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ABSTRACT
Access hierarchies are useful in many applications and are
modeled as a set of access classes organized by a partial
order. A user who obtains access to a class in such a hi-
erarchy is entitled to access objects stored at that class,
as well as objects stored at its descendant classes. Effi-
cient schemes for this framework assign only one key to a
class and use key derivation to permit access to descendant
classes. Ideally, the key derivation uses simple primitives
such as cryptographic hash computations and modular ad-
ditions. A straightforward key derivation time is then linear
in the length of the path between the user’s class and the
class of the object that the user wants to access.

Recently, work presented in [2] has given an efficient solu-
tion that significantly lowers this key derivation time, while
using only hash functions and modular additions. Two fast-
key-derivation techniques in that paper were given for trees,
achieving O(log log n) and O(1) key derivation times, respec-
tively, where n is the number of access classes. The present
paper presents efficient key derivation techniques for hier-
archies that are not trees, using a scheme that is very dif-
ferent from the above-mentioned paper. The construction
we give in the present paper is recursive and uses the one-
dimensional case solution as its base. It makes a novel use of
the notion of the dimension d of an access graph, and pro-
vides a solution through which no key derivation requires
more than 2d+1 hash function computations, even for “un-
balanced” hierarchies whose depth is linear in their number
of access classes n.

The significance of this result is strengthened by the fact
that many access graphs have a low d value (e.g., trees cor-
respond to the case d = 2). Our scheme has the desirable
property (as did [2] for trees) that addition and deletion of
edges and nodes in the access hierarchy can be “contained”

∗Portions of this work were supported by Grants IIS-
0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, and by sponsors of the
Center for Education and Research in Information Assur-
ance and Security.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

in the node and do not result in modification of keys at other
nodes (no wholesale re-keying as changes are made to the
access hierarchy).

Categories and Subject Descriptors
E.1 [Data]: Data Structures—graphs and networks; F.2.2
[Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems.; K.6.m [Management
of Computing and Information Systems]: Miscella-
neous

General Terms
Algorithms.
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1. INTRODUCTION
The problem of key management for hierarchical access

control is important for many applications and has received
significant attention in the research literature. In this frame-
work, all users are divided into disjoint access classes and
each access class inherits the privileges of its descendants.
Access is based on key derivation where users receive keys
that allow them to obtain access to the authorized objects
without interaction with the server, through a key deriva-
tion process. That is, for any given user, the key issued to
that user allows her to access objects stored at her access
class as well as objects stored at all descendant classes in
the hierarchy.

Applications where such access hierarchies are useful in-
clude the Role-Based Access Control (RBAC) models, which
are naturally modeled as hierarchies. Whereas an orga-
nization’s role hierarchy tends to be shallow rather than
deep, in a number of contexts the access hierarchies have
a large size and depth. These include hierarchically orga-
nized distributed control structures such as physical plants
or power grids (involving thousands of networked devices
such as sensors, actuators, etc.); hierarchically organized
hardware where the hierarchy is based on functional, con-
trol, and trust considerations; hierarchical design structures
of large complex systems such as aircrafts and VLSI cir-
cuits; subscription services where the set of included pro-
grams or media depends on the subscription package type;
task graphs where descendant tasks are known only to their
ancestor tasks. Deep access hierarchies can also arise in sim-
ple databases where the hierarchical complexity can come



from super-imposed classifications on the database that are
based on functional or structural features of the database.
See also [18, 23] for other examples of deep hierarchies.

Normally, an access hierarchy can be modeled as a di-
rected access graph G, where each node corresponds to an
access class and edges preserve relations between the nodes.
Recent key management schemes achieve the following prop-
erties:

• each node in the access graph has a single secret key
associated with it;

• the amount of public information for the key assign-
ment scheme is asymptotically the same as that needed
to represent the graph itself;

• key derivation involves only the usage of efficient cryp-
tographic primitives such as one-way hash functions;

• given a key for node v, the key derivation for its de-
scendant node w takes ` steps, where ` is the length of
the path between v and w;

• it is impossible for dishonest colluding users to obtain
access to more objects than what they can already
legitimately access, ensuring collusion resilience of the
scheme.

