
CERIAS Tech Report 2006-42

VERIFICATION OF DATABASE TRANSACTION LOCK MANAGEMENT IN THE PRESENCE
OF ROLE BASED ACCESS CONTROL POLICY

by Arjmand Samuel, Arif Ghafoor

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



Verification of Database Transaction Lock Management in the Presence of Role

Based Access Control Policy

Arjmand Samuel and Arif Ghafoor

School of Electrical and Computer Engineering

Purdue University, West Lafayette, USA

{amsamuel, ghafoor}@purdue.edu

Abstract

In a computing environment where access to system re-

sources is controlled by an access control policy and execu-

tion of database transactions is dictated by database lock-

ing policy, interaction between the two policies can result in

constraints restricting execution of transactions. We present

a methodology for the verification of database transaction

requirements in a Role Based Access Control (RBAC) envi-

ronment. Specifically, we propose a step by step approach

for the extraction of implicit requirements of a database

transaction, and present a mechanism whereby these re-

quirements can be verified against an RBAC policy repre-

sentation. Based on the requirements of database transac-

tion, we define feasible states of the access control policy

which allow the transaction to be executed. We also illus-

trate the interaction of multiple database transactions ex-

ecuting in a single security environment. Finally, we de-

fine conditions in an access control policy, which allow the

execution of a database transaction without relying on the

underlying database locking policy for serializability and

deadlock avoidance.

1. Introduction

A typical computing environment is controlled by a

number of subsystem policies. Examples of these poli-

cies are the access control policy, CPU scheduling policy,

database record locking policy, semaphore locking policy,

memory management policy, etc. Each of the subsystem

policy controls its relevant component independently with

no knowledge of the rest of the subsystem policies; con-

trary to the fact that the subsystems themselves are inter-

related and mutually dependent. The indirect interaction

between the subsystem policies at times gives rise to dras-

tic consequences. The actions of the security subsystem are

controlled by an access control policy, which dictates cir-

cumstances in which object permissions are granted to au-

thenticated users. The database locking policy allows more

than one transaction to access a single object. In a comput-

ing system where access control policy and database lock-

ing policy co-exist, interaction between the two creates an

interesting interdependence, which we address in our dis-

cussion here.

In this paper we consider the RBAC model, which has

emerged as a de-facto model for specifying security require-

ments of large organizations. Its strength lies in the defini-

tion of user roles more akin to the functional responsibilities

of users in the organization and abstracting object permis-

sions as roles [10, 11]. RBAC provides us with expressive-

ness to define object permissions and system states under

which these permissions can be granted to users. In this pa-

per we model RBAC security policy in the form of a Finite

State Machine (FSM). This model allows us to explicitly

represent security system properties and use them to verify

different system constraints dictated by the database trans-

actions and locking policies.

A database system in its most general form consists of a

set of objects and a set of transactions [8, 9]. An important

issue in database design is the ability of the database en-

gine to run multiple transactions simultaneously [2], while

ensuring consistency of the underlying data, also called se-

rializability [5, 16, 15]. A common approach to ensure seri-

alizability is to have a locking policy, which guarantees that

all objects accessed by the transaction are locked. There are

a number of well known locking policies which not only

ensure serializability but also guarantee freedom from dead-

lock. In this paper, we will consider the two-phase locking

policy and the rooted tree locking policy.

Our contributions in this paper are: 1) Verification of

database transaction requirements against an RBAC pol-

icy, resulting in security states which permit execution of

the verified transaction. 2) Verification of a database trans-

action, resulting in a set of security states of RBAC pol-

icy, which allow transaction to execute without relying on

database locking policy. In order to illustrate the above



contributions, we present an example based approach and

consider typical RBAC policies and database transactions

which conform to the 2-phase locking protocol and the

rooted tree locking protocol [8].

The remainder of this paper is organized as follows. Sec-

tion 2 gives preliminary definitions for RBAC policies, its

representation as an FSM, and framework for representation

of the database transaction. Section 3 states three database

transaction properties and provides the verification method-

ology. Section 4 discusses situations in which the verifica-

tion methodology can be used effectively. It also lists some

of the limitations of the approach. Section 5 presents related

work and Section 6 concludes the paper.

