
CERIAS Tech Report 2007-02

SECURITY MECHANISMS FOR CONTENT DISTRIBUTION
NETWORKS

by Yunhua Koglin

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

SECURITY MECHANISMS FOR CONTENT DISTRIBUTION NETWORKS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Yunhua Koglin

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2006

Purdue University

West Lafayette, Indiana

ii

To my Dad and my Mom

No words in the world can express how much I thank you

for your love and your support

iii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Elisa Bertino,

who has been an invaluable teacher during my Ph.D. study at Purdue University. Her

insightful guidance and advice have made substantial differences in my work. I cannot

thank her enough for all her help and support.

I would also like to thank the other members of my committee, Professors Arif

Ghafoor, Sunil Prabhakar and Ninghui Li for their time and support. Most especially,

I would like to thank Professor Sonia Fahmy for reading my dissertation and providing

valuable feedback.

It has been my greatest pleasure to work along with Professor Elena Ferrari and

Dr. Giovanni Mella during my Ph.D. study. Their valuable advice and suggestions

have helped me make great improvements in my research. I am especially impressed

by their detail-oriented attitude toward research and I greatly appreciate their help.

Most of all, I would like to thank my beloved Dad, Mom, my sisters, brothers, and

especially my husband Donald, for their great support and encouragement. Without

their love and support, this dissertation would not exist.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 Introduction . 1
1.1 Objectives of this work . 3

2 An update protocol for XML documents in distributed and cooperative systems 5
2.1 Preliminaries . 5

2.1.1 Flow and access control policies 5
2.1.2 Atomic elements and document regions 6

2.2 General overview . 9
2.3 S-RPF protocols . 10

2.3.1 Assumptions . 10
2.3.2 Server protocol . 10
2.3.3 S-RPF construction . 11
2.3.4 Control information . 16
2.3.5 Subject protocol . 18
2.3.6 Recovery protocol . 19

2.4 Analysis and discussions . 20
2.4.1 Correctness analysis . 20
2.4.2 Complexity analysis . 21

2.5 Conclusion and future work . 27

3 XML document updates in Byzantine and failure-prone distributed systems 28
3.1 Motivating example . 28
3.2 Related work . 30
3.3 Specification languages . 31
3.4 Control information . 35

3.4.1 Preliminary definitions . 35
3.4.2 Document control information 38

3.5 General system overview . 42
3.5.1 Assumptions . 44
3.5.2 Protocol parameters setting 45

3.6 Distributed and cooperative update process protocols 45
3.6.1 Terminology and structures 46

v

Page
3.6.2 DO protocol . 51
3.6.3 Subject protocol . 51
3.6.4 Delegate protocol . 53

3.7 Recovery . 55
3.8 Performance evaluation . 58

3.8.1 Experimental setup . 59
3.8.2 Results . 59

3.9 Conclusion and future work . 61

4 A cryptographic approach to access control for privacy preserving collabo-
rations . 63
4.1 Introduction . 63
4.2 Model . 64

4.2.1 Threats . 65
4.3 Preliminary . 65
4.4 Secure collaborative document processing 68

4.4.1 Updating process protocol . 68
4.4.2 Recovery protocol . 70

4.5 Security analysis . 71
4.5.1 Confidentiality . 71
4.5.2 Integrity . 72
4.5.3 Privacy . 72
4.5.4 Participant completeness . 73

5 Timely dissemination of confidential events in content-based publish/subscribe
systems . 74
5.1 Introduction . 74
5.2 Model . 77
5.3 Hierarchial event routing scheme . 77

5.3.1 Hierarchy event routing . 78
5.3.2 Discussion . 81

5.4 Confidentiality-preserving event delivery 82
5.4.1 Discussion . 84
5.4.2 Dynamics and rekeying . 85

5.5 Simulation results . 86
5.5.1 Space Requirements . 87
5.5.2 Time Delay . 89
5.5.3 Broker Involvement . 92

5.6 Related work . 92
5.7 Conclusions and future work . 94

LIST OF REFERENCES . 95

VITA . 100

vi

LIST OF TABLES

Table Page

2.1 Notations for efficiency analysis . 24

2.2 Time analysis in the case of no recovery 25

3.1 Modification declaration structure . 38

3.2 Control data structures for document atomic elements 39

3.3 Components of the control data structures for document atomic elements 39

3.4 Control data structures for non-modifiable document regions 40

3.5 Components of the control data structures for non-modifiable document
regions . 40

3.6 Modifiable region classification . 41

3.7 Control data structures for modifiable document regions 41

3.8 Components of the control data structures for FDUR 42

3.9 Messages . 50

5.1 Event forwarding table of broker 111 . 80

5.2 Event forwarding table of broker 213 . 80

vii

LIST OF FIGURES

Figure Page

2.1 (a) An example of XML document and (b) its corresponding graph repre-
sentation . 7