While the above is computation- and space-efficient, for
large and deep hierarchies the key derivation process can
require up to O(n) steps, where n is the number of nodes
in the graph. This operation must also be performed in real
time. Thus, if such key derivation is performed by a device
with computation and space limitations (such as cheap and
possibly disposable smartcards), this key derivation compu-
tation will be larger than what the device can handle. Atal-
lah et al. [2] recently provided techniques for reducing the
key derivation time for tree hierarchies to O(log log n) and
O(1) steps using two different schemes. The present paper
significantly extends that work by showing how key deriva-
tion can be greatly reduced for more general access graphs,
and gives techniques for achieving no more than 2d + 1 key
derivation steps, where d is the dimension of the graph (and
many practical access graphs are of low dimension, typically
less than 4). The scheme has the desirable property (as did
[2] for trees) that the addition and deletion of nodes in the
access hierarchy can be “contained” in the node and do not
result in the modification of keys at other nodes (similarly
for edge additions and deletions); hence no wholesale re-
keying is done as changes are made to the access hierarchy.

The rest of this paper is organized as follows: Section 2
provides a review of related literature. Section 3 gives a
brief overview of the new technique. In section 4 we present
background information and definitions. Section 5 gives the
details of our approach, while section 6 supplements it with
comments on how dynamic changes to hierarchies can be
addressed. Finally, section 7 concludes this work.

2. RELATED WORK
Prior research literature on hierarchical access control is

very extensive (see, e.g., [1, 3, 4, 6, 9, 10, 13, 14, 16, 17,
19, 22, 24, 25, 26, 29, 32]), and its overview is beyond the
scope of this paper. In this section, we focus on the pub-
lications most closely related to this work. We only note

that a rather large number of schemes in the prior litera-
ture (e.g., [1, 17, 10, 3, 12, 11, 6, 19, 13, 22, 16, 26]) seem
to derive any key in a single step, but that single step is
significantly more expensive than a chain of key derivations
in our and similar schemes. More precisely, they operate
on large numbers computed as a product of up to O(n) co-
prime numbers or, alternatively, up to O(n) large numbers,
where n is the number of nodes in the graph. Such num-
bers will grow to n bits long and are prohibitively large for
most hierarchies. While in many of these approaches key
derivation might consist of one division and one modular
exponentiation operation, in practice, division of two num-
bers O(n) bits long involves O(n2) operations, in addition
to their use of expensive public-key crypto operations. Our
key derivation, on the other hand, even in the base scheme
is bounded by the depth of the access hierarchy and does
O(n) hash operations in the worst case. And the improved
scheme described in the present paper exhibits significantly
better key derivation time.

A number of recent schemes [2, 5, 7, 15, 33] give more
efficient solutions to the key assignment and management
in access hierarchies. All of these schemes have similar over-
all structures with the following properties: (i) each node
in the access graph has a single secret key; (ii) public in-
formation associated with the scheme is asymptotically the
same as that needed to represent the access graph itself;
(iii) key derivation involves only efficient operations such
as one-way hash functions and bitwise XOR

1; and (iv) the
number of steps in key derivation is the same as the length
of the path between the user’s node and the target node
(the node whose key is being derived). These constructions
differ, resulting in some of them being more efficient and
simpler than others, but the general structure remains the
same (not all the properties of these approaches were stated
in the above form, but for the sake of comparison, here we
unify the notation to describe their capabilities).

Dynamic changes to the hierarchy are handled differently
in these schemes: in [5, 7, 15, 33] insertions and re-keying
are local, but deletions affect secret keys of all descendant
nodes; in [2], however, all changes to the graph are local. In
addition, only the scheme of [2] has a formal proof of security
(in the presence of an active adversary who can adaptively
corrupt nodes), while other schemes provide only informal
discussion of attacks. Results of [15, 7] also assume tamper-
resistance of clients.

