
CERIAS Tech Report 2006-27

A GENERAL FRAMEWORK FOR WEB CONTENT FILTERING

by Elisa Bertino, Elena Ferrari, Andrea Perego

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

A General Framework for Web Content Filtering

Elisa Bertino

CS & ECE Departments, Purdue University, IN, USA

bertino@cerias.purdue.edu

Elena Ferrari and Andrea Perego

DICOM, Università Degli Studi dell’Insubria, Varese, Italy

{elena.ferrari, andrea.perego}@uninsubria.it

Abstract

Web content filtering is a means to make an end user aware of the
‘quality’ of Web resources by evaluating their content and/or characteris-
tics against his/her preferences. Although it can be used for a variety of
purposes, currently it is mainly enforced by a number of Web applications
as a service for parental control purposes, and for regulating the access to
Web content of users connected to the networks of enterprises, libraries,
schools, etc. This is obtained by integrating and optimizing established
techniques in the fields of, e.g., data mining and firewall blocking, in order
to provide a service addressing the needs of very specific user categories.
Yet, what is lacking is a unified filtering framework for all the possible
application domains, making it possible to enforce interoperability among
the different filtering approaches and the systems based on them.

In this paper, a multi-strategy approach is described, which integrates
the available techniques and focuses on the use of metadata for rating and
filtering Web information. Such an approach consists of a filtering model,
referred to as MFM, which provides a general representation of the Web
content filtering domain, independently from its possible applications, and
of two prototype implementations, partially carried out in the framework
of the EU projects EUFORBIA and QUATRO, and designed for differ-
ent application domains: users’ protection and Web quality assurance,
respectively.

Besides modelling the characteristics of the filtering domain, MFM
improves the approaches currently available by supporting policies taking
into account both users’ and resources’ characteristics, described by using
multiple metadata vocabularies. Another novel feature of MFM is the
support for supervised filtering, according to which policies are specified
by supervisors, with different authority levels, who are in charge of deter-
mining the filtering rules to be applied to a set of users. As a result, MFM,
on one hand, allows the enforcement of interoperability among filtering
systems based on different approaches, and, on the other hand, it can be
easily tailored to users’ requirements and preferences.

1

1 Introduction

Web content filtering, i.e., the evaluation of Web resources against a given set
of parameters, aims at making users aware of the content/characteristics of the
data and services they are accessing. Such practice started in the 1990s, as
soon as the Web became potentially accessible by everyone, since the lack of
control over the publishing of Web content required tools for preventing specific
categories of users (e.g., minors) from accessing inappropriate, or even harmful,
content (e.g., pornography, violence, racism).

For this purpose, two main strategies have been adopted so far. The former
is based on white/black lists of resources, which are classified as appropriate or
inappropriate, respectively. Such classification is performed by rating agencies,
which make then available to end users services, usually run by a proxy, in
charge of performing filtering. By contrast, the latter approach is based on the
evaluation of content labels, which are formal description of the content/charac-
teristics of the resource with which they are associated. Such strategies has been
established by the PICS W3C standard [14], which defines a general format for
rating vocabularies and content labels. Labels are generated according to either
a third-party or a self-rating approach. For instance, ICRA (www.icra.org)
provides an online form, which allows Web site owners to automatically gener-
ate content labels. Filtering is performed by browser extensions, allowing users
to specify preferences with respect to the type of resources they consider as
inappropriate. Currently, both MS Internet Explorer and Netscape Navigator
have PICS built-in support.

The PICS-based approach has been devised in order to address the main
drawbacks of list-based filtering. In fact, labels describe resources’ content/char-
acteristics instead of stating whether they are in/appropriate. As a conse-
quence, labels potentially allows a precise and accurate filtering. Moreover,
the in/appropriateness of a resource is not determined by a rating service, but
by end users’ preferences. The available PICS-complaint rating vocabularies
have been designed with the primary goal of simplifying the task of describing
resources, and they consist of plain sets of descriptors, whereas none of them
makes use of more sophisticated knowledge representation tools, such as con-
ceptual hierarchies and ontologies. Nonetheless, content labels are currently the
more effective way of enforcing Web content filtering.

Besides users’ protection, another purpose for which Web sites are rated
concerns ensuring the ‘quality’ of resources with respect to given requirements.
In this scenario, trustmark agencies (also referred to as certification authori-
ties) rate Web sites after evaluating their characteristics with respect to a set
of rules. As an example, IQUA (www.iqua.net) verifies the reliability and
authoritativeness of Web sites based, for instance, on the fact that they do
not carry out or encourage illegal practices, they provide truthful information
and do not use misleading advertising. Another example, not concerning the
‘quality’ of the information itself but of how it is represented, is provided by
Segala (www.segalamtest.com), which verifies the accessibility of a Web site
from mobile devices. Whenever a Web site satisfies the requirements defined by

2

a trustmark agency, an icon is inserted in its pages as a certification mark.
Despite trustmark agencies adopt an approach very similar to that used for

rating Web sites for users’ protection purposes, content labels are not used, and
no software tools are available for performing filtering. By contrast, it would be
very simple to associate with resources metadata describing their ‘quality’, since
the set of evaluation criteria defined by trustmark agencies can be represented as
descriptor vocabularies. This would allow not only the development of tools able
to notify the presence/absence of a trustmark, but it would also permit users
to specify their own ‘quality’ criteria. For instance, a user may decide that
the quality of a Web site is determined by only a subset of the requirements
defined by a given trustmark agency, or by requirements stated by two or more
trustmark agencies.

The use of content labels would have the further advantage of providing the
basis for the definition of a Web filtering platform common to any application.
For this purpose, it is necessary a standardization effort of the structure of
vocabularies and content labels. This would not necessary allow the enforcement
of semantic interoperability, but it would provide Web users the possibility to
access different types of metadata by using the same software tools.

This paper proposes extensions to current Web filtering practices, with the
aim of overcoming their drawbacks. In particular, a multi-strategy approach is
described, which integrates the available techniques and focuses on the use of
metadata for rating and filtering Web information. Such an approach consists of
a filtering model, referred to as MFM, which provides a general representation of
the Web content filtering domain, independently from its possible applications,
and of two prototype implementations, partially carried out in the framework
of two EU projects (namely, EUFORBIA and QUATRO), and designed for
different application domains: users’ protection and Web quality assurance, re-
spectively. Besides modeling the characteristics of the filtering domain, MFM
improves the approaches currently available by supporting policies taking into
account both users’ and resources’ characteristics, described by using multiple
metadata vocabularies. Another novel feature of MFM is the support for su-
pervised filtering, according to which policies are specified by supervisors, with
different authority levels, who are in charge of determining the filtering rules to
be applied to a set of users. As a result, MFM, on one hand, allows the enforce-
ment of interoperability among filtering systems based on different approaches,
and, on the other hand, it can be easily tailored to users’ requirements and
preferences.

The remainder of this paper is organized as follows. Section 2 illustrates the
proposed filtering model, describing its main components, whereas Section 3 ex-
plains how policies are specified and enforced. Section 4 describes the two differ-
ent implementation of MFM in the framework of the EU projects EUFORBIA
and QUATRO, concerning the application domains of Web users’ protection and
Web quality assurance, respectively. Finally, Section 5 discusses related work,
whereas Section 6 concludes the paper and outlines future research directions.

3

Symbol Notion

Set Element

A a Agent attribute
AN an Agent attribute name
AD ad Agent attribute domain
AT at Agent attribute type
AV av Agent attribute value
C cls Agent class
CI cls id Agent class identifier
IN inst Agent class instance
CH cls Agent class hierarchy
AG ag Agent
AGI ag id Agent identifier
Pred pred CSL predicate
EX ex CSL expression
AS ag spec Agent specification
SVSB sup spec Supervision specification
FPB fp Filtering policy

Table 1: Notations used in Section 2

2 MFM: A Multi-strategy Filtering Model

The general filtering model described in this section, referred to as MFM, pro-
vides a general framework to denote interaction constraints between two sets of
entities (referred to as agents) in a given domain. MFM is not designed for a
particular context, and cannot be directly applied. Rather, its aim is to define a
basic data structure which can be used to generate instances, which customize
their characteristics according to the application domain.

In this section, after having provided a general overview of the model, we
introduce the notion of agent (subsuming those of supervisors, subjects, and ob-
jects), and we describe how agents are characterized by associating with them
agent classes, organized into a hierarchy. Then, we illustrate the MFM con-
straint specification language and the notion of policy

The notations used in this section are reported in Table 1.

2.1 Overview

MFM consists of three main components:

• a set of constructs to denote agents’ identities and characteristics;

• a policy specification language;

• a set of rules for policy propagation and conflict resolution.

In MFM, agents can be considered as entities which can perform and/or
are subject to a given set of operations. Depending on whether they have an
active or passive role in the interaction process, they can be grouped into two

4

Agent

Subject Object

Agent Class Agent Attribute

AttributeName AttributeDomain AttributeTypeSupervisor

Figure 1: UML diagram of MFM agents and agent classes

subsets: the sets of subjects and objects, respectively. Examples of agents in
the filtering domain are, for instance, users and Web pages, which perform the
roles of subjects and objects, respectively, in an interaction process according
to which users “access” Web pages.

Policies are rules specified by a class of agents, referred to as supervisors,
stating which kind of operations subjects can or cannot perform on a given set
of objects. They are denoted by the identifier of the supervisor who specified
them, by a pair of subject and object sets, and by the action to be performed by
the system. An action consists of two components: an operation, determining
the type of interaction (e.g., “access”), and a sign, which states whether an
operation can (“+”) or cannot (“−”) be performed. Agent sets can be specified
either explicitly, by listing the agents they contain (e.g., users u1, u2, and u3

cannot access Web pages wp1 and wp2), or implicitly, by stating properties that
agents must satisfy (e.g., “users who are students, and whose age is less than
16, cannot access Web pages regarding sexual content”).

