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ABSTRACT

Tripunitara, Mahesh V. Ph.D., Purdue University, December, 2005. A Theory Based on
Security Analysis for Comparing the Expressive Power of Access Control Models. Major
Professor: Ninghui Li.

We present a theory for comparing the expressive power of access control models.

Our theory is based on reductions that preserve the results of security analysis. Security

analysis is an approach to the verification of security policies in access control systems.

We demonstrate the effectiveness of the theory by applying it in several cases. Also,

we present related results on safety analysis in Discretionary Access Control (DAC) and

security analysis in Role-Based Access Control (RBAC).
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1 INTRODUCTION

In this dissertation, we show the existence of a theory basedon security analysis for com-

paring access control models. We justify the design of the theory and demonstrate its

effectiveness.

Access control enables the controlled sharing of resourcesamong principals. It is “the

traditional center of gravity” of computer security [1] andis recognized as an important

area of research in computer security. Anaccess control systemdecides whether an entity

may access another entity. The entity that initiates accessis called a principal, subject or

user. The entity to which access is initiated is called a resource or object. When a subject

requests access to an object, it specifies also the manner in which it desires such access; for

example, read, write or execute. A manner of access is calledanaccess right. An access

right and an object are sometimes together referred to as a permission. An access control

system makes its decision based on aprotection state; at any given time, the protection

state includes all information needed by the access controlsystem to make its decision

should a subject request access.

The protection state of an access control system can sometimes be changed by sub-

jects in the system. In such a case, the rule by which the protection state can be changed

is specified along with the protection state. Such a rule is called astate changeor anad-

ministrativerule. Thus, an access control system is a state-change system and is specified

by a double〈γ, ψ〉, whereγ is the start or current state andψ is the state-change rule.

An example of an access control system is shown in Figure 1.1.The access matrix

M represents the stateγ. The commands comprise the state-change ruleψ. In γ, two

subjects exist, Alice and Bob. The rows ofM are indexed by subjects and columns by

objects. Every subject is also an object. Each cell ofM contains the set of rights a subject

possesses to an object. For example, Alice has theown right to Bob, and Bob has theread

right to File1. Each command inψ takes parameters that are instantiated by subjects or
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Alice Bob File1

Alice control own own ,
write

Bob own read

command grantWrite(s1, o, s2)
if own ∈M [s1, o] then

M [s2, o]←M [s2, o] ∪ {write}

command transferOwn(s1, o, s2)
if own ∈M [s1, o] then

M [s2, o]←M [s2, o] ∪ {own}
M [s1, o]←M [s1, o]− {own}

Figure 1.1. An access control system with the state represented as an access
matrix,M , and state-change rule represented as a set of commands.M has two
subjects, Alice and Bob, and an objectFile1 besides the two subjects. There are
two command associated with this system,grantWrite andtransferOwn. Each
command in the state-change rule takes parameters, each of which is instantiated
by a subject or an object.

objects. For example, thetransferOwn command is used by the subjects1 to transfer the

own right over the objecto to the subjects2.

An access control system is in anaccess control scheme; a scheme is specified by a

double〈Γ,Ψ〉, whereΓ is a (possibly infinite) set of states, andΨ is a (possibly infinite)

set of state-change rules. A system〈γ, ψ〉 is said to be in a scheme〈Γ,Ψ〉whenγ ∈ Γ and

ψ ∈ Ψ. The access control system in Figure 1.1 is in the scheme proposed by Harrison et

al. [2] that we call the HRU scheme. A scheme is in anaccess control model. An access

control model is generally associated with the representation of the state for schemes in

the model. An example of an access control model is the accessmatrix model [2–4], in

which a state is represented by a matrix in which each cell, indexed by a〈subject , object〉

pair, contains a set of rights. A scheme in the access matrix model has as its set of states

Γ all possible instances of access matrices.

1.1 The need for safety and security analysis

Given an access control system in a scheme, a natural question that arises is the “state

reachability” question; that is, whether the system can reach a particular state based on its

start stateγ and state-change ruleψ. For example, in the system in Figure 1.1, we may ask
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whether the system can reach a state in which the subject Bob has thewrite right toFile1.

The question of whether a subject can acquire a right over an object is called thesafety

question, and the corresponding analysis in the context of systems in a scheme is called

safety analysis [2]. More generally, the question of whether an access control system in a

scheme can reach a state in which aqueryis true is calledsecurity analysis[5–7]. A query

specifies some property of the state.

The need for safety and security analysis is articulated by Jones [8]: “Security poli-

cies are generally formulated as predicates relating the subjects and passive objects of a

protection state. In contrast, most [access control systems] are phrased in a procedural,

not a predicate, form. Though procedural definitions make individual system state transi-

tions easy to understand and to implement, they combine to form a system that exhibits

complex behavior. It is difficult to intuit and to express thebehavior of a procedurally de-

fined system. . . . the predicate defines a security policy. Thus, we bridge the gap between

mechanism and policy.”

A query in security analysis is a predicate; examples of queries in the context of an ac-

cess matrix system are: “does Alice have access to an object,o?”, “does Bob not have the

‘own’ right over o?” and “does some subject have some right over some object?” Safety

and security analysis are forms of policy verification; theydetermine whether policies,

stated as queries, hold in some reachable state, or in all reachable states.

The assertion in Jones [8] on the difficulty of intuiting the behavior of an access control

system is substantiated by the work of Harrison et al. [2], inwhich it is demonstrated that

the safety question of whether some subject can gain a particular right to some object is

undecidable for systems in what appears to be a relatively simple and natural access matrix

scheme, the HRU scheme.

1.2 On comparing access control models and schemes

There are three compelling motivations for comparing access control models and schemes

with one another.
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The first is simply that there exists more than one model, and therefore it is natural to

ask how two models compare with one another. For example, in introducing the Schematic

Protection Model (SPM) [9], Sandhu [10] considers itsexpressive power. Expressive

power in this context is informally characterized as the range of policies a model can ex-

press. Sandhu [10] specifically compares SPM to the HRU scheme [2]. Similarly, Osborn

et al. [11] compares the Role-Based Access Control (RBAC) model [12, 13] to Manda-

tory [14, 15] and Discretionary Access Control [3, 4, 16] (MAC and DAC, respectively)

models.

The motivation discussed above applies especially when twomodels are claimed to be

“policy neutral”; that is, when it is claimed that a wide variety of security policies can be

expressed by the two models. An example is the comparison of RBAC with the access

matrix model.

The second motivation is to understand whether a particularfeature adds expressive

power to a scheme. For example, Ammann et al. [17] addresses the question of whether

the Extended Schematic Protection Model (ESPM) is more expressive than SPM. ESPM is

exactly like SPM except for one feature: the ability to specify two “parents” in the creation

of a new object (SPM allows for the specification of only one parent). Similarly, Sandhu

and Ganta [18] addresses a similar question in the context ofthe Augmented Typed Access

Matrix (ATAM) scheme in comparison to the Typed Access Matrix (TAM) scheme. The

only difference between ATAM and TAM is that ATAM allows us tocheck for the absence

of rights in a cell of the access matrix, while TAM does not.

The third motivation for comparing access control models and schemes is the need

to infer results regarding safety and security analysis in ascheme, given that results are

known in another scheme. For example, given that safety is undecidable in the HRU

scheme [2], a mapping that preserves the results of safety analysis to another scheme

would indicate that safety is undecidable in the latter scheme as well. We use this ap-

proach in Chapter 4 to infer complexity results for a varietyof queries in two RBAC

schemes, based on known results for corresponding analysisproblems in a trust manage-

ment scheme.
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We argue that for a scheme to be at least as expressive as another, it must express all

policies that the latter can. Our notion of a policy is articulated in Section 1.1; it is those

predicates that are considered to be meaningful for systemsin the scheme. Consequently,

we say that an access control schemeB is at least as expressive as a schemeA if there ex-

ists a mapping of systems fromA toB that preserves the results of security analysis inA.

When we say preserves the results of security analysis, we mean that if security analysis

returns “true” for a query in the system inA, then it must return “true” for the correspond-

ing query in the system inB and vice versa. To compare models, we compare the schemes

in the models. This characterizes our notion of expressive power in the context of access

control schemes and models.

What we seek is a kind ofreduction. Our notion of a reduction is similar to that used,

for example, in structural complexity theory [19, 20]. In our case, however, a reduction

is a mapping that preserves results of security analysis. Itis not necessarily efficient; we

seek only that the mapping is computable.

1.3 Thesis statement

Our thesis is that there exists a theory based on reductions that preserve the results of

security analysis for comparing the expressive power of access control models. Our ap-

proach to proving the thesis is by construction; we present two such reductions in Chap-

ter 5. We demonstrate the effectiveness of the reductions byapplying them in several cases

to compare access control schemes.

1.4 Organization

The remainder of this dissertation is organized as follows.In Chapter 2, we discuss

related work on access control models and schemes, safety and security analysis, and

comparing access control models and schemes. In Chapter 3 wepresent a new result on

safety analysis in DAC and critique a mapping from one DAC scheme to another that

has been presented in the literature. This chapter serves asmotivation for our theory. In
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Chapter 4 we present new results on security analysis in RBAC. In this chapter, we use

a weaker version of a reduction from our theory. In Chapter 5 we introduce our theory,

justify its design and present applications. We conclude with Chapter 6.
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2 RELATED WORK

In this chapter, we survey work related to our thesis. In Section 2.1, we discuss access

control models schemes that have been proposed in the literature. In Section 2.2, we dis-

cuss work on safety and security analysis. In Section 2.3, wediscuss work on comparing

access control models and schemes.

2.1 Access control models and schemes

The first formal access control model to have been proposed inthe literature is by

Lampson [3]. It introduces the access matrix model, and discusses how the protection

state may be changed by subjects in the system. Graham and Denning [4] has built upon

Lampson [3] and provides a comprehensive description of a DAC scheme. In a DAC

scheme, subjects grant rights to objects they own at their discretion. Graham and Den-

ning [4] discusses two distinguished rights,own andcontrol , that empower subjects to

make changes to the protection state at their discretion. The characterization of DAC

that we use in Chapter 3 is from [16], an earlier version of which appears as a research

paper [21]. Griffiths and Wade [22] introduces a DAC scheme for relational database sys-

tems. Solworth and Sloan [23] introduces a DAC scheme based on labels and relabelling

rules and argues that it captures all known DAC schemes. We discuss the scheme and the

claim in detail in Chapter 3.

Harrison et al. [2] presents a different access matrix scheme from that proposed by

Graham and Denning [4]. In the HRU scheme [2], there are no distinguished rights, and a

state-change rule consists of an arbitrary set of commands each of a particular form.

Subsequently, several access control schemes have been proposed. Jones et al. [24,25]

introduces the take-grant scheme. Sandhu introduces SPM [9]. Ammann and Sandhu [26]

introduces ESPM, which extends SPM with multi-parent creation. Sandhu [27] intro-
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duces TAM, which extends the HRU scheme [2] by requiring thatsubjects and objects be

strongly typed. Soshi et al. [28,29] introduces the dynamictyped access matrix model, in

which the types of subject and objects may change.

Ferraiolo et al. [30, 31] introduces RBAC. Sandhu et al. [13]discusses the RBAC96

family of models, which provides a more precise characterization of the RBAC protection

state. RBAC is described in detail also by Ferraiolo et al. [12]. Koch et al. [32, 33]

presents a graph-based formalism for RBAC, and Nyanchama and Osborn [34] presents

the role graph model, both of which use graphs to represent the RBAC protection state.

Sandhu et al. [35–37] introduces the ARBAC97 administrative scheme for RBAC. AR-

BAC97 [37] is the first and most comprehensive administrative scheme to have been pro-

posed for RBAC, and we discuss its safety properties in detail in Chapter 4. Subsequently,

administrative schemes for RBAC have been proposed by Crampton and Loizou [38–40],

and by Koch et al. [32, 33, 41] in the context of a graph-based formalism for RBAC, and

Wang and Osborn [42] for the role graph framework.

There has been work also on MAC schemes [14, 15, 43, 44]. In MACsystems, rights

cannot be granted to subjects at the discretion of other subjects. MAC schemes can cer-

tainly be compared to DAC and RBAC schemes. We argue however that this is not as

interesting, as MAC schemes are designed to enforce a specific policy, for example, mul-

tilevel security [45].

2.2 Safety and security analysis

Safety is a fundamental property that was first proposed in the context of access control

by Harrison et al. [2]. That work demonstrates that safety isundecidable in general for

the HRU scheme [2]. Harrison and Ruzzo [46] presents safety analysis results for several

restricted cases of the HRU scheme. Subsequently, there hasbeen considerable work on

safety in various contexts related to security [5,7,9,10,23–29,47–51].

Jones et al. [24, 25] shows that safety is decidable in lineartime in the take-grant

scheme. Sandhu [51] shows that safety is undecidable in SPM.Sandhu [9] demonstrates
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that safety is decidable for a restricted version of SPM (with only “acyclic creation” al-

lowed). Ammann and Sandhu [47] discusses safety analysis inESPM. Soshi et al. [28,29]

discusses safety in the dynamic typed access matrix scheme.Solworth and Sloan [23]

shows that safety is decidable in the DAC scheme introduced in that work.

Koch et al. [41] shows that safety is decidable in a restricted scheme in the graph

based formalism for RBAC [32, 33]. Li and Tripunitara [7] discusses security analysis in

two RBAC schemes based on the ARBAC97 scheme [37]. The analysis there is based on

results from security analysis in a trust management framework [5,6].

Safety analysis has been studied in other contexts as well, such as grammatical protec-

tion systems [48] and trust negotiation [52].

2.3 Comparing access control models and schemes

Comparing the expressive power of access control models is recognized as a funda-

mental problem in computer security and is studied extensively in the literature [10,11,17,

18, 53–55]. A common methodology used for comparing access control models in previ-

ous work issimulation. When a schemeA is simulated in a schemeB, each system inA is

mapped to a corresponding system inB. If every scheme in one model can be simulated

by some scheme in another model, then the latter model is considered to be at least as

expressive as the former. Furthermore, if there exists a scheme in the latter model that

cannot be simulated by any scheme in the former, then the latter model is strictly more ex-

pressive than the former. Different definitions for simulations are used in the literature on

comparing access control models. We discuss related work onthis problem by identifying

three axes along which the definitions used in such work differ.

• The first axis is whether the simulation maps only the state, or also the state-change

rule. The approach of Bertino et al. [56] is to map only the states of two access

control models to a common language based on mathematical logic, and to compare

the results to determine whether one model is at least as expressive as the other, or

whether the two models are incomparable. Other work, such as[10, 17, 18, 53, 54]
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however, require both the state and the state-change rule tobe mapped under the

simulation.

An advantage with an approach such as the one that is adopted by Bertino et al. [56]

is that it captures “structural” differences in how the protection state is represented

in a system based on an access control model. For instance, itis observed in [56] that

the existence of an indirection (the notion of a role) between users and permissions

in RBAC gives it more expressive power than an access matrix model. Such “struc-

tural” differences are not captured by our theory, or other approaches that consider

both the state and the state-change rule.

We point out, however, that the state-change rule is an important component of an

access control system, and therefore assert that a meaningful theory for expressive

power must consider it as well. In fact, it is often the case that it is the state-change

rule that endows considerable power to an access control system. Consider, for ex-

ample, the access matrix schemes proposed by Graham and Denning [4] and by

Harrison et al. [2]. In both schemes, the state is represented by an access ma-

trix. However, the state-change rules are quite different:in the Graham-Denning

scheme [4], there are only specific ways in which rights may betransferred, while

in the HRU scheme [2], one may define arbitrary commands in a state-change rule.

It has also been demonstrated [57] that safety is decidable in polynomial time in

the Graham-Denning scheme, while it is known to be undecidable [2] in the HRU

scheme. Such differences cannot be captured by an approach that does not consider

both the state and the state-change rule.

• The second axis is whether a simulation is required to preserve safety properties.

In the comparison of different schemes based on the access matrix model [10, 17,

18,54], the preservation of safety properties is required.If a schemeA is simulated

in a schemeB, then a system in schemeA reaches an unsafe state if and only if

the image of the system under the simulation (which is a system in schemeB)



11

reaches an unsafe state. By an “unsafe state” we mean a state in which a particular

unauthorized subject has a right that she must not possess.

On the other hand, the preservation of safety properties is not required in the simu-

lations used for comparing MAC (Mandatary Access Control),DAC (Discretionary

Access Control), and RBAC (Role-Based Access Control) [11,55, 58]. Nor is it

required in the simulations used for the comparison of Access Control Lists (ACL),

Capabilities, and Trust Management (TM) systems [53]. In these comparisons, the

requirement for a simulation ofA in B is that it should be possible to use an imple-

mentation of the schemeB to implement the schemeA. We call this theimplemen-

tation paradigmof simulations.

• The third axis is whether to restrict the number of state-transitions that the simu-

lating scheme needs to make in order to simulate one state-transition in the scheme

being simulated. [53] define the notions of strong and weak simulations. A strong

simulation ofA in B requires thatB makes one state-transition whenA makes

one state-transition. A weak simulation requires thatB makes a bounded (by a con-

stant) number of state-transitions to simulate one state-transition inA. A main result

in [53] is that a specific TM scheme considered there is more expressive than ACL

because there exists no (strong or weak) simulation of the TMscheme in ACL. The

proof is based on the observation that an unbounded (but still finite) number of state-

transitions in ACL is required to simulate one state-transition in the TM scheme.

On the other hand, an unbounded number of state-transitionsis allowed by [18].

That work uses a simulation that involves an unbounded number of state-transitions

to prove that ATAM (Augmented Typed Access Matrix) is equivalent in expressive

power to TAM (Typed Access Matrix).

Existing work on comparing access control models and schemes has severe shortcom-

ings. First, different definitions of simulations make it impossible to put different results

and claims about expressive power of access control models into a single context. For

example, the result that RBAC is at least as expressive as DAC[11, 58] is qualitatively
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different from the result that TAM is at least as expressive as ATAM [18], as the former

does not require the preservation of safety properties. These results are again qualitatively

different from the result that ACL is less expressive than Trust Management [53], as the

latter requires a bounded number of state-transitions in simulations.

Second, some definitions of simulations that are used in the literature are too weak

to distinguish access control models from one another in a meaningful way. Sandhu et

al. [11,55,58] argues that various forms of DAC (including ATAM, in which simple safety

is undecidable) can be simulated in RBAC, using the notion ofsimulations derived from

the implementation paradigm. However, no concrete properties are articulated for the

notion of simulations used in such work. Thus, this notion ofsimulations is not useful in

differentiating models based on expressive power.

Finally, the rationale for some choices made in existing definitions of simulations is

often not clearly stated or justified. It is unclear why certain requirements are made or not

made for simulations when comparing the expressive power ofaccess control models. For

instance, when a simulation involves an unbounded number ofstate-transitions, Ganta [54]

considers this to be a “weak” simulation, while Chander et al. [53] does not consider this

to be a simulation at all. Neither decision is justified in Ganta [54] and Chander et al. [53].
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3 SAFETY ANALYSIS IN DISCRETIONARY ACCESS CONTROL

In this chapter, we consider safety analysis in DAC. We reproduce the characterization

of DAC from [16], and argue that the Graham-Denning DAC scheme [4] subsumes all

known DAC schemes from the standpoint of safety analysis. Wepresent the new result

that safety is efficiently decidable in the Graham-Denning scheme [4] and thereby counter

the assertion in the literature that safety is undecidable in DAC [23, 59]. We then assess

a mapping from the literature that is used to argue that a new DAC scheme proposed by

Solworth and Sloan [23] captures all known DAC schemes. Apart from presenting new

results, this chapter provides additional background and motivation for our theory that we

introduce in Chapter 5.

3.1 Characterizing DAC and safety analysis

The NCSC guide titled ‘A Guide To Understanding Discretionary Access Control in

Trusted Systems’ [16], portions of which were published as aresearch paper [21], states

that “the basis for (DAC) is that an individual user, or program operating on the user’s

behalf, is allowed to specify explicitly the types of accessother users (or programs execut-

ing on their behalf) may have to information under the user’scontrol.” We point out two

specific properties from this characterization of DAC: (1) The notion of “control” – there

is a notion that users exercise control over resources in that a user that controls a resource

gets to dictate the sorts of rights other users have over the resource, and (2) the notion of

initiation of an action by a user to change the protection state – such state changes occur

because particular users initiate such changes. A representation of a DAC scheme needs

to capture both these properties.

Some literature (for example, [59,60]) appears to equate DAC with the HRU scheme [2].

This is incorrect, as there exist systems based on the HRU scheme that are not DAC sys-
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tems. For instance, consider an HRU system in which there is only one command, and

that command has no condition. This system is not a DAC systemas it does not have the

first property from above on the control of resources by a subject. In addition, there are

DAC schemes that do not have natural representations as HRU schemes. For instance,

the Graham-Denning scheme [4] (see Section 3.2.1) is a DAC scheme in which a subject

may be ‘owned’ or ‘controlled’ by at most one other subject. Asystem based on the HRU

scheme cannot capture this feature in a natural way.

Definition 3.1.1 (Safety Analysis)Given a DAC scheme〈Γ,Ψ〉, let the set of subjects

that can exist in a system based on the scheme beS, let the set of objects beO, and let

the set of rights beR. Assume that there exists a functionhasRight : S × O × R →

{true, false} such thathasRight(s, o, r) returnstrue if in the current state,s ando exist,r

is a right in the system, ands has the rightr overo, and false otherwise. A safety analysis

instance has the form〈γ, ψ, T ,�¬hasRight(s, o, r)〉 for someγ ∈ Γ, ψ ∈ Ψ, T ⊂ S,

s ∈ S, o ∈ O andr ∈ R. The safety analysis instance is true ifhasRight(s, o, r) is false in

every reachable state, with no state change initiated by a user fromT , and false otherwise.

In the above definition,� stands for “in the current and all future states,” and is an

operator from temporal logic [61].

Each instance of the analysis is associated with a setT of trusted subjects. The mean-

ing of a trusted subject is that we preclude state-changes initiated by any subject fromT

in our analysis. The intuition is that we expect these subjects to be “well-behaved”. That

is, while such subjects may effect state-changes, they do soin such a way that the state

that results from the state-changes they effect satisfies desirable properties (that is, safety).

Harrison et al. [2] does consider trusted subjects as part oftheir safety analysis. However,

as pointed out by Li et al. [5], the way [2] deals with trusted subjects is incorrect. Harrison

et al. [2] requires that we delete the rows and columns corresponding to trusted subjects

prior to the analysis. While a trusted subject is not allowedto initiate a state-change, she

may be used as an intermediary, and the way Harrison et al. [2]deals with trusted subjects

does not consider this possibility. We require only that a member of the set of trusted
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subjects not initiate a state-change. In all other ways, these subjects continue to be part of

the system.

3.2 Safety analysis in the Graham-Denning scheme

In this section, we study safety analysis in the Graham-Denning DAC scheme [4]. We

first present a description of the scheme in the following section. Our description clearly

describes the states and state-change rules in the scheme. In Section 3.2.2, we present an

algorithm to decide safety in the scheme, and show that the algorithm is correct. We assert

also that the algorithm is efficient.

3.2.1 The Graham-Denning Scheme

In this section, We present a precise representation for theGraham-Denning scheme.

We define what data are stored in a protection state, and how a state-change rule changes

a state.

Assumptions We postulate the existence of the following countably infinite sets:O, the

set of objects;S, the set of subjects (S ⊂ O); andR, the set of rights.

Note that the set of objects (or subjects) in any given state in the Graham-Denning

scheme is finite; however, the number of objects that could beadded in some future state

is unbounded. Similarly, the set of rights in any given access control system is finite;

however, different access control systems may use different sets of rights. Therefore, we

assumeS,O, andR are countably infinite.

We assume a naming convention so that we can determine, in constant time, whether

a given object,o, is a subject (i.e.,o ∈ S) or not (i.e.,o ∈ O − S). There exists a

special “universal subject”u ∈ S; the role ofu will be explained later. The set of rights

R contains two special rights,own andcontrol , a countably infinite setRb of “basic”

rights, and a countably infinite setR∗
b of basic rights with the copy flag denoted by∗, i.e.,

R∗
b = {r∗|r ∈ Rb}. In other words,R = {own, control} ∪Rb ∪R

∗
b . The meaning of the
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copy flag is clarified when we discuss the state-change rules for the scheme. An access

control system based on the Graham-Denning scheme is associated with a protection state,

and a state-change rule.

States,Γ A state in the Graham-Denning scheme,γ, is associated with the tuple〈Oγ, Sγ,

Mγ [ ]〉, whereOγ ⊂ O is a finite set of objects that exist in the stateγ, Sγ ⊂ S is a finite

set of subjects that exist inγ, andSγ is a subset ofOγ. Mγ [ ] is the access matrix, and

Mγ [ ]: Sγ × Oγ → 2R. That is,Mγ [s, o] ⊂ R is the finite set of rights the subjects ∈ Sγ

has over the objecto ∈ Oγ.

Every state,γ = 〈Oγ, Sγ,Mγ[ ]〉, in the Graham-Denning scheme satisfies the follow-

ing seven properties.

1. Every object must be owned by at least one subject, i.e.,∀ o ∈ Oγ ∃s ∈ Sγ(own ∈

Mγ [s, o]).

2. Objects are not controlled, only subjects are, i.e.,∀ o ∈ (Oγ − Sγ) ∀ s ∈ Sγ(control 6∈

Mγ [s, o]).

3. The special subjectu exists in the state, is not owned by any subject, and is not

controlled by any other subject, i.e.,u ∈ Sγ ∧ ∀ s ∈ Sγ(own 6∈ Mγ [s, u]) ∧ ∀ s ∈

Sγ − {u}(control 6∈Mγ [s, u]).

4. A subject other thanu is owned by exactly one other subject, i.e., for everys ∈

Sγ − {u}, there exists exactly ones′ ∈ Sγ such thats′ 6= s andown ∈Mγ[s
′, s];

5. Every subject controls itself, i.e.,∀s ∈ Sγ(control ∈Mγ [s, s]).

6. A subject other thanu is controlled by at most one other subject, i.e., for everys ∈

Sγ − {u}, there exists at most ones′ ∈ Sγ such thats′ 6= s andcontrol ∈Mγ [s
′, s].

7. There exists no set of subjects such that they form a “cycle” in terms of ownership of

each other (and in particular, a subject does not own itself), i.e.,¬(∃ {s1, . . . , sn} ⊆

Sγ(own ∈ Mγ [s2, s1] ∧ own ∈ Mγ [s3, s2] ∧ · · · ∧ own ∈ Mγ [sn, sn−1] ∧ own ∈

Mγ [s1, sn])).
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These state invariants are maintained by the state-change rules.

State-Change Rules,Ψ Each member,ψ, of the set of state-change rules,Ψ, in the

Graham-Denning scheme, is a set of commands parameterized by a set of rights,Rψ.

These commands are shown in Figure 3.1. Where possible, we use the syntax for com-

mands from the HRU scheme [2], but as we mention in Section 3.1, we cannot represent

all aspects of DAC schemes using only constructs for commands in the HRU scheme.

We use some additional well-known constructs such as∀ and∃ in these commands. A

state-change is the successful execution of one of the commands. We assume that the

state subsequent to the execution of a command isγ′. We denote such a state-change as

γ 7→ψ(s) γ
′, wheres is the initiator of the command. When the rule and initiator are im-

plied or not important, we write simplyγ 7→ γ′, and to denote zero or more state-changes,

we write γ
∗
7→ψ γ′. We point out that for each command, unless specified otherwise,

Sγ′ = Sγ , Oγ′ = Oγ, andMγ′ [s, o] = Mγ [s, o] for everys ∈ Sγ ando ∈ Oγ. We use←

to denote assignment, i.e.,x ← y means that the value inx is replaced with the value in

y. The commands in the Graham-Denning scheme are the following. The first parameter

to each command is namedi, and is the subject that is the initiator of the execution of the

command.

• transfer r(i, s, o) This command is used to grant the rightr by an initiator that has

the rightr∗ overo. There is one such command for everyr ∈ Rψ∩Rb. The initiator,

i, must possess the rightr∗ overo, and the subjects must exist for this command

execution to succeed.

• transfer r∗(i, s, o) This command is used to grant the rightr∗ by an initiator that

has the rightr∗ overo. There is one such command for everyr∗ ∈ Rψ ∩ R
∗

b . The

initiator, i, must possess the rightr∗ over o, and the subjects must exist for this

command execution to succeed.

• transfer own(i, s, o) This command is used to transfer ownership overo from i to s.

For this command to succeed,imust have theown right overo, smust exist, and the
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transfer of ownership must not violate invariant (7) from the list of state invariants

we discuss above. After the execution of this command,i will no longer have the

own right overo (but s will).

• grant r(i, s, o) This command is used to grant the rightr overo by the owner ofo.

There is one such command for everyr ∈ Rψ ∩Rb. For this command execution to

succeed,i must have theown right overo, ands must exist.

• grant r∗(i, s, o) This command is very similar to the previous command, exceptthe

the owner grantsr∗ ∈ Rψ ∩R
∗
b .

• grant control(i, s, o) This command is used to grant thecontrol right overo by its

owner. For the execution of this command to succeed,i must have the rightcontrol

overo, s must exist,o must be a subject, and another subject must not already have

the rightcontrol overo. These checks are needed to maintain the state invariants

related to thecontrol right that we discuss above.

• grant own(i, s, o) This command is used to grant theown right overo. This is dif-

ferent from thetransfer own command in that in this case,i retains (joint) ownership

overo. For the execution of this command to succeed,i must have the rightown

overo, o must not be a subject, ands must exist.

• delete r(i, s, o) This command is used to delete a right a subject has overo. There

is one such command for everyr ∈ Rψ ∩Rb. For the execution of this command to

succeed,i must have the rightown overo, ands must exist.

• delete r∗(i, s, o) This command is similar to the previous command, except thata

right r∗ ∈ Rψ ∩R
∗
b is deleted.

• create object(i, o) This command is used to create an object that is not a subject.

For the execution of this command to succeed,i must exist, ando must be an object

that is not a subject, that does not exist. An effect of this command is thati gets the

own right overo in the new state.
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• destroy object(i, o) This command is used to destroy an object that exists. For the

execution of this command to succeed,imust have the rightown overo, ando must

be an object that is not a subject.

• create subject(i, s) This command is used to create a subject. For the execution of

this command to succeed,i must exist, ands must be a subject that does not exist.

