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Abstract

Improving software assurance is of paramount importance given the impact of software on our lives. Static
and dynamic approaches have been proposed over the years to detect security vulnerabilities. These approaches
assume that the signature of a defect, for instance the use of a vulnerable library function, is known apriori. A
greater challenge is detecting defects with signatures that are not known apriori – unknown software defects. In
this paper, we propose a general approach for detection of unknown defects. Software defects are discovered by
applying data-mining techniques to pinpoint deviations from common program behavior in the source code and
using statistical techniques to assign significance to each such deviation. We discuss the implementation of our
tool, FaultMiner, and illustrate the power of the approach by inferring two types of security properties on four
widely-used programs. We found two new potential vulnerabilities, four previously known bugs, and several
other violations. This suggests that FaultMining is a useful and promising approach to finding unknown software
defects.

1 Introduction

Program verification techniques can be used to improve the quality of software, and, as a side effect, its resilience
to security breaches. Given a specification of correct program behavior, it is often possible to check statically that
invariants hold on all possible execution paths. Unfortunately, manually specifying program invariants has proven
to be difficult for practitioners. In the absence of program-specific invariants, we are limited to checking generic
properties that pertain to known vulnerabilities of the programming language, libraries, or operating system.

There are many security-relevant known program properties that rely on the temporal ordering of program events.
Consider, for example, the following temporal properties (where→ denotes a happens-before relationship): [isnul-
l(ptr) → *ptr]. The fact that it is a responsibility of the program to check that a pointer is non-null before
access is a property of the programming language (in Java, for instance, null checks are performed by the virtual
machine and the program is only expected to catch any exceptions resulting from the check). The synchroniza-
tion primitives lock and unlock should strictly alternate along all paths; thus we must ensure that [lock →
unlock]. Forgetting to unlock after locking, double locking, and double unlocking are security violations. As a
last example, take the chroot function that changes the root directory to be its argument. This is used to confine
a process to the portion of the filesystem denoted by the new root. The correct way to create a chroot “jail” is
to call chdir("/") after the call to chroot thus changing the current directory to the new root and preventing
subsequent attempts to follow upward references (“..”). Therefore the property to be checked is [chroot →
chdir("/")].

However, programs have many more invariants that are specific to the application logic. These go beyond the simple
language- and operating-system-specific properties illustrated above. These invariants are just as critical for security
but are unfortunately almost never properly documented. The challenge addressed by the approach described in this
paper is to find automated techniques for extracting program invariants from the source code with limited user
interaction. While we focus on security properties, the approach is clearly applicable to any software defect. We
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Figure 1: FaultMiner Framework.

propose a new approach, and a tool named FaultMiner, based on a combination of static program analysis and data-
mining techniques for discovering likely invariants. These invariants are used to find software defects that are then
presented to the developer or code auditor for reviewing.

We follow the premise of previous work on inferring invariants: common behavior is often correct behavior. This is
not necessarily the case, of course, because what a tool may think of as invariants might simply be coincidences or in
the worse case, they could be incorrect: code segments reproduced several times e.g. a cut-and-paste error. For this
reason, the inferred invariants are usually referred to as likely program invariants. We call defects resulting from a
violation of such likely invariants as unknown defects because the invariants are not known apriori. Recently, several
approaches have been proposed to infer likely invariants from a program with the goal of finding defects resulting
from a violation of the inferred invariants. They broadly fall into two categories: dynamic approaches [5, 18, 21, 33],
which observe a program’s runtime behavior, and static approaches [16, 26, 32], which analyze program text to
detect likely invariants.

As an example of such invariants, consider the openssh program. The function packet start has to be called
before packet send, because the former initializes packet construction by appending the packet type. This in-
variant can be inferred by observing that the sequence [packet start→ packet send] occurs 39 times in the
sshd code. Another sequence, [buffer init → mm request send → mm request receive expect
→ buffer free] occurs 12 times. It so happens that forgetting any one of the calls in this sequence will be
erroneous. Deriving and checking invariants at the level of user-defined functions enables us to detect defects at a
higher level of abstraction.

Static approaches are appealing because they have the advantage of observing all the paths in a program. The
current static approaches to finding unknown defects consider simple temporal invariants, in specific contexts, and
use ad-hoc techniques. For example, Engler et al. [16] and Weimer and Necula [32] consider only function pairs in
their invariants. Li and Zhou [26] ignore control flow from conditional statements and consider the function body
as a single path. FaultMiner overcomes these limitations.

In this paper, we propose a general approach to finding unknown defects. An overview of the FaultMiner framework
is illustrated in Figure 1. We consider temporal invariants on general events (including assertions on data values)
that are abstracted using static analysis in an Event Automaton Model (EAM). Event traces generated from the EAM
are used to infer likely invariants. The FaultMiner analyzes the event traces and the likely invariants to generate
error traces.

The technique of inferring likely invariants and finding unknown defects is derived from well-known data-mining
algorithms. We describe how two security-critical program invariants can be derived using this novel technique. We
present experimental results for FaultMiner on the latest versions of wu-ftpd, cups, openssl, and openssh.
These are four extensively-used security-critical real-world programs. Using FaultMiner, we found two new poten-
tial vulnerabilities (one in wu-ftpd and one in cups) and four previously known bugs (in openssh), and several
other violations.