In order to describe agent properties, MFM adopts an object-oriented ap-
proach relying on the notion of agent class. An agent class (class for short) spec-
ifies a set of attributes, denoting agent characteristics relevant in a given domain
(e.g., the age of a user, the content of a Web page). Agents are then associ-
ated with class instances, which are sets of attribute-value pairs (which can be
either optional of mandatory) denoting agent properties. Finally, agent classes
are organized into class hierarchies, which are exploited by a policy propagation
principle according to which a policy applying to an agent class is inherited by
all its children. Figure 1 depicts an UML representation of the notions of agents
and agent classes.

Policies are associated with a sign, according to which they can be either
positive or negative. For instance, consider a policy concerning a set of users
and a set of Web sites: if it is positive, the users can access the Web sites; if it
is negative, they cannot. Finally, since the use of this feature may result in the
specification of conflicting policies (i.e., policies on the same pair of agent sets
and of the same type, but with different sign), a conflict resolution mechanism
is provided in order to determine which of them is prevailing.

MFM can support multiple class hierarchies, of which a standard, hierarchi-
cal, representation is given. This is obtained by defining a general root class >C ,
to which the root classes of the supported vocabularies (referred to as class sub-
hierarchies) are assigned as direct children. As a result, MFM is independent

5

OBJ.ROOT

+vocabType: string

+vocabName: string

PICS

+vocabType = "PICS"

+category: string

+value: real

ESRBi

+vocabName = "ESRBi"

+category: "r","v","s","n","l","p","o"

+value: 0,1,2,3,4,5

EUFORBIA

+vocabName = "EUFORBIA Ontology"

RSACi

+vocabName = "RSACi"

+category: "v","s","n","l"

+value: 0,1,2,3,4

 HCLASS

 SORTAL_CONCEPT NON_SORTAL_CONCEPT

 ENTITY ... SITUATION

... ...

Figure 2: An example of class hierarchy merging multiple metadata vocabularies

from the metadata vocabularies used to characterize agents. As an example,
Figure 2 depicts an agent class hierarchy, merging two PICS-based rating sys-
tems (namely, RSACi and ESRBi1), and the conceptual hierarchy developed in
the framework of the project EUFORBIA (see Section 4.1). For sake of clarity,
in the figure only the upper levels of the tree are reproduced.

Note, however, that such metadata vocabulary integration totally differs
from approaches, as the ABC-based one [12], aiming to provide semantic inter-
operability among ontologies. The objective is to harmonize only their structure,
in order to easily specify policies ranging over different class hierarchies.

2.2 Agents

In MFM, agents are denoted by an identifier and characterized by associating
with them one or more class instances. Agent attributes are denoted by a
name an, which univocally identifies them, by a domain ad , and by a type at ,
determining whether they are optional or mandatory. Class instances sharing
the same attributes are then grouped into classes. Finally, classes are organized
into class hierarchies, according to which the set of attributes associated with
a given class is inherited by all its children.

1 These rating systems have been chosen since their simple structure is more suitable
for examples. RSACi (Recreational Software Advisory Council on the internet: http:

//www.rsac.org) is the predecessor of ICRA, and it is no longer available; ESRBi (Entertain-
ment Software Rating Board Interactive: http://www.esrb.org) is a non-profit organization
releasing ratings for entertainment software.

6

SV.ADMINISTRATOR

SV.TEACHER

SV.PARENT

(a)

SUBJ.PERSON

+id: int
+name: string

SUBJ.TEACHER

+subject: string

SUBJ.STUDENT

+age: int
+class: string

SUBJ.TUTOR

+tutored_class: string

(b)

OBJ.SEX

OBJ.PORNOGRAPHY OBJ.GYNECOLOGY

(c)

Figure 3: Examples of: (3(a)) supervisor, (3(b)) subject, and (3(c)) object class
hierarchies

The notions of agent class and agent class instance are formally defined as
follows.

Definition 2.1 (Agent Class) An agent class cls ∈ C is a tuple (cls id , attr ,

parent id), where cls id ∈ CI is the class identifier, attr ⊆ A is the set of
attributes characterizing class cls , and parent id is the identifier of the parent
of cls , or a null value if cls is the root class. 2

Definition 2.2 (Agent Class Instance) A class instance inst ∈ IN is a pair
(cls id , state) where cls id ∈ CI is the identifier of class cls , of which inst is an
instance, and state is a set, possibly empty, of attribute-value pairs {an1 : av1,

. . . , ann : avn}. 2

We can now formally define the notion of agent:

Definition 2.3 (Agent) An agent ag ∈ AG is represented by a pair (ag id ,

prop), where ag id ∈ AGI is the agent identifier, and prop is a set of class
instances IN ⊆ IN , possibly empty, denoting the properties of agent ag . 2

Depending on their role, agents are grouped into three different subsets, the
set SV of supervisors, the set S of subjects, and the set O of objects. Similarly,
the agent classes in C are organized into three distinct inheritance hierarchies,
namely, the supervisor, subject, and object class hierarchies (denoted, respec-
tively, CHSV , CHS , and CHO). The role of an agent is then determined by the
class hierarchy used for characterizing it. Note, however, that the same agent
may be characterized by using more class hierarchies—i.e., it may have several
roles (e.g., an agent may be both a supervisor and a subject).

As an example, Figure 3 shows three simple supervisor, subject, and object
class hierarchies, each consisting of a single vocabulary.

Example 2.1 (Agents) Consider the supervisor, subject, and object class hierar-
chies in Figure 3. The following are examples of agents:

7

• (John, {(subj.person, {id : John, name : John Brown}), (sv.administrator,

∅)}): it denotes an agent, whose identifier is John, associated with the subject
class person and with the supervisor class administrator;

• (Bob, {(subj.student, {id : Bob, name : Bob Smith, age : 15, class : A2})}):
it denotes an agent, whose identifier is Bob, associated with the subject class
student; as can be seen, since subj.student is child of subj.person, it in-
herites also its attributes;

• (www.example.org, {(obj.sex, ∅)}): it denotes an agent, the identifier of which
is www.example.org, associated with the object class sex;

• (www.somesite.net, {(obj.gynecology, ∅)}): it denotes an agent, the identifier
of which is www.somesite.net, associated with the object class gynecology.

2.3 Agent Specifications

Agents can be grouped into classes either explicitly, by listing their identifiers,
or implicitly, by specifying conditions on agent classes and/or attributes that
agents must satisfy.

MFM provides a language for implicitly denoting agents. The constraint
specification language (CSL for short) is formally defined as follows:

Definition 2.4 (Constraint Specification Language) The MFM constraint
specification language is denoted by Lcs = VarAG ∪ Pred ∪ Com where:

• VarAG is a set of variables, ranging over the set of agents AG;

• Pred is a set of predicates on VarAG ;

• Com ∈ {∨,∧} is a set of Boolean operators to combine predicates in
Pred . 2

CSL is used to express constraints on classes (class predicates) and attributes
(attribute predicates).

A class predicate denotes all the agents associated with a given class. For
this purpose, for each class cls ∈ C, a corresponding predicate symbol cls() is
defined in Pred . The set of class predicates is denoted PredC .

Attribute predicates denote a) all the agents where the value of a given
attribute is equal to (different from, greater than, less than, etc.) the value
of another attribute, or b) all the agents where a given attribute has a given
(range of) value(s). Thus an attribute predicate consists of an attribute name,
a comparison operator, and either another attribute name or a value. The set
of attribute predicates is denoted PredA.

We can now formally define the notion of CSL predicate:

Definition 2.5 (CSL Predicate) The two different classes of CSL predicates
are formally defined as follows:

Class Predicate If X ∈ VarAG , cls ∈ C, then cls(X) is a class predicate.

Attribute Predicate Attribute predicates have one of the following two forms:

8

• if cls , cls ′ ∈ C, X, X ′ ∈ VarAG , an, an ′ ∈ AN , and op is a comparison
operator, then cls(X).an op cls ′(X ′).an ′ is an attribute predicate;

• if cls ∈ C, X ∈ VarAG , an ∈ AN , av ∈ AV , and op is a comparison
operator, then cls(X).an op av is an attribute predicate. 2

Predicates of the same or different type can be combined by using the “∨”
and “∧” Boolean operators in order to increase the expressivity of the predicates
which can be specified. This feature is enforced by the notion of CSL expression,
formally defined as follows:

Definition 2.6 (CSL Expression) The set EX of CSL expressions is defined
as follows:

Simple Expression Each element in Pred = PredC ∪ PredA is a CSL expres-
sion.

Compound Expression If ex 1 and ex 2 are CSL expressions, then ex1 ∨ ex 2

and ex1 ∧ ex 2 are CSL expressions. 2

As already stated, agent sets can be denoted either explicitly, by listing their
identifiers, or implicitly, by specifying CSL expressions. These two possibilities
are enforced by the notion of agent specification, formally defined as follows:

Definition 2.7 (Agent Specification) An agent specification ag spec ∈ AS
has one of the following two forms:

Explicit Agent Specification Each set AGI ∈ 2AGI of agent identifiers is an
agent specification.

Implicit Agent Specification Each CSL expression ex ∈ EX is an agent
specification. 2

The sets of explicit and implicit agent specifications are denoted, respec-
tively, by ASAGI and ASEX . The set AS of agent specification can then be
denoted AS = ASAGI ∪ ASEX .

