
CERIAS Tech Report 2006-29

SECURITY AND PRIVACY IN DATA STREAM MANAGEMENT SYSTEMS

by Rimma V. Nehme, Elke A. Rundensteiner, Elisa Beritno

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



Security and Privacy in Data Stream Management Systems

Rimma V. Nehme1 Elke A. Rundensteiner2 Elisa Bertino1

1Department of Computer Science, Purdue University, West Lafayette, IN 47907 USA
2Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01608 USA

rnehme@cs.purdue.edu, rundenst@wpi.edu, bertino@cerias.purdue.edu

Abstract
Privacy and security in the context of the streaming sys-

tems largely have been overlooked. We now tackle this im-
portant problem in this paper. Our work focuses on context-
aware security and user-centric privacy preservation in data
stream management systems (DSMS) by exploiting security
constraints (called security punctuations) that are dynam-
ically embedded into data streams. The novelty of our pro-
posed approach is that access control policies are not persis-
tently stored in the DSMS but rather streamed together with
the data. We present novel query operators, termed Security
Shield (SS) and Security-Compliant Join (SCJoin) that are
designed to make queries comply with the security policies
of the streaming data while still guaranteeing near real-time
response. As a proof of feasibility, we have implemented the
security punctuation framework within a real DSMS. Our ex-
perimental results show that our proposed solution incurs
low overhead.

1. Introduction
1.1. Security in Data Streaming Environments

The need for people to protect themselves and their assets
is as old as humankind. The increasing use of electronic,
sensor and GPS devices means that individuals today have an
ever-growing range of electronic (data) assets that may po-
tentially be at risk. When computing devices are integrated
with people, various personal information is expressed in
digital form. Devices can communicate this information
over networks and users have no control over who and for
what purpose may query their data. Some users, knowing
that their personal information (e.g., location, health condi-
tion) is not safeguarded, may hesitate to use such (e.g., GPS
or health monitoring sensors) devices because of the risk of
data being inappropriately used, or the potential loss of con-
trol or power over their information assets.

Traditional access control schemes and privacy preserva-
tion mechanisms, which typically assume finite persistent
datasets and system-centric access control policies, become
largely inapplicable in this new stream paradigm. This inap-
plicability is due to the fact that stream environments tendto
be highly dynamic. Data is continuously generated and may
have different security sensitivities depending on the con-

text, on personal preferences or on the stream content, all of
which may frequently change. The users owning such de-
vices should have the ability to control their exposure to the
rest of the world. That is, they should be able to for example
hide the knowledge about themselves whenever desired.

We envision that individual devices transmitting stream-
ing data will be able to inject their respective security re-
strictions together with the data. Users will be able to ei-
ther explicitly specify their restrictions at runtime, or the de-
vices may come pre-set with customizable security rules that
would emit and adjust different security settings at runtime
based on the context information, such as location, time,
physical condition, proximity of other users, etc.

In this paper, we assume that streaming data is transmit-
ted securely from the data source to the streaming database1.
We concentrate on access control mechanisms, wherein the
streaming database engine examines streaming data tuples
and continuously checks if a query conforms to the stream-
ing security policies before permitting the query to access
the data.

1.2. Motivating Examples
Example 1: Protection against context-aware spam.
Users may want to block unwanted businesses from send-
ing them advertisements based on their location or any other
information. As a person is driving or walking, the device
may adapt security constraints based on the proximity of the
stores/businesses and the user preferences (possibly pre-set
in advance) limiting to who would be allowed to “see” the
user. This helps to impede focused marketing efforts and
prevents from receiving the “context-aware spam” – services
or information the users don’t know of or agree to.
Example 2: Privacy protection of personal health data.A
patient may be living at home with a health monitoring de-
vice attached to him which can detect early health abnormal-
ities and transmit alert signals to relevant personnel. How-
ever, the patient may prefer only certain user groups, such as
the closest hospital or his doctor to have access to his stream-
ing data and prevent access for any third-parties (e.g., insur-
ance company or other hospitals). Only if his vital signs

1That is, the possibility of the streaming data being intercepted and compromised
on the network is beyond the scope of this paper.



go far above the norm and he is in imminent danger need-
ing urgent care, would the closest hospital, ER or ambulance
dispatch center gain access to his streaming data. By setting
his privacy preferences, the patient can prevent unauthorized
people from accessing the information or selectively choose
who has access to which part of his data based on the real-
time values streamed by his monitoring device.
Example 3: Privacy protection in the workplace. Many
aspects of the modern workplace have introduced serious
concerns about employee privacy. Company cars, cell
phones, GPS devices, and laptops today provide employers
with powerful capabilities to monitor the activities of their
employees. During the course of a working day, an em-
ployee may go to both business-related and non-business-
related places. Monitoring a personal trip, for example dur-
ing a lunch break, might be an unreasonable intrusion on an
employee’s privacy. Sometimes a user may want to specify
rules to “hide” or selectively limit which data the managers
or co-workers can access from his data stream at either a cer-
tain time or a certain location.

1.3. Our Proposed Solution: SPs Framework
We propose to stream security constraints together with

the actual data stream indicating security/privacy prefer-
ences on the current portion of the stream. Specifically, we
propose to embedsecurity punctuations(or shortsps) into
data streams2. A security punctuation is a predicate that de-
scribes a subset of tuples and their access control policy, also
called asecurity policy. It informs a stream processor of the
access control privileges on a stream as a whole, or a cer-
tain substream of tuples, or on some attribute(s) of a tuple.
A conceptual view of a stream with security punctuations is
shown in Fig. 1. Data sources emit security punctuations
(sps) based on user specifications. In our work, we distin-
guish between two types of users: (1) users providing the
streaming data, termeddata providers, and (2) users query-
ing the streaming data, termedquery specifiers.