2. Preliminary definitions

As mentioned above, we will use RBAC as the security

policy definition environment. For this paper we will define

RBAC policy P as a 5-tuple (U, R, P, URA, PR), where

• U and R are the finite set of users and roles

• P is the set of permissions

• URA ⊆ U × R is a set of allowable user to role acti-

vations

• PR ⊆ P × R is a set of allowable permission-to-

role assignments. Permission to access an object O1
is granted to one role at a time only e.g. (P1, R1) and

(P1, R2) are not allowed in the same set.

Any user activating a role is assumed to be assigned to

that particular role. The above definition is adequate to

illustrate the verification of database transaction require-

ments in the context of RBAC security policy.

2.1. Modeling of the Role Based Access
Control Policy

We use the state based representation of the role based

access control policy. This representation allows us to de-

fine implicit properties of the policy and analyze them in

an explicit manner. In the following, we describe a FSM

based model of an access control policy. The FSM model

M is defined as M={S, I, E}, where S is the set of states,

I is the set of inputs and E is the set of edges which con-

nects one state to another. A binary state variable defines

each of the states in set S. The number of bits of the state

variable, Sb=number of authenticated users in the system

+ number of objects being accessed by the users. The set

I = {PAR
O

, PDR
O

, UA
R

, UD
R
} is a finite set of allowable in-

puts, where PAR
O

refers to members of role R being granted

permission to access an object O. PDR
O

is the permission

revocation for members of role R on object O. Each per-

mission in this set refers to a either a read or a write per-

mission on a physical database object, although in our dis-

cussion we do not differentiate between the two. UA
R

is the

user role activation of user U in role R and UD
R

is the user

role deactivation of user U from role R. E, the set of edges,

consists of directed arrows which define the direction of the

transition. In order to differentiate between the invocation

of a permission and revocation of permission, we use solid

edges for the first and dashed edges for the later. Similarly,

activation of a user in a role is depicted by a solid edge and

de-activation of a user from a role is represented by a dashed

edges. De-activation of users and revocation of permissions

are shown in the FSM only when required.

An example RBAC access control policy K1 is given be-

low, which we will use as a running example in this paper.

U = {U1, U2}
R = {R1}
P = {P1, P2}
URA = {(U1, R1), (U2, R2)}
PR = {(P1, R1), (P2, R1)}
K1 has two users U1 and U2. Each user can activate a

role R1, as represented by the set URA above. There are

two objects, O1 and O2. Permissions to access these ob-

jects are represented by P1 and P2, respectively, which is

granted to any user activating role R1, represented by the set

PR above. The state variable is of the form (x1x2x3x4),
which is a binary representation of states. Bits (x1) and

(x2) represent the state of users U1 and U2, respectively. If

user U1 has activated the role R1, bit (x1) is set to 1, and

0 otherwise. Similarly, if user U2 has activated role R1,

the bit (x2), is set to 1, and 0 otherwise. The bits (x3) and

(x4) represent the invocation of permissions P1 and P2 to

role R1. If P2 is granted to role R1, bit (x4) will be set

to 1, and 0 otherwise. Complete list of the states is given

in Figure 1(a), along with details of the semantics of the

state. As pointed out earlier, in order to keep the FSM sim-

ple, transitions like de-activation of users and revocation of

permissions to objects are not shown but exist in the policy.

We represent K1 as an FSM in Figure 1(b).

2.2. Representation of the Database Trans-
action

Next, we present definitions which will be used to rep-

resent and analyze transaction constraints and requirements

effectively.