The rest of the paper is organized as follows. Section 2 describes event generation, EAM, and trace generation. Sec-
tion 3 explains invariant generation. Section 4 describes the FaultMining technique and the two security properties.
Extensive experimental evaluation is presented in Section 5. Sections 6 and 7 discuss the challenges that need to be
overcome in future and related work respectively and Section 8 presents our conclusions.

2 Event Automaton Model

Fault mining can be performed on any program representation. It only requires some notion of interesting program
events and a partial order among these events. Different static analysis techniques can be used to generate events
that can be the basis for invariant inference. In FaultMiner, we decouple the stages of event generation and invariant
inference by abstracting the program in an Event Automaton Model (EAM) and inferring invariants on the event
traces generated from the EAM.

For our purposes, an EAM is a Non-deterministic Finite Automaton constructed out of the program’s interprocedural
control flow graph (ICFG), i.e. the union of statement-level control flow graphs for all functions, and an event filter.
The ICFG is straightforward, each function has unique entry and exit nodes and call sites are split into call and
return nodes. Call nodes are connected to the entry nodes of the invoked functions and the exit nodes of the invoked
functions are connected to the return nodes corresponding to these calls. The event filter is a function that maps basic
blocks to set of events. An event can be any predicate that holds at a given program point. A program point may
generate zero or more events. Examples of events include function calls, def/use of a variable, etc. Events can be of
arbitrary granularity. As an example, events of interest for static taint analysis are of the form is-tainted(x).

Event traces can be generated from the EAM by considering sequences of events along all the paths in the EAM.
Each trace corresponds to events generated along one particular execution of the program. This can be done in a
flow- and context-sensitive manner, e.g. using a pushdown automaton to match the call and return of functions.
Trace generation can also be path-sensitive provided we have that information from analyzing the predicates of
conditionals. If not, there will be, as usual, infeasible traces caused by path-insensitivity.

An example program, its ICFG representation, and the corresponding EAM where the only events of interest are
calls to the two user functions are shown in Figure 2. Trace generation for this EAM produces two traces [foo] and
[bar→ foo]. Practical considerations with trace generation in FaultMiner are discussed in Section 5.1.

main() {
if (..)

foo("Secure");
else

bar();
}
void foo(char *str) {
write(1,str,strlen(str));

}
void bar() {
foo("Insecure");

}
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Figure 2: An example program. (a) ICFG representation of the program. E, X, C, and R represent the entry, exit,
call, and return nodes respectively. (b) EAM representation for user-defined function invocations.



3 Mining Likely Temporal Invariants

Informally, temporal invariants are discovered by identifying event patterns common to multiple event traces. The
remaining traces where the common event patterns are absent are likely error traces. The challenge is in figuring
out what patterns to consider and then efficiently searching for these patterns in event traces. Efficiency is an im-
portant factor because of the exponential number of event traces and the complexity of finding all possible common
patterns of all lengths across all the event traces. There has been significant research in the area of data mining
that has investigated efficient algorithms to discover complex data-relationships in large databases. Our FaultMiner
algorithm is based on the work of Agrawal and Srikant [4]. The terminology used in the FaultMiner algorithm is
defined below.

Definition 1 An event sequence σ is a string 〈e1, e2, . . . , en〉 where ej occurs after ei if j > i. The length of an
event sequence is the number of events present in the sequence. An event sequence of length k is called a k-sequence.

For a given EAM, an event trace is a string in the language represented by the EAM. The set of all the strings in
the language is represented by E. For clarity, we will speak of event sequences only when referring to properties of
interest.

Definition 2 A subsequence σ′ of a sequence σ is a new sequence derived from σ by deleting one or more of its
elements without disturbing the relative positions of the remaining elements. We use the notation σ′

< σ to indicate
the subsequence relationship.

Definition 3 An event trace τ supports an event sequence σ if σ < τ . The support S of an event sequence σ for a
set of traces T, is the percentage of event traces in T that support σ.

Definition 4 An event sequence with support greater than user-defined minimum support value, minsup, is called a
large event sequence.

Definition 5 We define the confidence C of an event sequence σ w.r.t a subsequence σ′ as the percentage of event
traces containing σ′ that also contain σ. This can also be defined as Cσ

σ′ = support(σ)
support(σ′) .

We consider two user-defined confidenceslowconf and highconf s.t. 0 <lowconf < highconf < 1.

Algorithm. The FaultMiner AprioriAll algorithm is used to generate the set of all large k-sequences of events.
These large event sequences represent “common behaviors” or likely invariants because, by definition, they are
present in a majority of event traces, where majority is characterized by the value of minsup. The algorithm makes
multiple passes over a set of event traces. In each pass, the large sequences from the previous pass are used to
generate candidate sequences using the apriori-generate function. The support for candidate sequences is calculated
to determine the new set of large sequences. The algorithm is seeded with the set of large 1-sequences.

