
CERIAS Tech Report 2006-34

SECURITY FOR WEB SERVICES - STANDARDS AND RESEARCH ISSUES

by L. D. Martino, E. Bertino

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Security for Web Services - Standards and

Research Issues

Lorenzo Martino (1) and Elisa Bertino (2)

(1) Department of Computer Technology and Cyber Center
Purdue University, West Lafayette, IN

lmartino@purdue.edu

(2) Department of Computer Science and CERIAS
Purdue University, West Lafayette IN

bertino@cs.purdue.edu

Abstract. This chapter identifies the main security requirements for
Web services and it describes how such security requirements are ad-
dressed by standards for Web services security recently developed or
under development by various standardizations bodies. Standards are
reviewed according to a conceptual framework that groups them by the
main functionalities they provide. Standards that are covered include
most of the standards encompassed by the WSS roadmap [2]; the Secu-
rity Assertion Markup Language -SAML-, WS-Policy, XACML, that is
related to access control and has been recently extended with a profile
for Web services access control; XKMS and WS-Trust; WS-Federation,
LibertyAlliance and Shibboleth, that address the important problem of
identity management in federated organizations. Finally, issues related
to the use of the standards are discussed and open research issues in the
area of access control for Web services and innovative digital identity
management techniques are outlined.

1 Introduction

Today Web services are a fundamental component of agile e-business. Through
the use of eXtensible Markup Language (XML), Simple Object Access Protocol
(SOAP), and related open standards deployed in Service Oriented Architectures
(SOA), they allow data and applications to interact through dynamic and ad
hoc connections. Web services technology can be implemented in a wide vari-
ety of architectures, can co-exist with other technologies and software design
approaches, and can be adopted in an evolutionary manner without requiring
major transformations to legacy applications and databases. Despite the hetero-
geneity of the underlying platforms, Web services enhance interoperability and
are thus able to support business applications composed by chains of Web ser-
vices. Interoperability is a key promise of Web service technology and therefore
notions such as Web service composition and technologies like workflow systems
are being investigated and developed.

The use of Web services, stand-alone or composed, must however provide
strong security guarantees. Security is today a relevant requirement for any

distributed application, and in particular for these enabled by the Web such
as e-health, e-commerce, e-learning. Providing security guarantees in open dy-
namic environments characterized by heterogeneous platforms is however a ma-
jor challenge. Web services security encompasses several requirements that can
be described along the well known security dimensions:

– integrity, whereby information can be modified only by users who have the
right to do so, and only in authorized ways. In particular, message integrity
requires that a message remain unaltered during transmission. Ensuring in-
formation integrity might also require that information is transferred only
among intended users and in intended ways.

– confidentiality, whereby information can be disclosed only to users authorized
to access it. When applied to messages, it requires that the content of a
message cannot be viewed while in transit, except by authorized services.

– availability, whereby the use of the system cannot be denied to entitled users
inadvertently or due to denial of service attacks by a malicious party.

– accountability, whereby users are accountable for their security-relevant ac-
tions. A particular case of this is non-repudiation, where responsibility for
an action cannot be denied.

Moreover, each Web service must protect its own resources against unau-
thorized access. This in turn requires suitable means for: identification, whereby
the recipient of a message must be able to identify the sender; authentication,
whereby the recipient of a message needs to verify the claimed identity of the
sender; authorization, whereby the recipient of a message applies access control
policies to determine whether the sender has the right to use the required Web
services and the protected resources.

In a Web service environment it is however not enough to protect the service
providers, it is also important to protect the parties requiring services. Because a
key component of the Web service architectures is represented by the discovery
of services, it is crucial to ensure that all information used by parties to this
purpose be authentic and correct. Also we need approaches by which a service
provider can prove its identity to the party requiring the service in order to avoid
attacks, such as phishing attacks.

Within this context, the goal of securing Web services can be decomposed in
three broad subsidiary goals:

– Providing mechanisms and tools for securing the integrity and confidentiality
of messages as well as the guarantee of message delivery.

– Ensuring that the service acts only on message requests that comply with
the policies associated with the services.

– Ensuring that all information required by a party in order to discover and
use services is correct and authentic.

Different security mechanisms and tools have been developed and deployed
over time to this end. The overall goal of Web services security standards is
to make interoperable different security infrastructures and to reduce the cost

of security management. To achieve this goal, Web services security standards
have to provide a common framework, and common protocols, for the exchange
of security information between/among Web services that, once implemented
and deployed:

– can accomodate such existing heterogenoeus mechanisms, i.e. different en-
cryption algorithms, different access control mechanisms, etc.

– can be extended so as to cope with new requirements and/or available secu-
rity technologies.

This chapter surveys some existing and proposed standards for Web services
security and some recent research proposals for access control for Web services.
The chapter is organized as follows. Section 2 introduces the different notions of
standards. This classification gives indications about the maturity, the stability
and the level of endorsement of a standard. Then a framework for the security
standards is presented. In this framework, Web services security standards are
conceptually grouped depending on the various aspects of Web services security
they address. Then, for each security aspect of the framework, the related stan-
dards are briefly surveyed, describing their specific purpose, their main features
and their current status. The section concludes with a brief discussion on the
main issues concerning the adoption of such standards. Section 3 outlines recent
research proposals and discusses open research issues. Section 4 outlines some
conclusions.

2 Web services security standards framework

In this section we present first the different notions of standards. We then present
the conceptual framework for Web services security standards, and, for each level
of this framework, we survey existing and proposed standards, their specific
purpose, and their current status.

2.1 The concept of standard

The concept of “standard” covers different notions, ranging from a public speci-
fication issued by a set of companies, to a de jure standard issued by a recognized
standardisation body. These different notions can provide to the potential users
useful indications about the maturity, the stability and the level of endorsement
of a given standard. The following “types” of standards can be distinguished:

1. De facto standards: a technology that is used by a vast majority of the
users of a function. Such function may for example be provided in a product
from a single supplier that dominates the market; or it may be a patented
technology that is used in a range of products under license. A de facto

standard may be endorsed by a standardisation initiative, and eventually
become a consortium recommendation, or a de jure standard. The relevant
requirements are that it is widely used, meets the needs for functionality,
and supports interoperability.

2. De jure standards: standards defined by entities with a legal status in inter-
national or national law such the International Organization for Standardiza-
tion -ISO-, national standards bodies (e.g. the BSI British Standards in the
UK, the American National Standards Institute -ANSI- in the US) or conti-
nental standards (e.g. European standards). These standards are relevant in
the health and safety related areas, in business quality measures and in long
term IT areas. The issuance of a standard by one of these standardization
bodies is usually a long lasting process, which can take many years, and
requires the agreement by the appropriate committee of the satndardization
body.

3. Consortium recommendations: a technology agreed on and recommended by
a groups of companies in order to fulfil some functionality. Such consortia
may vary in size from groups of a few large manufacturers (e.g. Microsoft,
IBM and BEA) to much larger groups or organizations such as the Organi-
zation for the Advancement of Structured Information Standards (OASIS),
the World Wide Web Consortium (W3C) and the Internet Engineering Task
Force (IETF).

De facto standards, eventually promoted to the jure standard by a subsequent
endorsement by a standardization body, offer a higher guarantee of support for
interoperability. Conversely, de jure standards or consortia recommendations do
not guarantee per se that a standard will be widely endorsed nor the market
availability of really interoperable implementations by multiple vendors. More-
over, the definition of a standard and its issuance by a standardization body or
by a consortium is a long lasting process, subject to formalized organizational
procedures; for example, W3C takes 6 months to establish a working group on a
technology, and then 18 months to 3 years to agree a recommendation, which is
only released if there are working interoperable implementations of all functions
in the technology, and enough of the members of W3C support it. The develop-
ment stage of a standard within a standardization body can give an indication
of the maturity level of the standard itself.

