
CERIAS Tech Report 2007-01

AN ARCHITECTURAL APPROACH TO PREVENTING CODE INJECTION ATTACKS

by Ryan Riley, Xuxian Jiang, and Dongyan Xu

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086



An Architectural Approach to Preventing Code Injection Attacks

Ryan Riley†, Xuxian Jiang‡, Dongyan Xu†

† CERIAS and Department of Computer Science ‡ Department of Information and Software Engineering
Purdue University, West Lafayette, IN 47907 George Mason University, Fairfax, VA 22030

{ rileyrd, dxu}@cs.purdue.edu xjiang@gmu.edu

Abstract

Code injection attacks, despite being well researched,
continue to be a problem today. Modern architectural solu-
tions such as the NX-bit and PaX have been useful in limiting
the attacks, however they enforce program layout restrictions
and can often times still be circumvented by a determined at-
tacker. We propose a change to the memory architecture of
modern processors that addresses the code injection prob-
lem at its very root by virtually splitting memory into code
memory and data memory such that a processor will never
be able to fetch injected code for execution. This virtual
split-memory system can be implemented as a software only
patch to an operating system, and can be used to supplement
existing schemes for improved protection. Our experimen-
tal results show the system is effective in preventing a wide
range of code injection attacks while incurring acceptable
overhead.

Keywords: Code Injection, Secure Memory Architecture

1. Introduction

Despite years of research, code injection attacks continue
to be a problem today. Systems continue to be vulnerable
to the traditional attacks, and attackers continue to find new
ways around existing protection mechanisms in order to ex-
ecute their injected code. Code injection attacks and their
prevention has become an arms race with no obvious end in
site.

A code injection attack is a method whereby an attacker
inserts malicious code into a running process and transfers
execution to his malicious code. In this way he can gain con-
trol of a running process, causing it to spawn other processes,
modify system files, etc. If the program runs at a privilege
level higher than that of the attacker, he has essentially esca-
lated his access level. (Or, if he has no privileges on a system,
then he has gained some.)

A number of solutions exist that handle the code injection
problem on some level or another. Architectural approaches

[4, 8, 16] attempt to prevent malicious code execution by
making certain pages of memory non-executable. This pro-
tection methodology is effective for many of the traditional
attacks, however attackers still manage to circumvent them
[3]. In addition, these schemes enforce specific rules for pro-
gram layout with regards to separating code and data, and as
such are unable to protect memory pages that contain both.
Compiler based protection mechanisms [17, 18, 23] are de-
signed to protect crucial memory locations such as function
pointers or the return address and detect when they have been
modified. These methods, while effective for a variety of
attacks, do not provide broad enough coverage to handle a
great many modern vulnerabilities [25]. Both of these tech-
niques, architectural and compiler based, focus on preventing
an attacker from executing his injected code, but do nothing
to prevent him from injecting and fetching it in the first place.

The core of the code injection problem is that modern
computers implement a von Neumann memory architecture
[24]; that is, they use a memory architecture wherein code
and data are both accessible within the same address space.
This property of modern computers is what allows an at-
tacker to inject his attack code into a program as data and
then later execute it as code. Wurster et al [22] proposed a
technique to defeat software self checksumming by chang-
ing this property of modern computers (and hence producing
a Harvard architecture [10, 11]), and inspired us to consider
the implications such a change would have on code injection.

We propose virtualizing a Harvard architecture on top of
the existing memory architecture of modern computers so as
to prevent the injection of malicious code entirely. A Harvard
architecture is simply one wherein code and data are stored
separately. Data cannot be loaded as code and vice-versa. In
essence, we create an environment wherein any code injected
by an attacker into a process’ address space cannot even be
addressed by the processor for execution. In this way, we are
attacking the code injection problem at its root by preventing
the injection of the malicious code itself. The technique can
be implemented as a software only patch for the operating
system, and our implementation for the x86 incurs a very
reasonable performance penalty, on average between 10 and

1



20%. Such a software only technique is possible through
careful exploitation of the two translation lookaside buffers
(TLBs) on the x86 architecture in order to split memory in
such a way that it enforces a strict separation of code and
data memory.

An outline of this paper is as follows: We start by pre-
senting current work, and its limitations for code injection,
as well as how those limitations motivate us in section 2.
Next, we expound upon the von Neumann and Harvard ar-
chitectures as well as challenges to building a virtual Harvard
architecture and its applicability to code injection in section
3. After that we describe a technique for implementing a
Harvard architecture on top of the x86 in section 4. Finally,
we describe our implementation for the Linux kernel as well
as provide some benchmarks in section 5 shortly before de-
scribing the system’s limitations in section 6 and concluding
in section 7

2. Related Work and Motivation

Research on code injection attacks has been ongoing for a
number of years now, and a large number of protection meth-
ods have been researched and tested. There are two classes
of techniques that have become widely supported in mod-
ern hardware and operating systems; one is concerned with
preventing the execution of malicious code after control flow
hijacking, while the other is concerned with preventing an
attacker from hijacking control flow.

