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Abstract

Access control is a key security service at the foundation of information and system security. It has

been extended with temporal constraints to support real-time considerations. Conformance testing of an

access control implementation is crucial to ensure that it correctly enforces any required temporal and

non-temporal policies for access control. We propose an approach for conformance testing of implemen-

tations required to enforce access control policies specified using Temporal Role Based Access Control

(TRBAC) model. The proposed approach uses Timed Input Output Automata (TIOA) to model the be-

havior specified by a TRBAC policy. The TIOA model is then transformed to a deterministic se-FSA

model that captures any temporal constraint by using two special events Set and Exp. Finally we adapt

the W-method and use an integer programming based approach to construct a conformance test suite

from the transformed model. The conformance test suite so generated provides complete fault coverage

with respect to the proposed fault model for TRBAC specifications.

Keywords: Role Based Access Control (RBAC), Temporal Role Based Access Control (TRBAC), Finite

state models, Timed Input Output Automata (TIOA), W-method, Fault model, se-FSA transformation, inte-

ger programming (IP).

1 Introduction

Access control is one of the key security services used for information and system security. To control the

time-sensitive activities present in various applications such as work flow management systems and real time

databases, access control specifications are augmented with temporal constraints. As an example, workflow

applications used in health care setups are required to enforce temporal access constraints to ensure the

security of patient records [23]. One such constraint can be to allow a doctor access to the patient record
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for only a specified duration. Role based access control (RBAC) [12], particularly well suited for specifying

access control policies and rules for any arbitrary organization-specific security model, has been extended

with temporal constraints to enforce time based access requirements [5, 16].

Access policies in RBAC are specified by mapping permissions to user assigned roles. The permissions

map the possible authorizations of a role in terms of specific operations that a user activating that role can

perform on the corresponding system resource. A user assigned to a role cannot invoke the permissions of

that role until the role has been activated. We focus on temporal RBAC (TRBAC) systems as they are based

on RBAC that provide simplified security management [6] by allowing capabilities such as the abstraction

of roles and the use of role hierarchy, principles of least privilege and separation of duty (SoD), and policy

neutrality [15].

In this paper we focus on conformance testing of software implementations required to enforce TRBAC

policies. We refer to such an implementation as “TRBAC system,” or “access control implementation under

test,” or simply as ACUT. Our aim is to devise a scalable and effective conformance testing technique that

provides complete fault coverage with respect to a reasonable TRBAC fault model. This fault model is

developed using a mutation based approach similar to the one used in other work [25].

A Timed Input Output Automaton (TIOA) referred as TRBACM is used to model the expected behavior

of an ACUT with respect to a TRBAC policy. A conformance test suite (CTS) is then generated from the

TRBACM by first transforming it to an se-FSA [18], and then using integer programming for determining

the time stamps that satisfy the required temporal constraints in the access control policy by considering

the sending of inputs and the monitoring of outputs at times that are an integral multiple of a minimum

resolution. The ACUT is then executed against all elements of the CTS using the test architecture proposed

in [17].

The proposed conformance testing approach only targets conformance testing of the ACUT with respect

to a specific TRBAC policy. Additionally, functional testing is required to guarantee that ACUT will cor-

rectly enforce all TRBAC policies. As the set of all TRBAC policies is infinite, a representative subset of

policies is used. Functional testing of ACUT is carried out as per the methodology presented in [24].

Contributions: (a) A fault model corresponding to TRBAC policy (TRBACP ) specification. (b) A tech-

nique for modeling the expected behavior of TRBAC systems (ACUT) using TIOA. (c) Conformance testing

strategy which provides complete fault coverage with respect to faults in the TRBAC fault model.

Organization: Section 2 outlines the sequence of steps in the proposed conformance testing approach. Sec-

tion 3 defines the TRBAC policy specification, i.e., TRBACP , and presents an example used throughout

the paper to explain the proposed conformance testing technique. The syntax and semantics of TIOA is

also reviewed in Section 3. Section 4 discusses the “conformance relation” used to signify the connotation

of conformance for ACUT. The conformance relation is used in Section 5 to study the fault model corre-

sponding to any TRBAC policy specification. Construction of a TIOA based model of any TRBAC policy is

discussed in Section 6. Section 7 describes our procedure for the generation of CTS from this model. Two
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Figure 2-1: Proposed approach for conformance testing of TRBAC Systems (ACUT)

heuristics are briefly discussed in Section 8 to illustrate the application of state abstraction based techniques

to reduce the size of the TIO model for any given policy. Section 9 briefly reviews the related work and

Section 10 summarizes the current work.

2 Proposed Approach for Conformance Testing

The proposed approach for conformance testing of a TRBACP implementation, an ACUT, is shown in

Figure 2-1. In step-1 a system administrator generates a TRBAC policy referred to as TRBACP . This

policy is used to construct the expected behavior of the ACUT in step 2. This behavior is captured as a

TIOA model referred to as TRBACM. The test generator uses TRBACM as input and generates the CTS in

step 3. A specific test system architecture, discussed in detail in Section 7.3, is used to execute the elements

of the CTS against the TRBAC ACUT in step 4. The results of test execution are then compared with the

expected behavior implied by TRBACM to validate ACUT conformance with respect to TRBACP .

Note that the four steps described in Figure 2-1 deal with the testing of an ACUT with respect to only

one TRBAC policy. In practical environments, one would expect, or at least desire, that while policies

change the ACUT does not. A functional testing procedure to check for the correctness of an ACUT against

all policies is proposed elsewhere [24].

3 Background

3.1 Temporal RBAC Policy Specification

Temporal RBAC extends the RBAC model by time constraining a user’s access to system resources. This is

achieved by restricting the time duration of user-role activations, assignments, and permission-role assign-
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ments. A TRBAC specification also includes the rules for non-temporal user-role assignment (activation),

separation of duty (SoD) constraints [2], role hierarchy semantics, and static/dynamic user (role) cardinality

constraints. A formal definition of TRBAC policy specification follows.

Definition 3.1 (TRBACP) A TRBAC policy TRBACP is a 17-tuple (U,R, Pr, Status, Permitted,≤A

,≤I , I, Su, Du, Sr, Dr, SSoD,DSoD, Ss, Ds,<), where

• U , R and Pr are, respectively, finite sets of users, roles and permissions,

• Status = URassign ∪ URactive ∪ PRassign is a set of status predicates partitioned as follows:

(a) URassign: U × R → {0,1} where a 1(0) indicates that the given user is assigned (not assigned)

to the given role.

(b) URactive: U×R →{0,1} where a 1(0) indicates that the given user has activated (not activated)

the given role.

(c) PRassign: Pr × R → {0,1} where a 1(0) indicates that the given permission is assigned (not

assigned) to the given role.

• Permitted = URcanAssign ∪ URcanActivate ∪ PRcanAssign is a set of allowable predicates parti-

tioned as follows:

(a) URcanAssign: D1 ⊆ U × R → {1} where the value of 1 indicates that the given user can be

assigned to the given role.

(b) URcanActivate: D2 ⊆ U × R → {0,1} where a 1(0) indicates that the given user can activate

(not activate) the given role.

(c) PRcanAssign: D3 ⊆ Pr×R → {1} where the value of 1 indicates that the given permission can

be assigned to the given role.

• ≤A⊆ R × R and ≤I⊆ R × R are, respectively, activation and inheritance hierarchy relations on

roles,

• I = {AS, DS,AC,DC,AP,DP} is a finite set of allowable input requests, where AS, DS,AC,DC,

AP,DP are, respectively Assign, Deassign, Activate, and Deactivate requests for user-role assign-

ment and activation and Assign and Deassign for permissions-role assignments. AS, AC, AP inputs

optionally specify t ∈ Z+, where t stipulates the maximum time duration of the corresponding as-

signment or activation and Z+ denotes the set of non-negative integers..

• Su, Du : U → Z+ are, respectively, static and dynamic cardinality constraints on U

• Sr, Dr : R → Z+ are, respectively, static and dynamic cardinality constraints on R
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• SSoD, DSoD ⊆ 2R are, respectively, static and dynamic Separation of Duty (SoD) sets

• Ss : SSoD → Z+ specifies the cardinality of the SSoD sets

• Ds : DSoD → Z+ specifies the cardinality of the DSoD sets

• < is the rule set as given in Definition 3.2.

For clarity of presentation, a policy TRBACP is simply referred as P unless noted otherwise. P is

explicitly attached with each element of the above 17-tuple when there is a need to distinguish it from

that of another policy. For example Status(P ) and Status(P ′) are the status predicates corresponding,

respectively, to policies P and P ′.

The activation hierarchy relation (A-hierarchy [27]) ri ≤A rj implies that a user uk assigned to rj is also

able to activate ri without being assigned to it i.e. URassign(uk, ri) = 0. The inheritance hierarchy relation

(I-hierarchy [27]) ri ≤I rj means that a permission pk assigned to ri is also accessible by rj without being

directly assigned to it i.e. (pk, rj) /∈ PRcanAssign. The static (dynamic) cardinality of a user specifies the

maximum number of roles it can be assigned to (can activate). Similarly, the static (dynamic) cardinality of

each role specifies the maximum number of users who can be assigned to (can activate) this role.

The SSoD (DSoD) [2] specifies the sets of roles to which users can only be simultaneously assigned

(can simultaneously activate) provided such assignments (activations) do not violate the SSoD (DSoD)

set cardinality constraint i.e. Ss(SSoD) (Ds(DSoD)). Ss(SSoD) (Ds(DSoD)) constrains the maximum

number of roles to which a user can be simultaneously assigned (can simultaneously activate) in the given

SSoD (DSoD) set.

The access control decisions are guided by the formally specified rules in the rule set (<). The set

of Status and Permitted predicates in P are used to define these rules, which constrain the possible

assignments and activations within the given TRBAC policy. The rule set (<) is defined below.

Definition 3.2 (<) The rule set < = {γurAssignCard, γurActiveCard, γurSSoD, γurDSoD, γurHier, γprHier,

γ1, γ2, γ3}, given in Table 1, describes the set of system rules that dictate the access control decisions in a

given TRBACP .

Table 1: Rules in the rule set <

Rule Explanation

γurAssignCard(u ∈ U, r ∈ R) = 1 iff

URcanAssign(u, r) = 1 ∧ URassign(u, r) = 0 ∧
∑

R

URassign(u, ri) < Su(u) ∧
∑

U

URassign(ui, r) <

Sr(r)

γurAssignCard can only be 1 if the static cardinality

constraints corresponding to the given user u and role

r are not violated by the assignment of u to r

Continued on next page
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Rule Explanation

γurActiveCard(u ∈ U, r ∈ R) = 1 iff

[URcanActivate(u, r) = 1 ∨ γurHier(u, r) = 1] ∧

URactive(u, r) = 0 ∧
∑

R

URactive(u, ri) < Du(u) ∧

∑

U

URassign(ui, r) < Dr(r)

γurActiveCard can only be 1 if the dynamic cardinality

constraints corresponding to the given user u and role

r are not violated by the activation of r by u

γurSSoD(u ∈ U, r ∈ R) = 1 iff ∀R′ ∈ SSoD|r ∈

R′,
∑

R′

URassign(u, ri) < Ss(R
′)

γurSSoD can only be 1 if user u can be assigned to

r such that the total number of user-role assignments

corresponding to u in all the sets R′|r ∈ R′ are less

than the cardinality of that set

γurDSoD(u ∈ U, r ∈ R) = 1 iff ∀R′ ∈ DSoD|r ∈

R′,
∑

R′

URactive(u, ri) < Ds(R
′)

γurDSoD can only be 1 if user u can activate r such

that the total number of user-role activations corre-

sponding to u in all the sets R′|r ∈ R′ are less than

the cardinality of that set

γurHier(u ∈ U, r ∈ R) = 1 iff URactive(u, r) = 0 ∧

∃r′ ∈ R′|R′ ⊆ R ∧ URassign(u, r′) = 1 where R′:

{r′|r ≤A r′}. R′ is the set of all roles senior to r as per

A-hierarchy semantics (r is also member of this set)

γurHier(u, r) = 1 implies that there is at least one

such role r′ (could be r), senior to r, to which u is

currently assigned. A-hierarchy semantics thus permit

activation of a junior role by the user provided that the

user is assigned to at least one role senior to the former

γprHier(p ∈ Pr, r ∈ R) = 1 iff ∃r′ ∈ R′|R′ ⊆ R ∧

PRassign(p, r′) = 1 where R′: {r′|r′ ≤I r}. R′ is the

set of all roles junior to r as per I-hierarchy semantics (r

is also member of this set)

γprHier(p, r) = 1 implies that there is at least one

such role r′ junior to r to which p is currently assigned.