2.2 The framework for Web services security standards

Web services security standards address a variety of aspects, ranging from the
message level security to the identity management. In order to provide a struc-
tured and engineered approach to the development of the standards, an overall
conceptual reference framework was needed. Such a reference framework is cru-
cial in organizing the standards according to layers and in promoting the reuse
of already developed specification. The first structured framework was proposed
in April 2002, by Microsoft and IBM in the white paper: “Security in a Web Ser-
vices World: A Proposed Architecture and Roadmap” [2] describing a strategy
for addressing security requirements in a web services environment. As integral
part of the strategy, the development of a set of composable standard specifi-
cations was foreseen. As shown in Figure 1, the Web Services Security (WSS)

Fig. 1. WSS Security standard framework

specifications encompass different specifications, each addressing specific aspects
of security.

According to the roadmap [2], WS-Security was to provide a message security
model and the specification of mechanisms to attach signature and encryption
headers to SOAP messages. WS-Policy was intended to describe: (1) the security
policies, such as required security tokens and supported encryption algorithms,
as well as more general policies adopted by a Web service; (2) the mechanisms by
which trusted SOAP message exchanges could be built. WS-Trust was intended
to define the model for establishing both direct and brokered trust relationships
(including third parties and intermediaries) through the creation of security to-
ken issuance services. WS-Privacy would have to define a model for embedding
a privacy language into WS-Policy and for associating privacy claims with a
message in WS-Security.

On top of such standards, further follow-on specifications were envisaged.
WS-SecureConversation was introduced with the goal of extending the single
message security provided by WS-Security to a conversation consisting of mul-
tiple message exchanges, whereas WS-Federation was introduced with the goal
of describing how to manage and broker trust relationships in a heterogeneous
federated environment. Finally, the goal of WS-Authorization was to provide a
support for the specification of authorization policies and for managing autho-
rization data.

It is worth noting that the specifications for WS-Authorization and WS-
Privacy followed a different development with respect to the other standards of
the roadmap. In particular, WS-Authorization was replaced by the specification
of XACML (see section 2.3), whereas WS-Privacy does not seem to have received

the same level of effort, but rather it was addressed by manufacturer proposals
such as the IBM Enterprise Privacy Authorization Language (EPAL) [32].

With respect to the original framework, we adopt a slightly different classi-
fication, as shown by Figure 2. This classification has been adopted in order to
take into account in the discussion the standards below the SOAP layer and,
most importantly, to group the standards by their main intended purpose rather
than adopting a “stack” view that emphasizes mainly how each specification
is built on top of the other ones. In particular, we deemed useful to separate
message-level security specifications (the two groups labelled Message Security
and Reliable Messaging) from the specifications addressing Policy and Access
Control, Security Management, and Identity Management issues.

Fig. 2. Refined classification of standards

2.3 An Overview of Current Standards

“Near the wire” security standards At the transport layer, the well known
Secure Socket Layer [3] and the Transport Layer Security [4], collectively referred
as SSL/TLS, are the de facto standards used to assure transport level security for
Web services applications. SSL/TLS provides a fast, efficient and widely accepted
protocol for mutual authentication of end systems, data message authentication
and optional confidentiality. SSL/TLS enables point-to-point secure sessions.
Encrypting the communication between a browser and a Web service is a fairly

safe procedure because the connection is exclusive to the client browser and
the Web server that acts as the gateway to internally hosted application logic.
However, a message transmitted by a client, such as browser or an application,
might be routed (and processed) by a number of intermediary services before
reaching its destination. SSL protects the message contents only while being
transmitted between these intermediaries but it cannot protect the message when
it is processed by an intermediary service. At the network layer, IPSec is a de
jure standard for transport security that may become relevant for Web services.
IPSec provides security services including access control, connectionless integrity,
data origin authentication, protection against replays (a form of partial sequence
integrity), confidentiality (encryption), and limited traffic flow confidentiality.

XML-encoded message security Because XML is used as the language to
encode messages exchanged among Web services, securing XML data is a key
requirement. Several standards have thus been developed to support encryption
and digital signatures for XML data as well as authentication protocols.

XML Encryption and XML Signature. The messages exchanged between a
client and a Web service are encoded as XML “documents”. These two key
standards specify how to protect the actual content within XML documents.
The XML-Encryption specification [6] contains a standard model for encrypting
both binary and textual data, as well as a means of communicating informa-
tion essential for recipients to decrypt the contents of received messages. XML
Encryption is a W3C Recommendation and it is the commonly accepted stan-
dard for encryption. XML-Digital Signatures [7] defines a standardized format
for representing digital signature data. Digital signatures assure the recipient of
the message that the message was in fact transmitted by the expected sender.
It also provides a means of communicating the message contents so that they
cannot altered while in transit, as well as support for standard non-repudiation
so that the sender of the message can not deny of having sent it. Like the XML-
Encryption standard, XML-Digital Signature also supports binary and textual
data. XML-Digital Signature is a W3C Recommendation and it is the commonly
accepted standard for digital signatures.

WS-Security. SOAP Message Security (“WS-Security”) [8] has been specified
by OASIS and is the commonly accepted standard for message security in Web
and Grid Services. WS-Security describes enhancements to SOAP messaging to
provide single-message origin authentication and single-message confidentiality.
It relies upon XML Encryption and XML Signature standards and achieves its
objectives by attaching and including security tokens within SOAP messages
through a general-purpose mechanism. A (software) security token is a repre-
sentation of security-related information (e.g. X.509 certificate, Kerberos tickets
and authenticators, mobile device security tokens from SIM cards, username,
and so forth). WS-Security specifies a general-purpose mechanism for associ-
ating security tokens with messages, without requiring the use of any specific
type of security token. Various security token formats have been specified for use
with WS-Security, including username/password (OASIS), SAML assertions 2.3

(OASIS), XrML/REL tokens (OASIS), X.509 certificates (IETF and OASIS),
Kerberos tickets (OASIS). For security tokens that are not encoded in XML,
such as X.509 certificates and Kerberos tickets, WS-Security provides a mecha-
nism for encoding binary security tokens. Due to the variety of supported security
token formats, WS-Security is very flexible; moreover, it can be extended with
profiles to support new security tokens.

Message integrity is provided by using XML Signature in conjunction with
security tokens (which may contain or imply key data). WS-Security supports
multiple signatures, potentially by multiple actors, and it can be extended to sup-
port additional signature formats. The signatures may reference (i.e. point to) a
security token. WS-Security provides message confidentiality by encrypting por-
tions of the SOAP message, using XML Encryption in conjunction with security
tokens. The encryption mechanisms are designed to support additional encryp-
tion technologies, processes, and operations by multiple actors. The encryption
may also reference a security token. WS-Security is a consortium recommenda-
tion.

WS-SecureConversations. The interactions between a client and a Web ser-
vice, or between two Web services typically consist of multiple message ex-
changes. Thus, it is important to secure not only a single message exchange,
but also multiple messages exchanges that are needed to complete a meaning-
ful transaction. WS-SecureConversation [9] defines extensions, based on WS-
Security and WS-Trust [20], aimed at providing secure communication across
multiple messages. These extensions are based on the establishment and sharing
of security context between the communicating parties and on the derivation of
keys from the established security contexts. A security context is an abstract
concept that refers to an established authentication state and it is represented
by a Security Context Token. This specification defines three different ways of
establishing a security context among the parties of a secure communication: the
context initiator can request a Security Token Service, as defined by WS-Trust,
to create a security context token, or a security context token can be created by
one of the communication parties and propagated within a message; or a secu-
rity context token can be created when needed through negotiation/exchanges
among the participants. This way potentially more efficient keys or new key
information can be exchanged, thereby increasing the overall performance and
security of the subsequent exchanges. WS-SecureConversation is a consortium
revised public draft release.

