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Abstract text, on personal preferences or on the stream contenf, all o

Privacy and security in the context of the streaming sys- Which may frequently change. The users owning such de-
tems largely have been overlooked. We now tackle this im-ViCeS should have the ability to control their exposure ® th
portant problem in this paper. Our work focuses on context- '€t Of the world. That is, they should be able to for example
aware security and user-centric privacy preservation iteda  Nide the knowledge about themselves whenever desired.
stream management systems (DSMS) by exploiting security V& €nvision that |nd|v_|d_ual dev!ces transmitting stream-
constraints (called security punctuations) that are dynam N9 data will be able to inject their respective security re-
ically embedded into data streams. The novelty of our pro- Strictions together with the data. Users will be able to ei-
posed approach is that access control policies are not persi  ther explicitly specify their restrictions at runtime, etde-
tently stored in the DSMS but rather streamed together with VICES may come pre-set with customizable security rulets tha
the data. We present novel query operators, termed Securityvould emit and adjust different security settings at ruetim
Shield 6S) and Security-Compliant JoirSCJoin) that are based on the context information, such as location, time,
designed to make queries comply with the security policiesPhysical condition, proximity of other users, etc. _
of the streaming data while still guaranteeing near reahei In this paper, we assume that streaming data is transmit-
response. As a proof of feasibility, we have implemented thef€d securely from the data source to the streaming database
security punctuation framework within a real DSMS. Our ex- e concentrate on access control mechanisms, wherein the
perimental results show that our proposed solution incurs Stréaming database engine examines streaming data tuples
low overhead. and continuously checks if a query conforms to the stream-
1. Introduction ing security policies before permitting the query to access

o ) ] the data.
1.1. Security in Data Streaming Environments 1.2 Motivating E |
. .2. Motivating Examples

The need for people to protect themselves and their assets _ 9 ] P )
is as old as humankind. The increasing use of electronic,Ex@mple 1: Protection against context-aware spam.
sensor and GPS devices means that individuals today have af/S€rs may want to block unwanted businesses from send-
ever-growing range of electronic (data) assets that may po-"9 them advertisements b_aseq on their Ioca_lt|0n or any (_)ther
tentially be at risk. When computing devices are integrated information. As a person is driving or walking, the device
with people, various personal information is expressed in Ma&y adapt.securlty constraints based on the proxmlty of the
digital form. Devices can communicate this information Stores/businesses and the user preferences (possibigtpre-
over networks and users have no control over who and forin @dvance) limiting to who would be allowed to “see” the
what purpose may query their data. Some users, knowing!Se'- This helps t_0_|mpede focused marketing efforts _and
that their personal information (e.g., location, healthdio ~ Prévents fromreceiving the "context-aware spam” — sevice
tion) is not safeguarded, may hesitate to use such (e.g., GP§' information the users don’t know of or agree to.
or health monitoring sensors) devices because of the risk ofExample 2: Privacy protection of personal health dataA
data being inappropriately used, or the potential loss nf co Patient may be living at home with a health monitoring de-
trol or power over their information assets. vice attached to him which can detect early health abnormal-

Traditional access control schemes and privacy preserva—ities and trar_15mit alert signals to releyant personnel. How
tion mechanisms, which typically assume finite persistent 8Ver, the patient may prefer only certain user groups, ssich a
datasets and system-centric access control policiesizeco the closest hospital or his doctor to have access to higstrea
largely inapplicable in this new stream paradigm. This inap INd data and prevent access for any third-parties (€.gir-ins
plicability is due to the fact that stream environments tend ~@NC€ company or other hospitals). Only if his vital signs
be hlghly dynamlc. D_ata IS C(.)!'lt.II:IUOUS|y gen.erated and may 1That is, the possibility of the streaming data being intpteg and compromised
have different security sensitivities depending on the-con on the network is beyond the scope of this paper.
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go far above the norm and he is in imminent danger need- Data Tuples
ing urgent care, would the closest hospital, ER or ambulance

dispatch center gain access to his streaming data. Bygettin I BREB B
his privacy preferences, the patient can prevent unautaori \%
people from accessing the information or selectively cboos Secumy Punctuatons
vyho has access to which part of.hls.data bgsed on the real- Figure 1. Data Stream With SPs.
time values streamed by his monitoring device.

Example 3: Privacy protection in the workplace. Many Our Contributions :

. . o We propose a security punctuation model as a real-time,
aspects of the modern workplace have introduced serious, . . .
. ine-grained access control mechanism to enforce security o
concerns about employee privacy. Company cars, cell

i : streaming data (Section 4).
h , GPS d , and laptops tod d I . .
phones evices, and faptops foday provide employers ¢ We describe an extension to the CQL language [4] for

with powerful capabilities to monitor the activities of the e ) ; .
employees. During the course of a working day, an em_the specification of security punctuations in data streams
' ' (Section 4.3).

ployee may go to both business-related and non-business _ )
¢ We present a nov&ecurity ShieldSS) operator to en-

related places. Monitoring a personal trip, for example dur ¢ h i ¢ ) 4 di h

ing a lunch break, might be an unreasonable intrusion on an orlggt € comp 'agce_ of continuous gueries accor hlng tothe

employee’s privacy. Sometimes a user may want to specifyPCliCies expressed via streamiss. SS preserves t e cor-
rectness of the security semantics even when policies may

rules to “hide” or selectively limit which data the managers 7 ) X
or co-workers can access from his data stream at either a cer?€ MiSSINg or arrive out-of-sync. We also provide the proof
tain time or a certain location. of co\;\r/ectness OS;OPGt?t'%n (Selt-:tlothS.-:%CJ in) al
o e We propose &ecurity-Compliant Joi oin) algo-

