
CERIAS Tech Report 2006-18

INFORMATION LEAKS AND SAFE WEB SERVICES

by Ashish Kundu

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Information Leaks and Safe Web Services

Ashish Kundu

Department of Computer Science, Purdue University

ashishk@cs.purdue.edu

Abstract

The paper shows that information leaks are inherent in

object models based on subtyping and inclusion

polymorphism. Web services interact with other systems

across organizational boundaries using such an object

model. In the context of web services, information leaks

pose serious security and privacy concerns. A safe web

service is one which neither is a source of any

information leak nor exploits any information leak. The

paper defines properties of such a safety model and

proposes mechanisms to enforce the safety requirements.

Leaks inherent in the programming paradigm however

cannot always be completely masked while keeping the

desired interoperability and flexibility of services intact,

especially in compositional scenarios. Therefore the

paper also proposes use of processes of service

certification and versioning aided by data flow analysis

as measures against, and a cost estimation model in case

of information leaks.

1. Introduction

Web services [15] are fast becoming the standard

model for development and deployment of distributed

applications [6]. With a growing need to provide value-

added services, cross-organizational service delivery is

gaining momentum. Web services use SOAP [16] for

interaction among various parties (web services and

clients) deployed across organizational boundaries

(Figure-1). The parties interact among each other for

various activities such as discovery, registration,

authentication, request and delivery of services.

In the web setting, these distributed applications

involve interactions between various untrusted parties

(deployed on cross-organizational domain). Interactions

between these parties - client and service, service and

service - involve flow of control and data (information)

among them. Cross-organizational flow of information

raises privacy and security concerns.

Object model is the underlying model for data

(information) flow among various parties – services and

clients. Objects are exchanged as parameters and results

of invocations. The flow of objects from one party to

another is made feasible through support of subtyping and

inclusion polymorphism [1]. Subtyping facilitates

compatibility between interfaces. Even if the parameter

types in the interfaces of two interacting parties are not

identical, the information flow is still possible without any

explicit type transformation. If the type of the transmitting

party is a subtype of the receiving type, then information

can flow from the sender through the receiver interface.

Inclusion polymorphism supports implicit type conversion

from a subtype to its supertype.

Web services and clients are commonly developed

(synthesized) using languages (e.g., Java, C++) that

support inclusion polymorphism and subtyping. In this

paper we show that interactions based on the object-model

using subtyping and inclusion polymorphism is not safe in

terms of security and privacy. Default type conversion of

an object of a subtype to one of its supertypes leads to

information leaks. Despite the type conversion, the object

holds all the member fields including embedded objects

and methods belonging to subtype. This extraneous

information with respect to the supertype gets transmitted

to the party, which might be an untrusted destination.

In an untrusted environment, service providers

(organizations) might carry out unauthorized operations

on units of information (objects) received from other

parties (services or clients). Untrusted environments

comprise of untrusted clients, web services or manipulated

execution environment; the underlying middleware and

execution environment such as the marshaling library and

Java Virtual Machine can be manipulated to carry out

unauthorized operations.

Unauthorized operations are the operations on

information that are not necessary to be applied on an

object received from another party for the purpose of

providing the desired service. Examples of unauthorized

operations include extraction, copying, cloning or

modification of extraneous data in an object partially or

fully. An untrusted party is one that carries out

unauthorized operations by design or inadvertently on an

object received from another party.

The members of a subtype that do not belong to its

immediate supertype are called specialized members of

that type. The specialized members of an instance

(objType1 of type SubSubObjType1; see Figure-2) are also

referred to as extraneous members in the context of an

interaction between two parties. For example all

specialized members of an instance of type

SubSubObjType1 with respect to its supertype ObjType1

are extraneous members for the interaction between P1

and P2 (Figure-1). By members we denote all the

variables, member methods in an object or a type.

Automatic and dynamic service discovery and service

request mechanisms employ type matching that exploits

the supertype and subtype relationship. Automation of the

process of aggregation (or composition
1
) of web services

has gained importance with the need for value-added

higher order services [12]. With the advent of adhoc

networks, pervasive and mobile computing models and

dynamic integration of services, there is need to support

dynamic interactions among the services and the clients

need to be supported, but in a secure, privacy-preserving

manner. In order to facilitate a safe computing

environment in these contexts, the paper attempts to

provide mechanisms for effectively removing information

leaks at the level of programming model and life cycle of

web services.