The apriori-generate function yields candidate k-sequences from large k-1 sequences by first joining the large k-1
sequences and then pruning those candidates that contain any k-1 subsequence that is not large. The pruning phase
is the key idea of the AprioriAll algorithm. The underlying intuition is that any subsequence of a large sequence
must also be large. This drastically reduces the number of candidate sequences. Agrawal and Srikant [3] provide
a proof of correctness of this candidate generation algorithm. The AprioriAll and apriori-generate algorithms are
presented in Figure 3.



algorithm: AprioriAll
input: Set of event traces E
output: Set of large sequences S

L1 ← large 1-sequences
k ← 2
while Lk−1 6= ∅ do

Ck ← apriori-generate Lk−1

foreach t ∈ E and c ∈ Ck do
if c < t then countc ← countc + 1

foreach c ∈ Ck do
if support(c) ≥ minsup
then Lk ← Lk ∪ c

S ← S ∪ Lk

k ← k + 1

algorithm: apriori-generate
input: Set of large sequences Lk−1

output: Set of candidate sequences Ck

// Join Phase
foreach l, l′ ∈ Lk−1 s.t. l 6= l′ do

let l = 〈e1...ek−1〉 and l′ = 〈e′
1
...e′

k−1
〉

if e1 = e′
1
...ek−2 = e′

k−2
then

Ck ← Ck ∪ 〈e1...ek−2, ek−1, e
′

k−1
〉

// Prune Phase
foreach c ∈ Ck and cs < c do

if cs /∈ Lk−1 then Ck ← Ck \ c

Figure 3: The FaultMiner AprioriAll Algorithm. Lk represents the set of of all large k-sequences. Ck represents the
set of candidate k-sequences.

Mining with Constraints While considering event patterns, it is sometimes interesting to consider patterns with
certain constraints on event attributes. For example, we might want to consider events that operate on the same
memory location, occur in the same context and path, and that have their etype alternating between type1 and type2

(such as calls to lock(v) and unlock(v)). We support mining event patterns with such constraints by extending
the apriori-generate algorithm to apply the constraints in the join phase. So the candidate sequences selected satisfy
the constraints in every iteration of the algorithm. This incremental approach to constraint satisfaction prunes the
search space and improves efficiency.

4 FaultMining

FaultMining is based on the two concepts of sufficient evidence of common behavior and sufficient evidence of
deviant behavior. A program path or an event trace is the unit of evidence in FaultMiner. Sufficient evidence of
common behavior is captured in the form of likely invariants. Deviant behavior is behavior that deviates from the
common behavior. Evidence for such behavior should be just enough to classify it as deviant and not great enough
to classify it as another common behavior. This section explains these concepts, describes the FaultMiner algorithm,
and illustrates two security properties that can be captured using this technique.

The AprioriAll algorithm generates the set of all large sequences. The Maximal-Sequences algorithm shown in
Figure 4 takes this set and removes subsequences to retain only the longest sequences. Formally, what this means
is that we are able to identify the complete likely invariants (CLI) and discard all the partial likely invariants (PLI)
(subsequences of CLIs) from S.

Definition 6 A complete likely invariant (CLI) is a sequence χ ∈ set of large sequences S generated by AprioriAll,
s.t. 6 ∃ any other sequence ρ ∈ S that satisfiesχ < ρ. A partial likely invariant (PLI) is a sequence φ ∈ S s.t. ∃ χ
(χ 6= φ) that satisfiesφ < χ.

This is a significant improvement over related approaches [16, 32] because PLIs might not be meaningful when



algorithm: Maximal-Sequences
input: Set of large sequences S
output: Set of maximal sequences M

M ← S
k ← Length of the longest

sequence in S
while k > 1 do

foreach k-sequence s ∈M do
foreach c < s do

M ← M \ c
k ← k − 1

algorithm: FaultMiner
input: Set of maximal sequences M and event traces E
output: Set of error event traces ξ

ξ ← ∅
foreach m ∈M and s < m do

//Subsequences are chosen in the
//decreasing order of their length
if Cm

s
= 1 then continue

if Cm
s

> highconf then
foreach t ∈ E do

if s < t and m 6< t then
ξ ← ξ ∪ t

if Cm
s

< lowconf then
foreach t ∈ E do

if m < t then ξ ← ξ ∪ t

Figure 4: FaultMiner Algorithm.

presented to a software developer or code auditor using such a tool. Also, multiple PLIs that constitute the CLI will
result in redundant checking and redundant alerts.

Our FaultMiner algorithm is illustrated in Figure 4. It takes as input a set of complete likely invariants (maximal
sequences) M computed by the Maximal-Sequences algorithm and the set of event traces E. For each sequence in
M , the algorithm computes the sequence’s confidence relative to each of its subsequences i.e. Ccli

cli′ . We use the
notation CLI′ to denote any subsequence of CLI hereafter. If this confidence is 1 then it means that all the event
traces that satisfy CLI′ also satisfy the CLI. This is not of much interest to us for the goal of fault finding. But if this
is not the case and if the confidence is higher than thehighconf then it means that there are a few event traces that
satisfy the CLI′ but not the CLI. These are potential error traces—traces with likely omitted event(s). For example, if
a call to function a is followed by a call to function b along 99 paths and there is only 1 path where a is not followed
by b, then it is likely that the call to b was omitted by mistake. Note of course that this exceptional behavior might
be correct, thus developer intervention is needed to determine if it is a defect.

On the other end of the spectrum, if the confidence is lower than the lowconf then it means that although the CLI
was “common enough” to be classified as an invariant, the events differentiating it from the CLI ′ may actually be
erroneous occurrences. Event traces that satisfy such CLIs are potential error traces—traces with likely inserted
event(s). For example, if a call to function a is followed by a call to b along 1000 paths and there are only 10 of
them where there is a call to c in-between the calls to a and b, then it is possible the calls to c are errors.