In MFM, agent specification pairs are used for two purposes:

1. to denote the sets of subjects and objects to which a policy applies (subject-
object specification);

2. to denote a set of supervisors and the corresponding set of supervised
subjects (supervision specification).

The notion of subject-object specification (s-o specification, for short) is
formally defined as follows.

Definition 2.8 (S-O Specification) An s-o specification so spec is a pair
(subj spec, obj spec), where subj spec is an agent specification denoting a set of
subjects S ⊆ S, and obj spec is an agent specification denoting a set of objects
O ⊆ O. 2

9

Example 2.2 (S-O Specifications) Consider the subject and object class hierar-
chies in Figure 3. The following are examples of s-o specifications:

• (subj.person(X),obj.sex(X)): specifies a pair of agent sets consisting, respec-
tively, of all the agents associated with the subject class person, and of all the
agents associated with the object class sex;

• (subj.student(X).age > 14,obj.sex(X)): specifies a pair of agent sets con-
sisting, respectively, of all the agents associated with the subject class student

whose age is more than 14, and of all the agents associated with the object class
sex;

• (subj.teacher(X) ∨ subj.tutor(X), obj.gynecology(X) ∧ obj.

pornography(X)): specifies a pair of agent sets consisting, respectively, of
all the agents associated with the subject class teacher or tutor, and of all
the agents associated with the object classes gynecology and pornography;

• (subj.person(X), {www.example.org}): specifies a pair of agent sets consisting,
respectively, of all the agents associated with the subject class person and of
the agent with identifier www.example.org;

• ({Bob}, obj.gynecology(X)): specifies a pair of agent sets consisting, respec-
tively, of the agent with identifier Bob, and of all the agents associated with the
object class gynecology.

Similarly, the set of supervisors and the corresponding set of supervised sub-
jects are determined by a pair of agent specifications, referred to as supervision
specification, possibly of different type, where the former denotes a set of agents
SV ⊆ SV with the role of supervisor, whereas the latter denotes a set of agents
S ⊆ S with the role of supervised subject. The set of supervised subjects is
denoted by SVS ∈ 2S . Thus, the notions of s-o specification and supervision
specification differ only in the types of agent sets (subjects and objects, in the
former, supervisors and supervised subjects, in the latter).

The notion of supervision specification is formally defined as follows.

Definition 2.9 (Supervision Specification) A supervision specification
sup spec is a pair (sv spec, su spec), where sv spec is an agent specification
denoting a set of supervisors SV ⊆ SV , and su spec is an agent specification
denoting a set of supervised subjects SVS ⊆ SVS. 2

Example 2.3 (Supervision Specifications) Consider the supervisor and subject
class hierarchies in Figure 3. The following are examples of supervision specifications:

• (sv.administrator(X), subj.person(X)): specifies that the agents associated
with the supervisor class administrator are supervisors of the agents associ-
ated with the subject class person;

• (sv.teacher(X), subj.student(X)): specifies that the agents associated with
the supervisor class teacher are supervisors of the agent associated with the
subject class student;

• ({Jane}, {Bob}): specifies that the agent with identifier Jane is supervisor of the
agent with identifier Bob.

10

2.4 Filtering Policies

In MFM, a filtering policy states that a given set of subjects can or cannot
perform a given action upon a given set of objects. The two involved agent sets,
the set of subjects and the set of objects, respectively, are denoted by either
explicit or implicit agent specifications, specified by a set of supervisors. The
action component of a policy consists of an operation type and a sign. Such
pair denotes the action the system should perform whenever one of the subjects
is accessing one of the objects. For instance, an allow operation grants users
the access to an object, if the sign is positive, whereas it prevents the access, if
the sign is negative.

Also, operations may be similar to permissions, as used in the access control
domain (e.g., “read”, “write”, “execute”, “append”, “update”, “delete”). In
MFM a predefined set of operations is not specified, since they are implemen-
tation-dependent and may vary depending on the application domain. Nonethe-
less, whenever more than one operation is supported, they may be organized into
a hierarchy (OPT ,≺), which determines the stronger operation. For instance,
given two operations read and write, we can specify an operation hierarchy
read ≺ write, stating that the write operation subsumes the read operation,
since if a subject can modify an object, he/she must be able to read the infor-
mation contained in it. We then say that the write operation is stronger than
the read one (denoted write > read).

The last component of a filtering policy is the supervision mode, which de-
termines how supervision is enforced. MFM supports the following three super-
vision modes:

Strict Supervision In case of positive policies, a subject can perform the ac-
tion in the policy on the requested resource only with the explicit consent
of the supervisor who specified the policy itself. In other words, the super-
visor is notified that a supervised subject is requesting access to a resource,
and he/she is asked whether such subject can actually perform or not the
action stated by the policy.

Normal Supervision It is the default mode: the type of action a subject can/-
cannot perform on the requested resource is determined by the operation
and sign specified in the policy. In other words, the normal supervision
mode does not require any explicit intervention of the supervisor in order
to apply a policy, as in the strict supervision mode.

Light Supervision In case of negative policies, it is up to the subject to decide
whether to perform or not the action in the policy, thus overriding the
policy sign. As in the strict supervision mode, supervisors can track the
behaviour of subjects.

Unlike the normal supervision mode, which applies to any application do-
main, the strict and light supervision modes are designed for domains, such as
users’ protection, where access to resources may be blocked in case they are

11

considered as inappropriate. In such contexts, the strict supervision mode con-
cerns subjects to whom a very restrictive access to resources should be applied
(e.g., minors to be protected from harmful contents, or users who should be
monitored due to bad behaviour). By contrast, the light supervision mode con-
cerns subjects (such as teachers, in a school context) who do not need to be
protected as ‘standard’ subjects (e.g., students), or it can be used in order to
control the inappropriate use of network resources (e.g., employees connecting
to entertainment Web sites during working hours). In fact, since also in this
case supervisors can monitor the submitted access requests, they can modify
filtering policies or the supervision mode of subjects in case of ‘bad’ behaviour.

Based on the purpose of each supervision mode, and also in order to solve
possible conflicts, we order supervision modes such that the strict mode is
considered as stronger than the normal mode, whereas the normal mode is
considered as stronger than the light mode (denoted strict > normal >

light).
We can now formally define the notion of filtering policy.

Definition 2.10 (Filtering Policy) A filtering policy fp is a tuple (sv id ,

so spec, act , sv mode) where:

• sv id ∈ SVI is the identifier of the supervisor who specified the policy;

• so spec is a s-o specification denoting the sets of agents S ⊆ S and O ⊆ O;

• act = (op type, sign), where op type ∈ OPT denotes the operation type,
whereas sign ∈ {+,−} is the policy sign;

• sv mode ∈ {strict, normal, light} is the supervision mode. 2

Example 2.4 (Filtering Policies) Assume an application domain where two MFM
operations are supported, namely, allow and notify, where the former is considered
as the stronger operation (i.e., allow > notify). Depending on the policy sign, the
allow operation determines whether the access to a resource should be granted (“+”)
or prevented (“−”), whereas the notify operation always grants the access to the
requested resource, but it notifies to the end user whether such resource is appropriate
(“+”) or not (“−”).

Suppose now that no user can access contents regarding the sexual domain, unless
he/she is a teacher or a tutor. Moreover, suppose that students older than 14 are
allowed to access contents regarding gynecology. Finally, suppose that there is a Web
site www.example.org, which, even though it is associated with the object class sex,
is considered appropriate for all the users. These requirements are enforced by John,
one of the administrators (who, according to Example 2.3, are supervisors of all the
subjects), by specifying the following filtering policies:

• fp1 = (John, (subj.person(X), obj.sex(X)), (allow,−), normal)

• fp2 = (John, (subj.teacher(X) ∨ subj.tutor(X), obj.sex(X)), (allow,+), normal)

• fp3 = (John, (subj.student(X).age > 14,obj.gynecology(X)), (allow, +), normal)

• fp4 = (John, (subj.person(X), {www.example.org}, (allow, +), normal)

12

However, Ted, a teacher (and thus supervisor of all the students), does not agree with
policy fp3. Thus, he specifies the following policy:

fp5 = (Ted, (subj.student(X).age > 14, obj.gynecology(X)), (allow, +),strict)

stating that 15-aged students can access content concerning gynecology only with his
explicit consent.

Finally, Jane, parent (and supervisor) of a 15-aged student called Bob, agrees that
her son can access content concerning gynecology (so, she agrees with policy fp3), but
she thinks that he should be informed that it is inappropriate for him. Consequently,
Jane specifies the following policy:

fp6 = (Jane, ({Bob}, obj.gynecology(X)), (notify,−), normal)

3 Filtering Enforcement

In this section, we first illustrate the mechanisms supported by MFM to propa-
gate policies along the subject and object hierarchies, and for determining the
prevailing one among the set of policies applying to a given subject-object pair.
Then, we describe the policy validation and optimization procedures, and how
filtering is enforced.

3.1 Policy Propagation and Conflict Resolution

In MFM, the hierarchical structure into which classes are organized is exploited
by a policy propagation mechanism according to which a predicate specified for
a class cls applies to all its children. According to this principle, given two
classes cls , cls ′ ∈ C, with cls ′ ≺CH cls , a predicate on cls applies also to cls ′.

This feature, along with the support for positive and negative policies,
greatly increases the expressivity of the model and dramatically reduces the
number of policies which must be specified, but, at the same time, it may lead
to the specification of conflicting policies, that is, policies on the same agents
but with different signs. Thus, MFM provides a conflict resolution mechanism
allowing one to decide, among a set of conflicting policies, which of them is
prevailing.