Since the inspiration of the results reported in this work
comes from the shortcut techniques of [2] (which allow to re-
duce the key derivation time for trees), here we give a brief
description of the ideas underlying the shortcut techniques
of [2]. As was mentioned earlier, for trees (whose dimen-
sion is d = 2), [2] reports two results: (i) addition of O(n)
shortcut edges2 results in key derivation time being no more
than O(log log n) for n-node hierarchies, and (ii) addition of
O(n log log n) shortcut edges results in key derivation time
being no more than 3 steps (each step is a computation of
the form H(x, y)− z mod 2ρ, i.e., requires one application of
a one-way function and one subtraction operation for a se-
curity parameter ρ). One idea in [2] is to use the notion of a
centroid: a centroid of an n-node tree T is a node whose re-

1The scheme of [5] additionally utilizes symmetric key en-
cryption.
2A shortcut edge is an additional new edge that, while not
in the original graph G, is in the transitive closure of G.



moval from T leaves no connected component of size greater
than n/2. In addition, a modified variant of centroid de-
composition is used: to compute a centroid decomposition,
compute the centroid of the tree, remove it, and then re-
cursively repeat this process with the remaining trees. The
modified variant used in that paper is the so-called “prema-
turely terminated centroid decomposition,” which is similar
to the above centroid decomposition, except that the recur-
sion stops not when the tree becomes a single node, but
rather when the tree size becomes ≤ √

n. The centroids
used in this type of tree decomposition and the root of the
tree are called the “special nodes.” These special nodes
are caused to become “well connected” with the addition of
shortcuts, and the nodes of each small residual subtree of
size

√
n are also caused to become well connected with the

addition of shortcuts. Then to reach any node from another
node, we first need to reach the special node of the current
residual tree, then jump to the special node of the target
residual tree, and finally reach the target node within that
small tree.

As non-tree hierarchies have no centroids, the above scheme
does not readily extend to non-tree access hierarchies. The
extension turns out to require a new, different technique.
We briefly sketch it (at a high level) next.

3. OVERVIEW OF THE NEW TECHNIQUE
The essence of the new technique consists of three ingre-

dients:

1. The judicious addition of new “dummy” vertices that
make it possible to add a remarkably small number
of shortcuts to achieve the desired fast-key-derivation
performance. Note that the dummy vertices and their
associated keys are internal to the system (used purely
for performance reasons) and that no access classes
correspond to them (e.g., they are not roles in the
RBAC sense). Unlike [2], where shortcut edges were in
addition to the original edges of the hierarchy, in the
present paper the only explicit (i.e., “key-derivation”)
edges that remain are the shortcut edges (some of them
may of course coincidentally correspond to edges in the
original graph, but this need not happen and it is in-
deed conceptually possible for all the original access
graph’s edges to “vanish”). The addition of dummy
vertices and shortcut edges is a novel technique in this
area, and we believe it has much promise beyond en-
abling the specific performance bounds that we claim
in the present paper.

2. As it is cumbersome to carry out the computation of
the dummy vertices and of the shortcuts using the
original graph, and also difficult to subsequently use
them, we first “transform” the graph into a d-tuple-
representation of the vertices where d is the dimen-
sion of the partial order represented by the graph; this
transformation step is not needed if the graph is al-
ready specified in the d-tuple form, e.g.,

“node v is ancestor of node w iff v has both a higher
value than w and is also less vulnerable than w”.

We believe this representation of the access graph will
have uses other than the present framework of key-
derivation.

3. In the above-mentioned representation, it becomes pos-
sible to carry out the desired computation of the dummy
vertices and of the shortcut edges with the claimed
performance – the algorithm for doing this is an im-
portant contribution of our paper. We prove precise
bounds for that algorithm, both in terms of its con-
sumption of resources (time and space), and in terms
of the key-derivation performance that is made possi-
ble by the data structure that it produces.

4. BACKGROUND

4.1 User hierarchy
In our model, each user belongs to one of the disjoint

access classes C1, C2, . . ., Cn. The classes are organized into
a hierarchy described by a directed acyclic graph G, i.e., a
partial order relationship. The users at access class Cj can
access information at access class Ci if and only if there is
a path in G from node Cj to node Ci.

The above-mentioned directed access graph G = (V, E, O)
is such that V is a set of vertices V = {v1, . . ., vn}, E is a
set of edges E = {e1, . . ., em}, and O is a set of objects
O = {o1, . . ., ok}. Each vertex vi represents a class in the
access hierarchy and has a set of objects O(vi) ⊂ O associ-
ated with it.

