
CERIAS Tech Report 2006-54

Succinct Representation of Flexible and Privacy-Preserving Access Rights

by Marina Blanton, Mikhail Atallah

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

International Journal on Very Large Data Bases manuscript No.
(will be inserted by the editor)

Succinct Representation of Flexible and

Privacy-Preserving Access Rights⋆

Marina Blanton, Mikhail Atallah

Department of Computer Science
Purdue University
West Lafayette, IN 47907
e-mail: {mbykova,mja}@cs.purdue.edu

The date of receipt and acceptance will be inserted by the editor

Abstract We explore the problem of portable and flexible privacy pre-
serving access rights that permit access to a large collection of digital goods.
Privacy-preserving access control means that the service provider can nei-
ther learn what access rights a customer has nor link a request to access an
item to a particular customer, thus maintaining privacy of both customer
activity and customer access rights. Flexible access rights allow a customer
to choose a subset of items or groups of items from the repository, obtain
access to and be charged only for the items selected. And portability of ac-
cess rights means that the rights themselves can be stored on small devices
of limited storage space and computational capabilities such as smartcards
or sensors, and therefore the rights must be enforced using the limited re-
sources available.

In this paper, we present and compare two schemes that address the
problem of such access rights. We show that much can be achieved if one
allows for even a negligible amount of false positives — items that were
not requested by the customer, but inadvertently were included in the cus-
tomer access right representation due to constrained space resources. But
minimizing false positives is one of many other desiderata that include pro-
tection against sharing of false positives information by unscrupulous users,
providing the users with transaction untraceability and unlinkability, and
forward compatibility of the scheme. Our first scheme does not place any

⋆ Portions of this work were supported by Grants IIS-0325345, IIS-0219560,
IIS-0312357, and IIS-0242421 from the National Science Foundation, Contract
N00014-02-1-0364 from the Office of Naval Research, by sponsors of the Center
for Education and Research in Information Assurance and Security, and by Purdue
Discovery Park’s e-enterprise Center.
Parts of this work appeared in the proceedings of ESORICS 2004 and SACMAT
2005.

2 M. Blanton, M. Atallah

constraints on the amount of space available on the limited-capacity storage
device, and searches for the best representation that meets the requirements.
The second scheme, on the other hand, has (modest) requirements on the
storage space available, but guarantees a low rate of false positives: With
O(mc) storage space available on the smartcard (where m is the number of
items or groups of items included in the subscription and c is a selectable
parameter), it achieves a rate of false positives of m−c.

Key words Compact representation – privacy-preserving access rights –
flexible access rights

1 Introduction

The focus of this work is on the specification of access rights that permit
privacy-preserving access to a large collection of digital goods (e.g., articles,
books, magazines, multimedia objects, or any other type of digital data
items). With a large number of subscription-based services available today,
customers would be more willing to use such services if we could guarantee
that access to the digital goods is anonymous and their preferences and
access patterns cannot be tracked. That is, if customers can purchase their
subscription anonymously (either by authenticating using an anonymous
authentication scheme, or by purchasing the card anonymously from a pub-
lic bookstore or cyber-café) and further interaction with the server does not
reveal customer or card-specific information while still allowing access to
the authorized set of digital goods, then customer privacy is guaranteed.

1.1 Motivation

During the confirmation hearings of a nominee for the U.S. Supreme Court
back in 1988, the issue of which movies he had rented came forth. The
records of which movies he had actually rented, had been obtained by a
local Washington newspaper from a video rental store, by simply asking the
store for them. Today the Video Privacy Protection Act (18 U.S.C. 2710)
prevents video stores from releasing such information without the customer’s
written consent, but it is nevertheless all too easy for such records to be re-
leased nevertheless, either inadvertently or through a break-in, spy-ware,
insider misbehavior (rogue employees), social engineering, etc. Moreover,
the video-privacy bill is specifically about movie rentals (it does not cover,
e.g., magazine and other subscriptions). The problem is exacerbated in the
online word, as it is then possible for a server to determine not only which
material the customer accessed, but also how many times, when, for how
long each time, etc. For example, a customer who accesses much material
about a disease runs the risk of an inference being made about her hav-
ing that disease (or having a lifestyle that puts her at risk for it). Some
recent encryption-based digital-rights management technologies not only

Succinct Representation of Flexible Privacy-Preserving Access Rights 3

reveal which encrypted material was downloaded, but also the exact times
at which the user chose to view the downloaded material (as each viewing
requires that the server sends a key to the client-end viewing software that
is entrusted by the content-owners with decrypting/displaying the material
and then destroying the key). These technologies are used for such purposes
as protecting the revenue-streams of content-owners against piracy, allow-
ing corporations to enforce policies on documents and emails without fear of
employee non-compliance (e.g., to remotely shred an old document or email,
the server simply deletes the key associated with it, and the employees’ hard
drives are left with unusable encrypted material). Many of the technologies
that have been deployed, or are under development, have chilling privacy
implications. Even as they have such large potential for damage to privacy,
these techniques have largely failed to prevent piracy, as they are typically
defeatable by a determined attacker. This is why hardware-based digital
rights management techniques are being deployed (they are much harder
for an attacker to crack than purely software-based ones) even though they
could enable more stealthy ways for software publishers to spy on users, to
know what is on a user’s computer, to control what the user can and cannot
execute, view, connect to the computer, print, etc. Although our schemes
use tamper-resistant cards, they do not harm user privacy because at no
time does a card “know” who the customer is.

The customer and regulator complaints (including lawsuits) filed against
a major clickstream-information collecting company, alleging what amounts
to cyber-spying, is but one example illustrating people’s sensitivity when it
comes to the tracking of their online activities (even for apparently innocu-
ous marketing purposes). These fears may be well justified, because history
is full of examples where information collected for a benevolent purpose
was subsequently used for nefarious purposes (even prior to the cyber-age,
e.g., the Dutch government records that listed their citizens’ religion were
subsequently used by the Nazis for a horrendous purpose). The misuse need
not come from the data-collecting entity: The data may simply fall in the
wrong hands through a security breach – the last few years have seen an
avalanche of security breaches in which private information was seriously
compromised.

In view of the above, a customer’s trust that the data collectors will
not misuse the data is only a first line of defense (and a rather flimsy one,
based on the evidence). Privacy-conscious customers who find appealing a
“defense in depth” that protects them from such possible mis-haps, can take
steps to avoid revealing their identity to the server by, e.g., obtaining access
through anonymizing proxies, or simply from a cyber-café. This, however,
does not work well in the context of a for-pay access to online material, that
typically requires the server to learn the identity of the subscriber through
(e.g.) the entry of a login and password tied to the subscriber’s real identity
through the subscription information (typically including the name, email
address, and credit-card payment information). The need exists for schemes,
such as presented in this paper, that support for-pay subscriptions without

4 M. Blanton, M. Atallah

compromising subscriber privacy, yet while preserving the content-owner’s
rights.

1.2 The framework

As the number and the level of maturity of services that offer access to
digital goods grow, the level of flexibility of such systems will also grow. To
make access as convenient to the customers as possible, such systems might
allow customers to subscribe to items of their choice with fine granularity,
and not limit their choice to a small number of predefined subscription types.
In the most flexible setting, the system allows each customer to select a set
of objects to which they wish to have access and correspondingly pay for.
Depending on the structure of the data repository, a customer may be able
to select individual items or groups of items based on their type, topic, or
another classification scheme. The customer then receives an access policy
configuration that is unique to her subscription request.

With this model in place, the service provider can no longer store a com-
plete description of customer access rights at his end, because if he did, it
would violate privacy requirements. A solution is to store access rights at the
customer end using tamper-resistant devices such as smartcards. The main
challenge is then to design a scheme that would permit the customer to ac-
cess the goods to which they have subscribed and at the same time preserve
their anonymity by making their transactions untraceable and unlinkable1.

Since customer policy configuration is stored on weak devices such as
smartcards, such devices are normally limited in their computational power
and storage space, especially if their cost must be kept low (which is the
case, for instance, with short-term orders and/or disposable cards). Limited
resources, however, conflict with our intent to provide flexible access to the
items of customer choice, if the size of the data collection is very large.
There is therefore a need for techniques that permit succinct representation
of customer rights and avoid the use of expensive computations.

If a card that stores a customer’s subscription set does not have enough
capacity to store at least one bit per item in the (potentially huge) data
repository, then it becomes impossible for it to exactly represent all possi-
ble subsets of the repository items. Thus, some items or subset of items will
have to share the same configuration and introduce “false positives” into the
scheme — a false positive is an item that was not listed in the subscription,
but which the customer is permitted to access. This model is acceptable if
the probability of a false positive (PFP) is small enough. A major goal is
then to design a scheme for computationally efficient access control enforce-
ment under space constraints that minimizes the number of false positives

1 It is a consideration that privacy may be lost, if a dishonest customer attempts
to misuse the system by, for instance, breaking the card and distributing its con-
tents to a large number of people, but for honest subscribers access will always
be anonymous.

Succinct Representation of Flexible Privacy-Preserving Access Rights 5

implicit to each card. Of course, false negatives are not tolerated: a customer
who has paid to subscribe to an item must always be granted access to that
item. Minimizing false positives is not the only requirement: others include
protection against sharing of false positives information by unscrupulous
users, providing the users with transaction untraceability and unlinkability,
and forward compatibility of the scheme; these, and other design goals, are
stated in more detail later in the paper.

1.3 Counter-indications

Our schemes are suitable for the realm of digital-rights management, in
situations where a false-positive access to a document or a music is toler-
able if it has a reasonably low probability of occurrence and the negative
consequences would be tolerable if it were to occur. Both conditions are
important because, even when the probability (call it p) of a false positive
is reasonably low, if the damage (call it d) from a false positive is large
enough, the expected damage p ∗ d may be unacceptably high in some situ-
ations. In view of the above, the schemes described in this paper should not
be used in situations where a false positive has a catastrophic consequence,
such as unauthorized access to a patient’s medical records, or the software
that controls a power plant’s machinery.

But even when the probability of false positives is close to zero, and/or
when the apparent and measurable damage from such a false positive is
zero, there are situations where privacy-preserving techniques are not rec-
ommended (any of them, not just the ones we propose). These are situations
where even legitimate (not just false positive) accesses could be a cause for
concern if they follow certain patterns or are done by certain individuals.
Specifically, privacy-preserving techniques are not appropriate if the legiti-
mately accessed material is of such a nature as to inherently require moni-
toring or auditing by law-enforcement agencies. For example, if the on-line
material is restricted-access because of its possible use to evil-doers intent on
acts of violence, financial fraud, or disruption, then an audit trail of which
authorized individuals accessed it (and when they accessed it) is needed
by law-enforcement agencies to determined (e.g.) who “leaked it out” in
an unauthorized fashion. The use of privacy-preserving techniques becomes
obviously problematic in such a framework, as it would serve to protect the
culprit. The framework we have in mind for our schemes is therefore more
one involving commercially valuable but innocuous content, such as music,
movies, e-books, databases of past sports events and data, historical trading
transactions (stocks, bonds, commodities), and other specialized databases
that are unlikely to be of use to criminal elements.