In the new state,i has theown right overs, ands has thecontrol right over itself.

• destroy subject(i, s) This command is used to destroy a subject. For the execution

of this command to succeed,i must have theown right overs. An effect of this

command is that ownership over any object owned bys is transferred toi.

3.2.2 Safety analysis

An algorithm to decide whether a system based on the Graham-Denning scheme is safe

is shown in Figure 3.2. A system based on the Graham-Denning scheme is characterized

by a start-state,γ, and state-change rule,ψ (which is a set of commands). The algorithm

takes as inputγ, ψ, a triple,ω = 〈s, o, x〉 ∈ S × O × R, and a finite set,T ⊂ S, of

trusted subjects. The algorithm outputs “true” if the system satisfies the safety property

with respect to the subjects, objecto and rightx, and “false” otherwise. We first discuss

the algorithm, and then its correctness and time-complexity.

In lines 5-10 of the algorithm, we check the cases for which wedo not have to consider

potential state-changes before we are able to decide whether the system is safe or not. In

lines 5-6, we consider the case that a subject may have (or acquire) the right with the copy

flag. For this, we need to excludeown andcontrol from consideration, as those rights do

not have counterparts with the copy flag. We use the mnemonicinvalid to indicate this.

In line 7, we check that the rightx is indeed in the system. In line 8, we check whether

we are being asked whethers can get thecontrol right overo, whereo is an object that

is not a subject (we knows does not have and cannot get the right, by property (2) of

the seven properties we discuss in the previous section). Inline 9, we check whether the
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command transfer r(i, s, o) command transfer r∗(i, s, o)
if r∗ ∈Mγ [i, o] ∧ s ∈ Sγ then if r∗ ∈Mγ [i, o] ∧ s ∈ Sγ then

Mγ′ [s, o]←Mγ [s, o] ∪ {r} Mγ′[s, o]←Mγ [s, o] ∪ {r∗}

command transfer own(i, s, o) command grant r(i, s, o)
if own ∈Mγ [i, o] ∧ o ∈ Sγ ∧ s ∈ Sγ then if own ∈Mγ [i, o] ∧ s ∈ Sγ then

if ∄ {s1, . . . , sn} ∈ Sγ such that Mγ′[s, o]←Mγ [s, o] ∪ {r}
own ∈Mγ [s1, s] ∧ own ∈Mγ [s2, s1]
∧ · · · ∧ own ∈Mγ [sn, sn−1]
∧ own ∈Mγ [o, sn] then command grant r∗(i, s, o)
Mγ′[s, o]←Mγ [s, o] ∪ {own} if own ∈Mγ [i, o] ∧ s ∈ Sγ then

Mγ′[i, o]←Mγ [i, o]− {own} Mγ′ [s, o]←Mγ [s, o] ∪ {r∗}

command grant control(i, s, o) command grant own(i, s, o)
if own ∈Mγ [i, o] ∧ o ∈ Sγ ∧ s ∈ Sγ then if own ∈Mγ [i, o] ∧ o 6∈ Sγ

if ∄ s′ ∈ Sγ such that ∧ s ∈ Sγ then

s′ 6= o ∧ control ∈Mγ [s′, o] then Mγ′[s, o]←Mγ [s, o] ∪ {own}
Mγ′[s, o]←Mγ [s, o] ∪ {control}

command delete r(i, s, o) command delete r∗(i, s, o)
if (own ∈Mγ [i, o] ∧ s ∈ Sγ) if (own ∈Mγ [i, o] ∧ s ∈ Sγ)
∨ control ∈Mγ [i, s] then ∨ control ∈Mγ [i, s] then
Mγ′ [s, o]←Mγ [s, o]− {r} Mγ′[s, o]←Mγ [s, o]− {r∗}

command create object(i, o) command destroy object(i, o)
if o 6∈ Oγ ∧ i ∈ Sγ ∧ o ∈ O − S then if own ∈Mγ [i, o] ∧ o 6∈ Sγ then

Oγ′ ← Oγ ∪ {o} Oγ′ ← Oγ − {o}
Mγ′ [i, o]← own

command create subject(i, s) command destroy subject(i, s)
if s 6∈ Oγ ∧ i ∈ Sγ ∧ s ∈ S then if own ∈Mγ [i, s] ∧ s ∈ Sγ then

Oγ′ ← Oγ ∪ {s} ∀ o ∈ Oγ , if own ∈Mγ [s, o] then

Sγ′ ← Sγ ∪ {s} Mγ′ [i, o]←Mγ [i, o] ∪ {own}
Mγ′ [i, s]← {own} Oγ′ ← Oγ − {s}
Mγ′ [s, s]← {control} Sγ′ ← Sγ − {s}

Figure 3.1. The set of commands that constitutes the state-change rule,
ψ, for a system based on the Graham-Denning scheme. Each command
has a name (e.g.,transfer own), and a sequence of parameters. The first
parameter is always namedi, and is the initiator of the command, i.e., the
subject that executes the command. There is onetransfer r, grant r, and
delete r command for eachr ∈ Rψ ∩ Rb, and onetransfer r∗, grant r∗,
anddelete r∗ command for eachr∗ ∈ Rψ ∩R

∗
b .
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1 Subroutine isSafeGD(γ, ψ, ω,T )
2 /* inputs: γ, ψ, ω = 〈s, o, x〉, T ⊆ S */
3 /* output: true or false */
4 if x ∈ R∗

b then let y ← x

5 else if x 6= own ∧ x 6= control then let y ← x∗

6 else let y ← invalid /* No copy flags for own or control */
7 if x 6∈ Rψ then return true
8 if x = control ∧ o ∈ O − S then return true
9 if x ∈Mγ [s, o] then return false
10 if y ∈Mγ [s, o] then return false
11 if T ⊇ Sγ then return true
12 if o 6∈ Oγ then return false
13 if ∃ŝ ∈ Sγ − T such that y ∈Mγ [ŝ, o] then return false
14 for each sequence U , sn, . . . , s2, s1 such that
15 own ∈Mγ [s1, o] ∧ · · · ∧ own ∈Mγ [sn, sn−1] ∧ own ∈Mγ [u, sn] do
16 if ∃si ∈ {s1, . . . , sn} such that si ∈ Sγ − T then return false
17 return true

Figure 3.2. The subroutineisSafeGD returns “true” if the system based
on the Graham-Denning scheme, characterized by the start-state,γ, and
state-change rule,ψ, satisfies the safety property with respect toω and
T . Otherwise, it returns “false”. In line 6, we assign some invalid value
to y, as there is not corresponding right with the copy flag for therights
own andcontrol . In this case, the algorithm will not return in line 10 or
13. The subjectu appears in line 15 only to emphasize that the “chain”
of ownership is terminal.
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right x has already been acquired bys overo. In line 10, we check that if the righty has

already been acquired bys overo (the check in line 10 is needed whenx ∈ Rb, as then,

the possession ofx∗ implies the possession ofx; in the case thatx ∈ R∗
b , the lines 9 and

10 are identical). Whenx = own or x = control , the condition of line 10 will never be

true, and we will not return from that line. In the remainder of the algorithm, we consider

those cases in which a state-change is needed befores can getx overo (if it can at all).

In line 11, we check whether there is at least one subject thatcan initiate state-changes,

and if not, we know that the system is safe. In line 12, we checkwhethero exists, and if

it does not, given that there exists a subject that can createo (from our check in line 11),

the subject can then grantx to s overo. In line 13, we check whether there is a subject

that can initiate state-changes, and that hasx with the copy-flag (orx itself, if x ∈ R∗
b).

If x = own or x = control , the condition of line 13 cannot be true. In lines 14-16, we

check whether there is a sequence of subjects with the particular property that each owns

the next in the sequence, and the last subject in the sequenceownso. If any one of those

subjects can initiate state-changes, then we conclude thatthe system is not safe and return

false. In all other cases, we conclude that the system is safe, and return true.

The following lemma asserts that the algorithm is correct. Theorem 3.2.2 summarizes

our results with respect to safety analysis in the Graham-Denning scheme.

Lemma 3.2.1 A system based on the Graham-Denning scheme, that is characterized by

the start-state,γ, and state-change rule,ψ, is safe with respect toω = 〈s, o, x〉 andT ⊂ S

(whereT is finite) if and only ifisSafeGD(γ, ψ, ω, T ) returns true.

Proof The “if” part: we need to show that ifisSafeGD(γ, ψ, ω, T ) returns true, then the

system is safe with respect toω andT . We show, equivalently, that if the system is not

safe with respect toω andT , then isSafeGD(γ, ψ, ω, T ) returns false. Assume that the

system is not safe with respect toω andT . We have two cases. The first case is that in the

start-state,γ, s hasx overo. This case consists of two subcases: either (1)x ∈Mγ [s, o], or

(2) x ∈ Rb andx∗ ∈ Mγ [s, o] (possession ofx∗ implies possession ofx). If both (1) and

(2) are true, we consider either one of those two subcases. Ifsubcase (1) is true, then we
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know thatx ∈ Rψ, and ifx = control ando ∈ O − S, thenx 6∈Mγ [s, o] (by property (2)

from the previous section that objects that are not subjectscannot have thecontrol right

over them). Therefore, the ‘if’ conditions of lines 7 and 8 are not satisfied, and line 9 of

the algorithm returns false, and we are done. For subcase (2), in line 5 we instantiatey

to x∗. We know thatx, y ∈ Rψ, and thatx 6= control . Therefore, the ‘if’ conditions for

lines 7 and 8 are not satisfied. The ‘if’ condition for line 9 may be satisfied and if it is, the

algorithm returns false and we are done. Otherwise, the algorithm returns false in line 10.

The second case is thats does not havex overo in the start-state, i.e.,x 6∈ Mγ [s, o]

and if x ∈ Rb, thenx∗ 6∈ Mγ[s, o]. In this case, as the system is not safe, there exists a

finite sequence of state-changesγ 7→ψ(s1) γ1 7→ψ(s2) · · · 7→ψ(sn) γn wheren is an integer

andn ≥ 1, such that eitherx ∈ Mγn [s, o], or if x ∈ Rb, thenx∗ ∈ Mγn [s, o]. Each

si ∈ Sγi−1
− T and thesi’s are not necessarily distinct from one another. We point out

also that ifsi ∈ Sγj
−T for somei andj, andsi ∈ Sγk

for somek 6= j, thensi ∈ Sγk
−T ,

becauseT is specified a-priori and does not change with changes in the state. We now

show that if such a sequence of state-changes exists, then the algorithm returns false. We

show this by induction onn. For the base case, if there exists a sequence of length 1, then

γ 7→ψ(s1) γ1, andx 6∈Mγ [s, o] andx∗ 6∈ Mγ [s, o] if x ∈ Rb, andx ∈ Mγ1 [s, o], orx ∈ Rb

andx∗ ∈ Mγ1 [s, o]. In this case, the state-change is the execution of one of thefollowing

commands, and we show that the algorithm returns false in each case. The state-change

has to be the execution of one of these commands because theseare the only commands

that enter a right in to a cell of the access matrix.

transfer r – in this case we know thatx ∈ Rb ∩ Rψ, x∗ ∈ Rψ, x∗ ∈ Mγ[s1, o] for some

s1 ∈ Sγ − T , ands ∈ Sγ. The algorithm will not return in any of the lines 7-11 as

the respective ‘if’ conditions are not satisfied. Ifo 6∈ Oγ, then the algorithm returns

false in line 12, and we are done. Ifo ∈ Oγ, then the conditions for line 13 are met

(y is instantiated tox∗), and the algorithm returns false.

transfer r∗ – we have two subcases to consider: either (1)x ∈ R∗
b ∩ Rψ, or, (2) x ∈

Rb ∩ Rψ. In case (2), lety bex∗, and in case (1), lety bex. We know in either
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case thaty ∈ Mγ [s1, o] for somes1 ∈ Sγ − T , ands ∈ Sγ (otherwises would not

get the rightx overo after the execution of the command). The algorithm will not

return in any of the lines 7-11 as the respective ‘if’ conditions are not satisfied. If

o 6∈ Oγ, then the algorithm returns false in line 12, and we are done.If o ∈ Oγ, then

the conditions for line 13 are met and the algorithm returns false.

transfer own – in this case we know thatx = own, own ∈ Mγ[i, o] for somei ∈ Sγ −T ,

o ∈ Sγ ands ∈ Sγ . The ‘if’ conditions for each of lines 7-13 are not met (for line

11, we know thatown∗ 6∈ Rψ). Consider lines 14-16. We know that such a sequence

of subjects exists (asi has theown right overo in Sγ), and furthermore,i ∈ Sγ−T .

Therefore, the conditions to return false in lines 14-16 aremet, and the algorithm

returns false.

grant r – in this case, we know thatown ∈Mγ [i, o] for somei ∈ Sγ−T andx ∈ Rb∩Rψ

(in particular,x 6= control andx 6= own – there are other commands to grant those

rights). The ‘if’ conditions for each of lines 7-11 are not met. If o 6∈ Oγ, the

algorithm returns false in line 12, and we are done. Ifo ∈ Oγ, the conditions for

line 13 may be met, and if they are, the algorithm returns false and we are done. If

the conditions in line 13 are not met, then we observe that theconditions for lines

14-16 are met (the sequence of subjects containsi, asi has theown right overo in

Sγ), and the algorithm returns false.

grant r∗ – we have two subcases to consider. Either (1)x ∈ Rb∩Rψ, or, (2)x ∈ R∗
b∩Rψ.

For case (1), lety bex∗ and for case (2), lety bex. In either case, we know that

own ∈Mγ [i, o] for somei ∈ Sγ −T . The ‘if’ conditions for lines 7-11 are not met.

If o 6∈ Oγ, then the algorithm returns false in line 12, and we are done.Otherwise,

the conditions for line 13 may be met, and if they are, the algorithm returns false,

and we are done. Otherwise, we observe that the conditions for lines 14-16 are met

(the sequence of subjects containsi, asi has theown right overo in Sγ), and the

algorithm returns false.
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grant control – in this case, we know thatx = control , own ∈ Mγ [i, o] for somei ∈

Sγ − T ando ∈ Sγ. Therefore, the ‘if’ conditions for lines 7-12 are not met. The

‘if’ conditions for line 13 are not met because we know thaty 6∈ Rψ. But, we

observe that the conditions for lines 14-16 are met, becausethe subjecti that is not

trusted exists inγ, andi has theown right overo. Therefore, the algorithm returns

false in line 16.

grant own – in this case, we know thatx = own andown ∈Mγ [i, o] for somei ∈ Sγ−T .

The ‘if’ conditions for lines 7-11 are not satisfied. Ifo 6∈ Oγ, then the algorithm

returns false in line 12 and we are done. Otherwise, the condition in line 13 is not

satisfied, but, we observe that the conditions for lines 14-16 are satisfied, and the

algorithm returns false.

create object – in this case, we know thatx = own ando 6∈ Oγ. The ‘if’ conditions for

lines 7-11 are not met, but the ‘if’ condition for line 12 is met, and the algorithm

returns false.

create subject – in this case, we know that∃i ∈ Sγ − T , and eitherx = own or x =

control . Furthermore, we know thato 6∈ Oγ. The reason is that in the body of the

command, we enter a right only in the column corresponding tothe subject that is

created in the execution of the command, and not any other object. Therefore, for

ω = 〈s, o, x〉, we know thato must be the subject that is created in the execution of

thecreate subject command. We know also thato 6∈ O −S, because the object that

is created is a subject. Therefore, the respective ‘if’ conditions for lines 7-11 are

not satisfied, but the ‘if’ condition for line 12 is satisfied,and the algorithm returns

false.

destroy subject – in this case, we know thatx = own, andown ∈ Mγ [s, s
′], where

ω = 〈s, o, x〉 ands′ is the subject that is destroyed in the execution of the command.

The reason is that we enter a right only in the row corresponding to such a subjects.

Furthermore, we know thato ∈ Oγ andown ∈ Mγ [s
′, o], because the only columns
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in which a right is entered in the execution of the command arecolumns with that

property. We know also thats ∈ Sγ − T as s is the initiator of the command-

execution. Given these facts, we know that the ‘if’ conditions for lines 7-12 are

not satisfied. The conditions for line 13 may be met, and if they are, the algorithm

returns false and we are done. Otherwise, we observe that theconditions for lines

14-16 are satisfied; the sequence of subjects containss and s′ with s′ being the

last member of the sequence, ands immediately precedings′ in the sequence. As

s ∈ Sγ − T , the algorithm returns false in line 16.

For the induction hypothesis, we assume that if there existsa state-change sequence

γ 7→ψ(s1) γ1 7→ψ(s2) · · · 7→ψ(sk−1) γk−1 of lengthk − 1 (for k − 1 ≥ 1) such thatx 6∈

Mγ [s, o] and if x ∈ Rb, x∗ 6∈ Mγ [s, o], and eitherx ∈ Mγk−1
[s, o] or, if x ∈ Rb, x∗ ∈

Mγk−1
[s, o], then the algorithm returns false. Now assume that there exists a state-change

sequenceγ 7→ψ(s1) · · · 7→ψ(sk) γk of lengthk (for k ≥ 2) such thatx 6∈ Mγ [s, o] and if

x ∈ Rb, x∗ 6∈Mγ [s, o], and eitherx ∈ Mγk
[s, o] or, if x ∈ Rb, x∗ ∈Mγk

[s, o]. We need to

show that the algorithm returns false forω = 〈s, o, x〉.

We have two cases. The first case has two subcases: either (a)x ∈ Mγk−1
[s, o], or,

(b) x ∈ Rb andx∗ ∈ Mγk−1
[s, o]. In either case, we have a state-change sequence of

lengthk − 1 with the appropriate properties, and by the induction hypothesis, we know

that the algorithm returns false. In the second case, we assume thatx 6∈ Mγk−1
[s, o] and

if x ∈ Rb, x∗ 6∈ Mγk−1
[s, o], and eitherx ∈ Mγk

[s, o] or x ∈ Rb andx∗ ∈ Mγk
[s, o]. We

need to show that the algorithm returns false in this case. Weconsider the state-change

γk−1 7→ψ(sk) γk. It must be the execution of one of the following commands (the same as

those we considered for the base case), as those are the only commands that add a right to

a cell in the access matrix. We consider each in turn. We pointout that ask ≥ 2, we have

at least 3 states in our state-change sequence, including the start-state, i.e., we know that

at least the statesγk−2, γk−1 andγk (where the start-state,γ = γ0) exist in the state-change

sequence.

transfer r – in this case, we know thatx ∈ Rb ∩ Rψ andx∗ ∈ Mγk−1
[sk, o]. Let ωk =

〈sk, o, x
∗〉. Then, we know by the induction hypothesis thatisSafeGD(γ, ψ, ωk, T )
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returns false (as there exists a state-change sequence of lengthk− 1 with the appro-

priate properties). We refer to the execution of the algorithm for the input(γ, ω, T )

ase, and for the input(γ, ωk, T ) asek. Consider the following cases.

• ek returns in line 9: in this case, we know thatx∗ ∈ Mγ [sk, o]. Now, e cannot

return in lines 7 or 8 (becausex ∈ Rb ∩ Rψ). e may return false in line 9

or line 10, in which case we are done. If not,e will not return in lines 11-12

assk ∈ Sγ − T ando ∈ Oγ. Finally, e will return false in line 13, because

sk ∈ Sγ − T , andy ∈Mγ [sk, o].

• ek returns in line 10: this cannot happen as, in this case,ek would have returned

in line 9. Therefore, the arguments for the previous case apply.

• ek returns in line 12: in this case,e will not return in any of the lines 7-11, but

will return false in line 12.

• ek returns in line 13: in this case, we know that∃ ŝ ∈ Sγ − T such that

y ∈ Mγ [ŝ, o] wherey = x∗. e will not return in lines 7-8, but may return false

in one of the lines 9 or 10, in which case we are done. Otherwise, e will not

return in line 11 (aŝS exists inγ) or in line 12 (o ∈ Oγ). But, e will return

false in line 13, as the condition is met (Ŝ is such a subject).

• ek returns in line 16: in this case,ewill not return in lines 7-8 but may return in

line 9, in which case we are done. Otherwise,e will not return in lines 10-13.

We know thate will return false in line 16, just asek does, because the same

condition is true fore as well.

transfer r∗ – in this case, we know thatx ∈ R∗
b ∩ Rψ, andx ∈ Mγk−1

[sk, o] where

sk ∈ Sγk−1
− T . Letωk = 〈sk, o, x〉, ek be the execution of the algorithm isSafeGD

for the input(γ, ψ, ωk, T ), ande be the execution for the input(γ, ω, T ). Then we

know thatek returns false by the induction hypothesis. We now have exactly the

same arguments as in the previous case for whye returns false.
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transfer own – in this case we know thatx = own andown ∈ Mγk−1
[sk, o] wheresk ∈

Sγk−1
− T . Forωk = 〈sk, o, own〉, we know that,ek, the execution of the algorithm

on input(γ, ωk, T ), returns false, by the induction hypothesis. We consider all the

cases in whichek can return false.

• ek returns in line 9: in this case, we know thatown ∈ Mγ [sk, o] and sk ∈

Sγ − T . Now,e does not return in any of the lines 7-8.e may return in line 9,

in which case we are done.e cannot return in line 10 (asy 6∈ Rψ), or in line

11, but may return in line 12, in which case we are done.e cannot return in

line 13. Finally, we observe that the conditions in lines 14-16 are satisfied, and

therefore,e returns in line 16.

• ek returns in line 10: this cannot happen because whenx = own, y 6∈ Rψ.

• ek returns in line 12: in this case, we know thate does not return in lines 7-11,

but returns false in line 12.

• ek returns in line 13: this cannot happen because whenx = own, y 6∈ Rψ.

• ek returns in line 16: in this case,e does not return in lines 7-8, but may return

in line 9, in which case we are done. Otherwise,e cannot return in lines 10-13,

but returns false in line 16 based on the same conditions thatek satisfies to

return in line 16.

grant r – in this case, we know thatx ∈ Rb ∩ Rψ andown ∈ Mγk−1
[sk, o], wheresk ∈

Sγk−1
−T . We know also thatek, the execution of the algorithm, on input(γ, ωk, T )

returns false, whereωk tuplesk, o, own. Let e be the execution of the algorithm for

the input(γ, ω, T ). We have the following cases.

• ek returns in line 9: in this case, we know also thatown ∈ Mγ [sk, o] where

sk ∈ Sγ − T . Therefore,e does not return in lines 7-8, but may return false

in either line 9 or line 10, in which case we are done. Otherwise, e does not

return in lines 11-12, but may return false in line 13, in which case we are
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done. Finally,e returns false in line 16, because the conditions for returning in

line 16 are satisfied (sk is such a subject).

• ek returns in line 10: this is not possible as whenx = own, y 6∈ Rψ.

• ek returns in line 12: in this case,e does not return in lines 7-11, but returns

false in line 12.

• ek returns in line 13: this is not possible as whenx = own, y 6∈ Rψ.

• ek returns in line 16: in this case, we know thate does not return in lines 7-8,

but may return in one of the lines 9-10, in which case we are done. Otherwise,

e does not return in lines 11-12, but may return in line 13, in which case we

are done. Finally,e returns in line 16 as the conditions for whichek returns in

line 16 apply toe as well.

grant r∗ – in this case, we know thatx ∈ R∗
b ∩ Rψ and own ∈ Mγ [sk, o] for sk ∈

Sγk−1
−T . The argument now proceeds exactly as for the previous case,and we are

able to show thatisSafeGDreturns false on the input(γ, ψ, ω, T ).

grant control – in this case, we know thatx = control and own ∈ Mγk−1
[sk, o] for

sk ∈ Sγk−1
−T . Letωk = 〈sk, o, own〉, andek be the execution of the algorithm on

the input(γ, ωk, T ). We know, by the induction hypothesis, thatek returns false. Let

e be the execution of the algorithm on the input(γ, ω, T ). We have the following

cases.

• ek returns in line 9: in this case we know also thatown ∈ Mγ [sk, o] and

sk ∈ Sγ−T . Therefore,e does not return in lines 7-8 (for line 8, we know that

o 6∈ O − S, as otherwise, we would not be able to grant thecontrol right to s

overo in the final state-change in our sequence), ande may return false in line

9, in which case we are done. Otherwise,e does not return in lines 10-13 (for

lines 10 and 13,y 6∈ Rψ). Finally, e returns false in line 16 because we know

thatsk, a subject that is not trusted, exists inγ, and has theown right overo.

• ek returns in line 10: this is not possible as whenx = own, y 6∈ Rψ.
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• ek returns in line 12: in this case,e does not return in lines 7-11, but returns

false in line 12.

• ek returns in line 13: this is not possible as whenx = own, y 6∈ Rψ.

• ek returns in line 16: in this case,e does not return in lines 7-8, but may return

in lines 9-10, in which case we are done. Otherwise,e does not return in lines

11-12, but may return in line 13, in which case we are done. Finally, e returns

in line 16 as the conditions for whichek returns in line 16 apply toe as well.

grant own – in this case, we know thatx = own and own ∈ Mγk−1
[sk, o] for sk ∈

Sγk−1
− T . We show that the execution of the algorithm on input(γ, ω, T ) returns

false using the same arguments as the ones we use for the previous case.

create object – in this case, we know thatx = own, s = sk andsk ∈ Sγk−1
− T . We

consider the following cases (and sub-cases).

• s ∈ Sγk−2
: in this case we need to consider the following two sub-cases.

– o ∈ Oγk−2
: in this case, we know that the state-changeγk−2 7→ψ(sk−1) γk−1

is destroy object of objecto by sk−1. Therefore, we know thatown ∈

Mγk−2
[sk−1, o] and sk−1 ∈ Sγk−2

− T . If s = sk−1, then we have a

state-change sequence of lengthk − 2 with the appropriate properties,

and we know that the algorithm returns false. Otherwise, we have a state-

changeγk−2 7→ψ(sk−1) γ
′
k−1 which is the execution of either the command

transfer own (if o ∈ S), or the commandgrant own (if o ∈ O − S), by

sk−1 to s, which results inown ∈ Mγ′k−1
[s, o]. As there exists a state-

change sequence of lengthk−1, we know that the algorithm returns false

by the induction hypothesis.

– o 6∈ Oγk−2
: in this case, there exists a state-changeγk−2 7→ψ(s) γ′k−1

which is the execution of the commandcreate object of o by s, which

results inown ∈ Mγ′
k−1

[s, o]. As there exists a state-change sequence of
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lengthk − 1, we know that the algorithm returns false by the induction

hypothesis.

• s 6∈ Sγk−2
: in this case, we know that the state-changeγk−2 7→ψ(sk−1) γk−1 is

the execution ofcreate subject to creates. Also, we know thato 6∈ Oγk−2
. If

γk−2 = γ, then we know that, on input(γ, ω, T ), the algorithm will not return

in lines 7-11, but will return false in line 12, and we would bedone in this

case. Otherwise, there exists at least one prior state,γk−3 in the sequence of

state-changes. We have the following sub-cases.

– s ∈ Sγk−3
, but o 6∈ Oγk−3

: in this case, we know that the state-change

γk−3 7→ψ(sk−2) γk−2 is the execution ofdestroy subject of s by sk−2.

Consider the alternate state-changesγk−3 7→ψ(sk−2) γ
′
k−2 7→ψ(sk−2) γ

′
k−1,

where the first state-change is the execution ofcreate object of o by sk−2,

and the second is the execution oftransfer own (if o ∈ S) or grant own (if

o ∈ O − S) of the objecto by sk−2 to s. We have a desired state-change

sequence of lengthk− 1, and the algorithm returns false by the induction

hypothesis.

– s 6∈ Sγk−3
, but o ∈ Oγk−3

: in this case, we know that the state-change

γk−3 7→ψ(sk−2) γk−2 is the execution ofdestroy object of o by sk−2. Con-

sider instead the state-changesγk−3 7→ψ(sk−2) γ
′
k−2 7→ψ(sk−2) γ

′
k−1, where

the first state-change is the execution ofcreate subject of s by sk−2 and

the second is the execution oftransfer own (if o ∈ S) or grant own (if

o ∈ O−S) of the objecto to s by sk−2. We have the desired state-change

sequence of lengthk− 1, and the algorithm returns false by the induction

hypothesis.

– s 6∈ Sγk−3
, ando 6∈ Oγk−3

: we know thats 6∈ T (otherwises would not be

able to executecreate object as the last state-change in our state-change

sequence of lengthk). We know also thatsk−2 ∈ Sγk−3
− T . Consider

the following state-changes:γk−3 7→ψ(sk−2) γ
′
k−2 7→ψ(ψ(s) γ

′
k−1 where the

first state-change is the execution ofcreate subject of s by sk−2 and the
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second is the execution ofcreate object of o by s. We have the desired

state-change sequence of lengthk − 1, and the algorithm return false.

– s ∈ Sγk−3
, ando ∈ Oγk−3

: this case cannot happen, as then, we would

need to first destroy each ofs ando, which requires two state-changes

(we know thats 6= o, because otherwise,s would not be able to create

o in the last state-change in our sequence of lengthk). We have already

fixed two additional state-changes (create subject of s, andcreate object

of o as our last two steps in our state-change sequence of lengthk). As

there do not exist four state changes betweenγk−3 andγk, we know that

this case cannot happen.

create subject – in this case, we know thato ∈ Sγk
, and eithers = o (andx = control ),

or s = sk (andx = own). We know also thato 6∈ Sγk−1
. We have the following

cases.

• s = o: we have the following sub-cases.

– o ∈ Sγk−2
: in this case, we know thats = o ∈ Sγk−2

and control ∈

Mγk−2
[s, o], and therefore we have a state-change sequence of lengthk−2

with the appropriate properties, and therefore by the induction hypothesis,

the algorithm returns false.

– o 6∈ Sγk−2
: in this case, consider the state-changeγk−2 7→ψ(sk−1) γ

′
k−1

which is the execution ofcreate subject of o = s by sk−2 (we know that

sk−2 ∈ Sγk−2
− T ). We have the desired state-change sequence of length

k − 1 and the algorithm returns false by the induction hypothesis.

• s = sk: we have the following sub-cases.

– o ∈ Sγk−2
: in this case, we know that the state-changeγk−2 7→ψ(sk−2) γk−1

is the execution ofdestroy subject of o by sk−1 ∈ Sγk−2
− T . We know

also, in this case, thats ∈ Sγk−2
, wheres = sk. Therefore, we have the

state-changeγk−2 7→ψ(s) γ
′
k−1 which is the execution ofcreate subject of
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o by s. We have the desired state-change sequence of lengthk−1, and by

the induction hypothesis, the algorithm returns false.