2.2 Document pre-procssing . 9

2.3 (a) An example of Path and ACIS, (b) the corresponding S-RPF graph . 11

2.4 Algorithm for S-RPF construction . 12

2.5 Procedure AddEdges . 13

2.6 Control information specification . 17

2.7 Generating control information for S5 . 18

2.8 Case study for the total time to complete the update 24

3.1 An example of XML document . 32

3.2 (a) The X -Sec Policy Base template and (b) an example of Policy Base . 33

3.3 Examples of X -Sec credentials . 33

3.4 A possible flow policy . 34

3.5 Messages exchange . 49

3.6 Time (no recovery) . 60

3.7 Time (with recovery) . 60

3.8 Time (with optimizations) . 61

4.1 Algorithm for finding session group . 70

5.1 A 3-ary tree formed by broker groups . 78

5.2 The locality of brokers . 79

5.3 Hierarchy event forwarding algorithm . 80

5.4 Space requirement [1] for a broker (uniform) 87

5.5 Space requirement [2] for a broker (uniform) 87

5.6 Space requirement [1](σ = 1/6 of event space) 88

viii

Figure Page

5.7 Space requirement [2] (σ = 1/6 of event space) 88

5.8 Space requirement [1] for a broker (σ =50) 88

5.9 Space requirement [2] for a broker (σ =50) 88

5.10 Space requirement [1] (σ = 5) . 89

5.11 Space requirement [2] (σ =5) . 89

5.12 Number of subscription groups [1] (σ = 1/6 of event space) 89

5.13 Number of subscription groups [2] (σ = 1/6 of event space) 89

5.14 Number of subscription groups [1] (σ = 5) 90

5.15 Number of subscription groups [2] (σ = 5) 90

5.16 Number of subscription groups [1] (σ =50) 90

5.17 Number of subscription groups [2] (σ =50) 90

5.18 Time delay (uniform) . 91

5.19 Time delay (σ = 1/6 of event space) . 91

5.20 Time delay (σ =5) . 91

5.21 Time delay (σ =50) . 91

5.22 The number of brokers involved . 93

ix

ABSTRACT

Koglin, Yunhua Ph.D., Purdue University, December, 2006. Security Mechanisms for
Content Distribution Networks. Major Professor: Elisa Bertino.

Securing data is becoming a crucial need for most internet-based applications. In

this research, we investigate security mechanisms for content distribution networks.

We address the problem of how to ensure that data, when moving among different

parties, are modified only according to the stated policies. We cast our solution in sup-

porting parallel and distributed secure updates to XML documents. The approach,

based on the use of a security region-object parallel flow (S-RPF) graph protocol, al-

lows different users to simultaneously update different portions of the same document,

according to the specified access control policies. It ensures data confidentiality and

integrity. Additionally, it supports a decentralized management of update operations

in that a subject can exercise its privileges and verify the correctness of the operations

performed so far on the document without interacting, in most of the cases, with the

document server.

We then extend our document update application into Byzantine and failure prone

systems by removing the trusted party which is responsible for recovery of the docu-

ment. We have developed an approach which uses a group of delegates for recovering

documents. Many optimizations have been provided.

We improve previous solutions by proposing a scalable distributed protocol which

uses cryptographic techniques to provide dynamic group communications, participat-

ing anonymity and completeness, and privacy on access privileges.

Other security problems such as confidentiality and availability are also investi-

gated in the application of content-based publish/subscribe (pub/sub) systems. We

propose a hierarchical event forwarding scheme which increases system availability by

x

tolerating some broker failures. Our approach can efficiently determine the subscrip-

tion groups to which an event must be delivered by exploiting locality. Moreover, we

propose an efficient encryption scheme, under which a broker encrypts an event only

once. The encryption key can be efficiently derived by subscribers, even though they

may belong to different subscription groups.

1

1 INTRODUCTION

Content distribution networks (CDNs) are all those applications which support data

dissemination, searching and retrieval. With the wide spread use of the internet,

CDNs have been studied extensively [1–21]. Most previous research focuses on en-

hancing the performance of CDNs by replication. Different mechanisms (such as

[22–26]) are used to deploy content replication on trusted cache proxies scattered

around the Internet. When receiving a client request, instead of asking a content

server for the requested contents, a proxy first checks if these contents are locally

cached. Only when the requested contents are not cached or out of date are the

contents transferred from the content server to the clients. If there is a cache hit, net-

work bandwidth consumption can be reduced. A cache hit also reduces access latency

for clients. System performance therefore improves, especially when large amounts

of data are involved. Besides these improvements, caching makes the system robust

by letting caching proxies to provide content distribution services when the server is

down or the network is congested.

Secure content distribution has recently received more attention from both academia

and industry than before, due to the increasing emphasis on security in many appli-

cations. Ensuring content security in distributed environments is challenging. For ex-

ample, content may be easily modified or accessed when they are transmitted across

the internet; a compromised replica may violate access control of content, or dam-

age integrity by maliciously modifying the content. Moreover, with the emerging of

various network appliances and heterogeneous client environments, there are other

relevant new requirements for content services by intermediaries [6, 7] which make

security enforcement difficult. For example, content from the server may need to be

transformed in order to adapt to the requirements of a client’s security policy, de-

vice capabilities, preferences and so forth. Therefore, several content services have

2

been identified that include, but are not limited to: content trans-coding [6–8,13], in

which data is transformed from one format into another, data filtering, and value-

added services, such as watermarking [10]. Other relevant services are related to

personalization, according to which special-purpose proxies can tailor the contents

based on user preferences,current activities, and past access history.

The use of the Internet for exchanging and managing data has pushed the need for

techniques and mechanisms that secure information when it flows across the net. Con-

fidentiality and integrity are two main security properties that must be ensured to data

or information in all those distributed cooperative applications, such as collaborative

e-commerce [11], distance learning, telemedicine and e-government. Confidentiality

means that data can only be accessed by subjects who are authorized by the stated

access control policies. Integrity means that data can only be modified by authorized

subjects.