1.4 Our contributions

Our contributions are as follows: we give two solutions that address the
problem of flexible and privacy-preserving access rights. Our first solution

6 M. Blanton, M. Atallah

utilizes random permutations and does not place any constraints on the
amount of storage space that should be available on the smartcard. In-
stead, it searches for the best solution that meets the space requirements
and satisfies the service provider. The second solution is based on the use of
minimal perfect hash functions (MPHF), and differs from the previous solu-
tion in that it is guaranteed to result in a low rate of false positives for any
subscription order, but uses storage space proportional to the subscription
size. More precisely, given a smartcard with O(mc) storage space, where m
is the number of items or groups of items included in the subscription and
c is an arbitrary parameter, this scheme achieves the rate of false positives
m−c. For both schemes, we provide solutions for (i) “flat” data repositories,
where the collection of documents is not organized into a data structure;
and (ii) hierarchically structured collections of data items such as trees.

1.5 Organization of the paper

The rest of this document is organized as follows: In section 2, we review
prior related literature. Section 3 gives a more precise problem description
and lists design goals. In section 4, we describe our first, permutation-based
approach for both unstructured and structured data repositories and pro-
vide its analysis. In section 5, we give the second, minimal perfect hash
function based approach, its analysis, and extensions. Section 6 compares
the schemes and concludes the paper.

2 Related Work

Work conducted on XML explores the problem of access control for online
data repositories, which includes securing access to XML documents and
using XML as a tool for specifying security policies (see, e.g., [6–8,18,19]).
Bertino et al. [5] use binary strings to represent both customer policy con-
figurations and document policies, but they allocate one bit per policy on
the assumption that there will be a limited number of different subscription
types. Thus, their approach becomes inefficient as the data repository grows
in size and each customer chooses a customized document subscription set.
The topic of digital libraries is also related to this work, but literature on
digital libraries usually does not address access control.

The idea of achieving space efficiency at the cost of a small probability
of false positives was introduced in Bloom [9]. Bloom filters support ap-
proximate membership queries and are widely used in a broad spectrum
of applications ([12,20,27], to name a few). Such data structures achieves a
better space utilization than simple hash representation, but the filter length
(which in our case corresponds to the card capacity) still should be larger
than the total number of items in the set to result in a reasonable perfor-
mance. This is not suitable for cards of small capacity, and even customized
Bloom filters do not appear to provide acceptable results.

Succinct Representation of Flexible Privacy-Preserving Access Rights 7

Other techniques for concise representation of portable access rights were
used in the context of software license management [4,1]. These solutions,
however, do not apply to our problem, mainly because we cannot afford to
avail ourselves of resources external to the card (as was the case in [4,1]).
The more recent work in [13], on the other hand, considers the same prob-
lem of portable and flexible access rights for large data repositories. In [13],
the authors consider static policy assignment to all repository documents,
which makes addition of new items problematic without performing peri-
odic policy updates (after which all smartcards must be refreshed) and also
makes it possible for dishonest users to share and use information about
false positives.

Some of our solutions use minimal perfect hash functions (MPHF) as
their underlying building blocks. MPHFs have received significant attention,
and a number of algorithms can be found in [23,22,17,21]. There are MPHFs
and order-preserving MPHFs (OPMPHFs) that for random m strings take
the total of O(m) bits to store the functions (and this is also the lower
bound). See [23,21] for more detail.

Work on unlinkability and untraceability was started by Chaum [16]
and received significant attention in recent years. In particular, work on
unlinkability includes anonymous group authentication ([2,11,15,24–26,28–
30] and others) and unlinkable serial transactions [31] for subscription-based
services. Prior work, however, does not account for the fact that descriptions
of access rights (or service types) may be long and required to be portable,
while we describe schemes that combine compact policy representation with
transaction unlinkability.

3 Problem Specification

3.1 General model

The general model used in our work is depicted in Figure 1 and consists
of two stages. During the initialization stage — which can take place in
a bookstore, at a public library, or at home — a customer chooses items
of his choice, pays for the items selected, and receives a customized card
that subsequently permits access to these items. During the card usage
stage — which can likewise be done from a home computer, library, etc. —
the customer can request access to any items from the repository. If the
card permits access, it uses the built-in anonymous authentication protocol
to prove its authenticity to the server and then obtains the item from the
server.

Here, by “server” we do not necessarily mean a remote server. Instead,
it could be a local (trusted) content player at the client end or any other
mechanism used by the content owners to enforce their policies. In that case,
the encrypted content is already stored at the client’s end and the server
grants access by decrypting and then displaying it. Therefore the model
does not necessarily assume network connectivity for data access.

8 M. Blanton, M. Atallah

Initialization

1. Customer chooses m items for purchasing.

2. Server processes the order and creates a card.

3. Customer pays and receives the card.

Operation

Card Server

1. Receives from the user a re-
quest to access item i

2. Checks if access can be
granted

3. Anonymously authenticates
to the server and requests
item i on behalf of the user

−→ Verifies authentication
credentials

4. ←− Sends item i to the requester

Fig. 1 General model of operation.

Throughout this paper, we assume that a card is authentic and can
anonymously and at low computational cost authenticate itself to the server.
A number of solutions that range from trivial secret key schemes to more
complex and provably secure schemes (e.g., [2,25]) can be used to achieve
this goal. Card unforgeability is achieved through other, standard techniques
described in prior literature and is out of scope of this work.

As an example of a provably secure scheme that allows users to anony-
mously access the service, we show how group signatures (e.g., [2,3,10,14])
can be used to achieve this goal. A group signature is a cryptographic con-
struction that allows a member of the group to sign messages anonymously
on behalf of the group. In case of a dispute, however, the identity of the
originator of such a signature can be revealed by a designated authority
(called group manager). The interactive version of group signatures (what
is needed here) is called identity escrow, and each group signature scheme
can be used in the interactive mode. In such schemes, there is a protocol
that allows a user to join the group and become its member (which in our
case will be done at the subscription time). As a result, user credentials
for the group signature scheme and her access rights that permit access to
the documents in the repository will be written on a card. Then every time
a user wants to access an item at the server, she will first anonymously
authenticate to the server using her group signature credentials and then
invoke her access rights to obtain access to the document of her interest.

3.2 Notation

In the rest of this paper we use the following notation: the data repository
contains n items numbered 1 through n. A customer can request access to

Succinct Representation of Flexible Privacy-Preserving Access Rights 9

(and accordingly pay for) m items, 1 ≤ m ≤ n. Access rights are stored on
a card of limited capacity of k bits, where k < n and k < m log n.2

We use the term order to refer to a subscription order of m documents
for which the customer pays and receives a card that permits access to
those documents. We use the term request to refer to a request to access
a document by a customer who already possesses a card and wishes to
view a document. A customer subscription order of m items is denoted as
{i1, . . ., im}, where ij uniquely identifies a single document in the repository
and 1 ≤ i1 < . . . < im ≤ n.

3.3 Design goals

The design goals that we require any solution to have are as follows:

Low rate of false positives. The probability (or rate) of a false positive
(PFP) — the probability that a random document not in the set of
m subscription documents is among the documents to which access is
authorized — is the main evaluation criterion of any approach, and the
goal of this work is to minimize such a PFP. The PFP obviously depends
on the storage space available on the card.

Transaction untraceability and unlinkability. For customer privacy, we
require that after a customer buys an access card and uses it to retrieve
an item from the repository, it is not possible to use the data sent in the
request to tell with probability significantly greater than a random guess
which customer is making this request. Similarly for transaction unlink-
ability, we require that given two access requests it is not possible to
tell with probability significantly greater than a random guess whether
these two requests originated with the same user.

Unique policy representation (“no sharing of false positives”). It is
also a design requirement that every policy representation stored on
a card is unique. More precisely, given two subscription requests that
contain identical sets S1 and S2 of items to be purchased, their repre-
sentations stored on access cards C1 and C2 will be different and the
false positives implicit to each card will also be different. We require
this property in order to eliminate the possibility of sharing information
about false positives by dishonest customers. When this is not the case
and a fixed set of items triggers the same set of false positives, dishonest
users might share this information through public channels such as the
Internet, making the scheme unusable for the data provider.
Note that this will prevent sharing of information about false positives,
but not all possible forms of information sharing. That is, content shar-
ing by dishonest users is always possible regardless of an access control
mechanism used. Our goal here is to prevent sharing of information

2 If k ≥ m log n then the card can explicitly store the m items. So we henceforth
assume that k is less than m log n, i.e., that space on the card is tight.

10 M. Blanton, M. Atallah

about access rights and, more importantly, information about illegiti-
mate access rights that the user should not possess. Access rights infor-
mation is much more convenient to share than voluminous contents.

No additional sources of information. The schemes we design are for
online data repositories that, using a card, can be accessed from a num-
ber of places such as terminals at public libraries, bookstores, home
workstations, and other places. Therefore, if a scheme were to require
some additional information to be stored on external storage, in our sce-
nario there is no reasonable place at which such information could be
stored (and, as was mentioned above, no user information can be stored
at the server itself by the untraceability requirement). Thus, the access
card itself should contain all information necessary to perform access
verification.

Fast access verification, fast card generation time. These parameters
also serve as evaluation criteria of each scheme, and in general we re-
quire card generation time to be bounded by a low-degree polynomial in
n or, preferably, by a polynomial in m. Access verification time should
be bounded by O(k), where k is the space available on the card, because
each card is assumed to be a computationally weak device.

Forward compatibility. In any proposed solution, if a card is created at
time t1 when the data repository contained n1 documents, it also should
stay operational at time t2 > t1 when the data repository contains n2 >
n1 documents. In other words, the scheme should remain operational as
new documents are added to the data repository.

Another important feature of a scheme that produces access right repre-
sentations is Support for dynamic changes to the repository. Namely,
every time changes to the data repository happen, previously issued cards
with user access rights remain functional on the modified version of the data
repository. Note that the forward compatibility requirement above partially
covers this feature, but, for instance, deletions from the repository are not
addressed. Other changes to the repository include restructuring of the items
currently present in the repository. This, however, is applicable only to struc-
tured data collections such as, e.g., hierarchies and can be handled solely
using support for additions and deletions. In our design requirements we
do not strictly require support for document deletions from the repository,
because the scheme can be used regardless of availability of this feature.
That is, if deletions are not handled automatically, the repository can be
periodically “cleaned” (e.g., once a year), removing unwanted documents
all at once. We, however, analyze our solution with respect to such support
and show how dynamic changes can be handled in each of the schemes. It
is also worth mentioning here that a document cannot be removed from the
data repository while there is at least one customer with valid access rights
to that document (i.e., documents are not likely to be removed often).

