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Abstract—We design a Tree-based Forward Digest Protocol (TFDP) to verify

data integrity in distributed media streaming for content distribution. Several

challenges arise, including the timing constraint of streaming sessions, the

involvement of multiple senders, and the untrustworthiness of these senders. A

comprehensive comparison is presented on the performance of existing protocols

and TFDP, with respect to communication and computation overhead. Both

simulation and Internet-based experimental results are presented to demonstrate

the effectiveness of TFDP.
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�

1 INTRODUCTION

CONSIDER the following media data distribution scenario: A source
content server called “Hollywood” first starts streaming a movie to
its clients. When a sufficient number of clients have been served
and have agreed to serve as redistributors, they will begin
streaming the movie to other clients in the system. The distribution
is supervised by the server: It authenticates requesting clients and
gives them credentials to be served by the supplying clients, who
will perform distributed media streaming only if proper creden-
tials are presented. One key property of such distributed media
streaming is that each streaming session involves multiple supply-
ing clients due to the limited bandwidth contributed to the session
by each of them. We note that, unlike traditional file sharing
systems, a media streaming session allows continuous playback of
media data during the session.

In such a “many-to-one” media streaming session, an untrust-

worthy supplying client (or “supplier”) may corrupt any block of

the media data. The verification of media data integrity thus

becomes a critical task and poses a number of challenges. First,

unlike authentication for multicast streaming [1], [11], [8], the

suppliers cannot be assumed as trusted. In distributed media

streaming, packets signed by one client may not be acceptable to

other clients. Therefore, a client needs a point of reference to verify

the media data it receives. Second, due to the real-time constraint

of media streaming, data integrity verification needs to be

performed in real-time. Third, the objective of verifying data

integrity is not only to verify that the data are not corrupted, but

also to validate that the media file is really what the client has

requested. We note that other security problems exist in

distributed media streaming, such as how to prevent the disclosure

of copyright-protected media data to unauthorized parties. These
issues are outside the scope of this paper.

By presenting a comprehensive survey of existing protocols for
data integrity verification, we show that they are either inapplic-
able or too expensive for distributed media streaming. We adopt
the method of message digest and propose a Tree-based Forward
Digest Protocol (TFDP). TFDP uses Merkle tree [7] and distributes
data digest delivery overhead over the duration of a streaming
session. The protocol works well with unreliable transport
protocols. This is achieved by using Forward Error Correction
(FEC) codes, especially for data digests. Our experiments show
that TFDP is able to verify media data integrity with low
communication and computation overhead.

TFDP is also applicable to Bittorrent-like file sharing applica-
tions that adopt the “multiple senders and single receiver” model
similar to distributed media streaming. In addition, users are
required to perform simultaneous uploads and downloads. By
using TFDP, a receiver can verify data received from multiple
suppliers block by block during a download session and, thus, it
can become an uploading supplier at the same time.

The rest of the paper is organized as follows: Section 2 surveys
related work. Section 3 presents TFDP. A comprehensive compar-
ison among different solutions is presented in Section 4. Section 5
presents experimental results. Section 6 concludes this paper.

2 RELATED WORK

To the best of our knowledge, there has been no prior study on
data integrity verification for many-to-one distributed media
streaming. In this section, we survey current related solutions
and identify their limitations in supporting distributed media
streaming.

Digital signature. A straightforward method to verify data
integrity is to let the source server sign every packet (packet
indicates the minimum unit of media transport, not an IP packet)
or the hash of each packet with its private key using digital
signature. A client can then verify the signed data using the
server’s public key. The RSA signature [14] verification has high
computation overhead and is not suitable for real-time applica-
tions. Unlike RSA, one-time signature schemes such as [5], [9], [13]
incur low verification overhead and latency. These schemes are
usually used to sign multicast or broadcast streams. Rohatgi [15]
proposed a k-time signature scheme which is more efficient than
the one-time signature schemes. Still, the scheme generates
300 bytes for each signature.