A streaming database has a security punctuation analyzer
component which serves two purposes: first, to combine se-
curity punctuations with similar policies (to reduce mem-
ory overhead and save CPU) and second, to allow server-
side specification of additional security policies. In the latter
case, the server policies are translated into security punc-
tuations and combined with the arriving data providersps.
Such design allows organizations to enforce their own poli-
cies in addition to the ones specified by the data providers.
We assume that server-specified policies maynot override,
but may further “refine” data provider policies, by putting in
additional constraints. Tuples, preceded by their correspond-
ing sps, are streamed into a DSMS where continuous queries
are evaluated subject to the tuples’ security policies.

2We chose the name “security punctuations”, because by introducingsps into data
streams, we subdivide i.e.,punctuateinfinite data streams into finite partitions with
associated security policies.
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Figure 1. Data Stream With SPs.
Our Contributions :

• We propose a security punctuation model as a real-time,
fine-grained access control mechanism to enforce security on
streaming data (Section 4).

• We describe an extension to the CQL language [4] for
the specification of security punctuations in data streams
(Section 4.3).

• We present a novelSecurity Shield(SS) operator to en-
force the compliance of continuous queries according to the
policies expressed via streamingsps. SS preserves the cor-
rectness of the security semantics even when policies may
be missing or arrive out-of-sync. We also provide the proof
of correctness ofSS operation (Section 5.1).

• We propose aSecurity-Compliant Join(SCJoin) algo-
rithm. SCJoin is designed to (i) join several data streams
each streaming tuples with possibly distinct access control
policies, and (ii) share the join processing among multiple
queries specified on those same data streams but with dif-
ferent access privileges. The novelty of the SCJoin lies in
the adaptive selection among several join strategies taking
window and shared policies into account. (Section 5.4).

• We experimentally evaluate our approach in the DSMS
systemCAPE[15] against data streams that have no security
policies embedded in them. Our experimental results show
that our approach has low overhead (Section 6).
Roadmap: Section 2 reviews related work. Section 3 dis-
cusses the stream model and our assumptions. Section 4 in-
troduces the concept of security punctuations. Section 5 dis-
cusses query processing framework withsps, whereas Sec-
tion 6 presents our experimental evaluation and Section 7
concludes the paper.

2. Related Work
Data Stream Management Systems. Streaming databases
have been a hot topic in the past few years [5, 8, 13, 15].
Punctuations[17, 18] – dynamic annotations serving as sub-
stream delimiters inside data streams have been first pre-
sented in [17]. Further,PJoin [10] and PWJoin [11] ap-
ply punctuations to achieve join optimizations on streaming
data. Fegaras et al. [12] use annotation in the streaming
XML data to declare the data structure of the incoming data,
and whether the data fragment following the annotation is a
repeat or an update. We go beyond the simplistic notation of
indicating future incoming values, by now employing a more
sophisticated security-related semantics.
Security and Privacy Preservation. W3C developed the
Platform for Privacy Preferences (P3P) specification [9] for



encoding web site privacy policies. P3P, however, is a cum-
bersome language for streaming environments. In P3P users
cannot directly specify what is acceptable in a policy, only
what is unacceptable. Simple policies often result in convo-
luted and verbose P3P specifications [2].

Agrawal et al. proposed the concept of Hippocratic
databases [3] to incorporate privacy protection within
RDBMS. The authors propose using privacy metadata. This
work however addresses neither dynamic changes in poli-
cies, nor support for both user and system policy specifica-
tion. Both those features we now address in our work.

Preserving privacy by ensuring limited disclosure of data
in RDBMS was explored by Lefevre et al. [14]. The imple-
mentation is based on query modification techniques. The
proposed approach has several limitations in the context of
streaming systems. First, queries in DSMS are typically
long-running, thus access policies may change many times
during the execution of a query. Modifying it at runtime
for privacy preservation would cause modifications in the
query plan. Since sub-plans may be shared among multi-
ple queries, this may cause a cascading effect on other query
plans, potentially “stalling” the system and not producing
any query results (while the query plan is migrated). Our
technique solves this problem by using special statefulSS
operators that filter data for the outstanding queries that they
are not allowed to access. TheSS operators’ states de-
pict current access privileges of the outstanding queries and
can be simply updated whenever a query access privileges
change, thus eliminating the need for a query modification.

In [1], the authors propose language constructs for fine
grained access control (FGAC) in RDBMS. The work pro-
poses an alternative to how relational databases currently
support FGAC via traditional mechanisms based on views,
triggers or special registers. The proposed method for FGAC
works well only when the number of restrictions is small
or the data is relatively static. Such conditions are rare for
streaming data.

We advance the state-of-the-art by addressing the limi-
tations of the current techniques and introduce a security-
compliant data stream framework where access control poli-
cies are streamed together with the data instead of stored on
the server.

3. Preliminaries
Subjects, Objects, Rights and Authorizations. The sub-
ject, object and right concepts are well known in access con-
trol. An object is an entity that contains information. Ac-
cess to an object implies right to use the information it con-
tains. Examples of objects in streaming system are: streams,
tuples, and tuple attributes. Asubject may invoke a re-
quest to access an object, e.g., a read request3. We useflat

3We consider the subjects in our model to be a set of users who specify continuous
queries in DSMS (i.e., query specifiers).
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Figure 2. Roles Organized into a Hierarchy.
Role-Based Access Control (RBAC) model4 as an example
of an access control model and show how it can be imple-
mented through security punctuations. We chose RBAC as it
is one of the most widely used access control models. How-
ever, our framework is generic, that is any access control
model (e.g., DAC, MAC) could be implemented using the
sps model. Query specifiers activate their roles when they
sign into the streaming system. We require that each query
specifier belongs to at least one role, and this assignment
cannot be changed while executing the queries.