Note that the above requirements make our problem very different from
mere data compression. Another difference from data compression is that
here each representation on the card must be usable “as is” without un-

Succinct Representation of Flexible Privacy-Preserving Access Rights 11

compressing it first: There is no room in the card for decompression, and
using server memory for decompression would reveal enough about the card
to make profiling of the card’s usage patterns possible (recall that contents
of two cards are different even if both of them contain the same subscrip-
tion set. They are in some sense an implicit ID for the card and should
therefore not be revealed to the server). Client memory is not suitable for
decompression either because it cannot be trusted.

4 Permutation-based Approach

In this section we present our first solution. We first describe our approach to
an unstructured collection of documents and provide its analysis. Structured
collections of documents are addressed in section 4.7.

Recall that the card’s capacity is k bits. In the rest of this section we
assume that those k bits are divided into ℓ slots of log n bits each and
therefore the card’s capacity is k = O(ℓ log n).

Our solution consists of generating random permutations of the docu-
ments included in an order until they are clustered in such a way that the
cost (in terms of false positives) of storing the permuted documents on a
smart card is below a certain threshold (defined later). After generating a
permutation of the documents, we run an evaluation algorithm to compute
the cost of the optimal solution for that particular set of permuted docu-
ments. If the cost is acceptable, the algorithm terminates and the solution is
written to the card; otherwise, a new permutation is generated and tested.
The information written on the card includes data that can be used to re-
produce the permutation, as well as a number of document intervals that
indicate access to which documents should be granted. The intervals include
all documents from the subscription order and as few additional documents
as possible.

Consider an oversimplified example where the repository has the size of
20, our card can store 2 intervals, and we receive a customer subscription
order for documents 1, 5, 7, 9, 13, and 19. Suppose that after permuting
the documents we obtain set {2, 3, 4, 15, 16, 18}, so the best option in this
case is to use intervals 2–4 and 15–18 for storing the set on the card. The
cost of a solution is computed as the number of false positives, and in this
case the cost of the permutation is equal to 1.

Both the random permutation seed and the document intervals are sub-
ject to the card’s storage constraints. Since the smartcard’s capacity is
O(ℓ log n), we can use it to store O(ℓ) numbers within the range {1, . . ., n},
or ℓ intervals. The permutation seed can also be up to O(ℓ log n) bits long.

Every interval included in a solution can be either positive, i.e., specifies
a range of documents to which access should be granted, or negative, i.e.,
specifies a range of documents to which access should be denied. In the case
of unstructured data (i.e., where the data repository is a mere collection of
numbered items, not organized into a hierarchy or any other type of data

12 M. Blanton, M. Atallah

structure), negative ranges do not improve the result by decreasing the cost
of a solution, as the lemma below shows (we, however, show later that they
are necessary for structured data).

Lemma 1 For unstructured data, for every solution of cost C expressed us-
ing both positive and negative ranges there is a solution of cost C′ expressed
using only positive ranges, such that C′ ≤ C.

Proof See Appendix A.

We first present an algorithm for producing a suitable encoding to be placed
on a card (section 4.1). This is a high level algorithm that tries different
solutions until the conditions corresponding to the policies are satisfied. It
uses two additional algorithms as its subroutines: an algorithm to produce
a permutation (section 4.3) and a linear-time algorithm to compute a cost
of a permutation (given in section 4.2). We give asymptotic bounds of our
solution and also discuss possibilities for generating a random permutation.
Later in this section we explore this approach in terms of its economic
feasibility (section 4.5), and also provide an extension that covers structured
data (section 4.7).

4.1 Algorithm for producing a solution

To find a suitable encoding for a customer order, we might have to try
numerous permutations of n elements until one that satisfied certain criteria
is found. These criteria can be expressed in terms of the cost of a solution
(e.g., the number of false positives for the permutation produced falls below
a certain threshold), in terms of a time interval during which a solution
should be computed, or some other requirements. These rules are examined
in more detail in section 4.5.

The algorithm we provide below takes a subscription order of m doc-
uments and a set of rules τ that tell the algorithm to stop when they are
satisfied. It runs until a suitable solution is found and returns an encoding
to be stored on a smartcard, which consists of a permutation seed s and ℓ
intervals that optimally represent the documents {i1, . . ., im}.

Input: The repository size n, a customer order of m documents {i1, . . ., im},
and a set of stopping criteria τ = {τ1, . . ., τt}.

Output: A seed s for generating a permutation and ℓ intervals to be stored
on the smartcard.

Algorithm 1:

1. Seed the permutation algorithm with a random number s.
2. Permute the m documents to get pj = πs(ij) for each document ij ∈

{i1, . . ., im}.
3. Sort the pi’s (O(m log(m)) time).

Succinct Representation of Flexible Privacy-Preserving Access Rights 13

4. Run the evaluation algorithm to find the cost of the permutation (O(m)
time, per section 4.2).

5. Apply the evaluation rules τ to the result: if a sufficient subset τ ′ ⊆ τ
of them, 1 ≤ |τ ′| ≤ t, is satisfied, output the solution. Otherwise, go to
step (1).

The asymptotic bound of a single run of this algorithm depends on the
choice of the permutation function (discussed in section 4.3). The total
running time of the algorithm depends on the evaluation criteria and cannot
be expressed as a function of the input parameters in the general case. The
upper bound of the algorithm is O(nℓ) loop invocations, but typical values
are lower. This time is constrained by the space available for storing a
random seed s: there are O(2ℓ·log n) = O(nℓ) possible seed values that can
be stored on the card.

4.2 Algorithm for computing the cost of a permutation

The algorithm given in this section corresponds to step 4 of Algorithm 1.
As the input, it expects a set of m distinct permuted documents sorted in
increasing order p = {p1, . . ., pm} and computes ℓ disjoint intervals of the
minimal cost that include all of the pi’s and as few other documents as pos-
sible. Our algorithm works by computing distances between the documents
in the set p and excluding the largest ℓ− 1 of them, so that the overall cost
of the covering is minimized.

Input: The repository size n and a sorted set of m elements p = {p1, . . ., pm}.

Output: ℓ disjoint intervals that contain all of the pi’s and as few other
elements as possible.

Algorithm 2:

1. Let x be the value of p1, y the value of pm. Compute c1, . . . , cm−1,
where ci is the number of documents between the elements pi and pi+1

not including either pi or pi+1. That is, ci = pi+1 − pi − 1.
2. In O(m) time select a (ℓ−1)th largest among c1, . . . , cm−1 (say it is cj).
3. In O(m) time go through c1, . . . , cm−1 and choose ℓ− 2 entries that are

≥ cj . Those entries and cj correspond to the ℓ − 1 “gaps” between the
optimal k intervals, i.e., they define the optimal ℓ intervals.

Note that the “cost” of the solution is C = c1 + ... + cm−1− (sum of the
largest ℓ−1 ci’s), which also proves the correctness of the algorithm because
c1 + . . .+cm−1 is the number of documents between positions x and y other
than the elements of p, and the best that can be done is by “excluding” the
large ci’s from the chosen intervals. It is also clear that the algorithm runs
in O(m) time, since every step (1)–(3) runs in O(m) time.

The actual monetary damage caused by the false positives might not
be linear in the number of false positives, but instead could be some other
(possibly arbitrary) function specified by the service provider. In this case,

14 M. Blanton, M. Atallah

however, the algorithm will still produce correct results, and the cost func-
tion itself can be incorporated into the set of stopping rules τ , as we explain
in section 4.5.

4.3 Algorithms for producing a permutation

There are several well-known methods for computing random permutations.
Any method that has the following properties should be suitable for our
approach:

– The permutation can be specified by a seed, i.e., given a seed value, the
permutation could be reproduced from it. Recall that the set of storable
seeds does not “access” all possible permutations of n elements, but only
a random subset of O(nℓ) of these permutations3. This turns out to be
enough in practical situations (see discussion in section 4.5).

– The algorithm allows concurrent computing of a mapping for a single
element. It is then not necessary to compute the permutation mappings
for O(n) documents of the data collection at the access verification time
just to obtain one of them that we are interested in. We can also directly
compute the mappings for the m documents included in the order during
card creation time without having to generate all of the n mappings.

As one example of a permutation satisfying there requirements, consider the
case when n′ = n + 1 is prime, g is a generator for that prime, and a per-
mutation seed is specified as an integer x, 1 ≤ x ≤ n′ − 1. The permutation
consists of any integer i, 1 ≤ i ≤ n′ − 1, mapping into πx(i) = x · gi mod n′.
It can easily be seen that the mapping π so defined is a permutation (i.e.,
there are no collisions). Of course, the use of x as a seed means that only n
of the possible permutations of the n elements are “accessible”. To extend
the reachability of the seed from only n permutations to the full nℓ allowed
by the available O(ℓ log n) bits of storage, we would simply store as a seed
ℓ distinct (rather than a single) such x values x1, . . . , xℓ. Each xj defines a
permutation πxj

in the manner described above: for the jth such permuta-
tion, i maps into πxj

(i) = xj · g
i mod n′. The entire permutation described

by this seed of length ℓ logn bits is then the functional composition of the
permutations πx1

, πx2
, . . . , πxℓ

(in that order). There are nℓ possible choices
for this permutation, as required.

In fact, any encryption function whose range and domain are [1, n], and
whose key space is [1, nℓ], could be used for our purpose of permuting. That
is, if x is the seed, then πx(i) is simply the encryption of i using x as key.
The fact that n is too small for cryptographic security is not an issue here,
because we are using encryption not to hide but rather to permute.

3 In cases where a sequence of random numbers is needed by the permutation
algorithm, the seed can be used to initialize a pseudo-random number generator.

Succinct Representation of Flexible Privacy-Preserving Access Rights 15

4.4 Card operation

The algorithms presented above describe card generation, but they imply
a corresponding operational use of the card, which we sketch here. We as-
sume that the card is tamper-resistant, so that the unforgeability constraint
is satisfied; techniques for achieving tamper-resistance can be found in the
literature and are beyond the scope of this paper. Also, the card must
anonymously authenticate itself to the server using a low-computation au-
thentication suitable for smartcards. Policy enforcement is performed using
the policy encoding placed on a card as follows. Given a document index i
access to which is being requested from the server, and a card that stores
a permutation seed s and ℓ intervals, the verification process takes the fol-
lowing steps:

– The card computes a permuted value of i as pi = πs(i).
– The card searches its ℓ intervals for pi to determine whether pi is covered

by one of them. Since we can sort all intervals before storing them on
the card, this step can be done in O(log ℓ) time using binary search.