WS-ReliableMessaging. Guaranteeing the integrity and the confidentiality of
the messages does not avoid that messages be lost, duplicated or reordered.
Correct delivery of messages must also be assured. Deliverys guarantee is pro-
vided by several middleware components implementing the “store and forward”
paradigm, such as Microsoft Message Queuing (MSMQ) [29], IBM Messaging
and Queuing (WebSphere, MQ) [30], or Sun Java System Message Queue[31].
WS-ReliableMessaging [10] defines a messaging protocol to identify, track, and
manage the reliable delivery of messages between exactly two parties, a source
and a destination endpoints (referred to as the Reliable Messaging RM - Source

and Reliable Messaging RM - Destination, respectively), despite the presence
of software component, system, or network failures. The protocol supports the
communicating endpoints in providing delivery assurances. It is the responsibil-
ity of the RM Source and RM Destination to fulfil the delivery assurances, or
raise an error. Endpoints can provide four basic delivery assurances:

– AtMostOnce assurance guarantees that messages will be delivered at most
once without duplication, or that an error will be raised on at least one end-
point. It is possible that some messages in a sequence may not be delivered.

– AtLeastOnce assurance guarantees that every message sent will be delivered,
or an error will be raised on at least one endpoint. Some messages may be
delivered more than once.

– ExactlyOnce assurance guarantees that every message sent will be delivered
without duplication, or an error will be raised on at least one endpoint.

– InOrder assurance guarantees that messages will be delivered in the order
that they were sent. This delivery assurance may be combined with any
of the above delivery assurances. It does not provide any assurance about
message duplications or omissions.

The messaging protocol defined in this specification can be implemented
using different network transport technologies. However, this specification de-
fines a SOAP binding in order to support interoperable Web services. WS-
ReliableMessaging specification will be submitted to OASIS for further refine-
ment and finalization as a Web services standard.

Access Control standards Security Assertions Mark-up Language The Se-
curity Assertions Mark-up Language (SAML) [22] is an XML based framework,
developed by OASIS, to support the exchange of security information, also called
trust assertions, between online business partners, such as vendors, suppliers,
customers, over the Internet. The applications and the environments that can
use SAML are quite varied, from simple browser-based applications to more
complex n-tiered architecture web services. Security information takes the form
of security assertions, where an assertion states certain facts (characteristics and
attributes) about a subject. The current SAML framework supports three kinds
of security assertions: Authentication, Attribute and Authorisation decisions. An
Authentication assertion states that the subject S was authenticated by means
M at a certain time. It is issued by the party that successfully authenticated
the subject. An Attribute assertion states that the subject S is associated with
the set of attributes A with values B (for example, that Alice is associated with
attribute “Company” with value “Hertz”). An Authorisation decision assertion
states which actions the subject S is entitled to execute on resource R (for
example, that a user has been authorized to use a given service).

An example of SAML authentication assertion, stating Alice was originally
authenticated using a password mechanism at 2006-04-02T19:05:17 is shown in
Figure 3.

Assertions are issued by SAML authorities, namely authentication author-
ities, attribute authorities or policy decision points. While SAML can be used

<saml:Assertion

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

MajorVersion="1" MinorVersion="1"

AssertionID="biuEZCGxcGiF4gIkL5PNltwU7duY1az"

Issuer="www.it-authority.org"

IssueInstant="2006-04-02T19:05:37">

<saml:Conditions

NotBefore="2006-04-02T19:00:37" NotOnOrAfter="2006-04-02T19:10:37"/>

<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"

AuthenticationInstant="2006-04-02T19:05:17">

<saml:Subject>

<saml:NameIdentifier

NameQualifier= www.it-authority.org

Format="http://www.customformat.com/">

uid=alice

</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>

urn:oasis:names:tc:SAML:1.0:cm:artifact-01

</saml:ConfirmationMethod>

</saml:SubjectConfirmation>

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

Fig. 3. An example of SAML assertion

to make assertions about credentials, however it does not provide mechanisms
to check or revoke credentials. This means that the party accepting a SAML
assertion as true is trusting the SAML authority that issued the assertion.

In order to exchange security assertions between involved parties, SAML de-
fines a request and response protocol that consists of XML-based messages; a
client uses this protocol to request a specific assertion or to make authentica-
tion, attribute, and authorization decisions queries to a SAML authority and
obtain a response from them. These messages can be bound to many different
underlying communication and transport protocols. SAML defines also several
profiles. Generally, a profile of SAML defines constraints and/or extensions of the
core protocols and assertions in support of the usage of SAML for a particular
application, by specifying how particular statements are communicated using
appropriate protocol messages over specified bindings. For example, the Web
Browser SSO Profile specifies how SAML authentication assertions are commu-
nicated using the Authentication Query and Response messages over a number
of different bindings in order to enable Single Sign-On for a browser user. SAML
assumes that the two or more endpoints of a SAML transaction are uncompro-
mised, but the attacker has complete control over the communications channel.
Moreover, SAML does not cope directly with two security issues:

– Initial Authentication: authentication assertions convey information about
an already happened authentication act. Consequently, such an assertion
can be trusted by the party receiving the assertions as far as it trustes the
party/authority that made the assertion.

– Trust Model: the security of a SAML conversation will depend on the un-
derlying key management infrastructure (shared key or asymetric key) and
hence it is secure as long as the keys used can be trusted. Undetected com-
promised keys or revoked certificates, for example, could allow a breach of
security.

It is worth noting that, as described in the SAML specification itself, the
SAML protocol is susceptible to a denial of service (DOS) attack. Moreover,
handling a SAML request is potentially a very expensive operation, since it
includes parsing the request message (typically involving construction of a DOM
tree), database/assertion store lookup (potentially on an unindexed key), the
construction of a response message, and potentially one or more digital signature
operations. SAML Version 2.0 is a Committee Draft specifications approved for
public review by the OASIS Security Services Technical Committee.

eXtensible Access Control Mark-up Language - XACML- . XACML [11] pro-
vides an extensible, XML-encoded language for managing authorization deci-
sions. To this end, XACML language allows one to express access control poli-
cies and access requests/responses. XACML was conceived as one component
of a distributed and inter-operable authorization framework, with the following
underlying rationales:

– first, access control policies do not have to be embedded or tightly linked to
the system they govern.

– second, XACML policies can be applied to different heterogeneuos resources
such as XML documents, relational databases, application servers, web ser-
vices, etc.

– third, a standard policy exchange format allows different web services to
exchange or share authorization policies, as well as to deploy the same policy
to heterogeneous systems.

It is worth noting that XACML includes also a non-normative data flow
model ([11], Section 3.1 Data flow model), reproduced in Figure 4, that describes
the major actors involved in the processing of an access request. This model, that
can be considered as an evolution of the ISO 10181-3 model [13], can be used as
a reference model for the implementation of a XACML engine.

Fig. 4. XACML Data Flow Model

The components of the model above are the following:

– The Policy Administration Point (PAP) creates security policies and stores
these policies in the appropriate repository.

– The Policy Enforcement Point (PEP) performs access control by making
decision requests and enforcing authorization decisions.

– The Policy Information Point (PIP) serves as the source of attribute values,
or the data required for policy evaluation.

– The Policy Decision Point (PDP) evaluates the applicable policy and renders
a response to the PEP containing the authorization decision. The possible
response values are: Permit, Deny, Indeterminate (in case an error occurred
or some required value was missing, so a decision cannot be made) or Not
Applicable (the request cannot be answered by this service).

The PEP and PDP might both be co-located within the same application,
or might be distributed across different servers.