Rightsare a set of privileges that a subject can hold and
execute on an object. In this work, we consider a read right
only5. A security policy(akaaccess control policy) is a set of
rules indicating what query specifiers are allowed to access.
Authorizationis the granting of rights.
Streaming Model. We consider a centralized DSMS pro-
cessing long-running queries on a set of data streams. Acon-
tinuous data streams is a potentially unbounded sequence of
tuples that arrive over time. Tuples in the stream are of the
form t = [sid, tid, A, ts, ts.csnsp], wheresid is the stream
identifier, tid is the tuple identifier6, A is a set of attribute
values of the tuple,ts is the timestamp of the tuple7, and
ts.csnsp is the timestamp and thecumulativesequence num-
ber of the corresponding security policy represented bysps
(Section 4 elaborates more on this parameter).

We consider a set of continuous queries{q1,. . .qp} exe-
cuting over data streams, where each queryqi has associated
security restriction(s) determined by the role (r) of the query
specifier (denoted asqr

i ). Queries are comprised of a set of
query operators{op1, . . . opk}, where operatorsinherit the
security restrictions of the queries for which they processthe
data (i.e., ifopk ∈ qr

p, thenopk = opr
k).

4. Security Punctuations (SPs)
Security punctuation(sp) is a meta-data introduced into a

data stream to specify security restrictions on the tuples.
Applicability : Sps always precede the tuples for which they
describe the access control policy (Fig. 3). An access control
policy specified viasp(s) may apply to (1) a (sub)stream, (2)
a tuple, or (3) an attribute of a tuple. Generally, we refer to
them asobjects. The tuples between two consecutive punc-
tuations form ans-punctuated segment. The s-punctuated
segment describes the applicability scope of the immediately

4Fig. 2 depicts a set of roles organized in a hierarchy. For more information on
RBAC readers are referred to [16].

5Just about all stream systems are read-only right now, hencethis is a natural focus.
Our model can be extended to support other rights, e.g., update, append, etc.

6This may be similar to a primary key in relational tables, or it may be a unique
attribute(s) that can be used to identify a particular data provider, e.g., patientid.

7The timestamps of stream elements are assumed to have a global ordering based
on the system’s clock.
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Figure 3. Security Punctuations’ Applicability.

preceeding policy.
Any consecutivesps belong to the samesp-batchand are

interpreted as a single access control policyPi. A policy
may consist of one or moresps. A policy Pj applicable to
an objecto overrides a previous policyPi that had arrived
earlier and was applicable too8. At any time, a policy may
apply to zero or more tuples and any tuple may have either
one or no policy.

Each sp has a parameterts.snsp, which contains the
timestampts for whenthe policy was generated, and its se-
quence number (sn) in the policy9. Each tuple also carries
a ts.csnsp parameter that contains the information about its
policy. Thecsn here depicts the cumulative sequence num-
ber of the lastsp that belongs to the policy. The stream
system uses this parameter to detect the missing and out-of-
ordersps and protects the data from an unauthorized access
(Section 5.1). If ansp is missing, we then denote the policy
as beingincompleteand enforcedenial-by-default(i.e., no
access is allowed) to the objects with that policy.
Structure: Security punctuations are composed of four parts
(Fig. 4): (1)Data Description Part(DDP), (2) Security Re-
striction Part (SRP), (3) aSign, and (4) anImmutablefield.
DDP specifies towhich object(s) the access control policy
applies.SRPdenotes both the access control model type and
the value of the subjects that are authorized. As mentioned
before, we use a role-based access control model as an ex-
ample model in this work. Thus, theSRPpart of the security
punctuation specifies RBAC as model and a set ofrole(s) that
are authorized by thesp10. However, our RBAC model us-
age is general, so in principle any access control model could
be plugged into security punctuations’SRP. TheSignspeci-
fies if the authorization ispositiveor anegative[6]. Finally,
theImmutablefield indicates if thespcan be combined with
other (e.g., server-specified) policies.

We use pattern expressions to describe objects and their
restrictions. Patterns are suitable here, since many objects
may share similar policies. Fig. 5 illustrates different kinds
of patternssps match.

Let eval(N, V, E) be a function that, given a setN of
values, their typeV and a pattern expressionE, returns a
subsetNs ⊆ N (of typeV ) that matchesE. We distinguish
between four types of values in our model, that is,V can

8We plan to consider incremental policy change viasps as a part of our future
work.

9All sps that belong to the same policy have the same timestampts, but a unique
sequence number. The sequence number represents the order of the sp in the policy.

10We omit the access control model specification in thesps, since all of them are
assumed to use RBAC model.
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Figure 5. Pattern Expressions for SPs.
be Streams, Tuples, Attributesor Roles. We now formally
define security punctuations.

Definition 4.1. (Security Punctuation)Let
(1) S = {s1 . . . sm}, m ≥ 1, be the set of all streams,
(2) T = {ti,1 . . . ti,n}, i = 1 . . . m, n ≥ 1, be the set of tuples in a
streamsi ∈ S,
(3) A = {ai,j,1 . . . ai,j,k}, i = 1 . . . m, j = 1 . . . n, k ≥ 1, be a
set of attributes in a tupleti,j ∈ T in a streamsi ∈ S,
(4) R = {r1 . . . rl}, l ≥ 1, be the set of roles in a system.
A security punctuationsp defines a security policyP and has the
form: < DDP | SRP | {+/-} | {T/F} | ts | sn> wheresp.DDP =
(Es, Et, Ea) andsp.SRP = Er. Es, Et, Ea, andEr are pattern
expressions specified againstS, T , A andR, respectively.ts is the
timestamp of the policyP and cs is the sequence number of the
sp ∈ P . Let O = {os, ot, oa} be a set of objects whereos=(s̄),
ot=(s̄, t̄), andoa=(s̄, t̄, ā), such that̄s ∈ eval(S, Streams,Es),
t̄ ∈ eval(T,Tuples,Et) and ā ∈ eval(A,Attributes,Ea). The
interpretation of the security punctuation is the following:
• if Sign = ‘+’: a subject with roler ∈ eval(R,Roles,Er) may
access any objecto ∈ O at any timetsaccess ≥ ts.
• if Sign = ‘-’: a subject with roler ∈ eval(R,Roles, Er) is de-
nied access to any objecto ∈ O at any timetsaccess ≥ ts.
If Immutable = False, sp may be combined with the server-
specified policies applicable to the same objects. Otherwise, sp
is immutable, and the server-side policies are ignored.