– o 6∈ Sγk−2
: in this case, ifγk−2 = γ, then the algorithm does not return

in lines 7-11, but returns false in line 12, and we are done. Otherwise, we

know that there exists a prior state,γk−3. We have the following sub-sub-

cases.

∗ s ∈ Sγk−2
: in this case, consider the state-changeγk−2 7→ψ(s) γ

′
k−1

which is the execution ofcreate subject of o bys. We have the desired

state-change sequence of lengthk−1, and the algorithm returns false

by the induction hypothesis.

∗ s 6∈ Sγk−2
, s ∈ Sγk−3

ando ∈ Sγk−3
: this cannot happen as we know

thato 6∈ Sγk−2
ands 6∈ Sγk−2

, and we cannot create botho ands in a

single state-change.

∗ s 6∈ Sγk−2
, s 6∈ Sγk−3

ando ∈ Sγk−3
: in this case, we know that the

state-changeγk−3 7→ψ(sk−2) γk−2 is the execution ofdestroy subject

of o by sk−2. We consider, instead the state-changesγk−3 7→ψ(sk−2)

γ′k−2 7→ψ(sk−2) γ′k−1, where the first state-change is the execution

of create subject of s by sk−2, and the second is the execution of

transfer own of o to s by sk−2. We have the desired state-change se-

quence of lengthk−1, and the algorithm returns false by the induction

hypothesis.

∗ s 6∈ Sγk−2
, s ∈ Sγk−3

ando 6∈ Sγk−3
: in this case, consider the state-

changeγk−3 7→ψ(s) γ
′

k−2 which is the execution ofcreate subject of o

by s. We have the desired state-change sequence of lengthk − 2, and

the algorithm returns false by the induction hypothesis.

∗ s 6∈ Sγk−2
, s 6∈ Sγk−3

ando 6∈ Sγk−3
: in this case, we know thatsk−2 ∈

Sγk−3
− T . Consider the following state-changes:γk−3 7→ψ(sk−2)

γ′k−2 7→ψ(s) γ′k−1, where the first state-change is the execution of

create subject of s bysk−2, and the second is the execution ofcreate subject



34

of o by s. We have the desired state-change sequence of lengthk− 1,

and the algorithm returns false by the induction hypothesis.

destroy subject – in this case, we know thatx = own, s = sk, s 6= o (as in stateγk, s

has theown right overo), own ∈ Mγk−1
[ŝ, o] for someŝ ∈ Sγk−1

with ŝ 6= s, and

own ∈Mγk−1
[s, ŝ]. The state-change is the execution ofdestroy subject of ŝ by s to

aquireown overo. Let ω̂ = 〈ŝ, o, own〉, andê be the execution of the algorithm for

the input(γ, ω̂, T ). Then we know that̂e returns false, by the induction hypothesis.

We observe that̂e cannot return either in line 10 or line 13, because when inê,

y 6∈ Rψ. Similarly, letωs = 〈s, ŝ, own〉, andes be the execution of the algorithm for

the input(γ, ωs, T ). Then, we know thates returns false by the induction hypothesis,

but not in line 10 or line 13 (as in the case ofes as well,y 6∈ Rψ). Let e be the

execution of the algorithm for the input(γ, ω, T ). We have the following cases and

sub-cases.

• ê returns in line 9: in this case, we know thates cannot return in line 12,

becausês ∈ Oγ. Therefore, we have the following two sub-cases.

– es returns in line 9: in this case,e does not return in lines 7-8, but may

return false in line 9, in which case we are done. Otherwise,e does not

return in lines 10-13, bute returns false in line 16, because the conditions

are satisfied: we havês that ownso, ands ∈ Sγ − T that ownŝs.

– es returns in line 16: in this case,e does not return in lines 7-8, but may

return false in line 9, in which case we are done. Otherwise,e does not

return in lines 10-13. Finally,e returns false in line 16, because the con-

ditions are satisfied: we know that̂s owns o in γ, and that we have a

sequence of subjects as needed in lines 14-16, the first of which ownŝs.

• ê returns in line 12: in this casee does not return in lines 7-11, but returns false

in line 12 (in particular, we know thate does not return in line 11 becausees

either returns in line 9, which means thats ∈ Sγ − T , or returns in either line

12 or 16, which means that∃ s′ ∈ Sγ − T ).
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• ê returns in line 16: in this case,e does not return in lines 7-8, but may return in

line 9, in which case we are done. Otherwise,e does not return in lines 10-13,

but returns in line 16, because the same conditions that cause ê to return in line

16 causee to return in line 16 as well.

The “only if” part: we need to show that if the system is safe with respect toω andT , then

isSafeGD(γ, ψ, ω, T ) returns true. We show, equivalently, that ifisSafeGD(γ, ψ, ω, T )

returns false, then the system is not safe with respect toω andT . We do this by considering

each case that the algorithm returns false, and showing (by construction) that a sequence

of state-changesγ 7→ψ(s1) γ1 7→ψ(s2) · · · 7→ψ(sn) γn such thatx ∈ Mγn [s, o] exists (each

si ∈ Sγi−1
−T , and thesi’s may not be distinct from one another). We have the following

cases.

• The algorithm returns in line 9: in this case, we have a state-change sequence of

length 0 (i.e., simplyγ), as we know thatx ∈Mγ [s, o].

• The algorithm returns in line 10: in this case, we again have astate-change sequence

of length 0 (i.e., simplyγ), as we know that ifx ∈ Rb∩Rψ, thenx∗ ∈Mγ [s, o] (and

possession ofx∗ implies possession ofx), and ifx ∈ R∗
b ∩ Rψ, thenx ∈ Mγ [s, o].

There are no other cases that the algorithm returns in line 10.

• The algorithm returns in line 12: in this case, we know from the check on line 11 that

∃ s′ ∈ Sγ − T . Therefore, ifs 6∈ Sγ, we have the following state-change sequence:

γ 7→ψ(s′) γ1 7→ψ(s′) γ2 7→ψ(s′) γ3, where the first state-change is the execution of

create subject of s by s′, the second state-change is the execution ofcreate object

of o (if o ∈ O − S) or create subject of o (if o ∈ S) by s′, and the last state-change

is the execution of one of the following:

– transfer own, if o ∈ S andx = own

– grant own, if o ∈ O − S andx = own

– grant control, if o ∈ S andx = control
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– grant r, if x ∈ Rb ∩ Rψ

– grant r∗, if x ∈ R∗
b ∩ Rψ

If s ∈ Sγ, then we simply use the same sequence as above, but without the first

state-change (i.e.,γ 7→ψ(s′) γ2 7→ψ(s′) γ3).

• The algorithm returns in line 13: in this case, we know thatx 6= own andx 6=

control . If s 6∈ Sγ, our state-change sequence isγ 7→ψ(bs) γ1 7→ψ(bs) γ2, where the

first state-change is the execution ofcreate subject of s by ŝ, and the second state-

change is the execution oftransfer r of x to s overo if x ∈ Rb ∩ Rψ, or transfer r∗

to s over o if x ∈ R∗
b ∩ Rψ. If s ∈ Sγ, then we have simply exclude the first

state-change (creation ofs) from our state-change sequence.

• The algorithm returns in line 16: Letσ = {s1, . . . , sn} be the set of subjects alluded

to in line 16, and letsi ∈ σ be such thatsi ∈ Sγ − T , for some integeri such that

1 ≤ i ≤ n. We know thato ∈ Oγ. If s 6∈ Sγ, then the first state-change in our

state-change sequence is the execution ofcreate subject of s by si. If s ∈ Sγ, we

exclude this state-change.

We then havei− 1 executions ofdestroy subject of each subjectsj such thatj < i,

so that ifγ′ is the state at the end of thei− 1 executions, we haveown ∈ Mγ′ [si, o].

Finally, we have the following cases.

– o ∈ S andx = own: in this case, we have the execution oftransfer own of o

by si to s.

– o ∈ O − S andx = own: in this case, we have the execution ofgrant own of

o by si to s.

– o ∈ S, x = control and∃ s′ such thatcontrol ∈ Mγ′ [s
′, o]: in this case,

we have two state-changes, both initiated bysi. We first have the execu-

tion of delete r of the control right over o from s′, and then the execution

of grant control overo to s.
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– o ∈ S, x = control and∄ s′ such thatcontrol ∈ Mγ′ [s
′, o]: in this case, we

have the execution ofgrant control overo to s by si.

– x ∈ Rb ∩Rψ: in this case we have the execution ofgrant r of x overo to s by

si.

– x ∈ R∗
b ∩ Rψ: in this case we have the execution ofgrant r∗ of x overo to s

by si.

Theorem 3.2.2 Safety is efficiently decidable in a system based on the Graham-Denning

scheme. In particular,isSafeGD runs in time at worst cubic in the size of the components

of the start state and the set of rights in the system.

Proof We make the following observations about the running time ofisSafeGD in terms

of its input, namely,Sγ, Oγ, Rψ,Mγ[ ], ω andT , by considering each line in the algorithm

as follows. Each of the lines 5-10 runs in time at worst linearin the size of the input.

In particular, as we mention in the previous section, we adopt a naming convention for

subjects and objects that enables us to perform the checko ∈ O − S in line 8, in constant

time. Line 11 runs in time at worst quadratic in the size of theinput (|Sγ| × |T |), line 12

runs in time at worst linear (|Oγ|), and line 13 runs in time at worst quadratic (|Sγ|×|Rψ|).

As each subject is owned only by one other subject, each sequence to which line 14 refers

is of size at most|Sγ|. Furthermore, there are at most|Sγ| such sequences. Therefore, lines

14-16 run in time at worst cubic in the size of the input. The fact thatisSafeGD(γ, ψ, ω, T )

runs in time polynomial in the size of the input in conjunction with Lemma 3.2.1 proves

our assertion.

.

We observe that cubic running time is only an upper-bound, and is not necessarily

a tight upper-bound on the time-complexity of the algorithm. It may be possible, for

instance, to store the “chains” of owners in some auxiliary data structure to get a faster

running time.
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3.3 The Solworth-Sloan scheme and a mapping for DAC schemes

Solworth and Sloan [23] presents a new DAC scheme based on labels and relabelling

rules, and we call it the Solworth-Sloan scheme. While the presentation in [23] does not

clearly specify what information is maintained in a state and how states may change, we

were able to infer what is intended.

In this section, we give a precise characterization of the Solworth-Sloan scheme as

a state transition system. Our objective in doing so is to represent the Solworth-Sloan

scheme sufficiently precisely to enable comparisons to other DAC schemes. In particular,

our intent is to assess the mapping of DAC schemes to the Solworth-Sloan scheme that is

discussed by Solworth and Sloan [23]. Solworth and Sloan [23] refers to the DAC schemes

discussed by Osborn et al. [11] and asserts that it presents ageneral access control model

that is sufficiently expressive to implement each of these DAC models. In this section, we

show that this claim is incorrect.

We reiterate that the DAC schemes discussed by Osborn et al. [11] are either subsumed

by, or are minor extensions of the Graham-Denning scheme that we discuss in Section 3.2.

We have shown in Section 3.2.2 that safety is efficiently decidable in the Graham-Denning

scheme, and our algorithm can be used with relatively minor modifications to decide safety

in these schemes. Thereby, Solworth and Sloan’s [23] other assertion in reference to the

DAC schemes discussed by Osborn et al. [11], that “. . . every published general access

control model. . . either is insufficiently expressive to represent the full range of DACs or

has an undecidable safety problem. . . ”, is rendered invalid.

3.3.1 The Solworth-Sloan scheme

Overview There exists the following countably infinite sets of constants:

• a setS of subjects

• a setO of objects

• a setR of rights
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• a setG of groups

• a setT o of object tags

• a setT g of group tags

An object labelis a pair〈s, t〉, wheres ∈ S is a subject andt ∈ T o is a object tag.

Which rights a subject has over a particular object are determined indirectly in the

following three steps.

1. There is a labelling functionlabel that assigns an object label to each object.

An object’s label may be changed by object relabelling rules, which determine

whether an action rewriting one object label into another succeeds or not. For ex-

ample, when the object labelℓ1 = 〈s1, t1〉 is relabelled toℓ2 = 〈s2, t2〉, all objects

that originally have the labelℓ1 now have the labelℓ2.

2. There is an authorization functionauth that maps each object label and each right

to a group. For each object labelℓ and each rightr, members of the group identified

by auth(ℓ, r) have rightr over objects that are assigned the labelℓ.

3. Which subjects are members of a group is determined by native group sets (NGS’s),

which are complicated structures that we describe below. Wedefine a function

members that maps each group to a set of subjects.

We schematically illustrate the steps to determine whethera subject can access an object

or not as follows.

objects
label
−→ object labels

auth
−→ groups

members
−→ subjects

States,Γ A state,γ, is characterized by a 9-tuple〈 Sγ, Oγ, Rγ , Gγ, Lγ , labelγ, authγ,

ORSγ, Eγ〉.

• Sγ is the set of subjects in the stateγ; Oγ is the set of objects in the stateγ; Rγ is

the set of rights in the stateγ, andGγ is the set of groups in stateγ.
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There is a distinguished rightwr, which exists in every state, i.e.,wr ∈ Rγ . The role

of wr is explained in our discussion of the state-change rules.

• Lγ ⊂ Sγ × T
o is the finite set of object labels in the stateγ.

• labelγ: Oγ −→ Lγ assigns a unique object label to each object in the current state.

• authγ: (Lγ ×Rγ) −→ Gγ maps each pair of an object label and a right to a group.

For example,authγ [ℓ, re] = g1 means that the groupg1 has there right over all

objects labelledℓ.

• ORSγ is an ordered sequence of object relabelling rules, each rule has the form of

rl(p1, p2) = h, whererl is a keyword, andp1, p2 are object patterns. Anobject

patternis a pair, where the first element is a subject inS or one of the three special

symbols∗, ∗u, and∗w, and the second element is an object tag inT o or the special

symbol∗. In the rulerl(p1, p2) = h, h is a group, a subject, or one of the four

following sets: {}, {∗}, {∗u}, {∗w}. Whenh is {∗u} (resp.,{∗w}), {∗u} (resp.,

{∗w}) must appear inp1 or p2.

For example, the following is anORSγ , in whichs1 is a subject,t1 is an object tag,

andg1 is a group:

rl(〈∗u, t1〉, 〈s1, ∗〉) = g1

rl(〈s1, ∗〉, 〈∗u, t2〉) = {∗}

rl(〈∗u, ∗〉, 〈∗u, ∗〉) = {∗u}

rl(〈∗u, ∗〉, 〈∗w, ∗〉) = {}

• Eγ is a finite set of native group sets (NGS’s) that exist in the state,γ. Eache ∈ Eγ is

characterized by the 7-tuple〈e.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns, e.GRS〉.

– e.G ⊆ Gγ is the set of groups that are defined in this NGS.

– e.T g ⊆ T g is the set of group tags that are used in this NGS.

– The functione.gtag : Sγ −→ e.T g assigns a unique tag to each subject in the

current state.
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– e.ntg is a group tag ine.T g; it determines when a new subject is added to the

state, which tag is assigned to that subject. That is, if a subjects is added, then

e.gtag[s] would be set toe.ntg.

– e.admin points to one NGS inEγ; it identifies an NGS in the current state as

the administrative group set of the NGSe; e.admin could bee, in which casee

is the administrative group set for itself.

– e.patterns is a function mapping each group ine.G to a (possibly empty) set of

group patterns. Eachgroup patternis a pair where the first element is either a

subject in the current state or a special symbol∗u, and the second element is a

group tag ine.T g. In other words, the set of all group patterns that can be used

in e, denoted bye.P g, is (Sγ ∪ {∗u}) × e.T
g, and the signature ofe.patterns

is e.G −→ 2e.P
g

, where2e.P
g

denote the powerset ofe.P g.

For any groupg ∈ e.G, e.patterns[g] gives a set of patterns for determining

memberships of the group. Intuitively, the label〈∗u, tg〉 is in e.patterns[g]

means that any subject who is assigned (via the e.gtag function) the group tag

tg is a member of the group; and the label〈s, tg〉 is in e.patterns[g] means that

the subjects is a member of the group if it is assigned the group tagtg.

– e.GRS is a set of group relabelling rules, each has the formRelabel(tg1, t
g
2) = g,

whereRelabel is a keyword,tg1, t
g
2 ∈ e.T g are two group tags used in this

NGS, andg is a group defined in the administrative group sete.admin (i.e.,

g ∈ e.admin.G). The role of a member ofe.GRS is explained in the following

discussion of state-change rules in the context ofgroup tag relabel.

An additional constraint on the stateγ is that each group is defined in exactly one

NGS and each group tag can be used in at most one NGS, i.e.,

∀e1 ∈ Eγ∀e2 ∈ Eγ ( e1.G ∩ e2.g = ∅ ∧

e1.T
g ∩ e2.T

g = ∅ )
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We define the following auxiliary functionmembersγ[ ] : Gγ −→ Sγ such that

membersγ[g] gives the set of all subjects that are members of the groupg. To de-

termine whether a subjects is in membersγ[g], we first determine the unique NGS

e, such thatg ∈ e.G. Now, s ∈ membersγ[g] if and only if the tagtg assigned to

s (via e.gtag) satisfies the condition that at least one of the two group labels〈s, tg〉

and〈∗u, tg〉 are in the patterns forg, i.e.,

∃ tg ∈ e.T g ( e.gtag(s) = tg ∧

( 〈s, tg〉 ∈ e.patterns[g] ∨

〈∗u, tg〉 ∈ e.patterns[g] ) )

As an example, consider an NGSe where

e.G = { gemp , gmgr , gexe }

e.T g = { Boss ,Worker }

e.gtag[s1] = Boss

e.gtag[s2] = Boss

e.gtag[s3] = Worker

e.ntg = Worker

e.admin = e

e.patterns[gexe ] = { 〈s1,Boss〉 }

e.patterns[gmgr ] = { 〈∗u,Boss〉 }

e.patterns[gemp] =

{ 〈∗u,Boss〉, 〈∗u,Worker〉 }

e.GRS =

{ Relabel(Worker, Boss) = gmgr

Relabel(Boss,Worker) = gexe }

In this NGS, three groups are defined: executives (gexe), managers (gemp), and em-

ployees (gmgr ). There are two tags:Boss andWorker . There are three subjects;s1

ands2 are assigned the tagBoss ands3 is assigned the tagWorker . The new subject

tag isWorker , so each newly added subject will automatically be assignedthe tag
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Worker . The administrative NGS ise itself. According to the patterns, members of

the three groups are as follows:

membersγ[gexe ] = {s1}

membersγ[gmgr ] = {s1, s2}

membersγ[gmgr ] = {s1, s2, s3}

The group relabeling rules are such that managers can changea subject’s tag from

Worker to Boss and executives can change a subject’s tag fromBoss to Worker .

State-Change Rules,Ψ There is a single state transition ruleψ in this scheme;ψ con-

sists of six actions that can result in state changes. These actions are mentioned in Sec-

tion 3.4 of [23] without precise definitions. (We break up the“Relabel an object” operation

in [23] into two relabelling actions.) We describe the actions and their effects when apply-

ing them to a stateγ = 〈Sγ, Oγ, Rγ , Gγ, Lγ, labelγ, authγ,ORSγ, Eγ〉. We useγ′ to denote

the state after the change.

1. create object(s, o, ℓ = 〈s1, t
o
1〉): the subjects creates the objecto and assigns the

object labelℓ to the objecto.

This action succeeds whens ∈ Sγ, o 6∈ Oγ, ℓ ∈ Lγ and the subjects has the

distinguished rightwr on the object labelℓ, i.e.,s ∈ membersγ [authγ(ℓ,wr)].

Effects of the action areOγ′ = Oγ ∪ {o} and the functionlabel is extended so that

labelγ′(o) = 〈s1, t
o
1〉.

2. create label(s, ℓ = 〈s, t1〉, g1, g2, · · · , gk), wherek = |Rγ| is the number of rights in

γ: the subjects creates the new object labelℓ, and assigns the groupsg1, g2, · · · , gk

to have the rights overℓ, .

This action succeeds whens ∈ Sγ, ℓ 6∈ Lγ , the subject inℓ is s, andg1, · · · , gk ∈

Gγ.

The effects of this action are follows. Letr1, r2, · · · , rk be thek rights inRγ . Then

Lγ′ = Lγ ∪ {ℓ} and the functionauth is extended such thatauthγ′(ℓ, ri) = gi for

1 ≤ i ≤ k.
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3. create subject(s, s′): the subjects creates a new subjects′.

This action succeeds whens ∈ Sγ ands′ 6∈ Sγ.

The effects of this action areSγ′ = Sγ ∪ {s
′} and for every NGSe ∈ Eγ, e.gtag is

extended so that inγ′, e.gtag(s′) = e.ntg.

4. object relabel(s, ℓ1 = 〈s1, t1〉, ℓ2 = 〈s2, t2〉): the subjects relabels objects having

labelℓ1 to have the labelℓ2.

This action succeeds when the first relabelling rule in the object relabelling rule

sequenceORSγ thatmatches(ℓ1, ℓ2) is rl(p1, p2) = h ands ∈ value[h] (the function

value[ ] is defined below). The rulerl(p1, p2) = h matches(ℓ1, ℓ2) whenp1 matches

ℓ1 andp2 matchesℓ2 at the same time. When the pattern〈∗u, ∗〉 matches the label

〈s1, t1〉, we say that∗u is unified with the subjects1. Note that when∗u occurs more

than one times inp1, p2, they should be unified with the same subject.

Recall thath maybe a groupg, a subjects′, or one of the four sets:{}, {∗},

{∗u}, {∗w}. The functionvalue is defined as follows:value[g] = membersγ[g];

value[s′] = {s′}; value [{}] = ∅, value [{∗}] = Sγ ; value[{∗u}] is the subject that is

unified with∗u.

Consider the followingORSγ.

rl(〈∗u, t1〉, 〈s1, ∗〉) = g1

rl(〈s1, ∗〉, 〈∗u, t2〉) = {∗}

rl(〈∗u, ∗〉, 〈∗u, ∗〉) = {∗u}

rl(〈∗u, ∗〉, 〈∗w, ∗〉) = {}

The actionobject relabel(s, 〈s2, t1〉, 〈s1, t2〉) would match the first relabelling rule,

and it would succeed whens is a member of the groupg1. The actionobject relabel(s,

〈s1, t1〉, 〈s2, t2〉) would match the second relabelling rule and always succeeds. The

actionobject relabel(s, 〈s2, t2〉, 〈s2, t1〉) would match the third relabelling rule and

fail, because∗u is unified withs2. The actionobject relabel(s, 〈s2, t2〉, 〈s1, t1〉)

would match the fourth relabelling rule and fail.
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The effect of the relabel action is in the functionlabel. For every objecto such that

labelγ[o] = ℓ1, in the new state,labelγ′ [o] = ℓ2.

5. group tag relabel(s, s′, tg1, t
g
2): the subjects relabels the group tag for the subjects′

from t
g
1 to tg2.

This action succeeds when there is an NGSe ∈ Eγ such thattg1 andtg2 are used in

e, the subjects′ has the group tagtg1 in e, there is a corresponding group relabelling

rule ine.GRS, ands is a member of the group that can use the relabelling rule. More

precisely, the action succeeds when

∃e ∈ Eγ ( e.gtag[s′] = t
g
1 ∧

“Relabel(tg1, t
g
2) = g” ∈ e.GRS ∧

s ∈ membersγ [g] )

Note that the tagstg1 andtg2 can appear only in one NGS and they must appear in

the same NGS for the action to succeed. The effect of this action is such that the

functione.gtag is changed such that inγ′, e.gtag[s′] = t
g
2.

6. create ngs(s, e): the subjects creates a new NGSe.

To perform this action, one must provide the complete description of a new NGS

e, i.e., the 7-tuple〈e.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns, e.GRS〉. For this

action to succeed, the groups defined ine and the group tags ine must be new, i.e.,

they do not appear in any existing NGS’s inγ.

The effects are thatGγ′ = Gγ ∪ e.G andEγ′ = Eγ ∪ e.

Given the above state transition rule, we make the followingobservations. No removal

of subjects, objects, labels, or groups is defined. Given a state 〈Sγ , Oγ, Rγ , Gγ , Lγ,

labelγ, authγ , ORSγ , Eγ〉, Sγ (the set of subjects),Oγ (the set of objects), andGγ (the

set of groups) may change as a result ofcreate subject, create object, andcreate label,

respectively.Rγ , the set of rights, is fixed for the system and does not change.Gγ, the set

of groups, may change when a new NGS is added by thecreate ngs action. The function
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labelγ: Oγ −→ Lγ is extended when a new object is added and is changed when an object

relabelling actionobject relabel happens. The functionauthγ is extended when a new

object label is created; existing assignments do not change. ORSγ , the object relabelling

rule sequence, always stay the same.Eγ is extended when a new NGS is added.

3.3.2 Encoding a simple DAC scheme in the Solworth-Sloan scheme

In this section, we encode a relatively simple DAC scheme in the Solworth-Sloan

scheme. The DAC scheme we consider is a sub-scheme of the Graham-Denning scheme.

It is called Strict DAC with Change of Ownership (SDCO) and isone of the DAC schemes

discussed by Osborn et al. [11]. Our construction is based oncomments by Solworth and

Sloan [23] on how various DAC schemes can be encoded in the Solworth-Sloan scheme.

As the presentation in that paper is not detailed, we offer a more detailed construction. Our

construction lets us assess the utility of the Solworth-Sloan scheme in encoding SDCO.

After we present the encoding, we discuss its deficiencies from the standpoints of correct-

ness, and the overhead it introduces.

Strict DAC with Change of Ownership (SDCO) As we mention above, SDCO is a

sub-scheme of the Graham-Denning scheme (see Section 3.2.1). In SDCO, there is a

distinguished right,own, but nocontrol right. Also, there are no rights with the copy flag.

The state-change rules in SDCO are the commandsgrant r (for eachr ∈ Rψ), delete r

(for eachr ∈ Rψ), grant own, create object and create subject. We do not consider

commands to destroy subjects or objects as their counterparts are not specified for the

Solworth-Sloan scheme.

For simplicity, we consider an SDCO scheme that has only three rightsown, re,wr.

In the Solworth-Sloan scheme, if two objectso1 ando2 have the same label, theno1 and

o2 always have the same access characteristics. That is, in every state, the set of subjects

having a rightr over o1 is the same as the set of subjects having the rightr over o2.

In SDCO, one can reach states in whicho1 ando2 have different access characteristics.

Therefore, each object needs to be assigned a distinct label.
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Therefore, before creating an object, one has to create a newlabel. When creating

a new labelℓ, one has to assign a group toauth(ℓ, own) and a group toauth(ℓ, re); and

a group toauth(ℓ,wr). Each pair〈ℓ, r〉 determines a unique access class. Therefore, a

distinct group needs to be created. We useg(o, r) to denote the group that will be assigned

to have the rightr over objecto.

To keep track of which subset of rights a subject has over an object, we need8 group

tags, one corresponding to each subset of{own, re,wr}, we usetg(o, x), wherex is a 3-bit

string to denote these tags.

For a subjects to create an objecto, s needs to do the following:

1. Create an NGSe = 〈e.G, e.T g, e.gtag, e.ntg, e.admin, e.patterns, e.GRS〉 as

follows.

• e.G = {g(o, own), g(o, re), g(o,wr)}

• e.T g = {tg(o, 000), tg(o, 001), tg(o, 010), tg(o, 011), tg(o, 100), tg(o, 101),

tg(o, 110), tg(o, 111)}.

• e.gtag[s] = tg(o, 100) ande.gtag[s′] = tg(o, 000) for everys′ ∈ Sγ s.t.s′ 6= s.

• e.ntg = tg(o, 000)

• e.admin = e

• e.patterns[g(o, own)] =

{〈∗u, tg(o, 100)〉, 〈∗u, tg(o, 101)〉,

〈∗u, tg(o, 110)〉, 〈∗u, tg(o, 111)〉}

e.patterns[g(o, re)] =

{〈∗u, tg(o, 010)〉, 〈∗u, tg(o, 011)〉,

〈∗u, tg(o, 110)〉, 〈∗u, tg(o, 111)〉}

e.patterns[g(o,wr)] =

{〈∗u, tg(o, 001)〉, 〈∗u, tg(o, 011)〉,

〈∗u, tg(o, 101)〉, 〈∗u, tg(o, 111)〉}

That is, in each tag, the first bit corresponds toown, the second tore, and the

third to wr. In the set of patterns for the group that corresponds toown, the
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first bit is always set in each tag, and similarly for the groups that correspond

to re andwr respectively.

• e.GRS =

{Relabel(g(o, b1b2b3), g(o, b
′
1b

′
2b

′
3)) =

g(o, own)

| b1b2b3, b
′
1b

′
2b

′
3 ∈ {0, 1}

3 ∧ b1b2b3 andb′1b
′
2b

′
3 differ in exactly one bit}

2. Usecreate label(s, 〈s, t(o)〉, g(o, re), g(o,wr)) to create the labelℓ(o).

3. Use the actioncreate object(s, o, 〈s, t(o)〉) to create the objecto and label it with

ℓ(o).

To grant or revoke a right, one uses group relabelling. For instance, supposes is a

subject, and for the NGS,e, e.gtag[s] = tg(o, 000). Then, we know thats is not a member

of any of the groupsg(o, own), g(o, re) or g(o,wr). The subject would be granted the

right re by relabelling〈s, tg(o, 000)〉 to the label〈s, tg(o, 010)〉. The execution of this

relabelling results in the subject becoming a member of the groupg(o, re), thereby giving

him the rightre over the objecto. Similarly, the subject would have the rightre revoked

by relabelling〈s, tg(o, 010)〉 to the label〈s, tg(o, 000)〉. These operations can be carried

out only by a subject that is a member of the groupg(o, own).

We make the following observations about the above mapping.

• The above mapping does not capture the state invariant in SDCO that in every state,

there is exactly one owner for every object that exists. In the Solworth-Sloan sys-

tem that results from the above mapping, one can perform relabelling operations

and reach states in which there are mutiple owners for an object, or no owner for

an object. For instance, suppose that there already exists asubjects such that

s ∈ membersγ [g(o, own)]. Given the above relabelling rules, there is nothing that

precludes another subject from also becoming a member of thegroup g(o, own)

while s continues to maintain membership in that group. It is also possible to re-

move the membership ofs in the groupg(o, own) thereby leaving the object with
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no owner. It is unclear how we would prevent such situations from occuring in a

system based on the Solworth-Sloan scheme.