Signature chain. Gennaro and Rohatgi [2] introduced techni-
ques to sign offline and online digital streams. The first packet of
an offline stream is signed and the hash of each packet is
embedded in the next packet. The online scheme signs the initial
packet and embeds the public key of a one-time signature in each
packet, which is used to sign the subsequent packet. Although an
elegant solution, it does not tolerate packet losses and it incurs
high communication overhead.

Perrig et al. [10], [11] proposed TESLA and EMSS for efficient
and secure multicast. TESLA embeds the signature of packet pi and
the key to verify packet pi�1 in packet pi. The key of packet pi is
sent in packet piþ1. The adversary will see the key but it is too late
to forge the signature. TESLA requires strict ordering of packets by
the sender, which cannot be guaranteed in distributed many-to-one
streaming. Furthermore, if the supplying clients generate keys and
sign the digests as in TESLA, they may not be acceptable to other
clients because clients are not assumed to be trustworthy.

Signature tree. Wong and Lam [16] studied data authenticity
and integrity for lossy multicast streams. They proposed using
Merkle signature tree to sign multicast streams. In their scheme,
the root is signed to amortize one signature over multiple
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messages. Each packet contains the digests of all nodes necessary
to compute the digest of the root and the signature of the root. As a
result, the space requirement is rather high: 200 bytes in each
packet using 1,024-bit RSA for a tree of 16 packets. The protocol we
propose also uses Merkle tree. However, we significantly reduce
the overhead by sending the digests of one subtree before sending
any data. Thus, a packet does not need to carry all the digests that
are required to verify its integrity.

Park et al. [8] proposed SAIDA that leverages erasure codes to
amortize a single signature operation over multiple packets. In
SAIDA, a block—a series of contiguous packets—of a packets
carries the encoded digests and signature of the block. The
signature and digests are recoverable if the receiver gets any
b � a packets. This digest encoding is robust against bursty packet
losses to a certain level. To reduce overhead, FEC is used to
encode only digests, not data.

Both signature tree and SAIDA are designed for multicast
where the sender signs packets and the receivers trust the sender.
In our protocol, a receiver does not have to trust the suppliers.
Unlike signature tree and SAIDA, we choose not to use digital
signature to further reduce overhead.

Erasure codes and homomorphic hash function. Krohn et al.
[4] use homomorphic hash function to verify erasure codes during
a many-to-one bulk file transfer session. A client can verify each
block on the fly while downloading a large file such as Linux ISO
from multiple suppliers. Thus, the client does not have to wait
until the end of the transfer to verify the entire file. While effective
for file downloading, this verification scheme is not applicable to
real-time media streaming because the client has to wait until the
end of the file transfer to decode all blocks.

3 PROTOCOL DESCRIPTION

In our protocol, we assume the existence of a trusted authority
denoted as the Authentication Server (or “server”) S0. To request a
distributed streaming session, a client will first authenticate itself
with S0 and obtain a point of reference to be used for data integrity
verification during the streaming session. In our protocol, the
reference data is only 20 bytes long for each requesting client. We
first define the distributed media streaming model and then
describe our protocol.

Streaming model. Client P0 requests a media streaming session
to be served by a set of supplying clients IP ¼ fP1; P2; . . . ; Pmg. The
set of suppliers is determined by a certain lookup and selection
mechanism. The requested media file has a size of F bytes and is
divided into a set of M blocks IB ¼ fb1; b2; . . . ; bMg. Each block
consists of l packets. We denote a block as bi ¼ fpi1; pi2; . . . ; pilg,
where pij is the jth packet of the ith block. Finally, a sequence of
blocks is referred to as a group. During a streaming session,
different suppliers transmit different packets of each block to the
client, which will reconstruct the block. Details on packet assign-
ment to suppliers can be found in [3].