Definition 1 (Transaction State Machine): A Trans-

action State Machine (TSM) is a state based representa-

tion (FSM) of a database transaction, represented by a tuple

TSM = {TS, TE}, where,

TS is a set of states, each state representing the user exe-

cuting the transaction and the objects being acted upon. The



State Variable Detail
0000 U1 not active in role R1, U2 not active in Role R1, P1 not granted to R1,

P2 not granted to R1
0001 U1 not active, U2 not active, P1 not granted, P2 not granted
0010 U1 not active, U2 not active, P1 granted, P2 not granted
0011 U1 not active, U2 not active, P1 granted, P2 granted
0100 U1 not active, U2 active, P1 not granted, P2 not granted
0101 U1 not active, U2 active, P1 not granted, P2 granted
0110 U1 not active, U2 active, P1 granted, P2 not granted
0111 U1 not active, U2 active, P1 granted, P2 granted
1000 U1 active, U2 not active, P1 not granted, P2 not granted
1001 U1 active, U2 not active, P1 not granted, P2 granted
1010 U1 active, U2 not active, P1 granted, P2 not granted
1011 U1 active, U2 not active, P1 granted, P2 granted
1100 U1 active, U2 active, P1 not granted, P2 not granted
1101 U1 active, U2 active, P1 not granted, P2 granted
1110 U1 active, U2 active, P1 granted, P2 not granted
1111 U1 active, U2 active, P1 granted, P2 granted

(a) (b)

Figure 1. (a) States of the Access Control Policy K1. (b) FSM of Access Control Policy K1

state variable is a binary number in which the number of bits

NTS=Total number of authenticated users + Total number

of database objects in the system. The initial state in TSM

represents the user executing the transaction. All object bits

in the initial state are set to don’t care (x). A database ob-

ject bit is set to 1 if the transaction has requested a lock on

the object. On the other hand, it is set to (x) if the trans-

action is not holding a lock on it. TE is the set of directed

edges which connect two consecutive states.

Next, we present a procedure for forming the TSM of a

database transaction.

MakeTSM(Transaction T)

1 Start with initial state of size

NTS, with all bits set to don’t care

2 Set the corresponding bit for the

user executing the transaction

3 Do for each line in the transaction

4 If (transaction is locking an

object)

5 Set the corresponding bit for

permission required to access an object

in the state variable

6 Else

7 Reset the corresponding bit for

permission required to access an object

in the state variable

8 Create a state for the state

variable

9 Add a transition from current state

to next state

10 Repeat till end of transaction

11 Output the TSM

Definition 2 (Transaction State Vector): A Transaction

State Vector (TSV ) is the state from the set TSM which has

the maximum number of object permissions assigned. In

other words TSV is the state from amongst all TSM states

with most number of 1s. It represents the point in the trans-

action which corresponds to the transaction accessing the

maximum number of objects.

Definition 3 (Feasible State and transition): A TSV is

feasible for an access control policy, if we have states in the

FSM of the access control policy which can be mapped to

the values of the TSV. Collection of such states is called a

feasible region. A transition connecting two feasible states

is called a feasible transition.

Definition 4 (Entry State): The entry state of the TSM

is the first state at which the transaction starts executing. It

represents the state in the FSM of an access control policy in

which a user has sufficient privileges to invoke a transaction.

In order to illustrate extraction of specific properties

from a database transaction we consider a simple transac-

tion T1, given below. T1 conforms to the Two Phase Lock-

ing Protocol [8].

Transaction T1

Lock(O1)

Lock(O2)

Unlock(O1)

Unlock(O2)

T1 acts on database objects O1 and O2. The transac-

tion is being executed by user U1. In order for U1 to have

permission to act on O1, it needs to activate role R1 and

permission P1 has to be granted to role R1. Next, we cre-

ate the TSM of transaction T1 using the procedure given

in Definition 1. The resulting TSM is depicted in Figure 2.

The (x) in the state variable symbolize don’t care condition.

The ovals in Figure 2 are the corresponding lines of code

that have resulted in a certain state. As stated in Definition

2, the Transaction State Vector for T1 is (1x11). (1xxx) is

the entry state of this TSM.



Figure 2. Transaction State Machine (TSM) of
T1

3. Verification Methodology

The correct execution of a database transaction is possi-

ble only because of the underlying safeguards provided by

the locking mechanism [16]. As discussed earlier, locking

is an integral part of transaction execution providing con-

flict serializability and deadlock avoidance [15]. A lock-

ing policy does not take into account the system security

and privileges granted to users, which is the domain of the

access control policy. However, the two policies interact

with each other, complimenting or making each others ac-

tions and definitions redundant. Hence we ask the following

questions.