4.2 The shortcut technique
Here we review the shortcut technique of [2] that results

in O(n log log n) additional edges and key derivation being
at most 3 steps for a n-node tree T , as this technique could
be used as the basis of the recursion for the techniques given
in this work.

As was mentioned earlier, the tree T is decomposed into√
n residual trees of

√
n nodes each using centroid decompo-

sition. The centroids used in the decomposition are called
the special nodes, and the residual trees are denoted as
T1, . . ., Tk. In addition, there is a notion of a reduced tree,
denoted T̂ , that consists of the special nodes and edges that
satisfy the following condition: there is an edge from node
v to node w in T̂ iff (i) v is an ancestor of w in T , and (ii)

there is no other node of T̂ on the v-to-w path in T . Then
the following procedure adds shortcut edges to the tree T .
In what follows, |T | denotes the number of nodes in T .

AddShortcuts(T ):

1. If |T | ≤ 4 then return an empty set of shortcuts. Oth-
erwise continue with the next step.

2. Compute the special nodes of T in linear time. Initial-
ize the set of shortcuts S to be empty.

3. Create, from T , the reduced tree T̂ and add to S a
shortcut edge between every ancestor-descendant pair
in T̂ (unless the ancestor is a parent of the descen-
dant, in which case there is already such an edge in
T ). Because T̂ has O(

p

|T |) vertices, the size of S is
O(|T |).

4. For every residual tree Ti in turn (i = 1, . . . , k), add to
S a shortcut edge from the root of Ti to every node in
Ti that is not a child of that root. This increases the
size of S by no more than

Pk

i=1
|Ti|, which is ≤ |T |.



5. For every residual tree Ti in turn (i = 1, . . . , k), add
to S a shortcut edge from each node N in Ti (other

than the root) to all nodes in T̂ that are both: (i)
descendants of N and (ii) children of the root of Ti

in T̂ . This adds at most O(|T |) edges to the shortcut

set: For each node SN in T̂ , all of the new edges that
point to SN come from at most one tree (as SN has

at most one parent in T̂ ). Furthermore, since each

tree has at most O(
p

|T |) nodes, there are at most

O(
p

|T |) edges pointing to SN that are added during

this step. Finally, there are only O(
p

|T |) nodes in T̂ ,
and so there are at most O(|T |) edges added during
this step.

6. For every residual tree Ti in turn (i = 1, . . . , k), recur-
sively call AddShortcuts(Ti) and, if we let Si be the set
of shortcuts returned by that call, then we update S
by doing S = S ∪ Si.

7. Return S.

There is a corresponding FindPath() procedure that, given
two nodes v and w, finds a path from node v to node w of
length at most 3 edges in the graph. We omit its description
here.

4.3 Dimension of an access hierarchy
An n-vertex access hierarchy G is a partial order, and it is

well known that any partial order can be represented as the
intersection of t total orders, with the smallest t for which
this is possible being the dimension of the partial order (see,
e.g., [8, 28]). That is, it is possible to associate with every
vertex v of G a t-tuple (xv,1, . . . , xv,t) such that:

1. Every xv,j is an integer between 1 and n.

2. If v 6= w then xv,j 6= xw,j for every 1 ≤ j ≤ t.

3. Node v is ancestor of node w in G if and only if xv,j >
xw,j for every 1 ≤ j ≤ t.

We denote the dimension of G by d(G), or by d when G is
understood. While computing the dimension of an arbitrary
partial order is NP-complete [31], and even approximating
it to within a constant factor is not known to be in P, the
dimension of many access hierarchies is small: The dimen-
sion of a tree is 2 (trivially so), and it was also shown in [27]
that a G whose transitive reduction is planar has dimen-
sion ≤ 3 and the 3-tuples representing it are computable in
linear time. If the transitive reduction of G is 4-colorable
then its dimension is ≤ 4 [27]. Many access hierarchies are
4-colorable; especially those for organizational hierarchies.

There are, however, some hierarchies with higher dimen-
sion; for example, in the Bell-LaPadula model with k cate-
gories (denoted by s1, . . . , sk) and ` classifications (denoted
by c1, . . . , c`), the dimension of the lattice is k + 1. How-
ever, computing the tuple representation for this model is
straightforward: The access level ci with categories in the
set S is converted into a tuple (i, x1, . . . , xk) where xi = 1 if
and only if si ∈ S and is 0 otherwise. It can be easily verified
that this conversion faithfully implements the access control
policy.

