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ABSTRACT
This paper describes the design and implementation of a
scheme for hiding information in translated natural language
text, and presents experimental results using the implemented
system. Unlike the previous work, which required the pres-
ence of both the source and the translation, the protocol
presented in this paper requires only the translated text for
recovering the hidden message. This is a significant improve-
ment, as transmitting the source text was both wasteful of
resources and less secure. The security of the system is now
improved not only because the source text is no longer avail-
able to the adversary, but also because a broader repertoire
of defenses (such as mixing human and machine translation)
can now be used.

1. INTRODUCTION
Using machine translation for natural language text as

a means for steganographically hiding information [10] is
a promising new technique for text-based steganography.
The key idea behind translation-based steganography is to
hide information in the noise that invariably occurs in nat-
ural language translation. When translating a non-trivial
text between a pair of natural languages, there are typically
many possible translations. Selecting one of these transla-
tions can be used to encode information. In order for an
adversary to detect the hidden message transfer, the ad-
versary would have to show that the generated translation
containing the hidden message could not plausibly be gen-
erated by ordinary translation. Because natural language
translation is particularly noisy, this is inherently difficult.
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For example, the existence of synonyms frequently allows for
multiple correct translations of the same text. The possibil-
ity of erroneous translations increases the number of plausi-
ble variations and, thus, the opportunities for hiding infor-
mation. As compared with other text-based steganography
solutions, the use of translations as a space for hiding in-
formation has the advantage that the information can be
hidden in plausible variations of the text; except for plausi-
ble translation errors, the generated texts are semantically
and rhetorically sound, which is traditionally a significant
problem for steganographic encoders that rely on text syn-
thesis.

However, the translation-based protocol that was previ-
ously proposed [10] has one serious drawback: both the
source text and the translated text have to be transmitted
to the receiver. This is needed because the receiver is re-
quired to execute the same translation process as the sender
in order to recover the hidden message. In addition to con-
suming bandwidth and forcing the receiver to recompute
the translations, transmitting the source text also gives the
adversary additional information to base his attack on.

This paper builds on the previous work and extends the
protocol into one that allows the source text to remain se-
cret, only transmitting the translated text. Sender and re-
ceiver still share a secret key which is used for hiding and re-
trieving the hidden message; however, the receiver no longer
needs to have access to the machine translation system used
by the sender. Furthermore, the sender is now at liberty to
mix human and machine translation, which might be of use
in distracting adversaries who focus on machine translations.

The basic idea of the new variant is best described by
explaining the decoding algorithm. The receiver receives a
translation from the sender which contains a hidden mes-
sage. He first breaks this received text into sentences using
a standardized tokenization function. Then he applies a
keyed hash to each received sentence. The lowest h bits of
the hash are interpreted as an integer b ≥ 0. 1 Then the
lowest [h + 1, h + b] bits in this hash contain the next b bits
of the hidden message. The only other step that the receiver
must perform is to apply an error correction code to the re-
sult, since the sender may not be able to generate a perfect
encoding.

While decoding in this protocol is almost trivial, the diffi-
cult part is for the encoder to generate a translation that
decodes to the given hidden message. The encoder uses
the various translations generated for a given sentence by

1Note that h can be transmitted between sender and receiver
in any number of ways, including as part of the shared secret.



the Lost in Translation (LiT) system [10] and performs a
bounded search over multiple sentences to try to match the
hidden message against the keyed hashes of the various sen-
tences. Given a large enough number of different transla-
tions per sentence for a given h, the encoder statistically
guarantees success. In the rare case where the encoder would
not be able to select a translation that decodes to the de-
sired bit sequence, the redundancy from the use of error
correction codes ensures the success of the decoder.

We have implemented a steganographic encoder and de-
coder that hides messages by selecting appropriate machine
translations. The translations are generated to mimic the
variations and errors that were observed in existing MT sys-
tems [10]. An interactive version of the prototype is available
on our webpage.2

The remainder of the paper is structured as follows. First,
Section 2 reviews related work. In Section 3, the basic pro-
tocol of the steganographic exchange is described. The im-
plementation and some experimental results are sketched in
Section 4. In Section 5, we describe alternative ideas for the
protocol and discuss the impact that the ability to hide the
source text has on the attacker.