Previous static approaches [16, 32] consider the simplest case of temporal ordering of two events and use ad-hoc
techniques to limit the search space. Li and Zhou [26] consider an arbitrary number of events but ignore control
flow by treating the entire function body as a single path. Our FaultMiner algorithm is the first generalized control-
flow-sensitive algorithm capable of analyzing temporal ordering of an arbitrary number and type of events. This
enables us to infer complete likely invariants instead of multiple partial ones along program execution paths.



4.1 Security Properties

There are many program properties that are specific to a program’s logic and that are not explicitly documented,
not well-understood, and whose violations are not caught by most existing program analysis tools. Such unknown
defects resulting from a violation of implicit invariants are harder to detect because one has to first infer the implicit
invariants before checking if the inferred likely invariants hold along all program paths. Two categories of such
unknown defects are described below.

Function Call Sequence (f → g → . . . ). Unlike library functions and system calls whose semantics are doc-
umented (in the form of man pages) and relatively well-understood, the semantics of user-defined functions or
APIs are usually not explicitly documented. So if such functions have to obey some temporal constraints, it is
likely that these invariants are known only to the software developer(s). For example, in openssh, the function
packet start must always be called before calling packet send. This invariant cannot be captured at the
level of library functions or system calls. Checking invariants at the abstraction of user-defined functions enables us
to detect defects beyond those that manifest from an incorrect usage of system calls or library functions.

One might argue that such invariants are not relevant to security and that their violations will “only” lead to incorrect
but benign behavior. This is not true. Identifying incorrect behavior of security-critical programs such as openssh
and openssl is of extreme importance. Often, incorrect behavior can manifest into malicious behavior with the
attacker compromising the confidentiality, integrity, and/or availability of the system.

Additionally, the higher level of abstraction of user-functions enables defect detection at a coarser granularity.
For example, in CUPS, the Common Unix Printing System, the sequence [cupsFileOpen→ cupsFileGets
→ cupsFileClose] occurs 9 times. Each of these functions encapsulates several checks and actions. The
cupsFileClose function frees the memory associated with the CUPS file besides closing the file. In this case,
instead of separately checking for memory leaks and file descriptor leaks by analyzing at the level of library func-
tions, it is more efficient to match calls tocupsFileOpen with cupsFileClose.

Developing software in collaborative environments, with complex requirements, minimal documentation of such
implicit rules, and few tools to infer and check these rules is a challenging task. Previous work [16, 32] has looked
at techniques to infer temporal ordering between function pairs. While function pairs might be CLIs in a few cases,
they may be PLIs in others. Checking for PLIs will result in an exponential blow-up and will also produce less
meaningful alerts. Besides, the techniques used do not generalize to sequences of longer length. Recent work by Li
and Zhou [26] has attempted to address this concern by proposing a technique to infer temporal invariants among
an arbitrary number of function calls. While this is a definite improvement over the others, the limitation is that it
ignores control flow and considers a function body as a straight line sequence of instructions. So if an invariant is
satisfied along any one path in a function, it is assumed to be satisfied along all paths. It is well-known that security
violations usually occur along exceptional paths or paths that rarely occur at runtime and hence are difficult to detect
using conventional testing. Ignoring control flow will therefore miss out on an important property that contributes to
security violations. FaultMiner not only generalizes to arbitrary number of function calls but also considers control
flow because EAM is obtained from the ICFG.

Invoke→ Check-Return→ Use-Return. In March 2004, a critical security vulnerability was found in the Linux
kernel memory management code inside the mremap system call because of a failure to check the return value of
a function invoked in the system call code [1]. Checking the return values of library functions and system calls
such as malloc and setuid has long been recognized as a good programming practice. Failure to do so may not
always lead to a vulnerability. But it might, when an exceptional condition occurs (such as the function fails and
returns an error code) as in the case of the Linux vulnerability.



Software Version #C files #Functions LOC Description
wu-ftpd 2.6.2 51 221 26,317 A widely-used ftp daemon
cups 1.2 156 308 132,002 Common UNIX Printing System
openssl 0.9.8 767 2,274 259,611 A library of cryptographic primitives
openssh 4.2p1 160 861 66,813 A free version of the ssh suite of

network connectivity tools

Table 1: Characteristics of Evaluated Software.

The return values of user-defined functions should also be checked. Functions that return a non-void value might
not always return error codes and so their return values may be assigned to variables and used later without per-
forming any checks. Sometimes their return values might not be assigned to any variable and this may be fine
according to the program logic. So assuming that all non-void returning function calls should be checked is overly
conservative. But if there is any instance in the program where a function call’s return value is checked before use
then this may be evidence that the function returns a value that needs to be checked before using it. FaultMiner
identifies such functions using any available evidence and detects violations if return values of such functions are
used without being checked.

5 Evaluation

We have implemented our FaultMiner tool using CIL [28]. CIL (C Intermediate Language) is a high-level represen-
tation along with a suite of tools that facilitates whole program analysis of C programs. FaultMiner is implemented
as a CIL module and can be invoked with a command-line argument to CIL driver.