I-hierarchy semantics thus permit assignment of per-

missions to a senior role on the basis of there being

assigned to a junior role

γ1: AS(u ∈ U, r ∈ R, t ∈ Z+) ⇒

Updatestatus[URassign(u, r) = 1, t] ∧ Updatepermitted

[URcanActivate(u, r) = 1] iff γurAssignCard(u, r) = 1

∧ γurSSoD(u, r) = 1 and DS(u ∈ U, r ∈ R) ⇒

Updatestatus [URassign(u, r) = 0] ∧ Updatepermitted

[URcanActivate(u, r) = 0] ∧ Updatestatus

[URactive(u, r′) = 0] ∀ r′ ∈ R′|R′ ⊆ R, R′:

{r′|r′ ≤A r}. Updatestatus [x ∈ Status = 1, t] implies

that assignments or activations in the current TRBAC

state are updated so that the current value of the corre-

sponding predicate becomes 1, t specifies the maximum

time duration after which the value would again change

from 1 to 0. It is considered that the deassignment and

deactivation inputs are automatically issued by the system

on completion of time duration t

This rules ensures that the user-role assignment corre-

sponding to the input AS(u, r, t) is allowed such that

(1) the user/role static cardinality constraints and role

SSoD constraints are not violated by such assignment,

(2) the assignment is only valid for time duration t.

After t time units the de-assignment input DS(u, r)

will be automatically applied by the system without

any user intervention. This rule thus restricts the max-

imum time duration of an assignment to t specified in

the input request and after that duration it also deacti-

vates the (u, r) pair and all such user-role pairs which

correspond to the user u activation of the junior roles

of r

Continued on next page
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Rule Explanation

γ2: AC(u ∈ U , r ∈ R, t ∈ Z+) ⇒

Updatestatus[URactive(u, r) = 1, t] iff

γurActiveCard(u, r) = 1 ∧ γurDSoD(u, r) = 1

and DC(u ∈ U , r ∈ R) ⇒ Updatestatus

[URactive(u, r) = 0]

This rule ensures that the user-role activation cor-

responding to the input AC(u, r, t) is allowed such

that (1) the user/role dynamic cardinality constraints,

role DSoD/A-hierarchy constraints are not violated

by such activation, (2) the activation is only valid for

time duration t. The rule γurActivationCard(u, r) en-

sures that either u is assigned to r at the time of this

request, or the given activation is permitted via A-

hierarchy semantics. In case of conflict in durations

permitted by AS and AC, the duration permitted by

former will have precedence on the later as the expiry

of former would automatically result into deactivation

of the given and junior user-role pairs.

γ3: AP (p ∈ Pr, r ∈ R, t ∈ Z+) ⇒

Updatestatus[PRassign(p, r) = 1, t] iff

PRcanAssign(p, r) = 1 ∨ γprHier(p, r) = 1

and DP (p ∈ Pr, r ∈ R) ⇒ Updatestatus

[PRassign(p, r′) = 0] ∀ r′ ∈ R′|R′ ⊆ R, R′:

{r′|r ≤I r′}. For all the roles senior to r correspond-

ing to I-hierarchy semantics, the request AP (p, r′, t)

r′ ∈ R′|R′ ⊆ R, R′: {r′|r ≤I r′}, is considered to be

automatically issued by the system.

This rules ensures that the permission-role assignment

corresponding to the input AP (p, r) is allowed such

that (1) either such assignment is permitted directly in

the policy or is allowed by virtue of I-hierarchy se-

mantics (2) the assignment is only valid for time dura-

tion t. After the expiration of duration t, the deassign-

ment input DP will be automatically applied by the

system for the given and senior permission-role pairs

Example 1. Consider a simple TRBAC policy specification for a medical information system. There are

two roles SeniorDoctor and TraineeDoctor (for simplicity we refer these as r1 and r2 respectively)

and two users Bob and Alice (referred to as u1 and u2 respectively). Figure 3-1(a) shows the various basic

user-role assignment scenarios allowed by the TRBAC policy of the domain. S1 scenario shows that both

u1 and u2 are allowed to be assigned to r1 and r2 respectively. However, S2 indicates that if u1 is already

assigned to r1 then it cannot be assigned to r2 simultaneously. Thus this represents the domain static SoD

policy that a user cannot be simultaneously assigned to both SeniorDoctor and TraineeDoctor

roles. Scenarios S3 and S4 are complementary to S1 and S2 as they indicate that if u1 is initially assigned

to r2 then it cannot be simultaneously assigned to r1.

Figure 3-1(b) illustrates the temporal impact of various user-role assignment and activation inputs. The

horizontal axis represents the value of global clock t. The lines above the horizontal axis, which show vari-

ous status predicates, denote that corresponding user-role activation or assignment is valid for the time du-

ration specified along the horizontal axis. The given TRBACP is: U = {u1, u2}, R = {r1, r2}, SSoD =

{S1 = (r1, r2)}, Ss(S1) = 1, URcanAssign(u1, r1) = URcanAssign(u1, r2) = URcanAssign(u2, r2) = 1,

Su(u1) = Du(u1) = 2, Su(u2) = Du(u2) = 1, Sr(r1) = Dr(r1) = 1, Sr(r2) = Dr(r2) = 2.
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Figure 3-1: (a) Various scenarios of user-role assignments permitted by domain TRBAC specification, (b)

Effect of temporal and non-temporal constraints on user-role assignments and activation

Consider that in relation to scenario S1, at t = 0, u1 is assigned to r1 for 4 time units (AS(u1, r1, 4)

issued at t = 0), and u2 is assigned to r2 at t = 1 for same duration (AS(u2, r2, 4) issued at t = 1),

correspondingly the horizontal lines for status predicates URassign(u1, r1) and URassign(u2, r2) extends

from 0 to 4 and from 1 to 5, respectively. Now if a request for u1 activation of r1 is made at t = 2 for 3 time

units (AC(u1, r1, 3) issued at t = 2), then by virtue of the duration constraint on the assignment of u1 to r1

the activation would also be terminated at t = 4 together with the removal of the assignment.

Considering the static SoD constraint, corresponding to scenario S2, on the concurrent assignment of a

user to roles r1 and r2, it restricts u1 ability to be assigned to r2 before t = 4; because, earlier than that rule

γ1 will be violated if such assignment is made (γurAssignCard(u1, r2) = 1 ∧ γurSSoD(u1, r2) = 1 should be

true but γurSSoD(u1, r2) = 0 at that time). Hence the input request AS(u1, r2, 2) cannot be granted before

t = 4 but will be valid at/after t = 4.

3.2 Timed Input Output Automata (TIOA)

The inclusion of temporal constraints in TRBAC requires precise modeling of real-time considerations

which cannot be achieved by traditional finite state machines. We therefore use timed automata [3, 13],

in particular Timed Input Output Automaton (TIOA) to model real-time constraints in a TRBAC specifica-

tion. The syntax and semantics of TIOA is explained in detail next.

TIOA [13] are finite automata which partition the actions into input and output actions. Time is incor-

porated through the use of (real-valued) clocks; thus TIOA is based on dense time semantics. A TIOA is a

finite state automaton with a finite set of locations and a set of labeled transitions. Each transition is labeled

with an action which belongs to either the set of input actions or the set of output actions (hence the name

timed input output automaton). The input and output actions begin with “?” and “!”, respectively. The set of

real-valued clocks C is used to specify timing constraints (known as guards) on the transitions. A transition
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is only executed if the associated guard satisfies the current value of clocks; moreover, a subset of clocks

may be reset on executing a transition.

Definition 3.3 (TIOA) A Timed Input Output Automaton (TIOA) is a tuple A = {L, l0, I, O, C, T} where:

• L is a finite set of locations, l0 ∈ L is the initial location, I is a finite of set of input actions, where

each input action begins with “?”, O is a finite of set of output actions, where each output action

begins with “!” and C is a finite set of clocks.

• T ⊆ L× (I ∪O)×Φ(C)× 2C ×L is a set of transitions. A transition (l, {?i, !o}, g,R, l′) represents

an edge from the location l to l′ on input or output action ?i or !o. The guard g ∈ Φ(C) specifies the

clock constraint which must be satisfied to enable execution of this transition. The set R ⊆ 2C gives

the set of clocks which are reset to 0 on executing this transition.

The transitions are assumed to be instantaneous in a TIOA. The term Φ(C) signifies the set of clock

constraints specified using the clocks in C, where a guard g ∈ Φ(C) is defined by the grammar: g := x ≤

c|c ≤ x|x < c|c < x|x = c|g ∧ g. In this grammar x ∈ C and c ∈ Z+ and Z+ is the set of non-negative

integers. A clock valuation is a function v : C →
�

≥0 that assigns a non-negative real number to each clock

in C. For a valuation v, v + δ(δ ∈
�

≥0) denotes the valuation that assigns each clock x ∈ C the value

v(x) + δ . For Y ⊆ C, v[Y := 0] denotes the clock valuation for C which assigns 0 to each x ∈ Y and

agrees with v over other clocks. The set of all clock valuations is denoted by VC . A valuation v satisfies a

guard g if and only if g holds under v (it is represented as v ≈ g). In the definition of TIOA it is assumed

that the domain of each clock x ∈ C is bounded to [0, Cx] ∪ {∞} where Cx = max{c|c is used in a g over

x}.

The semantics of a TIOA A is defined by associating an infinite state graph or Labeled Transition System

(LTS) SA = {Q,
�

≥0 ∪ (I ∪ O),
a
→} with A where a ∈

�
≥0 ∪ (I ∪ O) and:

• Q is the set of all states where each state is a pair (l, v) such that l is a location of A(l ∈ L) and v is a

clock valuation for C(v ∈ VC). The initial state of SA is represented by (l0, v0) where v0(x) = 0 for

all clocks x ∈ C.

• Edges of SA are given by the relation
a
→ and are labeled with labels from the alphabet

�
≥0 ∪ (I ∪O).

There are two types of edges, discrete and timed edges. A discrete edge corresponds to a transition

(l, a, g, r, l′) of A and is represented as (l, v)
a
→ (l′, v[r := 0]) where a ∈ (I ∪ O) and v ≈ g. For

a state (l, v) and a time increment δ ∈
�

≥0 the timed edge (l, v)
δ
→ (l, v + δ) represents passing of

time.

Infinite states of SA are by virtue of the infinite number of timed edges that can exist in SA. A timed

word over the alphabet
�

≥0 ∪ (I ∪ O), is a sequence w = (a0, t0), (a1, t1), . . . , (ak, tk) where each ai ∈
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�
≥0 ∪ (I ∪ O), each ti ∈

�
≥0, 0 ≤ i ≤ k and the occurrence time ti increases monotonically. A run

of A (starting from the initial location l0) over w is a series (l0, v0)
t0→ (l0, v0 + t0)

a0→ (l1, v1)
t1−t0→

(l1, v1 + (t1 − t0)) → · · ·
ak→ (lk+1, vk+1) where vi = vi−1 + (ti−1 − ti−2), i > 1

The set of timed words accepted by A is denoted by L(A) and it signifies the valid runs of A over the

alphabet
�

≥0 ∪ (I ∪ O). For a state s ∈ Q and a timed word w, we write s
w
→ iff s

w
→ s′ for some s′ ∈ Q.

Time can progress in A iff the automaton is timelock free [29], i.e., if every infinite run of SA is strongly

non-Zeno.

