system is @adfereturn true.

The following lemma asserts that the algorithm is corretiedrem 3.2.2 summarizes

our results with respect to safety analysis in the GrahamriDg) scheme.

Lemma 3.2.1 A system based on the Graham-Denning scheme, that is charact by
the start-statey, and state-change rule, is safe with respect to = (s, 0,z) and7 C S

(whereT is finite) if and only ifisSafeGD(~, v, w, T') returns true.

Proof The “if” part: we need to show that i§SafeGD(~y, ¢, w, 7') returns true, then the
system is safe with respect doand7. We show, equivalently, that if the system is not
safe with respect to and7, thenisSafeGD(~, ¥, w,7T) returns false. Assume that the
system is not safe with respectiaand7 . We have two cases. The first case is that in the
start-statey, s hasz overo. This case consists of two subcases: either (&), s, o], or

(2) x € Ry andz* € M, [s, o] (possession af* implies possession af). If both (1) and

(2) are true, we consider either one of those two subcasssbtfase (1) is true, then we
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know thatr € R, and ifx = control ando € O — S, thenz & M, [s, o] (by property (2)
from the previous section that objects that are not subartaot have theontrol right
over them). Therefore, the ‘if’ conditions of lines 7 and & awot satisfied, and line 9 of
the algorithm returns false, and we are done. For subcase(i)e 5 we instantiate
to z*. We know thatr,y € Ry, and thatr # control. Therefore, the ‘if’ conditions for
lines 7 and 8 are not satisfied. The ‘if’ condition for line 9ynize satisfied and if it is, the
algorithm returns false and we are done. Otherwise, theitigoreturns false in line 10.
The second case is thatdoes not have overo in the start-state, i.es; ¢ M, s, 0]
and ifz € Ry, thenz* ¢ M, [s,0]. In this case, as the system is not safe, there exists a
finite sequence of state-changes—,,) 71 —u(ss) = (s, 7o Wheren is an integer
andn > 1, such that either € M, [s, o], orif z € R;, thenz* € M, [s,0]. Each
s; € S,,_, — 7 and thes;’s are not necessarily distinct from one another. We poitt ou
alsothatifs; € S,, —7 for somei andj, ands; € S,, for somek # j, thens; € S,, -7,
because’ is specified a-priori and does not change with changes intdie.sWe now
show that if such a sequence of state-changes exists, thetgbrithm returns false. We
show this by induction on. For the base case, if there exists a sequence of lengthri, the
Y s Y1 andx & M, [s, o] andz* € M, [s, o] if € R, andz € M, [s, 0], 0rz € R,
andz* € M,,[s, 0. In this case, the state-change is the execution of one dbtlosving
commands, and we show that the algorithm returns false in ease. The state-change
has to be the execution of one of these commands becauseatieede® only commands

that enter a right in to a cell of the access matrix.

transfer_r — in this case we know that € R, N Ry, 2* € Ry, * € M,[s;, 0] for some
sy € S, —T,ands € S,. The algorithm will not return in any of the lines 7-11 as
the respective ‘if’ conditions are not satisfiedol# O.,, then the algorithm returns
false in line 12, and we are done.dfc O,, then the conditions for line 13 are met

(y is instantiated ta:*), and the algorithm returns false.

transfer_r* — we have two subcases to consider: eithers(1§ R; N Ry, o, (2)x €

Ry N Ry. In case (2), ley bex*, and in case (1), leg bex. We know in either
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case thay € M, [s1, 0] for somes; € S, — 7, ands € S, (otherwises would not
get the rightr overo after the execution of the command). The algorithm will not
return in any of the lines 7-11 as the respective ‘if’ corahi8 are not satisfied. If
o & O,, then the algorithm returns false in line 12, and we are dbnec O,, then

the conditions for line 13 are met and the algorithm retuahsef

transfer_own —in this case we know that= own, own € M, [i, 0| for some; € S, — T,
o € S,ands € §,. The ‘if’ conditions for each of lines 7-13 are not met (famei
11, we know thabwn* ¢ R,). Consider lines 14-16. We know that such a sequence
of subjects exists (ashas theown right overo in S,), and furthermore;, € S, — 7.
Therefore, the conditions to return false in lines 14-16rae¢, and the algorithm

returns false.

grant_r —in this case, we know thatun € M, i, o] for somei € S, —7 andz € R,N Ry
(in particular,x # control andx # own — there are other commands to grant those
rights). The ‘if’ conditions for each of lines 7-11 are nottmdf o ¢ O,, the
algorithm returns false in line 12, and we are doneo ¥ O., the conditions for
line 13 may be met, and if they are, the algorithm returnsfalsd we are done. If
the conditions in line 13 are not met, then we observe thattmelitions for lines
14-16 are met (the sequence of subjects contaiasi has theown right overo in

S.), and the algorithm returns false.

grant_r* —we have two subcases to consider. Either(£) R, Ry, or, (2)z € R;NRy.
For case (1), ley be z* and for case (2), ley be z. In either case, we know that
own € M, [i,o] for somei € S, — 7. The ‘if’ conditions for lines 7-11 are not met.
If o ¢ O,, then the algorithm returns false in line 12, and we are d@therwise,
the conditions for line 13 may be met, and if they are, the raigm returns false,
and we are done. Otherwise, we observe that the conditioniaés 14-16 are met
(the sequence of subjects containas: has theown right overo in S,), and the

algorithm returns false.
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grant_control — in this case, we know that = control, own € M., i, o] for somei &
S, — T ando € S,. Therefore, the ‘if’ conditions for lines 7-12 are not meher
‘if” conditions for line 13 are not met because we know tha¥ R,. But, we
observe that the conditions for lines 14-16 are met, becugssubject that is not
trusted exists iny, and: has theown right overo. Therefore, the algorithm returns

false in line 16.

grant_own —inthis case, we know that= own andown € M, [i, o] for somei € S, -7 .
The ‘if’ conditions for lines 7-11 are not satisfied. dfZ O,, then the algorithm
returns false in line 12 and we are done. Otherwise, the tiondn line 13 is not
satisfied, but, we observe that the conditions for lines @41 satisfied, and the

algorithm returns false.

create_object — in this case, we know that = own ando ¢ O,. The ‘if’ conditions for
lines 7-11 are not met, but the ‘if’ condition for line 12 is thand the algorithm

returns false.

create_subject — in this case, we know thati € S, — 7, and eitherr = own orz =

control. Furthermore, we know that¢ O,. The reason is that in the body of the
command, we enter a right only in the column correspondinfpecsubject that is
created in the execution of the command, and not any othecbb]herefore, for

w = (s, 0, ), we know thab must be the subject that is created in the execution of
thecreate_subject command. We know also thatz O — S, because the object that
is created is a subject. Therefore, the respective ‘if’ coons for lines 7-11 are
not satisfied, but the ‘if’ condition for line 12 is satisfieahd the algorithm returns

false.

destroy_subject — in this case, we know that = own, and own € M, s, s'], where
w = (s,0,x) ands’ is the subject that is destroyed in the execution of the contina
The reason is that we enter a right only in the row correspantti such a subjeat

Furthermore, we know thate O., andown € M, [s', o], because the only columns
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in which a right is entered in the execution of the commandcatemns with that
property. We know also that € S, — 7 ass is the initiator of the command-
execution. Given these facts, we know that the ‘if’ condidor lines 7-12 are
not satisfied. The conditions for line 13 may be met, and i e, the algorithm
returns false and we are done. Otherwise, we observe thabtidtions for lines
14-16 are satisfied; the sequence of subjects contaarsd s’ with s’ being the
last member of the sequence, ansthmediately preceding’ in the sequence. As

s € 8, — T, the algorithm returns false in line 16.

For the induction hypothesis, we assume that if there egist®te-change sequence
Y Frys) V1 Frese) 0 s ) Tk—1 Of lengthk — 1 (for £ — 1 > 1) such thatr ¢
M,[s,o] and ifz € Ry, * &€ M,[s, 0], and eitherr € M.,  [s,o] or, if x € Ry, z* €
M., .[s, o], then the algorithm returns false. Now assume that thestseaistate-change
SeqUENCE —y(s,) - - (s, Yk Of lengthk (for £ > 2) such thatr & M, [s, o] and if
xr € Ry, x* & M,[s,0], and either: € M., [s, 0] or, if v € Ry, * € M, [s,0]. We need to
show that the algorithm returns false for= (s, o, x).

We have two cases. The first case has two subcases: eitherqa)/,, , [s, o], or,
(b) x € Ry andz* € M,  [s,o]. In either case, we have a state-change sequence of
lengthk — 1 with the appropriate properties, and by the induction higpsis, we know
that the algorithm returns false. In the second case, werasshatr ¢ M., [s, o] and
if v € Ry, x* & M, _,[s, 0], and eitherr € M, [s,0] orz € R, andz* € M, [s,0]. We
need to show that the algorithm returns false in this casecaksider the state-change
Ye—1 —(sy) Ve It Must be the execution of one of the following commands @ame as
those we considered for the base case), as those are theoomiyands that add a right to
a cell in the access matrix. We consider each in turn. We maitithat ag: > 2, we have
at least 3 states in our state-change sequence, includirgjdtt-state, i.e., we know that
at least the stateg._,, v, and~, (where the start-state,= ~,) exist in the state-change

sequence.

transfer_r — in this case, we know that € R, N R, andz* € M., [sy,0]. LetwF =

(s1,0,2*). Then, we know by the induction hypothesis tis8afeGD (v, 1, w*, T)
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returns false (as there exists a state-change sequencwytifAe— 1 with the appro-

priate properties). We refer to the execution of the albarnifor the input(y,w, 7)

ase, and for the input~y, w*, 7) ase®. Consider the following cases.

transfer_r*

e® returns in line 9: in this case, we know thet € M, [s, 0]. Now, e cannot
return in lines 7 or 8 (because € R, N Ry). e may return false in line 9
or line 10, in which case we are done. If netwill not return in lines 11-12
ass, € S, — 7 ando € O,. Finally, e will return false in line 13, because

sy € S, — T, andy € M,[sy, o].

e* returns in line 10: this cannot happen as, in this cesapuld have returned

in line 9. Therefore, the arguments for the previous caséapp

e® returns in line 12: in this case,will not return in any of the lines 7-11, but

will return false in line 12.

e* returns in line 13: in this case, we know thats € S, — 7 such that
y € M,[s, o] wherey = z*. e will not return in lines 7-8, but may return false
in one of the lines 9 or 10, in which case we are done. Otherwisgll not
return in line 11 (asSA‘ exists iny) or in line 12 ¢ € O,). But, e will return

false in line 13, as the condition is met {s such a subject).

e® returns in line 16: in this casewill not return in lines 7-8 but may return in
line 9, in which case we are done. Otherwis&yill not return in lines 10-13.
We know thate will return false in line 16, just ag* does, because the same

condition is true for as well.

— in this case, we know that € R; N Ry, andx € M, [si, 0] where

sk €Sy, —T. Letw* = (s, 0, ), e* be the execution of the algorithm isSafeGD

for the input(~, v, w*, 7), ande be the execution for the inpit, w, 7). Then we

know thate” returns false by the induction hypothesis. We now have gxéug

same arguments as in the previous case for smigturns false.
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transfer_own — in this case we know that = own andown € M,, | [si, o] wheres,, €
S.

Te—1

— 7. Forw* = (s, 0, own), we know thate*, the execution of the algorithm
on input(~y,w®, T), returns false, by the induction hypothesis. We considethal

cases in whick” can return false.

e c* returns in line 9: in this case, we know thain € M, [s;, 0] ands; €
S, — T . Now, e does not return in any of the lines 7-8may return in line 9,
in which case we are done.cannot return in line 10 (ag ¢ Ry), or in line
11, but may return in line 12, in which case we are doneannot return in
line 13. Finally, we observe that the conditions in lineslBlare satisfied, and

thereforeg returns in line 16.
e c" returns in line 10: this cannot happen because whenown, y ¢ R,.

e ¢ returnsin line 12: in this case, we know tlkadoes not return in lines 7-11,

but returns false in line 12.
e cF returns in line 13: this cannot happen because whenown, y ¢ Ry.

e ¢* returns in line 16: in this case,does not return in lines 7-8, but may return
in line 9, in which case we are done. Otherwiseannot return in lines 10-13,
but returns false in line 16 based on the same conditionscthaatisfies to

return in line 16.

grant_r —in this case, we know that € R, N Ry, andown € M,, |
S

Tk—1

[Sk, O], wheres;, €
— 7. We know also that*, the execution of the algorithm, on inpt, w*, 7')
returns false, where* tuples;, o, own. Lete be the execution of the algorithm for

the input(vy,w, 7). We have the following cases.

e c* returns in line 9: in this case, we know also thatn € M, [s;, o] where
s, € S, — 7. Thereforee does not return in lines 7-8, but may return false
in either line 9 or line 10, in which case we are done. Othexwisioes not

return in lines 11-12, but may return false in line 13, in whizase we are
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done. Finallye returns false in line 16, because the conditions for retigrim

line 16 are satisfieds(, is such a subject).

e® returns in line 10: this is not possible as wher: own, y ¢ Ry.

e* returns in line 12: in this case,does not return in lines 7-11, but returns

false in line 12.

e* returns in line 13: this is not possible as wher: own, y ¢ Ry.

e* returns in line 16: in this case, we know thaloes not return in lines 7-8,

but may return in one of the lines 9-10, in which case we ared@therwise,
e does not return in lines 11-12, but may return in line 13, incktcase we
are done. Finally returns in line 16 as the conditions for whichreturns in

line 16 apply toee as well.

grant_r* — in this case, we know that € R; N R, and own € M,[s;,0] for s, €
S,._, — 7. The argument now proceeds exactly as for the previous andaye are

able to show thaitSafeGDreturns false on the inpit, v, w, 7).

grant_control — in this case, we know that = control and owun € M, . [sy, o] for
sk € S,,_, —7T. Letw* = (s, 0, own), ande” be the execution of the algorithm on
the input(+, w*, 7). We know, by the induction hypothesis, th&treturns false. Let
e be the execution of the algorithm on the infgtw, 7). We have the following

cases.

e c* returns in line 9: in this case we know also thatn € M, [s;,0] and
si € Sy —7. Thereforee does not return in lines 7-8 (for line 8, we know that
o ¢ O — 8§, as otherwise, we would not be able to grant thetrol right to s
overo in the final state-change in our sequence), anthy return false in line
9, in which case we are done. Otherwiseloes not return in lines 10-13 (for
lines 10 and 13y ¢ R;). Finally, e returns false in line 16 because we know

thats;, a subject that is not trusted, existsyinand has thewn right overo.

e cF returns in line 10: this is not possible as wher: own, y € Ry.
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e ¢" returns in line 12: in this case,does not return in lines 7-11, but returns

false in line 12.
e cF returns in line 13: this is not possible as wher: own, y € R.

e ¢* returns in line 16: in this case,does not return in lines 7-8, but may return
in lines 9-10, in which case we are done. Otherwisgoes not return in lines
11-12, but may return in line 13, in which case we are donealfyire returns

in line 16 as the conditions for whialt returns in line 16 apply te as well.

grant_own — in this case, we know that = own and own € M, [sy, o] for s, €
S

Te—1

— 7. We show that the execution of the algorithm on inputw, 7°) returns

false using the same arguments as the ones we use for theysease.

create_object — in this case, we know that = own, s = s, ands, € S,, | — 7. We

consider the following cases (and sub-cases).

e s S, . :inthis case we need to consider the following two sub-cases

o

- o € O,,_,:inthis case, we know that the state-change, s, ,) Tk—1
is destroy_object of objecto by s,_;. Therefore, we know thatwn €
M, ,[sk-1,0] ands,_y € S,,_, — 7. If s = s,_4, then we have a
state-change sequence of length- 2 with the appropriate properties,
and we know that the algorithm returns false. Otherwise, awela state-
changey,_s —y(s,_,) Vs Which is the execution of either the command
transfer_own (if 0o € S), or the commandrant_own (if o € O — §), by
si—1 to s, which results inown € MV;H[S, o]. As there exists a state-
change sequence of lendth- 1, we know that the algorithm returns false
by the induction hypothesis.

-0 ¢& O

which is the execution of the commanekate_object of o by s, which

. in this case, there exists a state-change, —y) 7,4

Veg—2"

results inown € M., [s,0]. As there exists a state-change sequence of
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lengthk — 1, we know that the algorithm returns false by the induction

hypothesis.

e s Z .5, ,.inthis case, we know that the state-change, ., ,) 7x—1 IS

the execution otreate_subject to creates. Also, we know thab ¢ O If

Ye—2"
Yk—2 = 7, then we know that, on inputy, w, 7'), the algorithm will not return
in lines 7-11, but will return false in line 12, and we would éene in this
case. Otherwise, there exists at least one prior statg,in the sequence of

state-changes. We have the following sub-cases.

-5 eS8, , buto & O, ,: inthis case, we know that the state-change
Te—3 Fruse_s) Ye—2 1S the execution oflestroy_subject of s by s;_s.
Consider the alternate state-changgs; — (s, ) V2 M v(se_s) Vho1r
where the first state-change is the executioerefte_object of o by s;,_o,
and the second is the executiontafnsfer_own (if o € S) or grant_own (if
o € O — S) of the objecto by s,_, to s. We have a desired state-change
sequence of length — 1, and the algorithm returns false by the induction
hypothesis.

-s &8, , buto € O, _,: in this case, we know that the state-change
V=3 F(si_s) Te—2 IS the execution oflestroy_object of o by s,_,. Con-
sider instead the state-changgss —y(s,_,) Vr_2 M w(si_s) Vo1, Where
the first state-change is the executiorncafate_subject of s by s;,_, and
the second is the execution thnsfer_own (if o € S) or grant_own (if
o € O — 8) of the objecb to s by s;,_». We have the desired state-change
sequence of length — 1, and the algorithm returns false by the induction

hypothesis.

-s¢&8S, ,,ando & O,, ,: we know thats ¢ 7 (otherwises would not be
able to executereate_object as the last state-change in our state-change
sequence of length). We know also that,_, € S, _, — 7. Consider
the following state-changesi_s (s, ») Te—2 —w(w(s) Ve—1 Where the

first state-change is the executionapéate_subject of s by s,_, and the
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second is the execution ofeate_object of o by s. We have the desired

state-change sequence of length 1, and the algorithm return false.

-5 €8, , ando € O, _,: this case cannot happen, as then, we would
need to first destroy each efando, which requires two state-changes
(we know thats # o, because otherwise,would not be able to create
o in the last state-change in our sequence of leAgthNVe have already
fixed two additional state-changesdate_subject of s, andcreate_object
of o as our last two steps in our state-change sequence of |éhgths
there do not exist four state changes between and~;, we know that

this case cannot happen.

create_subject — in this case, we know thate S,,, and eithers = o (andxz = control),
ors = s (andx = own). We know also thab ¢ S,, ,. We have the following

cases.

e s = o: we have the following sub-cases.

— o0 € S5,,_,. in this case, we know that = o € S,, , and control €

Ve—2
M

Vk—2

with the appropriate properties, and therefore by the itidndypothesis,

k—2

s, 0], and therefore we have a state-change sequence of lergth

the algorithm returns false.

- o & S, ,. inthis case, consider the state-change, —y, ,) V,_1
which is the execution ofreate_subject of 0 = s by s, _5 (we know that
sk—2 € S,._, — T). We have the desired state-change sequence of length

k — 1 and the algorithm returns false by the induction hypothesis
e s = s, we have the following sub-cases.

- o€ S, ,.inthis case, we know that the state-change, — s, ,) V-1

Veg—2"

is the execution oflestroy_subject of o by s,_; € S, , — 7. We know

also, in this case, thatc S,, ,, wheres = s;. Therefore, we have the

k—27

state-changey,—» — () 7,_; Which is the execution ofreate_subject of
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o by s. We have the desired state-change sequence of léngth and by

the induction hypothesis, the algorithm returns false.

-0 ¢S, ,.inthis case, ify,_o = 7, then the algorithm does not return
in lines 7-11, but returns false in line 12, and we are donbefise, we
know that there exists a prior statg, ;. We have the following sub-sub-

cases.

x s € 5, ,. inthis case, consider the state-change, — ) V.1
which is the execution afreate_subject of o by s. We have the desired
state-change sequence of length 1, and the algorithm returns false

by the induction hypothesis.
x s€ S, ,,s€S8

Vk—3
thato & S,, , ands & S,
single state-change.

x s €S, ,, s €95, _,ando € S, .. in this case, we know that the

Yk—3"

ando € S., .: this cannot happen as we know

Yk—3"

and we cannot create battands in a

k—2"

state-changey,_s (s, ,) Tk—2 IS the execution oflestroy_subject
of o by s;_». We consider, instead the state-changes; — s, »)
Yea Frusi_s) Ve—1, Where the first state-change is the execution
of create_subject of s by s;,_5, and the second is the execution of
transfer_own of o to s by s, _5. We have the desired state-change se-
quence of lengtth—1, and the algorithm returns false by the induction

hypothesis.
x s S, ,,s€8

Tk—3

ando € S,, ,: inthis case, consider the state-
changey,_s —y(s) 7,_» Which is the execution afreate_subject of o
by s. We have the desired state-change sequence of léngth and
the algorithm returns false by the induction hypothesis.

x s S, ,,s¢S,_,ando & S, .:inthiscase, we knowthaf,_, €
S

Yea Frus) Te1» Where the first state-change is the execution of

— 7. Consider the following state-changesi_s —y(s, ,)

create_subject of s by s, _», and the second is the executiortafate_subject
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of o by s. We have the desired state-change sequence of léngth

and the algorithm returns false by the induction hypothesis

destroy_subject — in this case, we know that = own, s = s, s # o (as in statey, s

has theown right overo), oun € M with s # s, and

18, 0] for somes € S.

Vk—1
own € M, ,[s,s]. The state-change is the executiorledtroy_subject of 5by s to
aquireown overo. Letw = (3, o, own), ande be the execution of the algorithm for
the input(vy, @, 7). Then we know that returns false, by the induction hypothesis.
We observe that cannot return either in line 10 or line 13, because when, in
y & Ry. Similarly, letw® = (s, s, own), ande® be the execution of the algorithm for
the input(v, w®, 7). Then, we know that® returns false by the induction hypothesis,
but not in line 10 or line 13 (as in the casedfas well,y & R;). Lete be the
execution of the algorithm for the inp(f, w, 7). We have the following cases and

sub-cases.

e ¢ returns in line 9: in this case, we know th&t cannot return in line 12,

becausé < O,. Therefore, we have the following two sub-cases.

— ¢® returns in line 9: in this case, does not return in lines 7-8, but may
return false in line 9, in which case we are done. Otherwis#ges not
return in lines 10-13, but returns false in line 16, because the conditions

are satisfied: we havethat ownso, ands € S, — 7 that ownss.

— e® returns in line 16: in this case,does not return in lines 7-8, but may
return false in line 9, in which case we are done. Otherwisines not
return in lines 10-13. Finally; returns false in line 16, because the con-
ditions are satisfied: we know thatownso in -, and that we have a

sequence of subjects as needed in lines 14-16, the first chvalwnss.

e creturnsinline 12: in this casedoes not return in lines 7-11, but returns false
in line 12 (in particular, we know that does not return in line 11 because
either returns in line 9, which means tisag S, — 7, or returns in either line
12 or 16, which means thats’ € S, — 7).