1.3. Our Proposed Solution: SPs Framework rithm. SCJoin is designed to (i) join several data streams

We propose to stream security constraints together witheach streaming tuples with possibly distinct access cbntro
the actual data stream indicating security/privacy prefer policies, and (ii) share the join processing among multiple
ences on the current portion of the stream. Specifically, wequeries specified on those same data streams but with dif-
propose to embesecurity punctuationfor shortsps) into ferent access privileges. The novelty of the SCJoin lies in
data streantfs A security punctuation is a predicate that de- the adaptive selection among several join strategies gakin
scribes a subset of tuples and their access control poléty, a window and shared policies into account. (Section 5.4).
called asecurity policy It informs a stream processor of the o We experimentally evaluate our approach in the DSMS
access control privileges on a stream as a whole, or a cersystemCAPE[15] against data streams that have no security
tain substream of tuples, or on some attribute(s) of a tuple.policies embedded in them. Our experimental results show
A conceptual view of a stream with security punctuations is that our approach has low overhead (Section 6).
shown in Fig. 1. Data sources emit security punctuationspoadmap Section 2 reviews related work. Section 3 dis-
(sps) based on user specifications. In our work, we distin- ¢;sses the stream model and our assumptions. Section 4 in-
guish between two types of users: (1) users providing theoqyces the concept of security punctuations. Sectios5 di
streaming data, termegthta providersand (2) users query-  ,sses query processing framework vsis, whereas Sec-

ing the streaming data, termedery specifiers tion 6 presents our experimental evaluation and Section 7
A streaming database has a security punctuation analyzeggncludes the paper.

component which serves two purposes: first, to combine se-

curity punctuations with similar policies (to reduce mem- 2. Related Work

ory overhead and save CPU) and second, to allow serverData Stream Management SystemsStreaming databases
side specification of additional security policies. In thtdr have been a hot topic in the past few years [5, 8, 13, 15].
case, the server policies are translated into security punc Punctuationgl17, 18] — dynamic annotations serving as sub-
tuations and combined with the arriving data providps. stream delimiters inside data streams have been first pre-
Such design allows organizations to enforce their own poli- sented in [17]. FurtherPJoin [10] and PWJoin[11] ap-

cies in addition to the ones specified by the data providers.ply punctuations to achieve join optimizations on streamin
We assume that server-specified policies mayoverride, data. Fegaras et al. [12] use annotation in the streaming
but may further “refine” data provider policies, by puttimyi XML data to declare the data structure of the incoming data,
additional constraints. Tuples, preceded by theircomedp  and whether the data fragment following the annotation is a
ing sps, are streamed into a DSMS where continuous queriesrepeat or an update. We go beyond the simplistic notation of
are evaluated subject to the tuples’ security policies. indicating future incoming values, by now employing a more

- sophisticated security-related semantics.

We chose the name “security punctuations”, because bydmtingsps into data Security and Privacy Preservation W3C developed the

streams, we subdivide i.epunctuateinfinite data streams into finite partitions with i . X
associated security policies. Platform for Privacy Preferences (P3P) specification [9] fo
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encoding web site privacy policies. P3P, however, is a cum- Dermatologist (DM~ Cardiologist (C) _General Physician (GP)
bersome language for streaming environments. In P3P users \Dom{r(m/ Nurse-on-Duty (ND)
cannot directly specify what is acceptable in a policy, only m

what is unacceptable. Simple policies often result in cenvo Figure 2. Roles Organized into a Hierarchy.

luted and verbose P3P specifications [2]. . _ Role-Based Access Control (RBAC) motiak an example

Agrawal et al. proposed the concept of Hippocratic of an access control model and show how it can be imple-
databases [3] to incorporate privacy protection within mented through security punctuations. We chose RBAC as it
RDBMS. The authors propose using privacy metadata. Thisjs one of the most widely used access control models. How-
work however addresses neither dynamic changes in poli-eyer, our framework is generic, that is any access control
qies, nor support for both user and system policy specifica-model (e.g., DAC, MAC) could be implemented using the
tion. Both those features we now address in our work. sps model. Query specifiers activate their roles when they

Preserving privacy by ensuring limited disclosure of data sjgn into the streaming system. We require that each query
in RDBMS was explored by Lefevre et al. [14]. The imple- specifier belongs to at least one role, and this assignment
mentation is based on query modification techniques. Thecannot be changed while executing the queries.
proposed approach has several limitations in the context of = Rightsare a set of privileges that a subject can hold and
streaming systems. First, queries in DSMS are typically execute on an object. In this work, we consider a read right
long-running, thus access policies may change many timespn|y. A security policy(akaaccess control poligyis a set of
during the execution of a query. Modifying it at runtime ryles indicating what query specifiers are allowed to access
for privacy preservation would cause modifications in the Authorizationis the granting of rights.
query plan. Since sub-plans may be shared among multi-Streaming Model. We consider a centralized DSMS pro-
ple queries, this may cause a cascading effect on other quergessing long-running queries on a set of data streansenA
plans, potentially “stalling” the system and not producing tinuous data streamis a potentially unbounded sequence of
any query results (while the query plan is migrated). Our tuples that arrive over time. Tuples in the stream are of the
technique solves this problem by using special stat8fil  form ¢ = [sid, tid, A, ts, ts.csns,), wheresid is the stream
operators that filter data for the outstanding queries tiett  identifier, tid is the tuple identifiét, A is a set of attribute
are not allowed to access. TI8S operators’ states de- values of the tuplets is the timestamp of the tupleand
pict current access privileges of the outstanding queriels a ¢s.csn,, is the timestamp and tleimulativesequence num-
can be simply updated whenever a query access privilegeger of the corresponding security policy representedysy
change, thus eliminating the need for a query modification. (Section 4 elaborates more on this parameter).