Even though several access control mechanisms, specifically tailored to the man-

agement of web documents [1, 5, 19, 27–34], have been proposed, the problem of in-

tegrity has not been much investigated, even though it is a common requirement in

many application environments that not all parties be authorized to modify any data

that is exchanged. This is one major limitation of the previous research. Another

limitation is that most previous access control mechanisms heavily rely on a server

to mediate access to data. We are interested in reducing the server overhead, as

it is particularly important for performance; also, it is a basic requirement in some

contexts, such as real-time adaptive content delivery or mobile ad-hoc networks.

In this research, we address several issues to support decentralized and cooperative

data modification over the Web by casting our application in XML document updates.

A first requirement, that is investigated in [35] is the development of a high level

language for the specification of flow policies, that is, policies regulating the set of

subjects that must receive a document during the update process. The second is

the development of an infrastructure and related algorithms to enforce confidentiality

3

and integrity during the process of distributed and collaborative document updates

[36, 37].

Other issues such as availability are also important. We investigate availability

problem in the context of content-based publish/subscribe (pub/sub) systems. Previ-

ous research on content-based pub/sub systems mainly focuses on the efficient match-

ing performed by brokers. However, security issues have seldom been addressed, even

though they are the basic requirements for some applications. For example, when a

subscriber has registered by paying a fee for receiving events that satisfy its subscrip-

tion, a broker failure should not prevent the subscriber from receiving these events

on time. Moreover, other users who did not subscribe to these events should not have

access to them, thus confidentiality is also need to be addressed.

1.1 Objectives of this work

The main objectives of this work are:

• to devise mechanisms to support data confidentiality and integrity, especially

when data is moving around several parties according to the flow policy.

• to devise mechanisms to support data availability, cast in the application of

content-based publish/subscribe systems.

• to devise mechanisms to support fault tolerance in content distribution net-

works.

The remainder of this dissertation is structured as follows. In the next chapter,

we present a protocol which support parallel and distributed secure updates to XML

documents. Chapter 3 extends our work by removing the trusted server which is

responsible for recovering during the update process. We then further extend the

work in Chapter 4 by proposing an protocol which uses cryptographic techniques to

provide dynamic group communications, participating anonymity and completeness,

4

and privacy on access privileges. Finally, we present our result in content-based pub-

lish/subscribe systems in Chapter 5. We do not include a separate section on related

work, as such work is discussed in the chapters to which they are most appropriate.

5

2 AN UPDATE PROTOCOL FOR XML DOCUMENTS IN DISTRIBUTED

AND COOPERATIVE SYSTEMS

In this chapter, we propose an approach supporting parallel and distributed secure

updates to XML documents. The approach, based on the use of a security region-

object parallel flow (S-RPF) graph protocol, is particularly suited for all environments

requiring cooperative updates to XML documents. It allows different users to simul-

taneously update different portions of the same document, according to the specified

access control policies. Additionally, it supports a decentralized management of up-

date operations in that a subject can exercise its privileges and verify the correctness

of the operations performed so far on the document without interacting, in most of

the cases, with the document server.

We cast our protocol in the framework of XML [38] 1 because of the widespread

adoption of such a standard in a large variety of application environments. Also,

XML organizes data according to hierarchical nested structures thus facilitating the

update parallelization. However, the techniques we present here can be easily adapted

to other hierarchical document formats.

2.1 Preliminaries

2.1.1 Flow and access control policies

Flow policies explicitly define the order according to which subjects have to receive

the document, whereas access control policies specify each subject’s privileges over

the document. These privileges include update and read. Update privileges allow a

subject to modify, insert or delete certain portion(s) of a document. Read privileges

1Therefore in the following we use the terms data and documents as synonyms.

6

allow a subject to browse only certain portion(s) of the document. These portions

could be attribute(s), or element(s) of a document, as we will explain later.

In the following, we denote with the term Policy Base (PB) the set of flow and

access control policies apply to the set of documents managed by a document server

(DS). The flow path of the document among the subjects is denoted as Path =
〈
subject0, subject1, . . . , subjectN , subject(N+1)

〉
, where subject0 = subject(N+1) is DS.

Thus we assume that the server is always the first and the last subject in the path. A

subject can appear more than one time in Path and its privileges over the document

may not be the same every time.

To enforce authenticity/integrity, public-key algorithms, such as RSA, are used

for digitally signing the documents. We assume that DS knows the public keys of

the subjects involved in the update process and that all subjects know the public key

of DS. Thus the path a document must follow can also be specified in terms of the

public keys of the subjects that must receive the document. More precisely, Path =
〈
pubk0, pubk1, . . . , pubkN , pubk(N+1)

〉
denotes the path that the document must follow,

where pubk0 = pubk(N+1) is the public key of DS, and pubki is the public key of the

ith subject in the document flow sequence.

2.1.2 Atomic elements and document regions

An XML document [38,39] is formed by tagged elements. A tagged element may

have one or more sub-elements, and one or more attributes. Elements can be nested.

Because of this feature, an XML document may be represented according to a graph

structure [36] as illustrated by Figure 2.1.

An atomic element (AE) is either an attribute or the starting and ending tags of

an element. An atomic region (AR) is a set of atomic elements to which the same

access control policies apply. We assume that each region be uniquely identified.