35

e ereturnsinline 16: in this casedoes not return in lines 7-8, but may return in
line 9, in which case we are done. Otherwisdpes not return in lines 10-13,
but returns in line 16, because the same conditions thaeédoseturn in line

16 cause to return in line 16 as well.

The “only if” part: we need to show that if the system is saféwespect tow and7, then
isSafeGD (v, v, w, T) returns true. We show, equivalently, thatisgbafeGD(y, ¢, w,7)
returns false, then the system is not safe with respecttad7 . We do this by considering
each case that the algorithm returns false, and showingqbstaction) that a sequence
of state-changes —y(s,) 71 —u(ss) **° Fu(se) T SUCh thate € M, [s, o] exists (each
s; € Sy, , — 7, and thes;'s may not be distinct from one another). We have the follgwin

cases.

e The algorithm returns in line 9: in this case, we have a sthtage sequence of

length O (i.e., simplyy), as we know that € M, [s, o].

e The algorithm returns in line 10: in this case, we again hastai@-change sequence
of length O (i.e., simplyy), as we know that iz € R, N Ry, thenz* € M, [s, o] (and
possession af* implies possession af), and ifx € R} N Ry, thenx € M, [s, o].

There are no other cases that the algorithm returns in line 10

e The algorithmreturnsinline 12: in this case, we know from¢heck on line 11 that
15 €S, —T. Therefore, ifs ¢ S.,, we have the following state-change sequence:
Y s Y1 s Y2 Fres) 3. Where the first state-change is the execution of
create_subject of s by &/, the second state-change is the executiotreite_object
of o (if o € O — S) or create_subject of o (if o € S) by &', and the last state-change

is the execution of one of the following:

— transfer_own, if 0 € S andz = own
— grant_own, if o € O — S andx = own

— grant_control, if o € S andx = control
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— grant_r, if z € Ry N Ry,

— grant_r*, if x € R; N Ry,

If s € S,, then we simply use the same sequence as above, but witrefitsh

state-change (i.€3, —y(s) V2 —u(s) 73)-

The algorithm returns in line 13: in this case, we know thag own andz #
control. If s ¢ S, our state-change sequenceyis— ) 71 —y(3) Y2, Where the
first state-change is the executioncedate_subject of s by s, and the second state-
change is the execution ofansfer_r of = to s overo if x € Ry, N Ry, Or transfer_r*
tosoveroif x € Ry N Ry. If s € S, then we have simply exclude the first

state-change (creation gf from our state-change sequence.

The algorithm returns in line 16: Let= {s1, ..., s, } be the set of subjects alluded
to in line 16, and les; € o be such thas; € S, — 7, for some integei such that
1 <i < n. We know thato € O,. If s ¢ S, then the first state-change in our
state-change sequence is the executiotrafte_subject of s by s,. If s € S,, we

exclude this state-change.

We then have — 1 executions otlestroy_subject of each subject; such thay < i,
so that ify/ is the state at the end of the- 1 executions, we havewn € M.,/ [s;, o].

Finally, we have the following cases.

— 0 € S andz = own: in this case, we have the executiontefnsfer_own of o

by s; to s.

— 0 € O — S andx = own: in this case, we have the executiongednt_own of

o by s; to s.

—o0 € S, x = control and3 s' such thatcontrol € M., [s',o]: in this case,
we have two state-changes, both initiated y We first have the execu-
tion of delete_r of the control right overo from s’, and then the execution

of grant_control overo to s.
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— 0 € 8,z = control and$ s’ such thatcontrol € M./[s',0]: in this case, we

have the execution @frant_control overo to s by s;.

— = € Ry N Ry inthis case we have the executiongddnt_r of x overo to s by

Si.

— x € R; N Ry in this case we have the executiongéint_r* of z overoto s

by S
|

Theorem 3.2.2 Safety is efficiently decidable in a system based on the @Grebanning
scheme. In particulaisSafeGD runs in time at worst cubic in the size of the components

of the start state and the set of rights in the system.

Proof We make the following observations about the running timeSaffeGD in terms
of its input, namelyS,, O.,, R, M,[], w and7, by considering each line in the algorithm
as follows. Each of the lines 5-10 runs in time at worst linathe size of the input.
In particular, as we mention in the previous section, we adopaming convention for
subjects and objects that enables us to perform the eaheck — S in line 8, in constant
time. Line 11 runs in time at worst quadratic in the size ofitiput (S, | x |7]), line 12
runs in time at worst lineat@,|), and line 13 runs in time at worst quadratis.(| x | Ry|).
As each subject is owned only by one other subject, each seque which line 14 refers
is of size at mositS, |. Furthermore, there are at mSt | such sequences. Therefore, lines
14-16 run in time at worst cubic in the size of the input. Thet thatisSafeGD(~y, ¢, w, 7))
runs in time polynomial in the size of the input in conjunatiith Lemma 3.2.1 proves

our assertion. ]

We observe that cubic running time is only an upper-bound,iamot necessarily
a tight upper-bound on the time-complexity of the algorithih may be possible, for
instance, to store the “chains” of owners in some auxiliaatadstructure to get a faster

running time.
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3.3 The Solworth-Sloan scheme and a mapping for DAC schemes

Solworth and Sloan [23] presents a new DAC scheme based els labhd relabelling
rules, and we call it the Solworth-Sloan scheme. While tles@ntation in [23] does not
clearly specify what information is maintained in a statd aow states may change, we
were able to infer what is intended.

In this section, we give a precise characterization of thisv@oh-Sloan scheme as
a state transition system. Our objective in doing so is toesgnt the Solworth-Sloan
scheme sufficiently precisely to enable comparisons tor @AE€ schemes. In particular,
our intent is to assess the mapping of DAC schemes to the &bh&boan scheme that is
discussed by Solworth and Sloan [23]. Solworth and Sloajrf#8rs to the DAC schemes
discussed by Osborn et al. [11] and asserts that it presgy@sexal access control model
that is sufficiently expressive to implement each of thes€DAodels. In this section, we
show that this claim is incorrect.

We reiterate that the DAC schemes discussed by Osborn géiLahie either subsumed
by, or are minor extensions of the Graham-Denning schemehdiscuss in Section 3.2.
We have shown in Section 3.2.2 that safety is efficientlydigalie in the Graham-Denning
scheme, and our algorithm can be used with relatively miradifications to decide safety
in these schemes. Thereby, Solworth and Sloan’s [23] ogsartion in reference to the
DAC schemes discussed by Osborn et al. [11], that “.. . evablighed general access
control model. . . either is insufficiently expressive toregent the full range of DACs or

has an undecidable safety problem...”, is rendered invalid

3.3.1 The Solworth-Sloan scheme

Overview There exists the following countably infinite sets of consta
e a setS of subjects
¢ a setO of objects

e asetR of rights
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e asetg of groups
e aset7” of object tags
e aset7Y of group tags

An object labelis a pair(s, t), wheres € S is a subject and € 7° is a object tag.
Which rights a subject has over a particular object are detexd indirectly in the

following three steps.

1. There is a labelling functiolabel that assigns an object label to each object.

An object’s label may be changed by object relabelling ruigsich determine
whether an action rewriting one object label into anothecsads or not. For ex-
ample, when the object labél = (s, ¢;) is relabelled td/s = (s, t2), all objects

that originally have the labél now have the labél,.

2. There is an authorization functi@ath that maps each object label and each right
to a group. For each object labiehnd each right, members of the group identified

by auth(¢, r) have rightr over objects that are assigned the label

3. Which subjects are members of a group is determined byengitoup sets (NGS'’s),
which are complicated structures that we describe below. défame a function

members that maps each group to a set of subjects.

We schematically illustrate the steps to determine whedlsrbject can access an object

or not as follows.

label auth members
—

objects— object labels— groups subjects

States,I' A state,y, is characterized by a 9-tupleS,,, O,, R,, G, L., label,, auth.,,
ORS,, E,).

e S, is the set of subjects in the staieO, is the set of objects in the state R, is

the set of rights in the statg andG., is the set of groups in state
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There is a distinguished rightr, which exists in every state, i.evy € R,. The role

of wr is explained in our discussion of the state-change rules.
L, C S, x T is the finite set of object labels in the state
label,: O, — L., assigns a unique object label to each object in the curratd.st

auth,: (L, x R,) — G, maps each pair of an object label and a right to a group.
For exampleauth, [/, re] = ¢g; means that the groug, has there right over all

objects labelled.

ORS, is an ordered sequence of object relabelling rules, eaehhas the form of
rl(p1,p2) = h, whererl is a keyword, anc,, p, are object patterns. Anbject
patternis a pair, where the first element is a subjecfior one of the three special
symbolsx, xu, andxw, and the second element is an object tag fror the special
symbolx. In the rulerl(p;,po) = h, h is a group, a subject, or one of the four
following sets: {}, {*}, {*u}, {+w}. Whenh is {xu} (resp.,{xw}), {*u} (resp.,
{*w}) must appear ip; or p,.
For example, the following is a@RS,,, in which s, is a subjectt; is an object tag,
andg; is a group:
1), (s1,%) = @
s1,%), (fu,ta)) = {x}
*u, %), (ku, %)) = {xu}

rl((xu, %), (xw,*)) = {}
E. is afinite set of native group sets (NGS’s) that exist in théest. Eache € E. is

characterized by the 7-tuple.G, .79, e.gtag, e.nt?, e.admin, e.patterns, e.GRS).
— e.G C G, isthe set of groups that are defined in this NGS.

— e.T9 C 7Y is the set of group tags that are used in this NGS.

— The functione.gtag : S, — e.7 assigns a unique tag to each subject in the

current state.
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— e.nt9 is a group tag ire.79; it determines when a new subject is added to the
state, which tag is assigned to that subject. That is, if gestibis added, then

e.gtag[s] would be set t@.nt?.

— e.admin points to one NGS irE.; it identifies an NGS in the current state as
the administrative group set of the NGS.admin could bee, in which case:

is the administrative group set for itself.

— e.patterns is a function mapping each groupdr( to a (possibly empty) set of
group patterns. Eaaroup patternis a pair where the first element is either a
subject in the current state or a special symhgland the second element is a
group tag ire.79. In other words, the set of all group patterns that can be used
in e, denoted bye. P9, is (S, U {*xu}) x e.79, and the signature of patterns

ise.G — 2¢P? where2*"” denote the powerset ef 9.

For any groupy € e.G, e.patterns[g| gives a set of patterns for determining
memberships of the group. Intuitively, the labjel, t9) is in e.patterns[g]
means that any subject who is assigned (via tag function) the group tag
t9 is a member of the group; and the lakelt?) is in e.patterns[g] means that

the subject is a member of the group if it is assigned the groupttag

— e.GRS is a set of group relabelling rules, each has the f&utabel (t],t5) = g,
where Relabel is a keyword,t{,t5 € e.T9 are two group tags used in this
NGS, andg is a group defined in the administrative group satimin (i.e.,

g € e.admin.(3). The role of a member af.GRS is explained in the following

discussion of state-change rules in the contextrofip_tag_relabel.

An additional constraint on the stateis that each group is defined in exactly one

NGS and each group tag can be used in at most one NGS, i.e.,

Ve, € E\Ves € E, (e1.GNeag=0 A
61.Tg N 62.Tg = @)
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We define the following auxiliary functiomembers,[ |: G, — S, such that
members.|g] gives the set of all subjects that are members of the gyoufo de-
termine whether a subjestis in members,[g], we first determine the unique NGS
e, such thay € e.G. Now, s € members,[g] if and only if the tagt? assigned to
s (via e.gtag) satisfies the condition that at least one of the two groupl&, t9)

and(xu, t%) are in the patterns fay, i.e.,

19 € e T9 (e.gtag(s) =t9 A
((s,t9) € e.patterns[g] V
(*u,t9) € e.patterns[g] ) )

As an example, consider an NGSvhere

e.G = { Jemps Gmgrs Geze
e.19 = { Boss, Worker }
e.gtag[s] = DBoss

e.gtag[ss] = DBoss

e.gtag(ss] = Worker

e.ntd = Worker

e.admin = e

e.patterns|[gee] = { (s1,Boss) }

e.patterns|[g,,,] = { (xu, Boss) }
e.patterns|gemy|
{ (xu, Boss), (xu, Worker) }
e.GRS =
{ Relabel(Worker, Boss) = Gmgr
Relabel(Boss, Worker) = geze }
In this NGS, three groups are defined: executiyes ), managersd.,,,), and em-
ployees §,,,,-). There are two tagsBoss and Worker. There are three subjects;
ands, are assigned the tdgpss andss is assigned the taf/orker. The new subject

tag is Worker, so each newly added subject will automatically be assignedag
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Worker. The administrative NGS isitself. According to the patterns, members of

the three groups are as follows:

members,y|gese] = {s1}
members,[gmgr] = {s1,52}
members,|gmgr] = {51, 52,53}

The group relabeling rules are such that managers can claasigigiect’s tag from

Worker to Boss and executives can change a subject’s tag fidwns to Worker.

State-Change Rules\y  There is a single state transition rulen this schemey con-

sists of six actions that can result in state changes. Theg®ma are mentioned in Sec-

tion 3.4 of [23] without precise definitions. (We break up tRelabel an object” operation

in [23] into two relabelling actions.) We describe the asi@nd their effects when apply-

ing them to a state = (S, O,, R, G,, L., label,, auth,, ORS,, E.). We usey’ to denote

the state after the change.

1. create_object(s,0,¢ = (s1,t7)): the subjects creates the objeet and assigns the

object label to the objecb.

This action succeeds whene S,, 0 ¢ O,, ¢ € L, and the subject has the

distinguished rightvr on the object label, i.e.,s € members., [auth. (¢, wr)].

Effects of the action ar®., = O, U {o} and the functioriabel is extended so that

label./(0) = (s1,19).

. create_label(s, ¢ = (s,t1), g1, 92, - - , gr), Wherek = | R, | is the number of rights in
~: the subject creates the new object labgland assigns the groups ¢», - - - , gk

to have the rights ovef;, .

This action succeeds whene S, ¢ ¢ L., the subject i’ is s, andg;, -, g, €
G,.
The effects of this action are follows. Let, rs, - - - , 74, be thek rights inR,. Then

L., = L, U {¢} and the functiorauth is extended such thauth.(¢,r;) = g; for
1<i <k
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3. create_subject(s, §): the subjeck creates a new subje¢t
This action succeeds where S, ands’ £ S,,.

The effects of this action arg,, = S, U {s'} and for every NGS € E,, e.gtag is

extended so that ity e.gtag(s’) = e.nt9.

4. object_relabel(s, {1 = (s1,t1), 05 = (s2,12)): the subjects relabels objects having
label?; to have the label,.

This action succeeds when the first relabelling rule in theahrelabelling rule
sequenc®RS, thatmatches/y, (5) isrl(p1, p2) = h ands € wvalue[h] (the function

value| ] is defined below). The rulé(p,, p2) = h matcheg/,, ¢s) whenp, matches
¢, andp, matched, at the same time. When the pattdrmu, ) matches the label
(s1,t1), we say thaku is unified with the subject;. Note that wheru occurs more

than one times ipy, po, they should be unified with the same subject.

Recall thath maybe a groupy, a subjects’, or one of the four sets{}, {x},
{*u}, {+w}. The functionvalue is defined as followswalue[g] = members.|g];
value[s'] = {s'}; value[{}] = 0, value[{x}] = S,; value[{*u}] is the subject that is

unified with xu.

Consider the followingRS,,.

r|(<*u7t1>7 <317*>) = 0
rl((s1, %), (xu,ts)) = {x}
rl((ku, ), (kuyx)) = {xu}

rl((xu, %), (kw, x)) {}

The actionobject_relabel(s, (ss, 1), (s1,t2)) would match the first relabelling rule,
and it would succeed wheris a member of the group. The actiorobject_relabel(s,
(s1,t1), (s2,t2)) would match the second relabelling rule and always succ&dus
actionobject_relabel(s, (s, t2), (s2,t1)) would match the third relabelling rule and
fail, becausexu is unified withs,. The actionobject_relabel(s, (so,t2), (s1,t1))

would match the fourth relabelling rule and fail.
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The effect of the relabel action is in the functitabel. For every object such that

label, [o] = /1, in the new statdabel.,/[o] = /(.

5. group_tag_relabel(s, ', t,t3): the subject relabels the group tag for the subjatt

from ¢{ to ¢f.

This action succeeds when there is an NGS E, such that{ andt] are used in
e, the subject’ has the group tad in e, there is a corresponding group relabelling
rule ine.GRS, ands is a member of the group that can use the relabelling ruleeMor

precisely, the action succeeds when

Jde € E, (e.gtag[s'] =t] A
“Relabel(t],t3) = g” € e.GRS A

s € members.,|g] )

Note that the tags] and¢j can appear only in one NGS and they must appear in
the same NGS for the action to succeed. The effect of thisradi such that the

functione.gtag is changed such that i, e.gtag[s'] = 5.

6. create_ngs(s, e): the subject creates a new NG&

To perform this action, one must provide the complete dpson of a new NGS
e, i.e., the 7-tuplée.GG, e.T9, e.gtag, e.nt9, e.admin, e.patterns, e.GRS). For this
action to succeed, the groups defined snd the group tags inmust be new, i.e.,

they do not appear in any existing NGS'syin

The effects are that, = G, Ue.G andE,, = E, Ue.

Given the above state transition rule, we make the followingervations. No removal
of subjects, objects, labels, or groups is defined. Givera® ¢t.,, O,, R,, G, L,,
label,, auth,, ORS,, E.), S, (the set of subjects)), (the set of objects), an@., (the
set of groups) may change as a resultiehte_subject, create_object, andcreate_label,
respectively.R,, the set of rights, is fixed for the system and does not chafigethe set

of groups, may change when a new NGS is added byrdaee_ngs action. The function
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label,: O, — L, is extended when a new object is added and is changed wherjeant ob
relabelling actiorobject_relabel happens. The functioauth., is extended when a new
object label is created; existing assignments do not cha®g§.,, the object relabelling

rule sequence, always stay the safieis extended when a new NGS is added.

3.3.2 Encoding a simple DAC scheme in the Solworth-Sloaemseh

In this section, we encode a relatively simple DAC schemeh@ $olworth-Sloan
scheme. The DAC scheme we consider is a sub-scheme of thar@#aknning scheme.
It is called Strict DAC with Change of Ownership (SDCO) andre of the DAC schemes
discussed by Osborn et al. [11]. Our construction is basezsborments by Solworth and
Sloan [23] on how various DAC schemes can be encoded in tiveo&blSloan scheme.
As the presentation in that paper is not detailed, we offeoegerdetailed construction. Our
construction lets us assess the utility of the Solwortta8lscheme in encoding SDCO.
After we present the encoding, we discuss its deficiencies the standpoints of correct-

ness, and the overhead it introduces.

Strict DAC with Change of Ownership (SDCO) As we mention above, SDCO is a
sub-scheme of the Graham-Denning scheme (see Section.3I18.5DCO, there is a
distinguished rightpwn, but nocontrol right. Also, there are no rights with the copy flag.
The state-change rules in SDCO are the commanaig_r (for eachr € Ry), delete_r
(for eachr € R,), grant_own, create_object and create_subject. We do not consider
commands to destroy subjects or objects as their countsrpeg not specified for the
Solworth-Sloan scheme.

For simplicity, we consider an SDCO scheme that has onlyethightsown, re, wr.
In the Solworth-Sloan scheme, if two objeetsando, have the same label, then and
09 always have the same access characteristics. That is, iy sege, the set of subjects
having a rightr over o; is the same as the set of subjects having the rigaver o,.
In SDCO, one can reach states in whighand o, have different access characteristics.

Therefore, each object needs to be assigned a distinct label
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Therefore, before creating an object, one has to create dalek When creating
a new label, one has to assign a groupdath(/, own) and a group tauth(/, re); and
a group toauth(¢,wr). Each pair(¢,r) determines a unique access class. Therefore, a
distinct group needs to be created. We gige ) to denote the group that will be assigned
to have the right: over objectb.

To keep track of which subset of rights a subject has over gtghwe need group
tags, one corresponding to each subsétbafn, re, wr}, we use?(o, x), wherex is a 3-bit
string to denote these tags.

For a subject to create an object, s needs to do the following:

1. Create an NGS = (e.G, e.TY, e.gtag, e.nt?, e.admin, e.patterns, ¢.GRS) as

follows.

e c.G ={g(o,own), g(o,re), g(o,wr)}

e.T9 = {t9(0,000), t9(0,001), t9(0,010), t9(0,011), t9(0, 100), (0, 101),
t9(0,110), t9(0, 111)}.

e.gtag[s] = t9(0, 100) ande.gtag[s'] = t9(0,000) for everys’ € S, s.t. s’ # s.

e.nt? = t9(0,000)

e c.admin =¢

e.patterns[g(o, own)] =

{(*u, t9(0,100)), (xu, t9(0,101)),

(xu,t9(0,110)), (xu, t9(0, 111))}

e.patterns[g(o, re)] =

{(*u, t9(0,010)), (xu, t9(0,011)),

(xu,t9(0,110)), (xu, t9(0, 111)) }

e.patterns[g(o, wr)| =

{ (xu, t9(0,001)), (xu, t9(0,011)),

(xu,t9(0,101)), (xu, t9(0, 111)) }

That is, in each tag, the first bit correspondswvm, the second tee, and the

third towr. In the set of patterns for the group that correspondsata the
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first bit is always set in each tag, and similarly for the gothmt correspond

to re andwr respectively.

e ¢.GRS =
{Relabel(g(o, bibabs), g(o, bbybs)) =
g(o0,0own)

| D1babs, VULV, € {0,113 A bybybs andb) bbby differ in exactly one bit}
2. Usecreate_label(s, (s,t(0)), g(o, re), g(o, wr)) to create the labél(o).

3. Use the actiomreate_object(s, o, (s,t(0))) to create the objeci and label it with
(o).

To grant or revoke a right, one uses group relabelling. Fstaimce, supposeis a

subject, and for the NG, e.gtag[s| = t7(0,000). Then, we know that is not a member

of any of the groupg(o,own), g(o,re) or g(o,wr). The subject would be granted the

right re by relabelling(s,?(0,000)) to the label(s,t9(0,010)). The execution of this

relabelling results in the subject becoming a member of thamy(o, re), thereby giving

him the rightre over the objecb. Similarly, the subject would have the rigtetrevoked

by relabelling(s, t9(0,010)) to the label(s, t?(0,000)). These operations can be carried

out only by a subject that is a member of the grgg own).