A security punctuation can be specified at the level of a
stream, a tuple, or an attribute. For simplicity of presenta-
tion, we assume positive and mutablesps in the rest of our
discussion11.

4.1. Security Punctuation Examples
Here we give examples ofsps using three data streams

(Fig. 6): HeartRate, BodyTemperatureand Breathing-
Rate. Let the set of rolesR be the following, R =
{C,D,DM,E,GP,ND} as in Fig. 2. The followingsps may
be created (thets andsn parameters are omitted):

Stream level restriction:
<s1, *, * | C | + > - Only queries registered by a cardiologist (C) can query the
streamHeartRate(s1).

Tuple level restriction:
<*, [120,133], * | GP | + > - Only queries registered by a general physician (GP) can
access data tuples (from any data stream) for patients with ids between 120 and 133.

11We omit theImmutablefield. Unless noted otherwise, allsps are assumed to be
mutable.



Patient_id | Beats_per_min | Timestamp 

120 | 70 | Sep-12-05 9:17:00 
s1: HeartRate

Stream

   Patient_id | Temperature | Timestamp 
120 | 98.6 | Sep-12-05 9:21:00 
 

s2: BodyTemperature
Stream

   Patient_id | Frequency | Depth | Timestamp 
120 | 8 | 38 | Sep-12-05 9:22:00 

s3: BreathingRate
Stream

...

...

...

Figure 6. Sample Data Streams.

Attribute level restriction :
<{s1, s2}, *, {Temperature, Beats per min} | {D, ND} | + > - Only a
doctor (D) or a nurse-on-duty (ND) can query the temperature and the heart beats
from s1 ands2 streams.

4.2. Combining Multiple SPs
For manipulatingsps in streams, we use three basic func-

tions: match(), union() and intersect(). match() identifies
what tuples are related to a security punctuation, after eval-
uating expressions insp.DDP. If multiple sps applicable to
the same tuples have been defined (e.g., data provider and
server-specifiedsps), we consider two design choices for
combining thosesps:
Union: This corresponds to the union of applicable security restrictions
• match(t, (union(sp1, sp2))) ⇐⇒ match(t, sp1) ∨ match(t, sp2)

Intersect: This corresponds to the intersection of applicable security restrictions
• match(t, (intersect(sp1, sp2))) ⇐⇒ match(t, sp1) ∧ match(t, sp2)

With the intersect semantics, the access to data decreases as
additionalsps are applied. Conversely, with the union se-
mantics, access to data increases as additionalsps are ap-
plied. To dissallow server policies from increasing access,
intersect semantics should be applied. Alternatively, a data
provider can setImmutablefield = True (T), thus prevent-
ing any modification to data provider policies on the server
side.
4.3. CQL Extensions to Support SPs

We have extended CQL [4] syntax to support the speci-
fication of sps on data streams (syntax is illustrated in Fig.
712). Fig. 8a gives an example of using our proposed syntax
and represents the followingsp:

<s3, [120,200], Frequency| R1G | + | T >13

It is a positive and an immutablesp that allows roleR1 to
accessbreathing frequencyin streams3for patients with ids
120 through200, and roleR1candelegateaccess control at
this granularity (i.e., Frequency attribute for this set ofpa-
tients) to other roles.
4.4. Access Control Delegation Through SPs

In some circumstances, a data provider may want to del-
egate access rights to his/her streaming data. For example,a
doctor may need to consult with a specialist regarding some
patient data. He would thus need to make available the por-
tion of the stream to the specialist with the permission of the
patient. The patient controls access control delegation, by
specifying which roles are permitted to act as delegates, and
which objects they can give access to on his or her behalf.

12To keep the presentation concise, we have omitted the expressions for theDDP
and theSRPsyntax.

13We use superscripts (G/−G) to denote roles with/without delegation rights re-
spectively.
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(a) Creating a New sp (b) Specifying sp on Streaming Results

Figure 8. CQL Examples of SPs.
To delegate access rights on stream data, a data producer

would specify WITH GRANT OPTION when creating a se-
curity punctuation as illustrated in Fig. 8a.

Query specifiers with grant option may generate new
security punctuations on the results of their queries. In
such a case, a query specifier would append ON RE-
SULT (sp expression[,. . .n]) clause to the query, where
sp expressioncorresponds to the syntax for creating newsp

(Fig. 8b).
In the implementation, we designed asecurity punctua-

tion generator(SPGen) operator that is added as the root
operator in the query plan.SPGen cleans the data stream by
removing existingsps and injects newsps based on the grant
authorizations and the ON RESULT clause of the query.
5. Security-Enhanced Query Processing

We now describe our proposed query processing mecha-
nism that is aware and compliant with the security restric-
tions on the stream data. When a query specifier registers a
continuous query, the role(s) of the query specifier are au-
tomatically detected by the DSMS and associated with that
query. We must consider both the roles associated with the
query and the streamingsps in determining which data tu-
ples are allowed “to be seen” by the query. For this purpose,
we introduce two novel operators:Security Shield(SS) and
Security-Compliant Join (SCJoin). Fig. 9 illustrates an ex-
ample of a continuous query network withSS andSCJoin
operators embedded inside the shared plan for three queries,
Q1, Q2, andQ3. We discuss the core functionality of the
operators in detail next.
5.1. ‘Security Shield’ (SS) Operator