2. RELATED WORK
The goal of both steganography and watermarking is to

embed information into a digital object, also referred to as
the cover, in such a manner that the information becomes
part of the object. It is understood that the embedding pro-
cess should not significantly degrade the quality of the cover.
Steganographic and watermarking schemes are categorized
by the type of data that the cover belongs to, such as text,
images or sound.

2.1 Steganography
In steganography, the very existence of the secret mes-

sage must not be detectable. A successful attack consists
of detecting the existence of the hidden message, even with-
out removing it (or learning what it is). This can be done
through, for example, sophisticated statistical analyses and
comparisons of objects with and without hidden informa-
tion.

Traditional linguistic steganography has used limited syn-
tactically-correct text generation [16] (sometimes with the
addition of so-called “style templates”) and semantically-
equivalent word substitutions within an existing plaintext as
a medium in which to hide messages. Wayner [16, 17] intro-
duced the notion of using precomputed context-free gram-
mars as a method of generating steganographic text without
sacrificing syntactic and semantic correctness. Note that se-
mantic correctness is only guaranteed if the manually con-
structed grammar enforces the production of semantically
cohesive text. Chapman and Davida [5] improved on the
simple generation of syntactically correct text by syntacti-
cally tagging large corpora of homogeneous data in order
to generate grammatical “style templates”; these templates
were used to generate text which not only had syntactic and
lexical variation, but whose consistent register and “style”
could potentially pass a casual reading by a human ob-
server. Chapman et al [6], later developed a technique in
which semantically equivalent substitutions were made in
known plaintexts in order to encode messages. Semantically-

2http://www.cs.purdue.edu/homes/rstutsma/stego/

driven information hiding is a relatively recent innovation,
as described for watermarking schemes in Atallah et al [3].
Wayner [16, 17] detailed text-based approaches which are
strictly statistical in nature. However, in general, linguistic
approaches to steganography have been relatively limited.
Damage to language is relatively easy for a human to de-
tect. It does not take much modification of a text for a na-
tive speaker to judge it to be ungrammatical; furthermore,
even syntactically correct texts can easily violate semantic
constraints.

Using translation as a medium for hiding information was
first suggested in [10]. This approach exploits the expected
errors in the translation process to solve issues with plausible
semantic and syntactic generation. The approach proposed
in the present work improves upon this scheme by removing
the requirement that the original text be transmitted with
the stego object to the receiver.

2.2 Machine Translation
Most Machine Translation (MT) systems in use today are

statistical MT systems based on models derived from a cor-
pus, transfer systems that are based on linguistic rules for
the translations, or hybrid systems that combine the two
approaches. While there exist other translation methodolo-
gies, such as semantic MT, they are not considered further
due to the fact that they are not commonly available at this
time.

In statistical MT [1, 4], the system is trained using a bilin-
gual parallel corpus to construct a translation model. The
translation model gives the translator statistical information
about likely word alignments. A word alignment [13, 14] is
a correspondence between words in the source sentence and
the target sentence. For example, for English-French trans-
lations, the system“learns” that the English word “not” typ-
ically corresponds to the two French words “ne pas”. The
statistical MT systems are also trained with a monolingual
corpus in the target language to construct a language model
which is used to estimate what constructions are common
in the target language. The translator then performs an
approximate search in the space of all possible translations,
trying to maximize the likelihood that the translation will
score high in both the translation model and the language
model. The selection of the training data for the construc-
tion of the models is crucial for the quality of the statistical
MT system.

3. PROTOCOL
The steganographic protocol for this paper works as fol-

lows. It is assumed that sender and receiver have previously
agreed on a shared secret key. In order to send a message,
the sender first needs to obtain a cover text in the source
language. The cover does not have to be secret and can be
obtained from public sources - for example, a news website.
This cover is allowed to be public because translations can
(and do) plausibly coexist with original source texts; how-
ever, a secret cover can make various attacks on the system
significantly harder.