We make the following observations about the above mapping.

e The above mapping does not capture the state invariant ifCsib@t in every state,
there is exactly one owner for every object that exists. én3blworth-Sloan sys-
tem that results from the above mapping, one can perfornbebiag operations
and reach states in which there are mutiple owners for arcplge no owner for
an object. For instance, suppose that there already existbjacts such that
s € members.[g(o,own)]. Given the above relabelling rules, there is nothing that
precludes another subject from also becoming a member o g (o, own)
while s continues to maintain membership in that group. It is alsssfide to re-

move the membership afin the groupg(o, own) thereby leaving the object with
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no owner. It is unclear how we would prevent such situatisamfoccuring in a

system based on the Solworth-Sloan scheme.

e We are unable to capture destruction of subjects and olgeasch constructs have
not been specified for the Solworth-Sloan scheme. Desbructi subjects and ob-
jects is generally considered to be an important componkeahy access control
system. We point out that a state-change rule to destroy jaguir an object in
the Solworth-Sloan scheme must be carefully designed,eas tire several com-
ponents of the state (such as tags) of which we must keep tfdekefore, adding
such state-change specifications does not appear to bead taisk. In particular,
it is unclear how and with what overhead we can capture in thle/@th-Sloan
scheme, the notion of transfer of ownership over objectseallby a subject that is

being destroyed.

e There is considerable overhead in implementing a relgtisghple DAC scheme
(SDCO) in the Solworth-Sloan scheme. For each object, wd teeereate a set of
labels whose size is linear in the number of the subjectsdrstate. We also need
to create a set of tags whose size is exponential in the nungbes in the system.
These tags are used to define groups, and therefore the nofrdrgries in all the
sets of patterns is also exponential in the number of righthé system. This is
considerable overhead considering the simplicity of SD@ the fact that one

can “directly” implement it, with efficiently decidable .

Our conclusion is that several of the claims made by Solwartth Sloan [23] are
incorrect. In particular, not only is the motivation (dealde safety) for the creation of
the new scheme invalid, but it is also not effective in impéeting relatively simple DAC

schemes.
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4 SECURITY ANALYSIS IN ROLE-BASED ACCESS CONTROL

In this chapter, we discuss security analysis. In particwl@ give a precise definition
of a family of security analysis problems in RBAC. In this flynwe consider queries
that are more general than queries that are consideredety safalysis(such as in the
previous chapter, and work such as [2,9, 25,41]). We shotititaclasses of the security
analysis problems in RBAC can be reduced to similar on&Jir—, N}, a role-based trust-
management language for which security analysis has beeredt[5]. The reduction
gives efficient algorithms for answering most kinds of gegrin these two classes and
establishes the complexity bounds for the intractablescasbe kinds of reductions we

employ provide an introduction to the kinds of reductionsmieoduce in the next chapter.

4.1 The need for security analysis in RBAC

The administration of large Role-Based Access Control (RBA&ystems is a chal-
lenging problem. A case study carried out with Dresdner Bankajor European bank,
resulted in an RBAC system that has around 40,000 users d@irbgs [62]. In sys-
tems of such size, it is impossible for a single system sicafiicer (SSO) to administer
the entire system. Several administrative models for RBAG:tbeen proposed in recent
years, e.g., ARBAC97 [37], ARABCO02 [63], and CLO3 (Cramptonrd Loizou) [40]. In
all these models, delegation is used to decentralize thénggtration tasks.

A major advantage that RBAC has over discretionary accessalqDAC) is that if
an organization uses RBAC as its access control model, ligeorganization (represented
by the SSO in the system) has central control over its ressurthis is different from
DAC, in which the creator of a resource determines who caeszcthe resource. In
most organizations, even when a resource is created by alowmpthe resource is still

owned by the organization and the organization wants sovet & control over how the
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resource is to be shared. In most administrative models BA® the SSO delegates
to other users the authority to assign users to certain (tleseby granting those users
certain access permissions), to remove users from cedhgs (thereby revoking certain
permissions those users have), etc. While the use of delagatthe administration of
an RBAC system greatly enhances flexibility and scalabiittynay reduce the control
that the organization has over its resources, thereby dhiimg a major advantage RBAC
has over DAC. As delegation gives a certain degree of cotdraluser that may be only
partially trusted, a natural security concern is whetherdhganization nonetheless has
some guarantees about who can access its resources. Toeoéftielegation on the
persistence of security properties in RBAC has not beenideres in the literature as
such.

In this chapter, we propose to use security analysis tedesifp] to maintain desir-
able security properties while delegating administragivigileges. In security analysis,
one views an access control system as a state-transititensyl an RBAC system, state
changes occur via administrative operations. Securityyaisatechniques answer ques-
tions such as whether an undesirable state is reachableetter every reachable state
satisfies some safety or availability properties. Exampfasidesirable states are a state
in which an untrusted user gets access and a state in whickravhe is entitled to an

access permission does not get it.

4.2 Problem definition and main results

In [5], an abstract version of security analysis is definethencontext of trust man-
agement. In this section we restate the definition in theecdrttf general access control
schemes. We extend our definition of access control schemesGhapter 1 to suit secu-

rity analysis.

Definition 4.2.1 (Access Control Scheme#n access control scheme is modelled as a
state-transition systefii’, @, -, ), in whichT is a set of stateg) is a set of queriesy is

a set of state-change rules, and” x Q — {true, false} is called the entailment relation,
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determining whether gueryis true or not in a given state. state v € I', contains all
the information necessary for making access control datssat a given time. When a
query,q € @, arises from an access request; ¢ means that the access corresponding
to the requesy is granted in the state, and~y I/ ¢ means that the access corresponding
to ¢ is not granted. One may also ask queries other than thosespomding to a specific
request, e.g., whether every principal that has accessdsaairce is an employee of the
organization. Such queries are useful for understandmgnbperties of a complex access
control system.

A state-change rule) € ¥, determines how the access control system changes state.
Given two states and~, and a state-change rufe we writey —, v, if the change from
7 to v, is allowed byy, andy +,, 7, if a sequence of zero or more allowed state changes
leads fromry to ;. If ~ limp ~v1, we say thaty; is ¢-reachablefrom ~, or simply~; is

reachable when~ andq are clear from the context.

An example of an access control scheme is the HRU schemasttiatived from the
work by Harrison et al. [2]. The HRU scheme is based on thesaco®trix model [3, 4].
We assume the existence of three countably infinite $&t€), andR, which are the sets
of all possible subjects, objects, and rights. We assuntbduthatS C O. In the HRU

scheme:

e ['is the set of all possible access matrices. Formally, eaehl" is identified by
three finite sets§, C S, O, C O, andR, C R, and a function\/,[]: S, x O, —
21 whereM., [s, o] gives the set of rights has oven. An example of a statey,
is one in whichS, = {Admin} , O, = {employeeData} U S, R, = {own,r}, and
M., [Admin, Admin] = (), and M., [Admin, employeeData] = {own,r}. In this state,
two objects exist, of which one is a subject, and the systeasssciated with the

two rights,own andr.

e () is the set of all queries of the form: € [s, 0], wherer € R is aright,s € S is
a subject, and € O is an object. This query asks whether the rigleixists in the

cell corresponding to subjegtand objecb.
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e The entailment relation is defined as follows; + r € [s,0] if and only if
s € 8,0 € O, andr € M,[s,0]. For example, let the query; ber
M [admin, employeeData]. and the query, be own € MJadmin, admin] Then, for

the states, discussed above, ¢; and~y # ¢s.

e Each state-transition rule is given by a set of commands. Given the change
from ~ to +; is allowed if there exists command insuch that the execution of the
command in the stateresults in the state;. An example ofy is the following set

of commands.

command createObject(s, o) command grant_r(s,s’; o)
create object o if own € [s, 0]
enter own into [s, o] enter r into [, 0]

The set of queries is not explicitly specified in [2]. It is ceivable to consider other
classes of queries, e.g., comparing the set of all subjbatshave a given right over a
given object with another set of subjects. In our framewbiRlU with different classes of

gueries can be viewed as different schemes.

Definition 4.2.2 (Security Analysis in an Abstract Settin@iven an access control scheme
(I', Q,F, W), a security analysis instance takes the f@smy, ¢, IT), wherey € T'is a state,

q € Qisaqueryy € Vis a state-change rule, ahde {3, V} is a quantifier. An instance
(v, 4,1, 3) asks whether there exists such thaty +~,, v, andy; - ¢. When the answer
is affirmative, we say; is possible(given~ and)). An instance(y, ¢, ¥, V) asks whether

for everyy, such thaty +, v1, 71 - ¢. If SO, we sayy is necessarygiveny andy).

For our example HRU scheme from above, adpps the start state. l there is only
one subject (hamelyadmin) and the access matrix is empty. The system is associated
with the two rights,own andr. Let the queryg be r € M]Alice,employeeData] for
Alice € S andemployeeData € O. Let the state-change rulebe the set of two commands

createObject and grant_r. Then, the security analysis instanege ¢, v, 3) is true. The
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reason is that although in the start staté\lice does not have the right over the object
employeeData, there exists a reachable state fronm which she has such access. The
security analysis instandg, ¢, ¢, V) is false, as there exists at least one state reachable
from ~ (v itself) that does not entail the query.

Security analysis generalizes safety analysis. As we dssituthe following section,
with security analysis we can study not only safety, but atsaral other interesting prop-

erties, such as availability and mutual-exclusion.

4.2.1 A family of security analysis problems in RBAC

We now define a family of security analysis problems in thetexinof RBAC by
specifyingl’, @, andt, while leavingV¥ abstract. By considering different possibilities
for &, one obtains different classes of RBAC security analyobl@ms in this family. We
consider two specific instancesofin sections 4.2.3 and 4.2.4.

An introduction to RBAC is provided in [13, 64]. We assumetthi@ere are three
countable setd/ (the set of all possible usersy, (the set of all possible roles), aftl(the
set of all possible permissions). The family of analysidypems is given by specializing
the analysis problem defined in Definition 4.2.2 to consideeas control schemes that

haverl’, ), andt specified as follows.

States (): ' is the set of all RBAC states. An RBAC state,is a 3-tuple{UA, PA, RH),

in which the user assignment relatié™ C U/ x R associates users with roles, the per-
mission assignment relatid®4 C P x R associates permissions with roles, and the role
hierarchy relatiolH C R x R is a partial order among roles d. We denote the partial
order by>. r; = r, means that every user who is a member,0f also a member of,

and every permission that is associated withs also associated with.

Example 1 Figure 4.1 is an example of an RBAC state. It reflects an orgdioin that has
engineers, and whose human-resource needs are outsawgcdtlfMman-resource person-
nel are not employees). Everyone in the organization is apl@mee, and therefore a

member of the rol&mployee. Some of the employees are full-time (members of the role



Role
@‘@ Hierarchy

‘ Engineer‘ ‘ PartTime‘ ‘ FuIITime‘ ‘ HumanResourcé

- Permission

RH = { (Engineer, Employee), (FullTime, Employee),
(PartTime, Employee) , (ProjectLead, Engineer),
(Manager, FullTime) }.

PA = { (Access, Employee) , (View, HumanResource),

(Edit, Engineer) }.

(Alice, PartTime) , (Alice, Engineer),

(Bob, Manager) , (Carol, HumanResource) }.

{
UA = {

Figure 4.1.An example RBAC state with a role hierarchy, users and permis
sions. Roles are shown in solid boxes, permissions in dalsbees and users
in ovals. A line segment represents a role-role relatignghie assignment of a
permission to a role or the assignment of a user to a role.
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FullTime), and the others are part-time (members of the PaleTime). All managers are
full-time employees. All employees have access to the offind therefore have the per-
missionAccess. Engineers may edit code (have the permis&idin), and human resource
personnel may view employee-details (have the permidsgiomn).

We now discuss some example memberg/df PA and RH. The useilice is an en-
gineer who is a part-time employee. Therefdilice, Engineer) and (Alice, PartTime)
are members ofUA. All employees have access to the office, and therefore,
(Access, Employee) is a member ofPA. Project leads are engineers, and therefore

(ProjectLead, Engineer) is a member ofRH (i.e., ProjectLead = Engineer).

Given a statey, every role has a set of users who are members of that rolevang e
permission is associated with a set of users who have thatiggon. We formalize this
by having every state define a functiorusers, : R U P — 2Y, as follows. For any
r € Randu € U, u € users,[r] if and only if either(u, ) € UA or there exists; such
thatr, > rand(u,r;) € UA. Foranyp € P andu € U, u € users,[p] if and only if
there exists; such thatp, r;) € PA andu € users,[r;]. Note that the effect of permission
propagation through the role hierarchy is already takemannsideration by the definition

of users, [r;].

Example 2 Let the RBAC state shown in Figure 4.1 be Then, for the roleEngineer,
users,[Engineer] = {Alice}. Similarly, for the permissiorAccess, users.[Access| =
{Alice, Bob}.

Queries (@): A queryq has the forns; 3 s,, wheres,, s, € S, andS is the set of aluser
sets defined to be the least set satisfying the following coonddt (1)RU P C S, i.e.,
every roler and every permissiopis a user set; (2Juy, ug, - -+ ,ur} € S, wherek > 0
andu; € U for1 <i < k,i.e., afinite set of users is a user set; and(8)s,, s1Mso, (51) €
S, wheresy, s, € S, i.e., the set of all user sets is closed with respect to yimbersection
and paranthesization. We extend the functieers, in a straightforward way to give a
valuation for all user sets. The extended functiears.,: S — 2Y is defined as follows:

users. [{ur, ug, - - ,uk}] = {uy,uq, - ,ui}, users,[(s)] = users,[s|, users,[s; U so] =
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users,[s1] U users,[sq], andusers,[s; N sy] = users,[s1] N users,[so]. We say a query
s1 - s9 is semi-statidf one of s, sy can be evaluated independent of the state, i.e., no
role or permission appears in it. The reason we distingueshi-static queries is that (as
we assert in Sections 4.4.1 and 4.4.2) a security analysiarioe involving only such

gueries can be solved efficiently.

Entailment (-): Given a statey and a querys; 3 s9, v F s; O sy if and only if

users,[s1] 2 users,[ss].

Example 3 Continuing from the previous examples, an example of a queryis
FullTime N Access 1 {Alice}, for the roleFullTime, the permissiorccess and the user
Alice. This query is semi-static; the user gétlice} can be evaluated (to itself) indepen-
dent of the state.

The queryq asks whetheAlice is a full-time employee that has access to the office.
To find out whethery entailsq or not, we evaluate as follows. We evaluate the user set
FullTime to the set of user§Bob}. We evaluate the user s&tcess to the set of users
{Alice, Bob}. We intersect the two sets of users to obtain the set of ySeiis}. The user
set{Alice} does not need further evaluation; it is already a set of usaks now check
whether the set of usefd\lice} is a subset of the set of usefBob} and determine that
~ t/ q. If another query)’ is Edit 2 ProjectLead (i.e., whether project leads can edit code),

then - ¢'.

The state of an RBAC system changes when a modification is neadeomponent of
(UA, PA, RH). For example, a user may be assigned to a role, or a role thgrae-
lationship may be added. In existing RBAC models, both qairsis and administrative
models affect state changes in an RBAC system. For examplenstraint may declare
that rolesr; andr, are mutually exclusive, meaning that no user can be a menhbetto
roles. If a usewn is a member of in a state, then the state is not allowed to change to a
state in whichu is a member of, as well. Anadministrative modahcludes administra-
tive relations that dictates who has the authority to chahgevarious components of an
RBAC state and what are the requirements these changesthsadfy. Thus, in RBAC
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security analysis, a state-change rule may include canttradministrative relations, and
possibly other information.

In this section, we leave the state-change rule abstrattédiollowing reasons. First,
there are several competing proposals for constraint Egpegi [65—67] and for admin-
istrative models in RBAC [37, 40, 63, 68]; a consensus hasreh reached within the
community. Furthermore, RBAC is used in diverse applicatidt is conceivable that dif-
ferent applications would use different classes of comggand/or administrative models;
therefore different classes of problems in this family draterest.

Given a statey and a state-change ruje one can ask the following questions using

security analysis.

e Simple Safetys s 1 {u} possible? This asks whether there exists a reachable state
in which the user set includes the (presumably untrusted) userA ‘no’ answer

means that the system is safe.

e Simple Availability is s 2 {u} necessary? This asks whether in every reachable
state, the (presumably trusted) uses always included in the user set A ‘yes’
answer means that the resources associated with the usesrectlways available

to the user..

e Bounded Safetyis {u,us,...,u,} 2 s necessary? This asks whether in every
reachable state, the user se bounded by the set of usefs;, us, ..., u,}. A
‘yes’ answer means that the system is safe. A special casewrfded safety is
Mutual Exclusionwhich asks: ig) J (s; N sy) necessary? This asks whether in
every reachable state, no user is a member of both usessatsd s;. A ‘yes’

answer means that the two user sets are mutually exclusive.

e Livenessis () O s possible? This asks whether the userss#tvays has at least one
user. A ‘no’ answer means that the liveness of the resousssceated withs holds

in the system.
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e Containmentis s; J s, necessary? This asks whether in every reachable state,
every user in the user setis in the user set;. Containment can be used to express
a safety property, in which case, a ‘yes’ answer means thaafety property holds.
An example of containment for the RBAC state in Figure 4.1soe state-change
rule is: “is Employee 1 Access hecessary?”, for the rolemployee and the permis-
sion Access. This asks whether in every reachable state, every user ahdhe
permissiorAccess (i.e., has access to the office) is a member of the Ealployee

(i.e., is an employee). A ‘yes’ answer means that our desiaéety property holds.

Containment can express availability properties also., EigjAccess J Employee
necessary?” asks whether the permisgiotess (i.e., access to the office) is always
available to members of the rolgnployee (i.e., employees). A ‘yes’ answer means

that the availability property holds.

We point out that that all the above properties (except fort@ioment) use semi-static
gueries, and therefore, as we mention in the context of @sieni this section, we can

efficiently determine whether those properties are satisfie

4.2.2 Usage of RBAC security analysis

In an RBAC security analysis instanc¢e, ¢, ¢, 11), the statey fully determines who
can access which resources. In addition to administratieypinformation, the state-
change ruley also contains information about which users are trustedani access
control system there ateusted usersthese are users who have the authority to take the
system to a state that violates security requirements butrasted not to do so. A Senior
Security Office (SSO) is an example of a trusted user.

Security analysis provides a means to ensure that secegtyrements (such as safety
and availability) are always met, as long as users identgenlusted behave according to
the usage patterns discussed in this section. In other weedarity analysis helps ensure

that the security of the system does not depend on userstbtrethose that are trusted.
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Each security requirement is formalized as a security ailystance, together with
an answer that is acceptable for secure operation. For dgainpthe context of the
RBAC system whose state in shown in Figure 4.1, a securityireaent may be that
only employees may access the office. This can be formaligeah énstancéy, ¢, v, V),
wherey is the current state,is Employee J Access, andy specifies administrative policy
information. The ruley should precisely capture the capabilities of users thaihate
trusted. In other words, any change that could be made bywssens should be allowed
by . The ruley could restrict the changes that trusted users can makeysethese
are trusted not to make a change without verifying that dbsersecurity properties are
maintained subsequent to the change. For the example g&tabove, the acceptable
answer is “yes”, as we want to ensure that everyone who hgsetimeissionAccess is an
employee. The goal is to ensure that such a security reqgeireim always satisfied.

Suppose that the system starts in a stedech that the answer o, ¢, v, V) is “yes”.
Further, suppose a trusted user (such as the SSO) attemptkba change that is not
allowed by, e.g., the SSO decides to grant certain administrativel@gies to a user
u. Before making the change, SSO performs security analysis, v, V), wherey” and
1’ result from the prospective change. Only if the answer is™ylwes the SSO actually
make the change. The fact thatlimits the SSO from making changes does not mean
that we require that the SSO never make such changes. lttsathecrequirement that the
SSO perform security analysis and make only those changéeslidhnot violate security
properties.

This way, as long as trusted users are cooperating, theityectian access control
system is preserved. One can delegate administrativdqm®s to partially trusted users
with the assurance that desirable security propertiesyallvald. By using different)’s,
one can evaluate which sets of users are trusted for a gicenityegproperty. In general, it
is impossible to completely eliminate the need to trust pedgowever, security analysis

enables one to ensure that the extent of this trust is wektstood.
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4.2.3 Assignment and trusted users (AATU)

In this chapter, we present solutions to two classes of ggamalysis problems in
RBAC. Both classes use variants of the URA97 component cARBAC97 administra-
tive model for RBAC [37]. URA97 specifies how tHeA relation may change.

The first class is called Assignment And Trusted Users (AATi)which a state-
change rule) has the form{can_assign, T). The relationcan_assign C R x C x 2
determines who can assign users to roles and the precorgditiese users have to satisfy.
C'is the set of conditions, which are expressions formed usitgsg, the two operators
andu, and parenthese$:,, ¢, rset) € can_assign means that members of the relecan
assign any user whose role memberships satisfy the condjtto any roler € rset. For
example(ro, (r Ury) Nrs, {ry,rs}) € can_assign means that a user that is a member
of the roler is allowed to assign a user that is a member of at least ongarfdr,, and
is also a member of;, to be a member of, orrs. T C U is a set of trusted users; these
users are assumed not to initiate any role assignment apefat the purpose of security

analysis. The séf is allowed to be empty.

Definition 4.2.3 (Assignment And Trusted Users — AAJUhe class AATU is given by
parameterizing the family of RBAC analysis problems in &et#.2.1 with the following
set of state-change rules. Each state-changeyrdias the form(can_assign,T) such
that a state change from = (UA, PA, RH) to v, = (UA;, PA;, RH,) is allowed by
¥ = (can_assign, T) if PA = PA;, RH = RH,, UA; = UAU{(u,r)}, where(u,r) ¢
UA and there exist$r,, ¢, rset) € can_assign such thatr € rset, u satisfiesc, and
users,[r,] Z T (i.e., there exists at least one user who is a member of the yaind is not

in T, so that such a user can perform the assignment operation).
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Example 4 For the statey, shown in Figure 4.1 and discussed in the previous examples,

a state-change rule, in the class AATU iScan_assign, T'), where

can_assign = {(Manager, Engineer A FullTime, {ProjectLead}),

(HumanResource, true, {Full Time, PartTime})}

T = {Carol}

That is,) authorizes managers to assign a user to theRalgctLead provided that the
user is a member of the rol&agineer andFullTime. In addition,v authorizes anyone
that is a member of the roldumanResource to assign users to the rolésllTime and
PartTime. Setting?" to {Carol} implies that we wish to analyze what kinds of states can
be reached via changes made by users otherGhaih

Let ¢ be the queryProjectLead 1 {Alice}. Then,~ I/ ¢. The analysis instance
(v,q,v,3) asks whether there exists a reachable state in whiich is a project lead.
The instance is false. This is becauseAdite to become a member éfrojectLead, she
would first need to be a full-time employee, and o@lyol can grant anyone membership
to FullTime. As Carol is in T, she cannot initiate any operation. If we consider, instead
the state-change rulg, with the samean_assign asiy from above, but witl" = (), then

the analysis instance, ¢, ¢’, 3) is true.
Main results for AATU

e If ¢ is semi-static (see Section 4.2.1), then an AATU instafpce, ¢, IT) can be
answered efficiently, i.e., in time polynomial in the sizetlbé instance. This is

asserted by Theorem 4.4.2 in Section 4.4.1.

e Answering general AATU instances, q, ¢, V) is decidable but intractablegINP-
hard). This is asserted by Theorem 4.4.3 in Section 4.4.1.
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4.2.4 Assignment and revocation (AAR)

In this class, a state-change rulehas the form(can_assign, can_revoke), where
can_assign is the same as in AATU, andan_revoke C R x 2F determines who can
remove users from roles. Thét,, rset) € can_revoke means that the members of role
r, can remove a user from a rotec rset. No explicit set of trusted users is specified
in AAR, unlike AATU. In AATU and AAR, the relations:an_assign and can_revoke are
fixed inv. This means that we are assuming that changes to these atiomslare made

only by trusted users.