– If pi is covered by one of the ℓ intervals, the card requests the document
i from the server. Otherwise, it notifies the user about access denial.

One can see from the above that the untraceability and unlinkability con-
straints of our design (goals of section 3.3) are satisfied: Each card anony-
mously authenticates itself and does not send any information to the server
that might happen to be unique and used to link two transactions together.
The card also does not require any additional sources of information to
enforce proper access control and uses an efficient method for such enforce-
ment, as required.

4.5 Economic analysis

This section analyzes the practicality of the scheme described above. We
explore the possibility of using the scheme under different settings, and
examine what policies a service provider might specify in order to use the
model as efficiently as possible. We also make the “stopping criteria” that
govern permutation selection process more precise.

4.5.1 Values of interest As input, we are given the size of the data repos-
itory n and the number of documents in a customer order m4. Other pa-
rameters of use for determining what an acceptable cost is are:

4 In reality, we have the entire order {i1, . . ., im} as an input parameter. For
simplicity of presentation, we assume that the cost of each document is the same,
and m can be treated as a sufficient representation of the set. Similar analysis
can be carried out when document prices differ from one to another. Then each
derived value that takes m as a parameter can be computed as a function of the
set {ii, . . ., im} itself.

16 M. Blanton, M. Atallah

ccard(m) – the price a customer pays for an order of m documents, which
can be a possibly arbitrary function of the documents that comprise the
order.

t(m) – the maximum number of requests to documents access to which was
denied. Each card can count the number of attempts to view documents
that were denied. When a customer requests a document not bound to
the card, not only is the access denied, but also the permitted limit of
unsuccessful requests is decremented. After t such attempts, the count
reaches zero and the card is self-invalidated (i.e., the policy here is “t
strikes and you are out”). This is to prevent customers from probing
their cards for false positives, e.g., by trying all documents in the data
repository. With this mechanism in place, each customer should be in-
formed about t at the time of purchasing the card and should be given
an explicit list of the documents included in his order.

m′(n, m) – the number of documents that come for free with a card (i.e., the
“false positives”). This value is computed as a by-product of Algorithm
2, and implicitly reflects the card’s capacity ℓ.

n′(n, m) – the number of documents in which an attacker is interested
(other than the m he ordered). This value is useful in measuring the at-
tacker’s economic gain in case of discovering free accesses to documents.
In the worst case, any free document can be valuable to the attacker. In
the best case, the attacker has zero interest in anything outside the m
documents she ordered.

4.5.2 Policy alternatives Each service provider deploying this approach
might have one or more varying criteria that define an acceptable “false
positives” cost of a card. Below we list policies that can be used during card
generation to govern execution of Algorithm 1:

1. Threshold for the number of false positives m′ that a card con-
tains. This policy might dictate that the absolute value of the num-
ber itself is constrained (e.g., f(m′) ≤ m′

max), or its ratio to the num-
ber of documents in the repository or to the number of documents in

the order is constrained by some threshold (e.g., f
(

g(m′)
h(n)

)

≤ m′

max or

f
(

g(m′)
h(m)

)

≤ m′

max, where f(x), g(x) and h(x) are arbitrary functions of

argument x). We may consider a policy that lists several conditions but
requires satisfying a subset of them.

2. Constraints on the gain from cheating. In this type of policies, we
perform analysis of cheating in terms of the attacker’s loss vs. his gain
after attempting to access t′ out of the n − m documents not included
in his order. Suppose that t′ > t. The expected gain from the attack in
this case is the difference between the cost of the documents acquired for
free from the list of n′ documents of interest, and the cost of losing the
card due to this behavior. The gain is then computed as the probability
of successfully getting a free access to a document multiplied by the

Succinct Representation of Flexible Privacy-Preserving Access Rights 17

document cost, while the loss is computed as the probability of losing
the card multiplied by the cost of the card:

E(gain) ≃ t′·
c(m′)

n − m
·

n′

n − m
−ccard·Q ≃

t′c(m′)n′

(n − m)2
−ccard

t′
∑

t′′=t

(

t′

t′′

)

qt′′pt′−t′′

where c(m′) is the cost of having access to m′ documents computed ac-

cording to some pricing function. Here p = m′

n−m
specifies the probability

of not being caught, while q = 1 − p is the probability of begin caught.
Similarly, we can compute the expected gain when the number of unau-
thorized attempts is kept below the maximum, i.e., t′ ≤ t. In this case,
the expected gain is computed based on the probability of getting free
access, and there is no loss for the attacker:

E(gain) ≃ t′ ·
c(m′)

n − m
·

n′

n − m
(1)

In the worst-case scenario, the attacker might be interested in and benefit
from any document acquired for free, i.e., n′ = n − m, and we can also
assume that t′ ≃ t, to maximize the gain. Then equation (1) becomes:

E(gain) ≃ t ·
c(m′)

n − m

To keep the attacker’s gain low, we might constrain this value by some
threshold. Equation (2) gives such a constraint where the coefficient α
plays the role of a threshold value that keeps the card’s loss within a
specified bound.

t · c(m′)

n − m
≤ α · ccard (2)

3. Constraint on certain items being among the false positives.
The previous constraints take into account only the total number of
false positives without distinguishing them, and do not account for the
fact that the repository might contain a number of generally popular
items. Thus, another constraint might be to lower the value of false
positives for a customer by excluding such valuable items from the false
positives. We refer to such items in high demand as “hot” items, and for
each customer they can be either system-wide (the same for everyone),
card-specific (based on the subscription order at card-creation time), or
both.
Note that, from the privacy point of view, it is acceptable for the data
owner to determine the hot items for a card based on the card’s subscrip-
tion order (which must be given anyway at the time of purchase, e.g.,
during anonymous card purchase at a vending machine or bookstore).
Later on, as the card is used, the card does not disclose data about the
subscription order or the card-specific forbidden hot items.
Once the set of such hot items for a subscription order is determined,
the policy might state that there is a threshold on the number of such

18 M. Blanton, M. Atallah

items that can be among the false positives (the threshold can be stated
similar to the total number of false positives in the first rule). Thus, if
a particular instance of a card does not satisfy this requirement, a new
instance should be generated.

4. Timeout. Under some policies, the card creation process might have to
be carried within a certain period of time. Then if no suitable permu-
tation is found during that interval, the best permutation tried so far is
used.

Based on the policies listed above, we create a set of stopping criteria by
possibly combining two or more conditions in such a way that what the card
produced always satisfies the card issuer.

4.5.3 Sample policy Suppose a service provider employs a policy in which
the number of attempts to access a document not included into the cus-
tomer’s policy configuration, t, cannot exceed 10% of the number of docu-
ments m in the customer’s order. (Recollect that each customer at the time
of purchase is given a list of all documents included in the order, so that
t can be kept small.) The service provider also requires that the maximal
customer gain from “false positive” documents cannot exceed 5% of the
cost of the order. Evaluation parameters for a document permutation then
can look like: t = 0.1m, n′ = n − m, and α = 0.05. Given n and an order
consisting of m documents, we use Algorithm 1 to compute m′. According
to equation (2), m′ should satisfy the following condition:

0.1 · m · c(m′)

n − m
≤ 0.05 · ccard

If the condition is not satisfied, the algorithm is invoked to try a new per-
mutation.

With this policy in place, a card can be generated very efficiently for
any order because the number of false positives is not required to be low.
For instance, suppose that c(m′) ≃ m′ · c1 and ccard(m) ≃ m · c1, where c1

is a unit price of a document. Then, in order to comply with the policy, we
must have that m′ ≤ n−m

2 , which is large and not difficult to achieve for
any order of m documents. This tells us that the scheme can accommodate
a wide range of reasonable policies.

4.6 Analysis of the approach

Our proposed solution is compliant with the desired design properties and
minimizes the total number of false positives bound to a card. More pre-
cisely, the design of our scheme ensures that goals of transaction unlinkabil-
ity and untraceability, unique policy representation, no additional sources
of information, and fast access verification time listed in section 3.3 are
met. The goal of forward compatibility is achieved by using unique policy

Succinct Representation of Flexible Privacy-Preserving Access Rights 19

representations that “capture” the state of the repository at the time of
card generation and are self-contained. As we add more documents to the
repository, the old cards can still be used, for instance, to reproduce per-
mutations of the documents from the previous state of the repository and
provide access to the documents from customer subscriptions.

Our permutation approach also guarantees a low rate of false positives,
especially if this constraint is a part of the algorithm’s termination criteria.
Depending on the policies enforced by the service provider, the scheme can
be evaluated on its time requirements, i.e., how long, on average, it might
take to generate a card. Thus, it might or might not comply with the goal of
fast card generation. If the service provider employs a policy that includes a
timeout, then in-house card generation is always achievable. If, on the other
hand, he places more weight on minimizing the number of false positives,
then this constraint might be relaxed.

4.7 Structured data – trees

This section extends our approach to structured data collections such as
trees. In many data repositories documents are stored in hierarchies, which
makes it possible to utilize the repository’s structure and reduce the number
of false positives in the solution computed. Since in reality many customers
do not select a random set of documents, but rather are interested in certain
topics (which will guide their selection of items to be included in the order),
great space savings (and thus a significantly reduced rate of false positives)
can be achieved if instead of storing individual items we permit storing
categories of items. In fact, the software that aids the user in selecting items
to be included in his subscription can help to achieve space savings in cases
of hierarchically structured documents. That is, it will provide the user with
in option of selecting the entire section or category of documents at every
level within the hierarchy, in addition to allowing selecting documents one
by one. The quantification of such savings, however, cannot be performed
in the general case, because it heavily depends on the type of the hierarchy
and user patterns in selecting documents.

Now we present our approach for building user cards in case of hier-
archically structured repositories. Suppose we are given a tree of n docu-
ments and a subscription order of m documents. The card’s capacity is still
k = O(ℓ log n) bits or O(ℓ) records, but in this case each record, in addition
to two numbers that specify a range, might contain some other information.
We consider both positive and negative ranges for encoding documents on
a card. We also consider two different types of placements: when a positive
or negative assignment is placed on a node v, it can either affect the entire
subtree rooted at v – we denote this case as recursive – or affect only the
node on which the assignment is placed – we denote this assignment as local.
The case where a depth parameter can be stored at v, so as to limit the
depth of the subtree included, will be considered later in this section (such

20 M. Blanton, M. Atallah

a depth parameter limits the depth of the nodes influenced by that range,
so that nodes that are farther than that depth below v are not affected).
When two ranges overlap, the more specific range (i.e., lower in the tree) is
used. As before, the word “cost” is used as the “cost of the false positives”
(not the dollar cost paid by the customer).