The MFM conflict resolution policy consists of 5 steps:

1. the authority levels of the supervisors who specified the conflicting policies
are compared. If such supervisors are associated with different authority
levels, the prevailing policy is the one specified by the supervisor with the
higher authority level; otherwise,

2. the specificity of the conflicting policies is evaluated. If a policy is more
specific with respect to the subject and/or object specification, it is con-
sidered as prevailing; otherwise,

3. the operations specified in the policies are compared. If they are different,
the prevailing policy is the one specifying the stronger operation; other-
wise,

13

4. the signs of the policies are compared. If they are different, the prevailing
policy is the one with the stronger sign; otherwise,

5. the prevailing policy is the one with the stronger supervision mode.

The support for different authority levels addresses the need of taking into
account that opinions of different supervisors about what is in/appropriate for a
subject may have a different ‘weight’ (e.g., in a school context, if the opinions of
parents are in conflict with those of teachers, the former should prevail). For this
purpose, in MFM, the class hierarchy CHSV is used to determine the authority
level of supervisors, according to the principle that supervisors associated with
child classes have a stronger authority than those associated with parent classes.
As an example, consider the supervisor hierarchy in Figure 3, which can be
denoted parent ≺ teacher ≺ administrator. In such a case, supervisors
associated with class parent have stronger authority than those associated with
class teacher, who, in turn, have stronger authority than those associated with
class administrator. Note, however, that a supervisor may be associated with
more than one class. For instance, let us suppose that Jane (see Example 2.1)
is both the mother (parent) of Bob and a teacher. In such a case, the authority
of the supervisor is determined by the class denoting the stronger authority.

These rules are enforced by the notion of stronger supervision authority,
which is formally defined as follows:

Definition 3.1 (Stronger Supervision Authority) Let sv1, sv2 ∈ SV , be
two supervisors, and let C(sv1) and C(sv2) be the sets of supervisor classes
associated with them. We say that sv1 is stronger than sv2, denoted sv1 > sv2,
iff ∀cls ∈ C(sv2) ∃cls ′ ∈ C(sv1) such that cls ′ ≺CHSV

cls . 2

The second step of the conflict resolution policy is based on the principle
according to which most specific policies are stronger than less specific ones.
In order to verify the specificity degree of a policy, we consider how subjects
and objects are specified. More precisely, the strongest agent specification is
the one denoting a subset of the agents denoted by the other ones; otherwise,
agent specifications are considered equally strong. In other words, the strongest
agent specification is the one included by the other ones. By using the notation
adopted in Description Logics [5], we can then say that, given two agent specifi-
cations ag spec, ag spec′, ag spec is stronger than ag spec′ iff ag spec < ag spec′.

For explicit agent specifications or agent specifications consisting of simple
expressions (i.e., predicates), this applies in the following cases:

1. ag spec, ag spec′ ∈ ASAGI and ag spec ⊂ ag spec′;

2. ag spec ∈ ASAGI , ag spec′ ∈ Pred , and ag spec is a subset of the agents
denoted by ag spec′;

3. ag spec, ag spec′ ∈ Pred are predicates over classes cls and cls ′, respec-
tively, and cls ≺CH cls ′;

14

4. ag spec ∈ PredA is an attribute predicate and ag spec′ ∈ PredC is a class
predicate, over the same agent class cls ;

5. ag spec, ag spec′ ∈ PredA are attribute predicates over the same agent
class cls , and ag spec denotes a subset of the agents denoted by ag spec′

(e.g., ag spec = subj.student(X).age > 16 and ag spec′ = subj.

student(X).age > 14).

Note that rule 3 applies also when predicates are of different type. Consequently,
given two agent specification ag spec = subj.student(X) and ag spec′ =
subj.person(X).age > 14, both applying to the same user, ag spec is consid-
ered more specific than ag spec′ since subj.student is a child of subj.person.

In case of agent specifications consisting of compound expressions, we con-
sider their disjunctive normal form (DNF) in order to determine the most
specific one. Note that any CSL expressions can be put in DNF without
being modified, since our language supports only the “∧” and “∨” Boolean
operators. For instance, the expression ex = pred1 ∧ pred2 ∨ pred3 (where
pred1, . . . , pred3 ∈ Pred) can be normalized as ex = (pred1 ∧ pred2) ∨ (pred3).

Let us first consider how we determine the more specific expression between
two conjunctions. Given two conjunctions ex∧ = (pred1 ∧ pred2) and ex ′∧ =
(pred ′1 ∧ pred ′2), we say that ex∧ is more specific than ex ′∧ (ex∧ < ex ′∧) if one
of the following conditions holds:

• pred1 < pred ′1 and pred2 < pred ′2;

• pred1 < pred ′2 and pred2 < pred ′1.

In case one of the expressions to be compared is a simple one, the corresponding
predicate must be included by all the conjuncts of the other expression in order
to be considered more specific. Thus, the expression ex ′′ = pred ′′ is more specific
than ex ′∧ iff pred ′′ < pred ′1 and pred ′′ < pred ′2.

The more specific between two agent specifications in DNF is then deter-
mined by comparing their disjuncts according to the rules above. More precisely,
given two agent specifications in DNF ex∨ =

∨n

i=1 ex i and ex ′∨ =
∨m

j=1 ex ′j , we
say that ex∨ is more specific than ex ′∨ (ex∨ < ex ′∨) iff for each disjunct ex i in
ex∨, there exists at least a disjunct ex ′j in ex ′∨ such that ex i < ex ′j .

This applies also when we must compare an implicit agent specification with
an explicit one. In fact, an explicit agent specification ag spec = {ag id1, . . . ,

ag idn} can be also expressed as a disjunction ag spec = (ag id1∨· · ·∨ag idn).
We can then say that, if ag spec ∈ ASAGI and ag spec′ = ex ′∨, ag spec is
considered more specific than ag spec′ iff for each agent ag i denoted by ag spec,
there exists at least a disjunct ex ′j in ex ′∨ such that ag i is included in the subset
of agents denoted by ex ′j .

All these rules are enforced by the notion of stronger agent specification,
which is formally defined as follows.

Definition 3.2 (Stronger Agent Specification) Let ag spec, ag spec′ ∈ AS
be two agent specifications applying to an agent ag . We say that ag spec is
stronger than ag spec′, denoted ag spec > ag spec′, iff ag spec < ag spec′. 2

15

Example 3.1 (Stronger Agent Specification) In this example, we consider a ver-
sion of the subject class hierarchy depicted in Figure 3(b), extended with an additional
class, namely subj.administrative, direct child of class subj.person. Moreover, we
suppose that a teacher can be also part of the administrative staff. Consider now the
following agent specifications, all applying to the subject with identifier Ann, a tutor
of 18 years old:

• ag spec1 = (subj.person(X).age > 16);

• ag spec2 = (subj.student(X));

• ag spec3 = (subj.teacher(X) ∧ subj.administrative(X) ∨ subj.tutor(X));

• ag spec4 = {Ann}.

We say that ag spec2, ag spec3, and ag spec4 are stronger than ag spec1 since, respec-
tively:

• subj.student is child of subj.person;

• subj.teacher, subj.administrative, and subj.tutor are all children of subj.

person;

• ag spec4 is an explicit agent specification.

Moreover, ag spec3 is stronger than ag spec2, since subj.tutor is a child of subj.

student, whereas subj.student is neither a child of subj.teacher nor of subj.

administrative. Finally, ag spec4 is stronger than both ag spec2 and ag spec3 be-
cause it is an explicit agent specification.

If the condition expressed in Definition 3.2 is not satisfied, we say that
agent specifications ag spec and ag spec′ are equally strong (denoted ag spec <>

ag spec′). Note that the “<>” symbol denotes agent specifications satisfying
one of the following conditions:

• ag spec = ag spec′;

• ag spec 6= ag spec′, ag spec 6> ag spec′, and ag spec 6< ag spec′.

In such a case, the operations specified in the policies are taken into account,
in order to determine the strongest with respect to the operation hierarchy. If
this does not allow us to solve the conflict, we consider the policy with the
stronger sign. As the operation hierarchy, the stronger policy sign, denoted by
str sign , depends on the application domain, and is stated when generating
model instances (see Section 4). Finally, if policies have the same sign, the
prevailing is the one with the strongest supervision mode.

We can now formally define the notion of stronger filtering policy. For this
purpose, we use symbols “>” and “<>” to denote, respectively, the stronger
and equally strong component of two conflicting policies.