In XACML, the access request is represented by the Request schema that
specificies the requesting Subject, the requested Object and the specific Ac-
tion requested on the Object. The XACML policy language was designed to
be general enough so as to describe general access control requirements. It is
also extensible, by means of standard extension points, in order to accomodate
the definition of new functions, data types, combining logic, and so forth. In
XACML, a policy is the smallest element that the PDP can evaluate. A policy
represents a single access control policy, expressed through a set of Rules. A
Rule specifies the Target which it applies to and the effect of the rule, that is
Permit or Deny. The Target basically models the access request, by means of a
set of simplified conditions for the Subject, Resource and Action that must be
met, i.e. evaluate to true, for the Rule to apply to a given request. Any number
of Rule elements may be used, each of which generates a true or false outcome.
Combining these outcomes yields a single decision for the Policy, which may be
”Permit”, ”Deny”, ”Indeterminate”, or a ”NotApplicable” decision.

As a a policy example, consider the following one: “MPEG movie for adults
cannot be accessed by users with age less than 18 years”. The movie is the re-
source the access to which must be controlled; it will be modelled by an element
having an attribute ”‘category”. Similarly, the subject will have an attribute
”‘age”’. In this case, the policy is composed by a single rule, that specifies the
condition: ”age less than 18”’ for the subject, the condition: category = ”‘adult
only”’ for the resource, the condition: ”‘download”’ for the action, and the effect
”‘Deny”’. More than one Rule (or more than one Policy) may result applica-
ble to a given access request; XACML defines a set of Combining Algorithms
to reconcile multiple outcomes into a single decision, namely, Deny-overrides,
Permit-overrides, First-applicable, Only-one-applicable.

In XACML a policy can have scopes of different granularity; actually, a pol-
icy can apply to all the operations provided by a Web service, or rather to
a specific operation of the Web service. The same policy can be “reused” by
different services by applying it to different ports. OASIS XACML Profile for
Web-Services [12], hereafter referred to as XACML2, is a proposal for extending
XACML to deal with the specific characteristics of Web services. There are two
main extensions. The first one is the possibility of defining in a precise way the
various aspects to which a security policy applies to, for example distinguishing
the security policy that must be applied to the message level from the access
control policy applied to a Web service or to an operation of the Web service.

The second one is the use of the policy combination mechanisms defined in
XACML in order to combine the preference/requirements policy of the Web ser-
vice client with the access control policy of the Web service provider. XACML2
thus supports the specification of policies for the whole service (a WSDL port),
for a Web service operation (a single WSDL operation), for a request message
(WSDL message) or for a combination of these. The policies associated with a
port are represented by a <PolicySet> element, that in turn can include other
<PolicySet> elements representing the policies for an operation or a message.
Each <PolicySet> element contains several <Policy> elements, which are as-
sociated with a single aspect of an end-point policy where an aspect is an in-
dependent set of technical features and parameters associated with the use of
the Web service (for example, data rate allocation). The <Target> sub-element
of a <Policy> element identifies the set of conditions governing the aspect (re-
ferred to as objective) of the end-point policy. Further, a <Policy> element
must contain a set of <Rule> elements that define acceptable alternative solu-
tions for achieving the objective. A <Rule> element includes a set of <Apply>

elements containing predicates expressing conditions on attributes. Attributes
can be of three different types: unconstrained, constrained and authorized. An
unconstrained attribute is such that its value can be set by the policy-user, like
for instance the minimum time between re-transmission of an unacknowledged
message. The value of a constrained attribute, on the other hand, is out of the
control of the policy-user. Examples of constrained attributes are environmental
attributes like time, or subjects attributes the values of which are set by some
an entity or user different from the policy-user (for instance, the status of the
subject in a customer loyalty program). The value of an authorized attribute is
asserted by an authority, like the policy-users role. Another interesting feature
of XACML2 is that it adopts the XACML mechanisms for combining either
multiple policies or multiple rules in a single policy, to blend the policies of the
service consumer, expressing the preference/requirements of the consumer about
the service provision, and the policies of the service provider. The <PolicySet>
element, resulting from the combination process, represents a solution to both
the consumer and provider policy statements. A service invocation using this
solution conforms with the policy of both the consumer and the provider. This
paves the way for the introduction of negotiation capabilities between the client
and the service provider, that would ultimately increase the flexibility of the
access control model. XACML2 is at the stage of a working draft.

Standards for Policy Specification The Web Services Policy Framework
(WS-Policy) provides a framework that allows Web services to describe their
policies to Web Service requestors. The main underlying concept is that a Web
service provider might expose a policy to specify the conditions under which it
provides the service, thus allowing the requestor to decide whether to use the
service. The Policy Framework is supplemented by three other standards:

– WS-PolicyAssertions [18], that specifies a few generic policy assertions.

– WS-Policy Attachment [16], that defines how to associate a policy with
a service, either by directly embedding it in the WSDL definition or by
indirectly associating it through UDDI.

– WS-SecurityPolicy [17], that defines the security policy assertions corre-
sponding to the security claims defined by WS-Security: message integrity
assertion, message confidentiality assertion, and message security token as-
sertion.

WS-Policy provides an extensible model and a single grammar for expressing
all types of domain-specific policy models: transport-level security, resource us-
age policy, QoS characteristics, or the end-to-end business-process level policy.
In WS-Policy, a policy is a collection of policy alternatives, where an alternative
is a collection of policy assertions. The model and the grammar specify a core
set of constructs to indicate how choices and/or combinations of domain specific
policy assertions apply in a Web service environment.

The normal form schema of a policy according to Ws-Policy is shown in
Figure 5. In this schema, * indicates 0 or more occurrences of an item, while []
indicates that the contained items must be treated as a group.

<wsp:Policy ... >

<wsp:ExactlyOne>

[<wsp:All> [<Assertion ...> ... </Assertion>]* </wsp:All>]*

</wsp:ExactlyOne>

</wsp:Policy>

Fig. 5. Normal form schema of a policy according to WS-Policy

The assertions used in a policy expression can be defined in public specifica-
tions, like WS-SecurityPolicy [17] and WS-PolicyAssertion [18], or they can be
defined by the entity owning the Web service. The assertions of the first type
are named standard assertions and they are understandable potentially from
any client. In particular, WS-SecurityPolicy specifies the security policy asser-
tions that can be used in WS-Policy framework. The security policy assertions
state requirements on the kind of security tokens used, whether or not a mes-
sage has to be signed or encrypted. The assertions defined by the entity owning
the Web service instead can be understood only by those clients to which the
entity has already released the specifications. The policy assertions standardized
so far are those defined in WS-SecurityPolicy, currently a public consultation
draft release, and WS-PolicyAssertions. WS-Policy is also able to incorporate
other policy models such as SAML and XACML. Figure 6 reports an exam-
ple of policy that adheres to WS-Policy specification. This example, taken from
the WS-Policy specification, shows two policy alternatives, each composed by a
single policy assertion. The policy has to be interpreted as follows: if the first
alternative is selected, only the Kerberos token type is supported; conversely, if
the second alternative is selected, only the X.509 token type is supported.

<wsp:Policy xml:base=http://dico.unimi.it wsu:Id=MyPolicy>

<wsp:ExactlyOne>

<wsp:All>

<wsse:SecurityToken>

<wsse:TokenType>wsse:Kerberosv5TGT</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

<wsp:All>

<wsse:SecurityToken>

<wsse:TokenType>wsse:X509v3</wsse:TokenType>

</wsse:SecurityToken>

</wsp:All>

</wsp:ExactlyOne>

</wsp:Policy>

Fig. 6. An example of a policy

Defining the Web service policy is not however enough, if such a policy cannot
made publicly available to the potential clients of the Web service when they
try to discover the services they are potentially interested in. To this end, the
WS-PolicyAttachment specifies mechanisms for using policy expressions with
existing XML Web service technologies. In particular it defines how to associate
policy expressions with WSDL [33] type definitions and UDDI [34] entities. It
also defines how to associate implementation-specific policies with all or part
of a WSDL portType when exposed from a specific implementation. WS-Policy
and WS-PolicyAttachment are consortium public draft releases.