Export of only those members that belong to the

required supertype S through cloning is not a viable

solution in order to prevent leak of extraneous members.

This is because, 1) the supertype(s) should provide

cloning mechanisms, 2) the cloning mechanism of S

(ObjType1 in Figure-2) should be directly accessible to an

object of a type (SubSubObjType1) that may not be a

direct descendant of S in the type hierarchy and 3) the

process of cloning especially deep cloning is expensive.

(1) is not pragmatic because of legacy services, and

existing types may not support cloning. For similar

1
Strictly, aggregation and composition refer to different semantics.

However in the web services context (and so in this paper) these two

terms have been used pretty much interchangeably.

reasons marshalling and serialization mechanisms cannot

selectively export only the required members.

The paper shows that information leaks are inherent in

the object model and are sources of security and privacy

breaches. The other contributions of the paper are

• a safety model for web services against leaks,

• methodologies to prevent information leaks, through

member masking and partial encryption of objects.

• application of certification and versioning in

evaluation of the degree of safety in web services and

• approaches for estimation of cost associated with

information leaks.

1.1 Interaction Model

Let P be a set of interacting parties. Nothing is

assumed about the interaction model and its synchronous

properties. Let Pi � P be a party. Let Mij represent the

interface exported by web service Pj, which Pi invokes to

interact with Pj. Mij is ((T1j, T2j, …, Tmij), Rij), where Rij be

the return object type for interface Mij. An interaction

between Pi and Pj, Iij is (((T
i
1j, O

i
1j), (T

i
2j, O

i
1j), …, (T

i
mij,

O
i
mij)), (R

j
ij, S

j
ij)). O

i
kj is the object sent to Pj by Pi in place

of Tkj in Mij, or null if the object is null. T
i
kj is the type

from which O
i
kj is instantiated from. R

j
ij is the return type

of the object S
j
ij sent by Pj to Pi as part of this interaction

Iij. T
i
ij and Tij are identical types, if and only if O

i
ij is

instantiated from type Tij; i.e., O
i
ij contains no object or

data that is extraneous with respect to type Tij.

1.2 Outline of the Paper

The outline of the paper is as follows. Section 2

illustrates the various kinds of information leaks, their

originations and exploitations. Section 3 introduces the

notion of information flow in the context of web services.

Safe web services computing model is proposed in the

next section. Properties that govern safe information flow

and mechanisms to enforce them in web services

paradigm are described in Section 4.1 and 4.2. Section 4.2

proposes the use of certification and versioning of web

services with the aid of static program analysis in order to

evaluate the degree of safety of a given web service. A

cost estimation model for information leaks is proposed in

4.3. Section 5 discusses the concepts and techniques

introduced in the paper. Related prior work is in the next

section and Section 7 concludes the paper.

2. Information Leaks

 Consider an interaction between parties P1, P2, P3 and

P4 as shown in Figure-1. Table-1 lists the method

signatures of these parties. P1 implements a callback

method (callback1) for asynchronous responses from

service

client

P1

objP1

objP3

Organizational
domain

P2

P3

web

web

P4

web

objP3

Figure 1. Interactions between various parties.

services. P2, P3 and P4 implement methods method2,

method3 and method4 respectively, for service requests

(mechanisms for interaction).

Table 1. Method Signatures of Interacting Parties

Party
Return

Type
Method

Parameter

Type(s)

P1 void callback1 ObjType3

P2 ObjType3 method2 ObjType1

P3 ObjType5 method3
ObjType2,

SubObjType1

P4 ObjType5 method4 ObjType3

An interaction is said to be of compositional semantics

(or just compositional) if it involves more than one

service. In Figure-1, interaction between P1 and {P2, P3} -

an aggregate web service - is a compositional interaction.

An interaction is said to be of elemental semantics (or just

elemental) if it involves one service and one client as the

two interacting parties. In Figure-1, interaction between P1

and P4 is elemental.

Compositional: P2 and P3 comprise a composite web

service. An interaction between P1 and this service is

called compositional. P1 sends objP1 to P2; P2 sends objP1

and objP2 to P3. Instance objP2 has objP6 of type

SubObjType6 embedded in it. P3 creates objP3 of type

ObjType3. It extracts the object of type ObjType6

embedded in objP2. This is actually the instance objP6 of

type SubObjType6. P3 embeds objP6 in objP3. P3 returns

objP3 to P2, which in turn returns it to P1.