Definition 3.3 (Stronger Filtering Policy) Consider the following two con-
flicting filtering policies, applying to a subject subj and an object obj :

• fp = (sv id , (subj spec, obj spec), (op type, sign), sv mode)

• fp′ = (sv id ′, (subj spec′, obj spec′), (op type ′, sign ′), sv mode ′)

16

We say that fp is stronger than fp′, denoted fp > fp′, iff one of the following
conditions holds:

• sv > sv ′;

• sv <> sv ′ and subj spec > subj spec′;

• sv <> sv ′, subj spec <> subj spec′, and obj spec > obj spec′;

• sv <> sv ′, subj spec <> subj spec′, obj spec <> obj spec′, and op type >

op type ′;

• sv <> sv ′, subj spec <> subj spec′, obj spec <> obj spec′, op type <>

op type ′, and sign > sign ′;

• sv <> sv ′, subj spec <> subj spec′, obj spec <> obj spec′, op type <>

op type ′, sign = sign ′, and sv mode > sv mode ′. 2

Example 3.2 (Stronger Filtering Policy) Consider the following filtering policies,
described in Example 2.4:

• fp1 = (John, (subj.person(X), obj.sex(X)), (allow,−), normal)

• fp2 = (John, (subj.teacher(X) ∨ subj.tutor(X), obj.sex(X)), (allow,+), normal)

• fp3 = (John, (subj.student(X).age > 14,obj.gynecology(X)), (allow, +), normal)

• fp4 = (John, (subj.person(X), {www.example.org}, (allow, +), normal)

• fp5 = (Ted, (subj.student(X).age > 14,obj.gynecology(X)), (allow, +), strict)

• fp6 = (Jane, ({Bob}, obj.gynecology(X)), (notify,−), normal)

It is easy to verify that policies fp2, fp3, and fp4 are in conflict with fp1. Nonethe-
less, according to our conflict resolution mechanism, fp2 is more specific than fp1, since
teacher and tutor are children of person, whereas fp3 is more specific than fp1,
since student is a child of person, and gynecology is a child of sex. Finally, fp4

is more specific than fp1, since the object specification is explicit. As a consequence,
fp2, fp3, and fp4 prevail over fp1.

We now consider the policies specified by Jane and Ted. It is clear that policy fp5

is in conflict with fp3 wrt the supervision mode: nonetheless, the former is stronger,
since the authority of Ted is stronger than John’s one (i.e., agents associated with
the supervisor class teacher have more authority than those associated with the
supervisor class administrator). Note that if John and Ted had the same authority,
fp5 would still prevail over fp3, since it is associated with a strict supervision mode,
which is stronger than the normal one in fp3. Finally, policy fp6 is in conflict with
both fp3 and fp5, because of the operation and the sign. Nonetheless, since Jane,
who is a parent, has more authority than John and Ted, fp6 is the prevailing policy,
even though the notify operation is weaker than allow, and the normal supervision
mode is weaker than the strict one. However, if Jane had the same authority of
John and Ted, fp6 would still be the prevailing policy, since it uses an explicit subject
specification.

17

3.2 Policy Validation and Optimization

To improve the efficiency of the filtering procedure, we make use of some pre-
computational strategies to control whether policies are ‘valid’—i.e., whether
the agent who specified a policy is really supervisor of the subjects to whom
the policy applies—and to optimize them, by removing redundancy in the sub-
ject/object specifications. Thanks to these features, on one hand, we can grant
that policies are specified only by authorized supervisors, and, on the other
hand, we can reduce the computational costs at runtime when searching for the
strongest policy applying to a given subject and a given object.

Policy validation is performed by comparing the subject specification in the
policy with the set of supervision specifications stored in the supervision specifi-
cation base SVSB, and related to the agent who requests the insertion of the new
policy. The principle is that, if the set of subjects to which the policy applies is
included in or equal to the set of supervised subjects of the agent who specified
such policy, the policy is accepted, otherwise it is refused. As an example, if
the set of supervised users of an agent sv is denoted by su spec1, . . . , su specn,
and subj spec is the subject specification in the specified policy, such policy is
considered valid iff subj spec v (su spec1 ∨ · · · ∨ su specn).

After validation, we verify whether the subject/object specifications in the
policies can be expressed in a more compact form, since this speeds up the
policy evaluation procedure at runtime. Redundacy may occur when the sub-
ject and/or object specifications in a policy consist of compound expressions
which can be expressed in a simpler form without modifying their semantics.
For instance, expression subj.person(X) ∧ subj.student(X) is redundant,
since students are also persons (i.e., subj.student is a child of subj.person),
and thus it is equivalent to subj.student(X). For the same reason, also
subj.person(X) ∨ subj.student(X) is redundant, and it is equivalent to
subj.person(X). Similarly, subj.person(X).age> 14 ∧ subj.person(X).age
> 16 is equivalent to subj.person(X).age > 16, whereas subj.person(X).age
> 14 ∨ subj.person(X). age > 16 is equivalent to subj.person(X).age > 14.
A similar reduction can be applied also in the case of predicates of different type.
For instance, subj.person(X) ∧ subj.student(X).age > 14 can be reduced
to subj.student(X).age > 14.

The advantages of redundancy reduction in terms of efficiency are based on
the fact that evaluating complex expressions is computationally more expen-
sive than evaluating simpler ones. For instance, in order to evaluate expression
subj. person(X) ∧ subj.student(X), we need first to identify the subjects
associated with the class subj.person(X), then those associated with class
subj.student(X), and finally we must compute the intersection of the two
sets. By contrast, the same result can be obtained by evaluating the equiva-
lent expression subj.student(X), where we need only to identify the subjects
associated with class subj.student, thus performing one operation instead of
three.

In all the previous examples, redundancy reduction is performed by remov-
ing predicates from a compound expression. More precisely, in case of conjunc-

18

tions, we remove the predicate which includes the other one, whereas, in case
of disjunctions, we remove the predicate which is included by the other one.
A different case concerns expressions where redundancy reduction entails also
the modification of the existing predicates. For instance, subj.student(X)
∧ subj.person(X).age > 14 is equivalent to subj.student(X).age > 14,
which is obtained by removing the former predicate, and by adding its at-
tribute constraint to the latter. In such a case, subj.student(X) is not in-
cluded in subj.person(X). age > 14 (i.e., not all the students are more than
14 years old). Nonetheless, the expression is redundant, since the intersection
of the sets of subjects denoted by the two conjuncts is not empty. It is impor-
tant to note that this occurs only with conjunctions: in fact, the disjunction
subj.person(X).age > 14 ∨ subj.student(X) is not redundant, and it cannot
be expressed in a more compact form.

In order to formally describe our redundancy reduction mechanism, we de-
note the general form of a predicate pred ∈ Pred by predC .cA, where predC is
the class constraint component (equivalent to a class predicate), whereas cA
is either an attribute constraint, in case pred ∈ PredA, or it is empty, in case
pred ∈ PredC .

Redundancy reduction can then be achieved by iteratively modifying an
expression according the following rules, until none of them applies:

Rule 1 If ex is a conjunction, for each pair of conjuncts predC .cA, pred ′C .c
′
A in

ex such that predC .cA v pred ′C .c
′
A, predC .cA ∧ pred ′C .c

′
A → predC .cA;

Rule 2 If ex is a conjunction, for each pair of conjuncts predC .cA, pred ′C .c
′
A in

ex such that predC v pred ′C , predC .cA ∧ pred ′C .c
′
A → predC .cA ∧ predC .c

′
A;

Rule 3 If ex is a disjunction, for each pair of disjuncts ex∧, ex
′
∧ in ex such that

ex∧ v ex ′∧, ex∧ ∨ ex ′∧ → ex ′∧.

Before applying these rules, an agent specification ag spec is put in DNF.
Then, each disjunct in ag spec is reduced according to rules 1 and 2, respectively,
until they apply. For example, subj.person(X) ∧ subj.student(X).age > 16
can be reduced in a single step by applying rule 1. By contrast, subj.student(X)
∧ subj.person(X).age > 14 can be reduced in two steps, by applying rule 2
and then rule 1 as follows:

Rule 2 subj.student(X) ∧ subj.person(X).age > 14 → subj.student(X)
∧ subj.student(X).age > 14;

Rule 1 subj.student(X) ∧ subj.student(X).age> 14 → subj.student(X).
age > 14.

After each disjunct has been normalized, ag spec is finally reduced according
to rule 3, until it applies. Thus, given an agent specification subj.person(X)
∧ subj. student(X).age > 16 ∨ subj.student(X) ∧ subj.person(X).age
> 14, it will be transformed as follows:

19

• (subj.person(X) ∧ subj.student(X).age > 16) ∨ (subj.student(X)
∧ subj. person(X).age > 14);

• (subj.student(X).age > 16) ∨ (subj.student(X).age > 14);

• subj.student(X).age > 14.

Redundancy reduction rules are applied also to normalize compound ex-
pressions in supervision specifications, which may have the same redundancy
problems of the subject and object specifications in filtering policies.

3.3 Policy Evaluation

Once policies have been validated and optimized, they can be used for filtering
purposes. Filtering deals with verifying whether an object obj is appropriate
for the subject subj who requested it, according to the filtering policies in the
filtering policy base FPB. In MFM, filtering enforcement requires a filtering
mechanism able to evaluate the access requests of the subjects in S according
to the filtering policies in FPB. An access request can be represented as a pair
(subj id , obj id), where subj id is the identifier of the subject subj , submitting
the access request, and obj id is the identifier of the requested object obj . The
evaluation of an access request is performed according to a filtering procedure,
the first step of which is to identify the subset of filtering policies in FPB
which are associated with subject subj , specified by one of his/her supervisors,
applying to object obj . This subset is denoted by the notion of policy base
projection, which is the subset of the policy base relevant to decide the answer
to an access request. In order to formally define such notion, we introduce the
function Ag : AS → AG, which returns the set of agents denoted by the agent
specifications in AS. Moreover, we denote by SVI subj id the set of identifiers of
the supervisors of subject with identifier subj id .

Definition 3.4 (Policy Base Projection) Let (subj id , obj id) be an access
request, and let FPB be a filtering policy base. The projection of FPB wrt
(subj id , obj id), denoted Π(subj id ,obj id)(FPB), is the subset of FPB such
that: ∀fp ∈ FPB, fp ∈ Π(subj id ,obj id)(FPB) iff sv id(fp) ∈ SVI subj id , subj ∈
Ag(subj spec(fp)), and obj ∈ Ag(obj spec(fp)). 2

An algorithm enforcing the filtering procedure is reported in Figure 4. Al-
gorithm 3.1 receives as input an access request (subj id , obj id) and a filtering
policy base FPB. It first computes the policy base projection. If it is empty,
or if it is not possible to identify the strongest policy—in other words, when an
access request cannot be evaluated—, the system performs the predefined de-
fault action, which is stated when generating an MFM instance (see Section 4).
Otherwise, the system performs the action determined by the strongest filtering
policy.

