
CERIAS Tech Report 2006-26

PRACTICAL IDENTITY THEFT PREVENTION USING AGGREGATED PROOF OF
KNOWLEDGE

by A. Bhargav-Spantzel, A.C. Squicciarini, R. Xue, E. Bertino

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Practical Identity Theft Prevention using
Aggregated Proof of Knowledge

Abhilasha Bhargav-Spantzel Anna C. Squicciarini Rui Xue Elisa Bertino

Abstract

The problem of identity theft, that is, the act of impersonating others’ identities by presenting stolen identifiers
or proofs of identities, has been receiving increasing attention because of its high financial and social costs. In this
paper we address such problem by developing a solution for federated organizations. Our approach is based on the
concept of privacy preserving multi-factor authentication achieved by the implementation of a new cryptographic
primitive which uses aggregate signatures on commitments that are then used for aggregate zero-knowledge proof
of knowledge (ZKPK) protocols. The resultant signatures are very short and the zero-knowledge proofs are succinct
and efficient. We prove the security of our scheme under the co-GDH assumption for groups with bilinear maps. Our
cryptographic scheme is superior in terms of the performance, flexibility and storage requirements than the existing
efficient ZKPK techniques that may be used to prove, under zero-knowledge, the knowledge of multiple secrets.

1 Introduction
Digital identity can be defined as the digital representation of the information known about a specific individual
or organization. As such, it encompasses not only login names (often referred to as nyms), but many additional
information, referred to as identity attributes or identifiers. Managing identity attributes raises a number of challenges,
due to conflicting requirements. On the one hand, identity attributes need to be shared to speed up and facilitate
authentication of users and access control. On the other hand, they need to be protected as they may convey sensitive
information about an individual and can be a target of attacks like identity theft. Here, by identity theft we mean the
act of impersonating others’ identities by presenting stolen identifiers or proofs of identities. Reports state that within
the last twelve months about a million American adults became victims of digital identity fraud [18]. Most common
identity theft attacks are perpetrated through password cracking, pharming, phishing, and database attacks where the
attacker captures the personally identifying information of individuals and uses them to commit fraud.
When talking about identifiers, it is important to distinguish between weak and strong identifiers. A strong identifier
uniquely identifies an individual in a population, whereas a weak identifier can be applied to many individuals in a
population. Whether an identifier is strong or weak depends upon the size of the population and the uniqueness of
the identity attribute. Examples of strong identifiers are a user’s passport number or social security number. Weak
identifiers are attributes like age and gender.
Digital identity management is usually coupled with the notion of federation [19, 16, 25]. The goal of federations is
to provide users with protected environments to federate identities by the proper management of identity attributes.
Federations provide a controlled method by which federation members can provide more integrated and complete
services to a qualified group of individuals within certain sets of business transactions. By controlling the scope
of access to participating sites, and by enabling secure, cross-domain transmission of user’s personal information,
federations can make the perpetration of identity frauds more difficult, as well as reduce their frequency, and their
potential impact. Federations are usually composed of two main entities: identity providers (IP’s), managing identities
of individuals, and service providers (SP’s), offering services to registered individuals. In a typical federated identity
management system, the individual registers with his/her local IP and is assigned a username and password. Based on
this information an individual can submit additional attributes and corresponding attribute release policies, which are
stored at the local IP. The IP is from then on contacted whenever the user interacts with any other SP in the federation
when additional user information is needed. The IP is in charge of sending the SP the submitted user attributes
according to the attribute release policies.
The major drawback of current approaches [19, 16, 25] to federate digital identity management is that no specific
techniques are provided to protect registered individuals from identity theft. Dishonest individuals can register fake
attributes or impersonate other users of the federation. It is thus crucial that authentication protocols able to protect

1

against identity theft be provided as part of digital identity management solutions. Some relevant requirements that
such protocols should verify include the following:

1. The protocols should preserve individuals’ privacy, and enforce a “need to know” principle when requiring
identifiers.

2. The protocols should be efficient, flexible, and should not require complex user interactions. This directly relates
to usability which is one of the main aims of federations.

3. The protocols should be robust, in the sense that even if an adversary is able to obtain the value of the strong
identifiers, it should not be able to impersonate the victim in the federation.

4. A federated identity system should ensure consistency of the data shared in the federation. Although validity
of identifiers can only be checked with actual identifier issuers, which can be outside the federation, the system
should be able to detect identity theft based on the information available within the federation.

The goal of the work presented in this paper is to address the problem of identity theft in federations by developing a
solution that satisfies the above requirements. Our solution tostrong authentication is based on multi-factor authen-
tication, which consists of verifying the authenticity of an identity using more than one identity token at a time. Our
multi-factor authentication protocols are supported by some new cryptographic primitives, also proposed in this paper,
that result in high efficiency. Our protocols implement a mechanism to prove the knowledge of multiple strong iden-
tifiers stored as cryptographic commitments using aggregated zero-knowledge proofs. The commitments are signed
by a special federation entity, referred to as registrar, and the corresponding signature can be verified in an aggregated
fashion at the time of use. To achieve aggregate signature we develop techniques based on the approach originally
proposed by Boneh et al. [2].
Zero-knowledge proof of knowledge (ZKPK) is extensively used for identity protection [7, 8]. Our scheme enhances
such protocols by the use of multi-factor proof. Although a single ZKPK has been proven to be sufficiently efficient [6],
multi-factor proofs cannot maintain the same performance if a large number of proofs is considered. To address this
issue we develop aggregated ZKPK and reduce the proofs of several factors, that would require several ZKPK’s, to one
that uses only one ZKPK. In our protocols, users always need to compute a small constant number of exponentiations,
while the verifier’s (that is, either the SP or the registrar) computation of exponentials is dramatically reduced, which
makes our protocols highly suited for lightweight devices.
A key advantage of our protocols is that they are flexible with respect to which commitments are aggregated. That
is, any combination of commitments (among the ones available for a given user), can be aggregated for computing
the signature at runtime. This approach allows different SP’s in the federation to challenge the knowledge of different
combinations of the committed identifiers. This is a substantial improvement with respect to existing approaches [8],
which require the possible combinations of strong identifiers to be predefined or stored for computation of multi-factor
proofs. Thus, under such protocols the space required is exponential with respect to the number of committed values.
Our protocols instead require storing only the committed values and signatures.
Another main advantage of our solution is that, from an architectural point of view, it requires only minimal exten-
sions. Besides the conventional set of IP’s and SP’s composing a federation, our approach only requires adding some
registrars. The task of registrars is to enable users to register their strong identifiers without having to reveal their
actual values. Registration in our approach means that users can establish cryptographic tokens which can be used
subsequently for establishing proof of knowledge for the corresponding strong identifiers. Registrars are small and
modular software components which can be easily added to the architectures of current IP systems. Our solution is
also succinct and flexible, since we let the interacting entities exchanging only the information actually needed for the
specific interaction; no extra information needs to be exchanged. Our protocols greatly reduce the amount of informa-
tion revealed to the SP for authentication. We even provide a protocol that allows one to verify of the signature of a
commitment without knowing the value of the commitment itself. Such property greatly enhances privacy while still
assuring integrity and validity of committed data. Moreover the ZKPK commitments used are semantically secure
requiring the enrollment of random secret along with the strong identifier. The use of such technique ensures that
even if an adversary learns the values of the strong identifiers, that is, steals identity information, it cannot wrongly
authenticate itself as the owner of this information.
The paper is organized as follows. In Section 2 we provide our notion of identity assurance and the mechanisms for
its establishment and maintenance within a federated identity management system. In Section 3 we present the cryp-
tographic scheme for the aggregate proof of knowledge protocols. This is followed by a detailed analysis of security,
efficiency and system security in Section 4. In Section 5 we discuss the related work followed by the conclusion.
To be more accessible for readers, our presentation also includes two extra sections. In Appendix A, we the explain

2

functions required for identity assurance. In Appendix B, we provide proofs of some of the theorems presented in
Section 4.

2 Identity Assurance in Federations
The notion of identity assurance deals with the confidence about the truth of the claims related with the identity of an
individual. Intuitively, weak identity assurance may increase the risk of identity theft, as provenance and authenticity
of the identity data are not certain. Hence, strong cryptographic techniques built upon identifiers which have weak
identity assurance are vulnerable to misuse. Strong identity assurance is thus a crucial requirements for any identity
management system. Our approach to identity assurance relies on the use of multiple proofs of identity, that are stored
in a data structure called Identity Record (IdR for short) stored and managed by the registrar. The IdR is a fundamental
notion of our approach in that it actually provides a digital representation of user identities. In this section we first
introduce a simple notion of federation that we will use throughout the discussion. We then define all components
of IdR’s and various notions of assurance related to such records. We describe the requirements and mechanisms to
evaluate and maintain assurance about IdR’s in subsection 2.3.

2.1 Federations
Our approach to federations involve four types of entities: principals, service providers, identity providers and regis-
trars. Formally, a federation is modeled as a tuple F = 〈P ,SP , IP ,R〉, where:

- P is the set of principals belonging to the federation. Principals are associated with a single sign-on (SSO) Id;
each SSO Id represents a principal of a federation. An individual can be associated with several principals in a
federation.