A “Security Shield” (SS) operator has multiple function-
alities: (1) it filters tuples if queries donot have access priv-
ileges to them, (2) preserves correctness of the security se-
mantics whensps may be “missing” or arrive out of order,
and (3) determines if thesps can be discarded early in the
query plan (to reduce memory requirements) without violat-
ing the security semantics. TheSS operators are integrated
with the rest of the query plan without affecting the function-
alities of other continuous query operators.
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Figure 9. Security-Enhanced Query Network.
SS is a stateful operator, and its state consists of the fol-

lowing four components:

Associated Parent Operator(s) (APO): Set of all upstream operators in the query
plan for which theSS “pre-filters” data tuples. This set is used to maintain the cor-
respondence between the query operators and their access privileges. If a singleSS
is shared by several queries, and a query is removed or it changes its access rights,
the DSMS determines its operators and updates the security predicates in theSS state
elimintating the need for query modification.

Associated Processing Role(s) (APR): Set of security predicates (in the case of RBAC
model, set of roles) for which theSS operator allows data tuples to “pass through”. For
example, tuples with policies where only a roler /∈ APR can access, are discarded.

Propagatesp Further Flag (PFF): Indicates whether theSS must allow thesps to
propagate further up the stream. This flag is used to determine if thesps can be dis-
carded early in the query plan. This feature helps to reduce memory requirements and
improve the query execution performance.

Current Policy (CP): A data structure depicting the properties of the current policy
for the tuples that are about to arrive. Current policyP is in theSS state until the
arrival of another policyP’ with a more recent timestamp.

Fig. 10 presents theSS algorithm. An input to theSS oper-
ation may be either a security punctuationspor a tuplet.

When a newsparrives,SS first checks if the timestamp
of the current policy in the state equals to0 or L.CP.ts, which
indicates that theSS needs to either initialize a new policy
or add the arrivedsp to the current policy, respectively. If it
is a new policy, thesp’s timestamp becomes the timestamp
of the new current policyL.CP.ts(Line 1). If there is already
a policy in the state, and the newly arrivedsp has a more
recent timestamp than the current policy, it becomes the new
current policy (Line 3). Otherwise thesp is discarded, since
it had arrived after the policy with a more recent timestamp.

When a new tuplet arrives (Line 4),SS checks if there
is a policy in state for it (Line 6). If there are none,t is dis-
carded (denial-by-default is enforced). OtherwiseSS checks
if this is the first tuple that begins the s-punctuated segment
(Line 7). If true, we assume that the policy is complete, and
from now on the tuples with this policy will be arriving.SS
calculates the cumulative sequence number (L.CP.csn) based
on thesps received (Line 8). Thecsnindicates the largest cu-
mulative sequence number of thesps (with no gaps in their
sns). For example, ifcsn= 3, it means that three sequential
sps contributing to the same policy have been received. In
Line 10,SS checks if the newly calculatedcsn is the same
as the new tuple indicates. If they are not equal, somesp(s)
are missing and it is an “incomplete” policy. Due to the un-

—————————————————————————————-
PROCEDURE SSOperation(sp | t)
//L is the state of SS operator
01.new security punctuationsp arrives:
02. if (L.CP.ts = 0) or (L.CP.ts = sp.ts) then L.CP.Add(sp); L.CP.ts = sp.ts;
03. else if(L.CP.ts< sp.ts) then emptyL.CP; L.CP.Add(sp); setL.CP.ts = sp.ts;

setfirst tuple flag = true;
04. else if(L.CP.ts> sp.ts) then discardsp;
05.new tuple t arrives:
06. if L.CP.ts = 0then discardt; //no policy in the state
07. else if(first tuple flag) //end of sp-batch
08. calculateL.CP.csnfrom all sps that belong toL.CP
09. first tuple flag = false
10. if L.CP.ts.csn= t.ts.csnsp

11. if t.R⊆ L.APRthen
12. if L.PFF = trueand policy sent6= true then
13. sendL.CP.spsto output stream, setpolicy sent = true
14. sendt to output stream
15. elsediscardt
16. elseemptyL.CP, discardt, setL.CP.ts = 0, setfirst tuple flag = true
17. else//just another tuple from s-punctuated segment arrived
18. //similar processing as in Lines 8-14
—————————————————————————————-

Figure 10. SS Algorithm.
certainty about policy, theSS discards both the policy and
the tuplet (Line 16). If a policy is incomplete, we do not
know the full set of restrictions on the tuple(s), and thus ex-
ecute denial-by-default. If the policy’s and the tuple’scsns
are equal, the policy is complete, and the tuple can be pro-
cessed further.SS procedes to check if thet’s access control
policy matches the roles in the state’sL.APR. If there is no
overlap, the tuple is discarded. The interpretation is thatthe
tuple’s policy does not allow access to any query comprised
of the operators in theL.APO set. If there is a match, the
tuple is sent to the output stream (Line 14). The tuple’s pol-
icy will precede the tuple, ifL.PFF is true and the policy has
not yet been sent by theSS operator (Line 13). When the
subsequent tuples from the s-punctuated segment arrive, the
processing is similar (Lines 17-18).

When generating a query plan, we try to pushSS oper-
ators “down” in the query plan to filter out tuples as early
as possible to minimize the traffic and improve query exe-
cution. However, in some cases it may be advantageous to
push theSS operator “up”, for example if the operators in
the query plan have a low selectivity and queries have broad
range of access privileges.