The strongest policy is determined by the FindStrongFp() function, illus-
trated in Figure 5. Function FindStrongFp() receives as input the projection,
and assigns the policies in ActFp to the array EvalFp (step 1). Then it evaluates

20

Algorithm 3.1 Filtering Algorithm

INPUT: 1) An access request (subj id , obj id),
2) The filtering policy base FPB

OUTPUT: 1) SysAction = StrongFpAct , if StrongFpAct 6= null

2) SysAction = default action, otherwise
METHOD:

1. Compute Π(subj id,obj id)(FPB)

2. If Π(subj id,obj id)(FPB) 6= ∅
ActFp ← Π(subj id,obj id)(FPB)
If |ActFp| = 1: StrongFpAct ← act(ActFp)
else: FindStrongFp(ActFp)
If StrongFpAct 6= null: SysAction ← StrongFpAct

else: SysAction ← default action

else: SysAction ← default action

Figure 4: Filtering Algorithm

each component of the policies in order to identify the strongest one (steps 2-6),
according to the rules in Definition 3.3. Step 2 reduces the set of policies in
EvalFp, until the remaining are equally strong with respect to the supervisor
authority. If the resulting set EvalFp still consists of more than one policy, the
procedure is iterated by taking into account the subject specification (step 3),
the object specification (step 4), the operation type (step 5), the sign (step 6),
and the supervision mode (step 7). Finally (step 8), the resulting set of policies
in EvalFp is considered: if it consists of only one policy, the corresponding ac-
tion is assigned to the variable StrongFpAct ; otherwise, two different scenarios
are possible:

1. All the policies in EvalFp specify the same action. In such a case, this
action is assigned to the variable StrongFpAct .

2. The policies in EvalFp specify different actions. This may happen when
diverse but equally strong actions are supported. In such a case, it is not
possible to determine the prevailing policy, and thus StrongFpAct is set
to null.

4 MFM Implementations

MFM can be used in a given application domain by generating an instance of
the model, which defines the domain characteristics with respect to the agents,
the agent class hierarchies, the type of the supported operations and of policy
signs. In the instance, the operation hierarchy and the stronger policy sign are
also specified, along with the default action to be performed by the system when
an access request cannot be evaluated, and the supported supervision modes.

An MFM instance is formally defined as follows.

21

Function FindStrongFp(ActFp)

1. EvalFp ← ActFp

2. While ∀fp ∈ EvalFp ∃fp′ ∈ EvalFp such that sv(fp) > sv(fp′):
do

For each fp, fp′ ∈ EvalFp such that sv(fp) > sv(fp′):
EvalFp ← EvalFp − {fp′}

endfor

endwhile

3. While |EvalFp| > 1 ∧ ∀fp ∈ EvalFp ∃fp′ ∈ EvalFp such that subj spec(fp) > subj spec(fp′):
do

For each fp, fp′ ∈ EvalFp such that subj spec(fp) > subj spec(fp′):
EvalFp ← EvalFp − {fp′}

endfor

endwhile

4. While |EvalFp| > 1 ∧ ∀fp ∈ EvalFp ∃fp′ ∈ EvalFp such that obj spec(fp) > obj spec(fp′):
do

For each fp, fp′ ∈ EvalFp such that obj spec(fp) > obj spec(fp′):
EvalFp ← EvalFp − {fp′}

endfor

endwhile

5. While |EvalFp| > 1 ∧ ∀fp ∈ EvalFp ∃fp′ ∈ EvalFp such that op type(fp) > op type(fp′):
do

For each fp, fp′ ∈ EvalFp such that op type(fp) > op type(fp′):
EvalFp ← EvalFp − {fp′}

endfor

endwhile

6. While |EvalFp| > 1 ∧ ∀fp ∈ EvalFp ∃fp′ ∈ EvalFp such that sign(fp) > sign(fp′):
do

For each fp, fp′ ∈ EvalFp such that sign(fp) > sign(fp′):
EvalFp ← EvalFp − {fp′}

endfor

endwhile

7. While |EvalFp| > 1 ∧ ∀fp ∈ EvalFp ∃fp′ ∈ EvalFp such that sv mode(fp) > sv mode(fp′):
do

For each fp, fp′ ∈ EvalFp such that sv mode(fp) > sv mode(fp′):
EvalFp ← EvalFp − {fp′}

endfor

endwhile

8. If |EvalFp| = 1: StrongFpAct ← act(EvalFp)
else:

If ∀fp ∈ EvalFp 6 ∃fp′ ∈ EvalFp such that act(fp) 6= act(fp′):
Choose randomly a policy fp ∈ EvalFp
StrongFpAct ← act(fp)

else StrongFpAct ← null

endif

return StrongFpAct

Figure 5: Function FindStrongFp()

22

Definition 4.1 (MFM Instance) An MFM instance MI is a tuple

((SV,S ,O), (CHSV , CHS , CHO), (OPT ,≺), (signs , str sign), def act , sv modes)

where:

• SV ,S,O ∈ 2AG are, respectively, the sets of supervisors, subjects, and
objects;

• CHSV , CHS , CHO are the class hierarchy merging all the supported meta-
data vocabularies used for describing the characteristics of, respectively,
supervisors, subjects, and objects;

• (OPT ,≺) is the hierarchy of the supported operations;

• signs ⊆ {+,−} is the policy sign set, whereas str sign ∈ signs is the
stronger policy sign;

• def act = (op type, sign), which denotes the system default action;

• sv modes ⊆ {strict, normal, light} is the set of supported supervision
modes. 2

In the following we present two examples of MFM instances, corresponding
to how MFM has been applied in the context of the EU projects EUFORBIA
and QUATRO, described in the following sections.

4.1 Web Users’ Protection: The EUFORBIA Project

MFM was formerly implemented in the framework of EUFORBIA, a EU project
focused on user protection from inappropriate Web content.2 The aim of EU-
FORBIA was to address the drawbacks of existing rating and filtering ap-
proaches by

• supporting content labels based on metadata vocabularies (also referred
to as rating systems) which allow one to provide an accurate and as far as
possible objective description of Web resources;

• supporting policies taking into account users’ characteristics, and not only
their identity.

In the EUFORBIA project, supervisors and subjects correspond to Web
users, whereas object corresponds to Web resources. Following, we denote the
set of users and resources as U and R, respectively, whereas the set of supervisors
is SV ⊆ U . The supervisor and subject class hierarchies are similar to those
depicted in Figure 3, but they may vary depending on the context, whereas the
object class hierarchy is similar to the one depicted in Figure 2.

2 Detailed information about EUFORBIA are available at the project Web site: http:

//e-msha.msh-paris.fr/Agora/Tableaux%20de%20bord/Euforbia.

23

Cache

Web Interface Filtering Module Web Browser

World Wide Web

Policy

Base

Class

Hierarchies

User

Base

Supervision

Spec. Base

MFilter

Client

Database

Figure 6: MFilter Architecture

The EUFORBIA MFM instance supports only one operation type, which
can be expressed as allow access (allow, for short), and both the negative
and positive signs, which determine whether a user can (“+”) or cannot (“−”)
access a given resource. The EUFORBIA application domain has quite re-
strictive filtering requirements, since access to inappropriate resources must be
absolutely prevented, even though this means that users cannot access possibly
appropriate resources. Consequently, the stronger policy sign is the negative
one, and, similarly, the action to be performed by the system in case an ac-
cess request cannot be evaluated is (allow,−). Finally, all the available MFM
supervision modes are supported.

The EUFORBIA MFM instance is then denoted as follows:

((SV,U ,R), (CHSV , CHU , CHR), (allow), ({+,−},−), (allow,−), {strict, normal, light})

MFM has been implemented in one of the two EUFORBIA filtering proto-
types, called MFilter, which addressed the needs of institutional users. After
the end of the project, the prototype has been extended in order to support fur-
ther functionalities, in particular the enforcement of supervised filtering. The
main versions of the EUFORBIA MFM-based prototype are described in [6, 7].

Figure 6 depicts the architecture of the implemented prototype. MFilter

24

Figure 7: Filtering Policies Management main page

is a Java-based system, built on top of the Oracle DBMS, and it is structured
into three main components. The first is the Filtering Module, which intercepts
each access request submitted by users, and verifies whether it can be granted
or not according to the filtering policies specified by the System Administrator
(SA) and stored in the MFilter Database. The second is the Database, which
stores all the information needed by the system to perform the filtering tasks.
The third is the Web Interface, structured into three main components (the
Administration, the Supervision, and the User Interfaces), which allows the
management of the system, user authentication, and the specification/validation
of policies.

Finally, in order to simplify the task of supervisors, in MFilter filtering
policies are specified only by the SA, by using the Filtering Policy Management
section of the Administration Interface (see Figure 7), whereas supervisors can
only validate them. More precisely, they can display all the policies concerning
their own supervised users, and decide whether they are valid or not. Whenever
a policy is in/validated, the system generates a policy equivalent to the one
specified by the SA, which has the identifier of the supervisor and the same sign,
if the policy is valid, or a different sign, in case it is invalid. Moreover, if the
subject specification in the administrator policies denotes a set of subjects which
is a superset of the set of supervised users of the supervisor, in the supervisor
policy it is substituted accordingly (see Example 4.1). The validation procedure
is performed by using the Supervised Filtering Policy page, depicted in Figure 8.