Security Management standards As described in the previous sections, keys
and certificates are essential to guarantee the security of the exchanged messages.
In the same way as standards are needed in order to provide interoperability
between client and Web services, and among Web services, standards are needed
to assure interoperability between a Web service and the certification authorities
that issue, distribute and verify keys and certificates. This is the goal of XML
Key Management Standard (XKMS) and WS-Trust standard.

XKMS - XML Key Management standard XKMS [19] specifies protocols for
distributing and registering public keys, suitable for use in conjunction with the
proposed standard for XML Signature and XML Encryption. XKMS comprises
two services the XML Key Information Service (X-KISS) and the XML Key
Registration Service Specification (X-KRSS). X-KISS allows a client to delegate
part or all of the tasks required to process XML Signature <ds:KeyInfo> ele-
ments to an XKMS service. A key objective of the protocol design is to minimize
the complexity of applications using XML Signature. By becoming a client of the
XKMS service, the application is relieved of the complexity and syntax of the
underlying Public Key Infrastructure (PKI) used to establish trust relationships,
which may be based upon a different specification such as X.509/PKIX, SPKI

or PGP. X-KRSS describes a protocol for registration and subsequent manage-
ment of public key information. A client of a conforming service may request
that the registration service bind information to a public key. The bound infor-
mation may include a name, an identifier or extended attributes defined by the
implementation. XKMS is a W3C Recommendation.

WS-Trust. WS-Trust [20] defines extensions to WS-Security that all together
provide a method and a protocol for requesting to a Security Token Service the
issuance, the renewal, and the validation of security tokens. The main goal of WS-
Trust is to enable the issuance and dissemination of credentials among different
trust domains. It intends to solve three potential issues that the recipient of a
WS-Security-protected SOAP message faces when processing the security token
contained within the Security header:

1. Format – the format or syntax of the token is not known to the recipient.
2. Trust – the recipient may be unable to build a chain-of-trust from its own

trust anchors (e.g. its X.509 Certificate Authority, a local Kerberos KDC, or
a SAML Authority) to the issuer or signer of the token

3. Namespace – the recipient may be unable to directly comprehend the set of
claims within the token because of syntactical differences

In WS-trust terminology, a security token represents a collection of claims, where
a claim is a statement made about a client, service or other resource (e.g. name,
identity, key, group, privilege, capability, etc.). In particular, a signed security
token is a security token that is cryptographically endorsed by a specific author-
ity (e.g. an X.509 certificate or a Kerberos ticket). WS-Trust is an initial public
draft release.

Identity Management standards Identity management (ID management)
deals with identifying entities in a system (such as a country, a network, an
enterprise, a Web service) and controlling their access to resources within that
system. This is realized by associating rights and restrictions with the estab-
lished identity. As an example, a Web service usually requests users to register,
by asking name, address, and other information, and assigns them an account
and a password. Then, to access the Web service the users must specify their
identity, that is, their account and password; the Web service, in turn, uses these
information to control the access to its resources. The management of identity-
related information can be a costly process for Web service providers and might
adversely impact both the security of the system and the users experience, partic-
ularly when the same user accesses several Web services The relevance of global
identity management for the development of the Web and of the Web services,
and the requirements to be addressed, were identified and discussed in a posi-
tion paper by W3C, “Requirements for a Global Identity Management Service”
[21]. The W3C position paper stipulates, among other things, that such a sys-
tem that must be universally portable and interoperable; that it must support
unlimited identity-related attributes; that it must provide adequate mechanisms
for privacy and accountability; and that it must be overseen by an independent

governing authority. One of the first application of Identity Management is Sin-
gle Sign On (SSO). Single sign-on (SSO) technology enables users to perform a
single action of authentication and allows them to authenticate themselves to
all the services where they are eligible to, without the need to provide the same
credential multiple times.

The other goal of ID management is to provide the means for building a
federated identity infrastructure that enables cross-boundary single sign-on, dy-
namic user provisioning and identity attribute sharing. By providing for identity
portability, identity federation affords end-users with increased simplicity and
control over the movement of personal identity information while simultane-
ously enabling companies to extend their security perimeter to trusted partners.
ID management is being investigated extensively in the corporate world and
in standardization bodies and initiatives, such as W3C and Liberty Alliance. In
what follows we describe the three major digital identity management initiatives.

WS-Federation. IBM/Microsoft WS-Federation [24] provides generic models
for federated identity, attribute, authentication, and authorisation management,
built upon WS-Trust and WS-Policy. A federation consists of multiple Web ser-
vices domains, each equipped with its own Security Token Service, and with its
own security policy. WS-Federation describes how to manage and broker trust
relationships in a heterogeneous federated environment including support for fed-
erated identities, attributes, and pseudonyms. WS-Federation specifies scenarios
using WS-Trust for example to allow requesters from the one domain to obtain
security tokens in the other domain and subsequently to get access to the ser-
vices in the other domain. Additionally, it defines mechanisms for SSO and single
sign-out, sharing of attributes based on authorization and privacy policies, and
integrated processing of pseudonyms (aliases used at different sites/federations).
WS-Federation Specification is an initial public draft release and is provided for
review and evaluation only.

Shibboleth. Shibboleth [25] is a project run by the Internet2 consortium in the
USA. It is a standard-based, open source middleware software which provides
a federated SSO across or within organizational boundaries, by implementing
OASIS SAML 1.1 [22] specification. Shibboleth assumes that participating or-
ganizations have previously established a mutual trust relationship. It defines a
protocol allowing users to access remote resources, where users are authenticated
at their home site and authorized by a set of user attributes provided by their
home site. The home site can use whatever type of authentication it likes e.g.
username/password, Kerberos, digital signatures, and so forth. The users can be
located at their home site, or anywhere else on the Internet. Under Shibboleth,
the users home site is equipped with an Identity Provider (IdP) service, which
maintains users credentials and attributes and that, upon request of relying
parties, provides the relying parties with authentication or attribute assertions.
Thus the IdP acts as an Authentication Authority. The remote Web site imple-
ments a Shibboleth Service Provider (SP) that manages the secured resources.
When a user makes a request to access a remote Web site that does not know
about him/her, the remote Web site redirects the user request to a Where Are

You From (WAYF) service, which maintains the list of the organizations whose
users may access the resource. The user can choose his/her own home organi-
zation and then he/she is redirected to his/her home Web site, where he/she
is authenticated. Then the IdP service running at his/her home site generates
a handle for him/her, associates the authentication assertion with it, and redi-
rects the users request back to the remote Web site. The service provider at the
remote Web site validates the assertions received and, eventually, asks the IdP
of the user home site additional assertions. These assertions are then passed to
the Web application that, based on its access control policy, decides whether the
users access is permitted or denied. Shibboleth preserves user privacy in that the
IdP at the user home site, and the browser user can control what information is
released to the service provider of the remote Web site. Thus, unless requested
by the remote We site policy, users can remain anonymous and do not have to
disclose sensitive identity information.