The sender then translates the sentences in this source
text into the target language using the steganographic en-
coder. For each sentence in the source text, the stegano-
graphic encoder first creates multiple translations for that
sentence, and subsequently selects of one of these transla-
tions in order to encode bits from the hidden message. The



translated text is then transmitted to the receiver, who re-
trieves the information by applying a keyed hash to each
sentence and then reading the hidden message which is con-
tained in the lowest bits of the hash codes. Figure 1 illus-
trates the basic protocol.

The adversary is assumed to know about the existence
of this basic protocol. The source text is not revealed by
the protocol and is thus potentially not available to the ad-
versary. Back-translation into the source language, if the
adversary is able to discover what the source language is,
is extremely unlikely to enable the adversary to obtain the
source text due to the destructive nature of natural language
translation. It is also simply not practical for the adversary
to flag all seemingly machine-translated messages, since this
would almost certainly result in too large a number of false
positives. In addition, the adversary does not know the se-
cret shared key; thus, hashing the sentences will not enable
the adversary to obtain a secret message and thereby detect
its presence. If the keyed hash alone cannot be considered to
be strong enough, the hidden message itself can additionally
be encrypted with a secret key prior to the steganographic
encoding process.

3.1 Producing translations
The first step for the sender, after finding a source text,

is to produce multiple translations of the text. More specif-
ically, the goal of this step is to produce multiple differ-
ent translations of each sentence. The simplest approach
to achieving this is to apply a subset of all MT systems
available to the sender to each sentence in the source text.
In addition to generating different sentences using multi-
ple translation systems, we also apply post-processing to
the resulting translations to obtain additional variations.
Such post-processing includes transformations that mimic
the noise inherent in any (MT) translation. Various post-
passes are described in [10].

Because translation quality differs between different en-
gines and also depends on which post-processing algorithms
were applied to manipulate the result, the steganographic
encoder uses a heuristic to assign a quality level to each
translation. This quality level describes its relative “good-
ness” as compared to the other translations. The heuristic is
based on both experience with the generators and on algo-
rithms that rank sentence quality based on language mod-
els [7]. The quality level is used to select the best translation
at places where the encoder has a choice between multiple
translations.

3.2 Tokenization
After obtaining the translations, the sender has to run

the same tokenization algorithm that the receiver will ap-
ply. One problem with this is that what used to be a single
sentence in the source text may result in multiple sentences
in the translation. Another problem is with periods that
confuse the sentence tokenizer, such as those indicating ab-
breviation (for example, in “e.g.”). The tokenizer can of
course apply heuristics to detect such idioms, but since it
may fail in detecting unknown idioms, it is important that
the sender and receiver apply the same tokenization algo-
rithm in order to obtain the same sequence of sentences.

3.3 Choosingh

Sender and receiver must agree on a small constant h ≥ 0

which represents the number of bits that will store the length
encoding in each sentence. Selecting this h appropriately is
important. Because the number of bits that can be trans-
mitted in any sentence is bounded by 2h, selecting too small
a value for h will result in low transmission rates even if the
number of variations for a given sentence is high (i.e., a low
h prevents such sentences from achieving their potential to
encode many bits). On the other hand, if h is too high, the
algorithm will frequently fail to find a proper encoding, re-
sulting in a high number of errors. Given k translations of
a given sentence, the probability of the encoder failing for a
given value of h is:
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Note that if h is too large, the frequency of errors will
result in a need for stronger error correction codes, which
will quickly reduce the amount of actual information trans-
mitted. If h is too large for the average number of available
translations, no data can be transmitted any more. For
our prototype, it seems that h ∈ [1, 4] is the useful range.
The specific choice depends on both the source text and the
translation systems that are being used, since these parame-
ters change the average number of available translations per
sentence.

3.4 Selecting translations
For all translations, the encoder first computes a crypto-

graphic keyed hash of each translation using the secret key
that is shared with the receiver. The basic idea is then to se-
lect one sentence among all translations for a given sentence
that hashes to the proper length encoding and the right bits
in the hidden message. However, since the number of bits
encoded in a given sentence is variable, the algorithm has
substantial freedom in doing this. For example, if h = 2
and the hidden message at the current position is 0110 . . .,
then both a hash with 01.0 (encoding h = 01b = 1 and
the first bit of the hidden message 0) and 10.01 (encoding
h = 10b = 2 and the first two bits of the hidden message 01)
are valid choices that result in no encoding errors. One may
be naturally inclined to use a greedy algorithm that picks the
translation that encodes the largest number of bits. How-
ever, suppose that in our example the next sentence only has
one translation which hashes to 11.110. In this case, picking
the shorter matching sequence in the previous sentence can
help avoid encoding errors in the future.