We evaluate the FaultMining concept for the two categories of unknown defects on four widely-used real-world
programs. The characteristics of these four programs are shown in Table 1. The experiments were run on a 2.8 GHz
Linux machine with 1 GB RAM.

5.1 Practical Considerations

Trace Generation. Generating traces along paths is an exponential task. For this reason, all approaches, including
ours, consider only local paths and ignore interprocedural paths. Although Li and Zhou [26] analyze up to a call
depth of three, they avoid the problem of exponential paths by treating the entire function body as a single path
because they ignore control-flow. In our work, we solve the problem using several techniques.

We consider local EAMs generated from CFGs and generate event traces from them. FaultMining is performed
on local event traces. Currently, we generate a maximum of 10000 traces per function or generate traces for one
minute per function, whichever threshold is reached earlier. We also consider a maximum of 10 events per trace (8
for openssh). These values were chosen to attain reasonable memory overheads. To compensate for local paths,
we consider non-local evidence in two ways.

1. Non-local Evidence (NLE). First, for every local violation in function Fi of the form [highconf < Ccli
cli′ < 1],

we compute Ccli
cli′ for all the other functions Fj in which both cli and cli′ ∈ large sequences of Fj . We refer to these

confidence values asnon-local-evidence (NLE) because they present statistical evidence of the violated CLI in other
functions. We rank the local violations by their average NLE given by (

∑n
j=1 Fj(C

cli
cli′))/n. For example, if a local

violation has an average NLE of 1 over n functions, then it means that in n other functions, every trace that contains
CLI′ also contains the CLI (confidence of 1 or 100%). This makes the local violation a serious one especially ifn is



Software Events Traces Invariants % Invariants Violations Violations Binary Time
Evaluated Inferred as function Detected with Violations

pairs Avg. NLE = 1
wu-ftpd 971 433,968 4,104 12 2,668 2 7 4m33s
cups 885 361,439 8,470 8 3,403 6 304 5m20s
openssl 4,098 1,076,248 21,459 11 13,930 47 92 23m43s
openssh 5,521 657,400 83,765 7 33,212 348 576 17m52s

Table 2: Violations Detected for Property 1.

large. We also rank violations based on whether trace generation for that function was completed or terminated from
exceeding the 10000 traces or one minute threshold. A violation is ranked higher if trace generation was completed
for its function.

2. Binary Violation. Second, we also detect violations where, for example, a CLI [Fa → Fb] is present in, for
example, 10 functions and there is only one function that has only the CLI′ Fa but not the CLI. We consider it a
violation if a CLI is present in more than binary-support number of functions, say n, and if n/(n + m) > highconf
where m is the number of functions that contain only the CLI′ and is greater than zero. We call such violations
binary-violations because the violation depends on the presence or absence of the CLI in entire functions instead of
a few paths in a function. Binary violations are different from the other violations because the number of paths do
not play any role in them. The CLI is completely absent in the violating function.

Data-structure for Support Evaluation. The support calculation for candidate sequences has to be performed
on an exponential number of event sequences in the AprioriAll algorithm. This is an expensive operation and needs
to be performed efficiently. For this reason, ahash-tree data-structure is used [2, 4].

Candidate sequences are stored in a hash-tree. A hash-tree is a tree whose interior nodes are hash tables and leaf
nodes are lists of items or in our case, candidate event sequences. Each hash table bucket in the interior node points
to another interior node or a leaf node. An implementation of a hash-tree is based on two parameters: branching-
factor, that specifies the number of buckets in the interior nodes, and theleaf-threshold, that specifies the maximum
number of event sequences in the leaf nodes. We use a branching-factor of 10 and a leaf-threshold of 100 in the
current FaultMiner prototype. Because of space constraints, we refer the interested reader to [2, 4] for a description
of the algorithms for hash-tree insertion and support calculation.

5.2 Property 1: Function Call Sequences

For this property, calls to user-defined functions are considered as events in the EAM. FaultMining is performed
on local event traces. We observed that by running the Maximal-Sequences procedure, we were inferring CLIs that
were present in few or no other functions. This was because, one or more function calls would invariably appear
on a majority (greater than minsup) of the paths following the actual CLI and would be appended to the actual CLI
resulting in a coincidental CLI that was present in few or no other functions. For example, if [Fa → Fb] were
the actual invariant and it was followed by Fc in Ffoo and by Fd in Fbar, along a majority of the paths, then the
inferred CLIs [Fa → Fb → Fc] and [Fa → Fb → Fd] would not serve as NLE for each other in case of a violation.
So we do not run the Maximal-Sequences procedure for this property and instead consider all the large sequences
generated by the AprioriAll algorithm in the FaultMining procedure (i.e. M = S). Ranking based on NLE ensures
that the large sequences that have a greater likelihood of being CLIs are ranked higher than their subsequences or
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larger coincidental CLIs. Also, we consider only subsequences of length k− 1 while detecting violations for a large
k-sequence and we do not currently detect likely inserted events violations.



Table 2† shows the number of events, traces, inferred invariants, detected violations, and time taken when FaultMiner
was run with a minsup of 0.4, a highconf of 0.6, and binary-support of 2. These are moderate values of support
and confidence. Less conservative values will reduce the number of violations but might miss some interesting
violations. Figures 5 and 6 show the number of invariants inferred and violations detected for this property at
three different levels of support and confidence. The number of inferred invariants that were function pairs is only
about 10% of all the invariants as shown in Table 2. The rest of the invariants would have been missed by related
approaches that consider only pairs of functions.