In [1], the authors propose language constructs for fine  We consider a set of continuous queries.. . .q,} exe-
grained access control (FGAC) in RDBMS. The work pro- cuting over data streams, where each quygethas associated
poses an alternative to how relational databases currentlysecurity restriction(s) determined by the roke ¢f the query
support FGAC via traditional mechanisms based on views, specifier (denoted ag’). Queries are comprised of a set of
triggers or special registers. The proposed method for FGACquery operator§op;, . .. opi. }, Where operatormherit the
works well only when the number of restrictions is small security restrictions of the queries for which they prodass
or the data is relatively static. Such conditions are rare fo data (i.e., ifopy, € q;, thenopy, = opy).
streaming data. . .

We advance the state-of-the-art by addressing the Iimi—4' Security Punctuations (SPs)
tations of the current techniques and introduce a security- S€curity punctuatio(sp) is a meta-data introduced into a
compliant data stream framework where access control poli-data stream to specify security restrictions on the tuples.
cies are streamed together with the data instead of stored of\Pplicability : Sps always precede the tuples for which they

the server. describe the access control policy (Fig. 3). An access abntr
o policy specified vissp(s) may apply to (1) a (sub)stream, (2)
3. Preliminaries a tuple, or (3) an attribute of a tuple. Generally, we refer to

Subjects, Objects, Rights and Authorizations The sub- ~ them asobjects. The tuples between two consecutive punc-
ject, object and right concepts are well known in access con-tuations form ars-punctuated segmentThe s-punctuated
trol. An object is an entity that contains information. Ac- segment describes the applicability scope of the immelgliate
cess to an object implies right to use the information it con- —— ) N . _

. . : . Fig. 2 depicts a set of roles organized in a hierarchy. Forenitformation on
tains. Examples of objects in streaming system are: StreamsrBeAC readers are referred to [16].
tuples, and tuple attributes. Aubject may invoke a re- 5Just about all stream systems are read-only right now, Haissis a natural focus.

. Our model can be extended to support other rights, e.g. tepappend, etc.
queSt to access an ObJeCt’ €g.a read reﬁum useflat 6This may be similar to a primary key in relational tables,tanay be a unique
attribute(s) that can be used to identify a particular davaider, e.g., patienid.

SWe consider the subjects in our model to be a set of users wdwifggontinuous "The timestamps of stream elements are assumed to have 4 @ldeang based
queries in DSMS (i.e., query specifiers). on the system’s clock.
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Figure 3. Security Punctuations’ Applicability.

Pattern Description
preceeding p0|icy_ 0 Empty (i.e., does not match any values)
. * Wildcard (i.e., matches any value)
Any consecutivesps belong to the sanep-batchand are c Constant (i.e., matches only )

(c1,C2) Exclusive Range (i.e., matches values strictly in the range)
[c1,c2] Inclusive Range (i.e., matches values in the range inclusively)
{c1,c2,c3} Set (i.e., matches values in the set)

Figure 5. Pattern Expressions for SPs.

be Streams Tuples Attributesor Roles We now formally
define security punctuations.

Definition 4.1. (Security Punctuation)et
(1) S={s1...8m}, m > 1, be the set of all streams,

interpreted as a single access control poligy A policy
may consist of one or morgps. A policy P; applicable to

an objecto overrides a previous policy; that had arrived
earlier and was applicable t§. At any time, a policy may
apply to zero or more tuples and any tuple may have either
one or no policy.

Each sp has a parametefs.sns,, which contains the
timestampts for whgnthe pollc_:y was generated, and |t§ se- Q)T = {tir . tinki=1..m,n>1,bethe setof tuples in a
quence numbersg) in the policy’. Each tuple also carries streams, ¢
ats.csnsp parameter tha_t contains the m_formatlon about its B)A=f{aij1...aisxbi=1...mj=1...nk>1bea
policy. Thecsn here depicts the cumulative sequence NUM- get of attributes in a tuple; ; € 7' in a streams; € S,
ber of the lastsp that belongs to the policy. The stream (4)r= {ry...7}, 1> 1, be the set of roles in a system.
system uses this parameter to detect the missing and out-ofA security punctuationp defines a security policy? and has the
ordersps and protects the data from an unauthorized accessorm: < DDP | SRP | {+/-} | {T/F} | ts| sn> wheresp. DD P =
(Section 5.1). If arspis missing, we then denote the policy (Es, Et, Ea) andsp.SRP = E.. Es, Ey, Eq, and .- are pattern
as beingincompleteand enforcedenial-by-defaul(i.e., no  expressions specified agairstT’, A and i?, respectivelyis is the
access is allowed) to the objects with that policy. timestamp of the policy? and cs is the sequence number E)f the
Structure: Security punctuations are composed of four parts *7 € - LetO = {0s, 01,00} be a set of objects where=(3),

. . . . 0:=(5,1), ando,= (5,1, a), such thats € eval(S, Streams, E;),
(Fig. 4): (1)Data Description Par{DDP), (2) Security Re- ~ .