The first class of technique is concerned with prevent-
ing an attacker from executing injected code using non-
executable memory pages, but does not prevent the attacker
from impacting program control flow. This protection comes
in the form of hardware support or a software only patch.
Hardware support has been put forth by both Intel and AMD
that extends the page-level protections of the virtual memory
subsystem to allow for non-executable pages. (Intel refers
to this as the “execute-disable bit” [16].) The usage of this
technique is fairly simple: Program information is separated
into code pages and data pages. The data pages (stack, heap,
bss, etc) are all marked non-executable. At the same time,
code pages are all marked read-only. In the event an attacker
exploits a vulnerability to inject code, it is guaranteed to be
injected on a page that is non-executable and therefore the
injected code is never run. Microsoft makes use of this pro-
tection mechanism in some of its operating systems, calling
the feature Data Execution Protection (DEP) [4]. This me-
diation method is very effective for traditional code injection
attacks, however it requires hardware support in order to be
of use. Legacy x86 hardware does not support this feature.
This technique is also available as a software-only patch to
the operating system that allows it to simulate the execute-
disable bit through careful mediation of certain memory ac-
cesses. PAX PAGEEXEC [8] is an open source implemen-
tation of this technique that is applied to the Linux kernel.

This technique, like the hardware execute-disable bit, is ef-
fective against common code injection attacks. Despite being
implemented in software and using a certain level of mem-
ory mediation, the method is still fast and results in minimal
overhead. It functions identically to the hardware supported
version, however it also supports legacy x86 hardware due to
being a software only patch.

The second class of technique has a goal of preventing
the attacker from hijacking program flow, but does not con-
cern itself with the injected code. Works such as StackGuard
[17] accomplish this goal by emitting a “canary” value on
the stack that can help detect a buffer overflow. ProPolice
[18] (currently included in gcc) builds on this idea by also
rearranging variables to prevent overflowed arrays from ac-
cessing critical items such as function pointers or the return
address. Stack Shield [23] uses a separate stack for return ad-
dresses as well as adding sanity checking to ret and func-
tion pointer targets. Due to the fact that these techniques
only make it their goal to prevent control flow hijacking, they
tend to only work against known hijacking techniques. That
means that while they are effective in some cases, they may
miss many of the more complicated attacks. Wilander et al
[25], for example, found that these techniques missed a fairly
large percentage (45% in the best case) of attacks that they
implemented in their buffer overflow benchmark.

Due to the fact that the stack based approaches above do
not account for a variety of attacks, in this work we are pri-
marily concerned with addressing limitations in the architec-
tural support of the execute-disable bit. While this technique
is widely deployed and has proven to be effective, it has lim-
itations. First, programs must adhere to the “code and data
are always separated” model. See Figure 1a for an exam-
ple of this memory layout. In the event a program has pages
containing both code and data (see Figure 1b) the protection
scheme cannot be used. In fact, such “mixed pages” do ex-
ist in real-world software systems. For example, the Linux
kernel uses mixed pages for both signal handling [5] as well
as loadable kernel modules. A second problem with these
schemes is that a crafty attacker can disable or bypass the
protection bit using library code already in the process’ ad-
dress space and from there execute the injected code. Such
an attack has been demonstrated for the Windows platform
by injecting code into non-executable space and then using
a well crafted stack containing a series of system calls or
library functions to cause the system to create a new, exe-
cutable memory space, copy the injected code into it, and
then transfer control to it. One such example has been shown
in [3].

It is these two limitations in existing page-level protection
schemes (the forced code and data separation and the by-
pass methodology) that provide the motivation for our work,
which architecturally addresses the code injection problem
at its core. Note that our architectural approach is orthogo-
nal to research efforts on system randomization, such as Ad-

2



(a) (b)

Figure 1. (a) Separate code and data pages (b)
Mixed code and data pages in real-world soft-
ware

dress Space Layout Randomization (ASLR) [7, 13, 14, 27]
and Instruction Set Randomization (ISR) [12, 20, 21]. By
randomizing the memory layout of a running process, ASLR
makes it hard for attackers to accurately locate injected attack
code or existing program code (e.g., libc functions), hence
preventing attackers from successfully hijacking the control
flow. ISR instead creates a unique instruction set for each
individual process so that instructions in attack code fail to
execute correctly even after attackers have successfully hi-
jacked the control flow. We point out that these system ran-
domization systems all work on a single memory architecture
wherein code and data are accessible within the same address
space. Our approach, to be described in the next section, in-
stead creates a different memory architecture where code and
data are separated.

3. An Architectural Approach

At its root, code injection is a problem because proces-
sors permit code and data to share the same memory address
space. As a result, an attacker can inject his payload as data
and later execute it as code. The underlying assumption re-
lied on by attackers is that the line between code and data is
blurred and not enforced. For this reason, we turn to an al-
ternative memory architecture that does not permit code and
data to be interchanged at runtime. This is called a Harvard
architecture [10, 11].

3.1. The Harvard and von Neumann Mem-
ory Architectures

Modern computers and operating systems tend to use
what is known as a von Neumann memory architecture. Un-
der a von Neumann system there is one physical memory
which is shared by both code and data. As a consequence
of this, code can be read and written like data and data can

be executed like code. Many systems will use segmentation
or paging to help separate code and data from each other or
from other processes, but code and data end up sharing the
same address space. Figure 2a illustrates a von Neumann
architecture.

An architecture not found in most modern computers (but
found in some embedded devices) is known as a Harvard
architecture. Under the Harvard architecture code and data
each have their own physical address space. One can think
of a Harvard architecture as being a machine with two dif-
ferent physical memories, one for code and another for data.
Figure 2b shows a Harvard architecture.