Example 4.1 (Policy Specification in MFilter) Starting from the agents in Ex-

25

Figure 8: The Supervised Filtering Policy Page

ample 2.1 and the supervision specifications in Example 2.3, consider the following
policy, specified by administrator John:

fp1 = (John, (subj.person(X),obj.gynecology(X)), (allow, +), normal)

Ted, a teacher, and thus a supervisor for all the students, does not agree with it, and
thus he states that it is invalid. Consequently, the system will generate the following
policy:

fp2 = (Ted, (subj.student(X),obj.gynecology(X)), (allow,−),normal)

which is equivalent to fp1 but has the identifier of Ted, a different sign (since it is
invalid), and a subject specification denoting the subset of the subjects expressed by
subj.person(X), who are supervised by Ted.

4.2 Web Quality Assurance: The QUATRO Project

The application domain of the QUATRO project is more general than the one
considered in EUFORBIA. QUATRO aims at defining a unified platform for
‘quality’ labels and trustmarks to be associated with Web resources. Quality
labels do not describe the ‘quality’ of a resource, but rather they should be used
in order to establish trust between content/service providers and end users, by
advising the latter about the characteristics of the resource they are accessing.
Such characteristics may concern the content of a resource, the authoritativeness
and/or reliability of the information it provides, the privacy policies of a Web
service, and so on. Consequently, the QUATRO platform is designed for any

26

labelling vocabulary and for any application of Web content filtering, of which
users’ protection (as in EUFORBIA) is only a particular case. Finally, QUATRO
addresses the need of enforcing strategies for granting labels’ trustworthiness, an
issue which has been neglected in the available rating and filtering approaches.3

The QUATRO MFM instance is similar to the EUFORBIA one with re-
spect to supervisors, subject, and objects. The object class hierarchy consists
currently of four metadata vocabularies, namely those of ICRA, IQUA, Segala,
and WMA (see below), whereas the supervisor and subject class hierarchies
depend on the context.

Differently from EUFORBIA, in QUATRO users’ protection is not con-
cerned: rather, the system is in charge mainly of notifying end users whether a
resource is appropriate or not. Nonetheless, the user is provided also the pos-
sibility to block inappropriate content, and, consequently, two operation types
are supported, namely, notify and allow, of which the latter is the stronger.
The negative and positive signs are both supported, and in case of the notify

operation type, they determine whether the user is notified that the requested
resource is appropriate (“+”) or not (“−”). Finally, similarly to EUFORBIA,
the negative sign is the stronger, whereas the default action is (notify,−).
Since the aim of QUATRO is to make users aware of the content/characteristics
of Web resource, and not to protect them, only the normal supervision mode is
supported.

The QUATRO MFM instance is then denoted as follows:

((SV,U ,R), (CHSV , CHU , CHR), (notify ≺ allow), ({+,−},−), (notify,−), {normal})

The QUATRO platform consists of two main components:

• an RDF schema for quality labels, which can be adopted by labelling
services in order to provide a standard representation of their vocabularies
and of the corresponding labels;

• a set of software tools, which collaborate in order to evaluate labels and
to return the results of such evaluation to end users.

The definition of an RDF schema for labels aims at overcoming the draw-
backs of the current scenario, where labelling authorities provide labels and
trustmark which not only are stored in diverse formats, but, quite often, they
are not even machine-understandable. Such standard format is the basis on
which the QUATRO software tools are built. The first tool, the QUATRO
proxy (referred to as QUAPRO), is in charge of evaluating the labels associated
with Web resources, and to return the results to end users through the two other
tools, the metadata visualizer (ViQ) and the search engine wrapper (LADI). An
introduction to the QUATRO platform is provided by [11].

The current version of the RDF schema of QUATRO labels is described
in [4], and it is the outcome of the collaboration of QUATRO with the W3C

3 Detailed information about QUATRO are available at the project Web site: http://www.
quatro-project.org.

27

Labelling Service 1 DB
QUAPRO

(label retrieval and evaluation)

ViQ / LADI

(label visualisation)

Content Analyser 2

Labelling Service 2 DB

Labelling Service N DB
Content Analyser NContent Analyser 1

World Wide Web

QUATRO Platform

 Client side Server side

Figure 9: The QUATRO architecture

Semantic Web team and organizations interested in the diffusion of quality
labels and trustmarks. The schema has been the basis for the definition of
a general quality vocabulary, namely, the QUATRO vocabulary [2], and it has
been adopted by the Internet rating associations partners of QUATRO (ICRA,
WMA, and IQUA4), and by three certification agencies (PEGI Online, Segala,
EIQUA5) external to the project. This effort has led to the establishment of a
W3C Incubator Activity [3], currently under evaluation in order to be promoted
as a W3C Recommendation Track.

The architecture of the QUATRO integrated system, depicted in Figure 9,
consists of a Web service, QUAPRO, communicating with two front-end tools,
ViQ and LADI, in charge of notifying users of the presence/absence of labels,
and of displaying their content.

QUAPRO processes all the requests submitted by end-users through ViQ
and LADI, in order to verify if labels are associated with the requested resource.

4 ICRA (The Internet Content Rating Association: http://www.icra.org) provides la-
bels for describing resources’ content, and it has been already mentioned in the previous
section. WMA (Web Mèdica Acreditada: http://wma.comb.es) and IQUA (The Internet
Quality Agency: http://www.iqua.net) are trustmark agencies which certify the authorita-
tiveness and reliability of Web sites providing services (in particular, WMA is specifically
concerned with medical Web sites).

5 PEGI Online (Pan-European Game Information Online: http://www.pegi.info) is a
rating agency for interactive games. Segala (http://www.segalamtest.com) focuses on Web
accessibility, in particular concerning mobile devices. EIQUA (Excellence Ireland Quality
Association: http://www.eiqa.com) releases a trustmark, the W-Mark, certifying the quality
and security level of e-Commerce Web sites.

28

QUAPRO is in charge also of checking the validity of labels. For this purpose,
QUAPRO queries the databases of the labelling service which released the label,
in order to verify both its integrity and expiry date. Additionally, QUAPRO
may ask to a content analyzer to verify whether the description provided by
the label actually corresponds to the content/characteristics of the requested
resource. Actually, integrity, expiry date, and label-resource comparison are the
three types of validity controls supported by the QUATRO platform: which
of them should be performed is decided by the labelling service which released
the label. For further details about label validation in QUATRO, we refer the
reader to [11].

LADI is a search engine wrapper for Google and Yahoo!, which asks
QUAPRO to verify whether labels are associate with each search result, and
it displays an icon, in case a label is present. By clicking it, end-users can
display the content of the label, along with its validity status.6

By contrast, ViQ is built as a browser extension for Mozilla Firefox, which,
similarly to LADI, notifies users of the presence/absence of labels, and it allows
them to display their content. The interface components of ViQ are a toolbar,
a statusbar icon, and an entry in the browser’s main menu, which allow the
end user to access all the functionalities of the application. As an example, two
screenshots of ViQ are depicted in Figures 10 and 11, showing, respectively, the
messages displayed to the end-user when a label is detected, and the window
displaying the content of a label. For a detailed description of the application,
we refer the reader to [11].

ViQ, which is our contribution to the QUATRO software platform, is being
extended in order to implement the MFM filtering approach, so that users will
be notified not only of labels’ validity status, but also of their in/appropriate-
ness with respect to their characteristics and/or preferences. Filtering will be
enforced as in MFilter, but some differences are present, due to the application
domain and the system architecture.

Since ViQ is a client application, designed for end users, it is necessary to
simplify as much as possible the task of policy specification, in order to grant
usability. For this purpose, two strategies will be applied:

• Policy templates will be provided, stating filtering rules which can be
general or for users with given characteristics. Such templates will be
imported and possibly modified by users, in order to tailor them to their
preferences.

• Since multiple vocabularies are supported, policy templates should be
specified for any of them. Nonetheless, this may result in obliging users
to import multiple policy templates in order to apply the same filtering
rule on the supported vocabularies. In order to overcome such drawback,
policy templates will be also provided based on general vocabularies, as
the QUATRO one [2].

6LADI is publicly accessible at: http://www.quatro-project.org/search.aspx.

29

Figure 10: The available label and its validity status

Figure 11: The window displaying labels’ content

30

Users will be also in charge of specifying the supervisor and user profile
hierarchies (i.e., the supervisor and subject class hierarchies). This may seem
useless in a client context: we have a limited number of users, and it is more
simple to apply specific filtering rules for each of them. Nonetheless, ViQ can be
used also in situations where users’ protection is concerned, and policy templates
may be also considered as filtering profiles, determining the rules to be applied
in case users have given characteristics (e.g., their age). Moreover, in a home
context, parents would decide the type of resources which are in/appropriate for
their children, and thus they perform a role of supervisor. Consequently, users
will be provided the possibility to build profiles, starting from templates, which
contain standard subject classes and attributes, used by policy templates.