5.2. Correctness of SS
In this section, we provide a proof of correctness of the

SS operation. We prove thatSS will only process tuples
with completepolicies, otherwise it will enforce denial-by
default.
Theorem 5.1. For any tuple t, SS will process t only if its
policy P is complete and in correct order. Otherwise SS will
prevent access to t. Policy P will be propogated only once
and only if it is complete.

Proof. Let SSbe a security shield operator in a query net-
work. LetL be its state. Assume that∃ sp1,sp2,sp3 ∈ P and
L.CP = P, andt ∈ T whereT is a set of tuples. We identify
the following three cases:
Case 1: policyP arrives prior to tuple t. In this case, a
policy P can be a



(a) P is complete policy: If t.ts.csnsp = P.ts.csn, then the
policy P is complete. TheSSoperator will then process the
tuple t. If the flagfirst tuple is set totrue andP ⊆ L.APR,
then bothP andt will be propagated into the output stream
(P preceedingt). If the flagfirst tuple is set tofalseandP⊆
L.APR, only t will be propagated; otherwise bothP andt are
discarded.
(b) P is an incomplete policy: If t.ts.csnsp 6= P.ts.csn, the
policy P is incomplete. TheSS operator will then automat-
ically discard bothP andt (without processingt) to prevent
an unauthorized access.
Case 2: tuple t arrives prior to its policy P. If t.tssp >

L.CP.ts, (by definition 4.1) the policyL.CP is not applicable
to t. The SSoperator will then automatically discard both
L.CP and t. L.CP is discarded because tuples with newer
policies (as indicated byt.tssp) are now arriving, andt is
discarded because there is no policy for it, and thus denial-
by-default is enforced. When thet’s policy P arrives later to
SS, it will be discarded by definition ofSS, as it has arrived
out of order.
Case 3: an unrelated policyP’ follows immediately policy
P. P’.ts > L.CP.ts. SSoperator will discard the policyP
(based on the more recent timestamp ofP’) and initialize its
state withP’, thus preserving the correct semantics for the
upcoming tuples.

From the above cases, we conclude that only tuples with
complete policies that outstanding queries have access priv-
ileges to will be output bySS operators.

5.3. Select and Project Queries and SPs
Now we discuss if, and if so how, operators in stream

query plans need to be modified due to the presence ofsps
in the data streams. Select and project operators need to
be made “security-punctuation-aware”. These operators are
henceforth assumed to pass through the streamingsps. A
select operator, while processing ans-punctuated segment,
maintains a list ofsps representing the policy for that s-
punctuated segment. If none of the tuples from the seg-
ment satisfy the select condition, their correspondingsps are
dropped as well.

A join operator, on the other hand, faces several chal-
lenges, including (i) joining streaming data with different ac-
cess control policies and (ii) sharing join processing among
queries with different access privileges14. We propose a
novelSecurity-Compliant Join(SCJoin) algorithm that ad-
dresses these challenges.

5.4. Security-Compliant Join (SCJoin)
We presentSCJoin as a sliding count-based window join

algorithm, while time-based windows can be handled simi-
larly. Equijoins are the most common for stream systems, so
we focus on those – however, the proposed algorithm can be

14We plan to address other operators, such as union and aggregate operators as a
part of our future work.
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extended to other join conditions. The distinguishing char-
acteristics of theSCJoin are: (1) it minimizes individual
processing per tuple by sharing execution for the data with
the same security policies, (2) it employs adaptive execution
inside the join operator based on how the policies partition
the data, and (3) it can utilize any other existing join algo-
rithm from the literature for probing the tuples based on join
predicate to further improve the execution.

TheSCJoin has three phases: the policy collection, the
data collection and the adaptive join phases. Fig. 11 provides
the state diagram ofSCJoin. SCJoin starts with the policy
collection phase where inputsps from remote sources A and
B are received. Incomingsps from the same data stream
are treated as a part of the same policy until a data arrives on
that same data stream (which indicates the termination of the
policy specification).

Once a data is received, the data collection phase begins.
SCJoin takes alazy join strategy and doesn’t immediately
join a tuple upon its arrival. Rather, it waits for the arrival of
all tuples that have the same policy. The motivation behind
this approach is that if several tuples share the same policy,
andSCJoin can quickly determine if the policies have com-
mon restrictions (we denote such policies ascompatible), we
can reduce the number of probes needed to be performed,
were these tuples processed individually.

While in the data collection phase, if ansp that belongs
to a different policy arrives or a window size threshold is
reached,SCJoin transfers control to the adaptive join (AJ)
phase. In the AJ phase, tuples are already “partitioned” into
sub-windows by their corresponding security policies.

When joining tuples with different policies, there are two
approaches. First, we could join the tuples, and then for
all join results filter out the results whose policies are not
compatible. We term this approach -probe-and-filter(PF)
method. The probe procedure can utilize any existing join al-
gorithm from the literature15. Alternatively, we can first filter
out the data based on compatibility of the policies and then
perform the join on the resulting (after filtering) tuples. This
approach is termedfilter-and-probe(FP) method.SCJoin

15For simplicity of presentation, we chose nested loop join.