Let a trace L = [S, f, p] be a tuple where S is an ordered
set of translated sentences, f is the number of bit errors that
occured when matching S with the hidden message, and p is
the total number of bits encoded so far. Given a threshold t
on the number of traces to keep at any given point in time,
the encoder uses the following heuristic to construct a cover
text that results in the desired hidden message:

The algorithm starts with the empty trace [∅, 0, 0]. For
each sentence in the original text, the encoder then performs
the following steps. First, it obtains all possible translations
of that sentence. Then for each translation σ and trace
L = (S, f, p), it computes the number of errors e(σ, p) and
bits encoded b(σ, p) that would be incurred if translation σ
was used at position p. The result is a new set of traces
L′(L, σ) = [(S, σ), f + e(σ, p), p + b(σ, p)]. In order to avoid
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Figure 1: Illustration of the basic protocol. The adversary can observe the message between Alice and Bob
containing the selected translation.

an exponential explosion in the number of traces, the al-
gorithm then heuristically eliminates all but t traces before
continuing with the next sentence. The heuristic selects the
t traces L = [S, f, p] with the lowest number of failures f . If
sentences have the same number of failures, the larger offset
p in the hidden message is preferred.

Error-correcting codes are used to correct errors whenever
none of the attempted combinations produces an acceptable
hash code. Given the average number of available trans-
lations, equation (1) can be used to compute the expected
error frequency. Note that the sender can verify that the es-
timates were sufficient by simply decoding the message with
the decoding algorithm. If this fails, the sender may choose
to decrease h, to use a more redundant error correction code,
or both. For h = 0, it is assumed that the lowest bit of the
hash is used to communicate the hidden message; in this
case, the encoding becomes equivalent to the watermarking
scheme presented in [11].

3.5 Optimized Handling of Hash Collisions
In the case where the hashes of two translations happen to

collide in the information-transmitting lower bits, the proto-
col as presented above is unable to encode additional infor-
mation by choosing between these two translations – either
choice would encode exactly the same data. The probability
that no two of the k translations of a sentence have collid-
ing hashes in the ` (= h + 2h) lower bits is Πk−1

i=0 (1− (i2−`)
if k < 2`, and is zero if k ≥ 2`. This probability can be
small even for moderate values of k (the “birthday para-
dox”), so collisions are quite likely for sentences that have
many translations. This puts the new algorithm at a disad-
vantage when compared to the original LiT protocol, which
was always able to encode additional information given ad-
ditional choices. It would be advantageous if a modification
to the new protocol could be found such that additional
bandwidth could be obtained when a choice between differ-
ent sentences that hash to the same (lower) bits exists. This
section describes such a scheme, in which the existence of
many hash collisions at one sentence helps in the sentences
that follow it by providing them with a richer set of hash
choices.

The idea is to use, for the purpose of computing hashes,
a sliding window of w contiguous sentences; that is, the rel-
evant hash for encoding in the ith sentence is now the hash
of the concenation of translated sentences i − w + 1, . . . , i.

Since we implemented the scheme for w = 2, this is the
case we discuss next (the presentation easily generalizes to
w > 2). For w = 2 the sliding window consists of two adja-
cent sentences. The very first sentence of the text, having no
predecessor, is treated as described in the previous section
except that we do not commit to a particular translation:
Rather, we put the (possibly many) acceptable choices in a
tentative list X1 of translations (all equally acceptable for
the first sentence). The advantage of having such a tenta-
tive list X1 is that there is now a factor of |X1| more choices
available for the second sentence: If that second sentence has
a set Y2 of translations then we can now use |X1|·|Y2| hashes
for that second sentence. (Note that hash collisions between
multiple acceptable translations of the first sentence result
in a larger X1, and hence help us with the second sentence.)
It is the second sentence that determines which pair from
X1 × Y2 is selected: A pair (x1, y1) whose hash works for
the second sentence, with ties broken in favor of the pair
(x1, y1) with the largest number of yk ∈ Y2’s for which the
hash of (x1, yk) collides with the hash of (x1, y1) (more on
this below). We then “commit” to x1 as the translation to
be used for the first sentence, and we create a tentative list
X2 ⊆ Y2 for the second sentence, consisting of those ele-
ments yk ∈ Y2 such that the hash of the pair (x1, yk) is the
same as the hash of the selected pair (x1, y1) (the above tie-
breaking rule aims at maximizing X2, because a larger X2