Tree-based Forward Digest Protocol (TFDP). As in Tree
Chaining proposed by Wong and Lam for multicast flows [16],
we use Merkle tree to design TFDP. Merkle tree [7] generates one-
time signature using one-way function tree and hash function.
Each message to be signed corresponds to a node in the tree. Each
node consists of verification parameters that are used to sign a
message and to authenticate the verification parameters of
subsequent nodes. The root of the tree is the public key for
signature verification. We note that the idea of constructing one-
way function tree has also been applied to key management in
secure group communications [12], [6]. In fact, such tree construc-
tion is common in a number of application scenarios, but for
different purposes: Rafaeli and Hutchison [12] as well as McGrew
and Sherman [6] use it for key management, Merkle [7] uses it to

generate signatures, while we (TFDP) as well as Wong and Lam

(Tree Chaining) use it to authenticate data streams.
In Tree Chaining, a file is divided into a number of blocks, with

each block containing a set of packets. A signature tree is then

constructed for each block with all packets of the block as leaves.

The root of the tree is signed by a digital signature. In TFDP,

however, we do not sign the root of every subtree that belongs to

each block. Instead, we only compute digests to build a Merkle

tree. The main difference between Tree Chaining and TFDP is that

the former is designed for multicast flows (one-to-many) where

each packet carries the necessary information for its authentication

and thus incurs high overhead, while the latter is designed for

many-to-one streaming where the overhead is amortized over a

group of data blocks.
In TFDP, server S0 generates the Merkle tree for a media file.

The leaves of the tree are packets in the file. Each nonleaf node of

the tree represents the digest of its children. The server enforces

that a supplier keeps a minimum number of digests, so that the

overhead of sending digests is amortized over a group of data

blocks. During a streaming session, Nmin digests are transmitted

before transmitting the media data blocks. A higher Nmin will

reduce the block verification overhead. However, it will incur

longer delay in the streaming session.
Fig. 1 shows a simple example with 32 packets that belong to

eight blocks. Each nonleaf node Hi represents the digest of its

children. P1, P2, and P3 are suppliers involved in the same

streaming session. Let P1 be assigned to provide digests for the

first two blocks, P2 for the next four blocks, and P3 for the last

two blocks. In this example, the digests provided by P1 are H1, H2,

H10, and H14. P0 then computes H9 from H1 and H2, H13 from H9

and H10, and H15 from H13 and H14, and compares H15 against the

digest supplied by server S0. If there is a match, the belief in H15 is

transferred to all digests provided by P1 because of the property of

collision-free hash function. During the streaming session, media

data sent by the three suppliers can be verified block by block

using H1 and H2 provided by P1. P2 and P3 operate in a similar

fashion. We now describe the steps of TFDP:

. Step 1: Client P0 authenticates itself with server S0 by
sending ES0

ðDP0
ðM0ÞÞ, where the request message M0 is

signed by P0 for nonrepudiation. Then, it is encrypted with
the public key of S0.

. Step 2: The server sends EP0
ðDS0

ðHroot; T ÞÞ to P0, where the
digest of the root of the Merkle tree is Hroot, which is
encrypted with the public key of P0 and signed by the
private key of the server. T is a timestamped ticket that
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Fig. 1. A Merkle tree with 32 packets that belong to eight blocks. P1, P2, and P3 are

suppliers. P1 will provide digests H1, H2, H10, and H14 that are required to verify

the first two blocks. Similarly, P2 will provide digests for the next four blocks and P3

will provide digests for the last two blocks.



needs to be presented to each supplier to prevent a user
from using the same ticket beyond a specific time period.

. Step 3: P0 tells supplier Pi in IP to provide the digests
needed to verifyNmin blocks. If more than one supplier has
all the digests, P0 randomly selects one of them.

. Step 4: Supplier Pi provides to P0 all required digests to
verify Nmin data blocks.