A region can be either modifiable or non-modifiable. A region is non-modifiable

by a subject if this subject can only read it. A region is modifiable by a subject if

7

S

S

</leader>1S

</report>
</leader>S<leader>

<leader>

</report>

<leader>
<report>

</business>

<business>

<leader>

<report>

<report>

<report>
</R&D>

<R&D>
</manufacture>

</leader>

10/01/2004

&11&8

dcdcdc dc

S4S1

(b)

reportleaderreportleader

&1

&5

R&D

manufacture
market

business

date

(a)

<manufacture>

&12 &13&3

&2

&4

3

4

</leader>

</report>

2

</report>

</market>

<market>

</annual_report>

<annual_report date="10/1/2004">

Figure 2.1. (a) An example of XML document and (b) its correspond-
ing graph representation

this subject possesses the authorization to modify it, according to the access control

policies.

Based on the above definitions, we introduce the following notations:

Let D = {ae1, ae2, . . . , aem} be a document to be exchanged, consisting of a set of

atomic elements each of them individually identified by an identifier. Document D is

partitioned into a set of regions {R1, R2, . . . , RK} such that each region consists of a

region identifier (i) assigned by DS and of a set of atomic elements. We denotes a re-

gion as Ri = (i, {aeji
1
, aeji

2
, . . . , aeji

r
} where i ∈ {1, . . . , K} and for any t ∈ {j i

1, ..., j
i
r},

1 ≤ t ≤ m. Atomic elements within the same region are distinct and atomic elements

within disjoint regions are distinct.

Each document in our approach has an associated access control information struc-

ture (ACIS). Let D be a document, the corresponding ACIS is defined as {ar0, . . . ,

arN , ar(N+1)} such that:

• ari = (mod, non-mod)

Access regions are split into modifiable and non-modifiable regions.

8

• mod ⊆ {1, . . . , K}, non-mod ⊆ {1, . . . , K}

The modifiable region set and non-modifiable region set are subsets of the entire

regions.

• mod ∩ non-mod = ∅

If a region is modifiable for a subject, it cannot be in the non-modifiable set of

this subject and viceversa.

All regions are considered modifiable by DS.

A region object O is an instance of the information in a region. A region object is

associated with the region identifier, the subject who authors it, and the time when

the subject authors it. Time is not a concern with respect to integrity; so we denote

a region object O with a tuple (r, pubkey), where r ∈ {1, . . . , K} and pubkey is the

public key of the subject who generates this region information. If a region Ri is

authored by two different subjects, with public key of pubkl and pubkm, there will be

two different region objects, one is (Ri, pubkl) and another one is (Ri, pubkm), even

though the information in region Ri may be the same. In XML, a region object can

be expressed as an element and the tag denotes the region identifier.

All subjects participating in the update process use the same one-way hash func-

tion for integrity. When a subject subj updates a region Ri, it generates one-way hash

of the region object Oi it has authored. It then encrypts the hash with its private key,

thereby signing this region object. The signed hash will flow together with the region

object to which it corresponds. When a receiver s checks if Oi is authored by subj, s

generates a one-way hash of Oi and decrypts the signed hash with subj’s public key

that s received from DS in the control information. If the signed hash matches the

hash value that s generated, the region object Oi is valid.

A package exchanged among subjects contains one or more region objects. Each

package starts with sid which denotes that this package is for the receiver who is

the ith subject in the Path. Following sid there are region objects. Each region

object includes an attribute of hash which is the encrypted hash from the subject

who authored this region object.

9

2.2 General overview

The goal of the S-RPF protocol is to efficiently support updates in distributed

and cooperative systems, and at the same time, to enforce flow and security policies.

Before starting the update process, DS determines a path P that the document

must follow. DS also generates an access control information structure for each subject

according to the security and flow policies for each subject (see Figure 2.2). From P

and ACIS, DS constructs a S-RPF graph and then derives the control information

(CI) for each subject from the graph. This control information specifies which regions

a subject will receive and how the subject can check the integrity of each region object

it receives. After DS sends out the control information for each subject, the update

process starts.

XML ACIS

S−RPF

Document

Path

CI

PB

Figure 2.2. Document pre-procssing

During the update process, each subject decrypts the package it receives; then it

uses the control information from DS to check the integrity of and to authenticate the

received package. After passing these checks, the subject may execute operation(s)

on region(s) of the document over which it possesses privileges. Once the update

operations are completed, the subject signs the region object(s) which it is authorized

to update with its private key, also in the case in which it does not alter the region

information. Finally, the subject enciphers the packages according to the control

information and sends them to the next receivers.

10

2.3 S-RPF protocols

In this section, we illustrate the two protocols on which our approach relies, that

is, the server protocol, executed by DS, and the subject protocol, which is executed

by a subject upon receiving a document package. Before doing that, we state the

assumptions on which they rely.

2.3.1 Assumptions

We make the following assumptions for XML document updates:

• The subjects participating in the updates are cooperative. The completion of

the update depends on each subject. If one subject cheats more than twice,

a receiver will notify DS and DS may broadcast that the updates failed and

aborted. A recovery mechanism is detailed in Section 2.3.6.

• DS has access to the flow policies and to the security policies of the document.

The DS is a trusted entity. It determines these policies before the update

process starts. Then these policies are enforced and are not modified during the

execution of the update process.

• There is no collusion among the subjects. Each subject does not share infor-

mation with other subjects.

2.3.2 Server protocol

The server protocol includes the following steps: (1) construct the S-RPF graph,

(2) generate and send each subject its own control information, and (3) send to the

first subject(s) the encrypted package(s). In the following, we illustrate all such steps.