3.2. Harvard and Code Injection

A code injection attack can be thought of as being carried
out in four distinct, but related, stages:

1. The attacker injects code into a process’ address space.
2. The attacker determines the address of the injected

code.
3. The attacker somehow hijacks the program counter to

point to the injected code.
4. The injected code is executed.

The mediation methods mentioned in section 2 are designed
to handle the problem by preventing either step 3 or 4. Non-
executable pages are designed to prevent step 4, while com-
piler based approaches are meant to prevent step 3. In both
cases, however, the malicious code is injected, but execu-
tion is somehow prevented. Our solution, on the other hand,
is meant to prevent the successful injection of the malicious
code into a process’ code space, hence stopping the attack at
step 1.

The Harvard architecture’s split memory model makes it
suitable for the prevention of code injection attacks due to
the fact that a strict separation between code and data is en-
forced at the hardware level. Any and all data, regardless
of the source, is stored in a different physical memory from
instructions. Instructions cannot be addressed as data, and
data cannot be addressed as instructions. This means that in
a Harvard architecture based computer, a code injection at-
tack is not possible because the architecture is not capable of
supporting it. The attacker is simply unable to inject any in-
formation whatsoever into the instruction memory’s address
space and at the same time is unable to execute any code
placed in the data memory. The architecture is, by its nature,
impervious to code injection attacks. In a sense, a Harvard
architecture does not have the “features” required for a suc-
cessful code injection attack. However, we point out that
this does not prevent an attacker from mounting non con-
trol injection attacks (e.g., non-control-data attack [15]) on a
Harvard architecture. We touch on these attacks in section 6.

3



(a) (b)

Figure 2. (a) von Neumann Architecture. (b) Harvard Architecture

3.3. Challenges in Using a Harvard Archi-
tecture

While a Harvard architecture may be effective at mitigat-
ing code injection, the truth of the matter is that for any new
code injection prevention technique to be practical it must be
usable on modern commodity hardware. As such, the chal-
lenge is to construct a Harvard architecture on top of a widely
deployed processor such as the x86. We first present a few
possible methods for creating this Harvard architecture on
top of the x86.

Modifying x86

One technique for creating such an architecture is to make
changes to the existing architecture and use hardware virtu-
alization [2] to make them a reality. The changes required
in the x86 architecture to produce a Harvard architecture are
fairly straight forward modifications to the paging system.

Currently, x86 implements paging by having a separate
pagetable for each process and having the operating system
maintain a register (CR3) that points to the pagetable for the
currently running process. One pagetable is used for the pro-
cess’ entire address space, both code and data. In order to
construct a Harvard architecture, one would need to maintain
two different pagetables, one for code and one for data. As
such, our proposed change to the x86 architecture to allow
it to create a Harvard architecture is to create an additional
pagetable register in order that one can be used for code
(CR3-C) and the other for data (CR3-D). Whenever an in-
struction fetch occurs, the processor uses CR3-C to translate
the virtual address, while for data reads and writes CR3-D
is used. An operating system, therefore, would simply need
to maintain two separate pagetables for each process. This
capability would also offer backwards compatibility at the
process level, as the operating system could simply maintain
one pagetable and point both registers to it if a process re-
quires a von Neumann architecture. We note that no changes

would need to be made to the processor’s translation looka-
side buffer (TLB) as modern x86 processors already have a
separate TLB for code and data.

While this approach to the problem may be effective, the
requirement that the protected system be run on top of hard-
ware virtualization inhibits its practicality. As such, another
approach is needed.

Exploiting x86

Another technique for creating this Harvard architecture is
to make unconventional use of some of the architecture’s
features in order to create the appearance of a memory that
is split between code and data. Through careful use of the
pagetable and the TLBs on x86, it is possible to construct a
Harvard memory architecture at the process level using only
operating system level modifications. No modifications need
to be made to the underlying x86 architecture, and the sys-
tem can be run on conventional x86 hardware without the
need for hardware virtualization as in the previous method.

In the following sections we will further describe this
technique as well as its unique advantages.

4. Split Memory: A Harvard Architecture on
x86

Now that we have established that it is our intention to
exploit, not change, the x86 architecture in order to create a
virtual split-memory system, we will now describe the tech-
nique in greater detail.

4.1. Virtual Memory and the TLB

We first present a brief overview of paging on the x86 with
an emphasis on the features we intend to leverage. Readers
familiar with paging on the x86 might wish to skip this sec-
tion.

4



Pagetables and the TLB

Virtual memory on the x86 is implemented using operating
system managed pagetables that are stored in memory. When
the hardware needs to translate a virtual address to a physical
address, it accesses the table (the address of which is stored
in a register) to find the correct mapping. This procedure,
while effective, can be very slow due to the fact that each
memory access now requires 3 total accesses into memory,
2 into the pagetable and 1 into the data requested. To com-
bat this slowdown, a small hardware cache called the trans-
lation lookaside buffer (TLB) is used to store recently ac-
cessed pagetable entries. As such, many pagetable lookups
never actually need to go all the way to the pagetable, but
instead can be served by the TLB. On the x86 the loading
of the TLB is managed automatically by the hardware, but
removing entries from it can be handled by either software
or hardware. The hardware, for example, will automatically
flush the TLB when the OS changes the address of the cur-
rently mapped pagetable (such as during a context switch)
while the software can use the invlpg instruction to in-
validate specific TLB entries when making modifications to
individual pagetable entries in order to ensure that the TLB
and pagetables remain synchronized.