- SP is the set of service providers forming the federation. The services offered by service providers are pro-
tected by a set of policies defining the requirements principals have to satisfy for their use. Such policies are
referred to as service disclosure policies [1, 29].

- IP corresponds to the set of identity providers. At least one IP has to be in place in a federation to keep track
of the principals’ attributes.

- R corresponds to the set of registrars which establish and maintain identity commitments used to establish proof
of knowledge of strong identifiers. At least one registrar has to be in place to achieve strong authentication of
principals.

Note that the above entities are logical and therefore the same federation host may provide the functions associated
with several such entities.

2.2 Identity Records
As we mentioned, each principal P in a federation has associated one or more IdR’s, each recorded at some registrar
in the federation. Each IdR in turn consists of several identity tuples, denoted as τ ’s. Each identity tuple is associated
with one strong identifier and records all information related to the verification of this identifier at the time of use. In
particular, each strong identifierm is associated with two types of commitments: a semantically secure commitment,
and a deterministic commitment, denoted as M and M̂ , respectively. M is a value signed by the registrar upon
registration. The signature on M is denoted by σ and is part of the identity tuple associated with m. M is computed
as gmhr, where g and h are generators in group G of prime order q. G and q are public parameters of the registrar
and r is chosen randomly from Zq

1. The public parameters are the same for all registrars in the federation. M̂ is the
deterministic commitment corresponding to M , and it is calculated as M̂ = gm. Note that M̂ is conceptually tied to
m, but does not need to be stored in the identity tuple. Its usage will be clarified in Section 3.P can execute a ZKPK
to assure that both M (stored in τ) and M̂ (the deterministic value) refer to the same m. m is also tied to a set of weak
identifiers, denoted by{w1, . . . wk}. For example, assume 4040330043794877 to be a credit card number and ‘Alice’
and ‘Smith’ be the first and last name of an individual. Here, 4040330043794877 is the strong identifier value, while
‘Alice’ and ‘Smith’ are the associated weak identifiers. The IdR is also associated with some other public parameters
required for the cryptographic protocols, as detailed in Section 3.

1More details of the cryptographic commitments and mechanisms are subject of Section 3

3

All strong identifier commitments and weak identifiers are tagged with an identifier descriptor tag and two types of
assurance, namely validity assurance and ownership assurance. Validity assurance corresponds to the confidence
about the validity of the identifier based on the verification performed at the identifier’s original issuer. As such, it
refers to the correctness of identifiers with respect to the real world information sources and the original issuers of the
identifiers, which can possibly be external to the federation. For example an issuer (sayMasterCard) can verify if
a credit card number it issued is valid. Ownership assurance corresponds to the confidence about the claim that the
principal presenting a given identifier is its true owner.
We introduce four levels of assurance: absolute assurance, tagged as ‘A’, corresponding to the absolute certainty about
the claim; reasonable assurance, tagged as ‘B’, corresponding to case when one or more assertions from trusted parties
exist regarding the certainty of the claim; unknown assurance, tagged as ‘U’, when there is no information to assert
the certainty of the claim; and false assurance, tagged as ‘F’, denoting that the claim is incorrect.
We assume that absolute validity of a given strong identifier can only be determined by authorities which have issued
the strong identifiers. This corresponds to value ‘A’ of the validity-assure of the associated strong identifier. Because
such authorities may not always be part of a given federation, we assume that agreements are in place that allows
the federation to verify validity of identifiers with such authorities. Note however that our approach also supports the
case when such verifications are not possible. In fact, we mark as ‘B’ the validity assurance of a strong identifier the
validity of which has been asserted by a principal, whose identity record has a validity assurance set to ‘A’. If no entity
other than the principal supports the validity of the strong identifier, the identifier is marked with unknown assurance
‘U’. Identifiers might be immediately validated upon registration, or they might be validated later on when actually
used by the principal. The latter corresponds to the concept of lazy validation.

The notation adopted to represent the various IdR elements is as follows:
IdR = {{τi}, cryptographic parameters }
τi = [(σi,Mi, tag, validity-assure, ownership-assure), {Wij}]
Wij = (wij , tag, validity-assure, ownership-assure)

<!DOCTYPE IdR[
<!ELEMENT IdR(PrincipalID, IdTuple,RegCertVerId,
Params)>
<!ELEMENT IdR PrincipalID CDATA #REQUIRED >
<!ATTLIST IdR IdTuple (StrongId,weakIds)>
<!ELEMENT IdTuple StrongId (id sig,id commit,
id tag,valid-assure,owner-assure) >
<!ELEMENT StrongId id sig CDATA #REQUIRED >
<!ELEMENT StrongId id commit CDATA #REQUIRED >
<!ELEMENT StrongId id tag CDATA #REQUIRED >
<!ELEMENT StrongId valid-assure CDATA #REQUIRED >
<!ELEMENT StrongId owner-assure CDATA #REQUIRED >
<!ATTLIST IdTuple weakIds CDATA #REQUIRED >
<!ELEMENT weakIds EMPTY>
<!ELEMENT weakIds id tag CDATA #REQUIRED >
<!ELEMENT weakIds valid-assure CDATA #REQUIRED >
<!ELEMENT weakIds owner-assure CDATA #REQUIRED >
<!ELEMENT IdR RegCertVerId CDATA #REQUIRED >
<!ELEMENT IdR Params CDATA #REQUIRED >]>

Figure 1: (a) Simplified graphical representation of an IdR (left). (b) DTD of an IdR (right).

For clarity of understanding we provide an illustrative example of an IdR as shown in Figure 1(a). Here the principle
is known as Alice@Registrar1 with registrar Registrar1 and has enrolled 2 strong identifiers namely a CCN and SSN.
We report the Document Type Definition [21] providing the structure of a IdR in Figure 1 (b).
We adopt the dot notation to denote an element in a given object. That is, a tuple τ ′ appearing in IdR is denoted by
IdR.τ ′, and the tag descriptor of the strong identifier inτ ′ as τ ′.tag.
An important notion in our approach is represented by the proof of knowledge. Let m be the value of a strong identifier
and let M be the corresponding semantically secure commitment. We say that principal P can provide a proof of
knowledge by providing a verifiable cryptographic token used in a ZKP protocol (see Section 3.1) which asserts that
P knows: (1) the actual value of m, and (2) cryptographic secret(s) associated with M . This is denoted as M B P
(read “M belongs to P ”).
The conditions according to which a principal P can prove ownership of a given IdR are dictated by a policy π.
Such policy expresses which of the committed strong identifiers in a given IdR need to be proven in order to ensure
ownership of the whole record. Policy π can either be specified separately by the various registrars or it can be globally

4

Identity Assurance
Function

Description

LocalConsistency(τ ,
IdR, P)

To check whether weak identi-
fiers inτ are locally consistent.

FederationDuplicate
Detection(τ , IdR,P)

To check whether duplicate val-
ues of the strong identifier com-
mitment exists.

ExternalValidation(τ ,
IdR,P)

To validate the strong identifier
m appearing in τ , by contacting
the issuer authority.

Table 1: Identity Assurance Functions

Phase Identity Assur-
ance Functions

Cryptographic
Protocols

Enrollment LocalConsistency;
FederationDuplicate

Detection;
ExternalValidation

Protocol 1 §3.2

Update LocalConsistency;
FederationDuplicate

Detection

Protocol 1 §3.2

Usage ExternalValidation Protocols 2, 3(a,b)
§3.3, Protocols
4(a,b) §3.4

Table 2: Roadmap of the Identity Protocols

defined as a part of the federation agreement policies. Ownership of IdR byP proven according to policy π is denoted
by IdRP Iπ P and is formally defined as follows.

Definition 2.1 (Ownership of Identity Record) Let π be a policy and let ψ be the set of tags to be verified according
to π. A principal P registered at registrar R can prove ownership of an identity record IdRP if, for each t ∈ ψ a
τ ∈ IdRP exists, such that τ.tag = t and the following conditions hold: (i) M B P ; (ii) P can provide proof that
signature τ.σ is valid ; (iii) τ.validity-assure = ‘A′; (iv) τ.ownerhip-assure = ‘A′ or ‘B′. ¤

The definition states that ownership assurance of an identity record is the result of the ownership assurance of each
tuple referred in the policy. That is, for each tuple indicated, it is required that the signature on the strong identifier be
verified, the validity assurance of the strong identifier is set to ’A’ and the ownership-assurance is set to level ’A’ or ’B’.

Notice that identity assurance, that is, the main goal of our approach, is a broader concept than only ownership and
validity assurance. Identity assurance is also related to the consistency of the IdR. Consistency of IdR is both a local
and a global concept. Local consistency deals with the information recorded by a specific IdR. In order to be consistent,
the collected strong and weak identifiers should qualify an individual with no evident errors. That is, no conflicting
attribute values should be collected in a same IdR. For instance, if the weak identifier “age” appears in different weak
identifiers, it should have the same value. Global consistency requires that no strong identifier be associated with
multiple principals, as they are typically unique, unless some specific conditions, detailed below, hold. We formalize
the concept of consistency in the following definition.