Throughout our algorithm, we use the following notations. For each
node v, a cost of the subtree rooted at v can be computed in two different
contexts: positive and negative. If a node v is evaluated in the positive
context – the cost is denoted by C+(v), – this means that a positive range
has been specified at its parent or above the parent in the tree. In this case,
if no new range is placed at v or below, the entire subtree will be included in
the final solution. In this context, only negative ranges placed at v or below
have effect. Similarly, if a node v is evaluated in the negative context – the
cost is denoted by C−(v), – then it means that a negative range has been
specified at its parent or above, and by default the entire subtree will be
excluded from the solution. If no context has been specified, we start in
the negative context and assume that no nodes are included in the solution
unless explicitly specified.

Our solution uses dynamic programming techniques; and as with any
dynamic programming approach, the cost of an optimal solution at any
given node v needs to be calculated for several cases that differ in the
number of encoding slots available. Thus, we use C+(v, j) and C−(v, j)
to mean the cost of encoding the tree rooted at v in positive and negative
contexts, respectively, with j storage slots available, where 0 ≤ j ≤ ℓ.

Here we provide an algorithm for binary trees, which can naturally be
extended to work for more general t-ary trees with t ≥ 2. When working with
binary trees, we typically use nodes u and w as child nodes of v. In order to
compute a cost of a subtree rooted at node v, we need to consider two cases:
computation of C+(v, j) and C−(v, j), which we describe subsequently. Let
us consider non-leaf nodes first and then proceed with leaves of the tree.
Time complexity of the algorithm for both binary and arbitrary t-ary trees
is given later in this section.

4.7.1 Non-leaf nodes

Case of C+(v, j): When the cost is computed in the positive context, we
need to consider three different cases.

Case 1 : No record is placed at v. Then C+(v, j) is computed as:
C+(v, j) = min{C+(u, i) + C+(w, j − i) + c1| 0 ≤ i ≤ j} ,

where c1 is 1 if v is not in the order, and 0 otherwise.
Case 2 : A negative recursive record is placed at v. This case cannot

happen if v is included in the order. We compute the value as:
C+(v, j) = min{C−(u, i) + C−(w, j − i − 1)| 0 ≤ i ≤ j − 1}

Case 3 : A negative local record is placed at v. This case also cannot
happen if v is included in the order. To compute C+(v, j), we use:

C+(v, j) = min{C+(u, i) + C+(w, j − i − 1)| 0 ≤ i ≤ j − 1}

Succinct Representation of Flexible Privacy-Preserving Access Rights 21

After computing all of the values above, C+(v, j) is assigned the mini-
mum of the three values.

Case of C−(v, j): For the negative context there are also three possible
cases.

Case 1 : No record is placed at v. This case cannot happen if v is in-
cluded in the order. The formula for computing C−(v, j) is as follows:

C−(v, j) = min{C−(u, i) + C−(w, j − i)| 0 ≤ i ≤ j}
Case 2 : A positive recursive record is placed at v. In the formula below,

c1 is set to 1 if v was not included in the order, and it is 0 otherwise:
C−(v, j) = min{C+(u, i) + C+(w, j − i − 1) + c1| 0 ≤ i ≤ j}

Case 3 : A positive local record is placed at v. This case normally does
not happen when v is not in the order. To compute C−(v, j), we use:

C−(v, j) = min{C+(u, i) + C+(w, j − i − 1) + c1|0 ≤ i ≤ j}

Analogously to the previous case, C−(v, j) receives the value of the
minimum of the three values computed in these cases.

4.7.2 Leaf nodes

Case of C+(v, j): If j > 0 and v is not in the order, then we can exclude
the node from the solution by placing a negative record at it. In this
case, the cost C+(v, j) is 0. Otherwise, no record can be placed at the
node; and the cost C+(v, j) is 0 if v is included in the order, and 1
otherwise.

Case of C−(v, j): If j = 0 and v is included in the order, then C−(v, j)
should be set to +∞ to prevent this configuration from being chosen,
as it does not satisfy the algorithm’s requirements. In all other cases,
C−(v, j) is 0.

4.7.3 Complexity analysis To compute the cost of an order, we use the
above rules to compute C−(root, ℓ). Every documents i included in the
order is taken into account at the time of computing the cost of the subtree
rooted at node i. For a tree of n documents and card’s capacity of ℓ slots,
this algorithm runs in O(n · ℓ2) time for binary trees. For arbitrary t-ary
trees the algorithm gives O(n · ℓt) time.

4.7.4 Access verification Once a solution using the above techniques has
been computed and stored on the card, the card will perform access verifi-
cation as follows:

1. On user request to access item i, the card first checks whether i is stored
on the card in positive context. If true, return accept. If i is stored on
the card in negative context, return reject. Otherwise, proceed with the
rest of the algorithm.

2. The card sends a request to the server to retrieve the nodes on the path
from i to the root of the tree.

3. The server replies with P = {p1, . . ., pd}, which is the nodes on the path
ordered from i to the root of the tree.

22 M. Blanton, M. Atallah

4. For i = 2 to d, the card performs: if pi is stored on the card with a
recursive label, then if the context is positive return accept, and if the
context is negative return reject. If pi is not on the card or is stored with
a local label, proceed with the next node pi+1.

5. If none of the pi’s was found on the card, return reject.

If P is short enough to fit on the card, then the server can send it all at
once. Otherwise it sends the path in batches small enough to fit on the
card. In practice, P is likely to be small, as typical hierarchies tend to
have small height. For instance, hierarchies such as collections of newspaper
articles might have a very large total number of nodes, but the depth of the
hierarchy will be limited by a small constant.

4.7.5 An extension to records of variable depth Let h be the height of the
tree. The above dynamic programming approach can be extended to include
all possible heights for each node v. This means that when we compute a
cost of a subtree C+(v, j) or C−(v, j), we now can specify the depth of
the record placed at v, which can vary from 1 to the height of the subtree
rooted at v. In this case, there is no need to distinguish between local and
recursive nodes any more, as they are replaced by a single record in which
the desired depth is specified. We do not include the algorithm’s details
because they can easily be derived from the previous algorithm.

For a t-ary tree, this modification implies a factor of h (but not ht) in the
algorithm’s time complexity, because any record placed at the parent covers
one child’s subtree at same depth as for another child’s subtree. Thus, it
takes h times as long to compute the cost of each subtree.

4.7.6 Randomization The above tree algorithm was static, and the solu-
tion generated would always be the same for the same set of documents.
Thus, it does not satisfy the desirable requirement that even identical sub-
scriptions have different solutions. This can be remedied by using for each
subscription a random re-naming π of the node names and then using the
new names to describe the subscription on the card. More precisely, at the
card generation time, we first run the dynamic programming algorithm to
generate card representation. Next, we choose a random permutation π over
the n nodes of the hierarchy (the permutation must satisfy the properties
listed in section 4.3) and apply the permutation to the nodes used in the
card representation. We then store such permuted representation of access
rights on the card.

When the user requests access to a document i, the card, as before, first
asks the server for the i-to-root path P in the hierarchy. Then it applies
the random re-naming π to all of the nodes of that path P , and it finally
compares those values with its stored subscription description to determine
whether access should be granted.

Succinct Representation of Flexible Privacy-Preserving Access Rights 23

4.8 Dynamic changes to the repository

In this section we first focus on handling dynamic changes to the repos-
itory consisting of unstructured data (i.e., a mere collection of numbered
items), and later address this issue for hierarchically structured collections
of documents (i.e., trees).

As was shown in section 4.6, the scheme is forward compatible when
the documents within the repository are not organized into a structure, i.e.,
addition of new items to the repository is modeled as assigning to each of
them a number strictly larger than the current number of documents in
the repository. For instance, if the current data repository has n documents
(numbered 1 through n) and there are cards that generate permutations over
these n documents, addition of new d documents will result in their numbers
being n + 1, . . ., n + d, and a newly generated card will store permutations
over these n + d documents.

Deletions of documents are also possible using our scheme. First, we
would like to point out that a document will not be taken out from the
repository while that document is present in at least one current customer
subscription (information about documents in use can be collected at the
time of subscription purchase; note that this does not violate privacy of
the customers). When an unpopular is, however, being removed from the
repository, we do the following: the document is simply removed without
affecting the rest of the repository (i.e., the remaining documents are not
re-numbered). This leaves a “hole” in the consecutive numbering of doc-
uments, but if the next new document is assigned this number, the effect
of discontinuous numbering is mitigated. Since data repositories tend to
grow (but not shrink) over time, removal of documents will not result in
unnecessary increase of the number of items being permuted.

Now we would like to discuss handing of dynamic changes in hierarchi-
cally structured data repositories. Unlike in the unstructured case, now in
addition to insertions and deletions, we also need to deal with restructuring
of the items in the repository.

In general, handling dynamic changes to the hierarchy requires more
careful treatment, because the structure “captured” by the access right
representations on existing cards must be preserved. Therefore, in order to
ensure compatibility, any changes we introduce cannot modify the structure
of the previous state of the data repository. That is, new branches and
subtrees can be added at the root of the tree; and documents to which no
user is currently subscribed can safely be removed from the tree (without
removing from the data structure the parts of the tree that correspond to
such documents).

Structural changes that affect the old parts of the tree can be done
using scheduled periodic updates. That is, insertions are introduced as they
occur, but such documents are attached as new branches at the root level;
deletions and re-structuring, on the other hand, are delayed until the next
update. During an update, the structure of the tree is modified using all

24 M. Blanton, M. Atallah

pending deletions and re-structuring (parts added to the tree after the last
update are also moved to their appropriate places, if necessary). All users
submit their subscription preferences and are issued new cards. (Note that
in our model it is impossible to recover exact access rights that a user had
using her access right representation, therefore we allow each user to select
possibly a different set of documents, the total value of which corresponds
to the subscription price paid.)

5 Approach Based on Minimal Perfect Hash Functions

In addition to the notation described in section 3.2, in this section we use
the following notation: A hash function h : X → Y is called a perfect hash
function if it is 1–1, i.e. ∀x1, x2 ∈ X, h(x1) 6= h(x2) iff x1 6= x2. In other
words, perfect hash functions never result in collisions. A hash function
h : X → Y is called a minimal perfect hash function (MPHF) if it is 1–1
and for which |X | = |Y | . An order-preserving MPHF (OPMPHF) also has
the property that it maps the ith smallest element of X into the integer i.

In what follows we use f to denote a minimal perfect hash function
that maps {i1, . . ., im} to {1, . . ., m} without collisions. Also, functions
f ′, f ′′ denote order-preserving MPHFs each of which maps {i1, . . ., im}
to {1, . . ., m} without collisions and in an order-preserving manner (i.e.,
f ′(ij) = j).