• Given an access control policy, can we run an arbitrary

database transaction?

• What are states of the security system in which a par-

ticular database transaction can execute?

• How do multiple database transactions interact with

each other under the influence of a single access con-

trol policy?

• Given a specifically designed access control policy, is

database locking policy required?

In order to answer the above questions, we state the

following properties and in the ensuing discussion, verify

them, given the FSM of the access control policy and the

TSM of the transaction.

• Property 1: A database transaction can execute only in

the feasible region of an access control policy.

• Property 2: A database transaction can execute without

any locking safeguards, in access control policy states

which lie in its feasible region and which are not fea-

sible for entry states of any other transaction.

• Property 3: A database transaction can be executed in

the absence of any locking mechanism, if the access

control policy has locking safeguards built into it.

3.1. Verification of properties for a
Database Transaction

Property 1: A database transaction can execute only in

the feasible region of an access control policy.

In order to arrive at a set of states in which T1 can be exe-

cuted, we search the state space of the access control policy

for feasible states of the TSV. This search can be done using

any of the known graph discovery algorithms such as Depth

First Search or Breath First Search. For the FSM given in

Figure 1, we conclude that states (1011) and (1111) are the

only states in which this transaction can be performed or the

TSV is feasible. The transition, U2 (User U2 activating role

R1) is the only transition allowed or feasible. The two per-

missible states, together with the one permissible transition

are outlined in dark oval in Figure 3. Any other transition

which may lead the system to leave the feasible state, is pro-

hibited. These transitions could be the de-activation of users

from a role or revocation of permissions held by a role. The

prohibited transitions in our current example are depicted in

short arrows leaving the feasible states of Figure 3.

Feasible region for

 transaction T1

Revocation of permissions

De-activation of User

Figure 3. Feasible TSV for the Access control
Policy

Given the FSM in Figure 3, we observe the following.

There are specific security states in which execution of T1

is possible, and there are states in which the same transac-

tion cannot be executed. In order to execute T1, when the

security system is not in the feasible region of a transac-

tion, we find a path from the current state to the feasible

region. If a path exists, then we can execute the transaction,

and if not, then the transaction cannot be executed. When



Progress of transaction

C
o

n
st

ra
in

ts
o

n
A

cc
es

s
C

o
n

tr
o

l
S

ta
te

1xxx 1x1x 1x11 1x11 1xx1 1xxx

Transaction State Trace of T1

(c)(a) (b)

(d) (e) (f )

Figure 4. (a), (b), (c), (d), (e) Feasible states for TSM in access control policy. (f) Progress of transac-
tion T1

the transaction is executing, the only permissible transition

in the security policy is the feasible transition and all other

paths in the access control FSM are prohibited.

It may be noted here that the two states (1111 and 1011)

feasible for the transaction are the access control policy

states which have maximum constraints, in terms of permis-

sions on objects, defined on them. The TSM of T1 shows

that during the course of the transaction, the requirements

of access and permissions vary. This variation of security

requirements can be seen by finding feasible access control

states for each TSM state. Figure 4a, b, c d, and e, depict

each of the feasible states for corresponding TSM.

The mapping of state (1xxx) is shown in Figure 4(a),

mapping of (1x1x) is shown in Figure 4(b) and so on. It

is observed from Figure 4 that the feasible states become

more and more constrained (have more object permissions

defined), with each step of the transaction. It may be noted

here that each step in the transaction changes the feasible

states of the access control policy. The behavior of the inter-

action between the access control policy and the transaction

is shown in Figure 4(f). On the x-axis, we have the progress

of the transaction and on the y-axis, we have the accel-

eration of security constraints. State (1x11) is most con-

strained state and states (1xxx) are the least constrained.

Property 2: A database transaction can execute with-

out any locking safeguards, in access control policy states

which lie in its feasible region and which are not feasible

for entry states of any other transaction.