The lower number of inferred invariants and detected violations when Maximal-Sequences is used in FaultMiner is
illustrated in Figures 7 and 8 (note that the y-axis is in logarithmic scale). Figure 9 shows the percentage distribu-
tion of time spent by FaultMiner in the different stages. Except for openssh, trace generation (event generation
contributed very little) accounts for most of the time spent by FaultMiner. The surprisingly high number of invari-
ants inferred in openssh (possibly because of relatively excessive straight-line code that supports several large
sequences) leads to FaultMining time (the binary-violation part of this phase) dominating the other phases. We
manually examined all the violations that had an average NLE of 1.0 and also those that had a majority of NLE
equal to 1.0. We discuss some of the interesting violations for property one detected by FaultMiner.

wu-ftpd. In function CheckSum, FaultMiner detected that while a call to ftpd popen was present on 8 paths,
it was followed by ftpd pclose on only 6 paths and this violation had NLE of (1.0, 1.0, 0.0) in the func-
tions site exec, statfilecmd, and retrieve. On examining the code, we found that the 2 paths where
ftpd popen is not followed by ftpd pclose in function CheckSum are on the error paths when ftpd popen
returns NULL. This suggests that the programmer believes that ftpd popen may return NULL and that its return
value needs to be checked. And indeed, when we examine the function ftpd popen, there are six places where it
may return NULL. Five of them are on failures of the library functions getrlimit, getdtablesize, calloc,
pipe, and fdopen. These functions could fail when the accessed resources are exhausted. This means that if the
return value of ftpd popen is used without checking for NULL, then upon a resource-exhaustion attack, the server
will crash instead of a graceful failure. With this analysis, all the three NLE seem suspicious because they indicate
that in the first two functionsftpd popen is followed by ftpd pclose along all paths highlighting the absence
of error checking for ftpd popen. And in function retrieve, NLE of zero indicates that ftpd popen is not
followed by ftpd close along any path, which again is a violation. Upon checking, we found that the violation
for site exec function was a false-positive because trace generation had been terminated from exceeding the
10000 trace limit. And the violation for retrieve function was also a false-positive because ftpd-pclose was
invoked through a function-pointer. But the violation in function statfilecmd was a true-positive. The return
value of ftpd popen is indeed not checked for NULL. This is a new potential vulnerability found by FaultMiner in
the latest version of wu-ftpd.

cups. In function cupsPrintFiles2, FaultMiner detected that while [ cupsglobals→ ippNew → ippAddString]
was present on 9 paths, [ cupsglobals → ippNew] was present only on 8 paths. Also, there were six other func-
tions that had a NLE of 1.0 for these sequences. On examining, we found that the six other functions were missing
an error check on the return value of ippNew (which allocates a new printer request), which can return a NULL when
calloc fails. Checking all the functions in CUPS, we found that while two calls to ippNew had NULL checks, there
were seven other calls that did not check for NULL. These are serious violations because they can cause the program
to crash under high loads and thus result in loss of unsaved state instead of a graceful degradation of service. This
is a new potential vulnerability found by FaultMiner in the latest version of CUPS.

openssl. FaultMiner found a binary violation that while [dtls1 buffer message → dtls1 do write] occurred in
12 functions, only dtls1 do writewas present in functions dtls1 retransmit message and dtls1 send
hello request. Upon inspection, we found that dtls1 buffer message, which buffers a message for re-

transmission, is not necessary in the function dtls1 retransmit message that does retransmission itself and
†Numbers reported for openssh are for the sshd component



Software Events Traces Invariants Violations Binary Time
Evaluated Inferred Detected Violations
wu-ftpd 765 375,609 171 0 3 4m57s
cups 1,696 215,804 244 0 4 7m53s
openssl 7,185 963,894 1,227 3 13 23m3s
openssh 4,956 440,923 704 12 5 7m26s

Table 3: Violations Detected for Property 2.

is also not needed in the function dtls1 send hello request according to a comment we found in that func-
tion’s body. This is an example of a semantic rule that is particular to a program’s logic. This shows that FaultMiner
can detect violations of such rules.

openssh. We did not find any interesting violations in the ones examined. But using FaultMiner, we were able to
detect three previously known bugs in older versions of openssh. We reintroduced the faults in the latest version
by commenting appropriate lines of code. We checked that the evidence used by FaultMiner to detect these faults
were present in the older versions that had the faults as well. The first one was a memory leak bug wherexmalloc
was not followed by xfree along all the paths in the toremote function of scp. The second fault was a memory
leak bug in sshd where getrrsetbyname was not followed by freerrset along all paths in the function
verify host key dns. The violation for this fault had a NLE of zero, which means that the function pair was
used only in verify host key dns. The third bug was a semantic bug detected by FaultMiner as a binary viola-
tion. A call to packet init compression was missing before the call to buffer compress init send
and buffer compress init recv in function packet enable delayed compress although there was
evidence of this rule in two other functions set newkeys and packet start compression. We had to use
a minsup of 0.2 to detect this violation.