Definition 4.2.4 (Assignment And Revocation — AAR he class AAR is given by para-
meterizing the family of RBAC analysis problems in SectioB.2 with the following set
of state-change rules. Each state-changeyutas the form(can_assign, can_revoke)
such that a state-change from= (UA, PA,RH) to v; = (UA,, PA;, RH,) is al-
lowed by = (can_assign, can_revoke) if PA = PA;, RH = RH,, and either (1)
UA; = UAU {(u,r)} where(u,r) ¢ UA and there existér,, c, rset) € can_assign
such thatr € rset, u satisfiese, andusers, [r,] # 0, i.e., the usew being assigned to
r is not already a member ofand satisfies the preconditienand there is at least one
user that is a member of the rotge that can perform the assignment operation; or (2)
UA, U (u,r) = UA where(u,r) ¢ UA,, and there existér,, rset) € can_revoke such
thatr € rset andusers,[r,] # 0, i.e., there exists at least one user in the rgléhat can
revoke the uset’s membership in the role.

We assume that an AAR instance satisfies the following threpepties. (1) The ad-
ministrative roles are not affected byn _assign andcan_revoke. The administrative roles
are given by those that appear in the first component ofcanyassign or can_revoke tu-
ple. These roles should not appear in the last componenyaf@nassign or can_revoke
tuple. This condition is easily satisfied in URA97, as it ases the existence of a set of
administrative roles that is disjoint from the set of normodés. (2) If a role is an adminis-
trative role (i.e., appears as the first componentafa assign or can_revoke tuple), then

it has at least one user assigned to it. This is reasonalde agministrative role with no
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members has no effect on the system’s protection statef d3):h _assign tuple exists for

arole, then a:an_revoke tuple also exists for that role.

Example 5 For the statey, from Figure 4.1, an example of a state-change rule in AAR is

¥ = (can_assign, can_revoke), where

can_assign = {(Manager, Engineer A FullTime, {ProjectLead}),

(HumanResource, true, {FullTime, PartTime}) }

can_revoke = {(Manager, {ProjectLead, Engineer}),
(HumanResource, {FullTime, PartTime}) }

We point out that thean_assign we use in this example is the same asdtve_assign we
use in Example 4. Then, if is the queryProjectLead I Access (i.e., only project leads
have access to the office), the AAR analysis instance, ¢, 3) is true. If¢’ is the query
Edit 3 {Alice} (i.e.,Alice can edit code), then the analysis instatigey, v, V) is false.

Main results for AAR

e If ¢ is semi-static (see Section 4.2.1), then an AAR instapce, v, IT) can be
answered efficiently, i.e., in time polynomial in the sizetlbé instance. This is

asserted by Theorem 4.4.5 in Section 4.4.2.

e Answering general AAR instancés, ¢, v, V) is coNP-complete. This is asserted
by Theorem 4.4.6 in Section 4.4.2.

4.2.5 Discussion of the definitions

Our specifications otan_assign and can_revoke are from URA97, which is one of
the three components of ARBAC97 [37]. The state-changesredasidered in AAR are
similar to those in URA97, but they differ in the following twvays. One, URA97 allows
negation of roles to be used in a precondition; AAR does rotahis. Two, URA97 has
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separate administrative roles; AAR does not require theptet®a separation of adminis-
trative roles from ordinary roles. AATU differs from URA9i two additional ways. One,
AATU does not have revocation rules. Two, AATU has a set afted users, which does
not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for atht@ring permission-
role assignment/revocation, and the role hierarchy, ctiy@dy. In this chapter, we study
the effect of decentralizing user-role assignment anda&vwon, and assume that changes
to the permission-role assignment relation and the rolealthy are centralized, i.e,
made only by trusted users. In other words, whoever is alfioteemake changes to
permission-role assignment and the role hierarchy willthensecurity analysis and only
make changes that do not violate the security properties.atiministration of the user-
role relation is most likely to be delegated, as that is thamonent of an RBAC state that
changes most frequently.

AATU and AAR represent two basic cases of security analysiBBAC. Although
we believe that they are useful cases, they are only thengigroint. Many other more
sophisticated cases of security analysis in RBAC remaimoger example, it is not
clear how to deal with negative preconditions in role assignt, and how to deal with

constraints such as mutually exclusive roles.

4.3 Overview of security analysis RiT [«, N]

In [5], Li et al. studies security analysis in the contextlod 7" family of Role-based
Trust-management languages [69, 70]. In particular, $gcamalysis inRT [« N] and its
sub-languages is studie®T[«, N] is a slightly simplified (yet expressively equivalent)
version of theRT; language introduced in [70R{T [«—, N] is calledSRTin [5]). In this
section we summarize the results for security analysiTifk—, N]. In Section 4.4 we

reduce security analysis in AATU and AAR to thatR [«—, N].

Syntax of RT[«,N] The most important concept in thel" languages is also that of

roles A role in RT[«,N] is denoted by a principal (corresponding to a user in RBAC)
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Simple Member
syntax: Kr— K;
meaning: members(K.r) O {K;}
LP clause: m(K,r, K;)
Simple Inclusion
syntax: Kr«— Kinr
meaning: members(K.r) O members(K;.ry)
LP clause: m(K,r,77) :— m(Ky,r,?7)
Linking Inclusion
syntax: Kr«—— Kurirg
meaning: members(K.r) 2 Jy, cx.,, members(K;.ry)
LP clause: m(K,r,7Z) :— m(K,r,?Y), m(?Y,re,77)
Intersection Inclusion
syntax: Kr«— KiriNKsry
meaning: members(K.r) O members(K;.71) N members(Ks.15)
LP clause: m(K,r,7Z) :— m(Ky,r,7Z), m(Ky,re,77)

Figure 4.2. Statements RT[«, N]. There are four types of statements.
For each type, we give the syntax, the intuitive meaning efstiatement,
and the LP (Logic-Programming) clause corresponding tstaeement.
The clause uses one ternary predicatevherem (K, r, K1) means that
K, is a member of the rolé({.r Symbols that start with?” represent
logical variables.
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followed by a role name, separated by a dot. For example, ihesm principal and is a
role name K .r is arole. Each principal has its own name space for rolese¥ample, the
‘employee’ role of one company is different from the ‘empeyrole of another company.
A role has a value which is a set of principals that are members abthe

Each principalK has the authority to designate the members of a role of tha for
K.r. Roles are defined bgtatementsFigure 4.2 shows the four types of statements in
RT[«,N]; each corresponds to a way of defining role membership. Alskimgmber
statementX.r «+—— K; means thatX; is a member ofK’s r role. This is similar to
a user assignment in RBAC. A simple inclusion statemént «—— K;.r; means that
K’s r role includes (all members off;’s r; role. This is similar to a role-role dominance
relationshipi’;,.r; = K.r. Alinking inclusion statemenk’.r «—— K.r;.r, means thak’.r
includesk .r, for every K thatis a member oK.r;. An intersection inclusion statement
K.r — Ki.ry N Ky.r, means thakl.r includes every principal who is a member of both
Ki.ry andK,.ry. Linking and intersection inclusion statements do notaliyecorrespond
to constructs in RBAC, but they are useful in expressing mestibps in roles that result
from administrative operations. Our reduction algoritimSections 4.4.1 and 4.4.2 use
linking and intersection inclusion statements to captges-wole memberships affected by

administrative operations.

States An RT[«,N] statey” consists of a set oRT[«,N] statements. The seman-
tics of RT[«,N] is given by translating each statement into a datalog cla(3atalog
is a restricted form of logic programming (LP) with variab|g@redicates, and constants,
but without function symbols.) See Figure 4.2 for the dajattauses corresponding to
RT[«, N] statements. We call the datalog program resulting frorrstegimg each state-
ment iny? into a clause that is theemantic progranof 47, denoted bySP (7).

Given a datalog prograr®}P, its semantics can be defined through several equivalent

approaches. The model-theoretic approach viB\#sas a set of first-order sentences and
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uses the minimal Herbrand model as the semantics. We Wite”) = m(K,r, K')

whenm (K, r, K') is in the minimal Herbrand model ¢fP (v 7).

State-change RulesA state-change rule is of the form? = (G, S), whereG andS are

finite sets of roles.

e Roles inG are calledgrowth-restricted(or g-restricted; no statements defining
these roles can be added. (A statement defines a role if itheaole to the left

of ‘“«—".) Roles not inG are calledgrowth-unrestrictedor g-unrestricteq.

¢ Roles inS are calledshrink-restricted(or s-restricted; statements defining these

roles cannot be removed. Roles no&iare callegshrink-unrestrictedor s-unrestrictegl
Queries Li et al. [5] considers the following three forms of queries:

e Membership ArJ{Dy,...,D,}

Intuitively, this means that all the principald,,...,D, are members
of Ar. Formally, v + Ar 23 {D,,...,D,} if and only if
{Z|SP(y") Em(A,7,Z2)} 2{Dy, ..., Dn}.

° Boundedness {Di,...,D,} 3 Ar

Intuitively, this means that the member setAf- is bounded by the given set of
principals. Formallyy™ + {D,,...,D,} 3 Arifandonlyif {D,,...,D,} D
{Z | SP(y") Fm(A,r, Z)}.

° Inclusion XudAr

Intuitively, this means that all the members4f- are also members of .. For-
mally, v/ + X.u 3 Arifand only if {Z | SP(vT) E m(X,u,2)} D {Z |
SP(y") Em(A,r 2)}.

Each form of query can be generalized to allow compound mbeessions that use
linking and intersection. These generalized queries carethbeced to the forms above

by adding new roles and statements to the state. For inst@hce A.r N A;.r.rp can
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be answered by adding.u; «— A.r N B.ug, B.ug «— B.uz.ry, andB.uz «— A;.rq to
~T, in which B.u,, B.u,, andB.uz are new g/s-restricted roles, and by posing the query

Main results for security analysis inRT [« N]

Membership and boundedness queries (both whether a queogsshle and whether
a query is necessary) can be answered in time polynomiakisite of the input. The
approach taken in [5] uses logic programs to derive ansveetedse security analysis
problems. This approach exploits the fact tRdt[«, N] is monotonic in the sense that
more statements will derive more role membership factss Tdillows from the fact that
the semantic program is a positive logic program.

Inclusion queries are more complicated than the other twdski In [5], only theY
case (i.e., whether an inclusion query is necessary) isestutt is not clear what the secu-
rity intuition is of and inclusion query (whether an inclusion query is possiblegréfore,
it is not studied in [5]. The problem of deciding whether adirsion query is necessary,
i.e., whether the set of members of one role is always a sepefshe set of members of
another role is calledontainment analysidt turns out that the computational complex-
ity of containment analysis depends on the language featim& T[], the language that
allows only simple member and simple inclusion statemestdstainment analysis is in
P. It becomes more complex when additional policy languagtufes are used. Contain-
ment analysis isoNP-complete foRT[N] (RT[] plus intersection inclusion statements),
PSPACE-complete forRT|[«] (RT[] plus linking inclusion statements), and decidable
in coNEXP for RT[«, M.

4.4 Reducing AATU and AAR to security analysisRi [«—, M|

In this section, we solve AATU (Definition 4.2.3) and AAR (Ddfion 4.2.4). Our

approach is to reduce each of them to security analy$tSir—, N].
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4.4.1 Reduction for AATU

The reduction algorithmAT U _Reduce is given in Figure 4.4, it uses the subroutines
defined in Figure 4.3. Given an AATU instan¢e= (UA, PA, RH), q = s1 1 so, ¥ =
(can_assign,T), 11 € {3,V}), AATU_Reduce takes(v, ¢,v) and outputsy7, ¢7, yT)
such that th&kT[«, N] analysis instancéy’, T, T 1) has the same answer as the orig-

inal AATU instance.

In the reduction, we use one principal for every user thaeappiny, and the spe-
cial principalSys to represent the RBAC system. TR&[«, N| role names used in the
reduction include the RBAC roles and permissions/iand some additional temporary
role names. Th&kT[«,N] role Sys.r represents the RBAC role and theRT[«,N]
role Sys.p represents the RBAC permissipn Each(u,r) € UA is translated into the
RT[«,N| statemenSys.r «— u. Eachr; = ry is translated into th&T [« N] state-
mentSys.r, «— Sys.ry (asry is senior tory, any member of; is also a member afs,.)
Each(p,r) € PA is translated int®ys.p < Sys.r (each member of the rolehas the
permissiomn.)

The translation of thean_assign relation is less straightforward. Eagh,,r.,r) €
can_assign is translated into th&®T [« N] statemenBys.r <« Sys.r,.r N Sys.r.. The
intuition is that a user, who is a member of the role, assigning the user to be a
member of the- role is represented as adding Ri€[«—, N| statement,.r «— u. ASu, IS
a member of th&ys.r, role, the user. is added as a member to thes.r role if and only
if the useru is also a member of the. role.

In the reduction, all th&ys roles (i.e.,Sys.x) are fixed (i.e., both g-restricted and s-
restricted). In addition, for each trusted usen 7', all the roles starting withy are also
g-restricted; this is because we assume that trusted usérsowperform operations to
change the state (i.e., user-role assignment operatigves)nay also make roles starting
with trusted users s-restricted; however, this has no effeco statement defining these

roles exists in the initial state.
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1 Subroutine Trans(s, %) {

2 | Trans(s,v7) returns an RT[«,N] rol e corresponding
3 to the user set s*/

4 if sis an RBAC role then return Sys.s;

5 else if s is an RBAC permi ssion then return Sys.s;

6 elseif sis a set of users then {

7 name=newName(); foreach ues {

8 yI+= Sys.name «——u; }

9 return Sys.name; }

10 elseif (s = s U s9) then {

11 name=newName(); 7 +=Sys.name «— Trans(sy,77);
12 yT+= Sys.name «— Trans(s2,77);

13 return Sys.name; }

14 else if (s = s N s9) then {

15 name=newName( ) ;

16 T +=Sys.name «— Trans(sy,7") N Trans(sz,77);
17 return Sys.name; }

18 } /* End Trans */

19

20 Subroutine QTrans(s, ) {

21 /= Translation for users sets that are used at top
22 level in a query =*/

23 if sis a set of users then return s;

24  else return Trans(s, v7);

25 } [+ End QTrans */

26

27 Subroutine HTrans(s, 1) {

28 if sis an RBAC role then return HSys.s;

29 elseif (s = s U s9) then {

30 name=newName(); ~T+= Sys.name«—HTrans(sy,77);
31 yT+= Sys.name+—HTrans(s2,v7); return Sys.name; }
32 else if (s = s31 N s9) then {

33 name=newName( ) ;

34 7T +=Sys.name «+— HTrans(sy,y") N HTrans(s2,77);

35 return Sys.name; }

36 } /+ End HTrans */

Figure 4.3. Subroutine®rans, QTrans, andHTrans are used by the two
reduction algorithms. We assume call-by-reference foptrametery”.
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38 {
39
40
41
42
43
44
45
46
47
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51
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53
54
54

/+ Reduction algorithmfor AATU x/

I = 0;  ¢7 = QTrans(s1, v7) 3 QTrans( s2, v7) ;
foreach (uj,r;) € UA { yT+= Sysrj«—u;; }
foreach (r;,r;) € RH { y7+= Sys.rj«—Sys.r;; }
foreach (p;,rj) € PA { y1+= Sys.p;«—Sys.r;; }
foreach (a;s,rset) € can_assign {
if (s==true) { foreach r erset {
yT+= Sys.r«—Sys.a;.r; } }
el se { tmpRole=Trans( s, v7);
foreach r € rset { name=newNane();
vI'+= Sys.name < Sys.a;.r;
yT+= Sys.r«— Sys.name N tmpRole
Fro
foreach RT role name z appearing in 7 {
G+=Sys.z;  S+=Sys.z; foreach user ve T { G+=u.zx; } }
return (v, ¢7, (G,9));

55 } /' End AATU_Reduce */

Figure 4.4. Reduction Algorithm for AATU

73
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Example 6 Consider the state-change rule we discuss in Example 4, in which
can_assign consists of the two tuple@Manager, Engineer A FullTime, ProjectLead) and
(HumanResource, true, {FullTime, PartTime}), andT = {Carol}. Let~ be the RBAC
state shown in Figure 4.1, and lgbe the queryrojectLead 1 Alice. Then, we represent
the output ofAATU_Reduce ({~, ¢, ¥)) as{y7, ¢*,¥T). ¢* is Sys.ProjectLead 3 {Alice}.

The following RT statements in’ result from UA:

Sys.Engineer «—— Alice Sys.PartTime «— Alice

Sys.Manager <—— Bob Sys.HumanResource «— Carol
The following statements in” result fromRH :

Sys.Employee «— Sys.Engineer Sys.Employee «— Sys.FullTime
Sys.Employee «— Sys.PartTime Sys.Engineer «—— Sys.ProjectLead
Sys.FullTime «— Sys.Manager

The following statements in” result fromPA:

Sys.View «— Sys.HumanResource Sys.Access «+— Sys.Employee

Sys.Edit «— Sys.Engineer

The following statements in” result from can_assign. The first two statements reflect
the ability of a member dflumanResource to assign users teull Time andPart Time with
no precondition, and the remaining statements reflect thigyadf a member ofManager
to assign users tBrojectLead provided that they are already membergrofiTime and

Engineer.

Sys.FullTime «— Sys.HumanResource.Full Time
Sys.PartTime «— Sys.HumanResource.PartTime
Sys.NewRole; «— Sys.Engineer N Sys.FullTime
Sys.NewRole, «— Sys.Manager.ProjectLead
Sys.ProjectLead «+— Sys.NewRole; N Sys.NewRole,
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vI' = (G, S), whereG is the growth-restricted set of roles, addis the shrink-
restricted set of rolesG consists of every role of the fordys.xz and every role of the
form Carol.z. The latter is included itz becauseCarol is in the set of trusted usefs.

S consists of every role of the for8ys.x. It is clear that the security analysis instance
(vF, ¢, T, 3) is false, ashlice can never become a memberSyk.ProjectLead. If we
adopt as the state-change rulg, that is the same ag’ except thatl” = (), then roles
of the form Carol.z would be growth-unrestricted. And there exists a stgtethat is

reachable from” which has the following statements in addition to all theestzents in

v

Carol.FullTime «— Alice Bob.ProjectLead «— Alice

These statements are necessary and sufficieBygdProjectLead «— Alice to be inferred

in v, Thus, the security analysis instane€, ¢*, 7, 3) is true.

The following proposition asserts that the reduction ismehuneaning that one can

use RT security analysis techniques to answer RBAC secamiysis problems.

Proposition 4.4.1 Given an AATU instance(y,q, ¢, 1), let (y7 ¢7 Ty =
AATU_Reduce((v, q,v)), then:

e Assertion 1:For every RBAC state’ such thaty —,, 7/, there exists aRT[«, N]
statey?” such thaty” +,r 77" and+’ I ¢ if and only ify”" +- 7.

e Assertion 2:For everyRT[«,N] statey?” such thaty” +=,r 47", there exists an

RBAC state/’ such thaty +~,, 4/ andy’ - ¢ if and only ify" - ¢*.

Proof For Assertion 1:A state change in AATU occurs when a user assignment operatio
is successfully performed. For every RBAC statsuch thaty =, +/, letyo,71, - -+ , Ym

be RBAC states such that= v, —y 71 —y -+ —¢ 7 = 7. We construct a sequence
of RT[«,N| statesy!, 7%, - - ,~vL as follows:yI = ~7; for eachi = [0..m — 1], consider

the assignment operation that change$o v;,1, let it be the operation in which a user
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u; adds(u,r) to the user-role assignment relation; the stgtg is obtained by adding
up.r—utovy!. Lety?’ beqL.

Step one:Prove that ify’ - ¢ theny?’ I ¢*. It is sufficient to prove the following:
for each: € [0..m], if v; implies that a certain user is a member of a role (or has
the permissiorp), then~! implies thatu is a member of th&kT[«, N] role Sys.r (or
Sys.p). We use induction on to prove this. The base case (i=0) follows directly from
the AATU_Reduce algorithm; lines 42—44 reproducé&, RH, PA in theRT[«, N| state
v¢. For the step, assumes that the induction hypothesis hotdg f- - - ,+;, consider
vi+1. Let the operation leading tg; be one in which:; assigns: to a roler. As both
sequences of states are increasing, we only need to consid@enemberships implied by
~vi+1 but not~;; these are caused (directly or indirectly) by this assignm&here must
exist a(r,,c,r) € can_assign to enable this assignment; thus+pn u; is a member of
the roler, andu satisfies the condition By induction hypothesis, in!, u; is a member
of Sys.r, andu satisfies the condition. From the translation and the construction of
vL.1, 7L, has the following statementst;.r «— u, Sys.r «— Sys.r,.r, andSys.r «—
Sys.name N tmpRole (WheretmpRole corresponds to the preconditioh Furthermore,
in %TH, u; IS a member of the role, andu satisfies the condition. Thereforeu is a
member of théys.r role in~/, ;.

Step two:Prove that ify?” I ¢* theny’ I~ q. Itis sufficient to show that if aRT [«—, N]
role membership is implied by?’, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proeguisduction on the number of
rounds in which a bottom-up datalog evaluation algorithrtpats a ground fact. Here,
we only point out the key observations. (For details of samgroofs, see the Appendix
in [5].) A RT[«,N] role membership is proved by statements generated on |hxeés24
The first three cases correspond to thé, RH, PA. For the last case, there must exist a
statementy;.r «—— u in 7', and it implies that: is a member of the rol8ys.r. By the
construction ofy?’, the usen: has been assigned to the relduring the changes leading

to~'.
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For Assertion 2:Given anRT[«, N] statey?’ such thaty” »Lw ~T', we can assume
without loss of generality that”” adds toy” only simple member statements. Also, we
only need to consider statements defining;, whereu; is a user iny andr; is a role in
~. Consider the set of all statementsyif having the formu;.r; < w;. For each such
statement, we perform the following operation on the RBA&eststarting fromy, have
u; assignuy, to the roler;. Such an operation may not succeed either becapsenot
in the right administrative role or becausg does not satisfy the required precondition.
We repeat to perform all operations that could be performiuhat is, we loop through
all such statements and repeat the loop whenever the |gstésalts in a new successful
assignment. Let’ be the resulting RBAC state. It is not difficult to see thaimplies the

same role memberships @%§'; using arguments similar to those used above. [ |

As we discuss in detail in [71], the above proposition assératAATU _Reduce is
security (analysis) preserving in the sense that an AATUyaiginstance is true if and
only if the RT[«, N] analysis instance that is the output’&TU_Reduce is true. That is,
AATU_Reduce preserves the answer to every security analysis instane@ri\ie the need
for assertion 1 in the proposition by considering the caattttere exists a reachable state
7/ in the RBAC system, but no corresponding reachable stdte the RT[«, N] system
produced byAATU _Reduce. Let the corresponding query gelf 4" I ¢, then letl] be 3,
and ify’ t/ ¢, then letll beV. In the former case, the security analysis instance in RBAC i
true, but the instance in tHeT [«—, N] system that is the output &fATU_Reduce is false.