• We are unable to capture destruction of subjects and objectsas such constructs have

not been specified for the Solworth-Sloan scheme. Destruction of subjects and ob-

jects is generally considered to be an important component of any access control

system. We point out that a state-change rule to destroy a subject or an object in

the Solworth-Sloan scheme must be carefully designed, as there are several com-

ponents of the state (such as tags) of which we must keep track. Therefore, adding

such state-change specifications does not appear to be a trivial task. In particular,

it is unclear how and with what overhead we can capture in the Solworth-Sloan

scheme, the notion of transfer of ownership over objects owned by a subject that is

being destroyed.

• There is considerable overhead in implementing a relatively simple DAC scheme

(SDCO) in the Solworth-Sloan scheme. For each object, we need to create a set of

labels whose size is linear in the number of the subjects in the state. We also need

to create a set of tags whose size is exponential in the numberrights in the system.

These tags are used to define groups, and therefore the numberof entries in all the

sets of patterns is also exponential in the number of rights in the system. This is

considerable overhead considering the simplicity of SDCO,and the fact that one

can “directly” implement it, with efficiently decidable safety.

Our conclusion is that several of the claims made by Solworthand Sloan [23] are

incorrect. In particular, not only is the motivation (decidable safety) for the creation of

the new scheme invalid, but it is also not effective in implementing relatively simple DAC

schemes.
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4 SECURITY ANALYSIS IN ROLE-BASED ACCESS CONTROL

In this chapter, we discuss security analysis. In particular, we give a precise definition

of a family of security analysis problems in RBAC. In this family, we consider queries

that are more general than queries that are considered in safety analysis(such as in the

previous chapter, and work such as [2,9,25,41]). We show that two classes of the security

analysis problems in RBAC can be reduced to similar ones inRT[և,∩], a role-based trust-

management language for which security analysis has been studied [5]. The reduction

gives efficient algorithms for answering most kinds of queries in these two classes and

establishes the complexity bounds for the intractable cases. The kinds of reductions we

employ provide an introduction to the kinds of reductions weintroduce in the next chapter.

4.1 The need for security analysis in RBAC

The administration of large Role-Based Access Control (RBAC) systems is a chal-

lenging problem. A case study carried out with Dresdner Bank, a major European bank,

resulted in an RBAC system that has around 40,000 users and 1300 roles [62]. In sys-

tems of such size, it is impossible for a single system security officer (SSO) to administer

the entire system. Several administrative models for RBAC have been proposed in recent

years, e.g., ARBAC97 [37], ARABC02 [63], and CL03 (Cramptonand Loizou) [40]. In

all these models, delegation is used to decentralize the administration tasks.

A major advantage that RBAC has over discretionary access control (DAC) is that if

an organization uses RBAC as its access control model, then the organization (represented

by the SSO in the system) has central control over its resources. This is different from

DAC, in which the creator of a resource determines who can access the resource. In

most organizations, even when a resource is created by an employee, the resource is still

owned by the organization and the organization wants some level of control over how the
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resource is to be shared. In most administrative models for RBAC, the SSO delegates

to other users the authority to assign users to certain roles(thereby granting those users

certain access permissions), to remove users from certain roles (thereby revoking certain

permissions those users have), etc. While the use of delegation in the administration of

an RBAC system greatly enhances flexibility and scalability, it may reduce the control

that the organization has over its resources, thereby diminishing a major advantage RBAC

has over DAC. As delegation gives a certain degree of controlto a user that may be only

partially trusted, a natural security concern is whether the organization nonetheless has

some guarantees about who can access its resources. The effect of delegation on the

persistence of security properties in RBAC has not been considered in the literature as

such.

In this chapter, we propose to use security analysis techniques [5] to maintain desir-

able security properties while delegating administrativeprivileges. In security analysis,

one views an access control system as a state-transition system. In an RBAC system, state

changes occur via administrative operations. Security analysis techniques answer ques-

tions such as whether an undesirable state is reachable, andwhether every reachable state

satisfies some safety or availability properties. Examplesof undesirable states are a state

in which an untrusted user gets access and a state in which a user who is entitled to an

access permission does not get it.

4.2 Problem definition and main results

In [5], an abstract version of security analysis is defined inthe context of trust man-

agement. In this section we restate the definition in the context of general access control

schemes. We extend our definition of access control schemes from Chapter 1 to suit secu-

rity analysis.

Definition 4.2.1 (Access Control Schemes) An access control scheme is modelled as a

state-transition system〈Γ, Q,⊢,Ψ〉, in whichΓ is a set of states,Q is a set of queries,Ψ is

a set of state-change rules, and⊢: Γ×Q→ {true, false} is called the entailment relation,
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determining whether aquery is true or not in a given state. Astate, γ ∈ Γ, contains all

the information necessary for making access control decisions at a given time. When a

query,q ∈ Q, arises from an access request,γ ⊢ q means that the access corresponding

to the requestq is granted in the stateγ, andγ 6⊢ q means that the access corresponding

to q is not granted. One may also ask queries other than those corresponding to a specific

request, e.g., whether every principal that has access to a resource is an employee of the

organization. Such queries are useful for understanding the properties of a complex access

control system.

A state-change rule,ψ ∈ Ψ, determines how the access control system changes state.

Given two statesγ andγ1 and a state-change ruleψ, we writeγ 7→ψ γ1 if the change from

γ to γ1 is allowed byψ, andγ
∗
7→ψ γ1 if a sequence of zero or more allowed state changes

leads fromγ to γ1. If γ
∗
7→ψ γ1, we say thatγ1 is ψ-reachablefrom γ, or simplyγ1 is

reachable, whenγ andψ are clear from the context.

An example of an access control scheme is the HRU scheme, thatis derived from the

work by Harrison et al. [2]. The HRU scheme is based on the access matrix model [3, 4].

We assume the existence of three countably infinite sets:S, O, andR, which are the sets

of all possible subjects, objects, and rights. We assume further thatS ⊆ O. In the HRU

scheme:

• Γ is the set of all possible access matrices. Formally, eachγ ∈ Γ is identified by

three finite sets,Sγ ⊂ S, Oγ ⊂ O, andRγ ⊂ R, and a functionMγ [ ]: Sγ × Oγ →

2Rγ , whereMγ [s, o] gives the set of rightss has overo. An example of a state,γ,

is one in whichSγ = {Admin} , Oγ = {employeeData} ∪ Sγ , Rγ = {own, r}, and

Mγ [Admin,Admin] = ∅, andMγ [Admin, employeeData] = {own, r}. In this state,

two objects exist, of which one is a subject, and the system isassociated with the

two rights,own andr.

• Q is the set of all queries of the form:r ∈ [s, o], wherer ∈ R is a right,s ∈ S is

a subject, ando ∈ O is an object. This query asks whether the rightr exists in the

cell corresponding to subjects and objecto.
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• The entailment relation is defined as follows:γ ⊢ r ∈ [s, o] if and only if

s ∈ Sγ, o ∈ Oγ, and r ∈ Mγ [s, o]. For example, let the queryq1 be r ∈

M [admin, employeeData]. and the queryq2 beown ∈ M [admin, admin] Then, for

the state,γ, discussed above,γ ⊢ q1 andγ 6⊢ q2.

• Each state-transition ruleψ is given by a set of commands. Givenψ, the change

from γ to γ1 is allowed if there exists command inψ such that the execution of the

command in the stateγ results in the stateγ1. An example ofψ is the following set

of commands.

command createObject(s, o) command grant r(s, s′, o)

create object o if own ∈ [s, o]

enter own into [s, o] enter r into [s′, o]

The set of queries is not explicitly specified in [2]. It is conceivable to consider other

classes of queries, e.g., comparing the set of all subjects that have a given right over a

given object with another set of subjects. In our framework,HRU with different classes of

queries can be viewed as different schemes.

Definition 4.2.2 (Security Analysis in an Abstract Setting) Given an access control scheme

〈Γ, Q,⊢,Ψ〉, a security analysis instance takes the form〈γ, q, ψ,Π〉, whereγ ∈ Γ is a state,

q ∈ Q is a query,ψ ∈ Ψ is a state-change rule, andΠ ∈ {∃, ∀} is a quantifier. An instance

〈γ, q, ψ, ∃〉 asks whether there existsγ1 such thatγ
∗
7→ψ γ1 andγ1 ⊢ q. When the answer

is affirmative, we sayq is possible(givenγ andψ). An instance〈γ, q, ψ, ∀〉 asks whether

for everyγ1 such thatγ
∗
7→ψ γ1, γ1 ⊢ q. If so, we sayq is necessary(givenγ andψ).

For our example HRU scheme from above, adoptγ as the start state. Inγ, there is only

one subject (namely,Admin) and the access matrix is empty. The system is associated

with the two rights,own and r. Let the queryq be r ∈ M [Alice, employeeData] for

Alice ∈ S andemployeeData ∈ O. Let the state-change ruleψ be the set of two commands

createObject andgrant r . Then, the security analysis instance〈γ, q, ψ, ∃〉 is true. The
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reason is that although in the start stateγ, Alice does not have ther right over the object

employeeData, there exists a reachable state fromγ in which she has such access. The

security analysis instance〈γ, q, ψ, ∀〉 is false, as there exists at least one state reachable

from γ (γ itself) that does not entail the query.

Security analysis generalizes safety analysis. As we discuss in the following section,

with security analysis we can study not only safety, but alsoseveral other interesting prop-

erties, such as availability and mutual-exclusion.

4.2.1 A family of security analysis problems in RBAC

We now define a family of security analysis problems in the context of RBAC by

specifyingΓ, Q, and⊢, while leavingΨ abstract. By considering different possibilities

for Ψ, one obtains different classes of RBAC security analysis problems in this family. We

consider two specific instances ofΨ in sections 4.2.3 and 4.2.4.

An introduction to RBAC is provided in [13, 64]. We assume that there are three

countable sets:U (the set of all possible users),R (the set of all possible roles), andP (the

set of all possible permissions). The family of analysis problems is given by specializing

the analysis problem defined in Definition 4.2.2 to consider access control schemes that

haveΓ,Q, and⊢ specified as follows.

States (Γ): Γ is the set of all RBAC states. An RBAC state,γ, is a 3-tuple〈UA,PA,RH 〉,

in which the user assignment relationUA ⊆ U × R associates users with roles, the per-

mission assignment relationPA ⊆ P ×R associates permissions with roles, and the role

hierarchy relationRH ⊆ R×R is a partial order among roles inR. We denote the partial

order by�. r1 � r2 means that every user who is a member ofr1 is also a member ofr2

and every permission that is associated withr2 is also associated withr1.

Example 1 Figure 4.1 is an example of an RBAC state. It reflects an organization that has

engineers, and whose human-resource needs are outsourced (i.e., human-resource person-

nel are not employees). Everyone in the organization is an employee, and therefore a

member of the roleEmployee. Some of the employees are full-time (members of the role
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PartTime

Access

Role
Hierarchy

Users

PermissionsView

Engineer

ProjectLead

HumanResource

Employee

Edit

Alice Carol

Manager

FullTime

Bob

RH = { (Engineer,Employee) , (FullTime,Employee),
(PartTime,Employee) , (ProjectLead,Engineer),
(Manager, FullTime) }.

PA = { (Access,Employee) , (View,HumanResource),
(Edit,Engineer) }.

UA = { (Alice,PartTime) , (Alice,Engineer),
(Bob,Manager) , (Carol,HumanResource) }.

Figure 4.1.An example RBAC state with a role hierarchy, users and permis-
sions. Roles are shown in solid boxes, permissions in dashedboxes and users
in ovals. A line segment represents a role-role relationship, the assignment of a
permission to a role or the assignment of a user to a role.
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FullTime), and the others are part-time (members of the rolePartTime). All managers are

full-time employees. All employees have access to the office, and therefore have the per-

missionAccess. Engineers may edit code (have the permissionEdit), and human resource

personnel may view employee-details (have the permissionView).

We now discuss some example members ofUA, PA andRH . The userAlice is an en-

gineer who is a part-time employee. Therefore,(Alice,Engineer) and(Alice,PartTime)

are members ofUA. All employees have access to the office, and therefore,

(Access,Employee) is a member ofPA. Project leads are engineers, and therefore

(ProjectLead,Engineer) is a member ofRH (i.e.,ProjectLead � Engineer).

Given a stateγ, every role has a set of users who are members of that role and every

permission is associated with a set of users who have that permission. We formalize this

by having every stateγ define a functionusersγ : R ∪ P → 2U , as follows. For any

r ∈ R andu ∈ U , u ∈ usersγ [r] if and only if either(u, r) ∈ UA or there existsr1 such

that r1 � r and(u, r1) ∈ UA. For anyp ∈ P andu ∈ U , u ∈ usersγ[p] if and only if

there existsr1 such that(p, r1) ∈ PA andu ∈ usersγ[r1]. Note that the effect of permission

propagation through the role hierarchy is already taken into consideration by the definition

of usersγ [r1].

Example 2 Let the RBAC state shown in Figure 4.1 beγ. Then, for the roleEngineer,

usersγ [Engineer] = {Alice}. Similarly, for the permissionAccess, usersγ [Access] =

{Alice,Bob}.

Queries (Q): A queryq has the forms1 ⊒ s2, wheres1, s2 ∈ S, andS is the set of alluser

sets, defined to be the least set satisfying the following conditions: (1)R ∪ P ⊆ S, i.e.,

every roler and every permissionp is a user set; (2){u1, u2, · · · , uk} ∈ S, wherek ≥ 0

andui ∈ U for 1 ≤ i ≤ k, i.e., a finite set of users is a user set; and (3)s1∪s2, s1∩s2, (s1) ∈

S, wheres1, s2 ∈ S, i.e., the set of all user sets is closed with respect to union, intersection

and paranthesization. We extend the functionusersγ in a straightforward way to give a

valuation for all user sets. The extended functionusersγ : S → 2U is defined as follows:

usersγ [{u1, u2, · · · , uk}] = {u1, u2, · · · , uk}, usersγ [(s)] = usersγ[s], usersγ[s1 ∪ s2] =
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usersγ [s1] ∪ usersγ[s2], andusersγ[s1 ∩ s2] = usersγ[s1] ∩ usersγ [s2]. We say a query

s1 ⊒ s2 is semi-staticif one of s1, s2 can be evaluated independent of the state, i.e., no

role or permission appears in it. The reason we distinguish semi-static queries is that (as

we assert in Sections 4.4.1 and 4.4.2) a security analysis instance involving only such

queries can be solved efficiently.

Entailment (⊢): Given a stateγ and a querys1 ⊒ s2, γ ⊢ s1 ⊒ s2 if and only if

usersγ [s1] ⊇ usersγ[s2].

Example 3 Continuing from the previous examples, an example of a query, q, is

FullTime ∩ Access ⊒ {Alice}, for the roleFullTime, the permissionAccess and the user

Alice. This query is semi-static; the user set{Alice} can be evaluated (to itself) indepen-

dent of the state.

The queryq asks whetherAlice is a full-time employee that has access to the office.

To find out whetherγ entailsq or not, we evaluateq as follows. We evaluate the user set

FullTime to the set of users{Bob}. We evaluate the user setAccess to the set of users

{Alice,Bob}. We intersect the two sets of users to obtain the set of users{Bob}. The user

set{Alice} does not need further evaluation; it is already a set of users. We now check

whether the set of users{Alice} is a subset of the set of users{Bob} and determine that

γ 6⊢ q. If another queryq′ is Edit ⊒ ProjectLead (i.e., whether project leads can edit code),

thenγ ⊢ q′.

The state of an RBAC system changes when a modification is madeto a component of

〈UA,PA,RH 〉. For example, a user may be assigned to a role, or a role hierarchy re-

lationship may be added. In existing RBAC models, both constraints and administrative

models affect state changes in an RBAC system. For example, aconstraint may declare

that rolesr1 andr2 are mutually exclusive, meaning that no user can be a member of both

roles. If a useru is a member ofr1 in a state, then the state is not allowed to change to a

state in whichu is a member ofr2 as well. Anadministrative modelincludes administra-

tive relations that dictates who has the authority to changethe various components of an

RBAC state and what are the requirements these changes have to satisfy. Thus, in RBAC
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security analysis, a state-change rule may include constraints, administrative relations, and

possibly other information.

In this section, we leave the state-change rule abstract forthe following reasons. First,

there are several competing proposals for constraint languages [65–67] and for admin-

istrative models in RBAC [37, 40, 63, 68]; a consensus has notbeen reached within the

community. Furthermore, RBAC is used in diverse applications. It is conceivable that dif-

ferent applications would use different classes of constraints and/or administrative models;

therefore different classes of problems in this family are of interest.

Given a stateγ and a state-change ruleψ, one can ask the following questions using

security analysis.

• Simple Safetyis s ⊒ {u} possible? This asks whether there exists a reachable state

in which the user sets includes the (presumably untrusted) useru. A ‘no’ answer

means that the system is safe.

• Simple Availability is s ⊒ {u} necessary? This asks whether in every reachable

state, the (presumably trusted) useru is always included in the user sets. A ‘yes’

answer means that the resources associated with the user sets are always available

to the useru.

• Bounded Safetyis {u1, u2, . . . , un} ⊒ s necessary? This asks whether in every

reachable state, the user sets is bounded by the set of users{u1, u2, . . . , un}. A

‘yes’ answer means that the system is safe. A special case of bounded safety is

Mutual Exclusion, which asks: is∅ ⊒ (s1 ∩ s2) necessary? This asks whether in

every reachable state, no user is a member of both user setss1 and s2. A ‘yes’

answer means that the two user sets are mutually exclusive.

• Livenessis ∅ ⊒ s possible? This asks whether the user sets always has at least one

user. A ‘no’ answer means that the liveness of the resources associated withs holds

in the system.
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• Containment is s1 ⊒ s2 necessary? This asks whether in every reachable state,

every user in the user sets2 is in the user sets1. Containment can be used to express

a safety property, in which case, a ‘yes’ answer means that the safety property holds.

An example of containment for the RBAC state in Figure 4.1 andsome state-change

rule is: “is Employee ⊒ Access necessary?”, for the roleEmployee and the permis-

sion Access. This asks whether in every reachable state, every user who has the

permissionAccess (i.e., has access to the office) is a member of the roleEmployee

(i.e., is an employee). A ‘yes’ answer means that our desiredsafety property holds.

Containment can express availability properties also. E.g., “is Access ⊒ Employee

necessary?” asks whether the permissionAccess (i.e., access to the office) is always

available to members of the roleEmployee (i.e., employees). A ‘yes’ answer means

that the availability property holds.

We point out that that all the above properties (except for containment) use semi-static

queries, and therefore, as we mention in the context of queries in this section, we can

efficiently determine whether those properties are satisfied.

4.2.2 Usage of RBAC security analysis

In an RBAC security analysis instance〈γ, q, ψ,Π〉, the stateγ fully determines who

can access which resources. In addition to administrative policy information, the state-

change ruleψ also contains information about which users are trusted. Inany access

control system there aretrusted users; these are users who have the authority to take the

system to a state that violates security requirements but are trusted not to do so. A Senior

Security Office (SSO) is an example of a trusted user.

Security analysis provides a means to ensure that security requirements (such as safety

and availability) are always met, as long as users identifiedas trusted behave according to

the usage patterns discussed in this section. In other words, security analysis helps ensure

that the security of the system does not depend on users otherthan those that are trusted.
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Each security requirement is formalized as a security analysis instance, together with

an answer that is acceptable for secure operation. For example, in the context of the

RBAC system whose state in shown in Figure 4.1, a security requirement may be that

only employees may access the office. This can be formalized as an instance〈γ, q, ψ, ∀〉,

whereγ is the current state,q is Employee ⊒ Access, andψ specifies administrative policy

information. The ruleψ should precisely capture the capabilities of users that arenot

trusted. In other words, any change that could be made by suchusers should be allowed

by ψ. The ruleψ could restrict the changes that trusted users can make, because these

are trusted not to make a change without verifying that desirable security properties are

maintained subsequent to the change. For the example discussed above, the acceptable

answer is “yes”, as we want to ensure that everyone who has thepermissionAccess is an

employee. The goal is to ensure that such a security requirement is always satisfied.

Suppose that the system starts in a stateγ such that the answer to〈γ, q, ψ, ∀〉 is “yes”.

Further, suppose a trusted user (such as the SSO) attempts tomake a change that is not

allowed byψ, e.g., the SSO decides to grant certain administrative privileges to a user

u. Before making the change, SSO performs security analysis〈γ′, q, ψ′, ∀〉, whereγ′ and

ψ′ result from the prospective change. Only if the answer is “yes” does the SSO actually

make the change. The fact thatψ limits the SSO from making changes does not mean

that we require that the SSO never make such changes. It reflects the requirement that the

SSO perform security analysis and make only those changes that do not violate security

properties.

This way, as long as trusted users are cooperating, the security of an access control

system is preserved. One can delegate administrative privileges to partially trusted users

with the assurance that desirable security properties always hold. By using differentψ’s,

one can evaluate which sets of users are trusted for a given security property. In general, it

is impossible to completely eliminate the need to trust people. However, security analysis

enables one to ensure that the extent of this trust is well understood.
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4.2.3 Assignment and trusted users (AATU)

In this chapter, we present solutions to two classes of security analysis problems in

RBAC. Both classes use variants of the URA97 component of theARBAC97 administra-

tive model for RBAC [37]. URA97 specifies how theUA relation may change.

The first class is called Assignment And Trusted Users (AATU), in which a state-

change ruleψ has the form〈can assign, T 〉. The relationcan assign ⊆ R × C × 2R

determines who can assign users to roles and the preconditions these users have to satisfy.

C is the set of conditions, which are expressions formed usingroles, the two operators∩

and∪, and parentheses.〈ra, c, rset〉 ∈ can assign means that members of the rolera can

assign any user whose role memberships satisfy the condition c, to any roler ∈ rset . For

example,〈r0, (r1 ∪ r2) ∩ r3, {r4, r5}〉 ∈ can assign means that a user that is a member

of the roler0 is allowed to assign a user that is a member of at least one ofr1 andr2, and

is also a member ofr3, to be a member ofr4 or r5. T ⊆ U is a set of trusted users; these

users are assumed not to initiate any role assignment operation for the purpose of security

analysis. The setT is allowed to be empty.

Definition 4.2.3 (Assignment And Trusted Users – AATU) The class AATU is given by

parameterizing the family of RBAC analysis problems in Section 4.2.1 with the following

set of state-change rules. Each state-change ruleψ has the form〈can assign, T 〉 such

that a state change fromγ = 〈UA,PA,RH 〉 to γ1 = 〈UA1,PA1,RH 1〉 is allowed by

ψ = 〈can assign, T 〉 if PA = PA1, RH = RH 1, UA1 = UA ∪ {(u, r)}, where(u, r) 6∈

UA and there exists(ra, c, rset) ∈ can assign such thatr ∈ rset , u satisfiesc, and

usersγ [ra] 6⊆ T (i.e., there exists at least one user who is a member of the rolera and is not

in T , so that such a user can perform the assignment operation).
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Example 4 For the state,γ, shown in Figure 4.1 and discussed in the previous examples,

a state-change rule,ψ, in the class AATU is〈can assign, T 〉, where

can assign = {〈Manager,Engineer ∧ FullTime, {ProjectLead}〉,

〈HumanResource, true , {FullTime,PartTime}〉}

T = {Carol}

That is,ψ authorizes managers to assign a user to the roleProjectLead provided that the

user is a member of the rolesEngineer andFullTime. In addition,ψ authorizes anyone

that is a member of the roleHumanResource to assign users to the rolesFullTime and

PartTime. SettingT to {Carol} implies that we wish to analyze what kinds of states can

be reached via changes made by users other thanCarol.

Let q be the queryProjectLead ⊒ {Alice}. Then, γ 6⊢ q. The analysis instance

〈γ, q, ψ, ∃〉 asks whether there exists a reachable state in whichAlice is a project lead.

The instance is false. This is because forAlice to become a member ofProjectLead, she

would first need to be a full-time employee, and onlyCarol can grant anyone membership

to FullTime. As Carol is in T , she cannot initiate any operation. If we consider, instead,

the state-change ruleψ′, with the samecan assign asψ from above, but withT = ∅, then

the analysis instance〈γ, q, ψ′, ∃〉 is true.

Main results for AATU

• If q is semi-static (see Section 4.2.1), then an AATU instance〈γ, q, ψ,Π〉 can be

answered efficiently, i.e., in time polynomial in the size ofthe instance. This is

asserted by Theorem 4.4.2 in Section 4.4.1.

• Answering general AATU instances〈γ, q, ψ, ∀〉 is decidable but intractable (coNP-

hard). This is asserted by Theorem 4.4.3 in Section 4.4.1.
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4.2.4 Assignment and revocation (AAR)

In this class, a state-change ruleψ has the form〈can assign, can revoke〉, where

can assign is the same as in AATU, andcan revoke ⊆ R × 2R determines who can

remove users from roles. That〈ra, rset〉 ∈ can revoke means that the members of role

ra can remove a user from a roler ∈ rset. No explicit set of trusted users is specified

in AAR, unlike AATU. In AATU and AAR, the relationscan assign andcan revoke are

fixed inψ. This means that we are assuming that changes to these two relations are made

only by trusted users.

Definition 4.2.4 (Assignment And Revocation – AAR) The class AAR is given by para-

meterizing the family of RBAC analysis problems in Section 4.2.1 with the following set

of state-change rules. Each state-change ruleψ has the form〈can assign, can revoke〉

such that a state-change fromγ = 〈UA,PA,RH 〉 to γ1 = 〈UA1,PA1,RH 1〉 is al-

lowed byψ = 〈can assign, can revoke〉 if PA = PA1, RH = RH 1, and either (1)

UA1 = UA ∪ {(u, r)} where(u, r) 6∈ UA and there exists(ra, c, rset) ∈ can assign

such thatr ∈ rset , u satisfiesc, andusersγ [ra] 6= ∅, i.e., the useru being assigned to

r is not already a member ofr and satisfies the preconditionc, and there is at least one

user that is a member of the rolera that can perform the assignment operation; or (2)

UA1 ∪ (u, r) = UA where(u, r) 6∈ UA1, and there exists(ra, rset) ∈ can revoke such

thatr ∈ rset andusersγ[ra] 6= ∅, i.e., there exists at least one user in the rolera that can

revoke the useru’s membership in the roler.

We assume that an AAR instance satisfies the following three properties. (1) The ad-

ministrative roles are not affected bycan assign andcan revoke. The administrative roles

are given by those that appear in the first component of anycan assign or can revoke tu-

ple. These roles should not appear in the last component of any can assign or can revoke

tuple. This condition is easily satisfied in URA97, as it assumes the existence of a set of

administrative roles that is disjoint from the set of normalroles. (2) If a role is an adminis-

trative role (i.e., appears as the first component of acan assign or can revoke tuple), then

it has at least one user assigned to it. This is reasonable, asan administrative role with no
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members has no effect on the system’s protection state. (3) If a can assign tuple exists for

a role, then acan revoke tuple also exists for that role.

Example 5 For the state,γ, from Figure 4.1, an example of a state-change rule in AAR is

ψ = 〈can assign, can revoke〉, where

can assign = {〈Manager,Engineer ∧ FullTime, {ProjectLead}〉,

〈HumanResource, true , {FullTime,PartTime}〉}

can revoke = {〈Manager, {ProjectLead,Engineer}〉,

〈HumanResource, {FullTime,PartTime}〉}

We point out that thecan assign we use in this example is the same as thecan assign we

use in Example 4. Then, ifq is the queryProjectLead ⊒ Access (i.e., only project leads

have access to the office), the AAR analysis instance〈γ, q, ψ, ∃〉 is true. Ifq′ is the query

Edit ⊒ {Alice} (i.e.,Alice can edit code), then the analysis instance〈γ, q′, ψ, ∀〉 is false.

Main results for AAR

• If q is semi-static (see Section 4.2.1), then an AAR instance〈γ, q, ψ,Π〉 can be

answered efficiently, i.e., in time polynomial in the size ofthe instance. This is

asserted by Theorem 4.4.5 in Section 4.4.2.

• Answering general AAR instances〈γ, q, ψ, ∀〉 is coNP-complete. This is asserted

by Theorem 4.4.6 in Section 4.4.2.

4.2.5 Discussion of the definitions

Our specifications ofcan assign andcan revoke are from URA97, which is one of

the three components of ARBAC97 [37]. The state-change rules considered in AAR are

similar to those in URA97, but they differ in the following two ways. One, URA97 allows

negation of roles to be used in a precondition; AAR does not allow this. Two, URA97 has
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separate administrative roles; AAR does not require the complete separation of adminis-

trative roles from ordinary roles. AATU differs from URA97 in two additional ways. One,

AATU does not have revocation rules. Two, AATU has a set of trusted users, which does

not exist in URA97.

The other components of ARBAC97 are PRA97 and RRA97, for administering permission-

role assignment/revocation, and the role hierarchy, respectively. In this chapter, we study

the effect of decentralizing user-role assignment and revocation, and assume that changes

to the permission-role assignment relation and the role hierarchy are centralized, i.e,

made only by trusted users. In other words, whoever is allowed to make changes to

permission-role assignment and the role hierarchy will runthe security analysis and only

make changes that do not violate the security properties. The administration of the user-

role relation is most likely to be delegated, as that is the component of an RBAC state that

changes most frequently.

AATU and AAR represent two basic cases of security analysis in RBAC. Although

we believe that they are useful cases, they are only the starting point. Many other more

sophisticated cases of security analysis in RBAC remain open. For example, it is not

clear how to deal with negative preconditions in role assignment, and how to deal with

constraints such as mutually exclusive roles.

4.3 Overview of security analysis inRT[և,∩]

In [5], Li et al. studies security analysis in the context of theRT family of Role-based

Trust-management languages [69,70]. In particular, security analysis inRT[և,∩] and its

sub-languages is studied.RT[և,∩] is a slightly simplified (yet expressively equivalent)

version of theRT0 language introduced in [70] (RT[և,∩] is calledSRTin [5]). In this

section we summarize the results for security analysis inRT[և,∩]. In Section 4.4 we

reduce security analysis in AATU and AAR to that inRT[և,∩].