Definition 2.2 (Consistency of Identity Records) Let F = 〈P ,SP , IP ,R〉 be a federation. Let P be a principal in
P , enrolled at registrar R ∈ R. Let IdRP be an identity record of P . IdRP is consistent if it is locally consistent
with respect to R and globally consistent with respect to F .
IdrP is locally consistent with respect to R if ∀τi ∈ IdrP , @τi.Wih, τj .Wjk, j 6= i|tagWih = tagWjk and τi.Wih 6=
τj .Wjk.
IdrP is globally consistent if one of the following conditions holds:

1. 6 ∃Pj ∈ P , P 6= Pj |M̂i = M̂j and τj ∈ IdrPj and IdrPj Iπ Pj
2. if ∃Pj ∈ P , P 6= Pj |M̂i = M̂j and τj ∈ IdrPj , then IdrPj Iπ P . ¤

Local consistency checks are executed in order to verify that there are no weak identifiers in the same IdR with the
same descriptor tags and different values. For example the value of the weak identifier tagged byfirstnameshould
the same in all strong identifiers in which it appears. With respect to global consistency, the first condition requires
that no duplicates of strong identifiers exist in a federation; in most cases, a strong identifier is unique to an individual
and a duplicate may represent an inconsistency. However, as stated by the second condition, if a duplicate is detected
in another identity record, then the principal should be able to prove ownership of this identity record. Therefore,
our approach also allows multiple principals to commit the same value for strong identifiers, under the condition that
ownership of the duplicate strong identifier can be proven. For instance, we let two principals share a same credit card,
if both can prove the ownership of the corresponding IdR.
Identity assurance can be achieved enforcing specific checks at registrars. We have designed a set of functions imple-
menting the controls needed to verify identity assurance. These functions are summarized in Table 1 and details are
provided in Appendix A.

5

2.3 Management of Identity Records
The management of identity in our approach is characterized by three main phases: enrollment, during which individ-
uals register with the federation; usage of identity, requiring the verification of identity information; update of identity,
allowing individuals to modify their IdR. In what follows we discuss such phases in more details.
Enrollment process. Individuals are required to submit strong identifiers to enroll in the federation, according to the
policy of the registrar. Since our approach is based on multi-factor verification of identity, we assume that a minimum
number of identifiers is needed to actively participate in the federation. The exact type and numbers of identifiers
to register is part of the registrar policy and is assumed to be publicly available from the registrar. For example, a
registrar may require that a principal submits at least three strong identifiers for enrolling in the federation. A policy
language for expressing enrollment conditions is required, which we are currently developing. According to its policy
the registrar executes the ExternalValidation function (see Table 1) according to a pull strategy2 in order to obtain
an assurance level equal to ‘A’ for the committed values required by this policy. Further, the registrar will execute
the LocalConsistency and FederationDuplicateDetection functions to check if the strong identifiers are locally
consistent and if one or more duplicates are present in any other IdR. In case duplicates are found, the principal
is asked to prove ownership of the IdR conveying the duplicate. If the principal is unable to provide proof of the
ownership, then the enrollment is aborted. Once this check is completed the newly created IdR is consistent according
to Definition 2.2. At the time of enrollment, ownership of the claimed strong identifiers also needs to be ensured.
Individuals can enroll either through a face-to-face registration process or online. Face-to-face registration is executed
when an individual physically enrolls at a specific registrar office by showing credentials proving its identity and hence
proving the ownership of the claimed identifiers. For example the individual can go to the physical location acting
as registrar where it shows its SSN card. A trusted official in the registrar confirms the validity of the physical card
and supervises the enrollment procedure ensuring that the correct SSN number is entered into the system and thus
stored as a commitment. Here the individual trusts the registrar’s system not to store extraneous information other
than the commitments needed for the enrollment. Face-to-face registration guarantees ownership and therefore has
ownership-assure level equal to ‘A’. An alternative approach is online registration. Online registration is based on
the concept of digitally introduction by strongly identified principals. The principal acting as agrantor for the enrolling
principal needs to have a valid IdR (say IdRgrantor) and IdRgrantor Iρ grantor where ρ is the authentication policy
of the registrar. The grantor essentially asserts that the enrolling principal actually possesses the strong identifiers the
commitments of which are presented to the registrar. Since such an assurance is based on the level of trust of grantor,
the ownership-assure of this type of registration has a level equal to ‘B’. Online registration will thus require the
individuals to present in addition to the minimum number of strong identifier commitments, one assertion from at least
one grantor.
IdR Update process. The IdR may have to be updated for 1) adding strong identifier commitments, 2) revoking strong
identifier commitments and 3) changing thevalidity− assure status of the strong identifier commitments in the IdR.
When a principal P requires adding a strong identifier commitmentMnew to its IdR (say IdRP) at registrar R, it
presents an identity tuple τnew, collecting Mnew and a set of weak identifiersWnew; the following steps are then
executed:

1. P proves ownership of IdRP based on the policy of R, denoted asπR. Hence IdRP IπR P .

2. The LocalConsistency(τnew, IdR,P) function is executed to confirm local consistency of the new identity
tuple with respect to the weak identifiers.

3. The FederationDuplicateDetection(τnew, IdR,P) function is executed in order to check for duplicates of
M̂new. If a duplicate is found at another IdR, say IdRdup, then P has to prove IdRdup I P .

4. The ownership-assure level is determined based on the following three cases. If P is performing a face-to-
face update, then ownership-assure = ‘A’, else if P uses digital introduction ownership-assure = ‘B’, and
finally if no assurance is given,ownership-assure = ’U’.

5. Mnew is then signed by R in order to generate the signature σnew.

6. Finally τnew is added to the IdR with the validity − assure of each identifier set as unknown.

2When the registrar needs to determine the validity status before the value of commitment M is signed and used in the federation, it checks the
validity immediately. This refers to the pull strategy. Details are provided in Appendix A

6

Revocation of strong identifier commitment is executed by changing thevalidity − assure to ‘F’. More generally,
changes in the level of validity assurance are the result of the execution of ExternalValidation function in a push
mode3.
Usage of IdR. Any combination of the signed values of the commitments can be required for authentication purposes
by a SP. The content of the IdR must thus be available when the principal requests service from a SP. Availability can
be ensured according to two strategies. One strategy is to let principal P indicate its registrar, so that SP can directly
retrieve the required content of P ’s IdR. This requires the registrar to be online. Another option is to let P store the
content of the IdR in a - per tuple - signed structure called RegCert. RegCert contains all fields of the IdR and can
be encoded in any portable language, like XML [20]. To ensure security against stale RegCert’s we limit the lifetime
of the RegCert so that fresh values are reloaded from the registrar after a period of time specified by the federation
security parameters.
Table 2 provides a roadmap indicating which identity assurance functions and cryptographic protocols are used in the
different stages. The details of the protocols are presented next in Section 3.

3 Protocols
In this section we propose our protocols to enable principals to enroll with registrars, and authenticate using privacy
preserving multi-factor authentication mechanism. More specifically, we provide detailed protocols based on ZKPK
which are employed in the enrollment of the strong identifiers, and the signing of the commitments. We also show
how such commitments can be used in the verification phase. Our approach is based on aggregation techniques of
committed values to provide flexible and efficient zero-knowledge proofs. We also extend the aggregation protocols
to provide signature verification with hidden commitments in Section 3.4.

3.1 Preliminary Concepts
Following are the preliminary concepts regarding commitments, aggregate signatures and zero-knowledge proofs, and
the corresponding protocol notation.
Pedersen commitments: Let g and h be generators of group G of prime order q. A valuem is committed by choosing
r randomly from Zq and giving commitment C = gmhr. Commitment C is opened (or revealed) by disclosing m and
r, and the opening is verified by checking thatC is indeed equal to gmhr. A prover can prove by using zero-knowledge
proof that it knows how to open such commitment without revealing either m or r.

Bilinear maps: For a security parameter k, let q be a prime of length k, andG1, G2, GT be groups of order q. Suppose
g1 ∈ G1, g2 ∈ G2 to be generators. Function e : G1 × G2 → GT is a bilinear mapping satisfying the following
properties:

1. Bilinear: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g1, g2) 6= 1 ∈ GT .
3. There exists a computable isomorphism ψ from G2 to G1, with ψ(g2) = g1.

Bilinear aggregate signatures: The aggregate signature concept has been proposed by Boneh et. al. [2] who pro-
vide an efficient aggregate signature scheme referred to as BGLS from bilinear maps. Informally, aggregate signa-
tures are signatures that allow multiple signatures to be aggregated into one signature that is verifiable with respect
the public keys of the signers and the signed messages. Formally, the BGLS scheme consists of five algorithms:
KeyGen, Sign, V erify,Aggregate and AggV er. Any principal P uses KeyGen to generate the private and public
key pair (χ, v) such that v = gχ2 , where g2 ∈ G2, χ is the private key, and v is the public key.