. Step 5: If the root digest computed by P0 matches the root
digest obtained from the server, P0 will trust the digests
provided by Pi and use them for data integrity verification
during the streaming session. Otherwise, the protocol goes
to Step 3 and obtains digests from a different supplier.

. Step 6: P0 signals the suppliers in IP to send media data.

. Step 7: The suppliers start the streaming session. Using the
digests obtained in Step 4, P0 verifies every media data
block reconstructed from packets transmitted by the
suppliers. Once the streaming of Nmin blocks is done, the
protocol goes to Step 3 to repeat the process for the next
Nmin blocks.

Fig. 1 is a binary tree if we exclude the leaves. Especially, a

parent node of the leaves represents the digest of the block to

which the packets belong. The size of a block needs to be chosen

carefully to ensure that it does not introduce delay to collect all

packets in it. If the tree is a d-ary tree, the height of the tree will be

logd
F
l , where F is the size of the media file. The number of extra

digests required to verify each block depends on the height of the

tree. TFDP requires ðd� 1Þdlogd
F

Nminl
e digests to verify Nmin blocks.

It can be easily shown that the number of extra digests to verify

Nmin blocks is minimized when d ¼ 2.

4 COMPARISON AND EVALUATION

In [8], the authors show that SAIDA performs better than both

EMSS [11] and Tree Chaining [16] in tolerating bursty packet

losses. Therefore, we only compare TFDP with SAIDA and Tree

Chaining. We compare the three protocols in terms of commu-

nication and computation overhead. The communication overhead

is the extra bytes per packet client P0 needs to receive from the

suppliers and S0 for data integrity verification. The computation
overhead at P0 is due to hash computation, signature verification,
and FEC decoding.

Communication overhead. Tree Chaining requires P0 to obtain
the public key (usually 128 bytes long) of the server to verify the
signature. P0 needs to receive l log l digests for each block, where l

is the size of a block in number of packets. Each packet carries one
1,024-bit signature. Thus, for each block, P0 needs to receive
20l log lþ 128l bytes. TFDP requires only one digest (20 bytes) from
the server. However, it needs 1þ 1

Nmin
logð M

Nmin
Þ extra digests for each

block. The digest of each block is encoded using FEC. We define �,
the overhead factor of FEC, as:

� ¼
total packets sent per block

packets required to reconstruct the block
: ð1Þ

Thus, the total communication overhead of TFDP is 20ðl�þ

1þ 1
Nmin

logð M
Nmin

ÞÞ bytes per block. SAIDA requires one signature
per block, and it uses FEC. Thus, it incurs ð20lþ 128Þ� bytes of

overhead for each block. Table 1 summarizes the comparison
results.

We demonstrate the communication overhead of the three pro-
tocols using the trace of The Matrix movie. Fig. 2a shows that the
communication overhead of SAIDA and TFDP is both low, because
FEC is used to encode digests and signatures. On the other hand,
Tree Chaining does not use FEC and incurs much higher
communication overhead (208 bytes per packet, for l ¼ 16, not
shown in Fig. 2a). TFDP incurs less overhead than SAIDA and Tree
Chaining because TFDP verifies digests of every Nmin data blocks
as a group, which reduces the height of the Merkle tree from logM

to log M
Nmin

. The difference in communication overhead between
TFDP and SAIDA narrows when the block size gets larger.
However, a large block size can cause delay during a streaming
session because the client would need all packets in a block before
it can reconstruct the block.

Computation overhead. In Tree Chaining, M subtrees are
created for M blocks and each tree requires 2l� 1 hash
computation. SAIDA needs to decode digests for each packet
and verify one signature for each block. Thus, the computation
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TABLE 1
Comparison of Data Integrity Verification Protocols

M is the total number of blocks of a file, l is the size of one block in number of packets, and � is the FEC overhead factor.