11

2.3.3 S-RPF construction

S-RPF is a directed graph G (see Figure 2.3(b)), where each node represents an

element in the flow path, and an arc between si and sj denotes that sj has to access

a document region after si has accessed it. The arc is labeled with the name of the

corresponding region and with the id of the last subject that modifies it.

S1

{}{R1, R2}
{R4}{}

S4

DS

S3
S2

S1 <(R2,S1)>

<(
R1

,S
3)

,(R
3,

S3
)>

<(
R

1,
D

S)
>

<(
R4,S

4)
>

<(R
2,S1)>

S2

(b)

{}
{R1,R2,R3,R4}

{}
mod

(a)

non−mod
{R1,R2,R3,R4}

{R2}
{R2}
{R1}

{R1, R3}

DSS4S3

<(R
1,D

S),(R
3,D

S)>

DS

DS <(R4,DS)>

<(R2,S1)>
<(R1,DS),(R

2,DS)>

Figure 2.3. (a) An example of Path and ACIS, (b) the corresponding S-RPF graph

DS builds the S-RPF according to the following rule:

S-RPF Rule: Each region object, which is accessed by a subject that

does not author it, flows only once out of the subject who authors it.

This rule enforces the correctness of the protocol (see Section 2.4.1). The algo-

rithm in Figure 2.4 is used to construct the S-RPF graph. It aims at maximizing the

parallelism of the process enabling the maximum number of subjects to work con-

currently. This feature reduces the total amount of time required to accomplish the

update process. The algorithm is organized according to the following main phases:

1. Initialization. A node in the graph represents an element in the flow path

(since a subject may appear more than once in the flow path, in the graph, subjecti

and subjectj may be the same subject). We also store in each node the necessary

12

Algorithm Construct-RPF
Input: Path, ACIS
Output: G = (V, E)

1. for each i = 0 to N + 1 :
add node subjecti and
subjecti.pred = ∅
subjecti.suc = ∅
subjecti.reg = ∅

2. for each i = 1 to K :
Reg[i].s = Path.pubk0

for each i = 1 to N + 1
R = ACIS.ari
for each r ∈ R

add (r, Reg[r].s) to subjecti.reg
if r ∈ R.mod
Reg[r].s = subjecti.pubkey

3. AddEdges(Path, ACIS, G)
4. for each i = 1 to N

R = ACIS.ari
for each (r, s) ∈ subjecti.reg

if s = Path.pubki

j =delete-pred(i, r)
delete-succ(j, i, r)
if r ∈ R.non-mod

for each su ∈ subjecti.succ
if r ∈ su.reg

delete-succ(i, su.sid, r)
t = delete-pred(su.sid,r)
add-pred(j, r, su.sid)
add-succ(su.sid, r, j)

Figure 2.4. Algorithm for S-RPF construction

information that we will use for generating control information for each node. This

step initializes each node’s predecessors (pred), successors (succ) and regions (reg)

which this subject is authorized to access. See Figure 2.6 for the definitions of pred

and succ.

2. Labeling regions. For each subject in the graph, this step labels each region that

this subject is authorized to access with the public key of the subject who authored

this region. We use array Regi to store the public key of the last subject that authored

13

Procedure AddEdges
Input: Path, ACIS, G
Output: G

1. A = ACIS; AR = A.ar0
for each r ∈ AR

for j = 1 to N + 1

if r ∈ A.arj .mod
add-pred(0, r, j); add-succ(j, r, 0); break

if r ∈ A.arj .no-mod
add-pred(0, r, j); add-succ(j, r, 0)
A.arj .non-mod= A.arj .non-mod \{r}

2. for each i = 1 to N
AR = A.ari

2.a for each r ∈ AR.mod
for j = i+ 1 to N + 1

if r ∈ (A.arj .mod ∪ A.arj .non-mod)
& Path.pubkj 6= Path.pubki

add-pred(i, r, j); add-succ(j, r, i); break
if r ∈ A.arj .mod & Path.pubkj = Path.pubki

break
if r ∈ A.arj .non-mod & Path.pubkj = Path.pubki

A.arj .non-mod = A.arj .non-mod \{r}
2.b for each r ∈ AR.non-mod

for j = i+ 1 to N + 1

if r ∈ A.arj .mod
add-pred(i, r, j); add-succ(j, r, i); break

if r ∈ A.arj .non-mod
add-pred(i, r, j); add-succ(j, r, i)
A.arj .non-mod = A.arj .non-mod \{r}

Figure 2.5. Procedure AddEdges

region i and a structure ari that contains the accessible regions for the ith subject in

Path.

3. Adding edges. The procedure AddEdges, reported in Figure 2.5, updates G

by inserting edges for each subject in G, according to Path and ACIS.

4. Application of the S-RPF rule. If a region object O is to be received later by

the subject subj who authored it, we remove it from subj’s incoming edges. If subj

only has read access to O later and needs to send O to another subject subs, then the

predecessor which is supposed to send O back to subj will send O to subs.

14

Procedure AddEdges (Figure 2.5) works according to the following strategy: a

subject that has modified a region R sends it to the first subsequent subject s in

Path that can access (read or modify) it. If s can only read this region, it forwards

the region to all subsequent subjects S in the path that can only read R until a subject

m is found that can modify R. Also m will receive from s the region. All subjects

in S will not send out R to anyone. Thus the subject that has generated a region

object cannot distribute different versions of the same region to different subsequent

subjects because they have to receive that region object from another subject.