The non-Zeno property ensures that A does not force its environment to provide an input by blocking

time [20]. A is strongly non-Zeno iff for any state s ∈ Q and any t ∈
�

≥0 there is a timed output trace

w = (a0, t0), (a1, t1), . . . , (ak, tk) where ai ∈ (
�

≥0 ∪O), 0 ≤ i ≤ k such that s
w
→ and

∑
i(ti+1 − ti) ≥ t.

A timed automaton would be strongly non-Zeno if it is ensured that at least one unit of time lapses in each

of its loop [29], in case of TIOA A this requirement is to hold for only such loops with actions from the

set (
�

≥0 ∪ O). It is important to verify that a TIOA is strongly non-Zeno as timelocks are modeling errors

which should be resolved.

Next we describe the conformance relation used in Section 5 to study the TRBAC fault model.

4 Conformance Relation

Let P be a TRBAC policy in effect, ACUT a correct implementation that enforces P and no other policy,

and a possibly faulty ACUT′ required to enforce P . Let Rq(up, r), up ∈ (U ∪ Pr), be a well formed

request such that Rq ∈ I and (up, r) ∈ (U × R) for up ∈ U , and (up, r) ∈ (Pr × R) for up ∈ Pr.

Rq(up, r) is considered ill-formed when any one or more of the following conditions does not hold: Rq ∈ I ,

up ∈ (U ∪ Pr), and r ∈ R. The state of the ACUT with respect to P is the set Status = URassign ∪

URactive ∪ PRassign. All the status predicates of Status are 0 at the start of ACUT execution. Status

changes in response to requests Rq(up, r) ∈ I . We write Status′ACUT = StatusACUT[Rq(up, r)] to

indicate that the updated status of ACUT in response to request Rq is Status′ACUT if the status prior to

receiving Rq(up, r) was StatusACUT.

ACUT′ is said to conform behaviorally to ACUT with respect to policy P , under the following condi-

tions.

1. For all requests Rq(up, r) ∈ I , if Status′ACUT = StatusACUT[R(up, r)] then Status′
ACUT′ =

Status′ACUT = StatusACUT′ [Rq(up, r)].

2. For all ill-formed requests Rq(up, r), StatusACUT[Rq(up, r)] and

StatusACUT′ [Rq(up, r)] remain unchanged.

3. While there are no requests ∀t ∈
�

≥0, StatusACUT′ = StatusACUT.
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Table 2: TRBAC faults due to mutations of elements of P

Structures Mutated Possible Impact on TRBAC ACUT′ (Fault)

URcanAssign, Su, Sr, SSoD, Ss UR1, UR2

PRcanAssign,≤I PR1, PR2

URcanActivate,≤A, Du, Dr, DSoD, Ds UA1, UA2

γ1, γ2, γ3 All Temporal and Non-temporal faults

Stated informally, the first two conditions imply that ACUT′ (a) assigns (deassigns) and activates (de-

activates) a role only if such assignment (deassignment) and activation (deactivation) is allowable by the

current policy, (b) assigns (deassigns) a set of permissions to (from) a role only if allowable by the current

policy, and (c) ignores all ill-formed requests. The last condition implies that for all times the Status of

ACUT and ACUT′ should remain unchanged in the absence of any input. Note that this condition does not

imply that the state of an ACUT cannot change with time, rather if there is a change in the ACUT state then

correspondingly similar change is expected in the state of the conforming ACUT′.

5 TRBAC Fault Model

The TRBAC fault model is derived using a mutation based approach [25]. The mutants P ′ 6= P are obtained

by applying the set mutation operators to the sets Permitted,≤A,≤I , SSoD and DSoD in P , element

modification operators to the range of functions Su, Du, Sr, Dr, Ss and Ds and rule mutation operators to the

rules γ1, γ2 and γ3 in <(P ). We consider three types of set mutation operators: modification of an element,

addition of an element, and removal of an element. The semantics of element modification depends on the

type of the element, which in case of another set implies recursive application of set mutation operators on

the element. Only the application of rule mutation operator on a premise i ∈ I varies in constructing the

TRBAC fault model. As an i ∈ I(TRBACP ) can also specify t ∈ Z+, therefore, in case of specification

of duration the rule mutation operator will replace t with t + 1 or t − 1. The details of application of other

mutation operators are not given due to space limitation and can be found in [24].

Table 2 illustrates that the application of a mutation operator to P results in a policy P ′ which implies the

possible presence of one more more faults in the ACUT′. As observed from Table 2 and Figure 5-1, TRBAC

faults can be broadly classified into two types: non-temporal and temporal faults. Non-temporal faults are

related to user-role assignment, permission-role assignment, and user-role activation. Temporal faults are

further categorized into hierarchical enforcement, duration widening, and duration restriction faults.

As shown in Figure 5-1, each type of non-temporal fault is further categorized into two subcategories.

Fault type UR1 restricts an authorized user from being assigned to a role or leads to an unauthorized de-

assignment. Fault type UR2 may lead to unauthorized role assignments. PR1 faults restrict a permission

11
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Figure 5-1: A fault model for evaluating the effectiveness of tests for TRBAC implementations.

being assigned to an authorized role or cause an unauthorized deassignment. PR2 faults assign a permission

to an unauthorized role. UA1 and UA2 faults are similar to UR1 and UR2 and impact role activation. The

temporal faults are explained in detail next.

5.1 Hierarchical Enforcement Faults

A-hierarchy semantics allows user u assigned to a role r to activate a junior role r′ ≤A r without any

explicit assignment to r′. Similarly a permission-role assignment can allow the automatic assignment of

corresponding permission to all the senior roles by virtue of I-hierarchy semantics. P requires that the

temporal constraints on explicit user-role and permission-role assignments are also consistently enforced on

implied activations or assignments (for clarity of discussion we consider a user-role activation corresponding

to a user-role assignment, also as implied activation, e.g., u1r1 activation corresponding to u1r1 assignment).

However, errors in an ACUT′ may lead to erratic enforcement of temporal constraints on implied activations

or assignments. Therefore such faults are considered as hierarchical enforcement faults.

An instance of a hierarchical enforcement fault is illustrated in Figure 5-2(a). P considered in this

instance is different from the one given in Example 1 as in this case we consider that r1 is senior to r2

by virtue of A-hierarchy. Hence u1 assignment to r1 also enables u1 to activate r2 without any explicit

assignment to r2. Furthermore there is no SoD constraint, i.e. SSoD = {}. The temporal constraint that

u1r1 assignment is restricted to a total duration of 4 time units (tu’s) also requires discontinuation of u1r2

activation at t = 4, however the presence of hierarchical enforcement fault in the faulty ACUT′ permits

u1r2 activation to continue beyond this time.

5.2 Duration Restriction Faults

The duration constraint on an event (user-role or permission-role assignment or user-role activation) requires

that starting from the time the event request is generated, e.g., AS(u1, r1, 4) issued at t = 0 in Figure 5-

2(b), the duration for which the corresponding event (URassign(u1, r1) = 1 in this case) is valid should be

12
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Figure 5-2: Examples of temporal faults in an ACUT′, (a) A hierarchical enforcement fault, (b) Duration

widening and restriction faults.

accurately enforced to be equal to the value specified by the constraint (4 tu’s in this case). The presence

of duration restriction faults in an ACUT′ would restrict the actual duration of the event to be less than the

one specified in P . Duration restriction faults in an ACUT′ can limit the actual duration of an event in two

ways: by applying the deassignment/deactivation inputs before the time as required by P , or by delaying

the required activations/assignments in the ACUT′ as compared to P .

Figure 5-2(b) illustrates both ways by which duration restriction faults affect the behavior of an ACUT′.

It shows that although P requires u1r1 assignment to be valid from t = 0 to t = 4, yet the same assignment

is initially delayed in the ACUT′ and then deassignment occurs before t = 4 contrary to P . Duration

restriction faults that delay the required activation/assignment can also be considered as non-temporal faults

(of type UR1, UA1 or PR1).

5.3 Duration Widening Faults

As the name suggests, the impact of such faults is obvious in an ACUT′ – the presence of duration widening

faults would cause the duration of the associated event to be larger then the one allowed by P . The example

in Figure 5-2(b) demonstrates one such fault where the faulty behavior of ACUT′ leads to an extension of

the duration of u1r1 assignment to more than specified by P .

We are justified in treating the hierarchical enforcement faults as duration widening or restriction faults.

However, these faults are treated as a separate class because of their direct relationship with the constraints

related to hierarchy semantics.

In the next section we discuss the details of our proposed technique for capturing the expected behavior

of a TRBAC ACUT.
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6 Modeling The Expected Behavior of ACUT

As already mentioned we use TIOA to model real time constraints in P . For a conformance testing approach

to be effective in detecting all types of faults that can exist in an ACUT (i.e., all the temporal and non-

temporal faults in TRBAC fault model identified in Section 5), it is essential that the TRBAC model, referred

as TRBACM, should encapsulate all possible behaviors of the ACUT. This requires TRBACM to be able to

capture the state of the ACUT in terms of all possible user-role assignments/activations and permission-role

assignments that can exist in the ACUT, and the state transitions as valid actions determined by P .

There are two options in constructing the TRBACM : (1) the requirements implied by P for user-role

activations and assignments and permission-role assignments are treated in a single monolithic model, and

(2) divide the ACUT behavior into parts and thus describe the ACUT compositionally. We opted for the

second option because of the convenience in reasoning the correctness of ACUT behavior with respect to

P in compositional construction. Further, we consider it easier to extend TRBACM to model additional

temporal constraints as they are added to TRBAC, if the ACUT behavior is described compositionally. We

have considered compositional construction of TRBACM in terms of parallel composition of user-role and

permission-role models, i.e., TRBACM = URM ‖ PRM . The parallel composition (‖) considered here is the

one defined for parallel composition of timed automata in [29].

6.1 UR Model

The UR model (URM ) captures the desired response of an ACUT, as required by P , corresponding to all

sequences of user-role assignments, deassignments, activations, and deactivations. URM thus encapsulates

the conforming behavior of an ACUT where the behavior is captured with respect to user-role assignments

and activations only. As indicated above we use TIOA representation for URM to model temporal constraints

on user-role assignments and activations. The construction of URM is considered in terms of parallel com-

position of basic UR models URb’s, i.e., URM = URb1 ‖ur URb2 ‖ur ,. . ., URbk where k is the total number

of URb’s. A URb is constructed corresponding to a user-role assignment, thus the URM is composed by

constructing a URb corresponding to each user-role assignment possible in P , i.e., k = |U ||R|.

6.1.1 URb Model

There could be three types of URb’s: UR1
b , UR2

b and UR3
b , where UR1

b is the most general type and others

are its special cases. In the subsequent discussion a URb, unless otherwise noted, refers to UR1
b. URb models

are only constructed for those user-role pairs for which P provides an explicit assignment, i.e., (u, r) ∈ D1

(Section 3.1).

A URb is composed corresponding to a specific user-role pair (u, r). In a URb(u, r), a pair of location

variables is used to characterize the value of status predicates URassign(u, r) and URactive(u, r). The A-

hierarchy semantics are captured by using location variables corresponding to URactive(u, r′) for all such
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(u, r′) pairs where r′ ∈ (R′−{r}) and R′ : {r′|r′ ≤A r}, is the set of all roles junior to r as per A-hierarchy

semantics (r is also member of R′). We assume that P is consistent [1, 22], therefore there are no explicit

user-role assignments corresponding to the (u, r′) pairs as such assignments are redundant. The value of

location variables in a URb depicts the assigned/unassigned or active/inactive status of the corresponding

user-role pair.

Assumptions: In constructing a URb it is assumed that the deassignment and deactivation inputs (DS,DC)

are only initiated by the system (ACUT) as per the requirements of rules γ1 and γ2, respectively. Thus a

user or a system administrator does not provide these inputs before the system initiates the deassignments

and deactivations automatically. For the sake of clarity the system generated deassignment and deactivation

events are modeled as output actions in the TIOA model. It is further assumed that an assignment/activation

input leading to a particular user-role assignment/activation is no longer available until the time the cor-

responding assignment/activation terminates. This is a reasonable assumption as in practice a user-role

assignment/activation cannot be redone without a deassignment/deactivation first. The above assumptions

can be relaxed and have been kept primarily for simplicity of presentation. Relaxation of these assumptions

would increase model complexity.