helps us process the third sentence). In general, processing
the ith sentence causes us to (1) commit to one translation
xi−1 from the tentative list Xi−1 of the (i − 1)th sentence,
and (2) create a tentative list Xi of acceptable translations
for the ith sentence.

In some sense, the above-described modification allows
shifting the encoding capacity of sentences with collisions to
later sentences (instead of wasting that capacity). Our im-
plementation uses a window size of only two sentences; how-
ever, a w > 2 can be used at the cost of requiring enough
space to buffer w sentences at a time, as well as the in-
creased computational cost of a larger number of hashes (in
the worst case exponential in w) whose inputs are a factor
of w longer. Note that in describing this modification we
ignored the threshold aspect of the encoder (as described
in section 3.4). Our actual implementation keeps the best
t traces and it then uses a window size of w = 2 for each
trace.



4. EXPERIMENTAL RESULTS
We have implemented the protocol using the infrastruc-

ture from [11]. The system uses various commercial trans-
lation engines [2, 9, 12, 15] to translate each sentence in the
source text. The resulting translations are then subjected to
various post-passes, including changes to articles and prepo-
sitions and second-order semantic substitution. The proto-
type is designed to be easily extended with additional trans-
lation engines and broader dictionaries to improve the va-
riety of translations generated. The experimental results
given in the following paragraphs are for this limited im-
plementation. We expect that a more powerful translation
system that is capable of generating more diverse transla-
tions will perform even better.

Details on the quality of the generated texts are not pre-
sented; there are no significant changes to the translation
generators used in the system presented in [10], and addi-
tional sample translations can be found in [11]. Note that
the implementation does not make use of the possibility of
human translations, which become feasible with the new
protocol. However, it is obvious that human translations
would simply increase the quality and number of different
translations available.

4.1 Protocol Overhead
Figure 2 gives an estimate of the various sources of over-

head in the new protocol. The largest source of overhead is,
as expected, the natural language text itself. Considering
that only a few bits can be hidden in a sentence that may
possibly occupy thousands of bytes, this is not surprising.
Figure 2 also lists the overhead for the length encoding (h).
The error correction column lists the number of bits that are
needed to correct the number of bit errors that occur in the
text using Hamming codes. Note that in practice a few ad-
ditional bits maybe required, since sender and receiver have
to agree on the parameters for the error correction code. In
order to ensure success in encoding, users may choose to
select slighly more conservative estimates of the maximum
number of errors than those listed in Figure 4.

h = 0 h = 1 h = 2 h = 3 h = 4

Total 211264 211448 210840 210456 209816
Length 0 180 360 540 720
ECC 60 0 42 315 1362
Hidden 120 153 380 581 580

Figure 2: This figure shows the total number of bits
that were transmitted for various parts of the en-
coding algorithm for a sample message. Length is h
times the number of sentences. ECC is the number
of bits reserved for error correction (3 per bit error).
The average number of translations per sentence for
this example was k = 72.79. The average length of
the selected translated sentences was 1,168 bits. A
threshold of t = 64 was used for backtracking.

4.2 Effect ofh and t

Selecting appropriate values for h and t is important in or-
der to enable LiJiT to encode reasonable amounts of data.
In general, t should be chosen as high as possible (that is,
within the resource constraints of the encoder). As discussed

in section 3.3, the optimal value of h depends on the con-
figuration of the translation generation system that is used.
Figure 3 shows the impact of different values for h and t in
terms of average number of bits hidden per sentence for a
particular LiT configuration.