The Sign algorithm computes the signature on input message mi. Its main step is the mapping of mi into G1 by a
mapping h : {0, 1}∗ → G1. The output message σi = h(mi)

χ ∈ G1 is the signature for mi.

The Aggregate algorithm aggregates the signatures σ1, σ2, · · · , σt for t different messages m1,m2, · · · ,mt into one
signature σ =

∏t
i=1

σi .

TheAggV er algorithm verifies signature and works like theAggregate signature algorithm. For a setm1,m2, · · · ,mt

3Push mode of validation is when any SP in the federation receiving the actual value of the strong identifierm consults the issuer and subse-
quently sends the validation result to the registrar storing the corresponding IdR

7

of different messages, and public keys v1, v2, · · · , vt and a signature σ, the verifier checks ife(σ, g2) =
∏
i e(hi, v),

where hi = h(mi) and e is the bilinear mapping.

Zero-knowledge proof of knowledge: In our approach we use the techniques by Camenisch and Stadler in [9] for
the various ZKPK of discrete logarithms and proofs of the validity of statements about discrete logarithms. We also
conform to the same notation as [9]. For instance to denote the ZKPK of values α and β such that y = gαhβ holds,
and u ≤ α ≤ v, we use the following notation:

PK{(α, β) : y = gαhβ ∧ (u ≤ α ≤ v)}

The convention is that Greek letters denote quantities the knowledge of which is being proved, while all other para-
meters are known to the verifier. Using this notation, the proof protocol is described by just pointing out its aim while
hiding all details.

3.2 Commitments and Signatures at Enrollment
As stated earlier, there are two types of commitment created for each strong identifier at the time of enrollment: the
deterministic commitment (denoted by M̂) and the semantically secure one (denoted by M). Only M is signed and
stored in the IdR, while M̂ is used to detect duplicates. In the following protocol we show how these commitments
can be created by the principal and how the principal can prove that the two commitments refer to the same secret m.
Finally, we illustrate how M is signed by the registrar. Formally, the protocol is composed of the following steps.

Protocol 1: Computing a signature on a information-theoretic hiding committed value.

1. Registrar’s parameters. The registrar runs generation algorithm GenKey on input 1k to generate the public
parameters: a prime q of length k, three groups G1, G2, GT of order q. Two generators g1, h1 in G1 are
specified such that logg1

h1 is unknown. An additional generator g2 ∈ G2 is needed, as well as a secret key
χ ∈ Zq and the public key v = gχ2 . The resulting set of public parameters is (G1, G2, GT , g1, h1, g2, v).

2. Commitment of a value m ∈ Zq . The principal chooses a r ∈ Zq , and computes M = gm1 h
r
1. The principal also

computes M̂ = gm1 .

3. Zero-knowledge proof of committed value. The principal gives a ZKPK of opening of the commitments M and
M̂ and that they commit the same secret m.

PK{(α, β) : M = gα1 h
β
1 ∧ M̂ = gα1 , α, β ∈ Zq}

4. Signing of a committed value. After performing the security checks on the committed value, the registrar
executes the Sign algorithm on the commitment M to output Mχ as the signature where χ is the secret key of
the registrar.

3.3 Multi-factor Authentication Verification
Assume that principal P requests a service from a SP which requires P to first authenticate by proving that it knows
how to open a specified set of commitments. To indicate this set of commitments a set of tags is given which is denoted
by ψproof . Moreover, to be authorized for the service the SP usually requires the principal to open or reveal in clear
values of some of the strong identifiers in its IdR. We denote this set of tags asψopen. The signatures and public
parameters are retrieved from the principal’s IdR or RegCert, introduced in Section 2.3. Since multiple commitments
have to be verified and proven, and can change according to the specific SP’s policy,ψproof and ψopen are not pre-
determined. As such, we need an aggregation technique to combine any given combination of commitments and
signatures for verification. In what follows we illustrate how this can be achieved. Precisely, Protocols 2 and 3 provide
aggregate proof of knowledge of the commitments corresponding to ψproof and ψopen respectively. The protocols
are two party computations, in which the principal is the prover and the SP is the verifier (we use the two terms
interchangeably).

Protocol 2: Proving aggregated signature on committed values. The principal performs the ZKP of the aggregated
commitments corresponding to the tags given in ψproof and aggregated signature for verification.

8

1. Principal’s aggregation. Let σ1, σ2, · · · , σt, be the signatures corresponding to the tags in ψproof . The principal
aggregates the signatures into σ =

∏t
i=1

σi, where σi is the signature of committed value Mi = gmi

1 hri1 . It
also computes M =

∏t
i=1

Mi = gm1+···+mt

1 hr1+···+rt
1 . Finally the principal sends σ,M,Mi for 1 ≤ i ≤ t to

verifier.

2. Zero-knowledge proof of aggregate commitment. The principal and the verifier SP carry out the following ZKP
protocol:

PK
{

(α, β) : M = gα1 h
β
1 , α, β ∈ Zq

}

3. Verification of aggregate signature. After the verifier accepts the zero-knowledge proof of the commitments, it
checks if the following verifications succeed:

M =

t∏

i=1

Mi and e(σ, g2) = e(M, v)

Only if steps 2 and 3 are successful, the SP will consider the signatures as valid. Step 2 provides an efficient way
of performing the ZKPK for each Mi in an aggregated manner which avoids carrying out a proof for each of the
Mi’s. Similarly, the aggregate signature in step 3 provides an efficient way of checking the signature for each of the
commitment indicated in ψproof .

Protocol 3a: Opening the committed value. In order to satisfy SP’s request to open in clear the principal’s strong
identifiers and verify the corresponding signatures, the principal has to show the corresponding values along with the
commitments as given in ψopen, as well as the aggregated signature.
The protocol relies on a random oracle hash function H which is known to all entities. Formally,

1. Principal’s aggregation and preparation. Upon SP’s requirement to show m1,m2, · · · ,mt

(a) The principal aggregates the signatures σ1, σ2, · · · , σt into σ =
∏t
i=1

σi where σi is the signature of
committed value Mi = gmi

1 hri1 .
(b) UsingH , principal computes the random values (x1, x2, . . . , xt) = H(m1 ‖ · · · ‖ mt ‖M1 ‖ · · · ‖ Mt)

4.
It also computes r =

∑t
i=1

rixi which is used in the zero-knowledge proof in the next step.

The principal sends m1, . . . ,mt,M1, . . . ,Mt, (x1, x2, . . . , xt) to the verifier SP.

2. Zero-knowledge proof of aggregate commitment. The principal and SP compute M =
∏t
i=1

Mxi
i and M̂ =∏t

i=1
gmixi

1 and carry out the following ZKPK:

PK{(β) : M/M̂ = hβ1}

3. Verification of aggregate signature. After the verifier receivesM1,M2, · · · ,Mt, and accepts the zero-knowledge
proof of the commitments, it checks if

M =

t∏

i=1

Mi and e(σ, g2) = e(M, v)

Only if all above checks are successful, SP validates the signatures and the values m1,m2, · · · ,mt.
Steps 1-3 are executed to ensure that the opened values m1,m2, · · · ,mt are the same as the the ones originally
committed {M1, . . . ,Mt}. Moreover the knowledge of the mi’s is not sufficient to perform a successful proof of
knowledge since also the committed random value ri is needed to complete the proof. This requirement prevents
possible misuse of the mi’s by the verifier SP. Note also that step 1b) corresponds to the challenge creation in a
random oracle model, to enable a non-interactive ZKP according to the Fiat-Shamir [15, 28] paradigm.

Protocol 3b: Hidden Strong Identifier Validation. In the following protocol we tackle the specific case of transac-
tions where the actual values of strong identifiers are not required to be released to the SP. As an example, a widely

4Here the random function H is from {0, 1}∗ onto {0, 1}ck , where c is a constant, k is the security parameter. For any x ∈ {0, 1}∗, let
y = H(x). For any given ck > t > 0, let m = b|y|/tc, to denote xi is substring in y of length m for 1 ≤ i ≤ t − 1, and xt is the suffix ofy
with length of |y| − (t− 1)m, such that y = x1x2 . . . xt. We denote it as (x1, . . . , xt) = H(x).

9

used strong identifier is the credit card number (CCN), the actual value of which may not be needed by a SP if the
issuer of the CCN, possibly a bank, can credit the SP with the required amount of money. In the protocol the strong
identifier is in fact revealed only to the issuer of that identifier and the deterministic commitments are sent to the SP
instead of the clear values. Moreover, an additional cryptographic token is passed to the SP which is forwarded to the
issuer. Here, we assume that the principal knows the public key of the issuer. Formally,

1. Principal’s aggregation. Upon SP’s requirement to provide deterministic commitments for strong identifiers
m1,m2, · · · ,mt, the following steps are executed:

(a) The principal aggregates the signatures σ1, σ2, · · · , σt into σ =
∏t
i=1

σi where σi is the signature of
committed value Mi = gmi

1 hri1 .