In this stage, information leak occurs at three places.

The message from P1 to P2 leads to one of these. P1 sent a

specialized object objP1 of type SubObjType1 to P2, while

P2 was expecting an instance of type ObjType1. However

since P1 and P2 are assumed to mutually trusted parties,

this information leak is locally harmless. This locally

harmless leak would have led to a serious leak (transitive

leak), if P3 would have expected an instance of type

ObjType1 instead of the type SubObjType1. The second

one occurs when P2 sends objP6 embedded in objP2 to P3.

P3 is an untrusted party for P2. Therefore this leak is a

serious one, especially since the extraneous information in

objP6 is sensitive information such as social security

number of a student (see Figure - 3). The third leak occurs

between P2 and P1. P2 returns objP3 that embeds objP6 of

type SubObjType6, while P1 expects an instance of type

ObjType6 embedded in objP3. Again P1 and P2 are

mutually trusted parties, therefore it is locally harmless.

However this harmless leak would lead to a serious

information leak as shown next.

Elemental: The party P4 is an elemental service (not a

composite service). The interaction between P1 and P4 is

called elemental interaction. In this second stage of the

interaction, P1 interacts with P4. P1 passes objP3 received

during the first stage of interaction to P4. P4 is not a

trusted party for P1 and P4 expects an instance of type

ObjType6 embedded in an object of type ObjType3. In

addition, P1 is not the creation point for objP3. Therefore

even if P1 were capable (it had the intelligence built into

the code) of preventing the information leak, it was not

able to prevent this leak. The leak could have been

prevented if in the first case P1 would have only received

an instance of type ObjType6 instead of type SubObjType6

in objP3. The leak could have been prevented if P1 would

have carried out type matching and inference.

The information leak from P1 to P2 occurred due to

polymorphism directly, while the other leaks occurred due

to polymorphism but indirectly (added by object

composition). We can now formulate the notion of

information leaks in the context of the web-services

interaction model (Section 1.1).

2.1 Formal Definition of Information Leaks

 Let T
i
ij – Tij denote all the extraneous members (top-

level as well as transitive) of T
i
ij that is not expected as

part of the definition of type Tij.

 Leak Lij = ((L
i
1j, L

i
2j, …, L

i
mij), L

i
Rij), where L

i
ij is

defined as follows

• L
i
ij = T

i
ij – Tij.

• L
i
ij = {f

ik
ij | f

ik
ij is a set of k’th members - that exist in

T
i
ij but not in Tij}. f

ik
ij might consist of only a top-level

member of T
i
ij or might be a set of all members that

belong to an embedded type E
ik

ij in T
i
ij such that the

corresponding embedded type E
k
ij in Tij is a supertype

of E
ik

ij. For example, in the interaction from P1 to P4 in

Figure-1, an instance of type SubObjType6 (E
ik

ij) is

transmitted against the expected type of ObjType6 (E
k
ij)

embedded inside objP3.

• L
i
ij = null (or empty) if T

i
ij is null or T

i
ij and Tij are

identical object types,

ObjType1

 SubObjType1

 SubSubObjType1

ObjType2

 ObjType6

ObjType6

 SubObjType6

ObjType3

 ObjType6

Figure 2. Type Hierarchies.

• L
i
ij = effectively-null if the values for the members in

T
i
ij other than those expected by Tij are in-accessible

by the receiver.

• L
i
ij = non-null, if T

i
ij contains more information that

does not exist in Tij.

Lij is said to be null if each of its elements is also null.

2.2 Exploitation of Information Leaks

 Malicious parties involved in interactions that lead to

information leaks, and their hosting environments would

try to exploit these leaks in the objects they receive.

Hosting (execution) environment of a web service

includes the dependent libraries, SOAP server, XML

processing middleware such as marshalling libraries and

virtual machine (such as Java Virtual Machine). Each of

these modules independently is capable of exploiting

leaks in messages.