—————————————————————————————-
PROCEDURE SCJoin()
01.while new security punctuationsspa arrive from stream A:
02. addspa to current policyPa

03. storePa in state A[WA ]
04.while new tuplesai arrive from stream A and !maxWindowCount:
05. Add tupleai to sub-window A[Pa ] ⊆ A[WA ]
06. Discard expired tuples in window A[WA ]
07. Discard policies if there are no more tuples in A[WA ] they are applicable to
08. for each policyPj ∈ B[WB ]:

09. (Plarger , Wlarger ) = (
|Pi|
|WA|

>
|Pj |
|WB |

? (Pi, WA) : (Pj , WB ))

10. if |Plarger | > 0.5*|WLarger | execute Filter-and-Probe(A[Pi ], B[Pj ])
11. else if|Plarger | < 0.1*|WLarger | execute Probe-and-Filter(A[Pi ], B[Pj ])
12. elseexecute either
/* Similar processing is done for streamB*/

—————————————————————————————-
PROCEDURE Filter-and-Probe(A[Pi ], B[Pj ])
13. if Pi ∩ Pj 6= ∅: //coarse filtering
14. for each tuple a ∈ A[Pi]:
15. for each tuple b ∈ B[Pj ]:

//let c denote a join attribute in both data streams
16. if a.cp ∩ b.cp 6= ∅: //join attribute policy-based filtering
17. if ((result= a ./ b) 6= null)
18. store join result in the buffer
19. send join results preceded by their policies to the output stream
/* Probe-and-Filter(...) executes in the reverse order */

—————————————————————————————-
Figure 12. SCJoin Algorithm.

takes an adaptive approach in selecting a join strategy. The
adaptor component in the AJ phase takes two policies, one
from each stream, and based on a heuristic(s) determines an
execution strategy for the sub-windows of tuples that have
these policies. The heuristic we chose was based on cardi-
nalities of sub-windows of tuples with the same policy16:
Cardinality Heuristic : For each (Pi, Pj) where
Pi ∈ A[WA] andPj ∈ B[WB ], let (Plarger, Wlarger) =

( |Pi|
|WA| >

|Pj |
|WB | ? (Pi, WA) : (Pj , WB)).

• if |Plarger | > 0.5*|WLarger | execute filter-and-probe
• else if|Plarger | < 0.2*|WLarger | execute probe-and-filter
• else, pick randomly either method.
The heuristic chooses a filter-and-probe method for policies
associated with a large set of tuples. The motivation is to try
to quickly determine if a sub-window’s policy is compatible
with the policies from the opposite stream. If they are not,
there is no need to probe them further. If the sub-windows
are small, then a regular join is performed first, and the tuples
that join are filtered further based on compatibility of their
policies. Once the join is completed, theSCJoin returns to
the policy collection phase.

Algorithm for theSCJoin is shown in Fig. 12.SCJoin
processes tuples and security punctuations strictly in theor-
der of their arrival. First a policy is collected (Lines 1-2).
Once a new tuple arrives, the policy is stored in the operator
state (Line 3) and the data collection phase begins (Lines 4-
7). Arriving tuples are added to its stream window under its
policy (Line 5) and are used to invalidate expired tuples from
the window of its data stream (Step 6). If there are policies
that no longer have any tuples in the window they are appli-
cable to, they are discarded (Line 7). After the data collec-
tion phase is completed, adaptive join phase begins (Lines

16However, any other heuristic can be used to adapt the execution.

8-12). We present the pseudocode for Filter-and-Probe pro-
cedure in Fig. 1217.

First, Filter-and-Probe() begins with a coarse filtering and
intersects the policies from the opposite streams (Line 13).
If the result of the intersection is an empty set (∅), the tuples
don’t have intersecting policies and thus, there is no reason
to further process them. Otherwise, the procedure continues
further and processes each tuple from the opposite stream’s
sub-windows checking the policy compatibility on the join
attribute (Line 16). If two tuples have policies that intersect
on the join attribute, they are joined (Line 17), otherwise
ignored. The join results are temporarily stored in the results
buffer (Line 18). After all results have been produced, they
are sent to the output stream preceded by their policies (Line
19).

6. Experimental Analysis
We have implemented our proposed security framework

in a Java-based DSMS named CAPE [15]. We run CAPE
on Intel Pentium IV CPU 2.4GHz with 1GB RAM running
Windows XP and 1.5.0.06 Java SDK. We use theNetwork-
based Moving Objects Generator[7] to generate 110K mov-
ing objects sending their location updates in the form of data
streams. Given the generated data streams, we have injected
sps describingtuple-granularityaccess control policy on the
location updates18.

6.1. Overhead of Security Shield (SS) Operator
Varying Ratio of Security Punctuations: Fig. 13a gives
the average processing cost per 1000 tuples of anSS opera-
tor with varying ratio ofsps versus tuples in the data stream.
The ratio ofsps in the data stream was varied from 1 (every
tuple has a unique policy) to 100 (where 100 tuples share a
policy). The state of theSS operator was set to filter about
50% of the tuples. Fig. 13a shows that the overhead ofSS
operator is very low. Even when every tuple has its own pol-
icy, the average processing costper 1000 tuplesis about 4
ms19. As more tuples have common policies, theSS opera-
tor will have less overhead. The reason is that once a policy
arrives, theSS quickly determines if the tuples that follow
this policy should beall dropped or passed through. The
more tuples share a policy, the less is the average processing
cost per tuple.
Varying SS State (Role Count): Fig. 13b gives the aver-
age overhead of anSS operator with varyingAPRset in the
state. The role count was varied from 1 (typical when an
SS serves one query) to 500 (whereSS may be shared by
multiple queries). The state of theSS was set to filter about
50% of the tuples. With the increased role count, the average
overhead has increased from 1.31 ms (with 1 role) to 11.31

17For brevity of presentation, we omit the pseudocode for Probe-and-Filter(...) pro-
cedure.

18We chose tuple level policy, because it is probably the most common granularity
of security in such mobile environments.

19Note, this cost does not include the overhead of scheduling the operator, dequeing
tuples from the input queue and sending tuples upstream.
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ms (with 500 roles).SS operator usesshort-circuit evalu-
ation. Whenever the first role that thesp matches is found,
the evaluation of thesp against the rest of the roles is unnec-
essary. Thus the roles inSS state are scanned until either
at least one role that the newly arrivedsp matches is found,
or the end of theAPRset is reached. Overall, the overhead
cost ofSS is small. Thus integratingSS operators into the
query plans should not pose a significant overhead. It would
certainly be preferable over executing the queries first, and
then checking on their access privileges.