(b) The principal computes M̂i = gmi

1 for 1 ≤ i ≤ t and r =
∑t

i=1
rixi which is used in the ZKP in the step

2. Using H , it also computes the random values (x1, x2, . . . , xt) = H(M̂1 ‖ · · · ‖ M̂t ‖M1 ‖ · · · ‖ Mt).

(c) The principal constructs the following message for each issuer.

EncIssuer({m1, . . . ,mt, timestamp})

The principal sends {M̂1, . . . , M̂t}, {M1, . . . ,Mt}, σ and EncIssuer({m1, . . . ,mt, timestamp}) to SP.

2. Zero-knowledge proof of aggregate commitment. The principal and SP compute M =
∏t
i=1

Mxi
i and M̂ =∏t

i=1
(M̂i)

xi and carry out the following ZKPK:

PK{(β) : M/M̂ = hβ1}

3. Verification of aggregate signature. The principal sends σ to the SP which can verify the signature as follows:

M =

t∏

i=1

Mi and e(σ, g2) = e(M, v)

Only if steps 2 and 3 are valid, validator SP will accept the truth of the signatures and send the message.5 SP will
append all the deterministic commitments to the message for verification by the issuer as follows:

EncIssuer({m1, . . . ,mt, timestamp}), (M̂1, · · · , M̂t)

The issuer can then verify each of themi’s for its validity as well as the freshness of the message using the timestamp.
It can also check that mi, 1 ≤ i ≤ t, corresponds to the deterministic commitments as checked by the SP.

3.4 Signature Verification with hidden commitments
The tags associated with committed strong identifiers may potentially leak information about the individual. For
example, if a SSN number is enrolled it would imply that the individual has some source of income within the U.S.
This may be not be acceptable in some scenarios, as highlighted by next example.

Example 1 Consider a registrar Rgovt which enrolls only the government officials and requires high identity assur-
ance for each of the commitments it signs. The commitments of the individuals in Rgovt may correspond to the role
of the individual in the organization. Suppose principal PA has enrolled its “secret service officer ID number”with
Rgovt and has received a signed commitment corresponding to it. Consider now a hotel Ht which provides discounts
to government officials.PA while booking a room at Ht wants to apply for the discount. For this purpose PA needs
to prove the commitment signed by Rgovt. If the commitment and the corresponding tags are given in clear, they will
leak information regarding PA being a secret service officer. Therefore, it is desirable thatPA be able to prove that it
has enrolled some identifier withRgovt without revealing the exact commitment or the tag associated with it.

5If more than one issuers for are required to be contacted, more bilinear mapping computations will be involved in the step 3.

10

The above example can be generalized to the case where multiple commitments should be proven issued by a known
registrar without actually knowing the values of the commitment itself or the corresponding tags. To achieve this
feature we introduce a new cryptographic primitive.

Protocol 4a: Integrating the zero-knowledge proof into the verification.

1. Principal’s aggregation. Upon SP’s requirement to prove σ1, σ2, · · · , σt, the principal aggregates the signatures
into σ =

∏t
i=1

σi where σi is the signature of committed value Mi = gmi

1 hri1 . The principal also computes
m = m1 + · · · +mt (mod q), r = r1 + · · · + rt (mod q).

2. Zero-knowledge proof of aggregate commitment. The principal sends σ to SP, and carries out the following ZKP
protocol with SP:

PK
{

(α, β) : e(σ, g2) = e(g1, v)αe(h1, v)β , 0 < α, β < q
}

Note that the only information sent by the principal is σ, while in protocol 3 also the tags and the commitments were
known. If the above checks are valid, verifier SP will validate the signatures.

Protocol 4b: Zero-knowledge proof the aggregated signature.
Protocol 4a is a secure protocol which hides the tags and commitments. However, it is not a ZKP protocol because
different instances of the signature verification performed by the same principal can be linked by the SP since the
signatures themselves are deterministic. Moreover, if the principal had revealed in an earlier transaction, its Mi (and
possibly the tag associated with it) then the SP can link the σi with it. To address this we provide a final protocol
variant where even the actual signature is not revealed. More specifically, a randomized signature is used to verify that
the original signature has been issued by a given registrar. Note that since the signatures are randomized and the proof
of validity is zero-knowledge, one signature cannot be distinguished from the other. The succinct ZKPK is to convince
the verifier of possession of knowledge of one signature on a committed value, rather than which one it is. The final
submitted value is independent of any of the actual signatures. Therefore it is necessary that only one signature be
verified. Any further verification of additional randomized signatures does not provide any additional information.
This protocol has the advantage of assuring that a principal remains unlinkable and anonymous even if it had initially
revealed its strong identifiers and commitments to the verifying SP.

1. Principal’s aggregation. Upon SP’s requirement to prove a signature σ, principal chooses r ∈ Zq at random,
and sends the messages δ := σr to SP.

2. Zero-knowledge proof of aggregate commitment. The principal carries out the following zero-knowledge proof
protocol with the verifier SP:

PK
{

(α, β) : e(δ, g2) = e(g1, v)αe(h1, v)β , 0 < α, β < q
}

4 Analysis of the Protocols
In this section we analyze our solution. We first provide a formal analysis of the security of the cryptographic protocols
introduced in Section 3. We then evaluate the computational complexity of the main protocols characterizing our
approach. Finally, based on the properties of our protocols and on the identity assurance methodologies presented in
Section 2 we briefly analyze how identity theft prevention is achieved in the resulting identity system.

4.1 Security Analysis of the Protocols
Before proving the security properties of our protocols, we identify the properties that characterize the cryptographic
techniques used. The security of such cryptographic techniques relies on the assumption of co-gap Diffie-Hellman
(co-GDH) problem [2], which is summarized as follows.
For multiplicative cyclic groups G1, G2, GT of order q, let g1 be a generator of G1 and g2 be a generator of G2. Let ψ
be a computable isomorphism from G1 to G2, with ψ(g1) = g2 and e a computable bilinear map e: G1 ×G2 → GT .
Note that ψ and e can be computed efficiently. Co-GDH gap problem is relating two problems used in cryptography
which are as follows:
Decisional Co-Diffie-Hellman problem:Given 〈g1, g2, g

a
1 , g

b
2, g

c
2〉 for some a, b, c ∈ Z∗q , to decide if c = ab mod q.

Computational Co-Diffie-Hellman problem:Given 〈g1, g2, g
a
1 , g

b
2〉 for some a, b ∈ Z∗q , to compute gab2 ∈ G2.

11

Groups G1, G2 are said to be Co-GDH groups if there exists an efficient algorithm to solve the Decisional Co-DH
problem and there is no polynomial-time (in |q|) algorithm to solve the Computational Co-DH problem. The existence
of a cryptographic bilinear map ensures the existence of Co-GDH groups.
Since the co-GDH assumption implies discrete logarithm assumption, the results stated in the next lemma concerning
the ZKPs appearing in Protocols 1, 2, 3a, 3b and 4a are derived from [11, 12, 9].

Lemma 4.1 Let G1, G2 be Co-GDH groups of prime order q with respect to generators g1 ∈ G1 and g2 ∈ G2. Let
h1 ∈ G1 be a generator with logg1

h1 unknown. The ZKPK appearing in protocols 1, 2, 3a, 3b and 4 hold true for the
specified parameters. More precisely:

1. Step 3, protocol 1, and step 2 in protocol 3b are ZKPs of knowledge of the values mi, ri ∈ Zq such that the
same mi is committed in both M̂i and Mi.

2. Step 2 in protocol 2 is a ZKPK of the values
∑
mi mod q,

∑
ri mod q.

3. Step 2 in protocols 3a and 3b is a ZKPK of the values
∑

(mi×xi) mod q,
∑

(ri×xi) mod q where xi ∈ Zq
are random challenges.

4. Step 2 in protocol 4a is a ZKPK of the values
∑
mi mod q,

∑
ri mod q satisfying the signature verification

relation.

We now show that all protocols are two-party secure computations. Security is ensured by proving correctness and
unforgeability of each protocol.
Correctness of protocols means that honest users can, with correct data, carry out the protocols successfully, while
unforgeability guarantees that an adversary, with forged data, cannot execute the protocols successfully. Our results
on unforgeability for protocol 2 are derived from Lemma 4.3.
Proving the security of the first protocol is straightforward. The following lemma is given.

Lemma 4.2 In protocol 1, let G1, G2, be Co-GDH groups of prime order q with respect to generators g1 ∈ G1 and
g2 ∈ G2. Let h1 ∈ G1 be a generator, with logg1

h1 unknown. The protocol is secure.

The truth of Lemma 4.2 is based on the statistical hiding and computational binding properties of Pedersen commit-
ments. Therefore, signatures and aggregation computed on such commitments will continue to hold those properties.
The independent techniques employed in this protocol are conventional, and have been investigated separately in sev-
eral related works [4, 22, 26, 27]. The correctness proofs are similar to the ones elaborated in Theorem 4.4 and are
therefore omitted.