2.2.1. Malicious Parties. Malicious web services might

request more information from the interacting party. This

can be achieved by declaring the type of a formal

parameter in their interface(s) to be a subtype of the actual

type necessary to provide the service. This is called as

type deception. Malicious parties (including clients) could

also peek into the objects they receive as part of

messaging with the other parties for any potential

information leak even when type deception is not

employed. Some of the possible ways in which a

malicious party could detect presence of leaks are type

inference, and size matching. Type inference would help

the party in determining if the type of the object is a

subtype of its expected type. A party with a good

knowledge of what could be an average size of the object

could compare the size of received object and infer with

some probability if there is an information leak. Once the

presence of an information leak is detected, the party

would then proceed with other techniques such as

reflection and cryptanalytic attacks on encrypted objects,

to operate on the extraneous data.

2.2.2. Malicious Organizations. Service hosting modules

can be engineered to detect and exploit existing

information leaks through various methods. For example,

Java Virtual Machine used to host Java based web

services and clients can be engineered to operate on all the

members of objects received irrespective of whether they

are public or non-public. The modified JVM is then

capable of operating on the private and protected

members of an object unlike in the case of malicious

parties. Since the underlying hosting environment and

virtual machines are engineered, almost any operation on

extraneous members of the objects could be carried out,

including cloning of objects even if cloning is not

supported.

3. Safe Information Flow

 An interaction is safe if does not lead to any

information leak (neither local nor transitive). Interaction

Iij is safe if and only if each element of leak Lij is null. If

some information received by Pi from another party Pk is

sent to another party Pj in an interaction Iij is in leak Lij

then such a leak is an indirect (transitive) leak; otherwise

the leak is a direct (local) leak. A local interaction Iij is

one in which Pi sends data to Pj such that none of the data

has been created at Pk (i�k). All other kinds of interactions

are transitive in nature.

 Information flow among a set of parties is said to be

safe if and only if

• all the parties are mutually trustable, i.e. they do not

carry out any unauthorized operations on the

messaging objects or

• any interaction between the parties is safe.

 However it can not always be guaranteed that all the

interacting parties are mutually trustable. In order to

prevent information leak, there is a need to support

mechanisms to avoid extraneous information from being

transferred altogether or being operated upon. It is also

desirable to minimize the cost of information leak to

another party during an interaction, if information leak

ObjType1

studentId: int

getStudentId()

setStudentId(sid: int)

SubObjType1

studentId: int

DOB: java.util.Date

getStudentId()

setStudentId(sid: int)

getDOB()

setDOB(dob:

java.util.Date)

SubSubObjType1

studentId: int

DOB: java.util.Date

phone: int

getStudentId()

setStudentId(sid: int)

getDOB()

setDOB(dob:

java.util.Date)

setPhone()

ObjType6

studentId: int

getStudentId()

setStudentId(sid: int)

SubObjType6

studentId: int

SSN: int

getStudentId()

setStudentId(sid: int)

geSSN()

setSSN(ssn: int)

Figure 3. Class Definitions.

cannot be prevented or avoided. Section 4.3 presents a

cost estimation model for information leaks in web

services context.

4. Safe Web Services

Information leaks at both elemental and

compositional interactions should be prevented. Safe

parties are therefore essential for the development and

deployment of the desired service architecture. A party is

said to be safe if and only if it satisfies the following

safety properties

• Leak-Source Property (s-property): the party is not a

source for any information leak (as defined below)

and

• Leak-Exploitation Property (e-property): the party

and its execution environment do not exploit any

information leak.

A party Pi is not a source of any leak, if each of its

interaction Iij with any party Pj is safe in terms of

information flow, i.e. leak of Iij, Lij is null. A party does

not exploit an information leak existing in an interaction

in any manner if the party itself or the underlying

execution environment does not carry out any

unauthorized operation on the extraneous information.

In the following sections we would explore various

approaches for safe information flow among various

parties.

4.1 Leak-Source Property

Leak-Source property is said to be enforced if and only

if both local and transitive leaks do not manifest in any

interaction. These two factors lead to two corresponding

sub-properties: local leak source property (ls-property)

and transitive leak source property (ts-property).

4.1.1. Local Leak-Source Property. If a party ensures

that for every interaction Iij it will have with any other

party, the objects it sends have identical types as expected

by the receiving parties then it is said to satisfy the

ls-property. If each of the objects of type T
i
kj (1�k�mij)

does not contain any data that is a result of any other

interaction in which Pi has been involved in, then Pi can

be implemented such that it only synthesizes objects of

type Tkj � Mij.