In order to verify this property, we expand our previous

example and consider an access control policy K2 with two

users U1 and U2, one role R1 and four objects O1, O2, O3
and O4. The permissions associated with these objects are

P1, P2, P3 and P4. The FSM of this access control policy

is depicted in Figure 10.

U = {U1, U2}
R = {R1}
P = {P1, P2, P3, P4}
PR = {(P1, R1), (P2, R1), (P3, R1), (P4, R1)}
URA = {(U1, R1), (U2, R2)}
We now define two transactions T2 and T3 (depicted in

Figure 5(a) and 5(b), respectively) which will be executed

under the access control policy K2, discussed above.

Next, we form the TSM for both T2 and T3. User U1 is

executing T2 and user U2 is executing T3. The two TSMs

are depicted in Figure 6(a) and 6(b).

The feasible TSVs in this example are (1x111x) for T2

and (x11x11) for T3. These TVSs are mapped onto the

relevant parts of the access control policy in Figure 7.

We observe the following from Figure 6 and 7. The

entry state of TSM for T2 (1xxxxx) can be mapped to state

(111011) in the feasible region of T3. Hence T2 can be

started in the feasible state of T3, although the two TSVs



Transaction T2:
Lock O1
Lock O2
Lock O3
Unlock O1
Unlock O3
Unlock O2

Transaction T3:
Lock O4
Lock O3
Lock O1
Unlock O4
Unlock O3
Unlock O1

Figure 5. (a) Transaction T2. (b) Transaction
T3

1xxxxx 1x1xxx 1x11xx 1x111x 1x111x 1xx11x 1xx1xx 1xxxxx

(a)

x1xxxx x1xxx1 x1xx11 x11x11 x11x11 x11x1x x11xxx 1xxxxx

(b)

Figure 6. (a) TSM of T2. (b) TSM of T3

Figure 7. Feasible states for T2 and T3

do not overlap. Figure 8(a) and (b) show the feasible entry

states of T2 and T3, respectively. The feasible entry states

are the double circle states in each case. In case of T2, states

(101110) and (101111), are the states in which T3 cannot

be executed at all, similarly, in case of T3, T2 can not be

executed in states (011011) and (011111). We therefore

can execute T2 in states (101110) and (101111) without

any database locking safeguards. Similarly, we can execute

T3 in states (011011) and (011111) in the absence of any

database locking safeguards.

(a) (b)

Figure 8. (a) Feasible entry states for T2. (b)
Feasible entry states for T3.

Property 3: A database transaction can be executed in

the absence of any locking mechanism, if the access control

policy has locking safeguards built into it.

In order to closely look at this property, we assume that

the database objects have a hierarchal relationship [6] as

depicted in Figure 9(a). The locking policy being followed

here is the rooted tree locking policy [14]. Object O1 is the

father of object O2, which in turn is the father of objects O3
and O4. We also define transaction T4 in Figure 9(b). Steps

1 and 2 in T4 may correspond to database actions like add,

delete etc and are being performed on object O2. Similarly

steps 3 and 4 are also database actions like add or delete but

may be performed on objects O2 or O4. Steps 5 and 6 are

being performed on object O2.

We now present procedure ModifiedMakeTSM below. In

this procedure we include semantics for capturing the lock-

ing constraints of the database transaction exhibiting the

rooted tree locking structure.

ModifiedMakeTSM(Transaction)

1 Start with initial state (00000)
(number of bits=Total number of users

in the policy + total number of objects

in the system)

2 Set the corresponding bit for the

user executing the transaction

3 Do for each line in the transaction

4 If (transaction is locking an

object)



Figure 10. FSM for policy K3 and feasible states for T4

Transaction T4:
Lock O2
Step 1
Step 2
Lock O4
Step 3
Step 4
Unlock O4
Step 5
Step 6
Unlock O2

O1

O2

O3O4

(a) (b)

Figure 9. (a) Hierarchal relationship between
objects. (b) Database transaction T4

5 If (object was not locked before)

6 Set the corresponding bit for

permission required to access an object

in the state variable

7 If (first lock of the transaction,

set all object bits on the left of the

current bit to 0)

8 End if

9 Else

10 Reset the corresponding bit for

permission required to access an object

in the state variable

11 Create a state for the state

variable

12 Add a transition from current

state to next state

13 Repeat till end of transaction

14 Output the TSM

Next, we create the TSM for transaction T4 using the

ModifiedMakeTSM procedure. The resulting TSM is given

if Figure 11.