We may actually not need to compute the dimension, but
rather any d′-tuple representation of the graph with a small

enough d′. Moreover, some access graphs can naturally be
specified in such a tuple representation, when the “ancestor”
relationship is the conjunction of a number of total-order
conditions such as “v has higher security clearance than w”,
“v is a higher-priority asset than w”, “v is more vulnera-
ble than w”, “v is a higher-paying class of subscribers than
w”, etc. In summary, the techniques of this paper general-
ize the shortcut technique to any access hierarchy where a
tuple-based representation (of reasonable dimension) can be
found. This is a significant improvement over the previous
work that supported only trees.

5. OUR SCHEME
We give a solution that achieves key derivation in no

more than (and typically less than) 2d + 1 hash function
computations (each of which corresponds to following one
shortcut edge). The public space used in this scheme is
O(n(log n)d−1).

5.1 The base case of d = 1

The case of d = 1 was covered in [2], and we could use
it as the base case in describing the solution for higher di-
mensions.3 That solution, however, results in O(n log log n)
edges to be added to the graph (see section 4.2), while for
d = 1 a more efficient solution with O(n) additional edges
and the same 3-hop worst case key derivation time is pos-
sible. We describe such a solution next. In what follows,
let the nodes in a one-dimensional graph be numbered v1

through vn such that for each v1 ≤ v < vn there is an edge
from node vi to vi+1, i.e., node vi is a parent of node vi+1.

AddShortcuts(G):

1. Create a set of special nodes S consisting of every
√

nth
node in the graph. That is, initialize S with {v1} and
then add nodes vj

√
n+1 for all j such that j

√
n ≤ n. If

vn 6∈ S, set S = S ∪ {vn}.

2. Insert new edges between the nodes in S to form the
transitive closure of the set.

3. For each node vi 6∈ S, find vj ∈ S such that j < i and
i < j +

√
n. Insert an edge (vj , vi) if it is not already

present.

4. For each node vi 6∈ S, find vj ∈ S such that i < j and
j − √

n < i. Insert an edge vi, vj if it is not already
present.

Figure 1 depicts different stages of the above algorithm. It
is clear that this procedure results in additional O(n) edges
and there is a path of length at most three between any two
nodes.

Rather than immediately giving the solution for arbitrary
d, for expository reasons we choose to first present the so-
lution for d = 2, because the two dimensional case is easier
to grasp intuitively than the higher-dimensional one. Once
the basic idea has been presented (with good intuition) for
d = 2, we give the general construction for arbitrary d.

3The techniques of [2] work for trees with dimension d = 2.
We, however, cannot use these techniques for the case of
d = 2, because not all graphs of dimension two are trees.
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graph node
special node

regular edge

Figure 1: Addition of shortcut edges for dimension
d = 1: (a) the original hierarchy, (b) the hierarchy af-
ter selection of special nodes and constructing their
transitive closure, and (c) the final hierarchy.

5.2 The case d = 2

The fact that the graph G has dimension 2 implies that ev-
ery vertex v can be replaced by a pair of numbers (x(v), y(v)),
such that w is ancestor of v in G if and only if w dominates
v, i.e., x(w) ≥ x(v) and y(w) ≥ y(v). From now on, for
convenience, we refer to “points” rather than “vertices”. A
shortcut is an ordered pair of points w, v describing an extra
“key-derivation edge” that will be added from point w to
point v, and that allows the key for v to be derived from the
key of w in one step consisting of a hash computation and
an addition.4

The input is a set V of n points in 2-dimensional space,
and the desired output includes a set S of shortcuts between
pairs of points (some of which may not belong to V ) such
that (i) |S| = O(n log n), and (ii) given any pair of points
v, w ∈ V such that w dominates v, there is a path of at most
5 shortcut edges from w to v. The output also includes the
set P that contains V as well as the additional dummy points
(i.e., points not in V but that are touched by edges in S).

The solution steps are as follows.