Syntax of RT[և,∩] The most important concept in theRT languages is also that of

roles. A role in RT[և,∩] is denoted by a principal (corresponding to a user in RBAC)
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Simple Member
syntax: K.r ←− K1

meaning: members(K.r) ⊇ {K1}
LP clause: m(K, r,K1)

Simple Inclusion
syntax: K.r ←− K1.r1
meaning: members(K.r) ⊇ members(K1.r1)
LP clause: m(K, r, ?Z) :− m(K1, r1, ?Z)

Linking Inclusion
syntax: K.r ←− K.r1.r2
meaning: members(K.r) ⊇

⋃
K1∈K.r1

members(K1.r2)
LP clause: m(K, r, ?Z) :− m(K, r1, ?Y ), m(?Y, r2, ?Z)

Intersection Inclusion
syntax: K.r ←− K1.r1 ∩K2.r2
meaning: members(K.r) ⊇ members(K1.r1) ∩members(K2.r2)
LP clause: m(K, r, ?Z) :− m(K1, r1, ?Z), m(K2, r2, ?Z)

Figure 4.2. Statements inRT[և,∩]. There are four types of statements.
For each type, we give the syntax, the intuitive meaning of the statement,
and the LP (Logic-Programming) clause corresponding to thestatement.
The clause uses one ternary predicatem, wherem(K, r,K1) means that
K1 is a member of the roleK.r Symbols that start with “?” represent
logical variables.
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followed by a role name, separated by a dot. For example, whenK is a principal andr is a

role name,K.r is a role. Each principal has its own name space for roles. Forexample, the

‘employee’ role of one company is different from the ‘employee’ role of another company.

A role has a value which is a set of principals that are members of therole.

Each principalK has the authority to designate the members of a role of the form

K.r. Roles are defined bystatements. Figure 4.2 shows the four types of statements in

RT[և,∩]; each corresponds to a way of defining role membership. A simple-member

statementK.r ←− K1 means thatK1 is a member ofK ’s r role. This is similar to

a user assignment in RBAC. A simple inclusion statementK.r ←− K1.r1 means that

K ’s r role includes (all members of)K1’s r1 role. This is similar to a role-role dominance

relationshipK1.r1 � K.r. A linking inclusion statementK.r ←− K.r1.r2 means thatK.r

includesK1.r2 for everyK1 that is a member ofK.r1. An intersection inclusion statement

K.r ←− K1.r1 ∩K2.r2 means thatK.r includes every principal who is a member of both

K1.r1 andK2.r2. Linking and intersection inclusion statements do not directly correspond

to constructs in RBAC, but they are useful in expressing memberships in roles that result

from administrative operations. Our reduction algorithmsin Sections 4.4.1 and 4.4.2 use

linking and intersection inclusion statements to capture user-role memberships affected by

administrative operations.

States An RT[և,∩] stateγT consists of a set ofRT[և,∩] statements. The seman-

tics of RT[և,∩] is given by translating each statement into a datalog clause. (Datalog

is a restricted form of logic programming (LP) with variables, predicates, and constants,

but without function symbols.) See Figure 4.2 for the datalog clauses corresponding to

RT[և,∩] statements. We call the datalog program resulting from translating each state-

ment inγT into a clause that is thesemantic programof γT , denoted bySP(γT ).

Given a datalog program,DP , its semantics can be defined through several equivalent

approaches. The model-theoretic approach viewsDP as a set of first-order sentences and
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uses the minimal Herbrand model as the semantics. We writeSP(γT ) |= m(K, r,K ′)

whenm(K, r,K ′) is in the minimal Herbrand model ofSP(γT ).

State-change RulesA state-change rule is of the formψT = (G,S), whereG andS are

finite sets of roles.

• Roles inG are calledgrowth-restricted(or g-restricted); no statements defining

these roles can be added. (A statement defines a role if it has the role to the left

of ‘←−’.) Roles not inG are calledgrowth-unrestricted(or g-unrestricted).

• Roles inS are calledshrink-restricted(or s-restricted); statements defining these

roles cannot be removed. Roles not inS are calledshrink-unrestricted(ors-unrestricted).

Queries Li et al. [5] considers the following three forms of queries:

• Membership: A.r ⊒ {D1, . . . , Dn}

Intuitively, this means that all the principalsD1, . . . , Dn are members

of A.r. Formally, γT ⊢ A.r ⊒ {D1, . . . , Dn} if and only if

{Z | SP(γT ) |= m(A, r, Z)} ⊇ {D1, . . . , Dn}.

• Boundedness: {D1, . . . , Dn} ⊒ A.r

Intuitively, this means that the member set ofA.r is bounded by the given set of

principals. Formally,γT ⊢ {D1, . . . , Dn} ⊒ A.r if and only if {D1, . . . , Dn} ⊇

{Z | SP(γT ) |= m(A, r, Z)}.

• Inclusion: X.u ⊒ A.r

Intuitively, this means that all the members ofA.r are also members ofX.u. For-

mally, γT ⊢ X.u ⊒ A.r if and only if {Z | SP(γT ) |= m(X, u, Z)} ⊇ {Z |

SP(γT ) |= m(A, r, Z)}.

Each form of query can be generalized to allow compound role expressions that use

linking and intersection. These generalized queries can bereduced to the forms above

by adding new roles and statements to the state. For instance, {} ⊒ A.r ∩ A1.r1.r2 can
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be answered by addingB.u1←−A.r ∩ B.u2, B.u2←−B.u3.r2, andB.u3←−A1.r1 to

γT , in whichB.u1, B.u2, andB.u3 are new g/s-restricted roles, and by posing the query

{} ⊒ B.u1.

Main results for security analysis inRT[և,∩]

Membership and boundedness queries (both whether a query ispossible and whether

a query is necessary) can be answered in time polynomial in the size of the input. The

approach taken in [5] uses logic programs to derive answers to those security analysis

problems. This approach exploits the fact thatRT[և,∩] is monotonic in the sense that

more statements will derive more role membership facts. This follows from the fact that

the semantic program is a positive logic program.

Inclusion queries are more complicated than the other two kinds. In [5], only the∀

case (i.e., whether an inclusion query is necessary) is studied. It is not clear what the secu-

rity intuition is of an∃ inclusion query (whether an inclusion query is possible); therefore,

it is not studied in [5]. The problem of deciding whether an inclusion query is necessary,

i.e., whether the set of members of one role is always a superset of the set of members of

another role is calledcontainment analysis. It turns out that the computational complex-

ity of containment analysis depends on the language features. InRT[ ], the language that

allows only simple member and simple inclusion statements,containment analysis is in

P. It becomes more complex when additional policy language features are used. Contain-

ment analysis iscoNP-complete forRT[∩] (RT[ ] plus intersection inclusion statements),

PSPACE-complete forRT[և] (RT[ ] plus linking inclusion statements), and decidable

in coNEXP for RT[և,∩].

4.4 Reducing AATU and AAR to security analysis inRT[և,∩]

In this section, we solve AATU (Definition 4.2.3) and AAR (Definition 4.2.4). Our

approach is to reduce each of them to security analysis inRT[և,∩].
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4.4.1 Reduction for AATU

The reduction algorithmAATU Reduce is given in Figure 4.4; it uses the subroutines

defined in Figure 4.3. Given an AATU instance〈γ = 〈UA,PA,RH 〉, q = s1 ⊒ s2, ψ =

〈can assign, T 〉, Π ∈ {∃, ∀}〉, AATU Reduce takes〈γ, q, ψ〉 and outputs〈γT , qT , ψT 〉

such that theRT[և,∩] analysis instance〈γT , qT , ψT ,Π〉 has the same answer as the orig-

inal AATU instance.

In the reduction, we use one principal for every user that appears inγ, and the spe-

cial principalSys to represent the RBAC system. TheRT[և,∩] role names used in the

reduction include the RBAC roles and permissions inγ and some additional temporary

role names. TheRT[և,∩] role Sys.r represents the RBAC roler and theRT[և,∩]

role Sys.p represents the RBAC permissionp. Each(u, r) ∈ UA is translated into the

RT[և,∩] statementSys.r ←− u. Eachr1 � r2 is translated into theRT[և,∩] state-

mentSys.r2←− Sys.r1 (asr1 is senior tor2, any member ofr1 is also a member ofr2.)

Each(p, r) ∈ PA is translated intoSys.p←− Sys.r (each member of the roler has the

permissionp.)

The translation of thecan assign relation is less straightforward. Each〈ra, rc, r〉 ∈

can assign is translated into theRT[և,∩] statementSys.r ←− Sys.ra.r ∩ Sys.rc. The

intuition is that a userua who is a member of the rolera assigning the useru to be a

member of ther role is represented as adding theRT[և,∩] statementua.r←−u. Asua is

a member of theSys.ra role, the useru is added as a member to theSys.r role if and only

if the useru is also a member of therc role.

In the reduction, all theSys roles (i.e.,Sys.x) are fixed (i.e., both g-restricted and s-

restricted). In addition, for each trusted useru in T , all the roles starting withu are also

g-restricted; this is because we assume that trusted users will not perform operations to

change the state (i.e., user-role assignment operations).We may also make roles starting

with trusted users s-restricted; however, this has no effect as no statement defining these

roles exists in the initial state.
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1 Subroutine Trans(s, γT) {
2 /* Trans(s,γT) returns an RT[և,∩] role corresponding
3 to the user set s*/
4 if s is an RBAC role then return Sys.s;
5 else if s is an RBAC permission then return Sys.s;
6 else if s is a set of users then {
7 name=newName(); foreach u ∈ s {
8 γT+= Sys.name←−u;}
9 return Sys.name; }
10 else if (s = s1 ∪ s2) then {
11 name=newName(); γT+=Sys.name←−Trans(s1, γ

T );
12 γT+= Sys.name←−Trans(s2, γ

T );
13 return Sys.name; }
14 else if (s = s1 ∩ s2) then {
15 name=newName();
16 γT+=Sys.name←−Trans(s1, γ

T ) ∩ Trans(s2, γ
T );

17 return Sys.name; }
18 } /* End Trans */
19
20 Subroutine QTrans(s, γT) {
21 /* Translation for users sets that are used at top
22 level in a query */
23 if s is a set of users then return s;
24 else return Trans(s,γT);
25 } /* End QTrans */
26
27 Subroutine HTrans(s, γT) {
28 if s is an RBAC role then return HSys.s;
29 else if (s = s1 ∪ s2) then {
30 name=newName(); γT+= Sys.name←−HTrans(s1, γ

T );
31 γT+= Sys.name←−HTrans(s2, γ

T ); return Sys.name; }
32 else if (s = s1 ∩ s2) then {
33 name=newName();
34 γT+=Sys.name←−HTrans(s1, γ

T ) ∩ HTrans(s2, γ
T );

35 return Sys.name; }
36 } /* End HTrans */

Figure 4.3. SubroutinesTrans, QTrans, andHTrans are used by the two
reduction algorithms. We assume call-by-reference for theparameterγT .
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37 AATU Reduce (〈 γ = 〈UA,PA,RH 〉, q = s1 ⊒ s2, ψ = 〈can assign, T 〉 〉)
38 {
39 /* Reduction algorithm for AATU */
40
41 γT = ∅; qT = QTrans(s1,γT)⊒QTrans(s2,γT);
42 foreach (ui, rj) ∈ UA { γT+= Sys.rj←−ui; }
43 foreach (ri, rj) ∈ RH { γT+= Sys.rj←−Sys.ri; }
44 foreach (pi, rj) ∈ PA { γT+= Sys.pi←−Sys.rj; }
45 foreach (ai, s, rset) ∈ can assign {
46 if (s==true) { foreach r ∈ rset {
47 γT+= Sys.r←−Sys.ai.r; } }
48 else { tmpRole=Trans(s,γT);
49 foreach r ∈ rset { name=newName();
50 γT+= Sys.name←−Sys.ai.r;
51 γT+= Sys.r←−Sys.name ∩ tmpRole

52 } } }
53 foreach RT role name x appearing in γT {
54 G+=Sys.x; S+=Sys.x; foreach user u ∈ T { G+=u.x; } }
54 return 〈γT , qT , (G ,S )〉;
55 } /* End AATU Reduce */

Figure 4.4. Reduction Algorithm for AATU
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Example 6 Consider the state-change ruleψ we discuss in Example 4, in which

can assign consists of the two tuples〈Manager,Engineer ∧ FullTime,ProjectLead〉 and

〈HumanResource, true , {FullTime,PartTime}〉, andT = {Carol}. Let γ be the RBAC

state shown in Figure 4.1, and letq be the queryProjectLead ⊒ Alice. Then, we represent

the output ofAATU Reduce (〈γ, q, ψ〉) as〈γT , qT , ψT 〉. qT is Sys.ProjectLead ⊒ {Alice}.

The following RT statements inγT result fromUA:

Sys.Engineer←− Alice Sys.PartTime←− Alice

Sys.Manager←− Bob Sys.HumanResource←− Carol

The following statements inγT result fromRH :

Sys.Employee←− Sys.Engineer Sys.Employee←− Sys.FullTime

Sys.Employee←− Sys.PartTime Sys.Engineer ←− Sys.ProjectLead

Sys.FullTime←− Sys.Manager

The following statements inγT result fromPA:

Sys.View←− Sys.HumanResource Sys.Access←− Sys.Employee

Sys.Edit←− Sys.Engineer

The following statements inγT result fromcan assign. The first two statements reflect

the ability of a member ofHumanResource to assign users toFullTime andPartTime with

no precondition, and the remaining statements reflect the ability of a member ofManager

to assign users toProjectLead provided that they are already members ofFullTime and

Engineer.

Sys.FullTime←− Sys.HumanResource.FullTime

Sys.PartTime←− Sys.HumanResource.PartTime

Sys.NewRole1 ←− Sys.Engineer ∩ Sys.FullTime

Sys.NewRole2 ←− Sys.Manager.ProjectLead

Sys.ProjectLead←− Sys.NewRole1 ∩ Sys.NewRole2
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γT = 〈G, S〉, whereG is the growth-restricted set of roles, andS is the shrink-

restricted set of roles.G consists of every role of the formSys.x and every role of the

form Carol.x. The latter is included inG becauseCarol is in the set of trusted usersT .

S consists of every role of the formSys.x. It is clear that the security analysis instance

〈γT , qT , ψT , ∃〉 is false, asAlice can never become a member ofSys.ProjectLead. If we

adopt as the state-change ruleψT1 , that is the same asψT except thatT = ∅, then roles

of the form Carol.x would be growth-unrestricted. And there exists a stateγT1 that is

reachable fromγT which has the following statements in addition to all the statements in

γT .

Carol.FullTime←− Alice Bob.ProjectLead←− Alice

These statements are necessary and sufficient forSys.ProjectLead←− Alice to be inferred

in γT1 . Thus, the security analysis instance〈γT , qT , ψT1 , ∃〉 is true.

The following proposition asserts that the reduction is sound, meaning that one can

use RT security analysis techniques to answer RBAC securityanalysis problems.

Proposition 4.4.1 Given an AATU instance〈γ, q, ψ,Π〉, let 〈γT , qT , ψT 〉 =

AATU Reduce(〈γ, q, ψ〉), then:

• Assertion 1:For every RBAC stateγ′ such thatγ
∗
7→ψ γ

′, there exists anRT[և,∩]

stateγT ′ such thatγT
∗
7→ψT γT ′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

• Assertion 2:For everyRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, there exists an

RBAC stateγ′ such thatγ
∗
7→ψ γ

′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

Proof For Assertion 1:A state change in AATU occurs when a user assignment operation

is successfully performed. For every RBAC stateγ′ such thatγ
∗
7→ψ γ

′, let γ0, γ1, · · · , γm

be RBAC states such thatγ = γ0 7→ψ γ1 7→ψ · · · 7→ψ γm = γ′. We construct a sequence

of RT[և,∩] statesγT0 , γ
T
1 , · · · , γ

T
m as follows:γT0 = γT ; for eachi = [0..m−1], consider

the assignment operation that changesγi to γi+1, let it be the operation in which a user
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u1 adds(u, r) to the user-role assignment relation; the stateγTi+1 is obtained by adding

u1.r←−u to γTi . Let γT ′ beγTm.

Step one:Prove that ifγ′ ⊢ q thenγT ′ ⊢ qT . It is sufficient to prove the following:

for eachi ∈ [0..m], if γi implies that a certain useru is a member of a roler (or has

the permissionp), thenγTi implies thatu is a member of theRT[և,∩] role Sys.r (or

Sys.p). We use induction oni to prove this. The base case (i=0) follows directly from

theAATU Reduce algorithm; lines 42–44 reproducesUA, RH , PA in theRT[և,∩] state

γT0 . For the step, assumes that the induction hypothesis holds for γ0, · · · , γi, consider

γi+1. Let the operation leading toγi+1 be one in whichu1 assignsu to a roler. As both

sequences of states are increasing, we only need to considerrole memberships implied by

γi+1 but notγi; these are caused (directly or indirectly) by this assignment. There must

exist a〈ra, c, r〉 ∈ can assign to enable this assignment; thus inγi, u1 is a member of

the rolera andu satisfies the conditionc. By induction hypothesis, inγTi , u1 is a member

of Sys.ra andu satisfies the conditionc. From the translation and the construction of

γTi+1, γ
T
i+1 has the following statements:u1.r ←− u, Sys.r ←− Sys.ra.r, andSys.r ←−

Sys.name ∩ tmpRole (wheretmpRole corresponds to the preconditionc). Furthermore,

in γTi+1, u1 is a member of the rolera andu satisfies the conditionc. Therefore,u is a

member of theSys.r role inγTi+1.

Step two:Prove that ifγT ′ ⊢ qT thenγ′ ⊢ q. It is sufficient to show that if anRT[և,∩]

role membership is implied byγT ′, then the corresponding RBAC role membership (or

permission possession) is also implied. A detailed proof uses induction on the number of

rounds in which a bottom-up datalog evaluation algorithm outputs a ground fact. Here,

we only point out the key observations. (For details of similar proofs, see the Appendix

in [5].) A RT[և,∩] role membership is proved by statements generated on lines 42–52.

The first three cases correspond to theUA, RH , PA. For the last case, there must exist a

statementu1.r←− u in γT ′, and it implies thatu is a member of the roleSys.r. By the

construction ofγT ′, the useru has been assigned to the roler during the changes leading

to γ′.
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For Assertion 2:Given anRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, we can assume

without loss of generality thatγT ′ adds toγT only simple member statements. Also, we

only need to consider statements definingui.rj , whereui is a user inγ andrj is a role in

γ. Consider the set of all statements inγT ′ having the formui.rj←− uk. For each such

statement, we perform the following operation on the RBAC state, starting fromγ, have

ui assignuk to the rolerj. Such an operation may not succeed either becauseui is not

in the right administrative role or becauseuk does not satisfy the required precondition.

We repeat to perform all operations that could be performed.That is, we loop through

all such statements and repeat the loop whenever the last loop results in a new successful

assignment. Letγ′ be the resulting RBAC state. It is not difficult to see thatγ′ implies the

same role memberships asγT ′; using arguments similar to those used above.

As we discuss in detail in [71], the above proposition asserts thatAATU Reduce is

security (analysis) preserving in the sense that an AATU analysis instance is true if and

only if theRT[և,∩] analysis instance that is the output ofAATU Reduce is true. That is,

AATU Reduce preserves the answer to every security analysis instance. We argue the need

for assertion 1 in the proposition by considering the case that there exists a reachable state

γ′ in the RBAC system, but no corresponding reachable stateγT ′ in theRT[և,∩] system

produced byAATU Reduce. Let the corresponding query beq. If γ′ ⊢ q, then letΠ be∃,

and ifγ′ 6⊢ q, then letΠ be∀. In the former case, the security analysis instance in RBAC is

true, but the instance in theRT[և,∩] system that is the output ofAATU Reduce is false.

In the latter case, the analysis instance in RBAC is false, but the instance inRT[և,∩] is

true. Therefore, forAATU Reduce to preserve the answer to every analysis instance, we

need assertion 1.

Similarly, we argue the need for assertion 2 by considering the contrary situation. Let

γT ′ be a reachable state inRT[և,∩] for which there exists no corresponding state in

RBAC. Let the corresponding query inRT[և,∩] beqT . If γT ′ ⊢ qT , then letΠ be∃, and

let Π be∀ otherwise. Again,AATU Reduce would not preserve the answer to a security

analysis instance, and we would not be able to use the answer to an analysis instance in

RT[և,∩] as the answer to the corresponding instance in RBAC.
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Theorem 4.4.2 An AATU instance〈γ, q, ψ,Π〉 can be solved efficiently, i.e., in time poly-

nomial in the size of the instance, ifq is semi-static.

Proof Let the output of AATU Reduce corresponding to the input〈γ, q, ψ〉 be

〈γT , qT , ψT 〉. If q is semi-static, we observe thatqT is semi-static as well. Furthermore,

AATU Reduce runs in time polynomial in its input. We know from Li et al. [5]that in

RT[և,∩], a security analysis instance with a semi-static query can be answered in time

polynomial in the size ofγT . Therefore, in conjunction with Proposition 4.4.1, we can

conclude that a security analysis instance with a semi-static query in the RBAC system

can be answered in time polynomial in the size of the system (i.e., the size of〈γ, q, ψ〉).

Theorem 4.4.3 An AATU instance〈γ, q, ψ,Π〉 is coNP-hard.

Proof We show that the general AATU problem iscoNP-hard by reducing the monotone

3SAT problem to the complement of the AATU problem. Monotone3SAT is the problem

of determining whether a boolean expression in conjunctivenormal form with at most

three literals in each clause such that the literals in a clause are either all positive or all

negative, is satisfiable. Monotone 3SAT is known to beNP-complete [72].

Let φ be an instance of monotone 3SAT. Thenφ = c1 ∧ . . . cl ∧ cl+1 ∧ . . . ∧ cn where

c1, . . . , cl are the clauses with positive literals, andcl+1, . . . , cn are the clauses with neg-

ative literals. Letp1, . . . , ps be all the propositional variables inφ. For each clause with

negative literalsck = (¬ pk1 ∨ ¬ pk2 ∨ ¬ pk3), definedk = ¬ ck = (pk1 ∧ pk2 ∧ pk3).

Then, φ is satisfiable if and only ifc1 ∧ . . . cl ∧ ¬ (dl+1 ∨ . . . ∨ dn) is satisfiable.

Let η = (c1 ∧ . . . ∧ cl) → (dl+1 ∨ . . . ∨ dn) where→ is logical implication. Then,

c1 ∧ . . . cl ∧ ¬ (dl+1 ∨ . . . ∨ dn) = ¬ η. Therefore,φ is satisfiable if and only ifη is

not valid. We now constructγ, ψ andq in an AATU instance such thatq = z1 ⊒ z2 is true

for user setsz1 andz2 in all states reachable fromγ if and only if η is valid.

In γ, we have a rolea (which is for administrators) andUA contains(A, a) whereA is

a user (i.e., the rolea is not empty in terms of user-membership). With each propositional

variablepi in η, we associate a roleri. For eachri, we add〈a, true, ri〉 to can assign.

That is, anyone can be assigned to the roleri. We letT (the set of trusted users) be empty.
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For eachj such that1 ≤ j ≤ l, we associate the clausecj = (pj1 ∨ pj2 ∨ pj3), with a user

setsj = (rj1 ∪ rj2 ∪ rj3). For eachk such that(l + 1) ≤ k ≤ n, we associate the clause

dk = (pk1 ∧ pk2 ∧ pk3), with a user setsk = (rk1 ∩ rk2 ∩ rk3). In our queryq = z1 ⊒ z2,

we letz1 = sl+1 ∪ . . . ∪ sn andz2 = s1 ∩ . . . ∩ sl. We now need to show thatz1 ⊒ z2 in

every state reachable fromγ if and only if η is valid. We show thatz1 ⊒ z2 is not true in

every state reachable fromγ if and only if η is not valid.

For the “only if” part, we assume that there exists a stateγ′ that is reachable fromγ

such that inγ′ there exists a useru that is a member of the user setz2, but notz1. Consider

a truth-assignmentI for the propositional variables inη as follows: ifu is a member of

the roleri in γ′, thenI(pi) = true. Otherwise,I(pi) = false. UnderI, η is not true, as

(c1 ∧ . . . ∧ cl) is true, but(dl+1 ∨ . . . ∨ dn) is false. Therefore,η is not valid.

For the “if” part, we assume thatη is not valid. Therefore, there exists a truth-

assignmentI such that(c1 ∧ . . . ∧ cl) is true, but(dl+1 ∨ . . . ∨ dn) is false. Consider a

stateγ′ that has the following members inUA in addition to the ones inγ: for eachpi that

is true underI, (u, ri) ∈ UA. Otherwise,(u, ri) 6∈ UA. γ′ is reachable fromγ, and inγ′,

z1 ⊒ z2 is not true.

We observe from the above proof that the AATU problem remainscoNP-hard even

when every precondition that occurs incan assign is specified astrue; the expressive

power of the queries is sufficient for reducing the monotone 3SAT problem to the general

AATU problem. We infer from our reduction and results fromRT[և,∩] that an AATU

instance is inPSPACE.

4.4.2 Reduction for AAR

The reduction algorithm for AAR is given in Figure 4.5. The reduction algorithm in-

cludes in the set of principals a principal for every user inU and five special principals:

Sys, RSys, HSys, ASys, andBSys. Again, theSys roles simulate RBAC roles and per-

missions. In this reduction, we do not distinguish whether arole assignment operation is

effected by one user or another, and use only one principal,ASys, to represent every user
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56 AAR Reduce (〈 γ = 〈UA,PA,RH 〉, q = s1 ⊒ s2,
57 ψ = 〈can assign, can revoke〉 〉)
58 { /* Reduction algorithm for AAR */
59 γT = ∅; qT = QTrans(s1,γT)⊒QTrans(s2,γT);
60 foreach (ui, rj) ∈ UA {
61 γT+= HSys.rj←−ui; γT+= RSys.rj←−ui;
62 γT+= Sys.rj←−RSys.rj; }
63 foreach (ri, rj) ∈ RH {
64 γT+= Sys.rj←−Sys.ri; γT+= HSys.rj←−HSys.ri; }
65 foreach (pi, rj) ∈ PA { γT+= Sys.pi←−Sys.rj; }
66 foreach (ai, s, rset) ∈ can assign {
67 if (s==true) {
68 foreach r ∈ rset {
69 γT+= HSys.r←−BSys.r; γT+= Sys.r←−ASys.r; }
70 } else { tmpRole = HTrans(s,γT); /* precondition */
71 foreach r ∈ rset {
72 γT+= HSys.r←−BSys.r ∩ tmpRole;
73 γT+= Sys.r←−ASys.r ∩ tmpRole; }
74 } }
75 foreach RT role name x appearing in γT {
76 G+=Sys.x; S+=Sys.x; G+=HSys.x; S+=HSys.x; G+=RSys.x;
77 S+=BSys.x; S+=RSys.x; S+=ASys.x;
78 } /* when a can_revoke rule exists for r, ASys.r and
79 RSys.r can shrink */
80 foreach (ai, rset) ∈ can revoke {
81 foreach r in rset { S-=RSys.r; S-=ASys.r; } }
82 return 〈γT , qT , (G ,S )〉;
83 } /* End AAR Reduce */

Figure 4.5.AAR Reduce: the reduction algorithm for AAR
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that exercises the user-role assignment operation. The roles of the principalRSys contain

all the initial role memberships inUA; these may be revoked in state changes.HSys.r

maintains the history of the RBAC roler; its necessity is argued using the following sce-

nario. A user is a member ofr1, which is the precondition for being added to another role

r2. After one assigns the user tor2 and revokes the user fromr1 the user’s membership

in r2 should be maintained, even though the precondition is no longer satisfied (a similar

justification for this approach is provided in the context ofARBAC97 [37] as well).BSys

is similar toASys, but it is used to construct theHSys roles. An administrative operation

to try to add a userui to the rolerj is represented by adding the statementASys.rj←−ui

andBSys.rj←− ui to γT . An administrative operation to revoke a userui from the role

rj is represented by removing the statementsRSys.rj←− ui andASys.rj←− ui if either

exists inγT .

Example 7 Consider the state-change ruleψ we discuss in Example 5, in which

can assign consists of the two tuples〈Manager,Engineer ∧ FullTime,ProjectLead〉 and

〈HumanResource, true , {FullTime,PartTime}〉, andcan revoke consists of the two tu-

ples 〈Manager, {Engineer,ProjectLead}〉 and 〈HumanResource, {FullTime,PartTime}〉.

Let γ be the RBAC state shown in Figure 4.1, and letq be the queryProjectLead ⊒

Alice. Then, we represent the output ofAATU Reduce (〈γ, q, ψ〉) as〈γT , qT , ψT 〉. qT is

Sys.ProjectLead ⊒ {Alice}. The following RT statements inγT result fromUA:

HSys.Engineer ←− Alice RSys.Engineer ←− Alice

HSys.PartTime←− Alice RSys.PartTime←− Alice

HSys.Manager←− Bob RSys.Manager←− Bob

HSys.HumanResource←− Carol RSys.HumanResource←− Carol

Sys.Engineer←− RSys.Engineer Sys.FullTime←− RSys.FullTime

Sys.HumanResource←− RSys.HumanResource

Sys.PartTime←− RSys.PartTime

The following statements inγT result fromRH :

Sys.Employee←− Sys.Engineer HSys.Employee←− HSys.Engineer
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Sys.Employee←− Sys.FullTime HSys.Employee←− HSys.FullTime

Sys.Employee←− Sys.PartTime HSys.Employee←− HSys.PartTime

Sys.Engineer←− Sys.ProjectLead HSys.Engineer ←− HSys.ProjectLead

Sys.FullTime←− Sys.Manager HSys.FullTime←− HSys.Manager

The following statements inγT result fromPA:

Sys.View←− Sys.HumanResource Sys.Access←− Sys.Employee

Sys.Edit←− Sys.Engineer

The following statements inγT result fromcan assign:

HSys.FullTime←− BSys.FullTime Sys.FullTime←− ASys.FullTime

HSys.PartTime←− BSys.PartTime Sys.PartTime←− ASys.PartTime

Sys.NewRole1 ←− HSys.Engineer ∩ HSys.FullTime

HSys.ProjectLead←− BSys.ProjectLead ∩ Sys.NewRole1

Sys.ProjectLead←− ASys.ProjectLead ∩ Sys.NewRole1

ψT = 〈G, S〉, whereG is the growth-restricted set of roles, andS is the shrink-restricted

set of roles. Unlikecan assign, can revoke results only in some roles not being added to

S. G is comprised of all roles of the formSys.x, HSys.x andRSys.x (but notBSys.x or

ASys.x). S is comprised of all roles of the formSys.x, HSys.x, RSys.x andASys.x, except

the rolesRSys.Manager, ASys.Manager, RSys.Engineer, ASys.Engineer, RSys.FullTime,

ASys.FullTime, RSys.PartTime, andASys.PartTime. This is because those roles appear in

can revoke rules, and therefore may shrink.