In order to run transaction T4, we consider RBAC access

control policy K3 given below.

U = {U1}
R = {R1}
P = {P1, P2, P3, P4}



Figure 11. TSM for transaction T4

PR = {(P1, R1), (P2, R1), (P3, R1), (P4, R1)}
URA = {(U1, R1)}
The FSM of K3 is given in Figure 10. We map the TSM

of T4 onto the FSM and find the feasible states, which are

shown as thick circles in the policy FSM.

In order to take a closer look at the feasible region of

T4, we expand the affected states and transitions of the cor-

responding FSM, depicted in Figure 12. In this FSM, the

dashed lines show the de-assignment of user U1 from the

role R1 and the revocation of permissions of the various

objects. The feasible region for transaction T4 is shown as

thick circles. We observe that the system has to be in state

(10000) in order to start the transaction T4. In order to exe-

cute the first line of the transaction the system has to move

to state (10100). The transition P2 is the feasible transi-

tion and is permitted. The transition P4, P3, P1 and U1′

are not permitted at this stage. Once the system is in state

(10100), transitions P3, P1, P4 and U1′ are not permitted.

Likewise, in order to execute each line of the transaction,

the system has to move on to the next state which is indi-

cated by the TSM of the transaction. In each feasible state

there are transitions which are not permitted and there are

transitions which are feasible.

We can see from the above discussion that the rooted

tree locking policy is being implemented by the execution

state of the security policy. Further, if the RBAC security

policy is implemented as per procedure outlined above, the

underlying locking policy is not required.

4. Discussion

As illustrated in Section 3, given a database transaction,

and an access control policy; we can verify if the transac-

tion can be executed in the context of the access control

policy constraints. Property 1 can be verified for transac-

tions exhibiting all possible types of locking policy imple-

mentations. The verification process simply points to secu-

rity states in which the transaction in question can be exe-

cuted. Further, it also provides a set of steps (transitions)

which can be followed in case transaction cannot be exe-

cuted in the current state, and feasible states are reachable

from the current state. The verification process of property

1 also identifies transitions which are prohibited when the

transaction is in progress. Property 2 can isolate security

states which are feasible for executing a set of transactions

ensuring non-interference, and hence donot rely on the un-

derlying locking mechanism. Property 3, adds another di-

Figure 12. FSM of policy K3 with feasible
states of T4

mension to the verification process and takes into account

a hierarchal structure of database objects. The TSM of the

transaction resulting from running the ModifiedMakeTSM

procedure also captures the tree locking policy constraints.

The resulting TSM isolates feasible states of the security

system and provide a set of states and transitions which can

be followed so that the transaction can execute without rely-

ing on the underlying access control policy. It may be noted

here that the procedure ModifiedMakeTSM will capture the

locking constraints only for the rooted tree locking policy.

Also, the non-reliance on locking policy is only possible if

the security states can very precisely follow the set of fea-

sible states. If the order of transitions and states is not fol-

lowed, the underlying locking policy is the only safeguard

for conflict serializabilty and deadlock freedom. It is also

assumed throughout the verification process that one user

will only execute a single transaction at a time.

Verification of the proposed properties can be achieved

by applying the various model checking approaches and

tools reported in the literature. Notable among them is

SPIN [7] which converts the finite state model of the input

system and negation of the property in question to Buchi au-

tomata. SPIN also provides a counter-example if the prop-

erty is not valid.