Liberty Alliance Project. The Liberty Alliance [26], [27] was formed in De-
cember 2001 to serve as an open standard organization for federated network
identity management and identity-based services. The main concept of Liberty
Alliance is to provide the specification of a federated identity infrastructure in
which “individuals and businesses can more easily interact with one another,
while respecting the privacy and security of shared identity information.” [26].
Liberty Alliance is based on circle of trust concept. A circle of trust is constituted
by service providers and IdP’s. Service providers are organizations offering Web-
based services to users. IdP’s are service providers offering business incentives so
that other service providers will affiliate with them. A circle of trust is created by
establishing such relationships between service providers. Liberty Alliance archi-
tecture is organized around three building blocks: (1) the Federation Framework
(ID-FF); (2) the Identity Web Services Framework (ID-WSF); (3) the Identity
Services Interface Specifications (ID-SIS). ID-FF enables identity federation and
management, and it supports, among the others, a simplified SSO and anonim-
ity. ID-WSF is a foundational layer that uses ID-FF. Liberty ID-WSF defines
a framework for creating, discovering, and consuming identity services. Identity
Services Interface Specifications are a collection of specifications for interopera-
ble services to be built on top of Liberty’s ID-WSF. Liberty Alliance is based on
SAML and provides open standards for SSO with decentralized authentication.
In Liberty, a user authenticates via an identity provider, which may be any Inter-
net service provider. As in Shibboleth, the actual method of authentication is not
specified, and identity providers may use whatever authentication method they
deem to be appropriate e.g username/password, X.509 public key certificates,
Kerberos, one-time password schemes, and so forth. Identity federation is based
on linking users service provider and IdP accounts. Each user has a different
login identity at each service provider site. These identities are linked together
by the underlying identity federation, but at each site, the user still continues to
use his/her site-specific login identity. Login identities are not exchanged among
the sites; they are referenced by a Liberty user handle, an identifier known by
both sites and unique within the circle of trust. A Liberty handle is created by

performing a hash of the users login identity and other information known only
to the provider. Because the handle is at least 128 bits, it is virtually guaranteed
to be unique. Note that each handle is only known by the two sites that are
federated together, and a service provider will use different handles for the same
user with different service providers. The user is in charge of federating sites
together, and new handles are created each time, so that multiple sites cannot
exchange information about the same user by using one handle. A vulnerability
of this approach is that if a malicious user successfully authenticates itself once
with the identity provider, it can subsequently use any of the victims information
in the federation.

2.4 Issues in the Application of the Proposed Standards

Web services security standards raises three main broad questions. The first
question is related to the specific security threats posed by XML itself and by
the Web services security standards. The second one is related to the degree
of interoperability that can be really achieved by the adoption of Web service
security standards. The third one concerns the bandwidth and computational
overhead that can be generated by the joint use of XML and of software packages
implementing the Web services security standards.

With respect to the first question, XML by itself introduces new security
threats like SQL injection through XML payload, XPath Injection, unexpected
attachments, malformed XML and so forth. As to the enhanced security achiev-
able by the adoption of security standards, we can say that the framework and
the syntax defined by each specific Web service security standard do not provide
by themselves any guarantee of security; each standard specification contains a
specific section (Security Considerations) that describes the security concerns
that the adopter of the standards should be aware of. These security concerns
vary depending on the purpose of the standard. For example, when adopting se-
curity standards for SOAP messages encryption and signature, it must be taken
into account that the XML signature created to verify data integrity is often sent
in plain text. The plain text signature could be used by an attacker to perform
an offline guessing attack potentially allowing the attacker to guess the value of
the body of the message. Thus attention must be paid to use the Ws-Security
feature that Encrypt also the SOAP signature.

As to the interoperability issue, the framework for security standard develop-
ment identified in [2] postulates a layered approach, such that every upper layer
standard can re-use and extend the specification of lower-layer standards. How-
ever, the specifications of the standard at a given layer (for example WS-Trust)
are sometimes developed by a standardization body different from that specify-
ing the standard at the other layer (for example SAML). Thus, the two involved
standard specifications are not always compatible. Such situation requires an
activity of verification and alignment of the specifications, that involves further
iterations within each standardization body. Moreover, such an alignment might
be further constrained by the fact that one of the standards involved is more
stable and mature and is already implemented by some manufacturer.

A related issue concerns the real interoperability between the standard im-
plementations by different manufactures. Although one of the main purposes of
the standard is to guarantee the interoperability between different platforms, it
might be necessary to test it on the field. This in turn might require a careful
planning of the adoption and of the deployment of platforms implementing the
standards.

As to the performance issue, the overhead induced by XML was addressed by
the World Wide Web Consortium, that recently released three W3C Recommen-
dations to improve Web services performance by standardizing the transmission
of large binary data: XML-binary Optimized Packaging (XOP) [35], SOAP Mes-
sage Transmission Optimization Mechanism (MTOM) [36] , and Reosurce Rep-
resentation SOAP Header Block (RRSHB) [37]. These recommendations are in-
tended to provides ways to efficiently package and transmit binary data included
or referenced in a SOAP 1.2 message. The performance overhead generated by
the processing requirements of the software implementing Web services security
standards was tackled by the so-called XML appliances described in the next
section.

2.5 XML Appliances

XML messages processing can require a very large amount of bandwidth with
respect to traditional binary messaging protocols. Moreover, the processing of
WS-* security compliant messages requires encryption/decryption and eventu-
ally signature management capabilities. Many manufacturers provide special-
ized products, based on proprietary hardware and operating systems, that have
the objective of improving the performance of XML message processing and of
providing an integrated management of XML-related security functions. Such
products are commonly refereed to as XML appliances and include the XML ac-
celerators and the XML firewalls. A XML accelerator appliance is a customized
hardware and software where the following processing consuming tasks are per-
formed: XML/SOAP parsing, XML schema validation, XPath processing and
XSLT transformation functions. XML firewalls, also known as XML security
gateways, are devices that, in addition to the functions of a XML accelerator,
support the WS-Security standards and a range of security-related functions
such as: content or metadata-based XML/SOAP filtering functions; XML mes-
sages encryption/decryption at the message or element level; XML signature
verification and XML message signing according to XML Encryption standard;
Authentication and authorization functions (that in some XML appliance can be
based on local or on off-board repositories); Auditing and accounting functions.

Vendors of XML appliances such as IBM [38], Forum Systems [39] ,
Layer7 [40], Reactivity [41], Vordel [42], promote them as ”a class of service
intermediary” alternative to the approach of other vendors that enrich their
middleware to provide a Service Oriented Architecture infrastructure.

3 Research Proposals and Open Research Issues

Despite such intense research and development efforts, current Web service tech-
nology does not yet provide the flexibility needed to “tailor” a Web service
according to preferences of the requesting clients, thus failing to fulfil the mass-
customization promises made at the beginning of the Web services era. At the
same time, Web service providers demand enhanced adaptation capabilities in
order to adapt the provisioning of a Web service to dynamic changes of the
Web service environment according to their own policies. Altogether, these two
requirements call for policy-driven access controls model and mechanisms, ex-
tended with negotiation capabilities. Models and languages to specify access and
management control policies have been widely investigated in the area of dis-
tributed systems [43]. Standardization bodies have also proposed policy-driven
standard access control models which we have surveyed in the previous section.
The main goals of such models are to separate the access control mechanism
from the applications and to make the access control mechanism itself easily
configurable according to different, easy deployable access control policies. The
characteristics of open Web environments, in which the interacting parties are
mostly unknown each other, have lead to the development of the trust negotia-

tion approach as a suitable access control model for this environment [48], [?].
Trust negotiation itself has been extended with adaptive access control, in order
to adapt the system to dynamically changing security conditions. Automated
negotiation is also being actively investigated in different application domains,
such as e-business and Grid computing. However, a common key requirement
that has been highlighted is the need of a flexible negotiation approach that en-
ables the system to dynamically adapt to changing conditions. In addition, the
integration of trust negotiation techniques with Semantic Web technologies, such
as semantic annotations and rule-oriented access control policies, has been pro-
posed. In such approaches, the resource under the control of the access control
policy is an item on the Semantic Web, with its salient properties represented as
RDF properties. RDF metadata, managed as facts in logic programming, are as-
sociated with a resource and are used to determine which policies are applicable
to the resource. When extending a Web service with negotiation capabilities, the
invocation of a Web service has to be managed as the last step of a conversation
between the client and the Web service itself. The rules for such a conversation
are defined by the negotiation protocol itself. Such a negotiation protocol should
be described and made publicly available in a similar way as a Web service
operation is publicly described through WSDL declarations. An XML-based,
machine-processable negotiation protocol description allows an electronic agent
to automatically generate the messages needed to interact with the Web service.
Of course, the client and the Web service must be equipped with a negotiation
engine that evaluates the incoming messages, takes decisions and generated the
outgoing messages according to the agreed upon protocol. The models already
proposed for peer-to-peer negotiations assume that both parties are equipped
with the same negotiation engine that implements the mutually understood ne-
gotiation protocol. This assumption might not, however, be realistic and may

prevent the wide adoption of negotiation-enhanced access control model and
mechanisms.