While the TLB is able to quite effectively speedup virtual
memory on the x86, one problem is that due to the fact that it
is limited in size, old entries are automatically removed when
new ones come in. As a consequence of this, a program that
has lots of random data access could end up removing the en-
tries for its code, causing those code accesses to reference the
pagetable once again. To help prevent this problem, the TLB
is split into two TLBs on modern x86 processors, one for code
and one for data. During normal operation one would want to
ensure that the two TLBs do not contain conflicting entries
(where one address could be mapped to different physical
pages, depending on which TLB services the request).

4.2. Virtualizing Split Memory on x86

As mentioned in section 4.1, modern processors have split
TLBs. This feature can be exploited by a crafty operating
system to route data accesses for a given virtual address to
one physical page, while routing instruction fetches to an-
other. By desynchronizing the TLBs and having each contain
a different mapping for the same virtual page, every virtual
page may have two corresponding physical pages: One for
code fetch and one for data access. In essence, a system is
produced where any given virtual memory address could be
routed to two possible physical memory locations. This cre-
ates a split memory architecture, as illustrated in Figure 3.

This split memory architecture is an environment wherein
an attacker can exploit a vulnerable program and inject code
into its memory space, but never be able to actually fetch it
for execution. This is because the physical page that con-

Figure 3. Split Memory Architecture

tains the data the attacker managed to write into the program
is not accessible during an instruction fetch, because instruc-
tion fetches will be routed to an un-compromised code page.

In addition, the attacker cannot easily circumvent the split
memory architecture, as it is enforced by the operating sys-
tem and hardware working together. In order to circumvent
the protection, an attacker would have to take control of the
operating system. However, this can usually be done after a
code injection attack is successful.

What to Split

Before we discuss the technical details behind successfully
splitting a given page, it is important to note that different
pages in a process’ address space may be chosen to split
based on how our system will be used.

One potential use of the system is to augment the existing
non-executable page methods by expanding their protection
to allow for protecting mixed code and data pages. Under this
usage of the system, the majority of pages under a process’
address space would be protected using the non-executable
pages, while the mixed code and data pages would be pro-
tected using our technique. Using this scheme, chances are
high that only a few of the process’ pages would need to be
protected using our method. Note that this assumes we have
a good understanding of the memory space of the program
being protected.

Another potential use of our system, and the one which we
use in our prototype in section 5.1, is to protect every page
in a process’ memory space. This is a more comprehensive
type of protection than simply augmenting existing schemes.
Note that in this case, more pages are chosen to be split and
thus protected.

How to Split

Once it is determined which pages will be split, the technique
for splitting a given page is as follows:

1) On program start-up, the page that needs to be split is du-
plicated. This produces two copies of the page in physical

5



Algorithm 1: Split-Memory Page Fault Handler
Input: Faulting Address (addr), CPU instruction

pointer (EIP), Pagetable Entry for addr (pte)

if addr == EIP then /* Code Access */1

pte = the code page;2

unrestrict(pte);3

enable single step();4

return;5

else /* Data Access */6

pte = the data page;7

unrestrict(pte);8

read byte(addr);9

restrict(pte);10

return;11

end12

Algorithm 2: Debug Interrupt Handler
Input: Pagetable Entry for previously faulting address

(pte)

if processor is in single step mode then1

restrict(pte);2

disable single step();3

end4

memory. We choose one page to be the target of instruc-
tion fetches, and the other to be the target of data accesses.

2) The pagetable entry (PTE) corresponding to the page we
are splitting is set to ensure a page fault will occur on a
TLB miss. In this case, the page is considered restricted,
meaning it is only accessible when the processor is in su-
pervisor mode. We accomplish it by setting or enabling
the supervisor bit [16] in the PTE for that page. If super-
visor is marked in a PTE and a user-level process attempts
to access that page for any reason, a page fault will be
generated and the corresponding page fault handler will
be automatically invoked.

3) Depending on the reasons for the page fault, i.e., either
this page fault is caused by a data TLB miss or it is caused
by an instruction TLB miss, the page fault handler be-
haves differently. Note that for an instruction-TLB miss,
the faulting address (saved in the CR2 register [16]) is
equal to the program counter (contained in the EIP reg-
ister); while for a data-TLB miss, the page fault address
is different from the program counter. In the following,
we describe how different TLB misses are handled. The
handling algorithm is outlined in algorithm 1.

Loading the Data-TLB

The data-TLB is loaded using a technique called a pagetable
walk, which is a procedure for loading the TLB from within
the page fault handler. The pagetable entry (PTE) in question

is set to point to the data page for that address, the entry is
unrestricted (we unset the supervisor bit in the PTE, hence
allowing user-level access to the page again), and a read off
of that page is performed. As soon as the read occurs, the
memory management unit in the hardware reads the newly
modified PTE, loads it into the data-TLB, and returns the
content. At this point the data-TLB contains the entry to the
data page for that particular address while the instruction-
TLB remains untouched. Finally, the PTE is restricted again
to prevent a later instruction access from improperly filling
the instruction-TLB. Note that even though the PTE is re-
stricted, later data accesses to that page can occur unhindered
because the data-TLB contains a valid mapping. This load-
ing method is also used in the PAX [8] protection model and
is known to bring the overhead for a data-TLB load down to
reasonable levels.