We have considered the outputs to be urgent [28], i.e., an output action transition is traversed soon after it

gets enabled. The urgency assumption is required to correctly model the preemptive termination of user-role

activations envisaged by γ1 and the temporal constraints enforcement required by rule γ2. We next formally

define URb as a TIOA model.

Definition 6.1 (URb) The basic user-role model (URb) corresponding to a user-role pair (u, r) is a TIOA

URb(u, r) = {L, l0, I, O,C, T} where:

• L = {l0, l1, l2, . . . , lt} is finite set of t locations such that ls = {URassign(u, r), URactive(u, r),

URactive(u, r′)|r′ ∈ (R′ − {r}) , R′ : {r′|r′ ≤A r}} 1 ≤ s ≤ t is a set of status predicates.

l0 = {0, 0, . . . , 0} is the initial location.

• I = {?AS(u, r, t), ?AC(u, r′, t)|r′ ∈ R′ , R′ : {r′|r′ ≤A r}} is a finite of set of input actions.

• O = {!DS(u, r), !DC(u, r′)|r′ ∈ R′ , R′ : {r′|r′ ≤A r}} is a finite of set of output actions.

• C = {x1, x2, . . . , xj} where j = |R′| + 1 is a finite set of clocks such that each clock xi, 1 ≤ i ≤ j

corresponds to an input action.

• T ⊆ L × (I ∪ O) × Φ(C) × 2C × L is a set of transitions which are defined by the application of

rules γ1 and γ2 on the input actions as explained in algorithm ContructURb , given in Appendix A.1.

It can be observed that URb satisfies the time progress requirement discussed in Section 3.2, i.e., it is

strongly non-Zeno [29], as at least one unit of time would lapse in each loop of URb (the minimum value of

t cannot be less than 1). Although we have considered the general case where all inputs are for temporal
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Figure 6-1: URb(u1, r1) and URb(u1, r2) and their parallel composition

accesses, yet non-temporal inputs can also be easily modeled using TIOA. The URb’s for the user-role pairs

(u1, r1) and (u1, r2) of Example 1 are illustrated in Figure 6-1. The proof of Lemma 6.1 which shows the

correctness of URb construction is given in Appendix A.1.

Lemma 6.1 (Correctness of ContructURb ): Given a P and a (u, r) pair the algorithm

ContructURb constructs a URb which correctly represents the application of rules from the rule set <(P )

to each state of ACUT corresponding to the user-role assignment/activations modeled by URb.

As already mentioned in Section 4, the state of ACUT at a certain time is determined as the valuation of

Status predicates at that time. Thus each location of URb corresponds to a distinct state of ACUT.

A URb for (u, r) pair is constructed in isolation with other URb’s by considering that other then the user-

role assignments/activations specified by the Status predicates corresponding to location variables of URb,

no other user-role assignments/activations or permission-role assignments exist in ACUT. As a result not all

the SoD and user/role cardinality constraint are modeled in URb (these constraints are fully imposed while

constructing the URM).

6.1.2 UR2
b

and UR3
b

Models

The UR2
b and UR3

b models, respectively, are constructed for all user-role pairs (u, r) ∈ {(U × R) − (D1 ∪

D4)} and (u′, r′) ∈ D4. Where D4 ={(u, r′) ∈ (U × R) − D1 |(u, r) ∈ D1, r
′ ≤A r}. UR2

b’s are thus

constructed corresponding to all those user-role pairs for which P does not provide information on both

explicit assignment and implicit activation, whereas UR3
b’s correspond to such user-role pairs for which P

does not contain explicit assignment information but does allow implicit activation.

The UR2
b and UR3

b models are special cases of UR1
b . The UR2

b model corresponding to a user-role pair

(u, r) is a TIOA UR2
b(u, r) = {L, l0, I, O, C, T} where L = l0 = {URassign(u, r), URactive(u, r)}, I =
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{?AS(u, r, t), ?AC(u, r, t)}, O = C = {} and T = {(l, ?AS(u, r, t),−,−, l), (l, ?AC(u, r, t),−,−, l)}.

The UR3
b model corresponding to (u, r) is also a TIOA defined as UR3

b(u, r) = {L, l0, I, O, C, T} where

L = l0 = {URassign(u, r)}, I = {?AS(u, r, t)}, O = C = {} and T = {(l, ?AS(u, r, t),−, −, l)}.

Lemma 6.2 (Correctness of UR2
b and UR3

b): Given a P and (u, r) ∈ {(U × R) − (D1 ∪ D4)} and (u′, r′)

∈ D4 UR2
b(u, r) and UR3

b(u
′, r′), correctly represent the application of rules from the rule set <(P ) to each

state of ACUT corresponding to the user-role assignment/activations modeled by UR2
b and UR3

b respectively.

The UR2
b and UR3

b are constructed in isolation with any other URb’s and thus it can be easily shown that

they correctly represent the application of rules to each state of ACUT.

6.2 URM Construction

As discussed in Section 6.1, the URM corresponding to a P is constructed as a parallel composition of basic

URb’s of all types, i.e. URM = URb1 ‖ur URb2 ‖ur ,. . ., URbk where k = |U ||R| = |UR1
b |+|UR2

b |+|UR3
b |. We

next define the binary operator ‖ur for parallel composition of two URb’s. URM is constructed by recursive

application of ‖ur operator on all the URb’s. As URb’s are strongly non-Zeno therefore it can be easily

shown, by using the approach similar to Lemma 3 in [29], that there parallel composition URM would also

be strongly non-Zeno.

Definition 6.2 ( ‖ur) Given two URb’s, A = {L, l0, I, O,C, T} and B = {L′, l′0, I
′,

O′, C ′, T ′} where C ∩ C ′ = ∅, I ∩ I ′ = ∅ and O ∩ O′ = ∅, the parallel composition D = A ‖ur B

is defined as D = {LD ⊆ L×L′, (l0, l
′
0), I ∪ I ′, O ∪O′, C ∪C ′, TD} such that LD and TD are the small-

est relations defined by the application of rules γ1 and γ2 on the input actions as explained in algorithm

ParallelComposition in Appendix A.2.

The parallel composition D = A ‖ur B is constructed by a constrained Cartesian product of the loca-

tions of A and B and the union of their clocks, inputs, and outputs. The locations LD and transitions TD of

D are determined by the algorithm ParallelComposition. The total number of locations of D is less than or

equal to the Cartesian product of L and L′, i.e., |LD| ≤ |L × L′|.

A TIOA constructed by parallel composition of two URb’s can also be considered as another URb. The

parallel composition D = URb(u1, r1) ‖ur URb(u1, r2) corresponding to P of Example 1 is illustrated

in Figure 6-1. Lemma 6.3 formally shows (proof given in Appendix A.2) that the parallel composition

D = A ‖ur B for the URb’s A and B correctly models ACUT behavior with respect to the user-role

assignments/activations modeled by A and B. D is constructed from the URb’s A and B in isolation with

all other URb’s, i.e., the impact of other user-role assignments/activations in the ACUT is not considered in

constructing D. The recursive application of ‖ur ensures that the final URM correctly models ACUT with

respect to all the user-role assignments/activations.
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Lemma 6.3 (Correctness of ParallelComposition): Given a P and two URb’s A and B the algorithm

ParallelComposition constructs D = A ‖ur B which correctly represents the application of rules from

the rule set <(P ) to each state of ACUT corresponding to the user-role assignments/activations modeled by

A and B.

Corollary 6.1 (Correctness of URM): URM correctly represents the application of rules from the rule set

<(P ) to each state of ACUT with respect to all the user-role assignments/activations.

The proof is simply based on the correctness of ParallelComposition shown by Lemma 6.3, as URM is

constructed by recursive application of ParallelComposition on all the URb’s.

6.3 PR Model

Permission-role model (PRM) encapsulates the behavior of an ACUT with respect to permission-role as-

signments specified explicitly in P or implicitly allowed via I-hierarchy semantics. PRM is constructed

in a way similar to URM by considering parallel composition of basic permission-role models (PRb’s), i.e.

PRM = PRb1 ‖pr PRb2 ‖pr, . . . , PRbj where j = |D6| + |D3| is the total number of PRb’s, such that

D6 = {(p, r) ∈ (P×R)|(p, r) /∈ (D3∪D5)} and D5 = {(p, r′) ∈ (P×R)−D3 |(p, r) ∈ D3, r ≤I r′}. Set

(D3∪D5) corresponds to all such permission-role pairs for which assignments are either explicitly specified

in P or implicitly permitted via I-hierarchy semantics, whereas the set D6 represents such permission-role

pairs for which P does not contain any assignment information.

6.3.1 PRb Model

There could be two types of PRb’s: PR1
b and PR2

b , where PR1
b is the most general type. In the subse-

quent discussion, unless otherwise noted, PRb refers to PR1
b . A PRb is composed corresponding to a spe-

cific permission-role pair (p, r). In the absence of roles senior to r by virtue of I-hierarchy semantics,

PRb would be very simple as only one location variable is used to characterize the value of status predi-

cate PRassign(p, r). The I-hierarchy semantics are captured by using location variables corresponding to

PRassign(p, r′) for all such (p, r′) pairs where r′ ∈ (R′ − {r}) and R′ : {r′|r ≤I r′}, is the set of all

roles senior to r as per I-hierarchy semantics (r is also a member of R′). The value of location variables

in PRb therefore depicts the assigned/unassigned status of the corresponding permission-role pair. Next we

formally define PRb as a TIOA model.

Definition 6.3 (PRb) The basic permission-role model (PRb) corresponding to a permission-role pair (p, r)

is a TIOA PRb(p, r) = {L, l0, I, O,C, T} where:

• L = {l0, l1} is a set of two locations such that ls = {PRassign(p, r′)|r′ ∈ R′ , R′ : {r′|r ≤I r′}}

s ∈ {0, 1}, is a set of status predicates. l0 = {0, 0, . . . , 0} is the initial location.
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• I = {?AP (p, r′, t)|r′ ∈ R′ , R′ : {r′|r ≤I r′}} is a finite of set of input actions.

• O = {∧(!DP (p, r′)|r′ ∈ R′ , R′ : {r′|r ≤I r′})} is a set of single output action.

• C = {x1} is a set of single clock x1 which corresponds to the input action ?AP (p, r, t).

• T ⊆ L × (I ∪ O) × Φ(C) × 2C × L is a set of transitions, defined by the application of rule γ3 on

inputs, as explained in the algorithm ContructPRb , given in Appendix A.3.

While constructing a PRb it is assumed that the deassignment input is only initiated by the system

(ACUT) as per the requirements of rule γ3 and thus a system administrator does not provide these inputs

before the system automatically initiates the deassignments. PRb also satisfies the time progress requirement

as it is strongly non-Zeno. The proof of Lemma 6.4 which shows the correctness of PRb construction is in

Appendix A.3.

Lemma 6.4 (Correctness of ContructPRb ): Given P and (p, r), ConstructPRb constructs a PRb that correctly

represents the application of rules from the rule set <(P ) to each state of ACUT corresponding to the

permission-role assignments modeled by PRb.

PR2
b models are constructed for all the permission-role pairs (p, r) ∈ D6 for which P does not pro-

vide both the explicit and implicit assignment information. A PR2
b model corresponding to a permission-

role pair (p, r), being a special case of PR1
b , is a TIOA PR2

b(p, r) = {L, l0, I, O, C, T} where L = l0 =

{PRassign(p, r)}, I = {?AP (p, r, t)}, O = C = {} and T = {(l, ?AP (p, r, t),−,−, l)}. The correctness

of PR2
b is simple to observe.