There exists a stateγT1 that is reachable fromγT that has the following statements in

addition to the ones inγT .

BSys.FullTime←− Alice ASys.ProjectLead←− Alice

We can now infer that inγT1 , HSys.FullTime←− Alice, and therefore,HSys.NewRole1 ←−

Alice, and so, Sys.ProjectLead ←− Alice. Thus, the security analysis instance
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〈γT , qT , ψT , ∃〉 is true. If we consider, instead, the queryqT1 which is Sys.PartTime ⊒

Alice, then asRSys.PartTime is a shrink-unrestricted role, there exists a stateγT2 that is

reachable fromγT in which the statementRSys.PartTime ←− Alice is absent. There-

fore, we would conclude thatSys.ProjectLead does not includeAlice. Consequently, the

analysis instance〈ψT , qT1 , γ
T , ∀〉 is false.

We are able to also demonstrate the need for the roles associated with the principals

HSys andBSys. Consider the state,γT2 that can be reached fromγT1 by removing the

statementRSys.FullTime ←− Alice. Now, Sys.FullTime does not includeAlice. This

is equivalent toCarol revoking the membership of the userAlice to the roleFullTime.

This affects the precondition that one can be assigned to therole ProjectLead only if

one is already a member of the rolesEngineer andFullTime. Nonetheless, we observe that

γT2 ⊢ q
T , as indeed it should. That is,Alice should continue to be a member ofProjectLead

even if subsequent to her becoming a member ofProjectLead, her membership is removed

from FullTime. We observe that this is the case because the roleBSys.FullTime is shrink-

restricted, and therefore one cannot remove the statementBSys.FullTime ←− Alice once

it has been added, and consequently,HSys.FullTime←− Alice is true, and thereforeAlice

continues to be a member of the roleProjectLead (i.e., is included inSys.ProjectLead). Of

course,Alice can later have her membership revoked from the roleProjectLead (by Bob),

and this is equivalent to the statementASys.ProjectLead←− Alice being removed.

The following proposition asserts that the reduction is sound.

Proposition 4.4.4 Given an AAR instance〈γ, q, ψ,Π〉, let 〈γT , qT , ψT 〉 =

AAR Reduce(〈γ, q, ψ〉), then:

• Assertion 1:For every RBAC stateγ′ such thatγ
∗
7→ψ γ

′, there exists anRT[և,∩]

stateγT ′ such thatγT
∗
7→ψT γT ′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

• Assertion 2:For everyRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, there exists an

RBAC stateγ′ such thatγ
∗
7→ψ γ

′ andγ′ ⊢ q if and only ifγT ′ ⊢ qT .

Proof For Assertion 1: A state change in AAR occurs when a user assignment or a

revocation operation is successfully performed. Given anyRBAC stateγ′ such thatγ
∗
7→ψ
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γ′, let γ0, γ1, · · · , γm be RBAC states such thatγ = γ0 7→ψ γ1 7→ψ · · · 7→ψ γm = γ′.

We construct a sequence ofRT[և,∩] statesγT0 , γ
T
1 , · · · , γ

T
m as follows: γT0 = γT ; for

eachi = [0..m − 1], consider the operation that changesγi to γi+1. If it is an assignment

operation in which a useru1 adds(u, r) to the user-role assignment relation; the stateγTi+1

is obtained by addingSys.r←−u andBSys.r←−u toγTi . For each revocation that revokes

a useru from a roler, we remove (if they exist) from theRT[և,∩] state the statements

ASys.r←−u andRSys.r←−u. Let γT ′ beγTm.

Step 1:Prove that ifγ′ ⊢ q thenγT ′ ⊢ qT . Step 1a:We prove that inγT ′, HSys.r

captures all users that are ever a member of the roler at some time, i.e., for each

i ∈ [0..m], if u ∈ usersγi
[r], thenu is a member of theRT[և,∩] role HSys.r in γTm(

SP(γT
m) |= m(HSys, r, u)

)
. We prove this by induction oni. The basis (i = 0) is true,

because inγT we reproduceUA andRH in the definition of theHSys roles (see lines 60–

64 in Figure 4.5); furthermore, theHSys roles never shrink. For the step, we show that if

(u, r) ∈ UAi+1, thenu is a member of theRT[և,∩] roleHSys.r in γTm. This is sufficient

for proving the induction hypothesis because the effect of propagation through role hierar-

chy is captured by the definition ofHSys roles. If(u, r) ∈ UAi+1, then either(u, r) ∈ UA

(in which caseHSys.r←−u ∈ γT ′), or there is an assignment operation that assignsu to

r (in which caseBSys.r←− u ∈ γT ′). Let (ra, c, r) ∈ can assign be an administrative

rule used for this assignment, then inγi, the useru satisfiesc. By induction hypothesisu’s

role memberships inγi is captured inu’s role memberships inHSys.r; thereforeu would

satisfy the translated preconditiontmpRole. Thereforeu is a member of the roleHSys.r

in γTm (because of the statementHSys.u←−BSys.r ∩ tmpRole).

Step 1b:We prove that inγT ′ the Sys roles capture all the role memberships inγ′.

It is sufficient to prove the following: letUA′ be the user assignment relation inγ′, if

(u, r) ∈ UA′, thenu is a member of the roleSys.r in γT ′. If (u, r) ∈ UA, then either

(u, r) ∈ UA and this is never revoked (in which caseRSys.r←−u ∈ γT and this statement

is never removed, thereforeRSys.r←− u ∈ γT ′); or there is an assignment operation in

C, and this assignment is not revoked after it (in which caseASys.r←−u ∈ γT ′).
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Step two:Prove that ifγT ′ ⊢ qT thenγ′ ⊢ q. It is sufficient to show that if anRT[և,∩]

role membership is implied byγT ′, then the corresponding RBAC role membership (or

permission possession) is also implied. A detailed proof uses induction on the number of

rounds in which a bottom-up datalog evaluation algorithm outputs a ground fact. Here, we

only point out the key observation. ART[և,∩] role membership is proved by statements

generated on lines 60–65 or 71–74. The first three cases correspond to theUA, RH , PA.

For the last case, there must exist a statementASys.r←−u in γT ′, and it implies thatu is

a member of the roleSys.r. By the construction ofγT ′, the useru has been assigned to the

role r during the changes leading toγ′ and the assignment is not revoked after that.

Also, we only need to consider statements definingui.rj, whereui is a user inγ and

rj is a role inγ. Consider the set of all statements inγT ′ having the formui.rj←−uk. For

each such statement, we perform the following operation on the RBAC state, starting from

γ, haveui assignuk to the rolerj. Such an operation may not succeed either becauseui is

not in the right administrative role or becauseuk does not satisfy the required precondition.

We repeat to perform all operations that could be performed.That is, we loop through all

such statements and repeat the loop whenever the last loop results in a new successful

assignment. Letγ′ be the resulting RBAC state. It is not difficult to see thatγ′ implies the

same role memberships asγT ′; using arguments similar to those used above.

For Assertion 2:Among theRT[և,∩] roles,Sys roles andHSys roles are fixed;ASys

roles can grow or shrink;RSys roles can shrink but not grow; andBSys roles can grow but

not shrink. Given anRT[և,∩] stateγT ′ such thatγT
∗
7→ψT γT ′, we can assume without

loss of generality thatγT ′ adds toγT only simple member statements. Consider the set of

all statements inγT ′ definingASys, BSys, andRSys roles. We construct the RBAC state

γ′ as follows. (1) For every statementBSys.r←−u in γT ′, assign the useru to the roler.

Repeat through all such statements until no new assignment succeeds. Using arguments

similar to those used for proving assertion 1, it can be shownthat now the RBAC roles have

the same memberships as theHSys roles. (2) Do the same thing for all theASys.r←− u

statements. At this point, all the role memberships for theSys roles inγT ′ are replicated

in the RBAC roles, because all theHSys memberships have been added. (3) Remove the
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extra role membership in the RBAC state, i.e., those not in the Sys roles. The ability to

carry out this step depends upon the requirement (in Definition 4.2.4) that if there is a

can assign rule for a role, then there is also revoke rule for the role.

Our comments regarding the need for assertions 1 and 2 to preserve answers to security

analysis instances, that we make in the previous section in the context ofAATU Reduce,

apply to the above proposition in the context ofAAR Reduce as well. If either of the

assertions does not hold, then we cannot use the answer to theRT[և,∩] analysis instance

as the answer to the corresponding RBAC instance.

Theorem 4.4.5 An AAR instance〈γ, q, ψ,Π〉 can be solved efficiently, i.e., in time poly-

nomial in the size of the instance, ifq is semi-static.

Proof Let the output ofAAR Reduce for the input〈γ, q, ψ〉 be〈γT , qT , ψT 〉. If q is semi-

static, so isqT . As AAR Reduce runs in time polynomial in its input andqT can be an-

swered in time polynomial in the size ofγT (which is shown by Li et al. [5]),q can be

answered in time polynomial in the size of the system (i.e., the size of〈γ, q, ψ〉). Thus, an

AAR instance with a semi-static query can be solved efficiently.

Theorem 4.4.6 An AAR instance〈γ, q, ψ,Π〉 is coNP-complete.

Proof We deduce that an AAR instance is incoNP from the fact thatAAR Reduce runs

in time polynomial in the size of the system, and the corresponding security analysis prob-

lem in theRT[∩] system that is the output ofAAR Reduce is coNP-complete. (RT[∩] is a

sub-language ofRT[և,∩] that allows only the first, second and fourth kinds of statements

from Figure 4.2.) That is, ifq is not true in every state reachable fromγ, then we offer

as counterproof the algorithmAAR Reduce and the counterproof in theRT[և,∩] system

thatqT is not true in every state reachable fromγT .

We can show that the general AAR problem iscoNP-hard in almost exactly the same

way that we show the result for the AATU problem in the proof for Theorem 4.4.3. The

only difference is that for every roleri that is associated with a propositional variablepi,

apart from a rule incan assign, we add the rule〈a, ri〉 to can revoke. We construct the
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queryq the same way as in that proof, and show in the same way thatq is true in every

state reachable fromγ if and only if η is valid.



88



89

5 COMPARING THE EXPRESSIVE POWER OF ACCESS CONTROL MODELS

In this chapter, we introduce a theory for comparing access control models based on two

notions of reductions that we call state-matching reductions and reductions, together with

detailed justifications for the design decisions. We analyze the deficiency of using the

implementation paradigm to compare access control models and show that it leads to a

weak notion of simulations and cannot be used to differentiate access control models from

one another based on expressive power. Also, we apply our theory in four cases. We show

that:

• there exists no state-matching reduction from a rather simple trust-management

scheme,RT[ ] [73], to the HRU scheme [2]. This is the first formal evidence of

the limited expressive power of the HRU scheme. Li et al. [6] show that, contrary to

the undecidability result of safety analysis in the HRU scheme, safety analysis and

more sophisticated security analysis in the trust management scheme,RT[և,∩],

is decidable. Li et al. [6] conjecture that these schemes cannot be encoded in the

HRU scheme and that the expressive powers of the HRU scheme and of RT[ ] are

incomparable. In this chapter, we present formal evidence for this assertion.

• there exists a reduction, but no state-matching reduction from a rather simple DAC

scheme, Strict DAC with Change of Ownership (SDCO), to RBAC with ARBAC97

[37] as the administrative model. Several authors [11, 55] have argued that RBAC

is more expressive than various forms of DAC, including SDCO. This is the first

evidence of the limited expressive power of an RBAC scheme incomparison to

DAC.

• there exists a state-matching reduction from RBAC with an administrative scheme

that is a component of ARBAC97 [37] toRT[∩] [69,74], a trust-management scheme.
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This shows that state-matching reductions can be constructed for powerful access

control schemes in the literature.

• there exists no state-matching reduction from ATAM to TAM, when we permit

queries in ATAM that check for both the absence and the presence of a right in

a cell. This revisits the issue addressed by Sandhu and Ganta[18] and formalizes

the benefit from the ability to check for the absence of rightsin addition to the ability

to check for the presence of rights.

5.1 Comparisons based on security analysis

A methodology that can be used for comparing two systems is simulation. A require-

ment used in the literature for simulations is the preservation of simple safety properties.

Indeed, this is the only requirement on simulations in [10, 17, 18]. If a simulation of

schemeA in schemeB satisfies this requirement, then a system inA reaches an unsafe

state if and only if the system’s mapping inB reaches an unsafe state. In other words, the

result of simple safety analysis is preserved by the simulation.

Simple safety analysis, i.e., determining whether an access control system can reach

a state in which an unsafe access is allowed, was first formalized by [2] in the context of

the well-known access matrix model [3, 4]. In the HRU scheme [2], a protection system

has a finite set of rights and a finite set of commands. A state ofa protection system is an

access control matrix, with rows corresponding to subjects, and columns corresponding

to objects; each cell in the matrix is a set of rights. A command takes the form of “if

the given conditions hold in the current state, execute a sequence of primitive operations.”

Each condition tests whether a right exists in a cell in the matrix. There are six kinds of

primitive operations: enter a right into a specific cell in the matrix, delete a right from a

cell in the matrix, create a new subject, create a new object,destroy an existing subject,

and destroy an existing object. The following is an example command that allows the

owner of a file to grant the read right to another user.
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command grantRead(u1,u2,f)

if ‘own’ in (u1,f)

then enter ‘read’ into (u2,f)

end

In the example,u1, u2 andf are formal parameters to the command. They are instan-

tiated by objects (or subjects) when the command is executed. Harrison et al. [2] proves

that in the HRU scheme, the safety question is undecidable, by showing that any Turing

machine can be simulated by a protection system.

Treating the preservation of simple safety properties as the sole requirement of simula-

tions is based on the implicit assumption that simple safetyis theonly interesting property

in access control schemes, an assumption that is not valid. When originally introduced

by [2], simple safety was described as only one class of queries one can consider. Li et

al. [5,73] have introduced the notion of security analysis,which generalizes simple safety

to other properties such as bounded safety, simple availability, mutual exclusion and con-

tainment.

In this section, we present a theory for comparing access control models based on the

preservation of security properties. We adopt the definitions of access control schemes

and security analysis from the previous chapter. We now introduce a generalized notion

of security analysis.

Definition 5.1.1 (Compositional Security Analysis) Given a scheme〈Γ, Q,⊢,Ψ〉, acom-

positional security analysisinstance has the form〈γ, ϕ, ψ,Π〉, whereγ, ψ, andΠ are the

same as in a security analysis instance, andϕ is a propositional formula overQ, i.e.,ϕ is

constructed from queries inQ using propositional logic connectives such as∧, ∨, ¬.

For example, the compositional security analysis instance〈γ, (r1 ∈ [s, o1]) ∧ (r2 ∈

[s, o2]), ψ, ∃〉 asks whether the system(γ, ψ) can reach a state in whichs has both the

right r1 overo1 and the rightr2 overo2. We allow the formulaϕ to have infinite size. For

example, suppose thatS, the set of all subjects, is{s1, s2, s3, s4, . . .}, then the formula
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¬(r ∈ [s2, o]∨ r ∈ [s3, o]∨ r ∈ [s4, o]∨ · · · ) is true when no subject other thans1 has the

right r over objecto.

Whether we should use security analysis or compositional security analysis is related

to what types of policies we want to represent, and what typesof policies we want to use

as bases to compare the expressive power of different accesscontrol models or schemes.

With compositional security analysis, we would be comparing models or schemes based

on types of policies that are broader than with security analysis. For instance, if our set

of queriesQ contains queries related to users’ access to files, then withcompositional

security analysis we can consider policies such as “Bob should never have write access to

a particular file so long as his wife, Alice has a user account (and thus has some type of

access to some file).”

5.1.1 Two types of reductions

In this section, we introduce the notions of reductions and state-matching reductions

that we believe are adequate for comparing the expressive power of access control models.

Before we introduce reductions, we discuss mappings between access control schemes.

Definition 5.1.2 (Mapping) Given two access control schemesA = 〈ΓA, QA,⊢A,ΨA〉

andB = 〈ΓB, QB,⊢B,ΨB〉. A mappingfromA toB is a functionσ that maps each pair

〈γA, ψA〉 in A to a pair〈γB, ψB〉 in B and maps each queryqA in A to a queryqB in B.

Formally,σ : (ΓA ×ΨA) ∪QA → (ΓB ×ΨB) ∪QB.

Definition 5.1.3 (Security-Preserving Mapping) A mappingσ is said to be

security-preservingwhen every security analysis instance inA is true if and only if the

imageof the instance is true. Given a mappingσ : (ΓA×ΨA)∪QA → (ΓB×ΨB)∪QB , the

imageof a security analysis instance〈γA, qA, ψA,Π〉 underσ is 〈γB, qB, ψB,Π〉, where

〈γB, ψB〉 = σ(〈γA, ψA〉) andqB = σ(qA).

The notion of security-preserving mappings captures the intuition that simulations

should preserve security properties. Given a security-preserving mapping fromA to B
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and an algorithm for solving the security analysis problem in B, one can construct an

algorithm for solving the security analysis problem inA using the mapping. Also, secu-

rity analysis inB is at least as hard as security analysis inA, modulo the efficiency of

the mapping. If an efficient (polynomial-time) mapping fromA toB exists, and security

analysis inA is intractable (or undecidable), then security analysis inB is also intractable

(undecidable). Security preserving mappings are not powerful enough for comparisons of

access control schemes based on compositional security analysis. We need the notion of a

strongly security-preserving mapping for that purpose.

Definition 5.1.4 (Strongly Security-Preserving Mapping) Given a mappingσ from scheme

A to schemeB, the image of a compositional analysis instance,〈γA, ϕA, ψA,Π〉, in A is

〈γB, ϕB, ψB,Π〉, where〈γB, ψB〉 = σ(〈γA, ψA〉) andϕB is obtained by replacing every

queryqA in ϕA with σ(qA); we write also thatϕB = σ(ϕA). A mappingσ from A to

B is said to bestrongly security-preservingwhen every compositional security analysis

instance inA is true if and only if the image of the instance is true.

While the notions of security-preserving and strongly security-preserving mappings

capture the intuition that simulations should preserve security properties, they are not

convenient for us to use directly. Using the definition for either type of mapping to di-

rectly prove that the mapping is (strongly) security preserving involves performing secu-

rity analysis, which is expensive. We now introduce the notions of reductions, which state

structural requirements on mappings for them to be securitypreserving. We start with a

form of reduction appropriate for compositional security analysis and then discuss weaker

forms.

Definition 5.1.5 (State-Matching Reduction) Given a mapping fromA to B, σ : (ΓA ×

ΨA) ∪ QA → (ΓB × ΨB) ∪ QB, we say that the two statesγA andγB areequivalent

under the mappingσ when for everyqA ∈ QA, γA ⊢A qA if and only if γB ⊢B σ(qA). A

mappingσ fromA toB is said to be astate-matching reductionif for everyγA ∈ ΓA and

everyψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) has the following two properties:
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1. For every stateγA1 in schemeA such thatγA
∗
7→ψ γA1 , there exists a stateγB1 such

thatγB
∗
7→ψB γB1 andγA1 andγB1 are equivalent underσ.

2. For every stateγB1 in schemeB such thatγB
∗
7→ψB γB1 , there exists a stateγA1 such

thatγA
∗
7→ψ γ

A
1 andγA1 andγB1 are equivalent underσ.

Property 1 says that for every stateγA1 that is reachable fromγA, there exists a reach-

able state in schemeB that is equivalent, i.e., answers all queries in the same way. Prop-

erty 2 says the reverse, for every reachable state inB, there exists an equivalent state inA.

The goal of these two properties is to guarantee that compositional security analysis results

are preserved across the mapping. With the following theorem, we justify Definition 5.1.5.

Theorem 5.1.1 Given two schemesA and B, a mappingσ from A to B is strongly

security-preserving if and only ifσ is a state-matching reduction.

Proof The “if” direction. Whenσ is a state-matching reduction, given a compositional

security analysis instance〈γA, ϕA, ψA,Π〉 in schemeA, let 〈γB, ψB〉 = σ(〈γA, ψA〉) and

ϕB = σ(ϕA), we show that〈γA, ϕA, ψA,Π〉 is true if and only if〈γB, ϕB, ψB,Π〉 is true.

First consider the case that the instance〈γA, qA, ψA,Π〉 is existential, i.e.,Π is ∃. If

the instance is true, i.e., there exists a reachable stateγA1 in which ϕA is true. Property

1 in Definition 5.1.5 guarantees that there exists a reachable stateγB1 that is equivalent

to γA1 ; thusϕB is true inγB1 ; therefore, the instance inB, 〈γB, ϕB, ψB, ∃〉, is also true.

However, if〈γB, ϕB, ψB, ∃〉 is true, then there exists a reachable stateγB1 in whichϕB is

true. Property 2 in Definition 5.1.5 guarantees that there exists a state inA in which the

analysis instance inA is true.

Now consider the case that the instance〈γA, ϕA, ψA,Π〉 is universal, i.e.,Π is ∀. If

the instance is false, i.e., there exists a reachable stateγA1 in whichϕA is false. Property 1

guarantees that the instance inB is also false. Similarly, if the instance inB is false, then

the instance inA is also false.

The “only if” direction. Whenσ is not a state-matching reduction, then there exists

γA ∈ ΓA andψA ∈ ΨA such that〈γB, ψB〉 = σ(〈γA, ψA〉) violates one of the two

properties in Definition 5.1.5.
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First consider the case that Property 1 is violated. There exists a reachable stateγA1

such that no state reachable fromγB is equivalent toγA1 . Construct a formulaϕA as

follows: ϕA is a conjunction of queries inQ or their complement. For every queryqA in

QA, ϕA includesqA if γA1 ⊢
A qA and¬qA if γA1 ⊢

A qA. (Note that the length ofϕA may

be infinite, as the total number of queries may be infinite.) Clearly,ϕA is true inγA1 , but

σ(ϕA) is false in all states reachable fromγB. Thus, the existential compositional analysis

instance involvingϕA has different answers, andσ is not strongly security preserving.

Then consider the case that Property 2 is violated. There exists a stateγB1 reachable

from γB such that no state reachable fromγA is equivalent toγB1 . Construct a formula

ϕA as follows:ϕA is a conjunction of queries inQ or their complement. For every query

queryqA in QA, ϕA includesqA if γB1 ⊢
B σ(qA) and¬qA if γB1 ⊢

B σ(qA). Clearly,ϕA

is false in in all states reachable fromγA, but σ(ϕA) is true inγB1 ; thus, the existential

compositional analysis instance involvingϕA has different answers, andσ is not strongly

security preserving.

Note that the proof uses a compositional analysis instance that contains a potentially

infinite-length formula. If one chooses to restrict the formulas in analysis instances to

be finite length, then state-matching reduction may not be necessary for being strongly

security-preserving. Also, a state-matching reduction preserves compositional security

properties. If we only need queries fromQ to represent our policies and not compositions

of those queries, then the following weaker notion of reductions is more suitable. How-

ever, we believe that the notion of state-matching reductions is quite natural by itself; it is

certainly necessary when compositional queries are of interest.

Definition 5.1.6 (Reduction) Given two access control schemesA = 〈ΓA, QA,⊢A,ΨA〉

andB = 〈ΓB, QB,⊢B,ΨB〉. A mapping fromA toB, σ, is said to be areductionfromA

toB if for everyγA ∈ ΓA and everyψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) has the following

two properties:
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1. For every stateγA1 and every queryqA in schemeA, if γA
∗
7→ψ γ

A
1 , then in scheme

B there exists a stateγB1 such thatγB
∗
7→ψB γB1 and γA1 ⊢

A qA if and only if

γB1 ⊢
B σ(qA).

2. For every stateγB1 in schemeB and every queryqA in schemeA, if γB
∗
7→ψB γB1 ,

there exists a stateγA1 such thatγA
∗
7→ψ γA1 andγA1 ⊢

A qA if and only if γB1 ⊢
B

σ(qA).

Definition 5.1.5 differs from Definition 5.1.6 in that the former requires that for every

reachable state inA (B, resp.) there exist a matching state inB (A, resp.) that gives

the same answer forevery query. Definition 5.1.6 requires the existence of a matching

state for every query; however, the matching states may be different for different queries.

Property 1 in Definition 5.1.6 says that for every reachable state inA and every query inA,

there exists a reachable state inB that gives the same answer to (the image of) the query.

Property 2 says the reverse direction. The goal of these two properties is to guarantee that

security analysis results are preserved across the mapping. The fact that a reduction, as

defined in Definition 5.1.6, is adequate for preserving security analysis results is formally

captured by the following theorem.

Theorem 5.1.2 Given two schemesA and B, a mapping,σ, from A to B is security

preserving if and only ifσ is a reduction.

Proof The “if” direction. Whenσ is a reduction, given a security analysis instance

〈γA, qA, ψA,Π〉 in schemeA, let 〈γB, ψB〉 = σ(〈γA, ψA〉) andqB = σ(qA), we show that

〈γA, qA, ψA,Π〉 is true if and only if〈γB, qB, ψB,Π〉 is true.

First consider the case that the instance〈γA, qA, ψA,Π〉 is existential, i.e.,Π is ∃.

If the instance is true, i.e., there exists a reachable stateγA1 in which qA is true. Prop-

erty 1 in Definition 5.1.6 guarantees that there exists a reachable stateγB1 in which qB

is true. Therefore, the instance inB, 〈γB, qB, ψB, ∃〉, is also true. On the other hand, if

〈γB, qB, ψB, ∃〉 is true, then there exists a reachable stateγB1 in whichqB is true. Property

2 in Definition 5.1.6 guarantees that there exists a state inA in which qA is true; thus the

analysis instance inA is true.
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Now consider the case that the instance〈γA, qA, ψA,Π〉 is universal, i.e.,Π is ∀. If

the instance is false, i.e., there exists a reachable stateγA1 in which qA is false. Property 1

guarantees that the instance inB is also false. Similarly, if the instance inB is false, then

the instance inA is also false.

The “only if” direction. When σ is not a reduction, then there existsγA ∈ ΓA

andψA ∈ ΨA such that〈γB, ψB〉 = σ(〈γA, ψA〉) violates one of the two properties in

Definition 5.1.6.

First consider the case that Property 1 is violated. There exists a reachable stateγA1

and a queryqA such that for every state reachable fromγB the answer for the queryσ(qA)

under the state is different from the answer forqA underγA1 . If γA1 ⊢
A qA, then this means

that qB is false in every state reachable fromγB. Thus the security analysis instance

〈γA, qA, ψA, ∃〉 is true, but its image underσ is false. Thus, the mappingσ is not security-

preserving. IfγA1 6⊢
A qA, then this means thatqB is true in every state reachable fromγB.

Thus the security analysis instance〈γA, qA, ψA, ∀〉 is false, but its image underσ is true.

Then consider the case that Property 2 is violated. There exists a stateγB1 reachable

from γB and a queryqA such that for every state reachable fromγA the answer for the

queryqA under the state is different from the answer forσ(qA) underγB1 . If γB1 ⊢
B σ(qA),

then this means thatqA is false in every state reachable fromγA. Thus the security analysis

instance〈γA, qA, ψA, ∃〉 is false, but its image underσ is true. If γB1 6⊢
B qB, then this

means thatqA is true in every state reachable fromγA. Thus the security analysis instance

〈γA, qA, ψA, ∀〉 is true, but its mapping inB is false.

Comparisons of two access control models are based on comparisons among access

control schemes in those models.

Definition 5.1.7 (Comparing the Expressive Power of Access Control Models) Given two

access control modelsM andM′, we say thatM′ is at least as expressive asM (orM′

has at least as much expressive power asM′) if for every scheme inM there exists a state-

matching reduction (or a reduction) from it to a scheme inM′. In addition, if for every

scheme inM′, there exists a state-matching reduction (reduction) fromit to a scheme in
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M, then we say thatM andM ′ are equivalent in expressive power. IfM′ is at least as

expressive as theM, and there exists a schemeA inM′ such that for any schemeB in

M, no state-matching reduction (reduction) fromA toB exists, we say thatM′ is strictly

more expressive thanM.

We compare the expressive power of two schemes based on state-matching reductions

when compositional queries are needed to represent the policies of interest. Otherwise,

reductions suffice. Observe that we can use the above definition to compare the expressive

power of two access control schemesA andB, by viewing each scheme as an access

control model consists of just that scheme.

5.1.2 Discussions of alterative definitions for reduction

In this section, we discuss alternative definitions that differ slightly from the ones

discussed in the previous section. The first of these definitions is used by [10, 18] for

simulations.

Definition 5.1.8 (Form-1 Weak Reduction) A mapping fromA toB, given byσ : (ΓA ×

ΨA)∪QA → (ΓB×ΨB)∪QB, is aform-1 weak reductionif for everyγA ∈ ΓA and every

ψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every queryqA, if there exists a stateγA1 in schemeA such thatγA
∗
7→ψA γA1 and

γA1 ⊢
A qA, then there exists a stateγB1 such thatγB

∗
7→ψB γB1 andγB1 ⊢

B σ(qA).

2. For every queryqA, if there existsγB1 in schemeB such thatγB
∗
7→ψB γB1 and

γB1 ⊢
B σ(qA), then there exists a stateγA1 such thatγA

∗
7→ψ γ

A
1 andγA1 ⊢

A qA if and

only if γB1 ⊢
B σ(qA).

The intuition underlying Definition 5.1.8, as stated by [10]is, “systems are equivalent

if they have equivalent worst case behavior”. Therefore, simulations only need to preserve

the worst-case access. Definition 5.1.8 is weaker than Definition 5.1.6 in that it requires

the existence of a matching state when a query is true in the state, but does not require so
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when the query is false. Therefore, it is possible that a query qA is true in all states that are

reachable fromγA, but the queryσ(qA) is false in some states that are reachable fromγB

(the queryσ(qA) needs to be true in at least one state reachable fromγB). This indicates

that Definition 5.1.8 does not preserve answers to universalsecurity analysis instances.