 However Pi might re-use some object Oih partially or

completely that has been part of a local interaction Iih (Pk

is not necessarily different from Pj) in synthesizing an

object Oij for another local interaction Iij. Say Dih is the

information such that it belongs to both Oih and Oij (Dih

subset of Oih, Oij). Therefore a party Pi must be

implemented such that the objects it synthesizes for any

local interaction Iij in a conservative manner. By

conservative, it is meant that Pi extracts only the required

data Dih from Oih.

 Therefore the party – the web service or the client –

must include selective data extraction from objects sent as

part of local interactions. Such a party always satisfies ls-

property. We call such parties as locally-safe. Local

interactions of locally-safe parties are called safe-local

interactions.

4.1.2. Transitive Leak-Source Property. Enforcing

ts-property in interactions between web services and its

clients is more difficult than enforcement of ls-property.

O
h
ih is an object received from another party Ph as part of

interaction Iih initiated by Pi. Let the type of O
h
ih be Tih.

O
i
kj is an instance of type T

i
kj expected by Pj as part of

interaction Iij from Pi. Dih is a set of information such that

Dih subset of O
h
ih, O

i
kj. Dih consists of only

1. either some publicly accessible data in O
h
ih or

2. is an instance of Tih or

3. is some supertype Sih of Tih.

(1) Pi extracts the publicly accessible data required and

adds them to O
i
kj. (2) & (3) Pi embeds O

h
ih or its clone. In

case of (3), O
h
ih is cast to the type of Sih (the type expected

by Pj as part of Iij).

 The ts-property is violated when the embedded object

(O
h
ih) is of a subtype (Tih) of the type expected by the

receiver (Sih). In order to satisfy the ts-property,

leak L
h
ih (= Tih–Sih) is to be effectively-null. L

h
ih cannot be

null because Tih is not identical to Sih. However Pi does

not have access to the non-public members of O
h
ih.

Therefore in order to make L
h
ih effectively-null,

mechanisms should be introduced to make the values of

the non-public specialized members of Tih inaccessible.

We propose two methods for making the values

inaccessible: masking and encryption of the members.

Member masking: Each object-type defined to be used in

the context of web-services interactions, should provide a

mechanism for masking all the specialized members in

this type. In Java, every class C is extended from

java.lang.Object; thus any member in C is a specialized

member. In C++, there is no root class; thus if C is

inherited from C’, then every member in C that is not in

C’ is a specialized member.

Figure 4. Sketch for mask method

for each specialized member variable X do {

 if there is a setter function // Java Bean

 invoke method setX(random or undefined value);

 else mask its value by X := random or undefined value;

}

Tih is a subtype of Sih (defined above). Each object-

type (class) Tih and Sih defined to be used for the

interaction between web-services and clients, should

define a method with the following pattern:

masktypename(), typename being Tih and Sih, respectively

for definition of object-types Tih and Sih. maskTih() masks

all the specialized member variables with some random or

boundary values of Tih. maskTih() can be sketched as in

Figure-4.

Partial encryption: Specialized members can be made

in-accessible by encrypting them. Each defined type

implements a method encrypttypename(), typename being

Tih and Sih, respectively for definition of object-types Tih

and Sih. encryptTih() encrypts all the specialized member

variables of Tih using some key. encryptTih() can be

sketched as in Figure-5. Key can be defined to be random

key, or can be determined using some key management

technique. The latter is useful especially in compositional

interactions. Object O
h
ih sent to Pj as an instance of type

Sih may be sent to Pk, which might use it as an instance of

type Tih.

 A client for a web service is synthesized based on the

service definition (WSDL [17]). Programming

methodologies for the web services and their clients

should

• satisfy the ls-property by imposing a tight type

matching.

• implement either of mask or encrypt method for each

object-type they define in order to facilitate

conformation to ts-property.

Tight type matching requires only those objects to be sent

from client to the web service, which are instances of

identical types as they are expected by the web service

interface.

 Building of compositional (or composite) web services

should also follow the above procedures. Since there is

less independence in defining the object-types in this case,

type transformation must be carried out explicitly so that

information does not get leaked. This requirement

however limits the scope of completely automating the

services composition. Decentralized orchestration of

composite services [11] should be avoided if the various

properties governing information leaks could not be

satisfied altogether. In case of dynamic composition of

services or dynamic interactions that were not anticipated

during development of the service or their deployment, it

is desirable to estimate the cost of any information leak

that could not be prevented. Section 4.4 discusses a

general estimation model for this purpose.