In this section we first give a preliminary solution that utilizes minimal
perfect hash functions and is described in section 5.1. For a subscription
order of m documents, it results in access rights representations O(cm)
space and the probability of false positives being 2−c, where c is an ad-
justable parameter. The second, improved, solution uses order-preserving
minimal perfect hash functions to achieve significantly better asymptotic
performance: with O(cm) storage space available, the probability of false
positives is m−c. It can be found in section 5.2. Section 5.3 describes ex-
tensions to the schemes: it discusses how certain items can be completely
eliminated from the possible false positives and also covers space utilization
techniques for hierarchies. Finally, section 5.4 addresses dynamic changes
to the repository.

5.1 A preliminary solution

Given a card that can store k = O(cm) bits, this approach gives us: (i) a card
creation time polynomial in m, and (ii) the probability of false positives 2−c.
Note that it is reasonable to assume that cards can store cm bits. The reason
is that this space will be small for relatively small orders; for larger, more
expensive orders one can use cards of larger capacity, the manufacturing cost
of which can be offset by the amount charged for the subscription order.

In what follows, H is a keyed cryptographic one-way hash, whose key is
unique to each card (to make false-positive information sharing impossible);

Succinct Representation of Flexible Privacy-Preserving Access Rights 25

the key’s purpose is not cryptographic security, but rather making each card
unique. The k bits available do not include the bits needed for storing the
key for the hash H , which would be small in practice. For instance, a 20-
bit key would result in a million different cards that can request identical
m items yet be different; and the possibility of such sharing when the two
cards correspond to different sets of documents significantly decreases. An
alternative to a keyed H is to have the same hash function H for all cards,
but force the random choices made during the computation of a suitable
minimal perfect hash function to vary from card to card.

5.1.1 Card creation

1. Compute a minimal perfect hash function f for {i1, . . . , im}. Store f
in the card using O(m) bits (according to [22], a MPHF for m ran-
dom strings can be stored using bm bits, where b is a constant and can
normally be 2). This leaves k′ = O(cm) bits available for what follows.

2. Partition these k′ bits into m blocks of c bits each; call them blocks Bi

(i = 1, . . . , m).
3. Let the hash function H(x) produce a c bits long hash of x (e.g., by

considering only c of the 160 bits it produces in case of SHA-1). For
every item i ∈ {i1, . . ., im}, if f(i) = j, then set the bits of block Bj on
the card equal to H(i).

5.1.2 Access verification Every time a customer uses her card to request
access to an item i, the card performs the following:

1. Compute f(i); assume f(i) = j.
2. Compare the c bits of the card’s block Bj to the corresponding computed

c bits of H(i).
3. Access is allowed if these c bits match, and denied otherwise.

5.1.3 Analysis

Theorem 1 Given k = O(cm) storage space, the above MPHF-based ap-
proach produces in time polynomial in m a solution with the properties of
(a) transaction unlinkability and untraceability, (b) unique policy represen-
tation, (c) no additional sources of information, (d) forward compatibility,
and (e) probability of false positives 2−c.

Proof Card creation takes time polynomial in m because a MPHF can be
generated in polynomial time [23]. Given k = (c + b)m = O(cm) space, the
probability of a false positive is less than 2−c (see, e.g., [22] for more detail).

Transaction untraceability is achieved because the card anonymously
authenticates to the server and then everything else it sends is a request for
a specific data item with no personal or card-specific information. By the
same argument, any two transactions are also unlinkable.

Unique policy representation is achieved through the use of the keyed
hash function H or, alternatively, by randomizing f itself. Each card will

26 M. Blanton, M. Atallah

also stay operational as we add more items to the data repository because
the card is dependent on the purchased items and contains no information
about other items or the size of the data repository. This means that the
forward compatibility requirement is satisfied. Finally, by design this scheme
does not use any additional sources of information. 2

5.1.4 Case where c = log m If in the above c = c′ log m where c′ is con-
stant, then the scheme has k = O(c′m log m) bits of storage and an m−c′

probability of false positive. In such a case, however, the following simpler
scheme that achieves the same bounds can be used. We use a keyed hash
function F (not a perfect one — collisions can occur) that maps items in
the range [1, n] into [1, mc′+1]. An example of such a function that we use
in our further discussion is F (i) = H(i) mod mc′+1, where H is a keyed
cryptographic one-way hash function. What the card stores is the (at most
m) elements of [1, mc′+1] to which the subscription items map. It allows
access to a requested item i iff F (i) is stored on the card. Since each of
the (at most) m numbers stored is (1 + c′) log m bits long, the total space
needed is O(c′m logm) bits. The probability of a false positive is no greater
than m/mc′+1 = m−c′ . This matches the MPHF scheme’s performance if
k = m logm, but it cannot be used if k = o(m log m). When it can be used,
however, it has the potential for the following heuristic improvement in its
space usage: The m stored elements from [1, mc′+1] could be such that the
trie implied by their bit representations makes further space savings possible
(by storing common prefixes or other common bit patterns only once). The
expected space needed to store the trie, however, remains O(m log m) bits
so the savings are by no more than a constant factor, and the multiplicative
factor of log m in the space complexity remains.

The scheme in the next section achieves the same false positives proba-
bility performance of m−c but without the multiplicative factor of logm in
the space used.

5.2 An asymptotically better solution

Given k = O(cm) space available on the card, the approach described in
this section and which is based on usage of order-preserving MPHFs gives
us: (i) a card creation time polynomial (in fact, linear) in m, and (ii) the
probability of false positives m−c, where c is an integer parameter that can
be chosen so as to achieve a desired PFP. For large enough m (which we
assume is the case since m > k/ logn), however, it is sufficient to have c = 1.
We start with describing the c = 1 version of the scheme, after which we
extend it to larger values of c.

5.2.1 Card creation As usual, we deal with a subscription order {i1, . . . , im},
where i1 < i2 < . . . < im. We use two order-preserving minimal perfect hash
functions f ′ and f ′′, each computed for this subscription order: f ′(ij) = j

Succinct Representation of Flexible Privacy-Preserving Access Rights 27

and f ′′(ij) = j for all j ∈ [1, m]. To see why we use different functions f ′

and f ′′, we first need to recall that the construction of an order-preserving
minimal perfect hash function involves many random choices along the way,
and f ′ and f ′′ will differ through those different random choices. While the
effect of such functions on the elements of the set {i1, . . ., im} is fixed and
well known for all ij (i.e., f ′(ij) = f ′′(ij) = j), their effect on elements not
in the set {i1, . . ., im} is arbitrary. Consequently, we use two different func-
tions f ′ and f ′′ for their different effects on randoms r that are not in set
{i1, . . ., im}. This is an unusual use of such functions because we use their
random effect on an r that is not in the set, as much as their predictable
effect on an ij from the set. The card hence stores f ′ and f ′′, which take
O(m) bits of space.

While the effect of those random choices on a random r 6∈ {i1, . . ., im}
has not been investigated in the literature, we postulate that the existing
OPMPHF schemes can be used to hash such an r uniformly on the interval
[1, m]. That is, each of f ′(r) and f ′′(r) is random and uniformly distributed
over [1, m]. What follows is subject to this assumption5.

5.2.2 Access verification To verify a request to access an item i, the card
needs to perform the following steps:

1. It computes f ′(i) and f ′′(i).
2. Access is granted if f ′(i) = f ′′(i), and denied otherwise.

5.2.3 Extension to higher values of c The above description results in the
PFP being 1

m
. To obtain versions of the scheme with PFP of 1

mc for c > 1,
instead of using two functions f ′ and f ′′, we use c+1 such functions: access
to i is granted if all c + 1 functions map i into the same value, and is
denied otherwise. Of course, different random parameters are selected when
constructing each of these c+1 functions, and the space complexity becomes
O(cm) bits.

Note that if the value of c is relatively large compared to m, it might
be difficult or even impossible to generate c+1 different functions for those
m items. In such a case, either the value of c might be lowered, or the
space needed to store these c + 1 functions might have to be increased
(each function will still require O(m) bits but with a larger than optimal
constant).

5 It is possible that OPMPHF representations that use an optimally small num-
ber of bits bm will not involve many random choices for certain elements of the set
{i1, . . ., im}. This means that f ′(r) and f ′′(r) might not be truly independent for
some values of r. To magnify the randomization effect of the functions on such r’s,
we might want to increase the space occupied by the functions by increasing the
value of the constant b, and make sure that the number of random choices during
function generation is large. Obviously, this topic deserves further investigation
and formal treatment.

28 M. Blanton, M. Atallah

5.2.4 Analysis

Theorem 2 Given k = O(cm) space, the above OPMPHF-based approach
produces in time polynomial in m a solution with the properties of (a) trans-
action unlinkability and untraceability, (b) unique policy representation, (c)
no additional sources of information, (d) forward compatibility, and (e)
probability of false positives m−c.

Proof Each of the c + 1 functions can be computed in linear time and
space [21], therefore the claimed card creation time holds. We now argue
that the probability of a false positive is m−c. First we note that, for an
r /∈ {i1, . . ., im} to be a false positive, all of the c + 1 functions must map
r into the same value. Recall from our above assumption that the choices
of different random parameters for each such function f ′ randomize f ′(r)
uniformly over [1, m], and thus the probability that, given a random r, f ′(r)
will fall into a specific cell is 1

m
. By choosing the different functions’ random

parameters independently, this effectively makes the value of f ′(r) indepen-
dent of the other f ′′(r) values. The probability that the c+1 functions map
r into the same value is therefore 1 ·

(

1
m

)c
= m−c.

Property (b) is ensured through the random choices in selection of the
functions, and properties (a), (c), and (d) are by the same arguments as in
the proof of Theorem 1. 2

5.3 Extensions

In this section we provide two extensions to the scheme described. Namely,
we show how to completely eliminate certain items from the false positives
and also how to extend our scheme to hierarchical data structures.

5.3.1 Decreasing the value of false positives Recall that in section 4.5.2
we talked about excluding certain items of high demand from the list of
false positives. Performance of any of the MPHF-based schemes can also
be improved with respect to the cost of false positives if we can ensure
that such generally popular (so-called “hot”) items are not among the false
positives. Also recall that for each customer these items can be system-wide,
card-specific, or both.

There are various ways of ensuring that such hot items are not among
the false positives of a customer order. In what follows we describe different
ways of achieving it. Before proceeding with the specific approaches, we
first describe the pre-processing step that applies to all of them. The pre-
processing requires the algorithm to determine the following three sets of
documents: (i) the set of documents in the customer order; (ii) the set of
system-wide hot items; and (iii) the set of card-specific hot items. Note
that the set (ii) or (iii) could be empty, depending on the application, the
repository, and document characteristics. Next, we combine the sets (ii)
and (iii) into a single one and call it a “negative subscription list.” Let mh

Succinct Representation of Flexible Privacy-Preserving Access Rights 29

denote the cardinality of such a set. Now we are ready to proceed with the
specific techniques.