5.3 Property 2: Check-before-Use of Function Return Values

For this property, three types of events are considered as part of the EAM. Call events are generated at program
points where there are calls to user-defined functionswith a return value assignment. ChkRetVal events are generated
at program points where return values corresponding to Call events are checked. UseRetVal events are generated
where the return values are used. FaultMining is performed with two constraints for this property. The first constraint
is that the events must correspond to the same function. The second constraint is an ordering constraint on the type
of events. A Call event should be followed by a ChkRetVal event and then by a UseRetVal event. Recall that these
constraints are applied in the join phase of the apriori-generate algorithm.

In the current prototype implementation, we use lexical matching to correlate the Call, ChkRetVal, and UseRetVal
events. ChkRetVal events are generated when the return value is part of a predicate in a conditional statement.
UseRetVal events are generated when the return value is used in expressions or as arguments to function calls.
Static analysis techniques such as pointer-analysis and def-use analysis can be used to further improve the accuracy
of event information. The distinction between the static analysis phase that enables event generation and the rest
of the phases in FaultMining is an important feature of our framework compared to related work. Stronger static
analysis techniques can be applied to improve the results without having to modify the other phases.

Table 3† shows the number of events, traces, inferred invariants, detected violations, and time taken when FaultMiner
was run with a minsup of 0.0, a highconf of 0.6, and binary-support of 2. Unlike property one for which we used
a minsup of 0.4, for this property, we consider an event occurring even on a single path as evidence. This is
because, the three types of events considered for this property generate so many different events that on applying

†Numbers reported for openssh are for the sshd component



the two constraints at minsup of 0.4, very few invariants are generated. Figure 10 shows that trace generation time
overwhelmingly dominates the other phases for this property. We manually examined all the violations where the
CLIs had all the three types of events but only the ChkRetVal event was missing in their CLI′s. We also examined
binary violations for such CLIs. Table 3 shows statistics only for such violations. We discuss some of the interesting
violations for this property detected by FaultMiner.

wu-ftpd. FaultMiner detected a missing check for the return value of ftpd popen in statfilecmd. There was
evidence for this binary violation in three other functions: CheckSum, site exec, and retrieve. This is the
same potential vulnerability that we found also as a violation of property one.

openssh. FaultMiner detected a previously known bug upon reintroducing it in the sshd code. The return value
of a call to session new was missing a NULL check before being used in function do authenticated1. At
the time the bug existed, there were two indications of evidence for this check in functions session open and
mm answer pty. This evidence enabled FaultMiner to detect this bug as a binary violation. This bug had existed
in the code for more than four years before being corrected.

6 Challenges

FaultMiner is useful for detecting classes of defects for which the invariants are unknown. The invariants are inferred
based on the premise that common behavior is correct behavior. Any deviation from common behavior is considered
a violation. While we have shown that this is a useful technique, there are some challenges related to accuracy and
efficiency that need to be overcome.

In static analysis based approaches to finding defects, approximations are used to make the analysis decidable,
tractable, and practical. Such approximations result in false positives. For static approaches to finding defects
related to unknown invariants, invariant generation is another source of false positives. Likely invariants might only
be coincidences. Violations generated for such coincidental invariants are actually false positives. So false positives
in our approach can be reduced by minimizing the number of coincidental invariants and by using more accurate
static analysis techniques.

The challenge in minimizing coincidental invariants is in quantifying common and deviant behaviors (characterized
by support and confidence). For example, we were able to detect the missingpacket init compression in
openssh only at a low support value of 0.2. The thresholds selected for these two attributes determine the number
of violations reported. We do not believe that there is an ideal value for these attributes that will minimize the
number of violations for any given program without missing the interesting ones. So instead of filtering violations
based on these attributes, ranking violations in the decreasing order of support and confidence would be more useful.

A pathological case is when common behavior is incorrect behavior. This may happen when an invariant violation
is introduced at several places in the program because of ignorance or because of replicating a single violation at
multiple places as a result of copy-and-paste. While manual auditing can help in the first case, there are related
data-mining approaches to detect copy-and-paste bugs [25].

Accurate and efficient techniques for flow-, context-, and path-sensitive pointer-analysis and dataflow analysis will
enable more accurate event and trace generation in our approach. This will not only reduce the number of false
positives but also enable us to check richer properties. For example, a well-known invariant is that, given the
specifications of an untrusted source and a trusted sink, there should never be a tainting definition of a variable
before its use at the sink without sanity-checking [tainting-variable-definition→sanity-check-variable→variable-
use]. Examples of this property include the dereferencing of user pointers in the kernel and format-string bugs.
User pointers should be sanity-checked before dereferencing them in the kernel and user-supplied data should be
sanity-checked before being used as format-string arguments. Failure to do so might result in a security violation.



Unlike the dereferencing of user pointers in the kernel code or the use of user-supplied values as format strings,
sinks, where tainted values must not be used without sanity-checking, might not always be known apriori. For
example, there might be user-defined functions that perform sensitive operations and hence need to sanity-check
data that influence their operations. Such sinks can be identified if there is evidence of sanity checking. If sanity
checking is performed on most paths except a few, then that might be evidence of deviant behavior and therefore a
likely defect.