4.2 Leak-Exploitation Property

 The e-property is said to be enforced if the complete

execution environment is honest; i.e. it would not exploit

any potential information leaks. In order to satisfy this

property, a given party and its execution environment

must either be a trusted with respect to the other

interacting party. Web services should only carry out

interactions with a client that are safe with respect to

information flow. A web service Pj must always send data

objects to a client Pi as part of an interaction Iij that is a

subset of the return type R
j
ij. This would ensure leak L

i
Rij

to be null. In this case e-property need not be enforced on

the parties that are clients.

However web services need to be developed, deployed

and maintained such that e-property is satisfied at each

stage. Section 4.3 discusses approaches to evaluate degree

to which the e-property is satisfied by a web service and

its execution model.

It is undecidable [19] to automatically analyze and

prove that a given web service and its host software

satisfies e-property or in other words, is safe. Therefore

various processes during services development,

deployment and maintenance phases could be applied for

this purpose. Estimation of safety should be the

responsibility of each service provider to employ human

experts and optionally, tools based on program analysis.

Certification of web services, underlying middleware and

execution environment is an important approach.

Versioning of web services, use of version information

during service invocations in order to prevent unsafe

information flow is another important approach. Static

program analysis of web services and underlying

dependencies is very useful for both certification and

versioning processes.

Estimating and guaranteeing the degree of safety of a

web service with respect to the e-property is achieved by

three ways – certification, versioning and cost estimation

of information leaks.

4.2.1. Certification. Certification of web services can be

used to determine how safe is a web services that would

not exploit information leaks. It also provides some

guarantee on the outgoing interactions – this service

would not send extraneous information out to another

party. It is considered safe to interact with a certified web

service even with no prevention mechanisms for

information being used. One or more accredited cross-

organizational authorities can verify the safety claims by

service providers independently and issue certificates.

These authorized institutions should also review

Figure 5. Sketch for encrypt method

for each specialized member variable X do {

 encrypt value of X by

 X := encrypt value of X using key K;

}

modifications to a web service periodically and re-

evaluate the certificate.

The process of certification verifies if the program

carries out any unauthorized or malicious operations on

the data that it receives. Static analysis (Section 4.2.3)

could be used for this purpose.

Certificates for safety can be organized in hierarchical

manner. A higher level certificate guarantees more safety

and subsumes the degree of safety guaranteed by a lower

level certificate. Root of certificate hierarchy defines

highest-level of safety.

4.2.2. Versioning. Maintenance and evolution of web

services would be more frequent than the frequency of

issuance of certificates for trust-able behavior. Every

change to the web service implementation and deployment

configuration that might possibly affect the e-property

(and s-property) has to be given a new version.

During setup of a session or invocation by a party, it

should make sure that it is using the appropriate web

service. Appropriateness of a web service is based on

whether the client’s interactions with that service would

be safe. Versioning and certification both used together

would help authenticate the appropriate web service with

the client. This technique can be symmetrically used for

the other party, if it is a web service. A proper versioning

mechanism would prevent the service provider or

developer from replacing original web service by a

malicious one or an untested, uncertified service.

4.2.3. Static Program Analysis. Static program analysis

[9][14] is an aid but not a foolproof method for detecting

of information leaks and violations of s-property and

e-property.

Liveness analysis [14] of parameters (and their internal

members recursively) of a service method could determine

if a member is extraneous or not. If a member variable is

not live at any point in the program, then it is a candidate

for being labeled as an extraneous member. However this

procedure could be fooled by adding statements that uses

each member variable at the end of the program.

Program slicing [13][14] can be used to determine if

all the member variables affect the output or state of the

program. Given the set of variables that hold the result

and effects of a request processing, backward slicing on

those variables could determine which member variables

affect them directly or indirectly. One such variable is the

return variable. However effectiveness of slicing is limited

by the presence of aliases.

Operations such as cloning of parameter objects, their

manipulations should be detected through program

analysis and reported back to the human experts for

semantic analysis of such code. Code segments carrying

out type conversions on parameter objects and their

aggregation into other objects should also be detected.

Aggregate (or composite) objects containing references to

parameter objects (especially candidate extraneous

members) should be identified and guarded for detection

of their cloning, storage or transmission.