2. . d bicfield t € eval(T, Tuples, E:) anda € eval(A, Attributes, E,). The
striction P(?lr_t (SRA, _(3) as_'gn and (4) anmmutablefie . interpretation of the security punctuation is the follogin
DDP_ specifies towhich object(s) the access control policy i Sign =+ a subject with role: € eval(R, Roles, E,) may
applies.SRPdenotes both the access control model type and

. . X access any objeet€ O at any timetsgccess > ts.
the value of the subjects that are authorized. As mentioned

e if Sign ='-": a subject with role- € eval(R, Roles, E,) is de-
before, we use a role-based access control model as an X504 access to any objeate O at any tiMetsqecess > £5.

ample model in this work. Thus, tf&RPpart of the security -
punctuation specifies RBAC as model and a sedle{s) that
are authorized by thept®. However, our RBAC model us-
age is general, so in principle any access control modeticoul
be plugged into security punctuatior&RP The Signspeci-
fies if the authorization ipositiveor a negative[6]. Finally,

thelmmutablefield indicates if thespcan be combined with discussiot

other (e.g., server-specified) policies. 41S ity P ion E |
We use pattern expressions to describe objects and their ™ ecurity Punctuation Examples
Here we give examples afs using three data streams

restrictions. Patterns are suitable here, since many sbjec
(Fig.

If Immutable =Fal se, sp may be combined with the server-
specified policies applicable to the same objects. Otherwsp
is immutable, and the server-side policies are ignored.

A security punctuation can be specified at the level of a
stream, a tuple, or an attribute. For simplicity of presenta
tion, we assume positive and mutabias in the rest of our

may share similar policies. Fig. 5 illustrates differemds
of patternssps match.

Let eval(N,V, E) be a function that, given a sé¥ of
values, their typd/ and a pattern expressidi, returns a

6): HeartRate BodyTemperatureand Breathing-
Rate Let the set of rolesR be the following, R =
{C,D,DM,E,GP,ND as in Fig. 2. The followingsps may
be created (thes andsn parameters are omitted):

subsetV, C N (of typeV) that matchedr. We distinguish
between four types of values in our model, thatliscan

Stream level restriction:

<s1, %, * | C| + > - Only queries registered by a cardiologist)(can query the
streamHeartRate(s1 ).

Tuple level restriction:

<* [120,133], *| GP | + > - Only queries registered by a general physician (GP) can
access data tuples (from any data stream) for patients edthétween 120 and 133.

8We plan to consider incremental policy change sja as a part of our future
work.
Al sps that belong to the same policy have the same timestairiput a unique
sequence number. The sequence number represents thefdtteswin the policy.
10we omit the access control model specification inspe since all of them are
assumed to use RBAC model.

Llwe omit thelmmutablefield. Unless noted otherwise, alps are assumed to be
mutable.



suHeartRate | Patient_id | Beats_per_min | Timestamp INSERT {SECURITY PUNCTUATION | SP}
Stream 120 | 70 | Sep-12-05 9:17:00 [[AS] sp_name ]
INTO STREAM [stream_name | stream_id] LET
s2: BodyTemperature | Patient_id | Temperature | Timestamp [sp_name.]DDP = <ddp_expr>
Stream 1201 98.6 | Sep-12-05 9:21:00 [sp_name.]SRP = <srp_expr>,
—— : [[sp_name.]SIGN = { POSITIVE | NEGATIVE },]
s5: BreathingRate Patient_id | Frequency | Depth | Timestamp [[sp_name.]IMMUTABLE = { TRUE | FALSE }]
Stream 120 8| 38 | Sep-12-05 9:22:00 -

Figure 7. Security Punctuation Syntax.

Figure 6. Sample Data Streams.

SELECT Patient_id,Beats_per_min,Timestamp
Attribute level restriction : INSERT SP AS spl \Fl\llz:EMRES:}Seats per_min > 80
<{s1,s2}, * {Temperature, Beats_per-min} | {D, ND} | + > - Only a INTO STREAM s3 ON RESULT(
doctor (D) or a nurse-on-dutyl{ D) can query the temperature and the heart beats |LET INSERT SP AS sp_result INTO STREAM
from s; ands streams. sp1.DDP = TUPLES:[120, 200] LET
AND ATTRIBUTES :Frequency, sp_result.DDP = TUPLES:ALL
H" H sp1.SRP = frbac:R1 WITH GRANT OPTION, sp_result.SRP = frbac:Cardiologist,
4.2. Combining Multiple SPs Sh1/SIGN = POSITIVE, Sh_result STGN = POSITIVE,
. . : . sp1.IMMUTABLE = TRUE sp_result. IMMUTABLE = TRUE);
For manipulatingps in streams, we use three basic func- [* P ks 2%
(a) Creating a New sp (b) Specifying sp on Streaming Results

tions: match), union)) andintersecf). matcK) identifies ,
what tuples are related to a security punctuation, aftel eva Figure 8. CQL Examples of SPs.

uating expressions isp.DDP. If multiple sps applicable to To delegate access rights on stream data, a data producer
the same tuples have been defined (e.g., data provider an@ould specify WITH GRANT OPTION when creating a se-
server-specifiedsps), we consider two design choices for Curity punctuation as illustrated in Fig. 8a.

combining thosesps: ngry specifie_rs with grant option may .genera}te new
Union: This corresponds to the union of applicable security iet&ins security punctuations on the.r.esults of their queries. In
o match(t, (union(sp1, sp2))) <= match(t, sp1) V match(t, spz) such a case, a query specifier would append ON RE-
Intersect: This corresponds to the intersection of applicable sgctestrictions SULT (spexpressioh...n]) clause to the query, where

o match(t, (intersect(spy, 5p2))) <= match(t, sp1) A match(t, spa) spexpressiorcorresponds to the syntax for creating new
With the intersect semantics, the access to data decresses §Fig. 8b).

additionalsps are applied. Conversely, with the union se- In the implementation, we designedsacurity punctua-

mantics, access to data increases as additigmabre ap-  tion generator(SPGen) operator that is added as the root
plied. To dissallow server policies from increasing access operator in the query plalSPGen cleans the data stream by
intersect semantics should be applied. Alternatively,ta da removing existingps and injects newps based on the grant

provider can seimmutablefield = Tr ue (T), thus prevent-  authorizations and the ON RESULT clause of the query.

ing any modification to data provider policies on the server 5 Security-Enhanced Query Processing

side. : .