In algorithm 1 this process can be seen in lines 7–11.
First, the pagetable entry is set to point to the data page and
unrestricted by setting the entry to be user accessible instead
of supervisor accessible. Next, a byte on the page is touched,
causing the hardware to load the data-TLB with a pagetable
entry corresponding to the data page. Finally, the pagetable
entry is re-protected by setting it into supervisor mode once
again.

Loading the Instruction-TLB

The loading of the instruction-TLB has additional compli-
cations compared to that of the data-TLB, namely because
there does not appear to be a simple procedure such as a
pagetable walk that can accomplish the same task. Despite
these complications, however, a technique introduced in [22]
for circumventing software self checksumming on a generic
processor can be used to load the instruction-TLB on the x86.

Once it is determined that the instruction-TLB needs to
be loaded, the PTE is unrestricted, the processor is placed
into single step mode, and the faulting instruction is restarted.
When the instruction runs this time the PTE is read out of
the pagetable and stored in the instruction-TLB. After the
instruction finishes then the single step mode of the processor
generates an interrupt, which is used as an opportunity to
restrict the PTE.

This functionality can be seen in algorithm 1 lines 2–5 as
well as in algorithm 2. First, the PTE is set to point to the cor-
responding code page and is unprotected. Next, the proces-
sor is placed into single step mode and the page fault handler
returns, resulting in the faulting instruction being restarted.
Once the single step interrupt occurs, algorithm 2 is run, ef-
fectively restricting the PTE and disabling single step mode.

As an interesting side note, we created another
instruction-TLB loading method that did not require the use
of single-step mode through carefully adding a ret instruc-
tion to the page and then calling it from the page fault
handler, but surprisingly this actually decreased the system’s

6



efficiency. It is our understanding that the slowdown was
caused by the x86 maintaining cache coherency. In essence,
when the write to the code page occurs, the processor inval-
idates the memory caches corresponding to that page, and
also invalidates any portions of the instruction pipeline cur-
rently containing instructions fetched from that page. Unfor-
tunately, this causes undesirable performance degradation to
the system.

4.3. Effects on Code Injection

A split-memory architecture produces an address space
where data cannot be fetched by the processor for execution.
For an attacker attempting a code injection, this will prevent
him from fetching and executing any injected code. A sam-
ple code injection attack attempt on a split-memory architec-
ture can be seen in Figure 4 and described as follows:

1. The attacker injects his code into a string buffer start-
ing at address 0xbf000000. The memory writes are
routed to physical pages corresponding to data.

2. At the same time as the injection, the attacker overflows
the buffer and changes the return address of the function
to point to 0xbf000000, the expected location of his
malicious code.

3. The function returns and control is transferred to ad-
dress 0xbf000000. The processor’s instruction fetch
is routed to the physical pages corresponding to instruc-
tions.

4. The attacker’s malicious code is not on the instruction
page (the code was injected as data and therefore routed
to a different physical page) and is not run. In all likeli-
hood, the program simply crashes.

4.4. Overhead

This technique of splitting memory does not come without
a cost, there is some overhead associated with the method-
ologies described above.

First, in general, this technique will cause more page
faults when the process first starts up due to the fact that ev-
ery page in the address space is initially marked to trigger a
page fault. After that initial set of faults, however, the PTEs
end up being stored in the TLB and the memory accesses can
proceed at full speed.

A second potential problem is the use of the processor’s
single step mode for the instruction-TLB load. This loading
process has a fairly significant overhead due to the fact that
two interrupts (the page fault and the debug interrupt) are
required in order to complete it. This overhead ends up being
minimal overall for many applications due to the fact that
instruction-TLB loads are fairly infrequent, as it only needs
to be done once per page of instructions.

A third problem is that of context switches in the operat-
ing system. For the two potential speed problems mentioned

above, we have noted that once the TLB is loaded the over-
head associated with the page faults and loading techniques
goes away. The problem, however, is that whenever a context
switch (meaning the OS changes running processes) occurs,
the TLB is flushed and the page faults must happen all over
again once the protected process is switched back in. The
problem of context switches is, in fact, the greatest cause of
overhead in the implemented system. The experimental de-
tails of the overhead can be seen in section 5.3.

5. Implementation and Evaluation

5.1. Proof of Concept Implementation

An x86 implementation of the above method has been cre-
ated by modifying version 2.6.13 of the Linux kernel. In this
section, we present a description of the modifications to cre-
ate the architecture.

Modifications to the ELF Loader

ELF is a format that defines the layout of an executable file
stored on disk. The ELF loader is used to load those files
into memory and begin executing them. This work includes
setting up all of the code, data, bss, stack, and heap pages as
well as bringing in most of the dynamic libraries used by a
given program.

The modifications to the loader are as follows: After the
ELF loader maps the code and data pages from the ELF file,
for each one of those pages two new, side-by-side, physical
pages are created and the original page is copied into both of
them. This effectively creates two copies of the program’s
memory space in physical memory. The pagetable entries
corresponding to the code and data pages are changed to map
to one of those copies of the memory space, leaving the other
copy unused for the moment. In addition, the pagetable en-
tries for those pages get the supervisor bit cleared, placing
that page in supervisor mode in order to be sure a page fault
will occur when that entry is needed. A previously unused
bit in the pagetable entry is used to signify that the page is
being split. In total, about 90 lines of code are added to the
ELF loader.