The main phases in the procedure AddEdges are as followed:

1. Generating the outgoing regions for DS. This phase also adds incoming region

for subjects in Path. A region will be received by all the subjects that can only read

that region, following DS and preceding the first subject in Path that can modify the

region. Also this last subject will receive this region from DS.

2. Generating the outgoing regions for all subjects. This phase also adds incoming

regions for subjects in Path and DS. We analyze, in order, for each subject in Path

the following:

2.a Modifiable regions. A region will be received only by the first subsequent

receiver that can access (read or modify) the region. As a subject may appear in

Path several times, this receiver must not be the current subject. A region object O

will not appear in the flow if the next receiver of O is the subject who authored it

and the next receiver has update privilege over it.

2.b Non-modifiable regions. A region will be received by all the subjects that can

only read that region, following the current one and preceding the first subject in

Path that can modify the region. Also this last subject will receive this region from

the current subject.

If there is no element p ∈ subjectx.pred such that p.pid = i, function add-pred(i,

r, x) inserts in the set subjectx.pred an element p where: (1) p.pid = i, (2) p.sk = k

and k is a symmetric key generated by DS (3) p.reg = 〈t〉 where t is the tuple in

subjecti.reg such that t.r = r. Otherwise it appends t in p.reg.

15

If there is no element su ∈ subjecti.succ such that su.sid = x, function add-

succ(x, r, i) inserts in the set subjecti.succ an element su where: (1) su.sid = x, (2)

su.sk = k and k = subjectx.pred.p.sk, (3) su.reg = 〈r〉. Otherwise it appends r in

su.reg.

delete-pred(i, r) function deletes r from p.reg such that p ∈ subjecti.pred and

r ∈ p.reg, and returns an index p.pid. subjecti will not expect to receive a region r

from its predecessor subjectp.pid. If p.reg = ∅ , then delete p from subjecti.pred.

delete-succ(j, i, r) function deletes r from su.reg such that (1) su ∈ subjectj.succ,

(2) su.sid = i, (3) r ∈ su.reg. subjectj will not send region r to its successor subjecti.

If su.reg = ∅, then delete su from subjectj.succ.

So it is possible that different subsets of all non-modifiable regions are sent to

different subjects, and the same region object can be sent to different receivers by

the same subject. According to the algorithm for the construction of S-RPF, a given

region of the document cannot be updated by more than one subject at a time.

From above, the S-RPF graph that DS generated has the following properties:

• If no subject has access rights to a region R, then no region object O such that

O.r = R will appear in the flow of the S-RPF graph.

• If a region object is modified by a subject subj, then this region object will not

flow out from subj and a new region object will start at subj.

• A region object may have several copies flowing in the graph at the same time.

• No region object flows back to the subject who authored it.

• If no subject has update rights on a region R, but at least one subject has access

to this region, then a region object O, such that O.r = R, will start its flow at

DS and its author will be DS.

From above, we can easily derive the following property:

Property 1: The flow of each region object among the subjects in the

update process is acyclic.

16

Based on this feature, the S-RPF protocol could allow any static update policy.

For example, during the update process a region can be modified more than once by a

subject, or a region could be updated by a subject, and later on, read by the subject.

Even though the original path may contain cycles among all subjects, based on the

algorithm we presented in this chapter, each region object flows among all subjects

in an acylic way.

2.3.4 Control information

The Control Information (CI) contains, for each subject in the path, the corre-

sponding incoming package templates and outgoing package templates. Figure 2.6

details the structure of CI.

An incoming package template contains the symmetric key for the receiver to

decrypt an incoming package; it also includes the sequence of regions the incoming

package will contain, and for each region the public key of the last subject who

authored this region. The goal of an incoming package template is to help a receiver

to verify that the package it receives is from a specified sender and to verify that

the content of the package is correct up to that point. Different subjects will receive

different incoming templates from DS. An outgoing package template includes the

symmetric key for the sender to encrypt the package and the sequence of regions to

be sent in this package, so the sender can organize a package for its successor with

the correct content.

After building the S-RPF graph G, it is easy for DS to generate control information

for each subject. DS just copies G.subjecti.pred and G.subjecti.succ to CIi.pred and

CIi.succ, then sends to each subject its control information.

Example 1 Suppose that S5 receives R1, R2, R3, R4 from S1, S2, S3, and S4, respectively

and that R1, R2, R3, R4 are updated by S1, S2, S3, and S4, respectively (Figure 2.7).

The instructions from DS to S5 are: to read R1 and send it to DS (no one will access R1

anymore), to form a new package which consists of three regions, R2, R3 and R4 and to send

17

CI = {CI0, CI1, . . . , CIN , CI(N+1)} and

CIi =(i, pred, succ) is the control information generated for ith subject in Path
pred = {pP1

, . . . , pPi
}: set of incoming package templates

px = (pid, skxi, reg): an incoming template from xth subject in Path, where
1. pid = x and x ∈ {P1, . . . , Pi}

reg = 〈rs1, . . . , rsH(x)〉
rsj = (r, s), j ∈ {1, . . . , H(x)}
r ∈ {1, . . . ,K}, s is the public key of the last P-proxy that modified r
pid is the sender’s position generated according to Path
skxi is the symmetric key for encrypting/decrypting the package
sending from subjx to subji, where subjt is the tth subject in Path

2. ∀j,w ∈ {1, . . . ,H(x)}: j 6= w ⇒ rsj .r 6= rsw .r
a region must appear only once in the sequence of regions from a predecessor.