Lemma 4.3 (Unforgeability of Aggregation of Pedersen Commitment) LetG be a group of prime order q, in which
the discrete logarithm is hard to compute. Elements g, h ∈ G are generators with logg h unknown. Mi = gmihri are
Pedersen commitments to messages mi ∈ Zq , and random numbers ri ∈ Zq , with 1 ≤ i ≤ t. Let M =

∏t
i=1

Mi.
Then, it is infeasible, given only M1,M2, . . . ,Mt, to compute m, r such that M = gmhr if at least one of mi or ri is
unknown.

Proof. Suppose that m1, . . . ,mt−1 and r1, . . . , rt are known, and mt is unknown. If adversary can compute m, r ∈
Zq , where m =

∑t
i=1

mi, r =
∑t

i=1
ri such that M = gmhr, then it can get gmtgm1+m2+···+mt−1hr1+···+rt =

gmhr, which means gmt = gm−m1−···−mt−1hr−r1−···−rt , that implies mt ≡ m − m1 − · · · − mt−1 mod q
and r ≡ r1 + · · · + rt mod q. This in turn implies that the adversary can solve the discrete logarithm gmt =
M/(gm1+···+mt−1hr) with respect to g. Since mt is an arbitrary element in Zq , that is contradictory with respect to
the discrete log problem (DLP) assumption. ¤

Theorem 4.4 For co-GDH groups G1, G2, the protocol 2 is a secure two-party computation.

Proof. We show that prover needs to know all the committed values and that the associated signatures need to be valid
in order to successfully execute the protocol.
Correctness: Let Mi = gmi

1 hri1 , σi = Mχ
i , then M =

∏t
i=1

Mi =
∏t
i=1

gmi

1 hri = gm1 h
r
1, where m =

∑t
i=1

mi,
r =

∑t
i=1

ri. The prover is able to execute

PK
{

(α, β) : M = gα1 h
β
1 , α, β ∈ Zq

}

12

Protocol 2 Protocol 3a Protocol 3b Protocol 4a Protocol 4b
Our provers 2 + 2 3 + 2 3 + 2 2 2

Protocols verifiers 3 2t+ 3 2t+ 3 3 3
Without provers 2t 4t 4t 2t ×

Aggregation verifiers 3t 5t 5t 3t ×

Table 3: Comparison on the number of exponentiations for proving t factors.

with the knowledge of α = m and β = r according to Lemma 4.1.
To prove correctness for step 3 of the protocol, which verifies the validity of the aggregated signature, we note that
σ =

∏t
i=1

σi =
∏t
i=1

Mχ
i , and

e(σ, g2) = e

(
t∏

i=1

Mχ
i , g2

)
=

t∏

i=1

e(Mi, g2)χ =

t∏

i=1

e(Mi, v) = e(M, v).

Unforgeability: We prove this property by showing that if the prover does not know even one of the messages
{mi}1≤i≤t and {ri}1≤i≤t, OR one of σi, 1 ≤ i ≤ t, is not valid, then protocol fails.
If the prover does not know all the secrets and the proof is executed successfully, this would mean that there exists a
knowledge extractor that can extract two values m′ and r′ such that M = gm

′

1 hr
′

1 . However, according to Lemma 4.3
this is infeasible.
For the case in which any one of the signatures is not valid, the step 3 of the protocol will not succeed because of the
security of the aggregated signature as given in [2]. ¤

Theorem 4.5 For co-GDH groups G1, G2, the following conclusions hold:

1. Protocol 3a is a secure two-party computation. It guarantees that 1) principal has knowledge of values ri, 2)
the values mi are correctly committed in Mi, and 3) signatures σ1, σ2, . . . , σt are valid.

2. Protocol 3b is a secure two-party computation. It guarantees that 1) principal has knowledge of values ri, 2)
the values committed in Mi and M̂i are the same, and 3) signatures σ1, σ2, . . . , σt are valid.

Proof is provided in Appendix B.1.

Theorem 4.6 For co-GDH groups G1, G2, Protocol 4a is a secure two-party computation in random oracle model.

Proof is provided in Appendix B.2.

Theorem 4.7 The protocol 4b is a ZKP of a signature on a message under signature scheme of protocol 1.

Proof is provided in Appendix B.3.

4.2 Efficiency Evaluation of the Protocols
Our ZKPK is based on the hardness of discrete logarithm which is implied by the assumption of co-GDH groups. To
compute the proof of PK{(α, β) : y = gαhβ , α, β ∈ Zq}, 5 exponentiations are used [13]. If separate proof of the
knowledge for t commitments were used, then 5t exponentials would need to be computed. In some of our protocols,
we reduce the number of exponentiations to a constant that does not depend on the number of commitments to be
proved. In our protocols, principals always need compute a constant number of exponentiations, while the verifier’s
computation of exponentials is mostly dramatically reduced (see Table 3). These simple considerations prove the
efficiency and practical features of our approach. Table 3 reports a comparison of the exponentiations computed by
the principals or provers and verifiers in our aggregate protocols and in the case when they are not aggregated.
Since we adopted the Pedersen commitment and the short signature from [3], our signatures on commitments are short
and the storage complexity is smaller than the ones computed with existing techniques [8]. As an example, even the
simplest version of signature is three times length than ours.
Camenisch et al. also considered signatures on the commitments on a set of messages (see [8], page 10 and Theorem
3.) Compared to their methods, our approach is more flexible in that whenever nmessages are committed for a user, the
user is able to to prove 2n−1 many combinations of them which does not appear possible in the scheme by Camenisch
et al. Since we make use of the aggregation signatures developed in [2] to sign the Pedersen’s commitments, the
verification of the signature is more efficient than if the verification were executed separately.

13

Moreover, in our case, since the signatures stored in a particular IdR are assigned only by the registrar which enrolls it,
the verification becomes even more cost effective. We compare to the case where aggregated proofs are not used. Non
aggregated proofs need 2t many bilinear mapping computations for the verification oft signatures, while each of our
protocols needs only 2 bilinear mappings, which is again a constant and is independent of the number of signatures
proved.
To summarize: No matter how many factors needing to be proved, with users having to perform only constant expo-
nentials (at most 5) in the proof, it is practical to execute our protocol in lightweight devices such as Palm, smart card,
mobile devices and so on. No matter how many factors needing to be proved, there are only two bilinear mapping
computations needed in each protocol, and the number of exponentials for verifier are dramatically reduced.These are
the most efficient paradigms at present.

4.3 Security analysis of the Federation System
We discuss how our identity assurance techniques and cryptographic protocols together guarantee the security of the
federated identity management system with respect to robustness and confidentiality. In our context, robustness means
that no identity theft can be perpetrated within the federation. Confidentiality means that no unauthorized third party
can gain access to the data exchanged during the registration and the usage protocol.
Robustness against identity theft. An important property that our protocol must ensure is that no matter how the
federation entities might collude, it must not be possible for any entity to succeed in stealing identities of other
principals. Thus, it must not be possible that a principal P uses a strong identifierm belonging to another principal
P ′ ∈ P unless P can prove ownership of m as well. Further, the SP can ensure that an adversary will not succeed
in using strong identifiers belonging to any other individual, even if such individual has never registered the identifier
with the federation. To show robustness we will focus on the most interesting misbehavior by the different entities.
(i) Dishonest principal P . At the time of registration, two possibilities arise: the first is the case in whichP imper-
sonates an already registered individual, P ′ ∈ P , by trying to register m which is owned by P ′. P fails registering m
because the deterministic commitment M̂ is in fact already recorded by the FederationDuplicateDetection function
(see Table 1), when P ′ enrolled it. The other possible case is that P is impersonating an individual not known to the
federation by registering a strong identifierm. Here, theft by P is detected since ExternalValidation is executed for
a minimum number of strong identifiers as defined by the federation. Protocols 2, 3 and 4 provide efficient and flexi-
ble approaches to perform the multi-factor authentication at the time of usage. Each of them are secure as proved by
Theorems 4.4 − 4.7. Therefore impersonation can only be achieved with the compromise of all the required identifiers.
(ii) Honest principal P with dishonest registrar. Within the federation even a registrar cannot misuse the data, since
it cannot prove the ownership of a valid IdR. This is ensured by the ZKPK protocol presented in Section 3. Another
possible misbehavior of the registrar not strictly related with identity theft is related with corrupting the IdR. Precisely,
the value of one or more stored commitments in IdR may be changed to an incorrect value. However, because the
principal generates these values independently from the registrar’s input, such errors can be detected.
(iii) Honest principal P with dishonest SP. Even in case a dishonest SP attempts an identity theft, it cannot reuse the
proofs or the signatures to prove ownership of the corresponding strong identifier. This condition holds even if the SP
knows the actual value of the strong identifiers, due to the semantically secure Pedersen’s commitment. Moreover as
illustrated in Protocol 3b the timestamp prevents replay attack of final token sent to the issuer.
Confidentiality. Confidentiality of strong identifiers is achieved through combination of PKI techniques and the
security of the protocols. Precisely, confidentiality is achieved as follows. Concerning identifiers registration, as
illustrated in Protocol 2, only the commitments of the strong identifiers are revealed. From Lemmas 4.1 and 4.2,
it follows that the values of the strong identifiers in the commitments remain confidential. With respect to usage
of identifiers our protocols preserve minimality, in that, if the values of the strong identifiers are not required to be
revealed at the time of usage, then as illustrated in Protocols 3b, 4a and 4b, we derive that the confidentiality of the
strong identifier is assured. Concerning the confidentiality of weak identifiers and strong identifiers’ tags, Protocol
4(a,b) provides an elegant way to hide the entire IdR. Moreover, subsequent usage of the the signatures cannot be
linked in Protocol 4b which is proved in Theorem 5.6 part 2. Protocol 4(a,b) directly implies that SP’s do not have
access to the tags of the committed values and they cannot infer which strong identifiers have been committed.