In this particular implementation of split memory the
memory usage of an application is effectively doubled, how-
ever this limitation is not one of the technique itself, but in-
stead of the prototype. A system can be envisioned based
on demand-paging (only allocating a code or data page when
needed) instead of the current method of proactively dupli-
cating every virtual page.

Modifications to the Page Fault Handler

Under Linux, the page fault (PF) handler is called in response
to a hardware generated PF interrupt. The handler is respon-

7



(a) (b) (c)

Figure 4. (a) Before the attacker injects code. (b) The injection to the data page. (c) The execution
attempt that gets routed to the instruction page.

sible for determining what caused the fault, correcting the
problem, and restarting the faulting instruction. (Or termi-
nating the process if it is doing something it shouldn’t be.)

For our modifications to the PF handler we simply mod-
ify the PF handler to handle a new reason for a PF: There
was a permissions problem caused by the supervisor bit in
the PTE. We must be careful here to remember that not every
PF on a split page is necessarily our fault, some PFs (such as
ones involving copy-on-write), despite being on split mem-
ory pages, must be passed on to the rest of the PF handler
instead of being serviced in a split memory way. If it is deter-
mined that the fault was caused by a split memory page and
that it does need to be serviced, then the instruction pointer
is compared to the faulting address to decide whether the
instruction-TLB or data-TLB needs to be loaded. (Recall
from algorithm 1 that this is done by simply checking if the
two are the same.)

If the data-TLB needs to be loaded, then the PTE is set to
user mode, a byte on the page is touched, and the PTE is set
back to supervisor mode. This pagetable walk loads the data-
TLB1. In the event the instruction-TLB needs to be loaded,
the PTE is set to user mode (to allow access to the page) and
the trap flag (single-step mode) bit in the EFLAGS register
is set. This will ensure that the debug interrupt handler gets
called after the instruction is restarted. Before the PF han-
dler returns and that interrupt occurs, however, a little bit of
bookkeeping is done by saving the faulting address into the
process’ entry in the OS process table in order to pass it to
the debug interrupt handler.

In total there were about 110 lines of code added to the
PF handler to facilitate splitting memory.

Modifications to the Debug Interrupt Handler

The debug interrupt handler is used by the kernel to handle
interrupts related to debugging. For example, using a debug-
ger to step through a running program or watch a particular

1Occasionally the pagetable walk does not successfully load the data-
TLB. In this case, single stepping mode (like the instruction-TLB load) must
used.

memory location makes use of this interrupt handler. For the
purposes of split memory, the handler is modified to check
the process table to see if a faulting address has been given,
indicating that this interrupt was generated because the PF
handler set the trap flag. If this is the case, then it is safe
to assume that the instruction which originally called the PF
has been restarted and successfully executed (meaning the
instruction-TLB has been filled) and as such the PTE is set
to supervisor mode once again and the trap flag is cleared. In
total, about 40 lines of code were added to the debug inter-
rupt handler to accommodate these changes.

Modifications to the Memory Management System

There are a number of features related to memory manage-
ment that must be slightly modified to properly handle our
system. First, on program termination any split pages must
be freed specially to ensure that both physical pages (the
code page and data page) get put back into the kernel’s pool
of free memory pages. This is accomplished by simply look-
ing for the split memory PTE bit that was set by the ELF
loader above, and if it is found then freeing two pages in-
stead of just one.

Another feature in the memory system that needs to be up-
dated is the copy-on-write (COW) mechanism. COW is used
by Linux to make forked processes run more efficiently.
That basic idea is that when a process makes a copy of it-
self using fork both processes get a copy of the original
pagetable, but with every entry set read-only. Then, if ei-
ther process writes to a given page, the kernel will give that
process its own copy. (This reduces memory usage in the
system because multiple processes can share the same physi-
cal page.) For split memory the COW system must copy both
pages in the event of a write, instead of just one.

A update similar to the COW update is also made to the
demand paging system. Demand paging basically means that
a page is not allocated until it is required by a process. In this
way a process can have a large amount of available memory
space (such as in the BSS or heap) but only have physical
pages allocated for portions it actually uses. The demand

8



Table 1. The number of attacks halted when code is injected onto the data, bss, heap, and stack
segments.

Attack Type Hijack Type
Injection Destination

Data BSS Heap Stack

Buffer overflow on stack

Return address X X X X

Old base pointer X X X X

Function pointer as local variable X X X X

Function pointer as parameter X X X X

Longjmp buffer as local variable X X X X

Longjmp buffer as function parameter X X X X

Buffer overflow on heap/bss
Function pointer X X X X

Longjmp buffer X X X X

Buffer overflow of pointers on stack

Return address N/A N/A X N/A
Old base pointer N/A N/A N/A N/A
Function pointer as local variable X X X X

Function pointer as parameter X X X X

Longjmp buffer as local variable X X X X

Longjmp buffer as function parameter X X X X

Buffer overflow on heap/bss

Return address N/A N/A X N/A
Old base pointer N/A N/A N/A N/A
Function pointer as variable X X X X

Longjmp buffer as variable X X X X

paging system was modified to allocate two pages instead of
just the one page it normally does.

Overall, about 75 lines of code were added to handle these
various parts related to memory management.