1. Initialize P = V , and initialize S to be empty.

2. If |V | = 1 then return P and S.

3. If |V | > 1 then compute a median line M that is per-
pendicular to the y axis and partitions V into two
equal sets V1 and V2 where V1 (V2) is left (right) of

4The results reported imply usage of the key derivation
scheme of [2], which is provably secure against key recov-
ery in the presence of an active adversary. Usage of a dif-
ferent scheme with the same properties or a scheme with
stronger security properties (e.g., security in the key indis-
tinguishability setting) will imply different, normally higher,
computational assumptions.

M . Let V ′
1 (V ′

2) be the projection of V1 (V2) on line
M .

4. Add to S the following shortcut edges:

• a shortcut edge from every point of V ′
1 to its cor-

responding point of V1;

• a shortcut edge from every point of V2 to its cor-
responding point of V ′

2 .

5. Recursively build the shortcut edges and dummy points
for the set V1. Let that recursive call return P1 as the
set of points (including dummies) and S1 as the set of
shortcut edges within P1. Update S and P as follows:
S = S ∪ S1 and P = P ∪ P1.

6. Recursively build the shortcut edges and dummy points
for the set V2. Let that recursive call return P2 as the
set of points (including dummies) and S2 as the set of
shortcut edges within P2. Update S and P as follows:
S = S ∪ S2, and P = P ∪ P2.

7. Solve the 1-dimensional problem consisting of V ′
1 ∪ V ′

2

using the result of section 5.1. Let this return a set of
edges S3 (note that the solution of [2] returns only a
set of edges, i.e., it does not add any dummy points).
Update (i.e., augment) S as follows: S = S ∪ S3. (P
stays the same.).

According to the previous subsection, the base case of d = 1
is solvable with no more than 3 shortcut edges and O(n)
space complexity. We use this in the analysis below.

The space complexity (i.e., the number of shortcut edges
and dummy points) of the above-described scheme obeys a
recurrence of the form f(n) ≤ 2f(n/2) + c1n if n > 1, and
f(n) = O(1) if n = 1, whose solution is O(n log n). Note
that this recurrence follows from step 4 (which recursively
solves the problem for (n/2) points), step 5 (which recur-
sively solves the problem for (n/2) points), step 7 which
adds O(n) edges, and step 1 which adds O(n) points.

That any w-to-v number of shortcut edges is at most 5
is proved by induction on n (the base case being trivial):
If w ∈ V2 and v ∈ V1, then the path of length at most 5
consists of following one edge from w ∈ V2 to its projection
w′ ∈ V ′

2 , at most 3 edges from w′ to the point v′ ∈ V ′
1 that is

the projection of v on M , and one edge from v′ to v. When
both points v and w are in V1 or both are in V2, the claim
follows from the induction hypothesis.

5.2.1 An example
To help clarify our shortcut technique, we give an example

of the recursive step in the previous section. Figure 2 shows
a tree access hierarchy that will be used for this example.

Figure 3 contains a set of points in two dimensions that
represents a tree’s access structure. Note that if a point
dominates another point in this figure, then the dominating
point must have a path to the dominated point in the final
structure.

Figure 4 shows the shadow points (added in step 3 and
denoted by open circles) for the previous figure. Note that
the shadow points are on a one dimensional plane (i.e., a
line). This figure also shows the transitions from normal
points to shadow points and vice versa (as described in step
4). Also note that the shadow points will be linked in step
7.
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verted to tuple form).
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Figure 4: Hierarchy with shadow points.

5.3 The case d ≥ 3

The fact that the graph G has dimension d implies that

every vertex v can be replaced by a d-tuple of numbers
(x1(v), . . . , xd(v)), such that w is ancestor of v in G if and
only if w dominates v, i.e., xi(w) ≥ xi(v) for all i ∈ {1, . . . , d}.

The input is a set V of n d-dimensional points, and the
desired output includes a set S of shortcuts between pairs
of points (some of which may not belong to V ) such that
(i) |S| = O(n(log n)d−1), and (ii) given any pair of points
v, w ∈ V such that w dominates v, there is a path of O(d)
shortcut edges from w to v. The output also includes the set
P that contains V as well as the additional dummy points
(i.e., points not in V but that are touched by edges in S).

As we did for the 2-dimensional case, the construction we
use is recursive. Specifically, we inductively assume that the
d−1 dimensional problem can be solved with O(n(log n)d−2)
edges and with a key derivation path of 2d+1 (note that this
holds for d = 1 and for d = 2 by the previous subsections).