3. ∀j, q ∈ {1, . . . , P(i)}: j 6= q ⇒ skji 6= skqi

component pred contains distinct predecessor subjects
4. ∀j, q ∈ {1, . . . , P(i)}, j 6= q, x ∈ {1, . . . , H(j)}, y ∈ {1, . . . , H(q)} : pj .rsx.r 6= pq .rsy.r

an accessible region must be received only from one predecessor.
succ = {suS1, . . . , suSi}: set of outgoing package templates
suy = (sid, skiy, reg) this is an outgoing template, where

1. sid = y and y ∈ {S1, . . . , Si}
sid is the position of the receiver of this package according to Path.
skiy is the symmetric key as defined before
reg = 〈r1, . . . , rW (y)〉: sequence of regions sent to successor who is at the yth position in Path.
rf ∈ {1, . . . ,K}, f ∈ {1, . . . , W(y)}, ∀j, g ∈ {1, . . . , W(y)}: j 6= g ⇒ rj 6= rg

A region must appear only once in the sequence of region objects to be sent to a successor.
2. ∀j, x ∈ {S1, . . . , Si}: j 6= x ⇒ suj .skij 6= sux.skix

successors are distinct.

Figure 2.6. Control information specification

it to S6. If Path =〈pubk0, pubk1, pubk2, pubk3, pubk4, pubk5, pubk6, pubk7〉, where pubk0 and

pubk7 is the public key of DS and pubki is the public key of Si, then the control information

for S5 will be expressed as following:

CI5 = (5, pred, succ) where

• pred = {(1, sk15, < (1, pubk1) >), (2, sk25, < (2, pubk2) >), (3, sk35, < (3, pubk3) >),

(4, sk45, < (4, pubk4 >)}

• succ = {(7, sk57, < 1 >), (6, sk56, < 2, 3, 4 >)}.

Control information is signed by DS and enciphered with the recipient’s public key

so that only the designated subject can see the information. The designated subject

can verify that the message is from DS. Control information exchange could also be

performed by opening an SSL session in which a symmetric session key is generated

18

S1 S2 S3 S4

S5 S6

R2

R2,R3,R4

R1

R1 R3 R4

R3 R4R1 R2

DS

Figure 2.7. Generating control information for S5

and used during the communication. Thus a secure channel is built between a subject

and DS.

2.3.5 Subject protocol

During document updates, each subject executes the following steps: (i) it per-

forms integrity check according to incoming package templates received from DS; (ii)

it executes operations on the document according to its privileges; (iii) it forms pack-

ages according to outgoing package templates received from DS, and sends out these

packages. We detail these steps in the following:

1. Upon receiving a package P , the receiver by using the control information CIi,

verifies (1) if there has been any transmission error; if there is any error, asks

the sender to send the document again; (2) that the package has been sent by

one of its predecessors. Suppose the receiver deciphers P with the symmetric

key k such that k = px.sk and px ∈ CIi.pred. If P.sid 6= CIi.id, the package

is discarded. (3) the integrity and authorization of each region according to

the incoming package template. For each R in px.reg, the receiver checks if the

region object in the package starts with a region identifier equal to R.r. If so,

the receiver generates a hash value using one-way hash function, deciphers the

hash in the package with R.s and checks if these two values are equal. If there

is any error, it asks the sender to recover

19

2. The receiver performs operations on the document according to its privileges.

After correctly receiving a package from each predecessor, the receiver executes

its privileges on the documents. If it has update privileges on some regions, it

updates the regions, calculates the hash value for each region it updated, and

ciphers this value with its private key for future authorization checking.

3. The receiver generates the new package(s). For each su ∈ CIi.succ, the receiver

forms an outgoing package U such that U.sid = su.sid. For each r ∈ su.reg,

fills hash and region object in U . After this, the subject encrypts U with su.sk

and sends it to the sidth subject. The receiver should also keep a copy for later

recovery.

2.3.6 Recovery protocol

If a subject receives a package which fails the verification, the subject asks the

sender to recover the package. If a receiver cannot get an error-free package according

to the control information twice, it will send both packages it believes are incorrect

to DS and the sender.

DS then first checks if the malicious sender m of the erroneous region has only

read access to this region. If not, DS decides to abort the update, because we assume

that the completion of update depends on each subject correctly updating their cor-

responding regions. If m only has read access, DS asks all the receivers who received

this region from m. If any one has a correct version, DS sends this correct version

to all the senders who did not receive a corrected version from m. If no one has a

correct version, DS asks the subject who authored this region to send DS a copy, DS

then acts in the role of m, checking the integrity and sending to all the receivers to

whom m was supposed to send this region.

20

2.4 Analysis and discussions

2.4.1 Correctness analysis

From Section 2.3.3, we can conclude that the S-RPF built by DS enforces flow

policies related to an XML document. If subject Sa updates region R before subject

Sb in the flow policy, the flow of R in the S-RPF built by DS will also have this order.

Moreover if a subject Sc reads region R after Sa has modified it, then this order is

preserved in S-RPF.

Theorem 2.4.1 Protocol S-RPF is secure with respect to integrity.

Proof We need to prove that a subject m cannot update a region over which it does

not have update privilege. There are two cases.

(1) m modifies a region object which is not authored by itself. In this case,

integrity is enforced in the protocol by digital signature. If a region R is modified

by a subject i, i will sign the hash that it calculated from R with its private key.