5. Related Work

Model checking helps in automating analysis of complex

systems and properties [3]. A technique for the extraction of

abstract finite-state machines directly from finite-state pro-

grams and satisfaction of a formula by the abstract machine

is given in [4]. This methodology is the basis of subse-

quent model checking approaches. Access control policy

analysis and verification has been an active area of research

recently. Ahmed and Tripathi [1], have proposed static ver-

ification of security requirements for CSCW systems using

finite-state techniques. Schaad, Lotz and Sohr [12] have

proposed a model-checking approach for automated analy-

sis of delegation and revocation functionalities in the con-

text of a work flow requiring static and dynamic separation

of duty constraints. Zhang, Ryan and Guelev [17], have

proposed a model-checking algorithm which can be used

to evaluate access control policies. Verification of database

transactions has been done by a number of authors, notable

among them are Sheard and Stemple [13]. They report on a

system that performs compile time verification of integrity

constraints in a database transaction.

While these approaches provide a valuable insight in ver-

ification of access control policies on one hand and verifica-

tion of integrity constraints associated with database trans-

actions on the other, none has addressed the verification of

database transaction against an access control policy. Our

approach is unique in the sense that it provides an insight

into the interaction between the access control policy and

the database locking policy, manifested as database transac-

tion.

6. Conclusions

In this paper, we have presented a methodology for the

verification of database transaction requirements executed

in the presence of an RBAC security policy. Our con-

tribution is the characterization of three properties, and

their illustrative verification steps, which effectively verify

database transactions. Property 1 and 2 identify feasible se-

curity states and transitions on the one hand and prohibited

security states and transitions on the other hand. Property 3,

pinpoints security states which allow a database transaction

to execute in the absence of the underlying locking policy.

The list of properties which effectively verify a database

transaction rigorously is in no way complete and remains

the subject of our future work. Developing an effective

translation mechanism which can translate requirements of

database transactions, including locking, is also an area in

which we plan to work in the future.

References

[1] T. Ahmed and A. R. Tripathi. Static verification of security

requirements in role based cscw systems. In SACMAT, pages

196–203, 2003.

[2] P. A. Bernstein, D. W. Shipman, and W. S. Wong. Formal

aspects of serializability in database concurrency control.

IEEE Trans. Software Eng., 5(3):203–216, 1979.

[3] E. M. Clarke. Model checking. Lecture notes in Computer

Science, 1346:54–56, 1997.

[4] E. M. Clarke, O. Grumberg, and D. E. Long. Model check-

ing and abstraction. ACM Trans. Program. Lang. Syst.,

16(5):1512–1542, 1994.

[5] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The

notions of consistency and predicate locks in a database sys-

tem. Commun. ACM, 19(11):624–633, 1976.

[6] N. Goodman and O. Shmueli. Syntactic characterization of

tree database schemas. J. ACM, 30(4):767–786, 1983.

[7] G. J. Holzmann. The model checker spin. IEEE Trans. Soft-

ware Eng., 23(5):279–295, 1997.

[8] Z. M. Kedem and A. Silberschatz. Locking protocols: From

exclusive to shared locks. J. ACM, 30(4):787–804, 1983.

[9] W. H. Kohler. A survey of techniques for synchronization

and recovery in decentralized computer systems. ACM Com-

put. Surv., 13(2):149–183, 1981.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.

Youman. Role-based access control models. IEEE Com-

puter, 29(2):38–47, 1996.

[11] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn. The nist

model for role-based access control: towards a unified stan-

dard. In ACM Workshop on Role-Based Access Control,

pages 47–63, 2000.

[12] A. Schaad, V. Lotz, and K. Sohr. A model-checking ap-

proach to analysing organisational controls in a loan origi-

nation process. In SACMAT, pages 139–149, 2006.

[13] T. Sheard and D. Stemple. Automatic verification of

database transaction safety. ACM Trans. Database Syst.,

14(3):322–368, 1989.

[14] A. Silberschatz and Z. M. Kedem. A family of locking pro-

tocols for database systems that are modeled by directed

graphs. IEEE Trans. Software Eng., 8(6):558–562, 1982.

[15] M. Yannakakis. Serializability by locking. J. ACM,

31(2):227–244, 1984.

[16] M. Yannakakis, C. H. Papadimitriou, and H. T. Kung. Lock-

ing policies: Safety and freedom from deadlock. In FOCS,

pages 286–297, 1979.

[17] N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access

control policies through model checking. In ISC, pages 446–

460, 2005.