Header length (bits)
0 1 2 3 4 5 6

T
ra

ns
m

itt
ed

 (
bi

ts
 p

er
 in

pu
t s

en
te

nc
e)

0

0.5

1

1.5

2

2.5

3

3.5

4
t=1

t=8

t=32

t=64

Figure 3: This figure shows how important it is to
use a good value for the number of length bits (h)
when encoding data. It also illustrates the effect
of the threshold t on the amount of data that can
be hidden. The average number of translations per
sentence for this example was k = 72.79.

4.3 Error Frequency
Figure 4 lists the number of bit errors that are produced

by the encoding for various values of h and different config-
urations for the translators. The configuration of the trans-
lators is abstracted into the average number of translations
generated per sentence. Figure 5 shows that the backtrack-
ing algorithm is effective at reducing the number of errors.

s h = 0 h = 1 h = 2 h = 3 h = 4

1.99 39 3 43 179 486
26.47 20 1 25 129 449
72.79 20 0 14 105 454

Figure 4: This table lists the number of bit errors
encountered with a threshold of t = 64 for different
values of h. The value listed under s is the average
number of translations per sentence (k) generated by
the selected configuration of the translation engine.

t h = 0 h = 1 h = 2 h = 3 h = 4

1 20 11 41 157 511
8 20 0 23 139 473

32 20 0 25 131 446
64 20 0 14 105 454

Figure 5: This table shows the impact of changing
the amount of backtracking done (t) by the selection
algorithm on the number of bit errors. The average
number of translations used for this figure was 72.79.



4.4 Translation Count Distribution
One important parameter for both LiT and LiJiT is the

configuration of the translation generation system. That
configuration selects the machine translators and the modi-
fication passes that are applied to each sentence in the source
text. As Figure 4 shows, more choices in terms of transla-
tions have an immediate impact on how much data can be
hidden – and on what reasonable values for h are. However,
the average number of translations can be misleading. Fig-
ure 6 shows the distribution for a particular configuration.
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Figure 6: This figure shows the distribution of the
number of translations generated for the various
sentences for a particular LiT configuration, namely
the one that generates 72.79 translations on aver-
age. Since the number of translations differs widely,
sentences were grouped into categories of [2k, 2k−1)
translations. As a result, the value on the x-axis
corresponds to the number of bits that we can hope
to encode with the given sentence.

4.5 Data Rate Variance
Figures 7 and 8 show how the difference in terms of num-

ber of translations available for a given sentence impacts the
number of bits stored in that sentence. Note that for large
values of t (Figure 8), the encoding algorithm balances the
encoding capacity (and error potential) between sentences
with few translations and those with many.

The balance is not perfect; in particular, sentences with a
sizeable number of translations still hide many more bits and
have fewer bit errors on average than those that produce few.
This shows that a higher threshold could theoretically still
improve the encoding; however, our implementation cannot
handle higher values for t at this time. The variance in the
distribution should be useful as a metric to estimate the
potential for improvement in using higher values for t.

4.6 Information Leakage
One important point of reference is the total amount of

information that is transmitted for a given bit. Compared
with the previous protocol [10] (LiT), the new LiJtT pro-
tocol needs to transmit additional information. Specifically,
the new protocol adds length information for each sentence
as well as the additional data for the error correction code.
On the other hand, LiJtT no longer needs to transmit the
source text. This raises the question of which protocol is
better in terms of total amount of information (in bits) that

is leaked to the adversary. Figure 9 lists the ratio of the num-
ber of bits of information transmitted to the number of bits
of information communicated for different settings of h and
for different configurations of the base system. The results
show that the new protocol leaks slightly more information.
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Figure 7: This figure shows the average number of
bits stored and the average number of bit errors for
sentences with different numbers of translations. As
in Figure 6, sentences were grouped into categories
of [2k, 2k−1) translations. The data is for a threshold
of t = 1 with a header of h = 4 bits.
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Figure 8: This figure shows the same data as Fig-
ure 7, except that the threshold used by the encoder
in this figure is t = 32.

s LiT h = 0 h = 1 h = 2 h = 3 h = 4

1.99 0.12% 0.03% 0.04% 0.07% 0.07% 0.02%
26.47 0.29% 0.06% 0.07% 0.16% 0.23% 0.22%
72.79 0.37% 0.06% 0.07% 0.18% 0.28% 0.28%

Figure 9: Information density comparison between
LiT and LiJtT. The value listed under s is the aver-
age number of translations per sentence generated
by the selected configuration of the translation en-
gine. The values in the table list ratio of the num-
ber of bits transmitted on the wire to the number of
bits that were hidden. In the same amount of traffic
LiJiT is able to hide about 25-50% less data given
reasonable choices of h.