In the remainder of this section we present a short overview of a system,
addressing those requirements, and then we discuss open research issues.

3.1 Ws-AC1: an Adaptive Access Control System for Web Services

In order to address the adaption and negotiation requirements, that we have
briefly outlined, a system has been recently proposed supporting a Web service
access control model and an associated negotiation protocol [?]. The proposed
model, referred to as Web service Access Control Version 1 (Ws-AC1, for short)
is based on a declarative and highly expressive access control policy language.
Such language allows one to specify authorizations containing conditions and
constraints not only against the Web service parameters but also against the
identity attributes of the party requesting the service and context parameters
that can be bound, for example, to a monitor of the Web service operating envi-
ronment. An additional distinguishing feature of Ws-AC1 is the range of object
protection granularity it supports. Under Ws-AC1 the Web service security ad-
ministrator can specify several access control policies for the same service, each
one characterized by different constraints for the service parameters, or can spec-
ify a single policy that applies to all the services in a set; in order to support such
granularity we introduce the notion of service class to group Web services. To
the best of our knowledge Ws-AC1 is the first access control model developed
specifically for Web services characterized by articulated negotiation capabili-
ties. A model like Ws-AC1 has important applications, especially when dealing
with privacy of identity information of users and with dynamic application en-
vironments. In order to represent the negotiation protocol, an extension to the
Web Services Description Language (WSDL) standard has also been developed.
The main reason of that choice is that, although the Web Services Choreography
Description Language (WS-CDL) is the emerging standard for representing web
services interactions, WS-CDL is oriented to support a more complex compo-
sition of Web services in the context of a business process involving multiple
parties.

Ws-AC1 is an implementation-independent attribute based access control
model for Web services, providing mechanisms for negotiation of service para-
meters. In Ws-AC1 the requesting agents (also referred to as subjects) are entities
(human being or software agents) the requests by which have to be evaluated
and to which authorizations (permissions or denials) can be granted. Subjects
are identified by means of identity attributes qualifying them, such as name,
birth date, credit card number, and passport number. Identity attributes are
disclosed within access requests invoking the desired service. Access requests to
a web service (also referred to as provider agent) are evaluated with respect to
access control policies. Note that in its initial definition, Ws-AC1 does not distin-
guish between the Web service and the different operations it provides, that is, it
assumes that a Web service provides just a single operation. Such model can be

applied to the various operations provided by a Web service without any exten-
sion. Access control policies are defined in terms of the identity attributes of the
requesting agent and the set of allowed service parameters values. Both identity
attributes and service parameters are further differentiated in mandatory and
optional ones. For privacy and security purposes, access control policies are not
published along with the service description but are internal to the Ws-AC1
system. Ws-AC1 also allows one to specify multiple policies at different levels of
granularity. It is possible to associate fine-grained policies with a specific service
as well with several services. To this end, it is possible to group different ser-
vices in one or more classes and to specify policies referring to a specific service
class, thus reducing the number of policies that need to be specified by a policy
administrator. A policy for a class of services is then applied to all the services
of that class, unless policies associated with the specific service(s) are defined.
Moreover, in order to adapt the provision of the service to dynamically chang-
ing conditions, the Ws-AC1 policy language allows one to specify constraints,
dynamically evaluated, over a set of environment variables, referred to as con-

text, as well as over service parameters. The context is associated with a specific
service implementation and it might consist of monitored system variables, such
as the system load. The access control process of Ws-AC1 is organized into two
main sequential phases. The first phase deals with the identification of the sub-
ject requesting the service. The second phase, executed only if the identification
succeeds, verifies the service parameters specified by the requesting agent against
the authorized service parameters.

The identification phase is adaptive, in that the provider agent might even-
tually require the requesting agent to submit additional identity attributes in
addition to those originally submitted. Such an approach allows the provider
agent to adapt the service provisioning to dynamic situations: for example, after
a security attack, the provider agent might require additional identity attributes
to the requesting agents. In addition, to enhance the flexibility of access control,
the service parameter verification phase can trigger a negotiation process. The
purpose of this process is to drive the requesting agent toward the specifica-
tion of an access request compliant to the service specification and policies. The
negotiation consists in an exchange of messages between the two negotiating en-
tities in order to limit, fix, or propose the authorized parameters the requesting
agent may use. The negotiation of service parameters allows the provider agent
to tailor the service provisioning to the requesting agent preferences or, at the
opposite, to enforce its own preferred service provisioning conditions.

3.2 Open Research Issues

Even though Ws-Ac1 provides an initial solution to the problem of adaptive
access control mechanisms for Web services, many issues need to be be inves-
tigated. A first issue is related to the development of models and mechanisms
supporting a comprehensive characterization of Web services, that we refer to as
Web service profiles. Such a characterization should be far more expressive that
conventional approaches, like those based on UDDI registries or OWL. The use

of such profiles would allow one to specify more expressive policies, taking into
account various features on Web services, and to better support adaptation.

The second issue is related to taking into account the conversational nature
of web services, according to which interacting with real world Web services
involves generally a sequence of invocations of several of their operations, re-
ferred to as conversation. Most proposed approaches, like Ws-AC1, assume a
single operation model where operations are independent from each other. Ac-
cess control is either enforced at the level of the entire Web service or at the
level of single operations. In the first approach, the Web service could ask, in
advance, the client to provide all the credentials associated with all operations
of that Web service. This approach guarantees that a subject will always arrive
at the end of whichever conversation. However, it has the drawback that the
subject will become aware of all policies on the base of which access control is
enforced. In several cases, policies need to be maintained confidential and only
disclosed upon some initial verification of the identity of the client has bene
made. Another drawback is that the client may have to submit more credentials
than needed. An alternative strategy is to require only the credentials associated
with the next operation that the client wants to perform. This strategy has the
advantage of asking from the subject only the credentials necessary to gain ac-
cess to the requested operation. However, the subject is continuously solicited to
provide credentials for each transition. In addition, after several steps, the client
may reach a state where it cannot progress because the lack of credentials. It
is thus important to devise strategies to balance the confidentiality of the poli-
cies with the maximization of the service completion. A preliminary approach
to such strategies has been recently developed [28]; the approach is based on
the notion of k-trustworthiness where k can be seen as the level of trust that a
Web service has on a client at any point of their interaction. The greater the
level of trust associated with a client, the greater is the amount of information
about access control policies that can be disclosed to this client, thus allowing
the client to determine early in the conversation process if it has all necessary
credentials to satisfy the access control policies. Such approach needs however
to be extended by integrating it with an exception-based mechanism tailored to
support access control enforcement. In particular, in a step-by-step approach,
whenever a client cannot complete a conversation because of the lack of autho-
rization, some alternative actions and operations are taken by the Web service.
A typical action would be to suspend the execution of the conversation, ask
the user to acquire the missing credentials, and then resume the execution of the
conversation; such a process would require investigating a number of issues, such
as determining the state information that need to be maintained, and whether
revalidation of previous authorizations is needed when resuming the execution.
A different action would be to determine whether alternative operations can be
performed to replace the operation that the user cannot execute because of the
missing authorization. We would like to develop a language according to which
one can express the proper handling of error situations arising from the lack of
authorization.