. We now describe our proposed query processing mecha-
4.3. CQL Extensions to Support SPs _ nism that is aware and compliant with the security restric-
~ We have extended CQL [4] syntax to support the Speci- iong on the stream data. When a query specifier registers a
flcatlon of sps on data streams (syn.tax is illustrated in Fig. ~ontinuous query, the role(s) of the query specifier are au-
7). Fig. 8a gives an example of using our proposed syntaxomaically detected by the DSMS and associated with that
and represents the followirep query. We must consider both the roles associated with the

<53 120,200, FrequencyR1® | + | T >*2 query and the streamirgps in determining which data tu-

Itis a£05|tt|r\1/_e a?d an |mmuttabli13 tg?t aIIo;/_vs :oleﬁ; tg ples are allowed “to be seen” by the query. For this purpose,
accessyreatning frequency streamsslor patients with 1ds e introduce two novel operatorSecurity ShieldSS) and

120through200, and roleR1 candelegateaccess control at Security-Compliant JoingCJoin). Fig. 9 illustrates an ex-

t_his granularity (i.e., Frequency attribute for this setpaf ample of a continuous query network wiE§ andSCJoin
tients) to other roles. . operators embedded inside the shared plan for three queries
4.4. Access_ Control Delegation Thrqugh SPs @1, Q2, and@Qs. We discuss the core functionality of the

In some circumstances, a data provider may want to del'operators in detail next.
egate access rights to h|s/her.stream|ng d.ata. For gxample, 5.1. ‘Security Shield’ (SS) Operator
doctor may need to consult with a specialist regarding some A“S v Shield” 6S tor h ltiple function-
patient data. He would thus need to make available the por- ...~ ecunty Shie S .) operator has multiple function
tion of the stream to the specialist with the permission ef th §I|t|es. (1) itfilters tuples if queries dwthave access priv-
patient. The patient controls access control delegatign, b |Iege§ to them, (2) preser}{e? cprr?ctness_ of the security se
specifying which roles are permitted to act as delegatek, an mantics whersps may be "missing” or arrive out of order,

which objects they can give access to on his or her behalf. and (3) determines if theps can be_dlscarded e_.\arly m_the
guery plan (to reduce memory requirements) without violat-

1275 keep the presentation concise, we have omitted the esipresfor theDDP ing the security semantics. TISS operators are integrated
and theSRPsyntax. with the rest of the query plan without affecting the funotio

Bwe use superscripts’(~ ) to denote roles with/without delegation rights re- o L
spectively. alities of other continuous query operators.
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Figure 9. Security-Enhanced Query Network.

SS is a stateful operator, and its state consists of the fol- 1

lowing four components:

Associated Parent Operator(s) (APO) Set ofall upstream operators in the query
plan for which theSS “pre-filters” data tuples. This set is used to maintain the co
respondence between the query operators and their acéétegps. If a singleSS

is shared by several queries, and a query is removed or igelsaits access rights,
the DSMS determines its operators and updates the sectgifjcptes in th&S state
elimintating the need for query modification.

Associated Processing Role(s) (APR$et of security predicates (in the case of RBAC
model, set of roles) for which tH&S operator allows data tuples to “pass through”. For
example, tuples with policies where only a relez AP R can access, are discarded.

Propagate sp Further Flag (PFF): Indicates whether th8S must allow thesps to
propagate further up the stream. This flag is used to deterihihe sps can be dis-
carded early in the query plan. This feature helps to redum®any requirements and
improve the query execution performance.

Current Policy (CP): A data structure depicting the properties of the curreficpo
for the tuples that are about to arrive. Current polRys in the SS state until the
arrival of another policy’ with a more recent timestamp.

Fig. 10 presents th8S algorithm. An input to th&S oper-
ation may be either a security punctuatspor a tuplet.
When a newsp arrives,SS first checks if the timestamp
of the current policy in the state equaldXor L.CP.ts which
indicates that th&S needs to either initialize a new policy
or add the arrivedpto the current policy, respectively. If it

PROCEDURE SSOperatior{p | t)

/IL is the state of SS operator

01.new security punctuation sp arrives:

02. if (L.CP.ts =0 or (L.CP.ts = sp.tythen L.CP.Add(sp)L.CP.ts = sp.ts

03. else if(L.CP.ts< sp.t9 then emptyL.CP; L.CP.Add(sp)setL.CP.ts = sp.ts
setfirst tuple. flag = true;

04. else if(L.CP.ts> sp.t9 then discardsp;

05.new tuple t arrives:

06. if L.CP.ts = Othen discardt; /no policy in the state

07. else if(firsttuple_flag) //end of sp-batch

08. calculatd.CP.csrfrom all sps that belong td..CP

09. firsttupleflag = false

10. if L.CP.ts.csrFt.ts.csny,

11. if tRC L.APRthen

12. if L.PFF = true and policy_sent truethen

13. send..CP.spg0 output stream, s@blicy_sent = true

14. send to output stream

15.  elsediscardt

elseemptyL.CP, discard, setL.CP.ts = Q setfirst_tupleflag = true

. else/ljust another tuple from s-punctuated segment arrived

18. /Isimilar processing as in Lines 8-14

Figure 10. SS Algorithm.
certainty about policy, th&S discards both the policy and

the tuplet (Line 16). If a policy is incomplete, we do not
know the full set of restrictions on the tuple(s), and thus ex
ecute denial-by-default. If the policy’s and the tupless
are equal, the policy is complete, and the tuple can be pro-
cessed furthelSS procedes to check if this access control
policy matches the roles in the statt’APR If there is no
overlap, the tuple is discarded. The interpretation is tinat
tuple’s policy does not allow access to any query comprised
of the operators in the.APO set. If there is a match, the
tuple is sent to the output stream (Line 14). The tuple’s pol-
icy will precede the tuple, if.PFF is true and the policy has
not yet been sent by th®S operator (Line 13). When the
subsequent tuples from the s-punctuated segment arrave, th
processing is similar (Lines 17-18).