The solution steps are as follows:

1. Initialize P = V , and initialize S to be empty.

2. If |V | = 1, then return P and S.

3. If |V | > 1, then compute a d − 1 dimensional hyper-
plane M , perpendicular to the dth dimension, that
partitions V into two equal sets V1 and V2, where V1

is the set of points that are on the smaller side of the
hyperplane (according to their dth coordinate). Let
V ′

1 be the projection along dimension d of V1 on hy-
perplane M . Let V ′

2 be the projection of V2, along
dimension d, on hyperplane M .

4. Add to S the following shortcut edges:

• a shortcut edge from every point of V ′
1 to its cor-

responding point of V1;

• a shortcut edge from every point of V2 to its cor-
responding point of V ′

2 .

5. Recursively build the shortcut edges and dummy points
for the set V1. Let that recursive call return P1 as the
set of points (including dummies) and S1 as the set of
shortcut edges within P1. Update S and P as follows:
S = S ∪ S1 and P = P ∪ P1.

6. Recursively build the shortcut edges and dummy points
for the set V2. Let that recursive call return P2 as the
set of points (including dummies) and S2 as the set of
shortcut edges within P2. Update S and P as follows:
S = S ∪ S2 and P = P ∪ P2.

7. Solve the d−1 dimensional problem consisting of V ′
1 ∪

V ′
2 , using the solution for dimension d− 1, and update

P and S according to what this solution returns: If it
returns S3 and P3 then the updates are S = S ∪ S3

and P = P ∪ P3.

The space complexity (number of shortcut edges and dummy
points) obeys the following recurrence. If n > 1 then:

f(n, 2) ≤ c1n log n

and, if d > 2, then

f(n, d) ≤ 2f(n/2, d) + f(n, d − 1) + c2dn

Note that this recurrence follows from steps 5 and 6 (which
each recursively solve the problem for n/2 points in d di-
mensions), step 7 (which recursively solves a problem for n



points in d− 1 dimension), and the other steps add at most
O(n) points and edges.

Now, if n = 1 then f(1, d) = c3d. Thus, the solution to
the above recurrence is:

f(n, d) = O(dn(log n)d−1).

The w-to-v number of shortcut edges obeys the following
recurrence. If n > 1 then:

g(n, 2) ≤ 5

and, if d > 2, then

g(n, d) ≤ 2 + g(n, d − 1)

Note that the above recurrence follows from the following
number of edges: one hop from V2 to a shadow point, g(n, d−
1) hops on the d − 1 dimensional hyperplane in step 7, and
one hop from the shadow point to the destination point.

Now, if n = 1 then g(1, d) = 1. Thus, the solution to the
above recurrence is:

g(n, d) ≤ 2d + 1.

6. EXTENSIONS: DYNAMIC HIERARCHIES
Dynamic changes to the hierarchy (such as addition and

deletion of nodes and edges, as well as a node’s key replace-
ment) do not require wholesale re-keying, rather, only the
nodes directly affected by the change need re-keying. To
achieve this, the ideas of [2] can be applied.

At a high level, we use two ideas from [2]. First, each
subject is given their own key (and a separate new node),
and the public storage is modified to include an edge from
that subject’s node to its access class vi. The other idea is
that the actual key of a node is computed as a function of a
label and a secret key. And it follows that, by changing the
label, one can change a node’s key. For more information,
we refer the reader to [2].

However, while individual nodes do not need to be rekeyed
using the above techniques, the public information (dummy
nodes and shortcut edges) does need recomputing after the
access graph is modified. Because of the divide and conquer
recursive nature of the algorithm, this re-computation looks
amenable (at least for the case d = 2) to the techniques of
dynamization of van Leeuwen and Overmars (see, e.g., [30,
20, 21]). This looks like a promising direction for future
work.

7. CONCLUSIONS AND FUTURE RESEARCH
We gave the first scheme for key derivation in a non-tree

hierarchy that performs any derivation in a small number
of hash function computations and modular additions. This
performance bound holds even for key derivations between
nodes separated by a path of linear length.

Promising directions for future work include reducing the
space complexity and improving the performance of dynamic
changes to the graph.
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