The third issue is related to security in the context of composite services;
in such case, a client may be willing to share its credentials or other sensitive
information with a service but not with other services that can be invoked by the
intial service. To handle such requirement different solutions may be adopted,
such as declaring the possible services that may be invoked by the initial ser-
vice or associating privacy policies with the service description, so that a client
can specify its own privacy preferences. Other relevant issues concern worklow
systems. Such systems represent an important technology supporting the deploy-
ment of business processes consisting of several Web services and their security
is thus crucial. Even though some initial solutions have been proposed, such as
the extension of the WS-BPEL standards with role-based access control [47],
more comprehensive solutions are required, supporting adaptive access control
and sophisticated access control constraints.

Finally the problem of secure access to all information needed to use services,
such as information stored by UDDI registries, needs to be addressed. To date
solutions have been developed to address the problem of integrity through the
use of authenticated data structures [44]. However work is needed to address
the problem of suitable access control techniques to assre the confidentiality
and privacy of such information and thus to support its selective sharing among
multiple parties.

4 Concluding Remarks

In this paper we have presented an overview of relevant standards concerning
security for Web services. Such standards encompass a large number of security-
related aspects, such as access control and digital identity management, and thus
provides a solid basis for the deployment of Web service technology. We have
also briefly outlined a more innovative approach that is the first proposing a
negotiation-based access control model, able to provide support for adaptation,
and we have discussed some open research issues.

5 Acknowledgement

The work reported in this paper has been partially supported by NSF under the
project “Collaborative Research: A Comprehensive Policy-Driven Framework
for Online Privacy Protection: Integrating IT, Human, Legal and Economic Per-
spectives”.

References

1. SOAP Version 1.2 W3C Recommendation 24 June 2003.
2. Microsoft and IBM - Security in a Web Services World: A Proposed Architecture

and Roadmap 01 Apr 2002.
3. IETF The SSL Protocol Version 3.0 November 18, 1996.

4. IETF RFC 2246 January 1999.
5. RFC 2401 Security Architecture for the Internet Protocol November 1998.
6. XML Encryption Syntax and Processing W3C Recommendation 10 December

2002.
7. XML-Signature Syntax and Processing W3C Recommendation 12 February 2002.
8. SOAP message security (SOAP Message Security 1.0 WS-Security 2004) OASIS

Standard 200401, March 2004.
9. Web Services Secure Conversation Language (WS-SecureConversation) February

2005.
10. Web Services Reliable Messaging Protocol (WS-ReliableMessaging) February 2005

specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.
11. OASIS eXtensible Access Control Markup Language 2 (XACML) Version 2.0 OA-

SIS Standard, 1 Feb 2005.
12. OASIS XACML profile for Web-services Working Draft 04, 29 Sep 2003.
13. ISO 10181-3 Access Control Framework.
14. WS-PolicyAttachment.
15. Web Services Policy Framework (WSPolicy) Version 1.2 March 2006.
16. D. Box, et al, “Web Services Policy Attachment (WS-PolicyAttachment),” March

2006. (See http://schemas.xmlsoap.org/ws/2004/09/policy.)
17. Web Services Security Policy Language (WS-SecurityPolicy) July 2005 Version 1.1.
18. Web Services Policy Assertions Language (WS-PolicyAssertions) Version 1.0 De-

cember 18, 2002.
19. XML Key Management Specification (XKMS 2.0) Version 2.0 W3C Recommen-

dation 28 June 2005.
20. Web Services Trust Language (WS-Trust) February 2005.
21. Requirements for a Global Identity Management Service A Position Paper from

OneName Corporation for the W3C Workshop on Web Services, 11-12 April 2001,
San Jose, CA USA.

22. OASIS Security Assertion Markup Language (SAML) 2.0 Technical Overview -
Working Draft 03, 20 February 2005.

23. Assertions and Protocol for the OASIS Security Assertion Markup Language
(SAML) V1.1 (oasis-sstc-saml-core-1.1) OASIS Standard, 2 September 2003.

24. Web Services Federation Language (WSFederation) Version 1.0 July 8 2003.
25. Shibboleth Architecture Technical Overview Working Draft 02, 8 June 2005

http://shibboleth.internet2.edu/shibboleth-documents.html.
26. Liberty Alliance Project - Introduction to the Liberty Alliance Identity Architec-

ture Revision 1.0 March, 2003.
27. Liberty Alliance Project - Introduction to the Liberty Alliance Identity Architec-

ture Revision 1.0 March, 2003.
28. M.Mecella, M.Ouzzani, F. Paci, E. Bertino. Access Control Enforcement for

Conversation-based Web Services. Proceedings of the 2006 WWW Conference, Ed-
inburgh, Scotland, May 23-26, 2006.

29. Microsoft Message Queuing (MSMQ)
30. IBM WebSphere MQ V6 Fundamentals
31. Sun Java System Message Queue
32. IBM The Enterprise Privacy Authorization Language (EPAL 1.1) - Reader’s Guide

to the Documentation.
33. Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language.

W3C Working Draft 26-March-2004.
34. OASIS UDDIVersion 3.0.2 UDDI Spec Technical Committee Draft, Dated 2004-

10-19.

35. W3C XML-binary Optimized Packaging W3C Recommendation 25 January 2005.
Available at http://www.w3.org/TR/2005/REC-xop10-20050125/

36. W3C SOAP Message Transmission Optimization Mechanism - W3C Recommen-
dation 25 January 2005. Available at: http://www.w3.org/TR/2005/REC-soap12-
mtom-20050125/

37. W3C Resource Representation SOAP Header Block - W3C Recommendation
25 January 2005. Available at http://www.w3.org/TR/2005/REC-soap12-rep-
20050125/

38. WebSphere DataPower SOA Appliances - http://www-
306.ibm.com/software/integration/datapower/

39. Forum Systems Sentry - http://forumsystems.com/papers/Sentry Data Sheet Spring 2004.pdf
40. Layer7 SecureSpan Gateway - http://www.layer7tech.com/products/page.html?id=2
41. Reactivity. http://www.reactivity.com/products/index.html
42. Vordel - http://www.vordel.com/products/
43. N. Damianou ,N. Dulay, E. Lupu and M. Sloman. The Ponder Policy Specification

Language. Proceedings of the 2nd IEEE International Workshop on Policies for

Distributed Systems and Networks, 2001.
44. E. Bertino, B. Carminati, E. Ferrari. Merkle Tree Authentication in UDDI Reg-

istries. International Journal of Web Service Research, 1(2): 37-57 (2004)
45. E. Bertino, E. Ferrari , A.C. Squicciarini. X -TNL: An XML-based Language for

Trust Negotiations. Proceedings of the 4th IEEE International Workshop on Poli-

cies for Distributed Systems and Networks, 2003.
46. E.Bertino, A.C. Squicciarini, L.Martino, F. Paci. An Adaptive Access Control

Model for Web Services. To appear in International Journal of Web Service Re-

search, 2006 (to appear).
47. E.Bertino, J.Crampton, F.Paci. Access Control and Authorization Constraints for

WS-BPEL. Submitted for publication.
48. T. Yu, M. Winslett, K. Seamons. Supporting Structured Credentials and Sensitive

Policies through Interoperable Strategies for Automated Trust Negotiation. ACM

Transactions on Information and System Security, Vol. 6, No. 1, February 2003.