Definition 5.1.8 is adequate for the purposes in [10, 18] as only simple safety analysis

(which is existential) was considered there.

The decision of defining a mapping to be a function from(ΓA × ΨA) ∪ QA to (ΓB ×

ΨB)∪QB also warrants some discussion. One alternative is to define amapping fromA to

B to be a function that maps each state inA to a state inB, each state-transition rule inA

to a state-transition rule inB, and each query inA to a query inB. Such a function would

be denoted asσ : ΓA∪ΨA∪QA → ΓB∪ΨB∪QB . One can verify any such function is also

a mapping according to Definition 5.1.2, which gives more flexibility in terms of mapping

states and state-transition rules fromA toB. By Definition 5.1.2, the state corresponding

to a stateγA may also depends upon the state-transition being considered.

Another alternative is to define a mapping fromA toB to be a functionσ : ΓA×ΨA×

QA → ΓB × ΨB × QB, in other words, the mapping of states, state-transition rules, and

queries may depend on each other. This definition will also leads to a weaker notion of

reduction:

Definition 5.1.9 (Form-2 Weak Reduction) A form-2 weak reduction fromA to B is a

functionσ : ΓA × ΨA × QA → ΓB × ΨB × QB such that for everyγA ∈ ΓA, every

ψA ∈ ΨA, and everyqA ∈ QA, 〈γB, ψB, qB〉 = σ(〈γA, ψA, qA〉) has the following two

properties:

1. For every stateγA1 in schemeA such thatγA
∗
7→ψ γA1 , there exists a stateγB1 such

thatγB
∗
7→ψB γB1 andγA1 ⊢

A qA if and only if γB1 ⊢
B qB.

2. For every stateγB1 in schemeB such thatγB
∗
7→ψB γB1 , there exists a stateγA1 such

thatγA
∗
7→ψ γ

A
1 andγA1 ⊢

A qA if and only if γB1 ⊢
B qB.

It is not difficult to prove that a Form-2 weak reduction is also security preserving,

in the sense that any security analysis instance〈γA, qA, ψA,Π〉 in A can be mapped to a
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security analysis inB. However, it is not a mapping, as the mapping of states and state-

transition rules may depend on the query.

Definition 5.1.9 is used implicitly in Theorems 2 and 3 in [7] (that are reproduced in

the previous chapter) for reductions from security analysis in two RBAC schemes to that

in the RT Role-based Trust-management framework [5,69]. Aswe state in Theorem 5.3.5

in this chapter, a form-2 weak reduction used in [7] for one ofthe RBAC schemes can be

changed to a security-preserving mapping in a straightforward manner.

We choose not to adopt this weaker notion of reduction for thefollowing reason. Under

this definition, given an access control system(γA, ψA), to answern analysis instances

involving different queries, one has to don translations of states and state-transitions,

which are often time consuming. While using Definition 5.1.2and Definition 5.1.6, one

can do the mapping of(γA, ψA) once and use it to answer alln analysis instances.

A third weak form of reduction is introduced by [17]. That work discusses the expres-

sive power of multi-parent creation when compared to single-parent creation.

Definition 5.1.10 (Form-3 Weak Reduction) A mapping fromA toB, given byσ : (ΓA×

ΨA)∪QA → (ΓB×ΨB)∪QB, is aform-3 weak reductionif for everyγA ∈ ΓA and every

ψA ∈ ΨA, 〈γB, ψB〉 = σ(〈γA, ψA〉) has the following two properties:

1. For every stateγA1 and every queryqA in schemeA, if γA
∗
7→ψ γ

A
1 , then in scheme

B there exists a stateγB1 such thatγB
∗
7→ψB γB1 and γA1 ⊢

A qA if and only if

γB1 ⊢
B σ(qA).

2. For every stateγB1 in schemeB and every queryqA in schemeA, if γB
∗
7→ψB γB1 ,

then either (a) there exists a stateγA1 such thatγA
∗
7→ψ γ

A
1 andγA1 ⊢

A qA if and only

if γB1 ⊢
B σ(qA), or (b) there exists a stateγB2 such thatγB1

∗
7→ψB γB2 and a stateγA1

such thatγA
∗
7→ψ γ

A
1 , andγA1 ⊢

A qA if and only if γB2 ⊢
B σ(qA).

As pointed out by [17], this form of reduction suffices for preserving simple safety

properties in monotonic schemes — those schemes in which once a state is reached in

which a query is true, in all reachable states from that state, the query remains true. There-

fore, this form of reduction cannot be used to compare schemes when queries can become
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false after being true. As with the reduction from Definition5.1.8, this form of reduction

cannot be used for universal queries.

5.2 The implementation paradigm for simulation: an examination

Several authors use the implementation paradigm for simulations, e.g., [11] state that

“a positive answer [to the question whether LBAC (lattice-based access control) can be

simulated in RBAC] is also practically significant, becauseit implies that the same Trust

Computing Base can be configured to enforce RBAC in general and LBAC in particular.”

However, in these papers [11, 55, 58], a precise definition for simulations is not given.

This makes the significance of such results unclear, at leastin terms of comparing the

expressive power of different access control models.

In this section, we analyze the implementation paradigm andargue that this does not

lead to a notion of simulations that is meaningful for comparing the expressive power of

different access control models. More precisely, the notions of simulations derived from

this paradigm are so weak that almost all access control schemes are equivalent.

To formalize the implementation paradigm for simulation, anatural goal is to use an

implementation of an access control scheme for another scheme. Intuitively, if a scheme

A can be simulated in a schemeB, then there exists asimulatorthat, when given access

to the interface to (an implementation of)B, can provide an interface that is exactly the

same as the interface to (an implementation of)A.

When considering the interface of an access control scheme,we have to consider how

state-transitions occur. Intuitively, an access control system changes its state because some

actors (subjects, principals, users, etc.) initiate certain actions. An implementation of an

access control scheme thus has an interface consisting of atleast the following functions:

• init(γ): set the current state toγ.

• query(q): ask the queryq and receives a yes/no response.
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• apply(a): apply the actiona on the system, which may result in a state-transition in

the system.

• functions providing other capabilities, e.g., traversingthe subjects and objects in the

system.

A simulator ofA in B is thus a program that takes an interface ofB and provides an

interface ofA that is indistinguishable from an implementation forA. In other words,

the simulator is a blackbox that when given access to a backbox implementation ofB,

gives an implementation ofA. This intuition seems to make sense if the goal is to use an

implementation ofB to implementA.

It is tempting to start formalizing the above intuition; however, there are several subtle

issues that need to be resolved first.

As can be easily seen, for any two schemesA andB, a trivial simulator exists. The

simulator implements all the functionalities ofA by itself, without interacting with the

implementation ofB. Clearly, one would like to rule out these trivial simulators. One

natural way to do so is to restrict the amount of space used by the simulator to be sub-

linear in the size of the state of the scheme it is simulating.It seemsto be a reasonable

requirement that the simulator takes constant space on its own, i.e., the space used by the

simulator does not depend on the size of the state. (The spaceused by the implementation

of B is not considered here.)

Another issue is whether to further restrict a simulator’s internal behavior. When the

simulator receives a query in the schemeA, it may issue multiple queries to the black-

box implementation ofB before answering the query; it may even perform some state-

transition onB before answering the query. Similarly, the simulator may perform multiple

queries and state-transitions onB to simulate one state-transition inA.

If no restriction is placed, then the notion of simulation istoo weak to separate dif-

ferent access control models. For example, [58] constructed a simulation of ATAM in

RBAC. In Section 5.4, we give a simulation of RBAC in strict DAC, a discretionary model

that allows only the owner of an object to grant rights over the object to another subject
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and ownership cannot be transferred. According to these results, the simplest DAC (in

which security analysis is efficiently decidable) has the same expressive power as ATAM

(in which simple safety analysis is undecidable). This illustrates the point that, with-

out precise requirements, simulation is not a useful concept for comparing access control

models.

If one places restrictions on the simulator, then the question is what restrictions are rea-

sonable. Our conclusion is that it is difficult to justify such requirements. In the following,

we elaborate on this.

One possibility that we now argue to be inadequate is to restrict the internal behavior of

the simulator, e.g., to restrict it to issue only one query toB to answer one query inA and

to make a bounded number of state-transitions inB to simulate one state-transition inA.

Under these restrictions, one can prove that RBAC cannot be simulated in the HRU model.

The assignment of a user to a role in RBAC results in the user gaining all the accesses to

objects implied by the permissions associated with that role; therefore, it changes the an-

swers to an unbounded number of queries (queries involving those permissions.) One may

argue that the assignment of a user to a role is a single “action” in RBAC, and therefore,

the acquiring of those permissions by that user is accomplished in a single “action.” The

corresponding assignment of rights in the HRU access matrixcannot be accomplished

by a single command, or a bounded number of commands for that matter, as each com-

mand only changes a bounded number of cells in the matrix. Thus, any mapping of the

user-assignment in RBAC involves an unbounded number of commands being executed

in HRU. Nonetheless, one can argue that this is balanced by the efficiency of checking

whether a user has a particular right in the two models. A naive implementation of an

RBAC model may involve having to collect all roles to which that user is assigned, and

then collecting all permissions associated with those roles, and then checking whether one

of those permissions corresponds to the object and access right for which we are check-

ing. The time this process takes depends on the size of the current state and is unbounded.

The corresponding check in HRU is simpler: we simply check whether the corresponding

access right exists in the cell in the matrix. Thus, we can argue that there is a trade-off be-
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tween time-to-update, and time-to-check-access between the two schemes. Therefore, we

argue that it does not make sense to restrict the number of steps involved in the simulation.

Another possibility that we now argue to be inadequate is to measure how much time

the simulator takes to perform a state-transition and to answer one query in the worst case

and require that there cannot be a significant slowdown. Thispossibility is complicated

by the fact that the efficiency of these operations are not predetermined in any access

control scheme, the implementation can make trade-offs between time complexity and

space complexity and between query answering and state-transitions. Any comparison

must involve at least three axes: query time, state-transition time, and space. Furthermore,

the best ways to implement an access control scheme are not always known. Finally, these

implementation-level details do not seem to belong in the comparison of access control

models; as such models by themselves are abstract models to study properties other than

efficiency.

In summary, when no restriction is placed on the simulations, the “implementation par-

adigm” does not separate different access control schemes.However, it seems difficult to

justify the restrictions that have been considered in the literature. Therefore, our analysis

in this section suggests that the “implementation paradigm” does not seem to yield effec-

tive definitions of simulations that are useful to compare access control models. This also

suggests that expressive power results proved under this paradigm should be reexamined.

5.3 Applying the theory

In this section, we apply our theory from Section 5.1 to compare the expressive power

of different access control schemes. In the following section, we show that the HRU access

matrix scheme is not as expressive as a relatively simple trust management scheme,RT[ ].

We then examine two particular results from literature using our theory: (1) that RBAC

is at least as expressive as DAC (Sections 5.3.2 and 5.3.3), and (2) that TAM is at least

as expressive as ATAM (Section 5.3.5), and in each case, assert the opposite. We show
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also that the trust management schemeRT[∩] is at least as expressive as an RBAC scheme

(Section 5.3.4).

Proof Methodology In this section, we prove the existence of reductions and state-

matching reductions as well as the nonexistence of state-matching reductions. To prove

that there exists a reduction or state-matching reduction from a schemeA to a schemeB,

we constructively give a mapping and show that the mapping satisfies the requirements.

To prove that there does not exist a state-matching reduction from a schemeA to a scheme

B is more difficult, as we have to show that no mapping satisfies the requirements for a

state-matching reduction. Our strategy is to use proof by contradiction. We find in scheme

A a stateγA, a state-transition ruleψA, as well as a stateγA1 that is reachable. Suppose, for

the sake of contradiction, that a state-matching reductionexists, then there exist statesγB

andγB1 such thatγB is equivalent toγA, γB1 is equivalent toγA1 , andγB1 is reachable from

γB. We show that among the sequence of states leading fromγB andγB1 , there exists one

for which there is no matching state that is reachable inA.

5.3.1 Comparing the HRU scheme to a trust management scheme

The HRU scheme [2] is based on the access matrix model, and hasgenerally been

believed to have considerable expressive power, partly because it has been shown that

one can simulate a Turing Machine in the HRU scheme. In this section, we show that

there does not exist a state-matching reduction from a relatively simple trust management

scheme,RT[ ] [5, 73], to the HRU scheme. ThatRT[ ] cannot be encoded in the HRU

scheme is informally discussed and conjectured in [5, 73]. Using the theory presented in

Section 5.1, we are able to formally prove this. As safety analysis is efficiently decidable in

RT[ ] but undecidable in the HRU scheme, there does not exist a state-matching reduction

from the HRU scheme to theRT[ ] scheme either. This shows that the expressive powers

of the HRU scheme and ofRT[ ] are incomparable. This Is the first formal evidence of the

limited expressive power of the HRU scheme.
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The fact that the HRU scheme can simulate a Turing Machine shows that it can com-

pute any computable function when used as a computation device. When used as an access

control scheme, the HRU scheme may nonetheless be limited inexpressive power. For ex-

ample, it cannot encode an access control system where in onestate a subject has no right

over any object and in the next state the subject obtains rights over a potentially unbounded

number of objects.

The HRU Scheme

Γ We assume the existence of countably infinite sets of subjects,S, objectsO and rights

R, with S ⊂ O. Each stateγ is characterized by〈Sγ, Oγ, Rγ,Mγ [ ]〉 whereSγ ⊂ S is a

finite set of subjects that exist in the stateγ, Oγ ⊂ O is a finite set of objects that exist in

the stateγ, Rγ ⊂ R is a finite set of rights that exist in the stateγ, andMγ[ ] is the access

matrix, i.e.,Mγ[s, o] ⊆ Rγ gives the set of rightss ∈ Sγ has overo ∈ Oγ in the stateγ.

Mγ [s, o] is defined only whens ∈ Sγ ando ∈ Ost. It may appear that we allowRγ to

differ across states. The definition for state-change rulesprecludes this possibility.

Ψ A state-change rule,ψ, in the HRU scheme is a command schema, i.e., a set of com-

mands. Each command takes a sequence of parameters, each of which may be instantiated

by an object, Each command has also an optional condition, which is a conjunction of

clauses. Each clause checks whether a right is in a particular cell ofMγ [ ]. Following the

(optional) conditions in a command is a sequence of primitive operations. The primitive

operations are one of the following: (1) create an object; (2) create a subject; (3) enter a

right into a cell of the access matrix; (4) remove a right froma cell of the access matrix;

(5) destroy a subject; (6) destroy an object. We refer the reader to [2] for more details on

the syntax of commands. A state-change is the successful execution of a command.

Q We allow queries of the following two forms: (1)r ∈ M [s, o], and (2)r 6∈M [s, o]. In

the queries,r ∈ R, s ∈ S ando ∈ O. These are the only kinds of queries that have been

considered in the context of the HRU scheme in the literature. In particular, these are the

queries that are pertinent to the safety property [2].
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⊢ Let q be the queryr ∈ M [s, o]. Then, given a stateγ, γ ⊢ q if and only if r ∈ Rγ ,

s ∈ Sγ ,O ∈ Oγ andr ∈ Mγ [s, o]. Otherwise,γ 6⊢ q, or equivalentlyγ ⊢ ¬q. Let q̂ be the

queryr 6∈ M [s, o]. Thenγ ⊢ q̂ if and only if r ∈ Rγ , s ∈ Sγ, O ∈ Oγ andr 6∈ Mγ [s, o].

Otherwise,γ 6⊢ q̂, or equivalentlyγ ⊢ ¬q̂.

Observe that one should view bothr ∈ Mγ [s, o] andr 6∈ Mγ [s, o] as atomic queries.

In particular¬(r ∈ Mγ [s, o]) is not equivalent tor 6∈ Mγ [s, o]. It is possible thatγ 6⊢ r ∈

Mγ [s, o] andγ 6⊢ r 6∈ Mγ [s, o]; this happens when eithers or o does not exist inγ. Even

though it is not possible thatγ ⊢ ((r ∈Mγ [s, o]) ∧ (r 6∈Mγ [s, o])).

The RT[ ] Scheme

Γ We assume the existence of countably infinite sets of principals (e.g.,A,B,C) and

role names (e.g.,r, s, t, u). A role is formed by a principal and a role name, separated by

a dot (e.g.,A.r,X.u). An RT[ ] state consists of statements which are assertions made by

principals about membership in their roles. Two types of assertions are supported. These

are simple member (e.g.,A.r ←− B) and simple inclusion (e.g.,A.r ←− B.r1). One

reads the←− symbol as “includes”. The example for the first kind of statement asserts

thatB is a member ofA’s r role. The example for the second kind of statement asserts

that every member ofB.r1 is a member ofA.r. The portion of a statement that appears

to the left of the←− symbol is called its head, and the portion that appears to theright is

called the body. We refer the reader to [69] for more details on the syntax and semantics

of RT[ ] statements.

Ψ A state-change rule in a system based on theRT[ ] scheme consists of two sets,G and

S. Both consist ofRT[ ] roles. G is the set of growth-restricted roles, i.e., ifA.r ∈ G,

then statements withA.r at the head cannot be added in future states.S is the set of

shrink-restricted roles, i.e., ifA.r ∈ S, then roles withA.r at the head cannot be removed

in future states. We refer the reader to [5, 73] for more details on the two sets, and the

intuition behind them.

Q [5] define three kinds of queries inRT[ ]. (1) {B1, . . . , Bn} ⊒ A.r – this kind of

query asks whether the roleA.r is bounded by the set of pricipals{B1, . . . , Bn}; (2)
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A.r ⊒ {B1, . . . , Bn} – this kind of query asks whether each principalB1, . . . , Bn is a

member ofA.r; (3) X.u ⊒ A.r – this kind of query asks whether the set of member of

A.r is included in the set of members ofX.u.

⊢ Given a state, we check if a query is entailed by first evaluating the set of members

of eachRT[ ] role in the query. This is done using credential chain discovery [70]. We

then compare the two sets and check if the set to the left includes the set to the right. The

first two kinds of queries are called semi-static queries as one of the sides in the query is a

set of users that is independent of the state, and needs no further evaluation. We refer the

reader to [70] for more details on query-entailment inRT[ ].

Theorem 5.3.1 There exists no state-matching reduction from theRT[ ] scheme to the

HRU scheme.

Proof By contradiction. Assume that there exists a state-matching reduction,σ, from

theRT[ ] scheme to the HRU scheme. We denote components of aRT[ ] system with the

superscriptR and the HRU scheme with the superscriptH. We now consider a system

based on theRT[ ] scheme. LetγR be the start-state in ourRT[ ] system such thatγR has

no statements. The state-change rule in ourRT[ ] system isG = S = ∅. We now consider

the start-state in the corresponding HRU systemσ(γR) = γH and the state-change rule

σ(ψR) = ψH . Letk be the number of objects inγH , i.e.,k = |OγH |. Let l be the maximum

number of primitive operations of the form “enter right” in any of the commands inψH .

Letm be the maximum number of primitive operations of the form “remove right” in any

of the commands inψH .

Choose somen > (k2 + l +m) + 1. Our choice ofn is such that for anyγH1 such that

γH 7→ γH1 , fewer thann− 1 queries that are true inγH (i.e., are entailed byγH) are false

in γH1 (i.e., are not entailed byγH1 ). The reason is that: (1) asγH has at mostk objects

(some or all of which may be subjects), a command may contain statements to destroy

all these objects. Consequently, these statements can cause up tok2 queries of the form

r 6∈ M [s, o] to be false inγH1 when they are true inγH ; (2) as a command inψH has at

mostl statements to enter rights in to cells, these statements cancause up tol queries of
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the formr 6∈ M [s, o] to be false inγH1 when they are true inγH ; (3) as a command inψH

has at mostm statements to remove rights from cells, these statements can cause up tom

queries of the formr ∈M [s, o] to be false inγH1 when they are true inγH . We emphasize

that these are the only possibilities for queries to become false in a state-change fromγH ;

the number of queries that are entailed byγH , but notγH1 is fewer thann− 1.

Consider queriesqRi for each integeri such that1 ≤ i ≤ n in theRT[ ] system where

qRi is of the form{Bi} ⊒ A.r for some principalsA,B1, . . . , Bn and some roleA.r. We

make two observations about these queries. The first is thatγR ⊢ qR1 ∧ . . . ∧ q
R
n . The

reason is thatA.r is empty inγR and therefore is a subset of every set of the form{Bi}.

The second observation is that in all states reachable fromγR, either all queries of the

form qRi such that1 ≤ i ≤ n are entailed, or at most one of those queries is entailed. The

reason is that for the set of users in the roleA.r to be a subset of{Bi} for a particulari, it

must be either empty, or contain exactly one element,Bi. Now consider the stateγRt such

thatγR
∗
7→ψ γ

R
t andγRt ⊢ q

R
1 ∧ ¬q

R
2 ∧ . . . ∧ ¬q

R
n . That is,qR1 is true inγRt , but none of

the other queries of the formqRi is true. We use the subscriptt only to demarcate the state

and not as a count of the number of state-changes needed to reach it. In fact,γRt can be

reached fromγR with a single state-change: we simply add the statementA.r ←− B1 to

ourRT[ ] system.

Now consider the corresponding states and queries in the HRUsystem produced as

output byσ. Let γH = σ(γR), γHt = σ(γRt ), andqHi = σ(γRi ) for 1 ≤ i ≤ n. As we

assume thatσ is a state-matching reduction,γH ⊢ qH1 ∧ . . .∧ q
H
n , and there existsγHt such

thatγH
∗
7→ψ γ

H
t andγHt ⊢ q

H
1 ∧¬q

H
2 ∧ . . .∧¬q

H
n . Consider any sequence of state-changes

from γH to γHt . Pick the first state in the sequenceγHc in which at least one of the queries

qHi is false. Consider the stateγHc−1 immediately preceding it. Then,γHc−1 ⊢ q
H
1 ∧ . . .∧ q

H
n .

Because one step of change cannot maken−1 queries to go from true to false, inγHc , some

queriesq1, q2, q3, · · · , qn are false but at least2 queries in them are true. As we argued in

the previous paragraph, there cannot exist a matching statein A for γHc . We now have the

desired contradiction to the existence of a state-matchingreduction from theRT[ ] scheme

to the HRU scheme.
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5.3.2 Examining comparisons of RBAC and DAC

Munawer and Sandhu [58] presents a simulation of ATAM in RBACand conclude that

RBAC is at least as expressive as ATAM. [11, 55, 75] give simulations of various MAC

and DAC schemes in RBAC. The main conclusion of [11,55,75] isthat as MAC and DAC

can be simulated in RBAC, a Trusted Computing Based (TCB) needs to include an im-

plementation of RBAC only, and DAC and MAC policies can be successfully represented

and enforced by the TCB.

In the simulations used in [11,55,58,75], the preservationof safety (or other security)

properties is not identified as an objective. From the above conclusion in [11, 55, 75],

it seems that they follow the implementation paradigm. As discussed in Section 5.2, this

paradigm leads to a weak notion of simulations, as exemplified by the simulation of RBAC

in strict DAC in Section 5.4.

We observe also that the problem of comparing RBAC with DAC asstated by [11,55]

is ill-defined (or at least not clearly defined). RBAC by itself only specifies the structures

to store access control information, but not how to manipulate these structures, which are

specified by administrative models. In other words, only thesetΓ of states is precisely

defined, the setΨ of state-transition rules is not. The counterpart of RBAC isthe access

matrix model, instead of DAC (or MAC). In DAC, we specify thataccess control informa-

tion is stored in a matrix, and we also specify rules on how to change the access matrix.

The statement that RBAC is at least as expressive as DAC (or MAC) is similar to say-

ing that the access matrix model is at least as expressive as DAC or MAC. Comparing

the RBAC model with the access matrix model is not fruitful either, as both models can

include arbitrary state-transition rules.

5.3.3 Comparing ARBAC97 with a form of DAC

To compare any RBAC-based model with DAC, one needs to specify the adminis-

trative model (state-transition rules) for RBAC. In existing comparisons of RBAC and

DAC [11, 55, 58], new and rather complicated administrativemodels are introduced “on



111

the fly” to simulate the effects in DAC. In this section, we compare the expressive power

of RBAC with ARBAC97 [37] as the administrative model to thatof SDCO, a rather sim-

ple form of DAC. We first present precise characterizations of SDCO and the ARBAC97

scheme. We then assert that while there does exist a reduction, there does not exist a state-

matching reduction from SDCO to the ARBAC97 scheme, given a natural query set for

each scheme.

This result is significant as it shows that we cannot assert that RBAC is more expressive

than DAC without qualifying the assertion; a strongly security-preserving mapping does

not exist from SDCO to ARBAC97. Our conclusion provides the first evidence that the

expressive power of RBAC (or at least some reasonable incarnation of it) is limited.

The SDCO Scheme

Γ SDCO is a scheme based on the access matrix model and is a special case of the HRU

scheme. Each stateγ ∈ Γ is 〈Sγ, Oγ,Mγ [ ], Rγ〉 whereSγ , Oγ andRγ are finite, strict

subsets of the countably infinite setsS (subjects),O (objects) andR (rights) respectively.

The set of rights for the scheme isRγ = {own, r1, . . . , rn}, whereown is the distinguished

right indicating ownership of the object.Mγ [ ] is the access matrix.

Ψ The state-transition rules are the commandscreateObject , destroyObject andgrantOwn,

and for eachri ∈ Rγ − {own}, a commandgrant ri .

command createObject(s, o) command destroyObject(s, o)

create object o if own ∈ [s, o]

enter own into [s, o] destroy o

command grantOwn(s, s′, o) command grant ri(s, s
′, o)

if own ∈ [s, o] if own ∈ [s, o]

enter own into [s′, o] enter ri into [s′, o]

remove own from [s, o]



112

Q Each query is of one the following forms: (1) Iss ∈ S?; (2) Iso ∈ O?; and (3) Is

r ∈M [s, o]?

⊢ The entailment relation is defined as follows for each type ofquery from above. In each

of the following,γ ∈ Γ is a state. (1)γ ⊢ s ∈ S if and only if s ∈ Sγ ; (2) γ ⊢ o ∈ O if and

only if o ∈ Oγ; (3) γ ⊢ r ∈ M [s, o] if and only if r ∈ Rγ∧s ∈ Sγ∧o ∈ Oγ∧r ∈Mγ [s, o].

The ARBAC97 Scheme

Γ We assume the existence of the countably infinite setsU (users),P (permissions) andR

(roles). An ARBAC97 state is〈UA,PA,RH ,AR〉 whereUA is the user-role assignment

relation that contains a pair〈u, r〉 for every useru ∈ U that is assigned to a roler ∈ R. PA

is the permissions-role assignment relation that containsa pair〈p, r〉 for every permission

p ∈ P that is assigned to the roler ∈ R. RH is the role-hierarchy, and forr1, r2 ∈ R,

r1 � r2 ∈ RH means that all users that are members ofr1 are also members ofr2, and

all permissions that are assigned tor2 are authorized to users that are members ofr1.

AR ⊂ R is a set of administrative roles. In ARBAC97 [37], changes toAR may be made

only by a central System Security Officer (SSO) who is trustednot to leave the system in

an undesirable state; if the SSO effects a state-transition, then she does security analysis

to ensure that the resulting state is acceptable. Therefore, in our analysis, we assume that

AR does not change.

Ψ State-transitions in the ARBAC97 scheme are predicated on the relations that are

part of theURA97 (user-roles assignment),PRA97 (permission-role assignment) and

RRA97 (role-role assignment) components. We introduce the notion of a role range that

is used in the definition of the state-transitions. A role range,ξ is written as(r1, r2), where

r1 andr2 are roles, and every roler that satisfiesr1 � r ∧ r � r2 ∧ r 6= r1 ∧ r 6= r2 is in

the role rangeξ. We writer ∈ ξ whenr is in the role rangeξ. We represent asΞ the set of
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all role ranges. Role ranges in ARBAC97 satisfy some other properties, and we refer the

reader to [37] for those. Those properties are not relevant to our discussion here.

URA97





can assign ⊆ AR × CR × Ξ

can revoke ⊆ AR × Ξ
PRA97





can assignp ⊆ AR × CR × Ξ

can revokep ⊆ AR × Ξ

RRA97
{

can modify ⊆ AR × Ξ

CR is a set of pre-requisite conditions. A pre-requisite condition is a propositional logic

formula over regular roles. For instance,c = r1 ∧ r2 is a pre-requisite condition that

indicates: “roler1 and not roler2,” wherer1, r2 ∈ R.

We postulate that a state-transition is the successful execution one of the following

operations.

assignUser(a, u, r) revokeUser (a, u, r)

if ∃ 〈ar , c, ξ〉 ∈ can assign such that if ∃ 〈ar , ξ〉 ∈ can revoke such

a is a member of ar ∧ u satisfies c ∧ that a is a member of ar ∧

r ∈ ξ then r ∈ ξ then

add 〈u, r〉 to UA remove 〈u, r〉 from UA

assignPermission(a, p, r) revokePermission(a, p, r)

if ∃ 〈ar , c, ξ〉 ∈ can assignp such that if ∃ 〈ar , ξ〉 ∈ can revokep such

a is a member of ar ∧ p satisfies c ∧ that a is a member of ar ∧

r ∈ ξ then r ∈ ξ then

add 〈p, r〉 to PA remove 〈p, r〉 from PA

addToRange(a, ξ, r) removeFromRange(a, ξ, r)

if ∃〈ar , ξ〉 ∈ can modify such that if ∃〈ar , ξ〉 ∈ can modify such that

a is a member of ar then a is a member of ar then

add r1 � r to RH remove r1 � r from RH

add r � r2 to RH remove r � r2 from RH

where ξ = (r1, r2) ∧ r 6= r1 ∧ r 6= r2 where ξ = (r1, r2) ∧ r 6= r1 ∧ r 6= r2
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addAsSenior (a, r, s) removeAsSenior (a, r, s)

if ∃〈ar , ξ〉 ∈ can modify such that if ∃〈ar , ξ〉 ∈ can modify such that

a is a member of ar ∧ r, s ∈ ξ then a is a member of ar ∧ r, s ∈ ξ then

add r � s to RH remove r � s from RH

Q,⊢ We allow queries of the following forms that are all natural for the ARBAC97

scheme: (1) given a roler, does there exist a useru such that〈u, r〉 ∈ UA?, (2) given

useru, does there exist a roler such that〈u, r〉 ∈ UA?, (3) given useru and roler, is

〈u, r〉 ∈ UA?, (4) given a permissionp, does there exist a roler such that〈p, r〉 ∈ PA? (5)

given permissionp, does there exist a roler such that〈p, r〉 ∈ PA?, (6) given permission

p and roler, is 〈p, r〉 ∈ PA?, (7) given rolesr1, r2, is r1 � r2 ∈ RH?, and (8) give user

u and permissionp, is u authorized to have the permissionp? That is, do there exist roles

r1, r2 such that〈u, r1〉 ∈ UA ∧ 〈p, r2〉 ∈ PA ∧ r1 � r2 ∈ RH? The entailment relation,

⊢ is based simply on whether the conditions checked in a query hold in the given state.