6.4 PRM Construction

As already mentioned, PRM is obtained as parallel composition of PRb’s of both types, i.e., PRM = PRb1 ‖pr

PRb2 ‖pr, . . . , PRbj where j = |D6| + |D3| = |PR1
b | + |PR2

b |. The binary operator ‖pr is defined next

for parallel composition of two PRb’s. PRM is constructed by recursive application of ‖pr operator on all

the PRb’s. As PRb’s are strongly non-Zeno therefore their parallel composition PRM would also be strongly

non-Zeno (Lemma 3 in [29]).

Definition 6.4 (‖pr) Given two PRb’s, A = {L, l0, I, O,C, T} and B = {L′, l′0, I
′,

O′, C ′, T ′} where C ∩ C ′ = ∅, I ∩ I ′ = ∅ and O ∩ O′ = ∅, the parallel composition D = A ‖pr B

is defined as D = {L×L′, (l0, l
′
0), I ∪ I ′, O∪O′, C ∪C ′, TD} such that TD is the minimum set of compos-

ite transitions formed by interleaving of individual transitions of A and B. Corresponding to a transition

pair (e1, e2) where e1 = (ls, {?i, !o}, g,R, lt) ∈ T and e2 = (l′s, {?i, !o}
′, g′, R′, l′t) ∈ T ′, two composite

transitions, e′1 = ((ls, l
′
s), {?i, !o}, g, R, (lt, l

′
s)) and e′2 = ((ls, l

′
s), {?i, !o}

′, g′, R′, (ls, l
′
t)), will be added

to TD by virtue of interleaving of e1 and e2.
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Figure 6-2: Example of parallel composition of three PRb’s

The correctness of ‖pr comes easily from Definition 6.4. As a corollary, it is simple to argue the cor-

rectness of PRM. An example of parallel composition of three PRb’s is illustrated in Figure 6-2. The P in

Figure 6-2 corresponds to Example 1 with an added role ResidentDoctor (r3) senior to r2 in the I-

hierarchy. Assume there are three permissions p1 =Update patient record, p2 =Erase patient

record, and p3 =Create patient record which can be assigned to roles r1 and r2. Consider

that P specifies that p2 and p3 can be assigned to r1, whereas only p1 can be assigned to r2. There

would be three PR1
b models tallying with p2r1, p3r1, and p1r2 explicit permission-role assignments in

P . PRb(p1, r2) illustrates that, by virtue of I-hierarchy, p1r2 assignment would also automatically lead

to p1r3 assignment without requiring any other input. The PRM′ constructed as a parallel composition

PRb(p2, r1) ‖pr PRb(p3, r1) ‖pr PRb(p1, r2) is also shown in Figure 6-2. Note that PRM would be con-

structed by parallel composition of PRM′ with all PR2
b models, i.e. PRM = PRM′ ‖pr PR2

b(p1, r1) ‖pr

. . . ‖pr PR2
b(p3, r3).

Theorem 6.1 formally shows the correctness of TRBACM = URM ‖ PRM.

Theorem 6.1 (Correctness of TRBACM = URM ‖ PRM): TRBACM correctly represents the application

of rules from the rule set <(P ) to each state of ACUT with respect to all the user-role assignments and

activations and permission-role assignments in P .

Proof of Theorem 6.1 is based on the correctness of URM and PRM shown earlier, as the parallel compo-

sition URM ‖ PRM does not cause any violation of the rules from the rule set <(TRBACP ).

We have already presented the TRBAC fault model in Section 5 and have now completed a description of

the technique for the construction of TRBACM for a given TRBAC policy specification. In the next section

we focus on a procedure for the generation of the conformance test suite from TRBACM that provides

20



complete coverage with respect to the faults in the proposed TRBAC fault model.

7 Test Generation from TRBAC Model (TRBACM)

Key steps in the proposed technique for construction of conformance test suite from TRBACM are enumer-

ated below and explained subsequently.

1. Transform TRBACM into se-FSA (se-TRBACM) by adopting the procedure given in [18].

2. Construct the test tree (Tr) corresponding to the se-TRBACM.

3. Generate the conformance test suite. The conformance test suite is then executed against the ACUT

using the test architecture proposed in [17].

7.1 Transformation of TRBACM into se-TRBACM

It is important to note that the semantic graph SA of a TIOA A (Section 3.2), which encapsulates the infor-

mation about all the accepting runs of A, is of infinite size. The primary purpose of se-FSA transformation

is to capture the timed semantics of A by using a Finite State Automaton (FSA). The se-FSA transformation

converts a TIOA into an equivalent finite state automaton which in addition to the events of the TIOA has

the two special types of events: Set and Exp that model setting and expiring of clocks, respectively. The

se-FSA is equivalent to its corresponding TIOA, as shown in [18], in the sense that both specify the same

order and timing constraints of events. We omit the finer details of se-FSA transformation and refer the

interested to [18] for the complete algorithm.

A se-FSA is an FSM SE = (Q, q0, X, Y, δ,O) where Q is a finite set of states, q0 ∈ Q a unique initial

state, X and Y , respectively, the input and output alphabets, δ : Q × X → Q the state transition function,

and O : Q × X → Y the output function. A member such as Q of SE is referred as Q(SE). The salient

features of se-FSA transformation of TRBACM are illustrated by considering a simpler version of Example 1

with the single user u1. For this case TRBACM = URM = D. We have adapted the se-FSA procedure

of [18] to handle urgent outputs in TRBACM. In general, the se-FSA transformation of a deterministic TIOA

may result in a non-deterministic FSM, however, the se-FSA corresponding to TRBACM would always be

deterministic because TRBACM considers urgent outputs and any clock resets in it are only associated with

input actions.

The se-FSA transformation of TRBACM, i.e., se-TRBACM of simplified Example 1, is illustrated in

Figure 7-1. It can be observed that there are three types of events in se-TRBACM: input events corre-

sponding to input actions and/or clock resets in TRBACM, output events corresponding to output actions

in TRBACM and/or clock expirations, and complex events occurring as combination of the previous two.

The duration constraints specified in TRBACM become explicit in the se-TRBACM as all the input actions,
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Figure 7-1: se-FSA transformation of D i.e se-TRBACM

associated with transitions other than self loops, would cause setting of a clock whose expiry will result in

the corresponding deactivation/deassignment.

7.2 Construction of Test Tree

As mentioned, se-TRBACM is deterministic, i.e., no two edges out of a state have the same labels. In addition,

it has a finite number of states. Therefore we can use any test generation technique for deterministic FSA’s to

construct the conformance test suite. For our test generation for TRBAC ACUT we used the W-method [9]

because of its proven fault coverage. Tests are generated in this method by concatenating the test sequences

obtained from the test tree (Tr) with the determined state characterization set referred to as the W set.

We assume the existence of reliable methods in the ACUT that can be used to directly query the current

state. Hence the W set is not required and the test set can be generated directly from the testing tree. This

assumption is not very restrictive and has also been used in the Binder round trip method [7] for class testing

in object-oriented programs. By virtue of state observability, the test suite is directly constructed from Tr.

When the states are not observable then, using the procedure given in [17], the se-TRBACM can be made

input complete and W set can be determined. The test suite generation in this case would be more complex

and the test suite size would be much larger.

Note that state observability here implies the ability to determine the valuation of Status predicates in

the ACUT, which actually corresponds to location observability. In se-TRBACM this could cause a problem

in detecting such transfer, missing state, and extra state faults where the correct and incorrect destination

states correspond to the same location but different range of clock variables. However, as discussed later

in Section 7.5, by virtue of the structure of TRBACM and its se-TRBACM transformation, transfer, missing

state, and extra state faults leading to incorrect states corresponding to same location as of the correct state
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Figure 7-2: Tr for se-TRBACM of Figure 7-1

would always lead to output faults which can be detected with only location observability.

While constructing the Tr from the FSM if the added node at depth k is the same as some other node

at depth i, i ≤ k, then that node is terminated with no further edge out of it [9]. For our conformance test

suite we considered a modified Tr to reduce the total number of test sequences by including the repeated

nodes explicitly in the path only when they are encountered for the first time (corresponding to a specific

event). Note that the paths in Tr still form a transition cover set as required by the W-method [9]. A Tr

corresponding to se-TRBACM of Figure 7-1 is illustrated in Figure 7-2.

As the finite sequences accepted by an se-FSA should terminate in a state without outgoing Exp events

(accepting state) [18], the terminals in a test tree have to be from among the set of accepting states. Hence,

if at any level in the Tr a non-accepting node is repeated, the corresponding path is not terminated untill

the time the terminal node is an accepting state. We suggest that the shortest path among all paths from a

repeating non-accepting node to any of the accepting states be used for this path augmentation. The path

“pt” in the Tr of Figure 7-2, depicts that although q1 is repeated i for the same events “?b” and “?e” yet the

path is not terminated because q1 is not an accepting state.
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7.3 Generation of Conformance Test Suite (CTS)

The se-TRBACM allows us to use the test system given in Figure 7-3 for conformance testing of the given

ACUT. This test system has been first proposed in [17] (there is a minor variation in our test system as

the state queries are used to get the current state information from the ACUT). The purpose of the Test-

Controller is to control the execution of all the test sequences of the conformance test suite. It sends inputs

to the ACUT and Set events to the Clock-Handler at the specified times and receives the outputs from the

ACUT and Exp events from the Clock-Handler. After each input or output event the Test-Controller queries

the ACUT to determine the current state. A test sequence is considered passed if all the outputs from the

ACUT match the corresponding Exp event and the state information agrees with the one required by the test

sequence. An ACUT is thus considered conforming if all the tests pass.

Each path in Tr represents a unique test sequence. For a given path pt in Tr, the test sequence is

constructed by associating all the edges e ∈ pt with monotonically increasing time stamps. Constraints are

imposed on the time stamps by virtue of the semantics of se-TRBACM. The time stamp associated with

an input action indicate the time at which Test-Controller should generate the corresponding input for the

ACUT and the Clock-Handler. An ACUT will pass the subject sequence if outputs are generated by the

ACUT and the Clock-Handler at times corresponding to the time stamps of output actions.

To illustrate the semantics of a test sequence and the procedure used for determining the feasible value

of time stamps so that the sequence can be executed by the test system on the ACUT, we consider as an

example the following sequence obtained from the Tr of Figure 7-2:

TS1 = q0, (?a, t1)q0, (?b, t2)q0, (?c, t3)q1, (?b, t4)q1, (?e, t5)q1, (?f, t6)q3, (?b, t7)q3, (?e, t8)q3, (!d, t9)q4,

(?a, t10)q4, (?b, t11)q4, (!g, t12)q5, (?a, t13)q5, (?b, t14)q5 with the temporal constraints, t1 = 0, ti+1 > ti,

t9 − t3 = 3 and t12 − t6 = 1.

TS1 corresponds to the execution sequence of ACUT where the u1r1 activation is pre-empted by the

deassignment output. The constraints t9− t3 = 3 and t12− t6 = 1 represent the time difference between the

matching Set and Exp events in this sequence. The feasible value of time stamps should satisfy the required

temporal constraints, which can be represented as:

dt2 = t2, dti > 0, 2 ≤ i ≤ 12, dt4+dt5+dt6+dt7+dt8+dt9 = 3 and dt7+dt8+dt9+dt10+dt11+dt12 = 1

where dti = ti − ti−1.

input output

Set(c,k)

Exp(c,k)

Test SystemState query

State info

Test-Controller Clock-Handler

ACUT

Figure 7-3: Structure of Test System (Test harness) [17]

24



This problem can be treated as a linear program by considering that the objective function
∑

i dti is

minimized subject to the given constraints. As we are dealing with dense time semantics, the obtained

solution can have very minute resolution (the smallest value among all the dti’s), thus the execution of the

given sequence might not be practically possible. We overcome this problem by specifying the minimum

resolution and formulating the feasible time stamp determination problem as an Integer Program (IP) [30].