When generating a query plan, we try to pi&h oper-
ators “down” in the query plan to filter out tuples as early
as possible to minimize the traffic and improve query exe-

is a new policy, thesps timestamp becomes the timestamp  ¢ion. However, in some cases it may be advantageous to

of the new current policl..CP.ts(Line 1). If there is already
a policy in the state, and the newly arrived has a more

push theSS operator “up”, for example if the operators in
the query plan have a low selectivity and queries have broad

recent timestamp than the current policy, it becomes the NeWange of access privileges.

current policy (Line 3). Otherwise thepis discarded, since

it had arrived after the policy with a more recent timestamp.

When a new tuplé arrives (Line 4),SS checks if there
is a policy in state for it (Line 6). If there are nortas dis-
carded (denial-by-defaultis enforced). OthervB&checks

if this is the first tuple that begins the s-punctuated segmen

5.2. Correctness of SS

In this section, we provide a proof of correctness of the
SS operation. We prove th&8S will only process tuples
with completepolicies, otherwise it will enforce denial-by
default.

(Line 7). If true, we assume that the policy is complete, and Theorem 5.1. For any tuple t, SS will process t only if its

from now on the tuples with this policy will be arrivin@S
calculates the cumulative sequence numbeZP.csn based
on thesps received (Line 8). Thesnindicates the largest cu-
mulative sequence number of thps (with no gaps in their
srs). For example, itsn= 3, it means that three sequential

policy P is complete and in correct order. Otherwise SS will
prevent access to t. Policy P will be propogated only once
and only if it is complete.

Proof. Let SSbe a security shield operator in a query net-
work. LetL be its state. Assume thatsp,,sp;,sp; € P and

sps contributing to the same policy have been received. InL.CP =P, andt € T whereT is a set of tuples. We identify

Line 10, SS checks if the newly calculatetknis the same
as the new tuple indicates. If they are not equal, sepi®

are missing and it is an “incomplete” policy. Due to the un-

the following three cases:
Case 1: policyP arrives prior to tuple t. In this case, a
policy P can be a



(a) P is complete policy If t.ts.csp, = P.ts.csn then the Phase I: Policy Collection Phase II: Data Collection
policy P is complete The SSoperator will then process the SauEd nev_v sp new tuple
tuplet. If the flagfirst_tupleis set totrue andP C L.APR \esnew %/%ﬂejmwes
then bothP andt will be propagated into the output stream sourma g 2uering /- aiyes “\ buffering
P preceeding).. If the flagfirst_tupleis se.t tofalseandP C done Join/winddifgarzinzrep?hnrceys SPEeT
L.APR onlyt will be propagated; otherwise bohandt are %P;—;ﬁ o
discarded. AW e~ BWe] : policy-based
(b) P is an incomplete policy If t.ts.csn, # Pts.cspthe i sub-windows
policy P is incomplete The 5SS operator will then automat- Brobe-Fiter) ( Fiter-Prob
ically discard bothP andt (without processing) to prevent
an unauthorized access. o _

Phase Ill: Adaptive Joining

Case 2: tuplet arrives prior to its policy P. If t.ts;, > - - -
L.CP.ts (by definition 4.1) the policy..CPis not applicable Figure 11. State Diagram of SCJoin.

to t. The SSoperator will then automatically discard both extended to other join conditions. The distinguishing ehar
L.CP andt. L.CPis discarded because tuples with newer acteristics of theSCJoin are: (1) it minimizes individual
policies (as indicated by.ts,,) are now arriving, and is processing per tuple by sharing execution for the data with
discarded because there is no policy for it, and thus denial-the same security policies, (2) it employs adaptive exeauti
by-default is enforced. When tliis policy P arrives later to  insidethe join operator based on how the policies partition
SSit will be discarded by definition d8S, as it has arrived  the data, and (3) it can utilize any other existing join algo-

out of order. rithm from the literature for probing the tuples based on joi
Case 3: an unrelated policyP’ follows immediately policy ~ predicate to further improve the execution.
P. P'.ts > L.CP.ts SSoperator will discard the policy The SCJoin has three phases: the policy collection, the

(based on the more recent timestamgPgfand initialize its ~ data collection and the adaptive join phases. Fig. 11 pesvid
state withP’, thus preserving the correct semantics for the the state diagram &CJoin. SCJoin starts with the policy
upcoming tuples. collection phase where inpgps from remote sources A and
From the above cases, we conclude that only tuples withB are received. Incomingps from the same data stream
complete policies that outstanding queries have access pri are treated as a part of the same policy until a data arrives on

ileges to will be output byBS operators. O that same data stream (which indicates the terminatioreof th
. i policy specification).
5.3. Select and Project Queries and SPs Once a data is received, the data collection phase begins.