1. One way of isolating such hot items from the rest of the documents is
by incorporating their isolation into the random choices used in card
generation. That is, after we make random choices at the card-creation
time, we can evaluate the resulting encoding against the list of the hot
items. If, as a result, any of them (or any number of them above a cer-
tain threshold) is among the false positives, we repeat the card-creation
process with another set of random choices until the desired level of false
positives with respect to these hot items is achieved. Note that the time
needed to generate a card with none of the hot items among the false
positives will be directly proportional to the number of such hot items.
That is, given truly random choices and, for instance, having k = O(cm)
and PFP = 2−c (for the MPHF-based approach), the probability that
none of the hot items are among the false positives is

(

1 − 1
2c

)mh . Thus,
the expected number of times one needs to invoke the card-creation al-
gorithm is (1 − 1

2c)−mh − 1.
2. Another approach is to map the popular items to a region different from

the legitimate subscription items on the card. More precisely, given the
set of subscription items and the negative subscription list, we can use
the techniques used in card generation on both of them, with the differ-
ence that access to the items in the first set is permitted, while access to
the items from the second set will be denied. First, we use our techniques
to generate a representation of access rights for the subscription order
as before. Then we test every item on the hot list against this represen-
tation and determine which of them are among the false positives (their
number will be PFP ·mh on average and we denote that number as m′

h).
Next, we create a list consisting only of the hot items that happened to
be false positives, and apply our techniques to that list mapping it to a
separate region on the card. Access to every document that successfully
hashes to that second region will be denied (for that reason we need
to check all documents on the original subscription list to ensure that
access to them will not be denied; if any of them do hash successfully on
the denied region, re-run this algorithm as many times as needed until
none of the subscription documents land on that region successfully).
Once the card is created using the above description, it is issued to the
customer. When the customer requests an item, the card first checks
that access to it is permitted (using the first region) and then it checks
that it is not among the items access to which should be denied (using
the second region).
The foregoing approach obviously increases the space necessary to rep-
resent a subscription order. Thus, now instead of requiring the card’s
storage space k be, for instance, O(cm), it will be a function of m and
mh (e.g., k = O(c1m) + O(c2m

′

h)). This increase in the space, however,
may be worthwhile, if it costs less than the cost associated with the
hot items being among the false positives. It is clear that this technique

30 M. Blanton, M. Atallah

should be used when the size of the hot items list is large enough, so
that it is difficult to prevent these items to be among false positives
using other techniques.

3. Finally, another way to deny access to hot items is to merge the list of the
subscription items with the negative subscription list, but place a special
mark on each of them indicating whether access to the document should
be permitted or denied. Thus we run our regular card-creation algorithm
on the joint list, but mark each resulting hash with a permit or a deny
mark. When a customer requests an item (having the card generated
according to this approach), access to that item will be permitted only
if passes the card test and the mark on the corresponding hash is of the
access type.
This method results in even larger storage increase than in the previous
case (i.e., k = O(c1m)+O(c2mh) instead of k = O(cm)), but it is simple
and fast to produce. Thus, it can be useful in cases when the list of hot
items is short, but the damage of having them among the false positives
is large (i.e., we want absolutely none of them to be among the false
positives).

Which method to choose will depend on the target application and the
specific customer order. More precisely, the size of the subscription order and
the number of hot items access to which must be denied will determine what
approach to use. In general, it is possible to combine the above techniques
into a hybrid scheme, where, for instance, access to a fraction of the hot
items is prevented through the random choices (using a certain number of
iterations as in the first technique) and access to the remaining fraction of
the hot items is prevented through a negative list. We believe such a hybrid
solution will be best in terms of time and space resources used.

In general, in our schemes the rate of false positives is very small (e.g.,
for m = 100 and c = 3 the PFP is one in a billion), and therefore even if
the list of hot items is long, only a tiny fraction of them will be among the
false positives, which needs to be isolated. This permits us to use the above
special treatment for those few items, if we want absolutely no hot items to
be among the false positives.

5.3.2 Improving space utilization for hierarchies As was mentioned in sec-
tion 4.7, hierarchically structured data repositories provide additional pos-
sibilities for efficiently utilizing storage space on the cards and therefore
minimizing the rate of false positives. For tree-like hierarchies, the objects
in the repository can correspond to the leaves of the tree. In addition, the
internal nodes correspond to categories of objects and are also marked with
unique identifiers. Then great space savings can be achieved if now instead
of storing all m items, we store nodes of the tree, the entire sub-trees of
which are among the m items.

Our techniques can be extended to such hierarchical repositories if we
assume that for every item i its “path to the root” can be obtained from

Succinct Representation of Flexible Privacy-Preserving Access Rights 31

the server. One possibility is to use the following procedure to obtain a
list of items to be included in the representation of access rights. In what
follows, assume that the hierarchy is a tree (of any degree), and the leaf
nodes (that correspond to actual items) are numbered 1 through n (from
left to right). Let us also assume that the total number of nodes in the tree
is N ; the internal nodes are numbered n+1 through N ; and the subscription
is given as a list of m leaf nodes {i1, . . ., im} sorted in the increasing order.
The resulting list of nodes (which will be used to represent access rights) is
denoted L = {j1, . . .}. Note that for each jk ∈ L, 1 ≤ jk ≤ N and |L| ≤ m.
The following procedure creates such a list L:

1. Set L = {i1}.
2. For each k = 2, . . ., m, do:

(a) Set L = L ∪ {ik}.
(b) Let p be the parent of ik and let c1, . . ., cp denote the children of p.

If every cj ∈ L, set L = (L \ {c1, . . ., cp}) ∪ p; and recursively repeat
this step going up in the hierarchy (i.e., starting with the parent of
p until no more changes are made to L.

Having the list L, we then apply the MPHF techniques to it to generate the
card itself. Note that this will introduce space savings because now instead
of having m records, we will need |L| ≤ m records to represent the access
rights, in some cases having |L| ≪ m. We would like to point out again that
the exact savings will be determined by the type of the data structure and
user patterns in selecting items for their subscriptions.

Note that unlike in the techniques given in section 4.7 for tree-like hier-
archies, the representation of access rights obtained in the above (or similar)
fashion cannot introduce any false positives: in order to meet the claimed
rate of false positives, no false positives are permitted in addition to those
introduced through the use of minimal perfect hash functions.

Adoption of the above techniques will affect card operation at the time
a user makes a request to access an item. That is, now instead of directly
applying the hash function to the document being requested (assume it is i)
and checking for its access rights, the card will need to retrieve information
about the nodes on the way from i to the root. Then the card checks every
item on this list and assumes that the user has access rights to i if she has
access to at least one node on the list.

It is clear that the foregoing techniques involve more interaction with
the server (i.e., retrieval of public information stored at the server). It is not
clear, however, how to avoid this extra interaction: while it is well known
that ancestral relationships in a tree are completely described by two linear
listings of its nodes (e.g., preorder and postorder), this is not immediately
exploitable because of the randomization introduced by the hashes. This
clearly deserves further investigation.

An additional complication is that, in hierarchically structured objects,
care must be exercised to ensure that certain nodes are not among the false
positives. For instance, during the card creation process we must ensure that

32 M. Blanton, M. Atallah

the root of the tree and other nodes high in the hierarchy are not among the
false positives. This is especially important now, when information about
the hierarchy (and unique numbers associated with nodes higher up in the
hierarchy) is publicly available. Techniques of the previous subsection then
can be applied to this case to exclude the special items from the possible
false positives.

5.4 Dynamic changes to the repository

Similar to the scheme given in section 4, we need to consider the behavior
of this second approach with respect to dynamic changes to the repository,
which should be done for both unstructured collections of documents and
repositories in which the documents are organized in a hierarchy (more pre-
cisely, in a tree). In either case, this scheme exhibits the same characteristics
with respect to dynamic changes as those of the first scheme. Thus, the re-
sults reported in section 4.8 for the first scheme apply to this case as well
and are not repeated here.

6 Comparison of the Schemes

In this work we gave two schemes for minimizing space requirements to
permit user access to items of their choice from a large data repository in
a privacy-preserving manner. Both of the schemes comply with the design
goals of: transaction untraceability and unlinkability, unique policy repre-
sentation, single storage device, fast operation, and forward compatibility
of the schemes. They, however, have drastic differences: while the first ap-
proach assumes a fixed amount of storage space available for a subscription
order and attempts to produce an encoding that minimizes the number of
false positives for that order, the second approach has explicit space re-
quirements that depend on the order size, but it guarantees a low rate of
false positives. Thus, the second method assures the bounds on PFP given
the space available, but the first method is the best-effort approach that
attempts to meet the feasibility criteria.

Properties of the schemes that are based on minimal perfect hash func-
tions (i.e., from section 5) are summarized in Table 1. The reason why the
table lists performance only of the schemes based on MPHFs is that the
performance of the permutation-based approach will be completely deter-
mined by the stopping criteria used, does not have fixed upper bounds, and
thus cannot be directly compared to other schemes.

Among all schemes given in section 5, the tree-based k = O(m log m)
space approach described in section 5.1.4 is the simplest to implement, and
its space usage can be heuristically lowered as described in that section. This
approach, however, cannot be used if k = o(m log m), whereas the MPHF-
based scheme can work in cases when k = o(m log m), e.g., when k = O(m).
In general, both of these approaches give the same rate of false positives

Succinct Representation of Flexible Privacy-Preserving Access Rights 33

k = k =
Scheme Space

O(cm) O(cm log m)

MPHF-based 2−c m−c

OPMPHF-based m−c m−c log m

Table 1 The rates of false positives of the schemes for different storage space
bounds. Here m is the number of items in the subscription, k is the storage space,
and c is a constant.

of m−c if k = O(cm log m). The OPMPHF-based approach of section 5.2
achieves the same false positives rate of m−c, but with an asymptotically
lower requirement for space: O(cm) bits.

Let us next provide a heuristic to determine what scheme should be
used for card generation, assuming that all of the approaches are available
to build a user’s card. Let Im = {ii, . . ., im}, and let f be a function that
given a set Im ⊆ {1, . . ., n} determines its value and outputs the maximum
allowable card size k. Note that, depending on the application and available
technology, f might be independent of its argument and always output a
fixed size; or it also might use its argument to select one of the few available
card sizes. Let C ∈ {0, 1}k denote an instance of access rights representation
for a set Im. Also let us use the following naming conventions for card
generation algorithms:

SingleBitScheme: Can be used when the card’s capacity k exceeds the repos-
itory size n. Then the encoding on a card will allocate one bit per repos-
itory document and set the bit for each ij ∈ Im to 1 and all other bits
to 0. There are no false positives in this case.