14

5 Related Work
In the corporate world there are several emerging standards for identity federation like Liberty Alliance [19] (LA)
and WS-Federation [25]. They aim towards standards for SSO6 with decentralized authentication. SSO allows a user
to sign-on once in order to be seamlessly signed-on when navigating to another site without the need to authenticate
again. Shibboleth [16] is an initiative by universities that are members of Internet2 [17]. The goal of such initiative
is to develop and deploy middleware technologies that can facilitate inter-institutional collaboration and access to
digital contents by secure attribute based authentication and sharing. Concerning the problem of identity theft, the
above initiatives and other organizations like Better Business Bureau and Federal Trade Commission have initiated
some efforts aiming at educating consumers and preventing identity theft. However, to the best of our knowledge, no
comprehensive techniques have been proposed to deal with the problem of identity theft. Our solution extends the
concept of federation with the concept of proofs of identity and multi-factor authentication.
Several privacy-enabled identity management systems have been proposed based on the notion of anonymous cre-
dentials [5, 6, 10]. In anonymous credential systems, organizations know the users only by pseudonyms. Different
pseudonyms of the same user cannot be linked. Yet, an organization can issue a credential to a pseudonym. The cor-
responding user can prove possession of this credential to another organization (which knows this user by a different
pseudonym), without revealing anything more than the fact that the user owns such a credential [14]. Idemix [5] is the
first system implementing anonymous credentials in a federated identity management system. Idemix provides mech-
anisms for efficient multi-show7 credentials and a flexible scheme for issuing and revoking anonymous credentials.
It also provides a mechanism for all or nothing sharing and a PKI-based non-transferability. Anonymous credentials
may not be adequate for several real e-commerce applications and web services that require strong identifiers. In our
approach we do not require the user identity to be hidden, even if we protect its identity attributes. More specifically,
we do not only protect user privacy but also protect the use of its strong identifiers without requiring anonymity. Strong
identifiers can indeed be securely used, and can be either certified or uncertified. By using privacy preserving multi-
factor authentication and ZKPK we can provide strong authentication and thus prevent identity theft. Moreover, unlike
existing approaches, we can also timely detect possible identity theft by checking for duplicates of strong identifiers.
The work most closely related to ours concerning the cryptographic schemes proposed, is the signature schemes and
anonymous credentials [8] work from Camenisch et al. They propose efficient protocols that allow one to prove in
zero-knowledge the knowledge of a signature on a committed (or encrypted) message and to obtain a signature on
a committed message. Such approach also provides a signature scheme that is based on an assumption introduced
by [23] and uses bilinear maps. In Section 4 we show how our protocols is substantially better for the purposes of
multi-factor authentication. We in fact combine our ZKPKs with the aggregate signature scheme presented in [2] and
establish a new cryptographic primitive for aggregate proof of knowledge. Our scheme is more flexible and efficient
and requires less storage than the protocols in [8]. The paper by Boneh et al. [2] presents several applications for
aggregate signatures and proposes an efficient aggregate signature mechanism based on bilinear maps. They however,
do not investigate signatures on commitments which can be used later for ZKPK protocols. Also, in our case since the
signatures are aggregated by the same registrar, the aggregation and verification are more efficient.

6 Conclusion
We have presented a solution to identity theft prevention based on multi-factor authentication, implemented by our
new cryptographic notion of aggregated proof of knowledge. We have shown that our aggregated multi-factors ZKPs
are more efficient than separate cases ZKPs. Moreover users only need to execute constant many exponentials, no
matter how many signatures and commitments are to be proved. Our proof of knowledge of signature on commitment
is more computationally and storage efficient than existing approaches [8]. Our aggregate proof is more flexible and
storage saving and the verification of the aggregated signature is also efficient. The small security parameters likeq
used by the Weil Pairing can be efficiently implemented better than the RSA version on small devices like smart cards.
Based on additional composite protocols for maintaining identity assurance we provide a comprehensive solution to
prevent identity theft in a federated identity management system.

6Single Sign-On
7Credentials can be used multiple times. Possession of a multi-show credential can be demonstrated an arbitrary number of times; these

demonstrations cannot be linked to each other [5].

15

References
[1] Elisa Bertino, Elena Ferrari, and Anna C. Squicciarini. Trust-χ: A Peer-to-Peer Framework for Trust Establish-

ment. IEEE Transactions on Knowledge and Data Engineering, 16(7):827– 842, July 2004.

[2] Dan Boneh, Craig Gentry, Hovav Shacham, and Ben Lynn. Aggregate and verifiably encrypted signatures from
bilinear maps. In Proceedings of Advances is Cryptology – Eurocrypt’03, LNCS. Springer-Verlag, 2003., 2003.

[3] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. Lecture Notes in Computer
Science, 2248:514, 2001.

[4] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchronous verifiable secret sharing
and proactive cryptosystems. In CCS ’02: Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 88–97, New York, NY, USA, 2002. ACM Press.

[5] Jan Camenisch and Els Van Herreweghen. Design and implementation of the idemix anonymous credential
system. In CCS ’02: Proceedings of the 9th ACM conference on Computer and communications security, pages
21–30, New York, NY, USA, 2002. ACM Press.

[6] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials with
optional anonymity revocation. Lecture Notes in Computer Science, 2045:93+, 2001.

[7] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. InInternational Conference
on Security in Communication Networks – SCN, volume 2576 of Lecture Notes in Computer Science, pages 268–
289. Springer Verlag, 2002.

[8] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear maps. In
Advances in Cryptology – CRYPTO ’04, 2004.

[9] Jan Camenisch and Markus Stadler. Efficient group signature schemes for large groups. InAdvances in Cryptol-
ogy – CRYPTO ’97, pages 410–424, 1997.

[10] David Chaum. Security without identification: transaction systems to make big brother obsolete. Commun.
ACM, 28(10):1030–1044, 1985.

[11] David Chaum. Zero-knowledge undeniable signatures (extended abstract). In EUROCRYPT ’90: Proceedings
of the workshop on the theory and application of cryptographic techniques on Advances in cryptology, pages
458–464, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[12] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO ’92: Proceedings of the
12th Annual International Cryptology Conference on Advances in Cryptology, pages 89–105, London, UK, 1993.
Springer-Verlag.

[13] Ivan Damgard and Eiichiro Fujisaki. A statistically-hiding integer commitment scheme based on groups with
hidden order. In ASIACRYPT ’02: Proceedings of the 8th International Conference on the Theory and Applica-
tion of Cryptology and Information Security, pages 125–142, London, UK, 2002. Springer-Verlag.

[14] IBM Zurich Research Laboratory: Privacy enhancing Cryptography and Pseudonym Management.
http://www.zurich.ibm.com/security/privacy/.

[15] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems.
In Proceedings on Advances in cryptology—CRYPTO ’86, pages 186–194, London, UK, 1987. Springer-Verlag.

[16] http://shibboleth.internet2.edu. Shibboleth, Internet2.

[17] http://www.internet2.edu/. Internet2.

[18] http://www.javelinstrategy.com/reports. 2005 Identity Fraud Survey Report.

[19] http://www.projectliberty.org. Liberty alliance project.

[20] http://www.w3.org/XML/. Extensible markup language (xml).

16

[21] http://www.w3schools.com/dtd/default.asp. DTD tutorial.

[22] Jiangtao Li, Ninghui Li, and William H. Winsborough. Automated trust negotiation using cryptographic creden-
tials. In CCS ’05: Proceedings of the 12th ACM conference on Computer and communications security, pages
46–57, New York, NY, USA, 2005. ACM Press.

[23] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf. Pseudonym systems. In Selected Areas in
Cryptography 1999, pages 184–199, 1999.

[24] Gurmeet Singh Manku. Dipsea: A Modular Distributed Hash Table. PhD thesis, Stanford University, 2004.

[25] Sven Overhage and Peter Thomas. WS-Specification: Specifying Web Services Using UDDI Improvements. In
Revised Papers from the NODe 2002 Web and Database-Related Workshops on Web, Web-Services, and Database
Systems, pages 100–119, London, UK, 2003. Springer-Verlag.

[26] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In CRYPTO
’91: Proceedings of the 11th Annual International Cryptology Conference on Advances in Cryptology, pages
129–140, London, UK, 1992. Springer-Verlag.

[27] Birgit Pfitzmann and Michael Waidner. Strong loss tolerance of electronic coin systems. ACM Trans. Comput.
Syst., 15(2):194–213, 1997.