4.3 Cost of Information Leaks (KLIC)

 Cost of information leaks (KLIC) can be used to

determine whether one party should interact with another

party. It can be used in aggregation of web services or in

dynamic binding to web services. A cost estimation model

is proposed in this section for quantitative evaluation of

the negative implications of information leaks. The

models would differ based on the business context they

would be used, the sensitivity of the messages among

other parameters.

Naive model: One of the various possible naïve

measures of extent of information leak could be based on

the size of extraneous information being transferred in

interaction Iij. Using size that denotes the actual size of the

object, the cost of a leak for Iij is

KLICij=(�1�k�mijsize(Oi
kj)–�1�k�mijsize(Okj))/�1�k�mijsize(Okj) ...(I)

A similar measure can be defined for leak in return object

O
j
ij. Other possible factors could be the number of

member fields being part of a leak.

Weighted model: Sensitivity of each information unit

getting leaked differs. The implication of leak of one

information unit is proportional to its degree of sensitivity.

The weighted model takes “weight” as a quantity

proportional to the degree of sensitivity. For an interaction

Iij, the cost of a leak is

KLICij= �1�k�mij �1�l�nk (D
l
k + V

l
k + M

l
k)*W

l
k. ...(II)

W
l
k is a quantity proportional to the degree of sensitivity

of information leaked in conjunction with the level of trust

among the two parties. Level of trust among the two

parties may be determined by use of some model of trust

estimation. W
l
k might be dependent on temporal and

contextual factors as well. D
l
k is the penalty for releasing

the meta-data about a member field f
il

kj. The meta-data for

a member includes the field-name, its type and size. M
l
k is

the cost of releasing information about the method

signature and definition if f
il

kj is a method. If f
il

kj is a

method, then its cost would depend on whether it is public

or private; for private methods the cost would be higher.

V
l
k is the cost of releasing the value (or method definition)

of f
il

kj. If the member f
il

kj is a non-primitive data type (e.g.,

an embedded object), then V
l
k depends on the cost of all

internal members of f
il

kj and is recursively computed

(possibly in a bottom-up manner).

5. Discussion

The occurrences of information leaks can be controlled

by following programming methodologies that tend to

satisfy ls-property, ts-property and e-property.

Member masking and partial encryption are good for

protecting the associated values of extraneous members.

Objects on which partial encryption is applied are

vulnerable to cryptanalytic attacks to reveal the leaks. The

receiving party can carry out various offline attacks and

dictionary attacks. Cryptanalytic attacks would be more

focused on the encrypted segments. This would make

these attacks more effective (at least theoretically). The

member masking technique exposes the meta-data of

extraneous members – type and name of the members.

Albeit they are some information that is leaked, such leaks

are rarely any major reasons for security and privacy

infringements.

Techniques for web services composition need to bring

the factor of information leaks into their composition and

optimization framework. The KLIC model can be used as

it is or with appropriate modifications, in such an

optimization framework that tries to minimize or keep the

cost of information leak within some bounds. The logical

and physical composition stages [12] have to attempt for

tight type matching. The physical composition stage has to

enforce ts-property. Services to be deployed in enterprise

(thus trusted) domains need not be optimized towards

information leaks. However as argued earlier, information

leaks have serious implications in cross-organizational

service offerings.

A version could be a key that is generated through

hashing of the whole source code of the program.

Certification of a service should be based on how safe is

the service against information leaks. Type deception –

asking for a subtype, while the party only needs less

information as supported by a supertype is to be detected

during process of certification and program analysis.

6. Related Work

 To the best of the author’s knowledge, this is the

first work that shows that object-based messaging among

distributed components using inclusion polymorphism

leads to potential information leaks. Use of web services

versions in authentication between two parties for future

interactions seems to be a new contribution from this

paper.

 Security and privacy in web services model has

received wide attention in the research community

recently ([7][8]). It had been assumed that the underlying

object-oriented paradigm does not lead to information

leaks especially in a distributed setting. The messaging

paradigms have relied upon the underlying object model.

 Secure information flow in the context of type systems

has been studied extensively. [2] proposes a type system

for this purpose. JFlow is a language as an extension to

Java [5] in order to support flow of information among in

a controlled and secure manner. However the problem of

information leaks (in-secure information flow) arising out

of inclusion polymorphism [1] has not been studied in

literature.