In the latter case, the analysis instance in RBAC is falsetimiinstance iRT[«—, N] is
true. Therefore, foAATU_Reduce to preserve the answer to every analysis instance, we
need assertion 1.

Similarly, we argue the need for assertion 2 by considetiegcontrary situation. Let
7T’ be a reachable state RIT[«,N] for which there exists no corresponding state in
RBAC. Let the corresponding query RT[«—, N] beq”. If 47 + ¢*, then letll be 3, and
let IT be V otherwise. AgainAATU_Reduce would not preserve the answer to a security
analysis instance, and we would not be able to use the anevegr @nalysis instance in

RT[«,N] as the answer to the corresponding instance in RBAC.
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Theorem 4.4.2 An AATU instancéy, ¢, ¥, IT) can be solved efficiently, i.e., in time poly-

nomial in the size of the instancegifs semi-static.

Proof Let the output of AATU_Reduce corresponding to the inputv,q,) be
(vT, ¢, wT). If ¢ is semi-static, we observe thgt is semi-static as well. Furthermore,
AATU _Reduce runs in time polynomial in its input. We know from Li et al. [Hjat in
RT[«,N], a security analysis instance with a semi-static query eartswered in time
polynomial in the size of”. Therefore, in conjunction with Proposition 4.4.1, we can
conclude that a security analysis instance with a semegdaery in the RBAC system

can be answered in time polynomial in the size of the system the size ofv, ¢,)). ®
Theorem 4.4.3 An AATU instancéy, ¢, v, I1) is coNP-hard.

Proof We show that the general AATU problemdsNP-hard by reducing the monotone
3SAT problem to the complement of the AATU problem. Monot8&&AT is the problem
of determining whether a boolean expression in conjunctmenal form with at most
three literals in each clause such that the literals in aselaue either all positive or all
negative, is satisfiable. Monotone 3SAT is known taNbB-complete [72].

Let ¢ be an instance of monotone 3SAT. Thea=c; A ... AG 1 A ... N¢, where
a, ..., ¢ are the clauses with positive literals, afd, ..., ¢, are the clauses with neg-
ative literals. Letpy, ..., p, be all the propositional variables i For each clause with
negative literals, = (- pg, V 7 pr, V 7 Diy), defined, = = ¢ = (pr, A Dry A Dis)-
Then, ¢ is satisfiable if and only ife; A ...c; A = (diy1 V...V d,) is satisfiable.
Letn = (aA...N¢) — (diy1 V...V d,) where— is logical implication. Then,
aN...qN=(d1V...Vvd,) = - n. Therefore, is satisfiable if and only if; is
not valid. We now construet, ¢» andg in an AATU instance such that= z; J z, is true
for user setg; andz; in all states reachable fromif and only if n is valid.

In v, we have a role (which is for administrators) antfA containg A, a) whereA is
a user (i.e., the role is not empty in terms of user-membership). With each prdjpsil
variablep; in n, we associate a rolg. For eachr;, we add(a, true,r;) to can_assign.

That is, anyone can be assigned to the rol&Ve letT (the set of trusted users) be empty.
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For eachy such thatl < j <[, we associate the clause= (p;, V pj, V p;,), with a user
sets; = (r;, Urj, Ur;,). For eacht such thatl + 1) < k < n, we associate the clause
dr = (Pr, N Pry N\ Drs ), With @ user sety, = (ry, Ny, N7E,). INOUr queryg = z; J 2o,
we letz; = s, U...Us, andz, = s; N ...Ns;. We now need to show that I 2, in
every state reachable fromif and only if » is valid. We show that; J z; is nottrue in
every state reachable fromif and only if  is not valid.

For the “only if” part, we assume that there exists a statiat is reachable from
such that iny’ there exists a userthat is a member of the user sgf but notz;. Consider
a truth-assignment for the propositional variables im as follows: ifu is a member of
the roler; in /, thenI(p;) = true. Otherwise(p;) = false. UnderI, n is not true, as
(1 A ... ANq)istrue, but(d;, V...V d,) is false. Thereforey is not valid.

For the “if” part, we assume thaj is not valid. Therefore, there exists a truth-
assignment such that(c; A ... A ¢) is true, but(d;.; V...V d,) is false. Consider a
statey’ that has the following members 4 in addition to the ones in: for eachp; that
is true undet, (u,r;) € UA. Otherwise(u,r;) ¢ UA. ~'is reachable fromy, and in~/,

z1 J z9 IS NOt true. [ ]

We observe from the above proof that the AATU problem remasNP-hard even
when every precondition that occurs énn_assign is specified agrue; the expressive
power of the queries is sufficient for reducing the monotd®ABproblem to the general
AATU problem. We infer from our reduction and results frdti [«, N] that an AATU
instance is iIPSPACE.

4.4.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 4.5. Theluetion algorithm in-
cludes in the set of principals a principal for every uset/imnd five special principals:
Sys, RSys, HSys, ASys, andBSys. Again, theSys roles simulate RBAC roles and per-
missions. In this reduction, we do not distinguish whethesla assignment operation is

effected by one user or another, and use only one prind§33k, to represent every user
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56 AAR_Reduce ( (v = (UA,PA,RH), q=s1 Jsa,

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

1 = (can_assign, can_revoke) ))

{ /> Reduction algorithmfor AAR */

vI'=0; ¢ = QTrans( sy, 47) 2 QTrans( sz, v7) ;
foreach (u;r;) € UA {
yT+= HSys.rj«—u;; ~yT+= RSys.rj«—u;;
yT'+= Sys.rj«—RSys.rj; }
foreach (r;,r;) € RH {
AT += Sys.rj «— Sys.r; vl += HSys.r; «—HSys.r;;  }
foreach (p;,rj) € PA { v1+= Sys.p;«—Sys.r;; }
foreach (a;s,rset) € can_assign {
if (s==true) {
foreach r e rset {
4T+= HSys.r«—BSys.r; 4T+= Sys.r«—ASys.r; }
} el se { tmpRole = HTrans(s,v7); [+ precondition */
foreach r e rset {
~vT+= HSys.r «—— BSys.r N tmpRole;
yT+= Sys.r«—ASys.r N tmpRole; }
I
foreach RT role name z appearing in 47 {
G+=Sys.x; S+=Sys.x; G+=HSys.z; S+=HSys.z; G+=RSys.z;
S+=BSys.x; S+=RSys.z; S+=ASys.z;
} /= when a can_revoke rule exists for r, ASys.r and
RSys. r can shrink =/
foreach (a;,rset) € can_revoke {
foreach r in rset { S-=RSys.r; S-=ASys.r; } }
return (v, ¢, (G,9));

83 } /* End AAR_Reduce */

Figure 4.5.AAR _Reduce: the reduction algorithm for AAR
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that exercises the user-role assignment operation. The oblthe principaRSys contain

all the initial role memberships iV A; these may be revoked in state changdSys.r
maintains the history of the RBAC role its necessity is argued using the following sce-
nario. A user is a member of, which is the precondition for being added to another role
ro. After one assigns the user te and revokes the user from the user's membership
in 7o should be maintained, even though the precondition is ngdogatisfied (a similar
justification for this approach is provided in the contexA&BAC97 [37] as well).BSys

is similar toASys, but it is used to construct théSys roles. An administrative operation
to try to add a uset; to the roler; is represented by adding the statemi$ys.r; «— v,
andBSys.r; < u; to v*. An administrative operation to revoke a usgifrom the role

r; is represented by removing the statemdtfigs.r; <« w; andASys.r; «— u;, if either

exists iny”.

Example 7 Consider the state-change rule we discuss in Example 5, in which
can_assign consists of the two tuple@Manager, Engineer A FullTime, ProjectLead) and
(HumanResource, true, {FullTime, PartTime}), and can_revoke consists of the two tu-
ples (Manager, {Engineer, ProjectLead}) and (HumanResource, {FullTime, PartTime}).
Let v be the RBAC state shown in Figure 4.1, and delbe the queryProjectLead 3
Alice. Then, we represent the output ®ATU_Reduce ({7, ¢, ¥)) as (7, ¢*,¢T). ¢* is
Sys.ProjectLead 3 {Alice}. The following RT statements i’ result from UA:

HSys.Engineer «— Alice RSys.Engineer «— Alice
HSys.PartTime «— Alice RSys.PartTime «— Alice
HSys.Manager «—— Bob RSys.Manager «— Bob
HSys.HumanResource «— Carol RSys.HumanResource «— Carol
Sys.Engineer «— RSys.Engineer Sys.FullTime «— RSys.FullTime

Sys.HumanResource «— RSys.HumanResource

Sys.PartTime «— RSys.PartTime
The following statements in” result fromRH :

Sys.Employee «— Sys.Engineer HSys.Employee «— HSys.Engineer
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Sys.Employee «— Sys.FullTime HSys.Employee «— HSys.FullTime
Sys.Employee «— Sys.PartTime HSys.Employee «— HSys.PartTime
Sys.Engineer «— Sys.ProjectLead HSys.Engineer «— HSys.ProjectLead
Sys.FullTime «— Sys.Manager HSys.FullTime «— HSys.Manager

The following statements in” result fromPA:

Sys.View «— Sys.HumanResource Sys.Access «— Sys.Employee

Sys.Edit «— Sys.Engineer
The following statements in” result fromcan_assign:

HSys.FullTime «— BSys.FullTime Sys.FullTime «— ASys.FullTime
HSys.PartTime «— BSys.PartTime Sys.PartTime «— ASys.PartTime
Sys.NewRole; «— HSys.Engineer N HSys.FullTime

HSys.ProjectLead «— BSys.ProjectLead N Sys.NewRole;

Sys.ProjectLead <— ASys.ProjectLead N Sys.NewRole;

YT = (G, S), whereG is the growth-restricted set of roles, afids the shrink-restricted
set of roles. Unlikecan_assign, can_revoke results only in some roles not being added to
S. G is comprised of all roles of the forfdys.z, HSys.x andRSys.x (but notBSys.x or
ASys.x). S is comprised of all roles of the for8ys.x, HSys.z, RSys.z andASys.x, except
the rolesRSys.Manager, ASys.Manager, RSys.Engineer, ASys.Engineer, RSys.FullTime,
ASys.FullTime, RSys.PartTime, andASys.PartTime. This is because those roles appear in
can_revoke rules, and therefore may shrink.

There exists a statg’ that is reachable from” that has the following statements in

addition to the ones in”.
BSys.FullTime «— Alice ASys.ProjectLead «— Alice

We can now infer that in?, HSys.FullTime «— Alice, and therefore;iSys.NewRole; «—

Alice, and so, Sys.ProjectLead «— Alice. Thus, the security analysis instance
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(vT, ¢, T, 3) is true. If we consider, instead, the quegy which is Sys.PartTime 3
Alice, then asRSys.PartTime is a shrink-unrestricted role, there exists a stgtethat is
reachable fromy” in which the statemerRSys.PartTime «— Alice is absent. There-
fore, we would conclude th&ys.ProjectLead does not includdlice. Consequently, the
analysis instancé)”, ¢f', 47, V) is false.

We are able to also demonstrate the need for the roles atesbeigh the principals
HSys and BSys. Consider the statey! that can be reached fron¥ by removing the
statemenRSys.FullTime «— Alice. Now, Sys.FullTime does not includé\lice. This
is equivalent toCarol revoking the membership of the usklice to the roleFull Time.
This affects the precondition that one can be assigned tadleeProjectLead only if
one is already a member of the roleggineer andFull Time. Nonetheless, we observe that
7 ¢T, asindeed it should. That i&ice should continue to be a memberfybjectlLead
even if subsequent to her becoming a membé&tojectLead, her membership is removed
from FullTime. We observe that this is the case because theB®ye.FullTime is shrink-
restricted, and therefore one cannot remove the stateld$gntFull Time «— Alice once
it has been added, and consequerttfys.Full Time «— Alice is true, and thereforalice
continues to be a member of the rélejectLead (i.e., is included irbys.ProjectLead). Of
course Alice can later have her membership revoked from the PedgectLead (by Bob),

and this is equivalent to the statem@ésiys.ProjectLead «— Alice being removed.
The following proposition asserts that the reduction issbu

Proposition 4.4.4 Given an AAR instance(vy,q, ¢, 1), let (W7 ¢, ¢T) =
AAR_Reduce((v, ¢,v)), then:

e Assertion 1:For every RBAC state’ such thaty —,, 7/, there exists aRT[«, N]
statey?” such thaty” +,r v7" and+’ I ¢ if and only ify?" - 7.

e Assertion 2:For everyRT[«,N] statey?” such thaty” +,r 47", there exists an

RBAC state/’ such thaty +~,, 4/ andy’ - ¢ if and only ify" - ¢*.

Proof For Assertion 1: A state change in AAR occurs when a user assignment or a

revocation operation is successfully performed. GivenRBAC statey’ such thaty iw
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v, letyo,m, -+, vm be RBAC states such that= vy —y 71 =y - =y Y = 7.
We construct a sequence RT [« N] statesyl ,v7,--- ;4L as follows: I = ~T; for
eachi = [0..m — 1], consider the operation that changeso ;. If itis an assignment
operation in which a user; adds(u, ) to the user-role assignment relation; the stdte

is obtained by addingys.r +— u andBSys.r — u toy}. For each revocation that revokes
a useru from a roler, we remove (if they exist) from thBT[«, N] state the statements
ASys.r «——u andRSys.r «——u. Lety?" be~ZL.

Step 1:Prove that ify - ¢ theny?’ - ¢”. Step la:We prove that iny’’, HSys.r
captures all users that are ever a member of the rod¢ some time, i.e., for each
i € [0..m], if u € users,,[r], thenu is a member of th&kT[«, N] role HSys.r in v/,
(SP(vF) = m(HSys, 7, u)). We prove this by induction on The basisi = 0) is true,
because in” we reproduce/A and RH in the definition of theHSys roles (see lines 60—
64 in Figure 4.5); furthermore, tHéSys roles never shrink. For the step, we show that if
(u,r) € UA;11, thenu is a member of th&T[«, N] role HSys.r in 7%, This is sufficient
for proving the induction hypothesis because the effectgbagation through role hierar-
chy is captured by the definition &fSys roles. If (u, ) € UA;,1, then eithefu,r) € UA
(in which caseHSys.r «—— u € v1"), or there is an assignment operation that assigtus
r (in which caseBSys.r «—— u € 1'). Let (rq,c,7) € can_assign be an administrative
rule used for this assignment, themjinthe usen satisfies:. By induction hypothesis’s
role memberships in; is captured in:’s role memberships iRSys.r; thereforeu would
satisfy the translated preconditiempRole. Thereforeu is a member of the rol&lSys.r
in v (because of the statemet®ys.u «— BSys.r N tmpRole).

Step 1b:We prove that imy”’ the Sys roles capture all the role membershipsyin
It is sufficient to prove the following: leUA’ be the user assignment relationify if
(u,7) € UA’, thenu is a member of the rol8ys.r in v, If (u,r) € UA, then either
(u,r) € UA and this is never revoked (in which céR&ys.r «—— u € v and this statement
is never removed, therefoRSys.r «—— u € v’); or there is an assignment operation in

O, and this assignment is not revoked after it (in which o&Sgs.r «—u € v1).
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Step two:Prove thatify”’ - ¢ theny' I ¢. Itis sufficient to show that if aRT[«—, N]
role membership is implied by”’, then the corresponding RBAC role membership (or
permission possession) is also implied. A detailed proeguisduction on the number of
rounds in which a bottom-up datalog evaluation algorithitpats a ground fact. Here, we
only point out the key observation. RT[«, N] role membership is proved by statements
generated on lines 60—65 or 71-74. The first three casesspord to thelUA, RH, PA.

For the last case, there must exist a statemégs.r —— v in v27, and it implies that: is
a member of the rolgys.r. By the construction of’’, the usew has been assigned to the
roler during the changes leading{6and the assignment is not revoked after that.

Also, we only need to consider statements defining;, wherew; is a user iny and
r; is arole iny. Consider the set of all statements)iff having the formu,.r; «— u,. For
each such statement, we perform the following operatiomeBAC state, starting from
7, haveu, assignu, to the roler;. Such an operation may not succeed either becatise
not in the right administrative role or becaugsedoes not satisfy the required precondition.
We repeat to perform all operations that could be perforniéat is, we loop through all
such statements and repeat the loop whenever the last |lsajisrén a new successful
assignment. Let’ be the resulting RBAC state. It is not difficult to see thaimplies the
same role memberships a&§'; using arguments similar to those used above.

For Assertion 2:Among theRT[«, N] roles,Sys roles andHSys roles are fixedASys
roles can grow or shrinlgSys roles can shrink but not grow; arfidbys roles can grow but
not shrink. Given aRT[«,N] statey?” such thaty” +>,r ~*’, we can assume without
loss of generality that”’ adds toy” only simple member statements. Consider the set of
all statements in/”’ definingASys, BSys, andRSys roles. We construct the RBAC state
~/ as follows. (1) For every statemeBSys.r < u in 42’, assign the user to the roler.
Repeat through all such statements until no new assignrmeongsds. Using arguments
similar to those used for proving assertion 1, it can be shitbatnow the RBAC roles have
the same memberships as thgys roles. (2) Do the same thing for all th#&Sys.r «— u
statements. At this point, all the role memberships forSyreroles iny’’ are replicated

in the RBAC roles, because all thys memberships have been added. (3) Remove the
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extra role membership in the RBAC state, i.e., those notébtils roles. The ability to
carry out this step depends upon the requirement (in Defim#i.2.4) that if there is a

can_assign rule for a role, then there is also revoke rule for the role. [ |

Our comments regarding the need for assertions 1 and 2 tergessnswers to security
analysis instances, that we make in the previous sectidmeicdntext ofAATU_Reduce,
apply to the above proposition in the contextAAR_Reduce as well. If either of the
assertions does not hold, then we cannot use the answerRd the, N] analysis instance

as the answer to the corresponding RBAC instance.

Theorem 4.4.5An AAR instancéy, ¢, ¢, I1) can be solved efficiently, i.e., in time poly-

nomial in the size of the instancegifs semi-static.

Proof Let the output oAAR_Reduce for the input(v, ¢, v) be (T, ¢©, 1) If ¢ is semi-
static, so isg”. As AAR_Reduce runs in time polynomial in its input angl’ can be an-
swered in time polynomial in the size of (which is shown by Li et al. [5])g can be
answered in time polynomial in the size of the system (ite size of(v, ¢, ¢)). Thus, an

AAR instance with a semi-static query can be solved effityent [ |
Theorem 4.4.6 An AAR instancey, q, ¢, II) is coNP-complete.

Proof We deduce that an AAR instance isdaNP from the fact thaAAR_Reduce runs
in time polynomial in the size of the system, and the corradpay security analysis prob-
lem in theRT[N] system that is the output 8fAR_Reduce is coNP-complete. RT[N] is a
sub-language T [«, N] that allows only the first, second and fourth kinds of stateisie
from Figure 4.2.) That is, ifj is not true in every state reachable fromthen we offer
as counterproof the algorithWAR _Reduce and the counterproof in thRT[«, N] system
thatq” is not true in every state reachable frgi.

We can show that the general AAR problene¢sNP-hard in almost exactly the same
way that we show the result for the AATU problem in the proaf Ttheorem 4.4.3. The
only difference is that for every role that is associated with a propositional variable

apart from a rule ircan_assign, we add the ruléa, r;) to can_revoke. We construct the



87

gueryq the same way as in that proof, and show in the same waytlsatrue in every

state reachable fromif and only if  is valid. [ |
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5 COMPARING THE EXPRESSIVE POWER OF ACCESS CONTROL MODELS

In this chapter, we introduce a theory for comparing accessral models based on two
notions of reductions that we call state-matching reduast@nd reductions, together with
detailed justifications for the design decisions. We aralye deficiency of using the
implementation paradigm to compare access control moaelshow that it leads to a
weak notion of simulations and cannot be used to differemtacess control models from
one another based on expressive power. Also, we apply oomntirefour cases. We show
that:

e there exists no state-matching reduction from a rather Igirtrpst-management
schemeRT][] [73], to the HRU scheme [2]. This is the first formal evidende o
the limited expressive power of the HRU scheme. Li et al. f@g that, contrary to
the undecidability result of safety analysis in the HRU sobesafety analysis and
more sophisticated security analysis in the trust managesehemeRT [« N,
is decidable. Li et al. [6] conjecture that these schemesatame encoded in the
HRU scheme and that the expressive powers of the HRU schethef&T || are

incomparable. In this chapter, we present formal evideacthfs assertion.

e there exists a reduction, but no state-matching reductmm f rather simple DAC
scheme, Strict DAC with Change of Ownership (SDCO), to RBAGWRBAC97
[37] as the administrative model. Several authors [11, B&Ehargued that RBAC
is more expressive than various forms of DAC, including SDT®is is the first
evidence of the limited expressive power of an RBAC schemeomparison to
DAC.

¢ there exists a state-matching reduction from RBAC with amiadtrative scheme

that is a component of ARBAC97 [37] BT[] [69,74], a trust-management scheme.
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This shows that state-matching reductions can be consttdot powerful access

control schemes in the literature.

e there exists no state-matching reduction from ATAM to TAMhem we permit
gueries in ATAM that check for both the absence and the poesenf a right in
a cell. This revisits the issue addressed by Sandhu and @E&8Bjtand formalizes
the benefit from the ability to check for the absence of rightdition to the ability

to check for the presence of rights.

5.1 Comparisons based on security analysis

A methodology that can be used for comparing two systemsnalation. A require-
ment used in the literature for simulations is the prese@wmatf simple safety properties.
Indeed, this is the only requirement on simulations in [IQ,18]. If a simulation of
schemeA in schemeB satisfies this requirement, then a systemfineaches an unsafe
state if and only if the system’s mappingihreaches an unsafe state. In other words, the
result of simple safety analysis is preserved by the sinmuriat

Simple safety analysis, i.e., determining whether an accestrol system can reach
a state in which an unsafe access is allowed, was first fazegaby [2] in the context of
the well-known access matrix model [3, 4]. In the HRU schef&jed protection system
has a finite set of rights and a finite set of commands. A staaegpobtection system is an
access control matrix, with rows corresponding to subjesntsl columns corresponding
to objects; each cell in the matrix is a set of rights. A comdhtakes the form of “if
the given conditions hold in the current state, execute aesgre of primitive operations.”
Each condition tests whether a right exists in a cell in thérimaThere are six kinds of
primitive operations: enter a right into a specific cell ie thhatrix, delete a right from a
cell in the matrix, create a new subject, create a new objiestiroy an existing subject,
and destroy an existing object. The following is an examplemmand that allows the

owner of a file to grant the read right to another user.
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command grant Read(ul, u2, f)
if ‘own’ in (ul,f)
then enter ‘read’ into (u2,f)

end

In the exampleyl, u2 andf are formal parameters to the command. They are instan-
tiated by objects (or subjects) when the command is execttadison et al. [2] proves
that in the HRU scheme, the safety question is undecidaplehbwing that any Turing
machine can be simulated by a protection system.