The integer program corresponding to the above problem will be:

min
∑

i dti, subject to dti/k = ci, 2 ≤ i ≤ 12, dt4 + dt5 + dt6 + dt7 + dt8 + dt9 = 3, dt7 + dt8 + dt9 +

dt10 + dt11 + dt12 = 1 and ci ∈ Z+, where k specifies the minimum resolution. Solving the IP for k = 0.1,

the test sequence would be:

q0, (?a, 0)q0, (?b, 0.1)q0, (?c, 0.2)q1, (?b, 2.3)q1, (?e, 2.4)q1, (?f, 2.5)q3, (?b, 3)q3, (?e, 3.1)q3, (!d, 3.2)q4,

(?a, 3.3)q4, (?b, 3.4)q4, (!g, 3.5)q5, (?a, 3.6)q5, (?b, 3.7)q5.

When no feasible solution exists for a specific value of k, we can continue reducing the value of k untill

the time a solution is obtained. The CTS is thus obtained by determining the feasible time stamps for all the

test sequences, where as mentioned above, each sequence corresponds to a unique path in the Tr.

7.4 Relation between TRBAC, TIOA, and se-FSA Fault Models

The TIOA based fault model considered in [11] comprises of two types of faults: timing faults and “action

(output) and transfer”. We considered an extended TIOA fault model with missing location and extra lo-

cation faults, not considered in [11] because of the test hypothesis considered there. The action, transfer,

missing and extra location faults in TIOA are similar to the output (operation), transfer, missing and extra

state faults in finite state machines [9].

There could be three types of timing faults in an ACUT′ [11], (1) reset of a clock fault, (2) time constraint

restriction fault, and (3) time constraint widening fault. An ACUT′ would have a clock reset fault if it does

not reset the expected clocks or resets wrong clocks not stated by the specification. We consider the other

two types of faults specifically with respect to our TIOA TRBACM model in which guards only restrict the

timings of output transitions through equality constraints on the clock values. An ACUT′ would have a time

constraint restriction fault (time constraint widening fault) if a constraint x = t′ is replaced by x = t such

that t′ < t(t′ > t).

The relation between the TRBAC faults, described in Section 5, and the TIOA faults in the TRBACM model

is illustrated in Table 3. As all the TRBAC faults can be associated with some fault type in the TRBACM model,

a CTS capable of detecting all TRBACM faults would automatically guarantee complete fault coverage for

TRBAC faults.

The se-FSA based fault model considered in [17] consists of only the output and transfer faults. We

extend this fault model through inclusion of missing state and extra state faults. The output, transfer, missing

location and extra location faults in the TRBACM model have similar representation in the se-TRBACM. The

time constraint restriction and widening faults are represented in the form of combination of output and
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Table 3: Relation between TRBAC and TIOA Faults

TRBAC Faults TIOA Faults

UR1, UA1, PR1 Transfer, Missing location, Output

UR2, UA2, PR2 Extra location, Output, Transfer

Hierarchical enforcement Transfer, Output

Duration restriction Time constraint restriction, clock reset

Duration widening Time constraint widening, clock reset

transfer faults. However, a clock reset fault does not have any direct correspondence with the faults in the

se-TRBACM model as the se-FSA model always considers pairs of Set and related Exp events and thus a

missing or extra Set event carries no semantics in the se-TRBACM model.

7.5 Fault Coverage of CTS

CTS is generated by applying the W-method on se-TRBACM, where the W-method provides complete fault

coverage for output, transfer, missing state and extra state faults under the assumption that the number of

states in the ACUT are accurately estimated [9]. In Section 7.2 we highlighted the issue of detecting such

transfer, missing state and extra state faults which lead to incorrect states with same location as of correct

states but a differing range of clock variables. Note that states q ∈ Q(SE) of an se-FSA contain information

corresponding to both locations of the source TIOA and the range of clock variables [18], referred here as

∆C. Consider that ACUT is the correct implementation corresponding to se-TRBACM= SE , and there is a

faulty ACUT′ which implements SE′ , where SE and SE′ differ only in δ(SE) in case of a transfer fault in the

ACUT′ and in both Q(SE) and/or δ(SE) and O(SE) in case of a extra or missing state fault in the ACUT′.

Consider the execution of ACUT′ against test sequence TS ∈ CTS where transition τ = (qi, (i, t)q) ∈ TS

corresponds to fault f = (qi, (i
′, t)q′), q′ 6= q in ACUT′ such that q and q′ only differ in ∆C. Consider that

TS corresponds to the path pt in Tr.

Note that ∆C would only vary in q′ from q if i′ and i differ in Set or Exp or both events. If i and i′ differ

in Set events, which corresponds to clock reset fault, then as discussed next such faults would be detected

by the CTS as output faults. If the difference between the two is only in Exp events then we separately

consider the cases of missing, extra or modified Exp events in i′ in relation with the semantics of se-FSA.

A missing Exp event would only occur if there is a missing clock reset fault earlier in the path pt before

the edge corresponding to τ . An extra Exp event would similarly correspond to incorrect clock reset. A

modified Exp would occur because of either a missing or incorrect clock reset fault or combination of two

faults and as discussed later the clock reset faults would be detected as output faults. From this discussion it

is simple to observe that if i′ differs from i in both Set and Exp events then this would also correspond to
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clock reset faults.

From the above discussion we infer that if an ACUT′ has transfer, missing state and extra state faults

that lead to incorrect states with same location as of correct states but differing range of clock variables,

then such faults would always occur in combination with output faults which would then be always detected

by at least one element in CTS. Thus if an ACUT′ passes the CTS then it would be free of all the output,

transfer, missing and extra state faults. The correlation between TIOA and se-FSA faults, established in

Section 7.4, implies that CTS would be able to detect all the output, transfer, missing and extra location, and

time constraint restriction and widening faults in the TRBACM. We claim that the clock reset faults would

also be detected by the CTS.

Next consider a missing clock reset fault in the ACUT′. Note that the CTS includes at least one such test

sequence which contains both the Set event associated with the missing reset and an output event containing

the corresponding Exp event. As this sequence is executed against the faulty ACUT′, the time of occurrence

of the output event and the Exp event would not be the same and thus the missing clock reset fault would

be detected by at least one element of CTS as an output fault. By using a similar approach it can be easily

shown that the reset of incorrect clock fault would also be detected by the CTS. It is important to note that

an incorrect clock reset fault would only alter the semantics of the TIOA model, in case if the corresponding

clock is used in some guard subsequently (before its correct reset) in the semantic graph of TIOA.

Proposition 7.1 CTS detects all transfer, output, missing and extra location, and timing faults in the TRBACM,

and hence it must detect all TRBAC faults in a ACUT′ given that there are no faults in the ACUT′ because

of user/system-administrator initiated deassignment/deactivation requests.

The proof of Proposition 7.1 is based on the fact that CTS is able to detect all the faults in se-TRBACM,

the correlation between fault models established in Section 7.4, and the correctness of TRBACM established

by Theorem 6.1.

To illustrate the fault coverage of CTS, consider that corresponding to the ACUT which correctly en-

forces simplified P (Section 7.1) of Example 1, there are two faulty ACUT’s: ACUT′ and ACUT′′ which,

respectively, enforce policies TRBACP ′ and TRBACP ′′ . TRBACP ′ = (U,R, Pr, . . . , Ss, Ds,<
1)

and TRBACP ′′ = (U,R, Pr, . . . , Ss, Ds,<
2) where <1 differs from < in only γurSSoD such that ∀

(u, r) ∈ U × R γurSSoD(u, r) = 1. <2 differs from < in γ1 in enforcing the duration constraint on

AS(u, r, t) by increasing the duration to t + 1 in the TRBACP ′′ .

Table 4 records the results of executing ACUT and the two faulty ACUTs against TS1. The various

notations used in Table 4 correspond to: Is = initial state, Ns = next state, (i, t) = (input,time) and (o, t)

= (output,time). The error in TRBACP ′ would lead to a UR2 fault as despite the existence of static SoD

constraint on simultaneous u1 assignment to r1 and to r2, the concurrent u1r1 and u1r2 assignments would

exist in the ACUT′. The error in TRBACP ′′ would cause a duration widening fault as the duration of u1r1

assignment would be inappropriately extended to 4 tu’s, against 3 tu’s specified by P . As indicated by
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Table 4: Comparison of TS1 execution on Conforming and faulty ACUT’s

TS1 ACUT ACUT′ ACUT′′

Is q0 q0 q0

i, t ?a, 0 ?a, 0 ?a, 0

Ns q0 q0 q0

i, t ?b, 0.1 ?b, 0.1 ?b, 0.1

Ns q0 q0 q0

i, t ?c, 0.2 ?c, 0.2 ?c, 0.2

Ns q1 q1 q1

i, t ?b, 2.3 ?b, 2.3 ?b, 2.3

Ns q1 q1 q1

i, t ?e, 2.4 ?e, 2.4 ?e, 2.4

Ns q1 q′

1 q1

i, t ?f, 2.5 q′

1 differs ?f, 2.5

Ns q3 from q1 in q3

i, t ?b, 3 the value of ?b, 3

Ns q3 URassign q3

i, t ?e, 3.1 (u1, r2) which is ?e, 3.1

Ns q3 1 in the q3

o, t !d, 3.2 former and 0 Exp(x1), 3.2

Ns q4 in the later q3

Table 4, the UR2 fault in TRBACP ′ and the duration widening fault in TRBACP ′′ would be detected by

TS1 as extra state and output/transfer faults respectively.

8 Heuristics for CTS Reduction

Though promising, the test generation approach based on construction of CTS from TRBACM presented in

Section 7.3 can be expensive and thus impractical in terms of the size of the model required to capture the

ACUT behavior and the size of the corresponding CTS. We propose two heuristics, labeled HT1 and HT2,

to reduce the size of the model and of the corresponding CTS.

8.1 Heuristic HT1

This heuristic considers a reduced TRBACM, referred to as TRBACM′. The size of TRBACM′ = URM′ ‖

PRM′ is reduced by considering fewer number of URb’s and PRb’s, respectively, in the construction of

URM′ and PRM′ as compared to URM and PRM. For URM′, the number of URb’s is reduced by consider-

ing URb’s corresponding to only those user-role pairs for which explicit assignment is provided by P , i.e.
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∀(u, r) ∈ D1, hence k = |D1|. Thus in case of Example 1 although the total number of possible user-role

assignments is four, i.e., assignments consequent to u1r1, u1r2, u2r1 and u2r2 pairs; however, only three

URb’s are considered in constructing URM′ because u2r1 assignment is not explicitly stated by P .

By using the proposed strategy for reducing the number of URb’s , the size of the resultant URM′ can

be significantly trimmed. However, this trimming is at the expense of reduced fault detection effective-

ness of CTS. Specifically, URM′ does not encapsulate sufficient information which can reveal all the UR

and UA faults in the ACUT′ (even under the assumption that the events corresponding to user-role assign-

ments/activations and permission-role assignments can be considered as independent). To lessen the impact

of this shortcoming, in addition to the tests generated from TRBACM′, we suggest separate validation of all

such user-role assignments and activations not captured by URM′.

The separate validation is performed by verifying that for the given user-role pairs, corresponding to the

application of inputs AS and AC, the ACUT′ response matches the one permitted by TRBACP . Note that

this validation does not guarantee absence of all the UR and UA faults in the ACUT′ as there could be faults

that are only depicted during a specific sequence of events. As an example consider a UA2 fault that leads to

u2r1 assignment in the ACUT′ corresponding to Example 1. If this fault is only visible after the occurrence

of a u2r2 activation, i.e., when URactive(u2, r2) = 1, then it cannot be revealed by such validation.

Similarly, the reduction in the size of PRM′ is achieved by constructing the PRb’s for only those permission-

role pairs for which explicit assignment is specified by the TRBACP , i.e. ∀(p, r) ∈ D3, hence j = |D3|.

This will likely lead to reduced fault detection effectiveness of the CTS. Specifically, PRM′ does not cap-

ture enough information to reveal all the PR faults in an ACUT′ (even under the assumption that the events

corresponding to user-role assignments/activations and permission-role assignments can be considered as in-

dependent). Therefore, we again suggest separate validation of all such permission-role assignments which

are not captured by PRM′. The validation of all such permission-role pairs is performed by applying corre-

sponding AP inputs to the ACUT′ and comparing its response with the one specified by the TRBACP . As

before, such validation does not guarantee absence of all the PR faults in the ACUT′ as there could be such

faults which are only depicted during a specific sequence of inputs.