4.7 Human Translation
So far we have only considered results that use machine

translation and automatic translation variant generation as
proposed in [10]. This makes sense for a direct comparisson
between the original LiT protocol and the new protocol pro-
posed in this paper. However, in addition to not revealing
the original source text to the receiver, the new protocol has
the additional advantage that it can use human translations
as a source for additional translations in the encoding pro-
cess. LiT cannot use human translators since it is impossible
to guarantee that encoder and decoder would independently
end up with the same human translation of the original text.

In contrast, the protocol presented in this paper does not
require the receiver to translate at all. Thus it is conceiv-
able that the sender may use human translation or machine
translation or both to generate sentences. We have used the
new protocol with a high-quality human translation that was
generated independently of any machine translation system
as an additional source for translations. Both the human
translation and the existing machine translations were then
subjected to the translation variant generation process of
LiT to increase the number of available translations even
further. With this approach, it was possible to achieve an
information density of 0.332% (t = 64, h = 4, s = 120.11).

While using human translations is obviously very expen-
sive, this might be a feasible choice in extreme cases where
the total amount of information leaked is considered to be
critical. Using multiple human translations of the same
text without any machine translators and without automatic
variant generation could also be useful in cases where send-
ing machine translated text is not plausible.

5. DISCUSSION

5.1 Wet Paper Codes
One approach to addressing the source text transmission

problem in the original LiT protocol was suggested by Fridrich
and Goljan.3 Wet paper codes [8] are a general mechanism
that allows the sender to transmit a steganographic message
without sharing the selection channel used to hide the infor-
mation with the receiver. The fundamental idea behind wet
paper codes is that the sender is only able to modify certain
locations in the cover object – so-called dry spots. The rest
of the object remains the same as the original cover object.
The receiver cannot differentiate between dry and wet spots
and performs a uniform computation on the cover object to
retrieve the hidden message.

In the original wet paper codes protocol, the cover object
X is assumed to have n discrete elements within range J , in-
cluding k predetermined dry spots. The sender and receiver
have agreed on a parity function P which maps J to {0, 1}.
They also share a q× n binary matrix D where q ≤ k is the
maximum message size. Let X ′ be the cover object that was
modified to hide a message. The receiver obtains the q bits
of the hidden message m from the transmission X ′ using a
simple computation:

m = D · P (X ′). (2)

In [8] the sender solves this system of linear equations for
P (X ′) and inverts P to obtain a suitable variation X ′ of

3Personal communication, June 2005.

the cover object X. The dry spots in X correspond to the
free variables that the sender solves for. What is important
to note is that the linear equation solver used by [8] relies
on fixed locations and values for the wet spots of X. These
locations have to be fixed upfront - before the application of
the algorithm. This is the reason why a direct adoption of
this algorithm is infeasible for the translation-based encoder:
in general, choosing a different translation can change both
the length of the sentence as well as any of the words in
the sentence. In other words, the choice between multiple
translations does not allow for an upfront categorizations of
wet and dry spots.

However, this categorization becomes possible if the LiT
protocol is changed such that a translation is generated be-
fore encoding takes place; the choices made in generation
of this translation cannot directly encode any information,
since the cover object is not yet fixed such that wet and dry
spots can be determined. However, once an initial transla-
tion has been chosen, wet paper encoding can be done by
making modifications to this translation. Because dry spots
have to be predetermined by the sender, they are limited to
single word changes such as semantic substitution and ar-
ticle and preposition changes. In this application, the dry
spots would then be located where there are words in the
translation for which substitutions exist. We did not pur-
sue this particular direction in this paper since we felt that
limiting the generator to word substitutions might exclude
too many plausible variations in the translations. However,
adaptation of wet paper codes to future work is one direction
worth investigating.