6.2. SS Operator “Push Up” vs. “Push Down”
We conducted a set of experiments in which we tested the

SS “push up” (SS is the root operator) vs. “push down”
(SS is the first operator) in a select-project query plan. We
evaluated the following query:Continuously retrieve mov-
ing object id, speed and location (x-, y- coordinates) for
those objects with speed greater than x, wherex was set to
control the selectivity of the query to be approximately 50%.

In Fig. 14a we show the results regarding the average pro-
cessing timeper tuplein the query plan with theSS operator
being pushed down versus pushed up. TheSS state contains
100 roles. In Fig. 14b we illustrate the results of the same
experiment whereSS operator state is much smaller (it con-
tains 10 roles). As can be seen from the figures, the larger
state size (Fig. 14a) resulted in higher processing time forSS
operator being “pushed down”. If the selectivity of an opera-
tor (e.g., select) is low, and theSS operator has a large state,
it is better to precede theSS by the low selectivity operator.
This way more tuples would be filtered and only then probed
against theSS state. On the opposite, if the selectivity of the
query is large, i.e., many result tuples are produced and the
SS has a small state, it is better performance-wise to push
theSS down in the query plan.
SS Overhead: Figure 15a compares the average processing
time with and withoutSS operator in the query plan. As
can be observed, the overhead is low when compared with
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the execution run without anySS. To evaluate the mem-
ory overhead of runningSS, we measured the memory con-
sumption for executions with both theSS pushed down and
up. A comparison of the memory usage for these executions
is shown in Fig. 15b20. SS, pushed down, filters more data
early, hence requiring fewer memory to store the tuples be-
ing processed compared to theSS being pushed up.

6.3. “Probe-and-Filter” vs. “Filter-and-Probe”
We performed three sets of experiments in evaluating

probe-and-filterandfilter-and-probevs. adaptive-PF-or-FP
execution strategies forSCJoin. In the case of the first two,
the execution method ofSCJoin is fixed, i.e., the operator
always uses a probe-and-filter or a filter-and-probe strategy.
Specifically, we wanted to measure the effectiveness of the
adaptive approach inside theSCJoin. The adaptor used the
heuristic introduced in Section 5.4. The window size was set
to 100 tuples. We varied thesps’ ratio (Fig. 16a), thesps’
similarities in the opposite streams (Fig. 16b), and the join
selectivity, i.e., the percentage of tuples that join per window
(Fig. 16c). The join condition forSCJoin is the destination
of the moving objects, the location they are currently moving
towards [7].
Varying sps’ Ratio: Fig. 16a compares the execution strate-
gies whensps’ ratio is varied. The average processing time
of probe-and-filter isnot significantly affected by thesps’
ratio. This is due to the fact that in probe-and-filter method,
join is performed first, and only if tuples produce a join re-
sult, their policies are checked to see if the result should be
output. We fixed the join selectivity to be relatively small
(10%). Thus few results were produced and the highsps ra-
tio did not significantly affect the average processing time.
For the filter-and-probe method, on the other hand, the av-
erage processing time per tuple varied assps’ ratio changed.
Policies had to be frequently checked in order to either fil-
ter the tuples with similar access control policies first and
then to join them. The adaptive strategy, similar to filter-
and-probe, improved its performance when the sp-ratio in-
creased. When fewer tuples shared a commonsp, it ran-
domly picked between the two strategies, and thus its perfor-
mance did not suffer as much as the filter-and-probe method.

20For better visibility, we illustrate the memory overhead for only the SS with
smaller state (10 roles).
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Varying sps’ Similarities: For this experiment, we varied
the similarity of thesps in the data streams. The similarity
percentage ofsps in the opposite data streams determined
how compatiblethe policies from the opposite data streams
are. Fig. 16b illustrates that probe-and-filter on average ex-
hibits a better performance when the similarity of thesps is
relatively high, ranging from 100% (the tuples in the two
streams have identical policies for all tuples) to 50%. At
25%spsimilarity, filter-and-probe method gives a better per-
formance, because more tuples are filtered, and then a join
is performed on the few resulting tuples. The adaptive strat-
egy showed just as good performance as the probe-and-filter
whenspsimilarity was high, and further improved its perfor-
mance similar to filter-and-probe method when the similarity
between the policies has decreased.
Varying Join Selectivity: In this experiment, we var-
ied the join selectivity. We define join selectivity as the
#input tuples
#output tuples in a window. As Fig. 16c illustrates, with the
join selectivity of 10% or below, the probe-and-filter method
gives a better performance, because few results join. With
the join selectivity of 50% and higher, the filter-and-probe
requires less time in processing, because more tuples are fil-
tered based on policies. The adaptive method gives a better
average performance with varying conditions. This makes it
favorable for long-running queries, when the conditions may
change many times during the execution of a query.

7. Conclusions
We have proposed a novel approach to enforce security

and preserve privacy in streaming environments using secu-
rity punctuations. This work makes three important contri-
butions to the field of data stream management systems: (1)
a scheme for defining security semantics on streaming data;
(2) a query processing approach compliant with the secu-
rity restrictions; (3) an implementation and investigation of
the security mechanism and its effect on stream system per-
formance. Both our framework for streaming security re-
strictions (i.e.,sps) and query evaluation approach are scal-
able and flexible enough to be extended further, for example
to support interoperability between different access control
models depicted by streamingsps. The significance of our
experimental results is that we have shown that our security
and privacy enforcement mechanism, integrated as a part of

query processing itself, adds little overhead in a stream query
system.
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