As an example, consider the PRM′ illustrated in Figure 6-2. Consider a PA2 fault in the ACUT′ that leads

to p2 assignment to r2 only after the occurrence of a p2r1 assignment, i.e., when PRassign(p2, r1) = 1

becomes true. This fault cannot be revealed by the separate validation.

8.2 Heuristic HT2

In this heuristic, the size of the CTS is reduced by generating it independently from the URM and PRM models.

As URM and PRM models do not capture the complete ACUT behavior specified by P , therefore unless it is

possible to assume that all the events in URM and PRM are independent, complete fault coverage cannot be

guaranteed. Note that by abstracting the details captured by a location in the TIOA based TRBAC model,

various other heuristics can be designed such as constructing separate TIOA models for each user and each
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role.

9 Related Work

Though significant amount of research has been reported in relation to modeling [3, 4, 13, 26, 31] and test

generation for real-time systems [8, 11, 20, 19, 17], we are not aware of any work that addresses the problem

of test generation for access control systems employing policies with temporal constraints.

We have used timed automata [3, 13], in particular Timed Input Output Automaton (TIOA) to model

real-time constraints in a TRBAC specification. Although there exist other formalisms such as timed Petri

nets, timed process algebras, and real time logics [4, 26, 31], which can be used for specifying real-time

systems, we considered timed automata in modeling TRBAC because it allows us to leverage the significant

amount of research on test generation from timed automata [8, 11, 20, 19, 17, 21, 28].

The proposed test generation procedure (Section 7) has been inspired by the se-FSA based testing tech-

nique proposed by Khoumsi [17]. The se-FSA technique has various advantages as compared to others as

it provides good fault coverage without the disadvantage of significant loss of scalability. Although the first

step, i.e. se-FSA transformation of TRBACM, of our test generation procedure given in Section 7 is similar to

Khoumsi’s approach, subsequent steps differ considerably due to two reasons. First, our se-FSA transforma-

tion results in a deterministic FSA. Second, the ability to directly monitor the states considerably simplifies

the CTS generation. We have also studied the problem of making the tests executable by determining the

time stamps at which inputs should be generated and, at which corresponding outputs should occur.

Timed-Wp method [11] also provides complete fault coverage of TIOA faults but, at the expense of a

significant loss of scalability. Timed-Wp method first samples the Region Graph (RG) [3] of the underlying

TIOA to obtain a Grid Automaton (GA) which is transformed to a Nondeterministic Timed FSM (NTFSM).

The test suite is generated from the NTFSM by using a generation technique based on state characterization

sets. The exponential complexity of timed-Wp is primarily because of the construction of RG and GA

which is exponential on the number of clocks and constants used as bounds in the time constraints [11].

Whereas, in general for most of the TIOA’s the state space of se-FSA’s does not increase with the magnitude

of constants used in timing constraints (only increase with number of clocks) [18].

For the comparison of complexity, the region graph of URb(u1, r1) contains 47 states as compared to

only 8 states in its se-FSA. The size of the NTFSM corresponding to region graph of URb(u1, r1), from

which tests would be generated, will be even larger by virtue of sampling. Another issue with the general

applicability of the Timed-Wp method is that the fault coverage is only guaranteed for a specific Implemen-

tation Under Test (IUT) architecture by assuming that clock resets are observable.

The testing approaches presented in [20, 19] and [21] are based on symbolic clustering of states into

partitions coarser then regions and thus are better scalable as compared to region graph based test generation

techniques. With some minor variations both approaches consider conformance between the specification
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Table 5: Comparison of test generation techniques for TIOA based specifications

Test Generation Technique Specification Model Effectiveness∗ Scalability (Cost)

se-FSA based [17] TIOA Complete Medium

Symbolic states [20, 19] TIOA with deadlines Not measurable Low

Symbolic states [21] TIOA with location invariants Not measurable Low

Region Graph based [11] TIOA Complete Very High

CTS (proposed)♦ TRBACM (constrained TIOA) Complete Low

∗Effectiveness measured with respect to TIOA fault model.

♦HT1 and HT2 also provide complete fault coverage for TIOA faults with respect to

the reduced TRBACM considered.

and the IUT as a timed input output conformance (tioco) relation, i.e., for all the traces of the specification the

IUT always produces outputs within the given temporal bounds. The problem with these approaches is that

they do not consider any fault model and thus are not able to provide any guarantees of fault coverage. The

digital-clock test generation of [19] and [20] is similar to our IP based approach used in CTS construction in

Section 7.3, in terms of the semantics of the generated test sequences.

Based on the above discussion the test generation techniques for TIOA based specifications can be

broadly classified into three types: se-FSA based [17], Region Graph based [11] and those based on symbolic

clustering of states [20, 19, 21]. Table 5 summarizes the comparison between scalability and fault detection

effectiveness of these approaches and the proposed CTS.

10 Summary and Discussion

A technique for behavior modeling of TRBAC systems and a conformance testing procedure for TRBAC

ACUT’s is proposed. The proposed procedure provides complete fault coverage with respect to a proposed

TRBAC fault model studied in Section 5. The fault model is obtained by following the mutation based

approached described in [25]. The complete fault coverage of the generated CTS is by virtue of the correct-

ness of the TIOA based behavior modeling technique presented in Section 6, and the correlation between

TRBAC, TIOA, and se-FSA faults established in Section 7.4.

The proposed conformance testing technique is based on a transformation of TRBACM to se-TRBACM and

then using the W-method to generate the test tree (Tr). CTS is then constructed from the Tr by using an

IP based approach that ensures that the test sequences satisfy the temporal constraints by only considering

sending of inputs and monitoring of outputs at some integral multiple of minimum resolution k. Finally we

use a specific test system architecture to execute the CTS against the ACUT and to compare the results so as

to validate the ACUT conformance with respect to TRBACP . In Section 8 we show how to reduce the size
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of the CTS through two heuristics based on state abstraction. The decision on whether to use the complete

CTS or a smaller test suite can be based on the extent of resources available for the testing process and the

desired level of fault detection effectiveness.

The proposed conformance testing technique can be used to derive timed test cases for any real time

system employing duration constraints. It provides complete fault coverage under the assumption that

there are no faults in the ACUT′ due to user/system-administrator initiated deassignment/deactivation re-

quests. This assumption is not overly restrictive and can be relaxed by explicitly including the effect of user

(systems-administrator) initiated deassignment/deactivation (deassignment) requests in the URb (PRb) model

construction. Its consequence would be an increase in the complexity of the CTS generation procedure and

the corresponding increase in the execution time of the conformance tests.

In addition to the set of temporal constraints (duration constraints) considered in our definition of TR-

BAC (Section 3.1), others such as periodicity constraints and temporal role hierarchies have also been pro-

posed for RBAC models [16]. Although we consider that our modeling technique, presented in Section 6, is

general enough to allow representation of these additional constraints through modifications to the proposed

model generation process, yet further research is needed to precisely identify the required changes in the

model generation and conformance test suite construction processes.

Functional testing of TRBAC systems is carried out as per the functional testing methodology proposed

in [24] which considers a policy meta test set for test generation. The proposed CTS generation procedure

is utilized in Step 3 of the proposed functional testing methodology for constructing the meta test set.
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Appendix A : Algorithms and Proofs

A.1 URb Construction

The URb model is constructed by the algorithm ContructURb given in Figure A-1. In this algorithm I|l

represents the set of available inputs in location l which would be constrained by the assumptions discussed

in Section 6.1.1. ContructURb uses the standard Breadth First Search (BFS) [10] to explore all the locations

connected with the initial location (l0). Initially all the unexplored locations are colored white and a location

is colored gray (to indicate that is partially explored) as it is explored for the first time and also added to

a First In First Out (FIFO) queue. A completely explored location is colored black once all the possible

outgoing transitions from this location are evaluated for next location.

The procedure update
Location

is executed on each partially explored location. Details of its execution are

discussed in the proof of Lemma 6.1, given below, which shows the correctness of URb . It is to be noted

that the application of rule γ1 or γ2 on an input may not only cause a change in the state of the ACUT but

may also require the enforcement of temporal constraints as required by the respective rule.

Proof of Lemma 6.1: Under the assumptions given in Section 6.1.1, we use structural induction [14] to

prove the correctness of ContructURb by showing that each execution of the procedure update
Location

on a

location correctly applies the rules of the TRBACP .

Basis: The base case is when there is only single location l0 in the TIOA URb which corresponds to the

ACUT state in which no user-role assignment/activations exist and we consider the first execution of the

update
Location

on l0. As discussed next the assignment and activation inputs are handled differently by the

procedure update
Location

.

Assignment Input: Based on our assumptions the sole assignment input AS(u, r, t) would only be avail-

able in l0. The operation of rule γ1 on AS(u, r, t) would require the state of ACUT to change to reflect

the (u, r) assignment to be true for time t, i.e., URassign(u, r) should be 1 in the next state for time t. In

URb this is modeled as the procedure update
Location

adds the following two transitions corresponding to the

application of input AS(u, r, t) in l0: (1) transition corresponding to the input action ?AS(u, r, t) between

the current location l0 and the next location l′, which also resets the corresponding clock x|I , and (2) the

transition corresponding to the output action !DS(u, r) between l′ and l0. The two transitions combined

correctly enforce the constraints (including duration constraint) on the (u, r) assignment as required by the

rule γ1.

Activation Inputs: As l0 corresponds to the ACUT state in which u is unassigned to r, therefore ap-

plication of rule γ2 on any AC(u, r′, t) input should not permit the corresponding user-role activation. In

URb this is modeled by ensuring that corresponding to the input action ?AC(u, r, t) only one transition rep-

resenting the self loop for l0 is added to URb . The procedure update
Location

thus correctly enforces the rule γ2

on l0. As l0 is colored black only after evaluating the next location for all the input actions therefore it is
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Algorithm ConstructURb

Input: (u,r), TRBAC

Output: URb(u,r)

1 l0  {0,0,0,….0} where | l0|=|R +1|

2 for each l L – {l0}

3 do color[l]  white

4 end for

5 color[l0]  grey

6 Queue

7 addToQueue[l0]

8 while  Queue

9 do l  removeFromQueue()

10   updateLocation(l, I|l)

11 end while

updateLocation(l, I|l)

1 for each  I  I|l

2 do if I=AS(u,r,t)

3 then apply rule 1 on I to determine l { l | URassign(u,r)}

4   T  T+(l, ?AS(u,r,t),-, x|I:=0, l )

5   T  T+(l , !DS(u,r), x|I =t,-, l)

6  tassign  t

7  color[l ]  grey

8  addToQueue[l ]

9   end if 

10   do if I=AC(u,r,t)

11 then apply rule 2 on I to determine l { l | URactive(u,ri)}

12 do if l  = l

13 then T  T+(l, ?AC(u,ri,t),-,-, l )

14 else

15  T  T+(l, ?AC(u,ri,t),-, x|I:=0, l )

16  do if color[l ]  white   //first time explored

17   T  T+(l , !DC(u,ri), x|I =t,-, l)

18   T  T+(l , !DS(u,r), x|?AS =tassign,-, l0)

19 for each l        ( l ) – {l}

20   T  T+(l , !DC(u,rj), xj=tj,-, l)

21   color[l ]  grey

22   addToQueue[l ]

23  end if 

24   end if 

25 color[l]  black

26 end for

l|URactive(u,r) or l| URassign(u,r) indicates new value of l with updated value of URactive(u,r) or URassign(u,r)

respectively and, DeActiveSet (l ) represents the set of locations which can be reached from l  by deactivating any

active user-role pair in l

 DeActiveSet

Figure A-1: Procedure for Constructing URb
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fully explored.

Induction: Assume that the kth execution of update
Location

has correctly enforced the rules of TRBACP on

the location lk. We further consider that the kth execution is not the last execution and there is at least on

more execution, i.e., k +1st execution of update
Location

on the location lk+1. We need to prove that the k +1st

execution of update
Location

also correctly enforces the rules of TRBACP .