5.2 Impact of Hiding the Source Text
The original translation-based steganographic encoder [10]

was open to various attacks. One problem was that since the
source text was known to the attacker, translating the same
sentence in two different ways would raise suspicion since
MT systems are deterministic. With the new protocol, the
source text is secret and thus translating the same sentence
in different ways is acceptable – the attacker cannot notice
this since he is unable to discover that the source sentences
were identicial to begin with.

Hiding the source text also makes statistical attacks sig-
nificantly harder. Previously, if the attacker could construct
a translation model which translations from all available MT
systems obey but which was violated by the steganographic
encoder, he could succeed in detecting the messages. In
constructing this model, the attacker would have been able
to use statistical properties of the entire translation process
(in particular, correlations between source text and gener-
ated translations). For example, the attacker could have
determined the variance in the ratio of the lengths of the
source and target sentences and tried to detect the use of
steganography by finding an unusually high variance. While
constructing such a model is admittedly extraordinarily dif-
ficult, such statistical attacks are no longer possible with
the new protocol, since the attacker no longer has access to
the source text. This limits the construction of the attack
model to only the resultant translations, leaving less diverse
information to base the attack on.

We still cannot preclude the existence of yet-undiscovered
language models for translations that might be violated by
our existing implementation. However, we expect that dis-
covering and validating such a model is a non-trivial task for



the adversary. On the other hand, as pointed out already
in [10], given such a model, it is easy to modify the stegano-
graphic system so as to eliminate deviations by avoiding
sentences that would be flagged.

6. CONCLUSION
This paper presented an improved steganographic proto-

col based on hiding messages in the noise that is inherent
to natural language translation. The steganographic mes-
sage is hidden in the translation by selecting between mul-
tiple translations which are generated by either modifying
the translation process or by post-processing the translated
sentences. The new protocol is able to avoid transmitting
the source text, which makes the protocol easier to use and
simplifies decoding. It also enables the sender to mix hu-
man and machine translation in the encoding process. In
order to defeat the system, an adversary has to demonstrate
that the resulting translation is unlikely to have been gen-
erated by any legitimate translation system. This task is
made more difficult by the fact that the translation is trans-
mitted with no reference to the source text. To date, the
highest bitrate that our prototype has achieved with this
new steganographic protocol is roughly 0.33%; future mod-
ifications to the encoding scheme may yet yield increased
capacity.
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APPENDIX

A. SAMPLE TEXT
This is a short excerpt from the Communist Manifesto

translated from German to English with ’hi’ hidden in 16
bits with h = 3, t = 32, and s = 80.6.

That bourgeoisie has played a most revolutionary role in
who history. The Bourgeoisie, Where they has to the rule
come, all feudalen, patriarchalischen, idyllischen conditions
destroys. The Bourgeoisie undressed every venerable and
activities of their holy light regarded cum pious shyness. It
has the physician, the lawyer, the pfaffen, the poet, whom
man of the science transforms into her paid hired hands.
The Bourgeoisie tore their agitate-sentimental veil from the
family relationship off and attributed it at on pure money
relationship. The bourgeoisie has revealed like the brutal
Kraftaeusserung which admires the reaction on the Middle
Ages so much in which traegsten Baerenhaeuterei found its
suitable addition. Only she has proved what which activ-
ity of which people can manage. It has completely different
wonderworks achieved than Egyptian pyramids, Roman wa-
ter pipelines and gotische cathedrals, it completely different
courses implemented than people migrations and crusades.
Which bourgeoisie cannot exist without constantly revolu-
tionizing that instruments of production, and thereby which
relations of production, and with them the whole relations
of society. An unchanged retention of that old production
way was which first existence condition of all former indus-
trial classes against this. The continual circulation of pro-
duction, the continuous vibration of all social conditions,
the eternal uncertainty and movement distinguish the Bour-
geoisepoche before all different. The need for always more
extensive sales for her products chases that bourgeoisie over
that whole world.
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