[28] Claus P. Schnorr. Efficient identification and signatures for smart cards. InEUROCRYPT ’89: Proceedings of the
workshop on the theory and application of cryptographic techniques on Advances in cryptology, pages 688–689,
New York, NY, USA, 1990. Springer-Verlag New York, Inc.

[29] Ting Yu, Marianne Winslett, and Kent E. Seamons. Interoperable strategies in automated trust negotiation. In
CCS ’01: Proceedings of the 8th ACM conference on Computer and Communications Security, pages 146–155,
New York, NY, USA, 2001. ACM Press.

A Enforcing Identity Assurance
Here we elaborate the functions described in table 1.

LocalConsistency(τ , IdR, P) . This function checks whether the weak identifiersW = (wj , tag, validity −
assure, ownership − assure) appearing on the input identity tuple τ are locally consistent. That is, if the
same tag descriptors are present in any other identity tuple τ ′ of the same IdR, the value of the corresponding
tags should be equal to w′j . For example, if a credit card number (CCN) was committed along with weak identi-
fiersfirstname and lastname, when a new identifier, say SSN, is committed the values of the weak identifiers
firstname and lastname associated with the SSN should be identical to that for CCN8.

FederationDuplicateDetection(τ , IdR,P) This function checks whether duplicate values of m exist, where m is
a strong identifier appearing in tupleτ . Duplicate detection is based on use of Distributed Hash Table (DHT)
[24]. Such table keeps track of the deterministic strong identifier commitments which have validity status equal
to ‘A’. The DHT is maintained by the registrars of the federation. The entries in the DHT are tuples of the form
〈M̂, P,R〉, where P denotes the principal, and R the identifier of the registrar storing the principal’s IdR.M̂ is
a deterministic value for the committed strong identifierm. Duplicate detection is actually executed by running
algorithm lookup on the DHT. Because the tables are distributed, the duplicate lookup is efficient in that it does
not require an exhaustive search. If a duplicate is found the algorithm returns false and further actions are taken
to detect whether a misuse is occurred.

ExternalValidation(τ , IdR,P) This function validates the strong identifierm appearing in τ , by contacting the issuer
authority, which provides validity assurance. If the issuer successfully validates m, the associated validity −
assure value is set to ‘A’. It is important that the weak identifiers used for the external validation correspond to
the ones enrolled in τ .

External validation can be initiated according to two strategy. Under the first strategy, referred to aspush mode,
any SP in the federation receiving the actual value of the strong identifierm consults the issuer. The SP sends

8We assume the same tag names corresponding to the same semantic.

17

the validation result to the registrar storing the corresponding IdR accordingly so that the IdR can be updated
accordingly. Under the second strategy, referred to as pull mode, the registrar needs to determine the validity
status before the value of commitment M is signed and used in the federation. In this case the principal encrypts
its strong identifiers with the issuer’s public key which we assume to be available and sends it to the registrar. The
registrar then appends the deterministic commitment M̂ to it and sends it to the issuer for verification. Details
of this procedure are given in Protocol 4b). The registrar, once the verification from the issuer is completed,
computes a signature σ on the commitment M and added to τ .

B Proofs

B.1 Proof of Theorem 4.5
We show that it is correct and unforgeable.
Correctness: We prove that for the honest prover, with values m1, · · · ,mt,Mi = gmihri , the protocols execute
correctly. After computing the values (x1, · · · , xt) the prover calculates M =

∏t
i=1

Mxi
i = gm1 h

r
1 and M̂ = gm1 .

Here, m =
∑t

i=1
mixi and r =

∑t
i=1

rixi. This directly results in M/M̂ = hr1 and the prover is able to carry out
the ZKPK PK{(β) : M/M̂ = hβ1}. As such, only by knowing all ri, 1 ≤ i ≤ t the correct value r can computed
and substituted for β. Items 1) and 2) of the thesis are thus proved for both protocols 3a and 3b.
The correctness of the signatures σ1, σ2, . . . , σt is derived from the validity of aggregated signature σ. We omit the
correctness proof for σ since it is similar to the proof given for Theorem 4.4.
Unforgeability:

1. Protocol 3a We show that the successful execution of the protocol guarantees that a prover cannot forge even
one of ri or mi by contradiction.
Assume that an adversary executes successfully the protocol based on its knowledge of r2, · · · , rt andm1, · · · ,mt

and that it does not know r1. In order to execute step 2 of Protocol 3a (3b), a zero-knowledge extractor that
extracts r has to exist. Thus the adversary can feasibly compute r and, from r =

∑t
i=1

xiri mod q, it can
deduce r1. Thus it can feasibly compute r1 which is a contradiction with respect to the assumption that r1 is
unknown.

Unforgeability of mi means that it is infeasible for a prover to reveal a set of {m′1, · · · ,m
′
t} which is not exactly

the same as {m1, · · · ,mt} corresponding to the original identifiers committed inM1, · · · ,Mt and successfully
execute the protocol. In this case at least one m′i with m′i 6= mi mod q exists which would result in the
random challenges to be calculated as (x1, · · · , xn) = H(m′1 ‖ · · · ‖ m′t ‖ Mi ‖ · · · ‖ Mt). Step 2 of protocol
3a performs the ZKPK, showing that M/M̂ = hr1, r =

∑t
i=1

xiri mod q, M =
∏t
i=1

Mxi
i = gm1 h

r
1 and

M̂ =
∏t
i=1

g
m′ixi
1 = gm

′

1 . Here, m =
∑t

i=1
ximi, m′ =

∑t
i=1

xim
′
i. Since logg1

h1 is unknown, gm = gm
′

implies m −m′ = 0 mod q. That is,
∑t

i=1
xi(m

′
i −mi) = 0 mod q. Since there exists at least one i such

that m′i 6= mi mod q, and since (x1, · · · , xn) is random, it is infeasible that
∑t

i=1
xi(m

′
i −mi) = 0 mod q.

2. Protocol 3b The same reasoning as before applies to protocol 3b, with the only difference that SP does not
explicitly know the values m1,m2, . . . ,mt.
By using messages EncIssuer({m1, . . . ,mt, timestamp}), (M̂1, · · · , M̂t), the issuer will check if gmi

1 = M̂i.
If they are all valid, and from the correctness of the proof, we know that mi is the value committed in Mi for
1 ≤ i ≤ t, which were signed by registrar. ¤

B.2 Proof of Theorem 4.6
Correctness: From the signatures σ1, σ2, . . . , σt assigned by the registrar for messages M1 = gm1

1 hr11 , . . . ,Mt =
gmt

1 hrt1 , the principal computes

σ =

t∏

i=1

σi =

t∏

i=1

Mχ
i =

t∏

i=1

gmiχ
1 hriχ1 = gmχ1 hrχ1

18

Where m =
∑t

i=1
mi, r =

∑t
i=1

ri. Then

e(σ, g2) = e(gmχ1 hrχ1 , g2) = e(gm1 h
r
1, g2)χ = e(g1, v)me(h1, v)r

where χ and v = gχ2 are respectively the private and public keys of the registrar. The principal is able to successfully
carry out the ZKPK m, r as given in step 2 of the protocol.
Unforgeability: The successful protocol execution should guarantee that the prover has valid signatures σi and knowl-
edge of all mi committed in Mi. If a knowledge extractor exists for the ZKPK at step 2 that extracts two mes-
sage m′ and r′, such that e(σ, g2) = e(g1, v)m

′

e(h1, v)r
′

then it would mean e(σ, g2) = e(gm
′χ

1 hr
′χ

1 , g2). That is,
e(gmχ1 hrχ1 , g2) = e(gm

′χ
1 hr

′χ
1 , g2). Since G1, G2 are Co-GDH groups, it implies principal knows the values m and r.

By Lemma 4.3, we know that the prover has the knowledge of all the values mi committed in the messages Mi for
1 ≤ i ≤ t. Thus, the validity of signatures σ1, . . . , σt is obtained from the security of aggregation signature [2]. ¤

B.3 Proof of Theorem 4.7
To show the zero-knowledge property, we construct a simulator S as follows. Since the message that the principal sent
in the first step is independent of any actual signature,S randomly chooses s1, s2 ∈ Zq , and forms gs1

1 hs2

1 which has
the following property:

e(gs1

1 hs2

1 , g2) = e(g1, g2)s1e(h1, g2)s2 = e(g1, v)s1/χe(h1, v)s2/v

The above results in the correct form of the required signature. Since in step 2, the principal and SP execute a ZKP,
it follows that there exists a simulator S′ for that step. When S′ is run, it is easy to deduce that the simulator S
constructed is the zero-knowledge simulator for the protocol.
Next, we show that protocol 4b is a proof of knowledge. Suppose a prover can give an acceptance proof following the
protocol, the knowledge extractor for it will obtain values m0, r0 ∈ Zq, such that

e(σ, g2) = e(g1, v)m0e(h1, v)r0 = e(g1, g2)m0χe(h1, g2)r0χ = e((gm0

1 hr01)χ, g2)

This forms a signature pair (gm0

1 hr01 , σ). ¤

19