It is to be noted that by virtue of our assumptions only activation inputs would be available in any location

other than l0. The operation of rule γ2 on any AC(u, r, t) input applied in the ACUT state corresponding to

lk+1 can result into two cases for the next state: either the next state is same as the current state by virtue

of constraints enforced by γ2, or the next state is different then the current one. In case of a different next

state all the user-role activations in the next state are required to respect the temporal constraints imposed

by both the rules γ1 and γ2. On its k + 1st execution the procedure update
Location

correctively enforces the

requirements of both rules in the URb by considering following two possible cases for the next locations

corresponding to the application of AC(u, r, t) inputs.

1. The next location is the same as the current location, i.e., lk+1 = lk, which would be true if the

corresponding user-role activation cannot be made due to the violation of constraints as identified

by γ2. In this case only one transition representing the self loop corresponding to the input action

?AC(u, r, t) is added to URb , thus correctly enforcing the rule γ2.

2. The next location l′ is different from lk+1. In case if the location l′ is unexplored (colored white) then

in addition to the transition corresponding to the input action ?AC(u, r, t), various other transitions

corresponding to the output actions are also added to URb . A transition corresponding to the output

action !DC(u, r) is added between the next location l′ and the current location lk+1 and it enforces the

temporal constraint implied by rule γ2 on (u, r) activation. A transition corresponding to the output

action !DS(u, r) is added between l′ and l0 and it enforces the preemptive user-role deactivation as

required by the rule γ1. A number of transitions corresponding to deactivation output actions are added

from l′ to all such locations, which can be reached from l′ by deactivating any active user-role pair in

l′, i.e., the elements of the set DeActiveSet(l′). It is to be noted that by virtue of BFS all the members

of DeActiveSet(l′) would be already explored, i.e., colored gray or black. The inductive argument

that kth execution of update
Location

has correctly enforced the rules of TRBACP on the location lk and

the progress requirement imposed by the urgent outputs ensure that whenever guard of the transitions

corresponding to !DC(u, r) output actions is satisfied, such transitions are definitely traversed, thus

correctly enforcing the rule γ2. All the transitions combined thus correctly enforce the rules γ1 and

γ2.

Hence the k + 1st execution of update
Location

also correctly enforces the rules of TRBACP . This completes

the inductive step and the proof.
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A.2 URM Construction

The algorithm ParallelComposition, given in Figure A-2, uses color coding to differentiate between explored

and unexplored locations (l, l′) where l ∈ L and l′ ∈ L′ of D. As initially all the locations of D are un-

explored therefore they are colored white, and whenever a location is visited its colored gray. The set of

transitions TD is initialized to a null set and new transitions are added to it during execution of the recur-

sive procedure getNextLocations which visits all locations in a depth first traversal [10]. In the procedure

getNextLocations when a location (l, l′) is visited for the first time it is marked gray and then the following

process is used to determine the next location corresponding to all the transitions originating from l and l′.

• In case of a transition ({l, l′}, ?i, g, R, lt) on an input action, rule γ1 or γ2 is used to determine the next

location, which could be the same location, i.e., (l, l′) or a different one, i.e., (lt, l
′) or (l, lt), which

if unexplored is recursively visited. The initial and next location would be same if the application of

input on current state (l, l′) violates the constraints in TRBACP .

• In case of a transition ({l, l′}, !o, g,R, lt) on an output action, the next location would always be

different, which if unexplored will be recursively visited.

Proof of Lemma 6.3: We use, the fact that A and B are correct (Lemma 6.1 and Lemma 6.2), and “proof

by contradiction” to prove the correctness of ParallelComposition.

Assume that ParallelComposition does not correctly apply the rules from the rule set <(TRBACP ) to

at least one state s′ of ACUT corresponding to the user-role assignments and activations modeled by A and

B. Thus there is a location
∧

l= (ls, l
′
s), where

∧

l∈ LD, ls ∈ L and l′s ∈ L′, of D, which corresponds to the

state s′ in which rules γ1 and γ2 are not correctly applied in the recursive procedure getNextLocations. The

rules γ1 and γ2 are respectively applied on the user-role assignment and activation inputs. Thus the error

could be either in the application of the assignment or the activation input in
∧

l . Both cases are considered

separately.

Corresponding to each transition of A or B with its source ls or l′s respectively, getNextLocations adds

one transition to D with its source set as (ls, l
′
s). As getNextLocations uses a similar procedure, for transi-

tions with their source lsor l′s, to consider the target of the transitions added to D, therefore in the following

we only consider the handling of transitions out of ls.

Assignment Input:In case of a transition (ls, ?i, g, R, lt) ∈ T on a user-role assignment input the oper-

ation of rule γ1 with respect to the current state (ls, l
′
s) is used to determine the next state of ACUT. This

is modeled in D by adding the transition ({ls, l
′
s}, ?i, g, R, {lt, l

′
s}) or ({ls, l

′
s}, ?i, g, R, {ls, l

′
s}). The first

option represents the case in which the rule γ1 permits the next state of ACUT to be (lt, l
′
s) whereas the

second option corresponds to the complementary case in which the current state would not change. When

the different next location (lt, l
′
s), which has to be currently unexplored, is recursively visited by getNextLo-

cations the transition corresponding to user-role deassignment output action will also be added to D. As A
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Algorithm ParallelComposition

Input: A, B, TRBACP

Output: D=A||urB

1. for each (lA, lB)  (L  L )

2. do color (lA, lB) white

3. TD

4. getNextLocations (l0, l0 )

1. getNextLocations (ls, ls )

2. do color(ls, ls ) gray  // mark visited

3. for each e= (ls, ?i, g, R, lt)  Source(ls)
1 where ?i AS   //implies  i is assignment input 

4.  do apply rule 1 on ?i from (ls, ls ) to determine Permitted(lt,ls )2  //Assignment input 

5. do if Permitted = true

6. then TD  TD+({ls, ls },?i ,g, R,{lt,ls })

7.  do if color(lt, ls ) white   // un-visited location

8.  getNextLocations (lt, ls )   // recursively visit it 

9. else TD  TD+({ls, ls },?i ,g, -,{ls,ls })   // self loop 

10. for each e= (ls, ?i, g, R, lt)  Source(ls) where ?i AC //implies  i is activation input

11. do apply rule 2 on ?i from (ls, ls ) to determine Permitted(lt,ls ) //Activation input

12. do if Permitted = true

13. then TD  TD+({ls, ls },?i ,g, R,{lt,ls })

14.   do if color(lt, ls ) white

15.  getNextLocations (lt, ls )

16.  else TD  TD+({ls, ls },?i ,g, -,{ls,ls })  // self loop 

17. for each e= (ls, !o, g, R, lt)  Source(ls)   // Outputs

18.  do TD  TD+({ls, ls },!o ,g, R,{lt,ls })

19. do if color(lt, ls ) white

20.   getNextLocations (lt, ls )

21. for each e= (ls , ?i, g, R, lt )  Source(ls ) where ?i AS

22.  do apply rule 1 on ?i from (ls, ls ) to determine Permitted(ls,lt ) //Assignment input

23. do if Permitted = true

24. then TD  TD+({ls, ls },?i ,g, R,{ls,lt })

25.  do if color(ls, lt ) white   // un-visited location

26.  getNextLocations (ls, lt )   // recursively visit it 

27. else TD  TD+({ls, ls },?i ,g, -,{ls,ls })   // self loop 

28. for each e= (ls , ?i, g, R, lt )  Source(ls ) where ?i AC

29. do apply rule 2 on ?i from (ls, ls ) to determine Permitted(ls,lt ) //Activation input

30. do if Permitted = true

31. then TD  TD+({ls, ls },?i ,g, R,{ls,lt })

32.   do if color(ls, lt ) white

33.  getNextLocations (ls, lt )

34.  else TD  TD+({ls, ls },?i ,g, -,{ls,ls })  // self loop 

35. for each e= (ls , !o, g, R, lt )  Source(ls )  // Outputs

36.  do TD  TD+({ls, ls },!o ,g, R,{ls,lt })

37. do if color(ls, lt ) white

38.   getNextLocations (ls, lt )
1Source(l) specifies the set of all such transitions which originates from l. 2Permitted(l,l ) is a predicate whose

value is determined by applying the rule 1 or 2 on the input from a starting location in D, which specifies the

current state of TRBACP to determine the validity of next location in D  i.e. the next sate of TRBACP

Figure A-2: Procedure for parallel composition of two URb’s
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Algorithm ConstructPRb

Input: (p,r), TRBACP

Output: PRb(p,r)

1 l0  {0,0,0,….0} where | l0|=|R |

2 for each  I =AP(p ,r ,t)  I 

3 do apply rule 3 on I  to determine l { l0 | PRassign(p ,r )}

4  T  T+(l0, ?AP(p ,r ,t),-, x1:=0, l )

5 do if l l0

6 then T  T+(l , {!DP(p, r )}, x1=t,-, l0) for r  R  R :{r | r I r }

7  end if 

8 end for

 l0| PRassign(p,r) indicates new value l  with updated value of PRassign(p,r)

Figure A-3: Procedure for constructing PRb

and B are correct therefore the input and output action transitions combined ensure that the constraints on

user-role assignments as required by the rule γ1 are correctly enforced in D.

Activation Input: In case of a transition (ls, ?i, g, R, lt) ∈ T on an user-role activation input the oper-

ation of rule γ2 with respect to the current state (ls, l
′
s) is used to determine the next state of ACUT. This

is modeled in D by adding the transition ({ls, l
′
s}, ?i, g, R, {lt, l

′
s}) or ({ls, l

′
s}, ?i, g, R, {ls, l

′
s}). The first

option represents the case in which the rule γ2 permits the next state of ACUT to be (lt, l
′
s) whereas the

second option corresponds to the complementary case in which the current state would not change. When

the different next location (lt, l
′
s), which has to be currently unexplored, is recursively visited by getNextLo-

cations the transitions corresponding to user-role de-assignment and de-activation output action will also be

added to D. As A and B are correct therefore the input and output action transitions combined ensure that

the constraints on user-role activation as required by the rules γ1 and γ2 are correctly enforced in D.

From the above discussion it can be concluded that ParallelComposition correctly applies the rules of

TRBACP on
∧

l . This contradicts the assumption that rules are not correctly applied to state s′. Hence

ParallelComposition correctly applies the rules. This completes the proof.

A.3 PRb Construction

PRb is constructed by the algorithm ConstructPRb given in Figure A-3. In this algorithm first the initial

and final location is initialized. In the initial location of PRb(p, r) the status of all the permission-role

pair’s is unassigned and ACUT state would only change in response to the application of input AP (p, r).

As I-hierarchy semantics are automatically ensured by the system therefore as p is assigned to r, i.e., as

PRassign(p, r) = 1 becomes true, the permission-role assignment for all the roles senior to r in I-hierarchy

is automatically applied.

Proof of Lemma 6.4: The application of rule γ3 on AP (p, r, t) would require the state of ACUT to change

such that (p, r′) assignments for r′ ∈ R′, R′ : {r′|r ≤I r′} is only valid for time t, i.e., PRassign(p, r′)∀r′ ∈
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R′ should be 1 in the next state for time t. In PRb this is modeled, as corresponding to the application of

input AP (p, r, t) in l0, ConstructPRb adds the following two transitions: (1) transition corresponding to

the input action ?AP (p, r, t) between the current location l0 and the next location l′, which also resets the

corresponding clock x1, and (2) the transition corresponding to the output action ∧ {!DP (p, r′)}, r′ ∈

R′ between l′ and l0. The two transitions combined correctly enforce the constraints (including duration

constraint) on the (p, r) assignment as required by the rule γ3.

As l0 corresponds to the ACUT state in which p is unassigned to r, therefore application of rule γ3 on

any AP (p, r′, t) for r′ ∈ (R′ − r), input should not permit the corresponding permission-role assignment.

In PRb this is modeled by ensuring that corresponding to the input action ?AP (p, r′, t) only one transition

representing the self loop for l0 is added to PRb , thus correctly enforcing the rule γ3. This completes the

proof.
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