Fig. 2. Overhead of Tree Chaining, TFDP, and SAIDA for The Matrixmovie (size: 1.3 GB). The communication overhead is per packet while the computation overhead is
for the entire file. Tree Chaining has 208 bytes overhead per packet (not shown in the figure). (a) Communication overhead. (b) Computation overhead.



overhead of SAIDA is due to Mðlþ 1Þ digests and M

signatures. TFDP needs to compute extra digests for every

Nmin blocks. The number of extra digests is M=Nmin½ðNmin �

1Þ þ logðM=NminÞ� and every block is verified during the

streaming session. Thus, the total client-side computation

overhead of TFDP is MlþM=Nmin½ðNmin � 1Þ þ logðM=NminÞ�.
We use openSSL crypto library to calculate SHA-1 hash, RSA

signature, and RSA verification. Cauchy-based Reed-Solomon code

is used to encode digests. In Fig. 2b, we compare the computation

overhead of the protocols using The Matrix movie. The computa-

tion overhead of Tree Chaining can be reduced by caching digests

carried by previous packets. The cached digests are used to verify

upcoming packets of a block. SAIDA incurs higher computation

overhead than TFDP because SAIDA has to verify the signature of

every block, which is more computation-intensive than verifying

digests.

5 STREAMING EXPERIMENT RESULTS

We have conducted both streaming simulations and real-world

experiments. In our simulations, one client requests and receives

streaming media from five suppliers. Like in SAIDA, we use the

two-state Markov loss model to introduce bursty packet losses. The

parameters of the Markov loss model are Prfno lossg ¼ 0:95 and

Prflossg ¼ 0:05. The model characterizes the loss of every under-

lying network link connecting the five suppliers and the client. We

define data block verification rate as the fraction of data blocks that

can be verified during a certain time interval.
The simulation results of SAIDA and TFDP are shown in Fig. 3.

In both protocols, the digests and signatures are FEC-encoded to

tolerate 37.5 percent packet loss rate. We observe that, due to

bursty packet losses, some blocks cannot be verified. The reason

why TFDP performs better is that TFDP incurs slightly less

communication overhead than SAIDA, which requires RSA

signature for each block.

We have also developed a distributed media streaming system
called PROMISE [3]. The system monitors network dynamics,
quality of connections from multiple suppliers to a receiver, as well
as supplier availability, to maintain full media playback quality on
the client side. Particularly, the set of suppliers in a streaming
session may change dynamically, so that the fluctuation of network
and supplier conditions will not affect the client-side aggregated
media streaming rate. TFDP can be integrated into PROMISE. We
evaluate TFDP by conducting experiments in the wide-area
PlanetLab testbed (www.planet-lab.org).

Fig. 4 shows the results from two streaming sessions using
TFDP in PlanetLab. Both sessions can tolerate up to 20 percent
packet loss due to FEC. In Session 1, TFDP is able to verify almost
all the blocks during the first 300 seconds of the session. At the
50th second, the network loss rate goes up to 40 percent and the
block verification rate temporarily drops to 0.9. Session 2
experiences a few more glitches than Session 1. Still, in both
sessions, the overall block verification rate achieved by TFDP
remains high. The main reason is that PROMISE has dynamic
supplier switching capability. The suppliers in a streaming session
can be dynamically replaced when significant packet loss is
experienced, in order to avoid the congested network links. Our
experiments show that TFDP works well in the event of a dynamic
supplier switch.

6 CONCLUSION

We study the problem of data integrity verification in distributed
media streaming sessions. We propose a simple and efficient Tree-
based Forward Digest Protocol (TFDP) as our solution. TFDP incurs
low communication and computation overhead, compared with
existing data integrity verification protocols. More importantly,
TFDP relieves the source server from supplying the digest of every
data block in a streaming session. Instead, this load is distributed
among the multiple supplying clients serving in the streaming
session, enabling data integrity verification even if the suppliers are
not trustworthy. Both simulation and Internet experiments demon-
strate the effectiveness and practicality of TFDP.
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