 Use of static analysis for certification of the security of

programs has been studied in literature [4][5]. Use of

static analysis for security evaluation of programs is also

recommended in [4][5] and JFlow has been created to

facilitate the same. These techniques can be extended to

certification of web services. However the issue of

information leaks has to be accounted for during

certification. [3] proposes analysis of flow of information

in order to detect attacks against a program. The analysis

technique can be used in the context of leaks.

7. Conclusion and Future Work

 The paper shows that information leaks through

object-transfer are inherent in object models based on

subtyping and inclusion polymorphism. Within the

premises of the popular object models, we have proposed

some approaches for effective removal of information

leaks. Leaks inherent in the programming paradigm

however cannot always be completely avoided while

keeping the interoperability and flexibility of services,

especially in compositional scenarios. Therefore we have

proposed processes of service certification, versioning as

measures against, and a cost estimation model in case of

information leaks.

The proposed model for safe information flow and

proposed development guidelines should be incorporated

in web services development toolkits such as IBM ETTK

[18], for development of safe web services.

Key management in partial encryption has implications

on data flow in compositional interactions. Certification

and versioning of web services need to be studied further

and should be employed in web services life cycle

management. The version and certification based mutual

authentication of parties before or during interactions can

be extended to services model in general, where

information leak is a potential problem.

8. References

[1] L. Cardelli and Peter Wegner, “On Understanding

Types, Data Abstraction, and Polymorphism”, Computing

Surveys, ACM , Vol. 17, No. 4, December 1985, pp. 471-

522.

[2] K. Honda and N. Yoshida, “A uniform type structure

for secure information flow”, Proceedings of the 29th

ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, Portland, 2002, pp. 81-92.

[3] R. Yokomori et al, “Analysis and Implementation

Method of Program to Detect Inappropriate Information

Leak”, Proceedings of the Second Asia-Pacific

Conference on Quality Software, 2001, pp. 5.

 [4] A. C. Myers and B. Liskov, “A decentralized model

for information flow control”, Proceedings of the

sixteenth ACM symposium on Operating systems

principles, 1997, pp129-142.

[5] A. C. Myers, “JFlow: practical mostly-static

information flow control”, Proceedings of the 26th ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages, San Antonio, 1999, pp 228-241.

[6] F. Leymann, “Web Services: Distributed Applications

Without Limits”, BTW Conference, 2003.

[7] C. Li and C. Pahl, “Security in the Web Services

Framework”, Proceedings of the 1st international

symposium on Information and communication

technologies, Dublin, 2003, pp 481-486.

[8] K. Bhargavan et al, “Verifying policy-based security

for web services”, Proceedings of the 11th ACM

conference on Computer and communications security,

Washington DC, 2004, pp. 268-277.

[9] W. Masri and A. Podgurski, “Using dynamic

information flow analysis to detect attacks against

applications”, Proceedings of the 2005 workshop on

Software engineering for secure systems-building

trustworthy applications, St. Louis, 2005, pp. 1-7.

[10] G. Smith and D. Volpano, “Secure information flow

in a multi-threaded imperative language”, Proceedings of

the 25th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, San Diego, 1998,

pp. 355-364.

[11] M. G. Nanda et al, “Decentralizing execution of

composite web services”, Proceedings of the 19th annual

ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications,

Vancouver, 2004, pp. 170-187.

[12] V. Agarwal et al, “A service creation environment

based on end to end composition of Web services”,

Proceedings of the 14th international conference on

World Wide Web, Chiba, 2005, pp. 128-137.

[13] Frank Tip, “A survey of program slicing techniques”,

Journal of Programming Languages, Vol. 3, No. 3, 1995,

pp. 121-189.

[14] Muchnik, S., Advanced Compiler Design and

Implementation, Morgan Kaufmann, 1997.

[15] World Wide Web Consortium, Web Services

Architecture, http://www.w3.org/TR/ws-arch/.

[16] World Wide Web Consortium, Simple Object Access

Protocol, http://www.w3.org/TR/2000/NOTE-SOAP-

20000508.

[17] World Wide Web Consortium, Web Services

Description Language, http://www.w3.org/TR/2006/CR-

wsdl20-primer-20060106/.

[18] IBM ETTK Toolkit,

http://www.alphaworks.ibm.com/tech/ettkws.

[19] G. Ramalingam, “The undecidability of aliasing”,

ACM Trans. Program. Lang. Syst., Vol. 16, No. 5, 1994,

pp. 1467-1471.