Treating the preservation of simple safety properties@asdie requirement of simula-
tions is based on the implicit assumption that simple saggtyeonly interesting property
in access control schemes, an assumption that is not valltenvériginally introduced
by [2], simple safety was described as only one class of geeme can consider. Li et
al. [5, 73] have introduced the notion of security analysisich generalizes simple safety
to other properties such as bounded safety, simple avityabiutual exclusion and con-
tainment.

In this section, we present a theory for comparing accessalonodels based on the
preservation of security properties. We adopt the defimitiof access control schemes
and security analysis from the previous chapter. We nowdhice a generalized notion

of security analysis.

Definition 5.1.1 (Compositional Security Analyi$siven a schemél’, Q.+, V), acom-
positional security analysigstance has the fory, ¢, ¢, IT), wherey, v, andIl are the
same as in a security analysis instance, @mgla propositional formula ovep, i.e., ¢ is

constructed from queries @ using propositional logic connectives such/as/, —.

For example, the compositional security analysis instancer; € [s,01]) A (12 €
[s,09]), 1, 3) asks whether the systefr, ) can reach a state in whichhas both the
right r; overo; and the right-, overo,. We allow the formulap to have infinite size. For

example, suppose th&t the set of all subjects, i§sy, s, s3, s4, - . .}, then the formula
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=(r € [se,0] V1 € [s3,0] V1 € [s4,0] V---)is true when no subject other thanhas the
right » over objecb.

Whether we should use security analysis or compositiorzalrgg analysis is related
to what types of policies we want to represent, and what tgpeslicies we want to use
as bases to compare the expressive power of different acoa®l models or schemes.
With compositional security analysis, we would be companmodels or schemes based
on types of policies that are broader than with securityyamisl For instance, if our set
of queries() contains queries related to users’ access to files, thenasithpositional
security analysis we can consider policies such as “Bobldhmyer have write access to
a particular file so long as his wife, Alice has a user accoandl thus has some type of

access to some file).”

5.1.1 Two types of reductions

In this section, we introduce the notions of reductions aatesmatching reductions
that we believe are adequate for comparing the expresswerpf access control models.

Before we introduce reductions, we discuss mappings betaeeess control schemes.

Definition 5.1.2 (Mapping Given two access control schemds= (I'*, Q4 4, U4)
andB = ('3, QB 5 ¥P5). A mappingfrom A to B is a functions that maps each pair
{(v4,44) in A to a pair(y?,4?) in B and maps each quety' in A to a queryg? in B.
Formally,o : (Tt x ¥4) U Q4 — ('8 x ¥B) U QP.

Definition 5.1.3 (Security-Preserving Mappifid mappingo is said to be

security-preservingvhen every security analysis instanceAns true if and only if the
imageof the instance is true. Given a mapping (I'* x U4\ U4 — (T x ¥B)uQ?, the
imageof a security analysis instande”, ¢*, ¢4, IT) undero is (vZ, ¢%, 4" 1I), where

(7B, 0P) = o((y*,9*)) andg? = o(¢*).

The notion of security-preserving mappings captures th@tion that simulations

should preserve security properties. Given a securitgguéng mapping fromd to B
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and an algorithm for solving the security analysis problenmBi one can construct an
algorithm for solving the security analysis problemArusing the mapping. Also, secu-
rity analysis inB is at least as hard as security analysisiinmodulo the efficiency of
the mapping. If an efficient (polynomial-time) mapping frofrto B exists, and security
analysis inA is intractable (or undecidable), then security analysiB is also intractable
(undecidable). Security preserving mappings are not golwemnough for comparisons of
access control schemes based on compositional securlfysenad\Ve need the notion of a

strongly security-preserving mapping for that purpose.

Definition 5.1.4 (Strongly Security-Preserving Mappin@iven a mapping from scheme
A to schemeB, the image of a compositional analysis instange', o, ¢4, II), in A is
(vB, P, B 11), where(v2,vP) = o({(v4,4*)) andp? is obtained by replacing every
queryg¢” in p? with o(¢?); we write also thato? = o(x*). A mappingo from A to

B is said to bestrongly security-preservingghen every compositional security analysis

instance inA is true if and only if the image of the instance is true.

While the notions of security-preserving and strongly sigypreserving mappings
capture the intuition that simulations should preserveussgcproperties, they are not
convenient for us to use directly. Using the definition faher type of mapping to di-
rectly prove that the mapping is (strongly) security presgy involves performing secu-
rity analysis, which is expensive. We now introduce theantiof reductions, which state
structural requirements on mappings for them to be secpréagerving. We start with a
form of reduction appropriate for compositional securitalysis and then discuss weaker

forms.

Definition 5.1.5 (State-Matching ReductigrGiven a mapping fromi to B, o : (I'4 x
U U4 — (TP x UB) U @B, we say that the two states' and~? are equivalent
under the mapping when for everyy® € Q4, v4 4 ¢4 if and only if yZ -5 o(¢?). A
mappinge from A to B is said to be atate-matching reductioifi for everyy4 € I'* and

everyy? € U4, (vB B) = o({(y4,44)) has the following two properties:
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1. For every state{! in schemeA such thaty? +, ~{, there exists a statg’ such

thaty® 5 7¥ and~{! and~? are equivalent under.

2. For every state? in schemeB such thaty? |L¢B 7B, there exists a statg! such

thaty4 +,, v{! and~{* and~” are equivalent under.

Property 1 says that for every statg that is reachable from“, there exists a reach-
able state in schem@ that is equivalent, i.e., answers all queries in the same Reyp-
erty 2 says the reverse, for every reachable stafg there exists an equivalent statedn
The goal of these two properties is to guarantee that coriigaai security analysis results

are preserved across the mapping. With the following thrapvee justify Definition 5.1.5.

Theorem 5.1.1 Given two schemed and B, a mappingo from A to B is strongly

security-preserving if and only éf is a state-matching reduction.

Proof The “if” direction. Wheno is a state-matching reduction, given a compositional
security analysis instande*, o, ¢4, I1) in schemeA, let (v, ¢8) = o((v4,¥4)) and
o8 = a(p?), we show thaty4, o4, ¢4, T1) is true if and only if(yZ, B B TI) is true.
First consider the case that the instaiigé, ¢*, ¢4, II) is existential, i.e.JT is 3. If
the instance is true, i.e., there exists a reachable sfate which ¢4 is true. Property
1 in Definition 5.1.5 guarantees that there exists a reaehsthtey? that is equivalent
to v, thusp? is true in+?; therefore, the instance iR, (72, ©f, 7, 3), is also true.
However, if (72, ¢, 4P 3) is true, then there exists a reachable stgtén which ©? is
true. Property 2 in Definition 5.1.5 guarantees that therst®a state ird in which the
analysis instance iA is true.
Now consider the case that the instarigé, o4, 4, II) is universal, i.e.JT1 is V. If
the instance is false, i.e., there exists a reachable-gfatewhich ¢ is false. Property 1
guarantees that the instancefiris also false. Similarly, if the instance I8 is false, then
the instance iM is also false.
The “only if” direction. Wheno is not a state-matching reduction, then there exists
v4 € T4 andy? € ¥4 such that(y? ¢vP) = o((y4,4)) violates one of the two

properties in Definition 5.1.5.
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First consider the case that Property 1 is violated. Theist®a reachable statg'
such that no state reachable froffi is equivalent toy;!. Construct a formula* as
follows: ¢4 is a conjunction of queries i@ or their complement. For every quegy in
Q4, o4 includesq” if v F4 ¢* and—q¢4 if v F4 ¢4, (Note that the length o may
be infinite, as the total number of queries may be infinitega@, o is true in4{, but
o(p?) is false in all states reachable froffi. Thus, the existential compositional analysis
instance involvingy” has different answers, amdis not strongly security preserving.

Then consider the case that Property 2 is violated. Thestseaistate” reachable
from % such that no state reachable frorft is equivalent toy?. Construct a formula
o4 as follows: 4 is a conjunction of queries i) or their complement. For every query
queryq? in Q4, ¢* includesg” if v F2 o(¢?) and—q¢? if 4P F8 o(¢?). Clearly, o
is false in in all states reachable fropt, but o(p?) is true in+Z; thus, the existential
compositional analysis instance involvipg has different answers, andis not strongly

security preserving. [ |

Note that the proof uses a compositional analysis instdmecbntains a potentially
infinite-length formula. If one chooses to restrict the fatas in analysis instances to
be finite length, then state-matching reduction may not wessary for being strongly
security-preserving. Also, a state-matching reducticeserves compositional security
properties. If we only need queries fraghto represent our policies and not compositions
of those queries, then the following weaker notion of remunst is more suitable. How-
ever, we believe that the notion of state-matching reduostis quite natural by itself; it is

certainly necessary when compositional queries are afaste

Definition 5.1.6 (Reduction Given two access control schemds= (I'*, Q4, -4, U'4)
andB = (I'B, QP -8, ¥B). A mapping fromA to B, o, is said to be aeductionfrom A
to B if for everyy* € I'4 and every* € U4, (v%,¢7) = o((y*,¢*)) has the following

two properties:
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1. For every state;' and every query” in scheme4, if 44+, 4{, then in scheme
B there exists a state” such thaty? .,z +F and~{t F* ¢* if and only if
v P o(g?).

2. For every state” in schemeB and every query” in schemed, if 15 + 5 75,

there exists a statg' such thaty +, ~{' and~{* -4 ¢# if and only if vZ 5
a(g?).

Definition 5.1.5 differs from Definition 5.1.6 in that the foer requires that for every
reachable state id (B, resp.) there exist a matching stateBn(A, resp.) that gives
the same answer favery query Definition 5.1.6 requires the existence of a matching
state for every query; however, the matching states mayffeatit for different queries.
Property 1 in Definition 5.1.6 says that for every reachataltesn A and every query i,
there exists a reachable statefirthat gives the same answer to (the image of) the query.
Property 2 says the reverse direction. The goal of these tojoepties is to guarantee that
security analysis results are preserved across the mapphgfact that a reduction, as
defined in Definition 5.1.6, is adequate for preserving ggcanalysis results is formally

captured by the following theorem.

Theorem 5.1.2 Given two schemed and B, a mapping,o, from A to B is security

preserving if and only it is a reduction.

Proof The “if” direction. Wheno is a reduction, given a security analysis instance
(v4, ¢4, A, T1) in schemeA, let (v2,B) = o((v4, v4)) andq¢? = o(¢*), we show that
(v, g4, A, 1) is true if and only if(y5, ¢®, 5B, II) is true.

First consider the case that the instarigé, ¢, ¢4, II) is existential, i.e. I is 3.
If the instance is true, i.e., there exists a reachable state which ¢* is true. Prop-
erty 1 in Definition 5.1.6 guarantees that there exists ahazle statey” in which ¢”
is true. Therefore, the instance By (v2, ¢, 7, 3), is also true. On the other hand, if
(vB, 4¢P, 3) is true, then there exists a reachable stétén which ¢ is true. Property
2 in Definition 5.1.6 guarantees that there exists a stateimwhich ¢4 is true; thus the

analysis instance iA is true.
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Now consider the case that the instarigé, ¢, >4, I1) is universal, i.e.J1 is V. If
the instance is false, i.e., there exists a reachablegtatewhich ¢* is false. Property 1
guarantees that the instancefinis also false. Similarly, if the instance I8 is false, then
the instance iM is also false.

The “only if” direction. Wheno is not a reduction, then there existd € I'
andy? € U4 such that(v?,¢?) = o({(y4,14)) violates one of the two properties in
Definition 5.1.6.

First consider the case that Property 1 is violated. Theist®a reachable statg'
and a query,” such that for every state reachable frofhthe answer for the query(¢*)
under the state is different from the answerdérunder~:'. If 4! -4 ¢*, then this means
that ¢ is false in every state reachable fropi. Thus the security analysis instance
(v, ¢4, 4, 3) is true, but its image underis false. Thus, the mappingis not security-
preserving. Ifyi* 174 ¢*, then this means thaf is true in every state reachable froffi.
Thus the security analysis instange', ¢, 14, V) is false, but its image underis true.

Then consider the case that Property 2 is violated. Thestseaistate” reachable
from ~? and a query;* such that for every state reachable frorh the answer for the
queryq” under the state is different from the answerdog) underyZ. If v2 -2 o (¢?),
then this means that' is false in every state reachable frarh. Thus the security analysis
instance(y4, ¢#, ¥4, 3) is false, but its image under is true. 1fy2 2 ¢B, then this
means thag” is true in every state reachable from\. Thus the security analysis instance

(v4, ¢, 4, V) is true, but its mapping i is false. |

Comparisons of two access control models are based on cmDpRIAMONg access

control schemes in those models.

Definition 5.1.7 (Comparing the Expressive Power of Access Control Mgd&igen two
access control modelst and M’, we say thatM’ is at least as expressive Ag (or M’
has at least as much expressive powek #3if for every scheme inV there exists a state-
matching reduction (or a reduction) from it to a schemé\iti. In addition, if for every

scheme inM’, there exists a state-matching reduction (reduction) fitcima scheme in
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M, then we say that/ and M’ are equivalent in expressive power. M’ is at least as
expressive as tha1, and there exists a schemein M’ such that for any schem@ in
M, no state-matching reduction (reduction) frehto B exists, we say that1’ is strictly

more expressive thai.

We compare the expressive power of two schemes based omssthing reductions
when compositional queries are needed to represent theigmobf interest. Otherwise,
reductions suffice. Observe that we can use the above dafibiticompare the expressive
power of two access control schemésand B, by viewing each scheme as an access

control model consists of just that scheme.

5.1.2 Discussions of alterative definitions for reduction

In this section, we discuss alternative definitions thatediglightly from the ones
discussed in the previous section. The first of these defirstis used by [10, 18] for

simulations.

Definition 5.1.8 (Form-1 Weak ReductignrA mapping fromA to B, given byo : (I'* x
U4 — (I'Bx ¥B)uQ?, is aform-1 weak reductioif for everyy4 € I'4 and every

A e U, (B yB) = ({4, 4*)) has the following two properties:

1. For every query, if there exists a statg in schemeA such thaty + 4 7{* and

v =4 ¢4, then there exists a stat¢ such thaty” =,z 72 andy? F2 o(¢?).

2. For every query?, if there existsy” in schemeB such thaty®? .5 £ and
vE P o(g?), then there exists a stat¢ such thaty? +,, vi* and~;! -4 ¢# if and

only if v2 =5 a(g™).

The intuition underlying Definition 5.1.8, as stated by [i€)]‘systems are equivalent
if they have equivalent worst case behavior”. Thereforapsitions only need to preserve
the worst-case access. Definition 5.1.8 is weaker than Biefirb.1.6 in that it requires

the existence of a matching state when a query is true in #te, $iut does not require so
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when the query is false. Therefore, it is possible that ayggéis true in all states that are
reachable from4, but the queryr(¢*) is false in some states that are reachable ffém
(the querys(¢*) needs to be true in at least one state reachable ff&nThis indicates
that Definition 5.1.8 does not preserve answers to univeealrity analysis instances.
Definition 5.1.8 is adequate for the purposes in [10, 18] dg simple safety analysis
(which is existential) was considered there.

The decision of defining a mapping to be a function frad x ¥4) U Q4 to (I'? x
UB)u@P also warrants some discussion. One alternative is to defimegping fromA to
B to be a function that maps each statelito a state inB, each state-transition rule i
to a state-transition rule i, and each query id to a query inB. Such a function would
be denoted as : I UTYAUQA — I'BPUTPUQPE. One can verify any such function is also
a mapping according to Definition 5.1.2, which gives moreilfligity in terms of mapping
states and state-transition rules frahto B. By Definition 5.1.2, the state corresponding
to a statey” may also depends upon the state-transition being conslidere

Another alternative is to define a mapping frohto 5 to be a functionr : I'4 x ¥4 x
Q4 — T'B x U8 x QF, in other words, the mapping of states, state-transititesfiand
gueries may depend on each other. This definition will aladdeto a weaker notion of

reduction:

Definition 5.1.9 (Form-2 Weak ReductignA form-2 weak reduction fromA to B is a
functiono : T4 x ¥4 x Q4 — I'B x ¥B x QF such that for everyy® € T4, every
P4 € U4, and everyy? € Q4, (VB 4B, ¢P) = o((v4, ¥4, ¢?)) has the following two

properties:
1. For every state{! in schemeA such thaty? +, ~{, there exists a statg’ such
thaty? 5 v& and~{! +4 ¢4 if and only if v HZ ¢5.
2. For every state? in schemeB such that/® —,,z 77, there exists a statg" such
thaty* >, v andyt F4 ¢4 if and only if 42 -5 ¢P.

It is not difficult to prove that a Form-2 weak reduction iscatecurity preserving,

in the sense that any security analysis instapce ¢, ¢4, II) in A can be mapped to a
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security analysis iB. However, it is not a mapping, as the mapping of states are-sta
transition rules may depend on the query.

Definition 5.1.9 is used implicitly in Theorems 2 and 3 in [#}4t are reproduced in
the previous chapter) for reductions from security analysiwo RBAC schemes to that
in the RT Role-based Trust-management framework [5, 69jvAstate in Theorem 5.3.5
in this chapter, a form-2 weak reduction used in [7] for onéhefRBAC schemes can be
changed to a security-preserving mapping in a straightdoiwnanner.

We choose not to adopt this weaker notion of reduction fofahewing reason. Under
this definition, given an access control system, 44), to answem analysis instances
involving different queries, one has to dotranslations of states and state-transitions,
which are often time consuming. While using Definition 5.ar®l Definition 5.1.6, one
can do the mapping dfy*, ¢*) once and use it to answer allanalysis instances.

A third weak form of reduction is introduced by [17]. That Watiscusses the expres-

sive power of multi-parent creation when compared to shpgleent creation.

Definition 5.1.10 (Form-3 Weak ReductigrA mapping fromA to B, given byo : (I' x
U — (I'Bx ¥B)u P, is aform-3 weak reductioif for everyy# € I'4 and every

YA e U4, (vB yB) = ({4, 4*)) has the following two properties:

1. For every state;' and every query” in scheme4, if 44+, 7{, then in scheme
B there exists a state? such thaty? 5,5 2 and+{! -4 ¢4 if and only if
v a(g?).

2. For every state” in schemeB and every query” in scheme4, if v2 +5 5 +Z,
then either (a) there exists a statesuch thaty* +,, vi* and~;! -4 ¢ if and only
if v =2 o(g?), or (b) there exists a statg’ such thaty? +,» 72 and a state;!

such thayy? =, v, andyit F4 ¢ if and only if v2 2 o(g?).

As pointed out by [17], this form of reduction suffices for geeving simple safety
properties in monotonic schemes — those schemes in which arstate is reached in
which a query is true, in all reachable states from that stiatequery remains true. There-

fore, this form of reduction cannot be used to compare schevhen queries can become
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false after being true. As with the reduction from Definitiod.8, this form of reduction

cannot be used for universal queries.

5.2 The implementation paradigm for simulation: an exatoma

Several authors use the implementation paradigm for simonks e.g., [11] state that
“a positive answer [to the question whether LBAC (lattiGesed access control) can be
simulated in RBAC] is also practically significant, becaitgeplies that the same Trust
Computing Base can be configured to enforce RBAC in genethLBAC in particular.”
However, in these papers [11, 55, 58], a precise definitiorsifmulations is not given.
This makes the significance of such results unclear, at Ieastrms of comparing the
expressive power of different access control models.

In this section, we analyze the implementation paradigmaagde that this does not
lead to a notion of simulations that is meaningful for conmpgthe expressive power of
different access control models. More precisely, the matiof simulations derived from
this paradigm are so weak that almost all access controhsehiare equivalent.

To formalize the implementation paradigm for simulatiomeadural goal is to use an
implementation of an access control scheme for anothensehintuitively, if a scheme
A can be simulated in a scheni® then there exists simulatorthat, when given access
to the interface to (an implementation d$), can provide an interface that is exactly the
same as the interface to (an implementation4f)

When considering the interface of an access control schembave to consider how
state-transitions occur. Intuitively, an access conysteam changes its state because some
actors (subjects, principals, users, etc.) initiate aedations. An implementation of an

access control scheme thus has an interface consistingeafsathe following functions:

e init(y): set the current state to

e query(q): ask the query and receives a yes/no response.
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e apply(a): apply the actiorn on the system, which may result in a state-transition in

the system.

e functions providing other capabilities, e.g., traverdimg subjects and objects in the

system.

A simulator of A in B is thus a program that takes an interfacgond provides an
interface of A that is indistinguishable from an implementation fér In other words,
the simulator is a blackbox that when given access to a backbplementation ofB,
gives an implementation of. This intuition seems to make sense if the goal is to use an
implementation ofB to implementA.

It is tempting to start formalizing the above intuition; hewer, there are several subtle
issues that need to be resolved first.

As can be easily seen, for any two schemeand B, a trivial simulator exists. The
simulator implements all the functionalities df by itself, without interacting with the
implementation ofB. Clearly, one would like to rule out these trivial simulatorOne
natural way to do so is to restrict the amount of space usetdgimulator to be sub-
linear in the size of the state of the scheme it is simulatihgeemso be a reasonable
requirement that the simulator takes constant space owitsice., the space used by the
simulator does not depend on the size of the state. (The sigadeby the implementation
of B is not considered here.)

Another issue is whether to further restrict a simulatarteinal behavior. When the
simulator receives a query in the schereit may issue multiple queries to the black-
box implementation of3 before answering the query; it may even perform some state-
transition onB before answering the query. Similarly, the simulator maygren multiple
gueries and state-transitions 8o simulate one state-transition.h

If no restriction is placed, then the notion of simulatiorto® weak to separate dif-
ferent access control models. For example, [58] constiuateimulation of ATAM in
RBAC. In Section 5.4, we give a simulation of RBAC in strict DAa discretionary model

that allows only the owner of an object to grant rights over dlbject to another subject
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and ownership cannot be transferred. According to thesdtseshe simplest DAC (in
which security analysis is efficiently decidable) has thmesaxpressive power as ATAM
(in which simple safety analysis is undecidable). Thissiliates the point that, with-
out precise requirements, simulation is not a useful canfoegomparing access control
models.

If one places restrictions on the simulator, then the qoes$s$iwhat restrictions are rea-
sonable. Our conclusionis that it is difficult to justify $uequirements. In the following,
we elaborate on this.

One possibility that we now argue to be inadequate is toicete internal behavior of
the simulator, e.g., to restrict it to issue only one querttm answer one query iA and
to make a bounded number of state-transition8 ito simulate one state-transition ih
Under these restrictions, one can prove that RBAC cannabidated in the HRU model.
The assignment of a user to a role in RBAC results in the usaimgpall the accesses to
objects implied by the permissions associated with tha& iblerefore, it changes the an-
swers to an unbounded number of queries (queries involhiogg permissions.) One may
argue that the assignment of a user to a role is a single fdaticRBAC, and therefore,
the acquiring of those permissions by that user is accoimgdi$n a single “action.” The
corresponding assignment of rights in the HRU access madimot be accomplished
by a single command, or a bounded number of commands for thaemas each com-
mand only changes a bounded number of cells in the matrixs,Téwy mapping of the
user-assignment in RBAC involves an unbounded number ohtamads being executed
in HRU. Nonetheless, one can argue that this is balancedéeftitiency of checking
whether a user has a patrticular right in the two models. Aenaiwlementation of an
RBAC model may involve having to collect all roles to whiclattuser is assigned, and
then collecting all permissions associated with thosest@ead then checking whether one
of those permissions corresponds to the object and acgggdar which we are check-
ing. The time this process takes depends on the size of thentstate and is unbounded.
The corresponding check in HRU is simpler: we simply checkthbr the corresponding

access right exists in the cell in the matrix. Thus, we canatfat there is a trade-off be-
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tween time-to-update, and time-to-check-access betweetwb schemes. Therefore, we
argue that it does not make sense to restrict the numberns steolved in the simulation.