Now we discuss if, and if so how, operators in stream SCJoin takes alazy join strategy and doesn't immediately
query plans need to be modified due to the presenspof  join a tuple upon its arrival. Rather, it waits for the artigh
in the data streams. Select and project operators need tall tuples that have the same policy. The motivation behind
be made “security-punctuation-aware”. These operat@s ar this approach is that if several tuples share the same policy
henceforth assumed to pass through the streaspag A andSCJoin can quickly determine if the policies have com-
select operator, while processing sipunctuated segment  mon restrictions (we denote such policiesampatiblg, we
maintains a list ofsps representing the policy for that s- can reduce the number of probes needed to be performed,
punctuated segment. If none of the tuples from the seg-were these tuples processed individually.

ment satisfy the select condition, their correspondiosare While in the data collection phase, if @pthat belongs
dropped as well. to a different policy arrives or a window size threshold is
A join operator, on the other hand, faces several chal-reachedSCJoin transfers control to the adaptive join (AJ)
lenges, including (i) joining streaming data with diffetean- phase. In the AJ phase, tuples are already “partitioned” int
cess control policies and (ii) sharing join processing agnon sub-windows by their corresponding security policies.
queries with different access privilegés We propose a When joining tuples with different policies, there are two
novel Security-Gmpliant Join(SCJoin) algorithm that ad-  approaches. First, we could join the tuples, and then for
dresses these challenges. all join results filter out the results whose policies are not
5.4. Security-Compliant Join (SCJoin) compatible. We term this approactprobe-and-filter(PF)

We presenSCJoin as a sliding count-based window join method. The probe procedure can utilize any exis_ting.jein al
algorithm, while time-based windows can be handled simi- gorithm from the literatur®. Alternatively, we can first filter
larly. Equijoins are the most common for stream systems, 50Ut the data based on compatibility of the policies and then

we focus on those — however, the proposed algorithm can pdPerform the join on the resulting (after filtering) tuplesi§
approach is termefilter-and-probe(FP) method.SCJoin

14we plan to address other operators, such as union and agg@erators as a
part of our future work. 15For simplicity of presentation, we chose nested loop join.



PROCEDURE SCJoin()
01.while new security punctuationssp,, arrive from stream A:
02. addsp, to current policyP,
03. storeP, in state AJV 4]
04.while new tuplesa; arrive from stream A and !'maxWindowCount:
05. Add tuplea; to sub-window AP,] C AflW 4]
06. Discard expired tuples in window [ 4]
07. Discard policies if there are no more tuples if#A] ] they are applicable to
08.for each policy P; € B[Wg]:
09. (PlaTg87‘7 Wlargew“) = (% > L;JB‘ ? (Pi7 WA) . (Pj-, WB))
10. if |Piarger| > 0.5 Wrarger| €xecute Filter-and-Probe(&; ], B[ P;])
11. elseif|Parger| < 0.1 Wrarger | €xecute Probe-and-Filter(&} ], B[ P;])
12. elseexecute either
/* Similar processing is done for streaBr/

PROCEDURE Filter-and-Probe(AP; ], B[ P;])
13.if P; N P; # 0: llcoarse filtering
14. for eachtuplea € A[ P;]:

15. for eachtupleb € B[ P;]:
/Net ¢ denote a join attribute in both data streams
16. if a.cp N b.cp # 0: /ljoin attribute policy-based filtering
17. if ((result=a >< b) # null)
18. store join result in the buffer
19. send join results preceded by their policies to the digfseam

/* Probe-and-Filter(...) executes in the reverse order */

Figure 12. SCJoin Algorithm.

8-12). We present the pseudocode for Filter-and-Probe pro-
cedure in Fig. 1¥.

First, Filter-and-Probe() begins with a coarse filtering an
intersects the policies from the opposite streams (Line 13)
If the result of the intersection is an empty sg, the tuples
don’t have intersecting policies and thus, there is no neaso
to further process them. Otherwise, the procedure corginue
further and processes each tuple from the opposite stream’s
sub-windows checking the policy compatibility on the join
attribute (Line 16). If two tuples have policies that ines
on the join attribute, they are joined (Line 17), otherwise
ignored. The join results are temporarily stored in theltssu
buffer (Line 18). After all results have been produced, they
are sent to the output stream preceded by their policieg(Lin
19).

6. Experimental Analysis

We have implemented our proposed security framework
in a Java-based DSMS named CAPE [15]. We run CAPE
on Intel Pentium IV CPU 2.4GHz with 1GB RAM running

takes an adaptive approach in selecting a join strategy. Thé/Vindows XP and 1.5.0.06 Java SDK. We use Wetwork-
adaptor component in the AJ phase takes two policies, oneP@sed Moving Objects Generatfr] to generate 110K mov-
from each stream, and based on a heuristic(s) determines afd objects sending their location updates in the form ohdat

execution strategy for the sub-windows of tuples that have
these policies. The heuristic we chose was based on cardi
nalities of sub-windows of tuples with the same polfty
Cardinality Heuristic : For each (7, P;) where

P, € AW, andP; € B[Wg], let (Piarger, Wiarger) =

(el > k2 (P, Wa) < (P, W),

o if | Plarger| > 0.5*|Wirarger | €Xecute filter-and-probe

o else if| Piarger| < 0.2%Wirarger| €Xecute probe-and-filter

e else, pick randomly either method

The heuristic chooses a filter-and-probe method for pdicie
associated with a large set of tuples. The motivation isyto tr
to quickly determine if a sub-window’s policy is compatible
with the policies from the opposite stream. If they are not,
there is no need to probe them further. If the sub-windows
are small, then aregular joinis performed first, and thegsipl
that join are filtered further based on compatibility of thei
policies. Once the join is completed, tB€Join returns to

the policy collection phase.

Algorithm for the SCJoin is shown in Fig. 12.SCJoin
processes tuples and security punctuations strictly ithe
der of their arrival. First a policy is collected (Lines 1-2)
Once a new tuple arrives, the policy is stored in the operator

state (Line 3) and the data collection phase begins (Lines 4-

7). Arriving tuples are added to its stream window under its
policy (Line 5) and are used to invalidate expired tuplegfro

the window of its data stream (Step 6). If there are policies
that no longer have any tuples in the window they are appli-
cable to, they are discarded (Line 7). After the data collec-

tion phase is completed, adaptive join phase begins (Lines;

16However, any other heuristic can be used to adapt the erecuti

streams. Given the generated data streams, we have injected
sps describinduple-granularityaccess control policy on the
location updatés.