5.2. Effectiveness

The sample implementation was tested for its effective-
ness at preventing code injection attacks using a benchmark
originally put forth by Wilander et al [25]. The benchmark
was modified slightly in order to allow it to handle having the
code injected on the data, bss, heap, and stack portions of the
program’s address space. In addition, four of the testcases
did not successfully execute an attack on our unprotected
system, and so have been labeled “N/A.” Table 1 shows the
results of running the benchmark. The checkmarks indicate
that the system successfully halted the attack. As can be seen,
the system was effective in preventing all types of code in-
jection attacks present in the benchmark. The effectiveness
of the system is due to the fact that no matter what method
of control-flow hijacking the benchmark uses, the processor
is simply unable to fetch the injected code.

5.3. Performance

A number of benchmarks, both applications and micro-
benchmarks, were used to test the performance of the sys-
tem. Our testing platform was a modest system, a Pentium III
600Mhz with 384 MB of RAM and a 100MBit NIC. When
applicable, benchmarks were run 10 times and the results av-
eraged. Details of the configuration for the tests are available

Table 2. Configuration information used for
performance evaluation

Item Version Configuration
Slackware 10.2.0 Using Linux 2.6.13
Apache 2.2.3 Worker mpm mode, set to spawn

one process with threads
ApacheBench 2.0.41-dev -c3 -t 60 <url/file>
Unixbench 4.1.0 N/A
Nbench 2.2.2 N/A
Gzip 1.3.3 Compress a 256 MB file.

 0

 20

 40

 60

 80

 100

nbench
worst case

unixbench
overall

gzip
256 meg file

apache2.2
32KB pages

%
 o

f f
ul

l s
pe

ed

Plain
Protected

Figure 5. Normalized performance for applica-
tions and benchmarks

in table 2. Each result has been normalized with respect to
the speed of the unprotected system.

Four benchmarks that we consider to be a reasonable as-
sessment of the system’s performance can be found in Fig-

9



 0

 20

 40

 60

 80

 100

apache2.2
1KB pages

unixbench
pipe ctxsw

%
 o

f f
ul

l s
pe

ed

Plain
Protected

Figure 6. Stress-testing the performance
penalties due to context switching

 0

 20

 40

 60

 80

 100

5122561286432168421

%
 o

f f
ul

l s
pe

ed

Page size (kilobytes)

Plain
Protected

Figure 7. Closer look into Apache perfor-
mance

ure 5. First, the Apache [1] webserver was run in a threading
mode to serve a 32KB page (roughly the size of Purdue Uni-
versity’s main index.html). The ApacheBench program was
then run on another machine connected via the NIC to deter-
mine the request throughput of the system as a whole. The
protected system achieved a little over 89% of the unpro-
tected system’s throughput. Next, gzip was used to compress
a 256 MB file, and the operation was timed. The protected
system was found to run at 87% of full speed. Third, the
nbench [6] suite was used to show the performance under a
set of primarily computation based tests. The slowest test
in the nbench system came in at just under 97%. Finally,
the Unixbench [9] unix benchmarking suite was used as a
micro-benchmark to test various aspects of the system’s per-
formance at tasks such as process creation, pipe throughput,
filesystem throughput, etc. Here, the split memory system
ran at 82% of normal speed. This result is slightly disap-
pointing, however it can be easily explained by looking at
the specific test which performed poorly, which we do be-
low. As can be seen from these four benchmarks, the system
has very reasonable performance under a variety of tasks.

If we simply left our description of the system’s perfor-
mance to these four tests, some readers may object that given
the description of the system so far and the mention in sec-

tion 4.4 of the various sources of overhead, something must
be missing from our benchmarks. As such, two benchmarks
contrived to highlight the system’s weakness can be found in
Figure 6. First, one of the Unixbench testcases called “pipe
based context switching” is shown. This primarily tests how
quickly a system can context switch between two processes
that are passing data between each other. The next test is
Apache used to serve a 1KB page. In this configuration,
Apache will context switch heavily while serving requests.
In both of these tests, context switching is taken to an ex-
treme and therefore our system’s performance degrades sub-
stantially due to the constant flushing of the TLB. As can be
seen in the graph, both are at or below 50%. In addition,
in Figure 7, we have a more thorough set of Apache bench-
marks demonstrating this same phenomena, namely that for
low page sizes the system context switches heavily and per-
formance suffers, where as for larger page sizes that cause
Apache to spend more time on I/O as well as begin to saturate
the system’s network link, the results become significantly
better. These tests show very poor performance, however we
would like to note that they are shown here to be indicative
of the system’s worst case performance under highly stress-
ful (rather than normal) conditions.

Overall, the system’s performance is reasonable, in most
cases being between 80 and 90% of an unprotected system.
Moreover, if split memory was supported at the hardware
level as described in section 3.3, the overheard would be al-
most non-existent. Based on previous work [26], we also
have reason to believe that building the split-memory system
on top of an architecture with a software loaded TLB, such
as SPARC, would also provide further performance improve-
ments.

6. Limitations

There are a few limitations to our approach. First, as
shown in other work [19], a split memory architecture does
not lend itself well to handling self-modifying code. As such,
self-modifying programs cannot be protected using our tech-
nique. Second, this protection scheme offers no protection
against attacks which do not rely on executing code injected
by the attacker. For example, modifying a function’s re-
turn address to point to a different part of the original code
pages will not be stopped by this scheme. Fortunately, ad-
dress space layout randomization [7] could be combined with
our technique to help prevent this kind of attack. Along
those same lines, non-control-data attacks [15], wherein an
attacker modifies a program’s data in order to alter program
flow, are also not protected by this system. We have also
not analyzed the system’s functionality on programs that in-
clude dynamically loadable modules (such as DLL files on
windows) but do not anticipate that such programs would be
difficult to support.