Another possibility that we now argue to be inadequate iséasure how much time
the simulator takes to perform a state-transition and tavansne query in the worst case
and require that there cannot be a significant slowdown. pssibility is complicated
by the fact that the efficiency of these operations are nadgiegmined in any access
control scheme, the implementation can make trade-offwd®t time complexity and
space complexity and between query answering and statsiticans. Any comparison
must involve at least three axes: query time, state-tiandiime, and space. Furthermore,
the best ways to implement an access control scheme arenvaytsaknown. Finally, these
implementation-level details do not seem to belong in themarison of access control
models; as such models by themselves are abstract modélsljopsoperties other than
efficiency.

In summary, when no restriction is placed on the simulatitres“implementation par-
adigm” does not separate different access control scherwgever, it seems difficult to
justify the restrictions that have been considered in tieedture. Therefore, our analysis
in this section suggests that the “implementation paratidpes not seem to yield effec-
tive definitions of simulations that are useful to compareeas control models. This also

suggests that expressive power results proved under tradigan should be reexamined.

5.3 Applying the theory

In this section, we apply our theory from Section 5.1 to corajhe expressive power
of different access control schemes. In the following segtive show that the HRU access
matrix scheme is not as expressive as a relatively simpdétnanagement scheni&[ [ ].
We then examine two particular results from literature gsar theory: (1) that RBAC
is at least as expressive as DAC (Sections 5.3.2 and 5.318)(2 that TAM is at least

as expressive as ATAM (Section 5.3.5), and in each casert aBseopposite. We show
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also that the trust management schdtiié| is at least as expressive as an RBAC scheme

(Section 5.3.4).

Proof Methodology In this section, we prove the existence of reductions antk-sta
matching reductions as well as the nonexistence of statehing reductions. To prove
that there exists a reduction or state-matching reductmm f1 schemel to a schemes,
we constructively give a mapping and show that the mappitigfes the requirements.
To prove that there does not exist a state-matching redufthon a schemel to a scheme
B is more difficult, as we have to show that no mapping satisfiegeéquirements for a
state-matching reduction. Our strategy is to use proof lyradiction. We find in scheme
A a statey”, a state-transition rulg”, as well as a statg that is reachable. Suppose, for
the sake of contradiction, that a state-matching reduetiosts, then there exist state8
and~? such thaty? is equivalent toy4, 4 is equivalent toy;!, and~?¥ is reachable from
vE. We show that among the sequence of states leadingffoamd~?Z, there exists one

for which there is no matching state that is reachablé.in

5.3.1 Comparing the HRU scheme to a trust management scheme

The HRU scheme [2] is based on the access matrix model, anddmesally been
believed to have considerable expressive power, partlpusecit has been shown that
one can simulate a Turing Machine in the HRU scheme. In thiise we show that
there does not exist a state-matching reduction from awvelgtsimple trust management
schemeRT]] [5, 73], to the HRU scheme. Th&T[] cannot be encoded in the HRU
scheme is informally discussed and conjectured in [5, 73jn@Jthe theory presented in
Section 5.1, we are able to formally prove this. As safetyyansis efficiently decidable in
RT] ] but undecidable in the HRU scheme, there does not existexstatching reduction
from the HRU scheme to thRT[ | scheme either. This shows that the expressive powers
of the HRU scheme and &T]| | are incomparable. This Is the first formal evidence of the

limited expressive power of the HRU scheme.
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The fact that the HRU scheme can simulate a Turing Machineslitat it can com-
pute any computable function when used as a computationeléWhen used as an access
control scheme, the HRU scheme may nonetheless be limiegmessive power. For ex-
ample, it cannot encode an access control system where istateea subject has no right
over any object and in the next state the subject obtaintsrmer a potentially unbounded

number of objects.
The HRU Scheme

' We assume the existence of countably infinite sets of sufhjgcobjectsO and rights
R, with S C O. Each statey is characterized byS.,, O, R, M,[]) whereS, C Sis a
finite set of subjects that exist in the state)., C O is a finite set of objects that exist in
the statey, R, C R is a finite set of rights that exist in the stateand/, [ ] is the access
matrix, i.e.,M,[s, o] C R, gives the set of rights € S, has ovel € O, in the statey.
M, [s, 0] is defined only whers € S, ando € O,t. It may appear that we allo&, to

differ across states. The definition for state-change qiesludes this possibility.

U A state-change rule), in the HRU scheme is a command schema, i.e., a set of com-
mands. Each command takes a sequence of parameters, edublohvay be instantiated

by an object, Each command has also an optional conditioighail a conjunction of
clauses. Each clause checks whether a right is in a particeileof A/, [ |. Following the
(optional) conditions in a command is a sequence of primitigerations. The primitive
operations are one of the following: (1) create an objegtc(Bate a subject; (3) enter a
right into a cell of the access matrix; (4) remove a right frarcell of the access matrix;

(5) destroy a subject; (6) destroy an object. We refer théeetn [2] for more details on

the syntax of commands. A state-change is the successflitxe of a command.

@ We allow queries of the following two forms: (t)e M|s, o], and (2)r ¢ M|s, o]. In
the queriesy € R, s € S ando € O. These are the only kinds of queries that have been
considered in the context of the HRU scheme in the literaturgarticular, these are the

queries that are pertinent to the safety property [2].
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- Letgq be the query- € M[s, o]. Then, given a state, v - ¢ if and only if r € R,
s € S,, 0 e 0,andr € M,[s,o]. Otherwisey I/ ¢, or equivalentlyy - —¢. Letg be the
queryr ¢ M|[s,o]. Theny - gifandonly ifr € R,, s € S,, O € O, andr ¢ M,][s, o].
Otherwise;y t/ g, or equivalentlyy - —g.

Observe that one should view bathe M., [s, 0] andr ¢ M, [s, o] as atomic queries.
In particular—(r € M, [s, o]) is not equivalent to ¢ M. [s, o]. Itis possible thaty I/ r €
M, [s,o] andy t/ r & M, [s, o]; this happens when eitheror o does not exist in,. Even

though it is not possible thatt- ((r € M, [s,o]) A (r & M,[s,0])).
The RT[]| Scheme

' We assume the existence of countably infinite sets of prateife.g.,A, B, C') and

role names (e.gr, s, t,u). A role is formed by a principal and a role name, separated by
a dot (e.g. A.r, X.u). An RT[] state consists of statements which are assertions made by
principals about membership in their roles. Two types oéeagms are supported. These
are simple member (e.g4.r «—— B) and simple inclusion (e.gA.r «— B.r;). One
reads the— symbol as “includes”. The example for the first kind of stad@tasserts
that B is a member ofd’s r role. The example for the second kind of statement asserts
that every member oB.r, is a member ofd.r. The portion of a statement that appears
to the left of the—— symbol is called its head, and the portion that appears tagheis
called the body. We refer the reader to [69] for more detailshe syntax and semantics

of RT[ ] statements.

U A state-change rule in a system based orRfié] scheme consists of two sets,and

S. Both consist oRT] | roles. G is the set of growth-restricted roles, i.e. Afr € G,
then statements witil.r at the head cannot be added in future stat€ds the set of
shrink-restricted roles, i.e., #.r € S, then roles withA.r at the head cannot be removed
in future states. We refer the reader to [5, 73] for more tketan the two sets, and the

intuition behind them.

@ [5] define three kinds of queries RT[]|. (1) {B,...,B,} 3 A.r — this kind of
query asks whether the rolé.r is bounded by the set of pricipals3y, ..., B,}; (2)
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Ar 3 {By,...,B,} — this kind of query asks whether each princigal ..., B, is a
member ofA.r; (3) X.u J A.r — this kind of query asks whether the set of member of

A.risincluded in the set of members &fw.

F  Given a state, we check if a query is entailed by first evahggtine set of members
of eachRT][ ] role in the query. This is done using credential chain discpy70]. We

then compare the two sets and check if the set to the leftdeslthe set to the right. The
first two kinds of queries are called semi-static queriessad the sides in the query is a
set of users that is independent of the state, and needstherfevaluation. We refer the

reader to [70] for more details on query-entailmeniif| ].

Theorem 5.3.1 There exists no state-matching reduction from &l | scheme to the
HRU scheme.

Proof By contradiction. Assume that there exists a state-magcheduction,s, from
the RT[] scheme to the HRU scheme. We denote componentRadf asystem with the
superscriptk and the HRU scheme with the superscipt We now consider a system
based on th&T[] scheme. Let” be the start-state in olRT|] system such that® has
no statements. The state-change rule inRUr] system isZ = S = (). We now consider
the start-state in the corresponding HRU system’®) = + and the state-change rule
o(ypf) = ¢H. Letk be the number of objects iff, i.e.,k = |O.x|. Let! be the maximum
number of primitive operations of the form “enter right” inyaof the commands i .
Let m be the maximum number of primitive operations of the fornmfoe right” in any
of the commands /"

Choose some > (k? + [ + m) + 1. Our choice of: is such that for any/ such that
v — ~H fewer tham — 1 queries that are true in” (i.e., are entailed by*) are false
in v (i.e., are not entailed by!”). The reason is that: (1) ag’ has at most: objects
(some or all of which may be subjects), a command may contatereents to destroy
all these objects. Consequently, these statements caa opusk? queries of the form
r ¢ M|s, o] to be false imy” when they are true in’; (2) as a command ig” has at

most/ statements to enter rights in to cells, these statementsawgse up té@ queries of
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the formr ¢ M[s, o] to be false imyf when they are true in’; (3) as a command i
has at mostn statements to remove rights from cells, these statementsatsse up ton
queries of the formr € M{[s, o] to be false iny! when they are true in’. We emphasize
that these are the only possibilities for queries to becaisefin a state-change fron¥;
the number of queries that are entailechdy; but not+” is fewer tham — 1.

Consider querieg? for each integef such thatl < i < n in theRT[] system where
qlt is of the form{B;} 3 A.r for some principalsi, By, . .., B, and some rolel.r. We
make two observations about these queries. The first isythat ¢i* A ... A ¢%. The
reason is thatl.r is empty iny* and therefore is a subset of every set of the fdin} .
The second observation is that in all states reachable frféneither all queries of the
form ¢/ such thatl < i < n are entailed, or at most one of those queries is entailed. The
reason is that for the set of users in the rdle to be a subset ¢fB;} for a particular, it
must be either empty, or contain exactly one elemBntNow consider the statg’ such
thaty® ., 7 andyF ¢ A =g A ... A —gl. Thatis,qf is true inyf, but none of
the other queries of the forgf® is true. We use the subscriponly to demarcate the state
and not as a count of the number of state-changes needecttoitedn fact,~” can be
reached fromy? with a single state-change: we simply add the stateent— B, to
ourRT] ] system.

Now consider the corresponding states and queries in the $iRtm produced as
output byo. Lety? = o(v%), 41 = o(vF), andg? = o(vF) for 1 < i < n. Aswe
assume that is a state-matching reductiop’ - ¢ A ... A ¢, and there exists/” such
thaty 5, A7 andy/’ - g A—=gd A... A=gH. Consider any sequence of state-changes
from v to v/. Pick the first state in the sequeng® in which at least one of the queries
q!! is false. Consider the staté’ | immediately preceding it. Then” , - ¢ A ... A g
Because one step of change cannot maké queries to go from true to false, if’, some
queriesgy, g2, g3, - - - , q,, are false but at leagtqueries in them are true. As we argued in
the previous paragraph, there cannot exist a matchingistatéor v“. We now have the
desired contradiction to the existence of a state-matateidgction from thekT| | scheme

to the HRU scheme. [ ]
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5.3.2 Examining comparisons of RBAC and DAC

Munawer and Sandhu [58] presents a simulation of ATAM in RB&@ conclude that
RBAC is at least as expressive as ATAM. [11, 55, 75] give satiahs of various MAC
and DAC schemes in RBAC. The main conclusion of [11,55, 78}as as MAC and DAC
can be simulated in RBAC, a Trusted Computing Based (TCB}si¢@ include an im-
plementation of RBAC only, and DAC and MAC policies can becassfully represented
and enforced by the TCB.

In the simulations used in [11,55, 58, 75], the preservatfsafety (or other security)
properties is not identified as an objective. From the abarelasion in [11, 55, 75],
it seems that they follow the implementation paradigm. Asdssed in Section 5.2, this
paradigm leads to a weak notion of simulations, as exemglifjethe simulation of RBAC
in strict DAC in Section 5.4.

We observe also that the problem of comparing RBAC with DAGtated by [11, 55]
is ill-defined (or at least not clearly defined). RBAC by itsmily specifies the structures
to store access control information, but not how to manigulaese structures, which are
specified by administrative models. In other words, onlysbt" of states is precisely
defined, the se¥ of state-transition rules is not. The counterpart of RBAGhis access
matrix model, instead of DAC (or MAC). In DAC, we specify thatcess control informa-
tion is stored in a matrix, and we also specify rules on howhange the access matrix.
The statement that RBAC is at least as expressive as DAC (aCM#similar to say-
ing that the access matrix model is at least as expressivéd@sdb MAC. Comparing
the RBAC model with the access matrix model is not fruitfuher, as both models can

include arbitrary state-transition rules.

5.3.3 Comparing ARBAC97 with a form of DAC

To compare any RBAC-based model with DAC, one needs to spdudf adminis-
trative model (state-transition rules) for RBAC. In exigticomparisons of RBAC and

DAC [11, 55, 58], new and rather complicated administrativedels are introduced “on
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the fly” to simulate the effects in DAC. In this section, we quare the expressive power
of RBAC with ARBAC97 [37] as the administrative model to tlwtSDCO, a rather sim-
ple form of DAC. We first present precise characterizatidnS@CO and the ARBAC97
scheme. We then assert that while there does exist a reduttiere does not exist a state-
matching reduction from SDCO to the ARBAC97 scheme, givematanal query set for
each scheme.

This resultis significant as it shows that we cannot assatRBAC is more expressive
than DAC without qualifying the assertion; a strongly ségdpreserving mapping does
not exist from SDCO to ARBAC97. Our conclusion provides thstfevidence that the

expressive power of RBAC (or at least some reasonable iattamof it) is limited.
The SDCO Scheme

' SDCO is a scheme based on the access matrix model and is al gjas@ of the HRU
scheme. Each state e I'is (S,,0,, M, ][], R,) wheresS,, O, and R, are finite, strict
subsets of the countably infinite s&tgsubjects) (objects) andr (rights) respectively.
The set of rights for the schemeRs = {own, ry, ..., r,}, whereown is the distinguished

right indicating ownership of the object/, | ] is the access matrix.

U The state-transition rules are the commandste Object, destroyObject andgrantOwn,

and for eachr; € R, — {own}, a commandyrant_r;.

command createObject(s, o) command destroyObject(s, o)
create object o if own € [s, 0]
enter own into [s, o] destroy o
command grantOwn(s, s’ o) command grant_r;(s,s’,0)
if own € [s, o] if own € [s, 0]
enter own into [s', o enter r; into [s', o

remove own from [s, o]
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@ Each guery is of one the following forms: (1) 4se S?; (2) Iso € O?; and (3) Is
r € Mls,o]?

F The entailmentrelation is defined as follows for each typgueiry from above. In each
of the following,y € I'isa state. (1) - s € Sifandonlyifs € S,; (2)v F o € O ifand
onlyifoe O,;(3)yFr € M[s,o]ifand onlyifr € R,As € S,No € O,Ar € M,][s,0].

The ARBAC97 Scheme

' We assume the existence of the countably infinitelgdtssers) P (permissions) an®
(roles). An ARBACY7 state isUA, PA, RH, AR) where UA is the user-role assignment
relation that contains a pau, ) for every usew: € U that is assigned to a rolec R. PA

is the permissions-role assignment relation that contajper (p, r) for every permission
p € P that is assigned to the rolee R. RH is the role-hierarchy, and for,r, € R,

ry = ro € RH means that all users that are members,odire also members of,, and
all permissions that are assignedrtpare authorized to users that are members;of
AR C R is a set of administrative roles. In ARBAC97 [37], changesl #® may be made
only by a central System Security Officer (SSO) who is trusietto leave the system in
an undesirable state; if the SSO effects a state-transttien she does security analysis
to ensure that the resulting state is acceptable. Therafooair analysis, we assume that
AR does not change.

¥ State-transitions in the ARBAC97 scheme are predicatecherrdlations that are
part of the URA97 (user-roles assignmentfRA97 (permission-role assignment) and
RRA97 (role-role assignment) components. We introduce the naif@ role range that
is used in the definition of the state-transitions. A roley@y is written ag(ry, r2), where

r1 andry are roles, and every rolethat satisfies; > r Ar = ro Ar £ 1 Ar #ryisin
the role rangé. We writer € £ whenr is in the role rang€. We represent &s the set of
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all role ranges. Role ranges in ARBAC97 satisfy some othepgnties, and we refer the
reader to [37] for those. Those properties are not relewantit discussion here.

can_assign C AR x CR x =2

URA97
can_revoke C AR x =

RRA97 { can_modify € AR x =

can_assignp C AR x CR x 2

PRA97

can_revokep C AR X 2

CR is a set of pre-requisite conditions. A pre-requisite ctodiis a propositional logic

formula over regular roles. For instanee= r; A 75 iS a pre-requisite condition that

indicates: “roler; and not roler,,” wherer;, ry € R.
We postulate that a state-transition is the successfulugecone of the following

operations.

assignUser(a,u,r)

if 3 {ar,c, &) € can_assign such that

a is a member of ar A u satisfies ¢ A

r € € then
add (u,r) to UA

assignPermission(a, p, r)

if A{ar,c, &) € can_assignp such that

a is a member of ar A p satisfies ¢ N

r € & then
add (p,r) to PA

addToRange(a,&,r)
if Iar, &) € can_modify such that
a is a member of ar then
add ry = rto RH
add r = ro to RH

where & = (r1,ra) Ar# 11 A1 £ 19

revokeUser(a,u, )
if 3 (ar,&) € can_revoke such
that a is a member of ar A
r € & then

remove (u,r) from UA

revokePermission(a,p,r)
if 3 {ar,&) € can_revokep such
that a is a member of ar A
r € & then

remove (p,r) from PA

removeFromRange(a, &, 1)
if Iar, &) € can_modify such that
a is a member of ar then
remove r1 = 1 from RH
remove r = ro from RH

where § = (r1,m2) AT £ 11 AT # 19
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addAsSenior(a,r,s) removeAsSenior(a,r, s)
if Aar,&) € can_modify such that if Aar,&) € can_modify such that
a is a member of ar Ar,s € £ then a is a member of ar Ar,s € £ then
addr > sto RH remove r = § from RH

Q,F We allow queries of the following forms that are all naturat the ARBAC97
scheme: (1) given a role, does there exist a usersuch that{u,r) € UA?, (2) given
useru, does there exist a rotesuch that(u,r) € UA?, (3) given user and roler, is
(u,r) € UA?, (4) given a permission does there exist a rotesuch thatp, r) € PA? (5)
given permissiom, does there exist a rolesuch that'p, r) € PA?, (6) given permission
p and roler, is (p,r) € PA?, (7) given roles, o, isr; = ro € RH?, and (8) give user
u and permissiom, is v authorized to have the permissiph That is, do there exist roles
r1, o Such that(u, r) € UA A (p,r9) € PA N1y = ro € RH? The entailment relation,

I is based simply on whether the conditions checked in a quadyih the given state.
Theorem 5.3.2 There exists a reduction from SDCO to ARBAC97.

Proof By construction. We present the mappirgsduce and ReduceQuery and
show that they satisfy the properties for a reduction fronC8Cto ARBAC97.Reduce
takes as input the start-state and state-transition rfies 8DCO system and produces as
output the start-state and state-transition rules of an AB® system.ReduceQuery
takes as input a query in the SDCO system and produces ast autpuery in the AR-
BAC97 system. We assume, without loss of generality, thattetlis a one-to-one corre-
spondence between the set of udér;m ARBAC97 and the set of subjectsin SDCO,
and between the set of rol&in ARBAC97 and the setO x R,) U {subjectEzists, A,

top, bottom }, whereQ is the set of objects, anfl, is the set of rights in the SDCO sys-

tem, andsubjectEzists, A, top andbottom are specific roles that are used in the mapping.
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Subr outi ne Reduce(~, ¥)
[+ inputs: ~ - an SDCO state, ¢ - SDCO state-transition rules x/
/= outputs: 44 - an ARBAC97 state,
Y4 - ARBAC97 state-transition rules */

1

2

3

4

5 initialize ~4, ¢* as foll ows:
6 UA= PA=RH = AR = can_assign = can_revoke = can_assignp = can_revokep = can_modify = )
7 add top = bottom to RH; let & be the role range (top,bottom)

8 let the set of administrative roles AR = A; add (a, A) to UA
9 can_assign = {(A, true, £)}, can-revoke = can-modify = {(A, &)}

10 execute addToRange (a, &, subjectErxists) where subjectExists is a role
11 foreach s € S, execute assignUser (a, s, subjectExists)

12 execute removeFromRange (a, &, subjectExists)

13 foreach (o,7) € O, x R, execute addToRange (a, &, o)

14 foreach re M,[s,0] execute assignUser (a, s, o)

15 return ~4, 4

16

17 Subroutine ReduceQuery(q)

18 /* input: ¢g - an SDCO query =/

19 /* output: ¢% - an ARBAC97 query =/

20 if ¢ == s€S then ¢* = (s, subjectErists) € UA

21 if ¢ ==0€0 then ¢* = 3 u such that (u,0pu) € UA

22 if g == reMi[s,o then ¢* = (s,0,) € UA

23 return ¢4

We now show that property (1) for a reduction is satisfied leyahove mapping. Let
7o be a start-state in SDCO. We produce the correspondingsstdety;' in ARBAC97
using theReduce subroutine above. Given a stateand query; such thaty, +, ., we
show that there existg! and query;” such thatyy' -, v/ wherey;! k- ¢ if and only
if v F q. If 7 = 0, thenyd = vt If gis s € S, theng? is (s, subjectErists) € UA. By
line 11 inReduce ¢ is true if and only ifg is true. Ifgiso € O, theng” is 3 u such that
(u,00,un) € UA. By line 14 inReduce, and the property that every object that exists in

SDCO has an owner associated with it (thabisp € M (s, o] for some subject), ¢* is
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true if and only ifq is true. And ifgisr € M[s, o], ¢! is (s,0,) € UA, and by line 14 of
Reduce, ¢ is true if and only ifg? is true.