5 Related Work

Web content filtering is currently provided by a number of Web applications as a
service for parental control purposes, and for regulating the access to Web con-
tent of users connected to the networks of enterprises, libraries, schools, etc. Ex-
amples of the most diffused Internet filters are squidGuard (www.squidguard.
org), DansGuardian (dansguardian.org), SonicWALL CFS (www.sonicwall.
com), and the SurfControl Web Filter (www.surfcontrol.com). All such ap-
plications enforce the list-based approach, and some of them (such as Dans-
Guardian) support also content analysis and/or PICS-based filtering. Nonethe-
less, they are not based on a Web content filtering model. Rather, they inte-
grate and optimize established techniques in the fields of data mining, firewall
blocking, and so on, in order to provide a service addressing the needs of very
specific user categories, and granting a high degree of efficiency. If this is one
of the most relevant features which make such applications usable, it has a ma-
jor drawback of enforcing a quite restrictive filtering. In fact, none of them
supports knowledge representation tools more sophisticated than the available
PICS vocabularies. Moreover, users’ characteristics are not taken into account
in the specification of policies, since the same policies apply to all users.

By contrast, Web content filtering share several similarities with access con-
trol approaches, where policies are based on the subjects’ and/or objects’ char-
acteristics. Actually, Web content filtering can be considered as an extension to
access control, since it can be used both to protect objects from unauthorized
subjects, and subjects from inappropriate objects. More precisely, the notion of
agent specification in MFM has some similarities with the notions of credential
and role.

Credentials have been originally proposed for access control in distributed
environments [17], in order to denote authorized subjects by their character-
istics, and not only by their identifiers, as in the traditional approach. Such
notion has been furtherly developed and extended in [1], by formally defining
of a constraint specification language and by organizing credentials into a hi-
erarchy. Credentials are very similar to MFM agent classes, since they denote
subjects by using a set of attribute-value pairs, and they may be hierarchically

31

organized. The difference is that the notion of MFM agent class corresponds to
the one of OWL class, and it is used to characterize not only subjects, but also
objects and supervisors.

Roles-based access control [10, 15] addresses the same issues of credentials,
but according to a different approach. In fact, roles do not store subjects’
information: rather, they may be seen as access profiles to which a set of per-
missions is assigned. The actions which subjects are authorized to perform are
then determined by associating with them one or more roles. The main differ-
ence between roles and the notion of agent class, as formalized in MFM, is that
the latter is denoted by a set of attributes, and this allows us to specify policies
directly for all the users whose attributes are associated with values satisfying
a given condition (e.g., “all the users who are women and whose age is more
than or equal to 18”). To obtain the same results by using roles, we need to
specify a distinct role for each condition we would like to enforce (e.g., in order
to specify the previous policy, we need to create a role corresponding to female
users with the specified age).

However, besides this similarities, MFM has some distinguished features,
like supervised filtering and the possibility of using different vocabularies to
qualify both subjects and objects, which are not present in any credential- and
role-based access control model. In particular, in [6] we have proposed a first
model, focused on Web users’ protection, which adopted the notion of creden-
tial to qualify subjects, whereas objects were characterized by using specific
vocabularies. Starting from such work, in this paper we define a meta-model for
Web content filtering, where a uniform representation of subjects and objects
is given. Additionally, the supervised filtering component has been introduced,
and support has been provided for different types of operations, hierarchically
organized. Thanks to these features, MFM can be instantiated in order to be
tailored to all the different domains into which Web content filtering can be
applied.

Finally, MFM is compliant with the rule-based approach proposed by T. Bern-
ers-Lee et al. in [16] to enforce access control on the Web, by using RDF/OWL-
based technologies. In [16], rules are Horn-like clauses, where each atom is
an RDF triple, stating the set of requirements to be satisfied by a subject in
order to access a given object. As mentioned above, MFM agent classes can
be represented by OWL classes. Moreover, filtering policies can be expressed
as Horn-like clauses, where the s-o specification component corresponds to the
antecedent, whereas the action and supervision mode correspond to the conse-
quent. The set of policies applying to a given agent can then be identified by
unifying the class instances associated with an agent with the policies in FPB.
The conflict resolution mechanism described in Section 3.1 can be similarly ex-
pressed by a set of Horn-like clauses, which can be used to identify the strongest
among a set of conflicting policies. The main difference between MFM policies
and the access rules described in [16] is the evaluation of policies based not only
on the subjects and objects to which they apply, but also on the supervisors who
specified them. As such, MFM can be considered an extension to the rule-based
approach proposed in [16].

32

6 Conclusions & Future Work

In this paper, extensions to Web content filtering have been proposed, which
aim to overcome the current drawbacks. In particular, a multi-strategy approach
has been described, which integrates the available techniques and focuses on the
use of metadata for rating and filtering Web information. Such an approach
consists of a filtering model, referred to as MFM, which provides a general
representation of the Web content filtering domain, independently from its pos-
sible applications, and of two prototype implementations, partially carried out
in the framework of the EU projects EUFORBIA and QUATRO, and designed
for different application domains: users’ protection and Web quality assurance,
respectively.

Besides modelling the characteristics of the filtering domain, MFM improves
the approaches currently available by supporting policies taking into account
both users’ and resources’ characteristics, described by using multiple metadata
vocabularies. As a result, MFM, on one hand, allows the enforcement of inter-
operability among filtering systems based on different approaches, and, on the
other hand, it can be easily tailored to users’ requirements and preferences.

MFM is also an attempt to define a framework compliant with the upcoming
Web technologies. In particular, quite relevant are the recent efforts of the W3C
in defining a standard architecture for Web services [8], which will incorporate
Web content filtering into a broader framework, concerning the evaluation of
online information with respect to given user requirements.

The complete integration of MFM into the Semantic Web and Web services
framework is one of the main issue that will be addressed by future work. MFM
is already compliant with RDF/OWL, but we plan to investigate how WSDL [9]
and SOAP [13] can be used to express filtering policies. Provisional results of
such research work will be already available in the final tools developed in the
framework of the QUATRO project.

However, the major extension of MFM will concern the definition of strate-
gies to be used in order to evaluate metadata trustworthiness, starting from the
approach adopted in the QUATRO project. One of the main features to be sup-
ported is that the criteria to be used for validating metadata will be determined
by evaluating both the statements possibly present in the metadata vocabu-
laries, and the preferences expressed by users. Such extended version of MFM
will be implemented in an enhanced and standalone version of the QUATRO
metadata visualizer, which will perform independently all the tasks concerning
metadata validation and policy evaluation.

References

[1] N. R. Adam, V. Atluri, E. Bertino, and E. Ferrari. A content-based autho-
rization model for digital libraries. IEEE Transactions on Knowledge and
Data Engineering, 14(2):296–315, March/April 2002.

33

[2] P. Archer. QUATRO vocabulary – Version 1.0. QUATRO Technical Spec-
ification, Apr. 2006. Available at: http://www.quatro-project.org/

vocabulary/1.0.

[3] P. Archer. W3C Content Label Incubator Group. W3C Incubator Activity
Web Site, World Wide Web Consortium, July 2006. http://www.w3.org/
2005/Incubator/wcl.

[4] P. Archer, N. Shimuzu, K. Ahmed, D. Brickley, D. Appelquist, and
K. Chandrinos. RDF content labels: Schema description. QUATRO Tech-
nical Specification, July 2005. Available at: http://www.w3.org/2004/

12/q/doc/content-labels-schema.htm.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider,
editors. The Description Logic Handbook. Theory, Implementation, and
Applications. Cambridge University Press, Cambridge, 2002.

[6] E. Bertino, E. Ferrari, and A. Perego. Content-based filtering of Web
documents: The MaX system and the EUFORBIA project. International
Journal of Information Security, 2(1):45–58, Nov. 2003.

[7] E. Bertino, E. Ferrari, and A. Perego. Web content filtering. In E. Ferrari
and B. Thuraisingham, editors, Web and Information Security, chapter 6,
pages 112–132. IDEA Group Publishing, Hershey, PA, 2006.

[8] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Fer-
ris, and D. Orchard. Web Services Architecture. W3C Working
Group Note, Feb. 2004. Available at: http://www.w3.org/TR/2004/

NOTE-ws-arch-20040211.

[9] D. Booth and C. K. Liu. Web Services Description Language
(WSDL) Version 2.0 Part 0: Primer. W3C Candidate Recom-
mendation, Mar. 2006. Available at: http://www.w3.org/TR/2006/

CR-wsdl20-primer-20060327.

[10] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, editors. Role-Based
Access Control. Artech House Publishers, Norwood MA, 2003.

[11] V. Karkaletsis, A. Perego, P. Archer, K. Stamatakis, P. Nasikas, and
D. Rose. Quality labeling of Web content: The QUATRO approach.
In Proc. of the WWW’06 Workshop on Models of Trust for the Web
(MTW 2006), 2006. Available at: http://www.l3s.de/~olmedilla/

events/MTW06_papers/paper11.pdf.

[12] C. Lagoze and J. Hunter. The ABC ontology and model. Journal of Digital
Information, 2(2), Nov. 2001. Available at: http://jodi.ecs.soton.ac.
uk/Articles/v02/i02/Lagoze.

34

[13] N. Mitra. SOAP – Version 1.2 Part 0: Primer. W3C Recom-
mendation, June 2003. Available at: http://www.w3.org/TR/2003/

REC-soap12-part0-20030624.

[14] P. Resnick and J. Miller. PICS: Internet access controls without censorship.
Communications of the ACM, 39(10):87–93, Oct. 1996.

[15] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, Feb. 1996.

[16] D. J. Weitzner, J. Hendler, T. Berners-Lee, and D. Connolly. Creating
a policy-aware Web: Discretionary, rule-based access for the World Wide
Web. In E. Ferrari and B. Thuraisingham, editors, Web & Information
Security, chapter 1, pages 1–31. IDEA Group Publishing, Hershey, PA,
2006.

[17] M. Winslett, N. Ching, V. Jones, and I. Slepchin. Using digital credentials
on the World Wide Web. Journal of Computer Security, 5(3):255–266,
1997.

35