10



7. Conclusions

In this paper, we present an architectural approach to pre-
vent code injection attacks. Instead of maintaining the tradi-
tional single memory space containing both code and data,
which is often exploited by code injection attacks, our ap-
proach creates a split memory that separates code and data
into different memory spaces. Consequently, in a system pro-
tected by our approach, code injection attacks may result in
the injection of attack code into the data space. However,
the attack code in the data space can not be fetched for exe-
cution as instructions are only retrieved from the code space.
We have implemented a Linux prototype on the x86 architec-
ture. Our experimental results show the system is effective
in preventing a wide range of code injection attacks while
incurring acceptable overhead.

References

[1] The apache http server project. http://httpd.apache.
org/. Last accessed Dec 2006.

[2] bochs: The open source ia-32 emulation project. http://
bochs.sourceforge.net/. Last accessed Dec 2006.

[3] Buffer overflow attacks bypassing dep (nx/xd bits) - part 2 :
Code injection. http://www.mastropaolo.com/?p=
13. Last accessed Dec 2006.

[4] A detailed description of the data execution prevention
(dep) feature in windows xp service pack 2, windows xp
tablet pc edition 2005, and windows server 2003. http:
//support.microsoft.com/kb/875352. Last ac-
cessed Dec 2006.

[5] kernelthread.com: Securing memory. http:
//www.kernelthread.com/publications/
security/smemory.html. Last accessed Dec 2006.

[6] Linux/unix nbench. http://www.tux.org/∼mayer/
linux/bmark.html. Last accessed Dec 2006.

[7] Pax aslr documentation. http://pax.grsecurity.
net/docs/aslr.txt. Last accessed Dec 2006.

[8] Pax pageexec documentation. http://pax.
grsecurity.net/docs/pageexec.txt. Last
accessed Dec 2006.

[9] Unixbench. http://www.tux.org/pub/tux/
benchmarks/System/unixbench/. Last accessed
Dec 2006.

[10] H. H. Aiken. Proposed automatic calculating machine. 1937.
Reprinted in The Origins of Digital Computers Selected Pa-
pers, Second Edition, pages 191–198, 1975.

[11] H. H. Aiken and G. M. Hopper. The automatic sequence con-
trolled calculator. 1946. Reprinted in The Origins of Digital
Computers Selected Papers, Second Edition, pages 199–218,
1975.

[12] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Ste-
fanovic, and D. D. Zovi. Randomized Instruction Set Emu-
lation to Disrupt Binary Code Injection Attacks. 10th ACM
CCS, 2003.

[13] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfus-
cation: An Efficient Approach to Combat a Broad Range of
Memory Error Exploits. 12th USENIX Security, 2003.

[14] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient Tech-
niques for Comprehensive Protection from Memory Error Ex-
ploits. 14th USENIX Security, 2005.

[15] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. Iyer. Non-
control-data attacks are realistic threats. In Proc. USENIX
Security Symposium, aug 2005.

[16] I. Corporation. IA-32 Intel Architecture Software Developer’s
Manual Volume 3A: System Programming Guide, Part 1. Intel
Corp., 2006. Publication number 253668.

[17] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stack-
Guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. 7th USENIX Security Con-
ference, pages 63–78, San Antonio, Texas, jan 1998.

[18] H. Etoh. Gcc extension for protecting applications from
stack-smashing attacks. http://www.trl.ibm.com/
projects/security/ssp/.

[19] J. Giffin, M. Christodorescu, and L. Kruger. Strengthening
software self-checksumming via self-modifying code. In Pro-
ceedings of the 21st Annual Computer Security Applications
Conference (ACSAC 2005), pages 18–27, Tucson, AZ, USA,
Dec. 2005. Applied Computer Associates, IEEE.

[20] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering
Code-Injection Attacks With Instruction-Set Randomization.
10th ACM CCS, 2003.

[21] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D.
Keromytis. Building a Reactive Immune System for Software
Services. USENIX Annual Technical Conference, 2005.

[22] P. C. van Oorschot, A. Somayaji, and G. Wurster. Hardware-
assisted circumvention of self-hashing software tamper resis-
tance. IEEE Trans. Dependable Secur. Comput., 2(2):82–92,
2005.

[23] Vendicator. Stack shield: A “stack smashing” technique
protection tool for linux. http://www.angelfire.
com/sk/stackshield/info.html. Last accessed
Dec 2006.

[24] J. von Neumann. First draft of a report on the edvac. 1945.
Reprinted in The Origins of Digital Computers Selected Pa-
pers, Second Edition, pages 355–364, 1975.

[25] J. Wilander and M. Kamkar. A comparison of publicly avail-
able tools for dynamic buffer overflow prevention. In Pro-
ceedings of the 10th Network and Distributed System Security
Symposium, pages 149–162, San Diego, California, February
2003.

[26] G. Wurster. A generic attack on hashing-based software tam-
per resistance. Master’s thesis, Carleton University, Canada,
Apr 2005.

[27] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent Runtime
Randomization for Security. In Proc. of 22nd Symposium on
Reliable and Distributed Systems (SRDS) , Florence, Italy,
Oct. 2003.

11