Consider somey, reachable fromy, and a query;. We show the existence of!
that is reachable from;' and that answerg” the same way by construction. ¢fis of
types € S, we letyi! = 3. if ¢ is of typeo € O orr € M(s, o], we do the follow-
ing. We consider each state-transition in SD§O—,, 71 — ... — 7. [f the state-
transition is the execution afreate Object(s, o), we executerdd ToRange (a, £, 04un) @and
assignUser (a, s, 0,,,). If the state-transition in SDCO is the executiondeftroyObject
(s,0), we executeevokeUser (a,u, o,) for every(u, o) € UA for everyr, and
removeFromRange (a, &, 0o, ). If the state-transition in SDCO is the execution of
grantOwn (s, s', 0), we executeevokeUser (a, s, 0pun) @and
assignUser (a, ', 0,4, ). If the state-transition in SDCO is the execution @fint_r;
(s,5',0), we executeussignUser (a, s', 0,,). Now, consider each possible query If ¢
iss € 9, theny{! = ~¢'. In our SDCO scheme, the subjects are fixed at the start areat nev
change. So! - ¢ ifand only if o I ¢. If giso € O, theny, I ¢ if and only if o exists
in the statey,. This is the case if and only if some subjedtas theown right overo. This
is the case if and only if we have the ralg,, in the rang€& and the user corresponding
to s is a member of that role. Thereforg, - ¢ if and only if ! - ¢. And finally, if ¢ is
r € M|s,o|, theny; F ¢ if and only if » has been granted toby the owner ob. This is
true if and only if we have assigned the user correspondirdddhe roleo,. Thus, again,
v F q if and only if v - ¢4

We prove that property (2) for a reduction is satisfied by oapping also by con-
struction. Lety{' be the start-state in ARBAC97 correspondingyto the start-state in
SDCO. Then, ify{! is a state reachable frong' andq¢” is a query in ARBAC97 whose
corresponding query in SDCO 4swe constructy,, a state in SDCO reachable fromas
follows. If gis s € S, we lety, = ~,. Otherwise, for each role,,,, that has a membes,
we executereate Object (s, 0). For each role, that has a membet, if the roleo,,,, has a
members, we executgrant_r (s, s',0). If giss € S, theng” is (s, subjectEzists) € UA,

and clearlyy;! - ¢ if and only if v, - ¢, as the subjects that exist do not change from the
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start-state in SDCO, and the members@fject Exists do not change from the start-state
in ARBAC97. If giso € O, vt I ¢ if and only if 3 s such that(s, 0,,,) € UA. And
if ¢ is true, we would have added then right to M., [s, o], which means that;, I~ ¢ if
and only ify - ¢#. And finally, if gisr € M|s, 0], v{! - ¢* if and only if (s, 0,) € UA.
The condition that” is true is the only one in which we would have added the rigiat

M, [s, 0], and thereforey, + ¢ if and only if v  ¢*. |

Before we introduce Theorem 5.3.4, we introduce the follgMemma as an inter-
mediate result on the state-change rules in ARBAC97. Tegrimediate result aids in the

proof of the theorem.

Lemma 5.3.3 Let ¢) be a state-transition rule, angl and~’ be states in thel RBAC97
scheme. Then, for any two querigsand ¢,, there exists ng’ such thaty’ - (=¢; A o)

wheny F (g1 A —g2) and~y — /.

Proof We observe that the operationssign User, assignPermission, addToRange and
addAsSenior can cause queries to become only true, and not false. Synillae oper-
ationsrevokeUser, revokePermission, removeFromRange andremoveAsSenior cannot
cause a query to become true. Therefore, given a statattoars the ARBAC97 scheme,
it cannot cause a query that is true to become false and aropikey that is false to be-

come true in the new state. [ |
Theorem 5.3.4 There exists no state-matching reduction from SDCO to ARBAC

Proof By contradiction. Assume that there exists a state-magat@duction from SDCO
to ARBAC97. LetS = {s1, s9,53,...}. In SDCO, adopt as a state with the following
properties. Let; € S,, 0 € O, andown € M|sy, 0]. Letg; be the query dwn € [s;, 0]”
foreachi = 1,2, ..., andg, be the query$ € O,”. These queries are mappedjtbandg?
respectively in the ARBAC97 scheme. We observe that (¢ A =ga A =gz A ... A qo).
There exists a statg reachable fromy such thaty F (-¢; A ga A =g3 A ... Ag,). And,
there exists no reachable statesuch thaty F (g1 A—ga A ... Agi Ao Ag,) OFr Yy +
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(g1 A=g2 A ... A=gj A...Nq,) foranyj # 1. (if o € O,, then there must be ex-
actly one subject that owns). Consider the state”® in ARBAC97 that corresponds
to ~ (if there does not exist one, then we have the desired codti@r). We know
thatv* + (¢ A =5t A =gt Ao A g). There must also exist a reachable state
that corresponds t§ (if there does not exist one, then we have the desired caotrad
tion). By Lemma 5.3.3, we know that! is not reachable from is a single state-
transition. Therefore, there must exist some statehat is reachable from# such that
AR (A =G AN AN A NG or At E (sgt A gt AL A g AL A g for

at least ong # 1. As there exists no corresponding state in the SDCO scheate th
is reachable fromy, we have a contradiction to the assumption that there existate-
matching reduction from SDCO to ARBAC97. [ |

One may ask whether there are other schemes based on RBACich there is
indeed a state-matching reduction from SDCO. An approachbeao adopt a different
guery set for ARBAC97. We observe that for certain other gusets as well, the non-
existence of a state-matching reduction holds. As an ex@mspppose we map the query
for the presence of a right in SDCO to a query for the absenegpeirmission in RBAC.
In this case as well, there exists no state-matching reastuétom SDCO. Whether there
exists a meaningful set of state-transition rules (an adhtnative model) for RBAC for

which there is a state-matching reduction from SDCO is amqpeblem.

5.3.4 Comparing an RBAC scheme with a trust management éayggu

In this section, we compare a particular RBAC scheme to tist tnanagement scheme,
RT[N]. The RBAC scheme we consider is called Assignment And ReMITEAAR) [7].
In AAR, the state is an RBAC state, and state-transitionsrale those from the URA97
component of the ARBAC97 [37]; users may be assigned to arakegl from roles.

RT[N] is a trust management scheme in which a state is a set of ti@dessued by
the principals involved in the system. A credential denotesnbership in a principal’s

role. A credential is one of three types: (1) A principal isersed to be a member of
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another principal’s role, (2) All the principals that are migers of a principal’s role are
asserted to also be members of another principal’s role(3nalll the principals that are
members of two roles (the intersection of the members ofdlesy are also members of
another principal’s role.

We first present precise characterizations of the AAR schemadd®T[N]. [7] present
a form-2 weak reduction (see Definition 5.1.9) from AARR®|[N]. We assert with the

following theorem that the result can be made stronger.
The AAR Scheme

[' In AAR, a state is the RBAC statd/A, PA, RH), as discussed in the previous section
for ARBAC97.

U The state-transitions allowed are the operati@nsgn User andrevoke User from the
previous section, with the exception that negation is nlotad in pre-requisite condi-
tions. In addition, in AAR, we require that for every role fwhich there is acan_assign
entry, there is also aan_revoke entry. That is, if3 (ar, ¢, £) € can_assign such thatar
has at least one member aniahay evaluate torue, thenvVr € £, 3 (ar’, ') € can_revoke

such that € ¢’ andar’ has at least one member.

Q.- Queries are of the form; O s,, wheres; ands, areuser-sets A user-set is an
expression that evaluates to a set of users. A set of rolest, & permissions and a set
of users are user-sets, as are unions and intersectionemw$ets. We refer the reader
to [7] for more details on user-sets. Entailment involvealeating the user-sets and

s, to the sets of userS; and.S, respectively, and determining wheth&r O S;. Several
interesting queries related to safety, availability, iges and mutual-exclusion can be

posed as comparisons of user-sets.
The RT[N] Scheme

' An RT[N] state is a set of credentials, each of which is one of theidtlg types:
Q) Ar—U, (2) Ar«—— B.r;,and (3)A.r — B.ry N C.ry. Each ofA,B,C,U is a

principal,r, 1, r5 is a role name, and.r, B.r, C.ro is a role. The symbol— is read as
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“‘includes”. Statement (1) asserts tliais a member ofd’s r role. Statement (2) asserts
that all members of the rolB8.r, are members of the rolé.r. Statement (3) asserts that

anyone that is a member of bathr; andC'.r, is a member ofd.r.

U A state-transition irRT|N] is either the removal of a credential, or the addition of one.
State-transitions are controlled gyowth andshrink-restricted sets of roles -& and S
respectively. A role that is in the growth-restricted seymat have any assertions added
with that role at the head of the assertion, and a role thattisd shrink-restricted may not

have any assertions removed. Thus, the state-transities ave represented &5, S).

@, We allow queries of the formy, 2 ¢, where eacly; andc; is either arRT[N] role,

a credential, or credentials joined by unianpr intersection(). We observe that this is
slightly different from the definition for queries in [7]. €hreason is that in that work,
only a form-2 weak reduction (see Definition 5.1.9) is présénand therefore queries are
processed in conjunction with each state and state-tramsitle in the mapping. We seek
to map queries independently of states and state-tramsities. Entailment iiRT[N] is
done using credential chain discovery [70]: we find a chaigretlentials that proves a

(portion of a) query, if one exists.
Theorem 5.3.5 There exists a state-matching reduction from the AAR scheRig[N].

Proof By construction. We show that the mapping from [7] from AARRG[N] is

a state-matching reduction. We consider each assertion Befinition 5.1.5 in turn.
Each roler in AAR is associated with the rol8ys.r in RT[N]. We show that after a
series of state-transitions, the role-memberships in AA&Rcithe role-memberships in
the corresponding state BiT[N].

Assertion 1:Lety be the given AAR state, andi=,, 7. Then,y = 4oy 71 - . .
vm = 7. Each state-transition is either the assignment of a userdte usingussign User
or revocation of a user’s membership in a role usiagke User. Let the corresponding
states irRT[N] bey” = 47 47, ...4T = 4. The users that are members of any role
in v are the same as the users that are members of the correspooigifys.r in 7. If

the state-transition from; to v, is the result of the assignment of the usdp the role
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r, then we effect the following changes to transition fromstatey, to~7, ,: we add the
two statement#Sys.r «—— u andBSys.r < w. If the state-transition is the result of the
revocation of the user from the roler, then we remove all statements that exist of the
following two forms: ASys.r «— u andRSys.r «— u. We observe that in”’, anyHSys.r
has as members all users that were ever members of the 1@Ensequently, in”’, each
Sys.r has as members those users that are member&of’. Therefore, we can assert
thaty' b ¢ iff 47" + ¢7.

Assertion 2:In RT[N], the only roles that can grow are tA8ys andBSys roles. The
only roles that can shrink are ti#Sys andRSys roles. Givem? = o(v) where~ is a
given AAR state and”" is the correspondinB T[] state, lety” +, ~T'. We construct
the AAR statey’ that corresponds tg?” as follows. For each statement of the form
BSys.r «— u or of the formASys.r «—— u, we assign the user to the roler. Now, we
compare the user-role memberships of each user to ther@edSys.». There cannot
be any users iSys.r that are not in: the reason is that we have not revoked any user
membership i (starting from the user-role membership in the stgteThere may be
users inr that are not irbys.r. Given the requirement that every role for which there is
a can_assign, We also have aan_revoke, the only way for these extra users to berin
and notSys.r is that there exists an_assign that permits those users to be assigned to
r (starting at the state). We revoke such users’ membership fremsing the relevant
can_revoke entries. Now, the membershipssiirandSys.r are identical, and we can assert

that for all queriesy, v’ + o(q) iff 7/ F q. n

5.3.5 Comparing ATAM with TAM

TAM is a scheme based on the access matrix model and is stmitze HRU scheme [2].
Every object is typed, and the type cannot change once thextoly created. State-
transitions occur via the execution of commands that ardasito HRU commands. We
specify a type for every parameter to a command. ATAM is teesas TAM, except that

in a condition in an ATAM command, the absence of a right inlaafehe access matrix
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may be checked (and not just the presence of a right). Belevaresent characterizations
of the two schemes.

Sandhu and Ganta [18] presents a mapping from the ATAM to TBEked on the
mapping, one may conclude that TAM is at least as expressi#gdAM. As the converse
is trivially true (TAM is a special case of ATAM), one may cdade that ATAM and
TAM have the same expressive power; we gain nothing from lthléyato check for the
absence of rights in the condition of an ATAM command. Saraiid Ganta [18] makes
the observation that the simulation of a command in ATAM mequire the execution of
an unbounded number of commands in TAM, and concludes wétfollowing comment:
“...practically testing for the absence of rights appeaisa useful. It is an open question
whether this claim can be formalized...” In this section, f@emalize this claim by

asserting that there is no state-matching reduction frodMio TAM.
The TAM Scheme

I' TAMis similar to the HRU scheme. Each state I'is (S, O,, M, [], R,, T, typeOf)
whereS,, O,, R, andT, are finite, strict subsets of the countably infinite se{subjects),
O (objects),R (rights) and7 (types of objects and subjects) respectively. The function
typeOf: (S, U O,) — T, maps each subject and object to a type that cannot change onc
the subject or object is createdi, | ] is the access matrix.

¥ A state-transition rule is a set of commands. Each commasdahaoptional
list of conditions that are joined by conjunction. A commahdn consists of primitive
operations. Each parameter to the command is associated tyjpe. Each condition may
check only for the presence of a right in a cell.

@, We allow queries of the form “is € M|s, 0o]?” Entailmentis defined as follows.

Givenastate € I', v - r € M([s, o] ifand only ifs € S,Ao € O,Ar € R ,Ar € M,][s, 0.
The ATAM Scheme

IV, Q,F An ATAM state is the same as a TAM state. State-transitioasare the
same as for TAM, except that a condition in a command may chacthe absence of

a right (as opposed to only the presence of a right). In ATAM, allow () to contain
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queries of the following two forms: (1) Is € M][s,0]?, and (2) Is- ¢ M|s,0]? This is
consistent with the intent of [18] to determine whether thidity to check for the absence
of rights does indeed add more expressive powds defined the same as in TAM for a
guery of type (1). For a query of the type (2)is defined as follows. Given a stajec T',
vEr¢& M[s,o]ifandonlyifs € S, ANo€ O, Ar € R, Ar & M,]s, o].

Theorem 5.3.6 There exists no state-matching reduction from ATAM to TAM.

Proof By contradiction. Assume that there exists a state-magcheauctiono from
ATAM to TAM. Consider an ATAM scheme in whicl (the state-transition rule) consists

of the following commands.

command createSubject(X: t) command addRight(Y: t, Z: t)

create subject X of type t enter 1 into [Y, Z|

Adopt asy, (the start state) in ATAM a state with no subjects or objefsat is,S,, =
O,, = 0). The set of rightsR,, = {r}, and there is a single typefor all subjects
(no objects other than subjects exist or can be created iATAM system). We denote
components of the TAM system under the mappingith a superscripf’. For example,
a(0) =7 ando(y) = ¥7.

We assume that the countably infinite set of subjécts {si, s2,...}. In the ATAM
system, we wish to consider queries of the fogm = r € M]s;,s;] andq;, = r ¢
M |s;, s;] for somes;, s; € S. First, we make the observation that any two distinct qserie
p,q € {qijlsi,s; € S}U{q 15, s; € S} are mapped to distinct queries in TAM. That is,
p #q = p’ # ¢'. Otherwise, pick a paip, ¢ such thap # ¢ butp” = ¢*. For any two
such queriep andg, there exists a statgin ATAM such thaty, +>, v and~y - p A —q.
Clearly, a corresponding reachable state (that answeguikreesp andg the same way)
does not exist in TAM, which gives us the desired contradict\e observe also that by
the definition of a state-matching reduction, queries arpped independent of the start

state and the state-change rules.
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Considery?, the command schema in TAM. As a query in TAM is of the forne
M]s, o], we can determine an upper bound,for the number of queries a command in the
TAM system can change from false to true when executed. Tdresgueries of both types
qu and@\,jT. One way to determine a value foris to count the number of¢hter right”
primitive operations in each command and take the maximyen(though this maximum
may not be a tight upper boundy. is constant, and may be dependantjoand), but
not the set of queries. Choose some m.

Now, consider the state in ATAM, such thaty, |i>¢ Ye @andy, F —gri Agra A—qia A
Q2N ... N\ "Gun A G (We use the subscriptonly to distinguish the state, and not as a
count of the number of state-changes needed to reach it}.i§;ha does not entail any
of the queries of the typg ; and entails all queries of the tygg; for all integersi, j such
thatl < 4, j < n. The statey, corresponds t&., = {s1, ..., s,} with no rightr in any
of the cells. One way to reach this state frogis to execute the commangdeateSubject
n times with the parameter instantiatedstan thei** execution.

We assume that as, a state-matching reduction exists, there exists a carrebpg
rechable state! in TAM that answers the (mapped) queries the same way. Cemsid
any sequence; —,r i —yr ... —y4r . Pick the first statey! in the sequence that
satisfies the following conditiony! + quVcﬁij for all integers, j suchthatl <i,j <n.
Such a state exists; is such a state, and may be the only state in the sequencedhtt m
the condition. We observe also thgt does not satisfy the condition, thereby implying
that the sequence has at least one state-change.

Consider the statg’ , in the sequence just befof€. v | has the following property:
there exist integers, w with 1 < v,w < n, such thaty” | - — (qzw V @T) =k
ﬁqv,w/\ﬁq/@T. For every state in the ATAM system that entails the corredpay formula
of queries—q, ., N —¢,., the state also entails at least one of the following two fdea
of queries: (121 = =¢u1 A 7Gui1 A "Gu2 A " Gua A oo A" Qun A "Gpn A Q1o A Gy A

e AN Gny A\ TGna, OF, (2) Q2 = G 1 A “Guwa A Qw2 A "Gua A oo A Qo A Gun A

QA G Ao A TG AN TG
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The reason is that a state in ATAM that entailg, ., A —g.., iS one in which either
the subjects, or s,, or both do not existy( = w is allowed, and does not affect our
arguments). None of the queries of either typeor ¢; ; corresponding to a subject that
does not exist in a state is entailed by the state. Thereiiof®@AM, 17, - QT v QT
(whereQT andQ? are obtained fron); and@, respectively by adding the superscript
to each query in the formula).

Consider the state-change in TAM frop_, to~. It must change (at least)queries
that appear iQT or QI from false to true. This is not possible, as each state-@haag
change at most: < n queries from false to true. We have the desired contradi¢tiahe

existence of a state-matching reduction from the ATAM schéothe TAM scheme. B

Thus, the notion of state-matching reductions formalibesdifference in expressive
power between ATAM and TAM. One may ask whether there existsdaiction from
ATAM to TAM. One may also ask whether reductions or stateahiay reductions exist
from ATAM to TAM when we allow TAM to contain queries of the tggisr & M, [s, 0] ?”
as well (but a command only allows checking for the presefi@raght in a cell in the

condition). These are open questions.

5.4 A *“simulation” of RBAC in strict DAC

We now informally describe a simulation of RBAC in strict DAtBe simplest form of
DAC. The point of this simulation is to show that if precisgua@ements are not specified
on simulations, then anything is possible.

The state of a strict DAC model is represented by an accessxmahich has one
subject for each user and each role and one object for eanfigsson. There is also one
special subjectdmin, who is the creator and owner of every object in the systen. Al
subjects are also objects. We use three rightsy', ‘dc’, and ‘c’. We assume that the
implementation of the strict DAC model provides the follogifunctionality, it internally
sorts all the objects and can return the first object, givealgeacto, it return the object

next too. The commands implemented in the strict DAC are as follows:
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command create(s, 0)
create o;
enter own into (s,0);
end;
command del ete(s, 0)
if own € (s, 0)
destroy o;
end;
command grant-dc(sl, s2, o)
if own € (sl1,0)
enter dc into (s2,0);
enter cinto (s2,0);
end;
command grant-c(sl, s2, 0)
if own € (sl1,0)
enter cinto (s2,0);
end;
command revoke-dc(sl, s2, 0)
i f own € (s1,0)
remove ¢ from(s2,0);
end;
command revoke-c(sl, s2, o)
i f own € (s1,0)
renove c from(s2,0);

end;

The addition of new users, roles, and permissions are daot¢ by the simulator
in the straightforward way, i.e., hawimin executes a creation commaredimin then

becomes the owner of these objects. When a new user-rognassit,(u, r), is added,
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the following procedure is executed, observe that only orisspace is needed for the

simulation.

addUR(u, r) {

run command grant-dc(admin , u, r);

whil e (propagate());

}

propagate() {

repeat = fal se;

for every s,01,02 in the matrix {
if c ¢(s,02) & & c €(s,01) && c €(01,02) {
run command grant-c(admin , s, 02);
repeat = true;

1

return repeat;

}

The procedures for adding a role-permission assignmentaide-role inheritance
relationship is similar.
Whenever a user-role assignment is removed, the simulaemuées the following

procedure, which first clear all the propagated rights add tee propagation.

renoveUR(u, r) {

if (dc € (u,r)) {
run conmand revoke-dc(admin , u, r);
clear();

whi | e (propagate());

h

}

clear() {

for every s,oin the matrix {
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if c €(s,0) {

run conmand revoke-c(admin , s, 02);
1
}
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6 CONCLUSION

We have proved our thesis that there exists a theory basedduttions that preserve
results of security analysis for comparing access contadets. We have demonstrated
the effectiveness of the theory by applying it in severaksasNe have established new
results regarding safety analysis in DAC and security asigip RBAC that are related to
our thesis.

Our theory is a significant advancement in access contralti@ory is not only sound
in its own right, but applications of it have lead to resultattprovide considerable insight
into the power of access control schemes. One of the applnsasolves an open prob-
lem in access control. Another counters what appeared tefsigsive claims about the
expressive power of a particular access control model. @ ttonfirms a conjecture that
could not be proven without a sound theory like ours. And atfoapplication disasso-
ciates the undecidability of safety in an access contradisehfrom its expressive power;
the two are often coupled in existing literature. From a Oeyastandpoint, our theory and
its applications demonstrate that formal methods can eoatio play an important role in
computer security.

A question that arises is whether our theory can be applidataader contexts of
security than computer security. The answer is “yes”; wapait that provided a scheme
can be represented as a four-tuple of states, state-chalegequeries and entailment, our
theory can be applied.

There is considerable scope for future work on the issue pfessive power in the
context of access control. We propose to use our theory taommore models with
each other. For instance, we would like to compare variousimes of DAC and “layer”
these versions based on their relative expressive powso, Ahile our theory is based on
capturing the notion of policies that can be representedvantied in an access control

system, we do not believe that reductions and state-majcekniuctions capture all the
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types of policies we would want to consider. For instancesasonable question to ask
during a security audit may be: “Did Alice get her write acctsa sensitive file only after
her husband, Bob was given privileged access to the systé&m8’can be perceived as a
policy issue, and we may want to express this as some expnagsolving queries.
Neither reductions nor state-matching reductions capgucé query expressions. As
part of our future work, we propose to expand our theory téuithe such policies. A re-
lated question regards the limits to extending our theooptwsider more kinds of policies.

This remains an open question.
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