Trace generation along interprocedural paths is another challenge. All approaches so far consider only local paths
although this may generate both false positives and false negatives. We are investigating approaches to make trace
generation along interprocedural paths feasible. One solution is to collapse those path segments in the EAM that
do not have any events associated with them. State-space reduction techniques used in model-checking may also be
useful. Such optimizations however have to be reflected in the support and confidence calculations because a path
is a unit of evidence in our approach. We are also exploring ways to reduce the memory footprint to allow us to
consider more traces and more events per trace.

7 Related Work

We discuss related research in the four broad areas of specification-based defect detection, specification-annotation
for defect detection, specification-inference for defect detection, and the application of data mining techniques in
computer security. We compare our work mainly with the static approaches to specification-inference for defect
detection. Space constraints prevent us from a more detailed comparison.

Specification-based Defect Detection. Given a specification of an invariant or its inverse—the defect signature,
detection can be performed dynamically by observing program behavior at runtime or statically by observing the
program’s source or binary. There is considerable research in the application of dynamic and static analysis to
finding software defects. Dynamic techniques [12, 13, 14, 22] and the static techniques of traditional dataflow
analysis [6, 7, 17, 20, 31], type systems [30], model checking [9, 10, 34], and abstract interpretation [8] have been
used to detect software defects such as buffer overflows, format-string bugs, race-conditions, and memory leaks.

Specification-annotation for Defect Detection. Programmer annotations can be used to explicitly describe cer-
tain aspects of the specification in the program using a special annotation language. These are usually in the form
of pre- and post-conditions. Although such approaches [11, 15, 19, 23] are beneficial as part of the software devel-
opment process, they require considerable programmer effort and cannot be automatically applied to legacy code.

Specification-inference for Defect Detection. There is some prior research in inferring specifications for the
purpose of finding software defects. There are dynamic approaches that propose to infer specifications (mainly for
supporting program evolution) by observing the runtime behavior of a program [5, 18, 21, 33]. These approaches
have the same drawback as conventional testing in that they have to make inferences based on only the program
paths that are exercised. They also require program instrumentation. Static approaches can observe all possible
paths automatically by analyzing program text. We briefly discuss existing static approaches to defect detection by
specification-inference.

Engler et al. [16] were the first to propose a static approach to inferring specifications from code and use them to
find several bugs in Linux and OpenBSD. They refer to the inferred specifications asMUST and MAY beliefs. MUST

beliefs are known invariants such as NULL pointers should not be dereferenced. MAY beliefs are likely invariants. The
inferred MAY beliefs include function call pairs that should always occur together and function calls whose return



values should be checked before use. Search space for function call pairs is reduced by considering only those
functions that are related by dataflow or that have no arguments. In this paper, we propose a general technique
for inferring MAY beliefs across an arbitrary number of events. We have also shown that this technique can be
instantiated to specific cases using constraints as in the case of the second property.

Weimer and Necula [32] infer function pairs (Fa, Fb) in Java programs where Fb occurs at least once in the cleanup
code within a catch or finally block. The goal is to detect paths where Fa is not followed by Fb. The
assumption is that specifications are most likely to be violated along exceptional paths. The constraint that Fb

should be present inside an exception handler is used to limit the search space of function pairs.

More Recently, Li and Zhou [26] proposed a general technique to infer implicit programming rules using data
mining. However, their approach completely ignores control flow and considers the entire function body as a
single path and so only binary-violations can be detected using their approach. Security violations typically occur
on exceptional control flow paths. Our approach captures these more interesting violations besides the binary-
violations. The distinction between the application of static analysis for event generation and the actual mining with
support for constraints on event traces generated from EAM provides a more flexible framework for extending our
approach to other security properties compared to their approach.

Data Mining in Security. Livshits and Zimmermann [27] recently proposed an interesting approach where they
applied data mining on software revision histories to identify method calls that are frequently added to the code
simultaneously. The assumption is that such method calls represent a common usage pattern. They combine this
with a dynamic analysis where they analyze the frequency of occurrence of the mined patterns and use that to
classify deviations in usage as violations.

Data mining techniques have been used in the field of intrusion detection to learn “normal behavior” from training
data and then flag deviations from that behavior in actual data as intrusions [24]. Anomaly detection approaches
are appealing over signature-based approaches because they do not need an apriori characterization or specification
of “bad behavior.” But they often have a higher false positive rate because of the challenges in capturing normality.
These advantages and drawbacks are common to analogous approaches in software defect detection. Identifying
defects without an apriori knowledge of the correct behavior is a challenging task. What makes it even more
difficult compared to anomaly intrusion detection is that there is no separate training data to help learn the correct
behavior. The static or dynamic event traces represent both the training data and the real data. Data mining has also
been used for other security applications including detection of malicious code [29].

8 Conclusion

We have proposed FaultMining, a novel technique to detect unknown defects. Program events are abstracted in an
Event Automaton Model. Static analysis techniques can be used to generate program events. Temporal invariants
on an arbitrary number of program events are inferred. The technique of inferring likely invariants and finding
unknown defects is derived from well-known data-mining algorithms. Mining with constraints on event attributes is
supported. We have described how two types of security-critical program invariants can be inferred using this tech-
nique. We have evaluated FaultMiner for these types of invariants on four widely-used security-critical real-world
programs namely wu-ftpd, cups, openssl, and openssh. We have found two new potential vulnerabili-
ties, four previously known bugs, and several other violations using FaultMiner and thus have demonstrated that
FaultMining is a useful and promising approach to finding violations of unknown invariants.
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