Theorem 5.3.2 There exists a reduction from SDCO to ARBAC97.

Proof By construction. We present the mappingsReduce andReduceQuery and

show that they satisfy the properties for a reduction from SDCO to ARBAC97.Reduce

takes as input the start-state and state-transition rules of an SDCO system and produces as

output the start-state and state-transition rules of an ARBAC97 system.ReduceQuery

takes as input a query in the SDCO system and produces as output a query in the AR-

BAC97 system. We assume, without loss of generality, that there is a one-to-one corre-

spondence between the set of usersU in ARBAC97 and the set of subjectsS in SDCO,

and between the set of rolesR in ARBAC97 and the set(O ×Rγ) ∪ {subjectExists , A,

top, bottom}, whereO is the set of objects, andRγ is the set of rights in the SDCO sys-

tem, andsubjectExists,A, top andbottom are specific roles that are used in the mapping.
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1 Subroutine Reduce(γ,ψ)

2 /* inputs: γ - an SDCO state, ψ - SDCO state-transition rules */

3 /* outputs: γA - an ARBAC97 state,

4 ψA - ARBAC97 state-transition rules */

5 initialize γA,ψA as follows:

6 UA=PA=RH =AR = can assign = can revoke = can assignp = can revokep = can modify = ∅

7 add top � bottom to RH; let ξ be the role range (top, bottom)

8 let the set of administrative roles AR = A; add (a, A) to UA

9 can assign = {〈A, true, ξ〉}, can revoke = can modify = {〈A, ξ〉}

10 execute addToRange (a, ξ, subjectExists) where subjectExists is a role

11 foreach s ∈ Sγ execute assignUser (a, s, subjectExists)

12 execute removeFromRange (a, ξ, subjectExists)

13 foreach 〈o, r〉 ∈ Oγ ×Rγ execute addToRange (a, ξ, or)

14 foreach r ∈Mγ [s, o] execute assignUser (a, s, or)

15 return γA,ψA

16

17 Subroutine ReduceQuery(q)

18 /* input: q - an SDCO query */

19 /* output: qA - an ARBAC97 query */

20 if q == s ∈ S then qA = 〈s, subjectExists〉 ∈ UA

21 if q == o ∈ O then qA = ∃ u such that 〈u, oown〉 ∈ UA

22 if q == r ∈M [s, o] then qA = 〈s, or〉 ∈ UA

23 return qA

We now show that property (1) for a reduction is satisfied by the above mapping. Let

γ0 be a start-state in SDCO. We produce the corresponding start-stateγA0 in ARBAC97

using theReduce subroutine above. Given a stateγk and queryq such thatγ0
∗
7→ψ γk, we

show that there existsγAk and queryqA such thatγA0
∗
7→ψA γAk whereγAk ⊢ q

A if and only

if γk ⊢ q. If γk = γ0, thenγAk = γA0 . If q is s ∈ S, thenqA is 〈s, subjectExists〉 ∈ UA. By

line 11 inReduce qA is true if and only ifq is true. Ifq is o ∈ O, thenqA is ∃ u such that

〈u, oown〉 ∈ UA. By line 14 inReduce, and the property that every object that exists in

SDCO has an owner associated with it (that is,own ∈ M [s, o] for some subjects), qA is
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true if and only ifq is true. And ifq is r ∈ M [s, o], qA is 〈s, or〉 ∈ UA, and by line 14 of

Reduce, q is true if and only ifqA is true.

Consider someγk reachable fromγ0 and a queryq. We show the existence ofγAk

that is reachable fromγA0 and that answersqA the same way by construction. Ifq is of

type s ∈ S, we letγAk = γA0 . if q is of typeo ∈ O or r ∈ M [s, o], we do the follow-

ing. We consider each state-transition in SDCOγ0 7→ψ γ1 7→ . . . 7→ γk. If the state-

transition is the execution ofcreateObject(s, o), we executeaddToRange (a, ξ, oown) and

assignUser (a, s, oown). If the state-transition in SDCO is the execution ofdestroyObject

(s, o), we executerevokeUser (a, u, or) for every〈u, or〉 ∈ UA for everyr, and

removeFromRange (a, ξ, oown). If the state-transition in SDCO is the execution of

grantOwn (s, s′, o), we executerevokeUser (a, s, oown) and

assignUser (a, s′, oown). If the state-transition in SDCO is the execution ofgrant ri

(s, s′, o), we executeassignUser (a, s′, ori). Now, consider each possible queryq. If q

is s ∈ S, thenγAk = γA0 . In our SDCO scheme, the subjects are fixed at the start and never

change. SoγAk ⊢ q
A if and only if γ0 ⊢ q. If q is o ∈ O, thenγk ⊢ q if and only if o exists

in the stateγk. This is the case if and only if some subjects has theown right overo. This

is the case if and only if we have the roleoown in the rangeξ and the user corresponding

to s is a member of that role. Therefore,γk ⊢ q if and only if γAk ⊢ q
A. And finally, if q is

r ∈ M [s, o], thenγk ⊢ q if and only if r has been granted tos by the owner ofo. This is

true if and only if we have assigned the user corresponding tos to the roleor. Thus, again,

γk ⊢ q if and only if γAk ⊢ q
A.

We prove that property (2) for a reduction is satisfied by our mapping also by con-

struction. LetγA0 be the start-state in ARBAC97 corresponding toγ0, the start-state in

SDCO. Then, ifγAk is a state reachable fromγA0 andqA is a query in ARBAC97 whose

corresponding query in SDCO isq, we constructγk, a state in SDCO reachable fromγ0 as

follows. If q is s ∈ S, we letγk = γ0. Otherwise, for each roleoown that has a members,

we executecreateObject (s, o). For each roleor that has a members′, if the roleoown has a

members, we executegrant r (s, s′, o). If q is s ∈ S, thenqA is 〈s, subjectExists〉 ∈ UA,

and clearlyγAk ⊢ q
A if and only if γk ⊢ q, as the subjects that exist do not change from the
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start-state in SDCO, and the members ofsubjectExists do not change from the start-state

in ARBAC97. If q is o ∈ O, γAk ⊢ q
A if and only if ∃ s such that〈s, oown〉 ∈ UA. And

if qA is true, we would have added theown right toMγk
[s, o], which means thatγk ⊢ q if

and only ifγAk ⊢ q
A. And finally, if q is r ∈ M [s, o], γAk ⊢ q

A if and only if 〈s, or〉 ∈ UA.

The condition thatqA is true is the only one in which we would have added the rightr to

Mγk
[s, o], and thereforeγk ⊢ q if and only if γAk ⊢ q

A.

Before we introduce Theorem 5.3.4, we introduce the following lemma as an inter-

mediate result on the state-change rules in ARBAC97. The intermediate result aids in the

proof of the theorem.

Lemma 5.3.3 Let ψ be a state-transition rule, andγ andγ′ be states in theARBAC97

scheme. Then, for any two queriesq1 andq2, there exists noγ′ such thatγ′ ⊢ (¬q1 ∧ q2)

whenγ ⊢ (q1 ∧ ¬q2) andγ 7→ γ′.

Proof We observe that the operationsassignUser , assignPermission, addToRange and

addAsSenior can cause queries to become only true, and not false. Similarly, the oper-

ationsrevokeUser , revokePermission, removeFromRange andremoveAsSenior cannot

cause a query to become true. Therefore, given a state-transition in the ARBAC97 scheme,

it cannot cause a query that is true to become false and another query that is false to be-

come true in the new state.

Theorem 5.3.4 There exists no state-matching reduction from SDCO to ARBAC97.

Proof By contradiction. Assume that there exists a state-matching reduction from SDCO

to ARBAC97. LetS = {s1, s2, s3, . . .}. In SDCO, adopt asγ a state with the following

properties. Lets1 ∈ Sγ, o ∈ Oγ andown ∈ M [s1, o]. Let qi be the query “own ∈ [si, o]”

for eachi = 1, 2, . . ., andqo be the query “o ∈ Oγ”. These queries are mapped toqAi andqAo

respectively in the ARBAC97 scheme. We observe thatγ ⊢ (q1 ∧ ¬q2 ∧ ¬q3 ∧ . . . ∧ qo).

There exists a statẽγ reachable fromγ such that̃γ ⊢ (¬q1 ∧ q2 ∧ ¬q3 ∧ . . . ∧ qo). And,

there exists no reachable stateγ̂ such thatγ̂ ⊢ (q1 ∧ ¬q2 ∧ . . . ∧ qj ∧ . . . ∧ qo) or γ̂ ⊢
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(¬q1 ∧ ¬q2 ∧ . . . ∧ ¬qj ∧ . . . ∧ qo) for any j 6= 1. (if o ∈ Oγ, then there must be ex-

actly one subject that ownso). Consider the stateγA in ARBAC97 that corresponds

to γ (if there does not exist one, then we have the desired contradiction). We know

that γA ⊢
(
qA1 ∧ ¬q

A
2 ∧ ¬q

A
3 ∧ . . . ∧ q

A
o

)
. There must also exist a reachable stateγ̃A

that corresponds tõγ (if there does not exist one, then we have the desired contradic-

tion). By Lemma 5.3.3, we know that̃γA is not reachable fromγA is a single state-

transition. Therefore, there must exist some stateγ̂A that is reachable fromγA such that

γ̂A ⊢
(
qA1 ∧ ¬q

A
2 ∧ . . . ∧ qj ∧ . . . ∧ q

A
o

)
or γ̂A ⊢

(
¬qA1 ∧ ¬q

A
2 ∧ . . . ∧ ¬q

A
j ∧ . . . ∧ q

A
o

)
for

at least onej 6= 1. As there exists no corresponding state in the SDCO scheme that

is reachable fromγ, we have a contradiction to the assumption that there existsa state-

matching reduction from SDCO to ARBAC97.

One may ask whether there are other schemes based on RBAC for which there is

indeed a state-matching reduction from SDCO. An approach may be to adopt a different

query set for ARBAC97. We observe that for certain other query sets as well, the non-

existence of a state-matching reduction holds. As an example, suppose we map the query

for the presence of a right in SDCO to a query for the absence ofa permission in RBAC.

In this case as well, there exists no state-matching reduction from SDCO. Whether there

exists a meaningful set of state-transition rules (an administrative model) for RBAC for

which there is a state-matching reduction from SDCO is an open problem.

5.3.4 Comparing an RBAC scheme with a trust management language

In this section, we compare a particular RBAC scheme to the trust management scheme,

RT[∩]. The RBAC scheme we consider is called Assignment And Revocation (AAR) [7].

In AAR, the state is an RBAC state, and state-transition rules are those from the URA97

component of the ARBAC97 [37]; users may be assigned to and revoked from roles.

RT[∩] is a trust management scheme in which a state is a set of credentials issued by

the principals involved in the system. A credential denotesmembership in a principal’s

role. A credential is one of three types: (1) A principal is asserted to be a member of
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another principal’s role, (2) All the principals that are members of a principal’s role are

asserted to also be members of another principal’s role, and(3) All the principals that are

members of two roles (the intersection of the members of the roles) are also members of

another principal’s role.

We first present precise characterizations of the AAR schemeandRT[∩]. [7] present

a form-2 weak reduction (see Definition 5.1.9) from AAR toRT[∩]. We assert with the

following theorem that the result can be made stronger.

The AAR Scheme

Γ In AAR, a state is the RBAC state〈UA,PA,RH 〉, as discussed in the previous section

for ARBAC97.

Ψ The state-transitions allowed are the operationsassignUser andrevokeUser from the

previous section, with the exception that negation is not allowed in pre-requisite condi-

tions. In addition, in AAR, we require that for every role forwhich there is acan assign

entry, there is also acan revoke entry. That is, if∃ 〈ar , c, ξ〉 ∈ can assign such thatar

has at least one member andcmay evaluate totrue , then∀ r ∈ ξ, ∃ 〈ar ′, ξ′〉 ∈ can revoke

such thatr ∈ ξ′ andar ′ has at least one member.

Q,⊢ Queries are of the forms1 ⊒ s2, wheres1 ands2 areuser-sets. A user-set is an

expression that evaluates to a set of users. A set of roles, a set of permissions and a set

of users are user-sets, as are unions and intersections of user-sets. We refer the reader

to [7] for more details on user-sets. Entailment involves evaluating the user-setss1 and

s2 to the sets of usersS1 andS2 respectively, and determining whetherS1 ⊇ S2. Several

interesting queries related to safety, availability, liveness and mutual-exclusion can be

posed as comparisons of user-sets.

The RT[∩] Scheme

Γ An RT[∩] state is a set of credentials, each of which is one of the following types:

(1) A.r←− U , (2) A.r←− B.r1, and (3)A.r←−B.r1 ∩ C.r2. Each ofA,B,C, U is a

principal,r, r1, r2 is a role name, andA.r, B.r1, C.r2 is a role. The symbol←− is read as
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“includes”. Statement (1) asserts thatU is a member ofA’s r role. Statement (2) asserts

that all members of the roleB.r1 are members of the roleA.r. Statement (3) asserts that

anyone that is a member of bothB.r1 andC.r2 is a member ofA.r.

Ψ A state-transition inRT[∩] is either the removal of a credential, or the addition of one.

State-transitions are controlled bygrowthandshrink-restricted sets of roles —G andS

respectively. A role that is in the growth-restricted set may not have any assertions added

with that role at the head of the assertion, and a role that is in the shrink-restricted may not

have any assertions removed. Thus, the state-transition rules are represented as〈G, S〉.

Q,⊢ We allow queries of the formc1 ⊒ c2 where eachc1 andc2 is either anRT[∩] role,

a credential, or credentials joined by union,∪ or intersection,∩. We observe that this is

slightly different from the definition for queries in [7]. The reason is that in that work,

only a form-2 weak reduction (see Definition 5.1.9) is presented, and therefore queries are

processed in conjunction with each state and state-transition rule in the mapping. We seek

to map queries independently of states and state-transition rules. Entailment inRT[∩] is

done using credential chain discovery [70]: we find a chain ofcredentials that proves a

(portion of a) query, if one exists.

Theorem 5.3.5 There exists a state-matching reduction from the AAR schemeto RT[∩].

Proof By construction. We show that the mapping from [7] from AAR toRT[∩] is

a state-matching reduction. We consider each assertion from Definition 5.1.5 in turn.

Each roler in AAR is associated with the roleSys.r in RT[∩]. We show that after a

series of state-transitions, the role-memberships in AAR match the role-memberships in

the corresponding state ofRT[∩].

Assertion 1:Let γ be the given AAR state, andγ
∗
7→ψ γ

′. Then,γ = γ0 7→ψ γ1 . . . 7→ψ

γm = γ′. Each state-transition is either the assignment of a user toa role usingassignUser

or revocation of a user’s membership in a role usingrevokeUser . Let the corresponding

states inRT[∩] beγT = γT0 , γ
T
1 , . . . γ

T
m = γT

′
. The users that are members of any roler

in γ are the same as the users that are members of the corresponding roleSys.r in γT . If

the state-transition fromγi to γi+1 is the result of the assignment of the useru to the role
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r, then we effect the following changes to transition from thestateγTi to γTi+1: we add the

two statementsASys.r←− u andBSys.r←− u. If the state-transition is the result of the

revocation of the useru from the roler, then we remove all statements that exist of the

following two forms:ASys.r←−u andRSys.r←−u. We observe that inγT ′, anyHSys.r

has as members all users that were ever members of the roler. Consequently, inγT
′
, each

Sys.r has as members those users that are members ofr in γ′. Therefore, we can assert

thatγ′ ⊢ q iff γT ′
⊢ qT .

Assertion 2:In RT[∩], the only roles that can grow are theASys andBSys roles. The

only roles that can shrink are theASys andRSys roles. GivenγT = σ(γ) whereγ is a

given AAR state andγT
′
is the correspondingRT[∩] state, letγT

∗
7→ψ γ

T ′
. We construct

the AAR stateγ′ that corresponds toγT ′ as follows. For each statement of the form

BSys.r←− u or of the formASys.r←− u, we assign the useru to the roler. Now, we

compare the user-role memberships of each user to the rolesr andSys.r. There cannot

be any users inSys.r that are not inr: the reason is that we have not revoked any user

membership inr (starting from the user-role membership in the stateγ). There may be

users inr that are not inSys.r. Given the requirement that every role for which there is

a can assign, we also have acan revoke, the only way for these extra users to be inr

and notSys.r is that there exists acan assign that permits those users to be assigned to

r (starting at the stateγ). We revoke such users’ membership fromr using the relevant

can revoke entries. Now, the memberships inr andSys.r are identical, and we can assert

that for all queriesq, γT ′
⊢ σ(q) iff γ′ ⊢ q.

5.3.5 Comparing ATAM with TAM

TAM is a scheme based on the access matrix model and is similarto the HRU scheme [2].

Every object is typed, and the type cannot change once the object is created. State-

transitions occur via the execution of commands that are similar to HRU commands. We

specify a type for every parameter to a command. ATAM is the same as TAM, except that

in a condition in an ATAM command, the absence of a right in a cell of the access matrix
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may be checked (and not just the presence of a right). Below, we present characterizations

of the two schemes.

Sandhu and Ganta [18] presents a mapping from the ATAM to TAM.Based on the

mapping, one may conclude that TAM is at least as expressive as ATAM. As the converse

is trivially true (TAM is a special case of ATAM), one may conclude that ATAM and

TAM have the same expressive power; we gain nothing from the ability to check for the

absence of rights in the condition of an ATAM command. Sandhuand Ganta [18] makes

the observation that the simulation of a command in ATAM may require the execution of

an unbounded number of commands in TAM, and concludes with the following comment:

“. . . practically testing for the absence of rights appears to be useful. It is an open question

whether this claim can be formalized. . . ” In this section, weformalize this claim by

asserting that there is no state-matching reduction from ATAM to TAM.

The TAM Scheme

Γ TAM is similar to the HRU scheme. Each stateγ ∈ Γ is 〈Sγ, Oγ,Mγ [ ], Rγ, Tγ, typeOf 〉

whereSγ ,Oγ,Rγ andTγ are finite, strict subsets of the countably infinite setsS (subjects),

O (objects),R (rights) andT (types of objects and subjects) respectively. The function

typeOf : (Sγ ∪Oγ)→ Tγ , maps each subject and object to a type that cannot change once

the subject or object is created.Mγ [ ] is the access matrix.

Ψ A state-transition rule is a set of commands. Each command has an optional

list of conditions that are joined by conjunction. A commandthen consists of primitive

operations. Each parameter to the command is associated with a type. Each condition may

check only for the presence of a right in a cell.

Q,⊢ We allow queries of the form “isr ∈M [s, o]?” Entailment is defined as follows.

Given a stateγ ∈ Γ, γ ⊢ r ∈M [s, o] if and only ifs ∈ Sγ∧o ∈ Oγ∧r ∈ Rγ∧r ∈Mγ [s, o].

The ATAM Scheme

Γ,Ψ, Q,⊢ An ATAM state is the same as a TAM state. State-transition rules are the

same as for TAM, except that a condition in a command may checkfor the absence of

a right (as opposed to only the presence of a right). In ATAM, we allowQ to contain
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queries of the following two forms: (1) Isr ∈ M [s, o]?, and (2) Isr 6∈ M [s, o]? This is

consistent with the intent of [18] to determine whether the ability to check for the absence

of rights does indeed add more expressive power.⊢ is defined the same as in TAM for a

query of type (1). For a query of the type (2),⊢ is defined as follows. Given a stateγ ∈ Γ,

γ ⊢ r 6∈M [s, o] if and only if s ∈ Sγ ∧ o ∈ Oγ ∧ r ∈ Rγ ∧ r 6∈Mγ [s, o].

Theorem 5.3.6 There exists no state-matching reduction from ATAM to TAM.

Proof By contradiction. Assume that there exists a state-matching reductionσ from

ATAM to TAM. Consider an ATAM scheme in whichψ (the state-transition rule) consists

of the following commands.

command createSubject(X: t) command addRight(Y : t, Z: t)

create subject X of type t enter r into [Y, Z]

Adopt asγ0 (the start state) in ATAM a state with no subjects or objects.(that is,Sγ0 =

Oγ0 = ∅). The set of rights,Rγ0 = {r}, and there is a single typet for all subjects

(no objects other than subjects exist or can be created in ourATAM system). We denote

components of the TAM system under the mappingσ with a superscriptT . For example,

σ(γ0) = γT0 andσ(ψ) = ψT .

We assume that the countably infinite set of subjectsS = {s1, s2, . . .}. In the ATAM

system, we wish to consider queries of the formqi,j = r ∈ M [si, sj] and q̂i,j = r 6∈

M [si, sj] for somesi, sj ∈ S. First, we make the observation that any two distinct queries

p, q ∈ {qi,j|si, sj ∈ S}∪ {q̂i,j|si, sj ∈ S} are mapped to distinct queries in TAM. That is,

p 6= q ⇒ pT 6= qT . Otherwise, pick a pairp, q such thatp 6= q but pT = qT . For any two

such queriesp andq, there exists a stateγ in ATAM such thatγ0
∗
7→ψ γ andγ ⊢ p ∧ ¬q.

Clearly, a corresponding reachable state (that answers thequeriesp andq the same way)

does not exist in TAM, which gives us the desired contradiction. We observe also that by

the definition of a state-matching reduction, queries are mapped independent of the start

state and the state-change rules.
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ConsiderψT , the command schema in TAM. As a query in TAM is of the formr ∈

M [s, o], we can determine an upper bound,m, for the number of queries a command in the

TAM system can change from false to true when executed. Theseare queries of both types

qTi,j andq̂i,j
T . One way to determine a value form is to count the number of “enter right”

primitive operations in each command and take the maximum (even though this maximum

may not be a tight upper bound).m is constant, and may be dependant onγ andψ, but

not the set of queries. Choose somen > m.

Now, consider the state in ATAMγk such thatγ0
∗
7→ψ γk andγk ⊢ ¬q1,1∧ q̂1,1 ∧¬q1,2∧

q̂1,2 ∧ . . . ∧ ¬qn,n ∧ q̂n,n (we use the subscriptk only to distinguish the state, and not as a

count of the number of state-changes needed to reach it). That is, γk does not entail any

of the queries of the typeqi,j and entails all queries of the typêqi,j for all integersi, j such

that1 ≤ i, j ≤ n. The stateγk corresponds toSγk
= {s1, . . . , sn} with no rightr in any

of the cells. One way to reach this state fromγ0 is to execute the commandcreateSubject

n times with the parameter instantiated tosi in theith execution.

We assume that asσ, a state-matching reduction exists, there exists a corresponding

rechable stateγTk in TAM that answers the (mapped) queries the same way. Consider

any sequenceγT0 7→ψT γT1 7→ψT . . . 7→ψT γTk . Pick the first state,γTc in the sequence that

satisfies the following condition:γTc ⊢ q
T
i,j∨q̂i,j

T for all integersi, j such that1 ≤ i, j ≤ n.

Such a state exists:γTk is such a state, and may be the only state in the sequence that meets

the condition. We observe also thatγT0 does not satisfy the condition, thereby implying

that the sequence has at least one state-change.

Consider the stateγTc−1 in the sequence just beforeγTc . γTc−1 has the following property:

there exist integersv, w with 1 ≤ v, w ≤ n, such thatγTc−1 ⊢ ¬
(
qTv,w ∨ q̂v,w

T
)
⇒ γTc−1 ⊢

¬qv,w∧¬q̂v,w
T . For every state in the ATAM system that entails the corresponding formula

of queries¬qv,w ∧ ¬q̂v,w, the state also entails at least one of the following two formulae

of queries: (1)Q1 = ¬qv,1 ∧ ¬q̂v,1 ∧ ¬qv,2 ∧ ¬q̂v,2 ∧ . . . ∧ ¬qv,n ∧ ¬q̂v,n ∧ ¬q1,v ∧ ¬q̂1,v ∧

. . . ∧ ¬qn,v ∧ ¬q̂n,v, or, (2)Q2 = ¬qw,1 ∧ ¬q̂w,1 ∧ ¬qw,2 ∧ ¬q̂w,2 ∧ . . . ∧ ¬qw,n ∧ ¬q̂w,n ∧

¬q1,w ∧ ¬q̂1,w ∧ . . . ∧ ¬qn,w ∧ ¬q̂n,w.
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The reason is that a state in ATAM that entails¬qv,w ∧ ¬q̂v,w is one in which either

the subjectsv or sw, or both do not exist (v = w is allowed, and does not affect our

arguments). None of the queries of either typeqi,j or q̂i,j corresponding to a subject that

does not exist in a state is entailed by the state. Therefore,in TAM, γTc−1 ⊢ QT
1 ∨ Q

T
2

(whereQT
1 andQT

2 are obtained fromQ1 andQ2 respectively by adding the superscriptT

to each query in the formula).

Consider the state-change in TAM fromγTc−1 to γTc . It must change (at least)n queries

that appear inQT
1 orQT

2 from false to true. This is not possible, as each state-change can

change at mostm < n queries from false to true. We have the desired contradiction to the

existence of a state-matching reduction from the ATAM scheme to the TAM scheme.

Thus, the notion of state-matching reductions formalizes the difference in expressive

power between ATAM and TAM. One may ask whether there exists areduction from

ATAM to TAM. One may also ask whether reductions or state-matching reductions exist

from ATAM to TAM when we allow TAM to contain queries of the type “is r 6∈Mγ [s, o]?”

as well (but a command only allows checking for the presence of a right in a cell in the

condition). These are open questions.

5.4 A “simulation” of RBAC in strict DAC

We now informally describe a simulation of RBAC in strict DAC, the simplest form of

DAC. The point of this simulation is to show that if precise requirements are not specified

on simulations, then anything is possible.

The state of a strict DAC model is represented by an access matrix, which has one

subject for each user and each role and one object for each permission. There is also one

special subjectadmin, who is the creator and owner of every object in the system. All

subjects are also objects. We use three rights, ‘own ’, ‘ dc’, and ‘c’. We assume that the

implementation of the strict DAC model provides the following functionality, it internally

sorts all the objects and can return the first object, given anobjecto, it return the object

next too. The commands implemented in the strict DAC are as follows:
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command create(s, o)

create o;

enter own into (s,o);

end;

command delete(s, o)

if own ∈ (s,o)

destroy o;

end;

command grant-dc(s1, s2, o)

if own ∈ (s1,o)

enter dc into (s2,o);

enter c into (s2,o);

end;

command grant-c(s1, s2, o)

if own ∈ (s1,o)

enter c into (s2,o);

end;

command revoke-dc(s1, s2, o)

if own ∈ (s1,o)

remove c from (s2,o);

end;

command revoke-c(s1, s2, o)

if own ∈ (s1,o)

remove c from (s2,o);

end;

The addition of new users, roles, and permissions are carried out by the simulator

in the straightforward way, i.e., haveadmin executes a creation command;admin then

becomes the owner of these objects. When a new user-role assignment,(u, r), is added,
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the following procedure is executed, observe that only constant space is needed for the

simulation.

addUR(u,r) {

run command grant-dc(admin , u, r);

while (propagate());

}

propagate() {

repeat = false;

for every s,o1,o2 in the matrix {

if c 6∈(s,o2) && c ∈(s,o1) && c ∈(o1,o2) {

run command grant-c(admin , s, o2);

repeat = true;

}}

return repeat;

}

The procedures for adding a role-permission assignment anda role-role inheritance

relationship is similar.

Whenever a user-role assignment is removed, the simulator executes the following

procedure, which first clear all the propagated rights and redo the propagation.

removeUR(u,r) {

if (dc ∈ (u,r)) {

run command revoke-dc(admin , u, r);

clear();

while (propagate());

}

}

clear() {

for every s,o in the matrix {
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if c ∈(s,o) {

run command revoke-c(admin , s, o2);

}}

}
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6 CONCLUSION

We have proved our thesis that there exists a theory based on reductions that preserve

results of security analysis for comparing access control models. We have demonstrated

the effectiveness of the theory by applying it in several cases. We have established new

results regarding safety analysis in DAC and security analysis in RBAC that are related to

our thesis.

Our theory is a significant advancement in access control. Our theory is not only sound

in its own right, but applications of it have lead to results that provide considerable insight

into the power of access control schemes. One of the applications solves an open prob-

lem in access control. Another counters what appeared to be persuasive claims about the

expressive power of a particular access control model. A third confirms a conjecture that

could not be proven without a sound theory like ours. And a fourth application disasso-

ciates the undecidability of safety in an access control scheme from its expressive power;

the two are often coupled in existing literature. From a broader standpoint, our theory and

its applications demonstrate that formal methods can continue to play an important role in

computer security.

A question that arises is whether our theory can be applied inbroader contexts of

security than computer security. The answer is “yes”; we point out that provided a scheme

can be represented as a four-tuple of states, state-change rules, queries and entailment, our

theory can be applied.

There is considerable scope for future work on the issue of expressive power in the

context of access control. We propose to use our theory to compare more models with

each other. For instance, we would like to compare various versions of DAC and “layer”

these versions based on their relative expressive power. Also, while our theory is based on

capturing the notion of policies that can be represented andverified in an access control

system, we do not believe that reductions and state-matching reductions capture all the
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types of policies we would want to consider. For instance, a reasonable question to ask

during a security audit may be: “Did Alice get her write access to a sensitive file only after

her husband, Bob was given privileged access to the system?”This can be perceived as a

policy issue, and we may want to express this as some expression involving queries.

Neither reductions nor state-matching reductions capturesuch query expressions. As

part of our future work, we propose to expand our theory to include such policies. A re-

lated question regards the limits to extending our theory toconsider more kinds of policies.

This remains an open question.
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