6.1. Overhead of Security Shield (SS) Operator

Varying Ratio of Security Punctuations. Fig. 13a gives
the average processing cost per 1000 tuples &%wpera-

tor with varying ratio ofsps versus tuples in the data stream.
The ratio ofsps in the data stream was varied from 1 (every
tuple has a unique policy) to 100 (where 100 tuples share a
policy). The state of th&S operator was set to filter about
50% of the tuples. Fig. 13a shows that the overhea8®f
operator is very low. Even when every tuple has its own pol-
icy, the average processing c@sr 1000 tupless about 4
mst. As more tuples have common policies, 88 opera-

tor will have less overhead. The reason is that once a policy
arrives, theSS quickly determines if the tuples that follow
this policy should beall dropped or passed through. The
more tuples share a policy, the less is the average progessin
cost per tuple.

Varying SS State (Role Count) Fig. 13b gives the aver-
age overhead of aBS operator with varyindAPRset in the
state. The role count was varied from 1 (typical when an
SS serves one query) to 500 (whe®& may be shared by
multiple queries). The state of tI85 was set to filter about
50% of the tuples. With the increased role count, the average
overhead has increased from 1.31 ms (with 1 role) to 11.31

17For brevity of presentation, we omit the pseudocode for &sad-Filter(...) pro-
dure.
18e chose tuple level policy, because it is probably the mastroon granularity
ecurity in such mobile environments.

19Note, this cost does not include the overhead of scheduimgperator, dequeing
tuples from the input queue and sending tuples upstream.

ce
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ms (with 500 roles).SS operator useshort-circuit evalu-
ation. Whenever the first role that the matches is found,
the evaluation of thep against the rest of the roles is unnec-
essary. Thus the roles 8BS state are scanned until either
at least one role that the newly arrived matches is found,
or the end of theAPRset is reached. Overall, the overhead
cost of SS is small. Thus integratin§S operators into the

the execution run without angS. To evaluate the mem-
ory overhead of runnin§S, we measured the memory con-
sumption for executions with both tt&S pushed down and
up. A comparison of the memory usage for these executions
is shown in Fig. 158. SS, pushed down, filters more data
early, hence requiring fewer memory to store the tuples be-
ing processed compared to t88 being pushed up.

6.3. “Probe-and-Filter” vs. “Filter-and-Probe”

We performed three sets of experiments in evaluating
probe-and-filtemandfilter-and-probevs. adaptive-PF-or-FP
execution strategies f@CJoin. In the case of the first two,
the execution method @CJoin is fixed, i.e., the operator
always uses a probe-and-filter or a filter-and-probe styateg

query plans should not pose a significant overhead. It wouldSpecifically, we wanted to measure the effectiveness of the

certainly be preferable over executing the queries firad, an
then checking on their access privileges.

6.2. SS Operator “Push Up” vs. “Push Down”

adaptive approach inside ti$CJoin. The adaptor used the
heuristic introduced in Section 5.4. The window size was set
to 100 tuples. We varied thegs’ ratio (Fig. 16a), thesps’

We conducted a set of experiments in which we tested theSimilarities in the opposite streams (Fig. 16b), and the joi

SS “push up” S is the root operator) vs. “push down”

selectivity, i.e., the percentage of tuples that join pardew

evaluated the following queryContinuously retrieve mov-
ing_objectid, speed and location (x-, y- coordinates) for
those objects with speed greater thgnuherex was set to
control the selectivity of the query to be approximately 50%

of the moving objects, the location they are currently mgvin
towards [7].

Varying sps’ Ratio: Fig. 16a compares the execution strate-
gies whersps’ ratio is varied. The average processing time

In Fig. 14a we show the results regarding the average pro-Of probe-and-filter iswot significantly affected by theps’

cessing timger tuplein the query plan with th&S operator
being pushed down versus pushed up. $Bestate contains

ratio. This is due to the fact that in probe-and-filter method
join is performed first, and only if tuples produce a join re-

100 roles. In Fig. 14b we illustrate the results of the same sult, their policies are checked to see if the result shoeld b
experiment wher&S operator state is much smaller (it con- output. We fixed the join selectivity to be relative_ly small
tains 10 roles). As can be seen from the figures, the large{10%). Thus few results were produced and the lsighra-

state size (Fig. 14a) resulted in higher processing tim&®r
operator being “pushed down”. If the selectivity of an opera
tor (e.g., select) is low, and tI&S operator has a large state,
it is better to precede theS by the low selectivity operator.

tio did not significantly affect the average processing time
For the filter-and-probe method, on the other hand, the av-
erage processing time per tuple varieagps ratio changed.
Policies had to be frequently checked in order to either fil-

This way more tuples would be filtered and only then probed t€r the tuples with similar access control policies first and

against theésS state. On the opposite, if the selectivity of the

then to join them. The adaptive strategy, similar to filter-

query is large, i.e., many result tuples are produced and the2nd-probe, improved its performance when the sp-ratio in-
SS has a small state, it is better performance-wise to pushcréased. When fewer tuples shared a comisprit ran-

theSS down in the query plan.

domly picked between the two strategies, and thus its perfor

SS Overhead Figure 15a compares the average processingMance did not suffer as much as the filter-and-probe method.

time with and withoutSS operator in the query plan. As

20For better visibility, we illustrate the memory overhead @mly the SS with

can be observed, the overhead is low when compared withsmaller state (10 roles).
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Varying sps’ Similarities: For this experiment, we varied query processing itself, adds little overhead in a streaemyqu
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