ListItemsScheme: Can be used when the card’s capacity k exceeds m log n.
Then the encoding on a card will list all items ij ∈ Im. Similar to the
previous scheme, PFP= 0 in this case.

PermutationScheme: The scheme described in section 4. This algorithm re-
quires a set of evaluation rules (or stopping criteria) τ for its execution.
We also define p, 0 < p < 1, to be the portion of the card dedicated to
storing the seed of the random permutation.

MPHFScheme: The MPHF-based scheme described in section 5.1. In addi-
tion to the information about the subscription order and card capacity,
the algorithm takes two other arguments c1 and b1. Here c1 serves the
role of the configurable parameter c in the scheme (i.e., the probability
of false positives will be 2−c1), and b1 is a constant such that b1 · m
space is needed to store the MPHF for m items. Note that c1 may be a
function of m or Im.

OPMPHFScheme: This is the scheme described in section 5.2. Similar to
the MPHFScheme(·), this algorithm takes parameters c2 and b2, where
c2 represents the desired PFP (i.e., PFP= m−c2 and c2 is possibly a
function of the subscription order) and b2 · m bits are needed to store
the OPMPHF for m items. Note that b2 will be higher than b1.

34 M. Blanton, M. Atallah

SelectScheme(n, Im, p, τ, c1, c2):
compute k = f(Im)
if k ≥ n

C = SingleBitScheme(n, Im, k)
else

if k ≤ m · ⌈log2 n⌉
C = ListItemsScheme(n, Im, k)

else

if k ≥ c2b2m

C = OPMPHFScheme(n, Im, k, c2, b2)
else

if k ≥ (c1 + b1)m
C = MPHFScheme(n, Im, k, c1, b1)

else
C = PermutationScheme(n, Im, k, p, τ)

return C

Fig. 2 Algorithm for selecting a scheme for card generation.

Figure 2 gives an algorithm for selecting the most suitable card generation
scheme assuming that all of the above card creation algorithms are avail-
able. It assumes that the data repository is an unstructured collection of
documents.

Finally, we would like to summarize that our solutions can be used for
different applications, with the most intuitive ones being digital libraries
that might contain books, articles, magazines, and also music, video, and
other objects. With such systems in place, a customer can purchase a sub-
scription to the items of interest from stores, or libraries, and have anony-
mous access to the documents from many convenient locations as well. Other
usages include access to locally stored (encrypted) objects, where software
trusted by the document owners mediates access (effectively playing the
role of the server) and on-demand decrypts the objects that the user is
authorized to access.

References

1. M. Atallah and J. Li. Enhanced smart-card based license management. In
IEEE International Conference on E-Commerce (CEC’03), pages 111–119,
June 2003.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In Advances in Cryptology
– CRYPTO’00, volume 1880 of LNCS, pages 255–270, 2000.

3. G. Ateniese and B. de Medeiros. Efficient group signatures without trapdoors.
In ASIACRYPT’03, volume 2894 of LNCS, pages 246–268, 2003.

4. T. Aura and D. Gollmann. Software license management with smart cards.
In USENIX Workshop on Smart Card Technology, May 1999.

Succinct Representation of Flexible Privacy-Preserving Access Rights 35

5. E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta.
Selective and authentic third-party distribution of XML docu-
ments. Working Paper, Sloan School of Management, MIT, 2002.
http://papers.ssrn.com/sol3/papers.cfm?abstract id=299935.

6. E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for
web documents with an XML-based language. In ACM Symposium on Access
Control Models and Technologies (SACMAT’01), May 2001.

7. E. Bertino, S. Castano, and E. Ferrari. Securing XML documents with author-
X . IEEE Internet Computing, 5(3):21–31, 2001.

8. E. Bertino and E. Ferrari. Secure and selective dissemination of XML docu-
ments. ACM Transactions on Information and System Security, 5(3):290–331,
August 2002.

9. B. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

10. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances
in Cryptology – CRYPTO’04, volume 3152 of LNCS, pages 41–55, 2004.

11. D. Boneh and M. Franklin. Anonymous authentication with subset queries.
In ACM Conference on Computer and Communication Security (CCS’99),
pages 113–119, November 1999.

12. A. Broder and M. Mitzenmacher. Network applications of bloom filters: A
survey. Allerton Conference, 2002.

13. M. Bykova and M. Atallah. Succinct specifications of portable document ac-
cess policies. In ACM Symposium on Access Control Models and Technologies
(SACMAT’04), June 2004.

14. J. Camenisch and J. Groth. Group signatures: Better efficiency and new
theoretical aspects. In Conference on Security in Communication Networks
(SCN’04), volume 3352 of LNCS, pages 120–133, 2005.

15. J. Camenisch and M. Michels. A group signature scheme with improved effi-
ciency. In Advances in Cryptology – ASIACRYPT’98, volume 1514 of LNCS,
pages 160–174, 1998.

16. D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, February 1981.

17. Z. Czech, G. Havas, and B. Majewski. An optimal algorithm for generating
minimal perfect hash functions. Information Processing Letters, 43(5):257–
264, October 1992.

18. D. Damiani, S. De Capitani Di Vimercati, S. Paraboschi, and P. Samarati. A
fine-grained access control system for XML documents. ACM Transactions
on Information and System Security, 5(2):169–202, May 2002.

19. P. Devanbu, M. Gertz, A. Kwong, C. Martel, and G. Nuckolls. Flexible au-
thentication of XML documents. In ACM Conference on Computer and Com-
munications Security (CCS’01), November 2001.

20. L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable wide-
area web cache sharing protocol. IEEE/ACM Transactions on Networking,
8(3):281–293, 2000.

21. E. Fox, Q. Chen, A. Daoud, and L. Heath. Order-preserving minimal perfect
hash functions and information retrieval. ACM Transactions on Information
Systems, 9(3):281–308, July 1991.

22. E. Fox, Q. Chen, and L. Heath. A faster algorithm for constructing minimal
perfect hash functions. In Annual International ACM SIGIR, pages 266–273,
1992.

36 M. Blanton, M. Atallah

23. E. Fox, L. Heath, Q. Chen, and A. Daoud. Practical minimal perfect hash
functions for large databases. Communications of the ACM, 35(1):105–121,
January 1992.

24. J. Kilian and E. Petrank. Identity escrow. In Advances in Cryptology –
CRYPTO’98, volume 1462 of LNCS, pages 169–185, August 1998.

25. J. Kim, S. Choi, K. Kim, and C. Boyd. Anonymous authentication protocol for
dynamic groups with power-limited devices. In Symposium on Cryptography
and Information Security (SCIS’03), volume 1/2, pages 405–410, January
2003.

26. C. Lee, X. Deng, and H. Zhu. Design and security analysis of anonymous group
identification protocols. In Public Key Cryptography (PKC’02), volume 2274
of LNCS, pages 188–198, February 2002.

27. M. Mitzenmacher. Compressed bloom filters. In ACM Symposium on Prin-
ciples of Distributed Computing, August 2001.

28. P. Persiano and I. Visconti. A secure and private system for subscription-based
remote services. ACM Transactions on Information and System Security,
6(4):472–500, November 2003.

29. A. Santis, G. Cresenzo, and G. Persiano. Communication-efficient anonymous
group identification. In ACM Conference on Computer and Communication
Security (CCS’98), pages 73–82, November 1998.

30. S. Schechter, T. Parnell, and A. Hartemink. Anonymous authentication of
membership in dynamic groups. In Financial Cryptography, volume 1648 of
LNCS, pages 184–195, 1999.

31. S. Stubblebine, P. Syverson, and D. Goldschlag. Unlinkable serial transac-
tions. ACM Transactions on Information and System Security, 2(4):354–389,
November 1999.

Appendix A

Proof of Lemma 1:
Assume, by contradiction, that we use both positive and negative ranges

to express a solution. We can show that a solution that uses k positive and
negative ranges can be expressed using no more than k ranges of the positive
type only.

Suppose we have a positive range r1, which covers documents starting
from r1s up to r1f , and a negative range r2 from document r2s to document
r2f , respectively. Then with respect of their relative position, there are four
different cases when r1 and r2 overlap and we consider them one at a time6:

1. r1s < r2s and r1f > r2f . In this case the intervals r1 and r2 can be
successfully replaced with two positive intervals r′1 and r′2 that range
over documents (r1s, r2s − 1) and (r2f + 1, r1f), respectively.

2. r1s < r2s and r1f < r2f . This case can be handled by a single positive
interval with bounds (r1s, r2s − 1).

6 For the sake of simplicity, we assume that all of r1s, r1f , r2s and r2f are
distinct. In cases when this condition cannot be assumed to hold, only structurally
insignificant changes to the proof are needed.

Succinct Representation of Flexible Privacy-Preserving Access Rights 37

3. r1s > r2s and r1f > r2f . In this case, we can also specify only one
positive interval that will cover the same documents as the original two.
The interval we obtain here is (r2f + 1, r1f).

4. r1s > r2s and r1f < r2f . Here no ranges need to be specified.

Now assume that a negative range overlaps with two or more positive ranges.
We show that we do not benefit from having negative ranges in the case
when a negative range overlaps two positive ranges. A proof for the general
case when a negative range overlaps with more than two positive ranges
can be achieved by repeatedly applying the argument that uses only two
positive ranges and such cases are never optimal.

Assume that the two positive ranges are r1 and r2 with bounds (r1s,
r1f) and (r2s, r2f), respectively, and the negative range is r3 and covers
documents r3s through r3f . Without loss of generality, assume that the
positive ranges are non-overlapping (any two overlapping ranges can be
replaced by one non-overlapping) and r1f < r2s. Then there are four cases
of different relative positions of r1, r2, and r3:

1. r1s < r3s, r1f > r3s, r2s < r3f , and r2f > r3f , which can be replaced by
two positive intervals with ranges (r1s, r3s − 1) and (r3f + 1, r2f).

2. r1s > r3s and r2f < r3f , where all intervals can be simply dropped
without affecting the result.

3. r1s > r3s, r2s < r3f , and r2f > r3f , in which case a single positive range
(r3f + 1, r2f) can be used.

4. r1s < r3s, r1f > r3s, and r2f < r3f , in which case also a single positive
range (r1s, r3s − 1) can be used.

The case when two negative ranges overlap with a single positive can be
proved using a similar argument as above and is omitted due to insignificant
changes. Thus, it follows that any solution that uses k negative and positives
ranges can be replaced by a solution that uses at most k positive ranges.
This completes the proof. 2