If a subject j has read privileges on R, j will receive control information from DS,

which contains an incoming template. The incoming template includes the public key

of i for deciphering the hash. j will calculate the hash of the region and check the

signature. m cannot modify region R before it reaches j, since m does not know i’s

private key.

If m receives two region objects authored by the same subject i, it cannot switch

the information in these two regions. As a region object represented in XML has a

region identifier in its tag.

Thus no subject can modify a region object which has not been authored by itself.

(2) A subject modifies a region object authored by itself, even though it does not

has update privilege over it later. This is avoided by the S-RPF rule. Suppose region

R1 is updated by A, then flows to B for read, and then back to A for read (A cannot

update R1 this time) and then ends at C for read. In this case, A could not send to C

a region object which is different from the one it sends to B. In S-RPF graph, B will

21

send a copy to C instead of A. S-RPF ensures that C receive the region object that

A authored at the beginning. Thus the integrity of the whole document is enforced.

�

Theorem 2.4.2 Protocol S-RPF is secure with respect to confidentiality.

Proof We need to prove that if a subject not authorized to access a region, it can

not read it. This is enforced by the use of symmetric keys to encipher/decipher a

package that only designated receiver can see it. When a subject receives a package, it

can use the received control information from DS to decipher the package. If a subject

does not have such information, it cannot decipher the package. S-RPF generation

ensures that a subject only receives the parts of the document which it is authorized

to access. Thus S-RPF is secure with respect to confidentiality. �

We now discuss the amount of information which could be revealed and check

if confidentiality and integrity are violated. With this approach, a receiver could

partially know the access rights of its predecessor(s) or successor(s). In Example 1,

S6 knows that S5 has access rights to at least R2, R3 and R4. S5 knows that S6 has

access rights to at least R2, R3 and R4. Other than that, no other information can

be derived. This will not violate confidentiality and integrity as defined previously,

because these definitions concentrate on the contents of a document.

2.4.2 Complexity analysis

We now analyze the complexity with respect to temporal complexity and com-

munication complexity. The latter is evaluated in terms of number of exchanged

messages. We also compare our approach against a centralized approach.

In particular, under a centralized approach, DS sends each subject in Path a

package containing only the contents of a document to which the subject has access

privileges. After executing operations on it, the subject sends back to DS only the

parts that it has updated. When DS correctly receives it, that is, there are no

22

transmission errors, DS sends another package to the next subject in Path. Otherwise,

DS sends the subject the package again and asks for recovery. A centralized system

accomplishes the same function as our protocol. It also uses symmetric key to allow

DS securely communicate with each subject. However, in a centralized approach,

no hash function is needed and subjects do not need to sign the region objects they

authored, since DS communicates with each subject securely and knows each subject’s

access control information structure.

There are two types of errors that require a recovery. They are as following:

1. Subject-will-recover error: This includes transmission errors, and any other er-

rors occuring in a centralized approach that require DS to ask a subject recovery.

2. Malicious-subject-intentional error: A malicious subject illegally modifies a re-

gion object and refuses to send the correct version to a receiver.

Only the first type of errors can happen in the centralized approach. In S-RPF,

DS is needed for the second type error recovery.

In the following analysis, all communications before the start of the updates are

ignored. As in a centralized system, DS also needs to communicate with all subjects

to set up secure communication channels before starting the update process. In order

to simplify our analysis, we will not consider the size of hash value in a package.

Next, we present the results for communication cost. We compare two cases: no

recovery and recovery.

1. No recovery:

In this case, the total number of packages PK and total size of messages M are

as following:

• for the centralized approach

– PK = 2N

– M =
∑i=N

i=1 Ai +
∑i=N

i=1 Ui

• for S-RPF protocol

23

– PK =
∑i=N

i=1 Prsi
+ PrDS

– M =
∑i=N

i=1 Ai + u

Where:

N is the number of elements in the path, not including DS;

Ai is the size of the package that DS sends to subjecti in centralized approach;

Ui is the size of the package subjecti sends back to DS. This package only

contains updated regions by subjecti.

Pri is the number of predecessors of subjecti in S-RPF graph.

u is the sum of the size of packages DS received in S-RPF graph. (u ≤
∑i=N

i=1 Ui)

2. Recovery:

If the recovery has to be executed because of the first type of error, the extra

packages caused by the recovery in the centralized system is equal to that in S-

RPF. As in S-RPF, a receiver will act the same as DS in the centralized system,

asking the sender to recover.

If the recovery has to be executed because of the second type of error, S-RPF

will incur extra cost which will not appear in the centralized approach. In this

case, DS in S-RPF may need to ask up to N − 2 subjects for a correct version.

From above, we can see that when all subjects are cooperative and a region is

updated often (for example, Case B in Figure 2.8), S-RPF reduces the number of

packages (in case B, only N + 1 packages) and the total size of messages (in case B,
∑i=N

i=1 Ai + UN). However, S-RPF could also possible generate O(N 2) packages. The

total number of packages in S-RPF is equal to the number of edges in S-RPF graph.

In congested networks and uncooperative systems, S-RPF may not perform better

than the centralized approach.

Next, we analyze the efficiency of the protocol by comparing the time needed to

complete the update. The parameters we used in analysis are listed in Table 2.1. The

total time needed to complete the update is formulated as T ≤
∑i=7

i=1 Ti.

24

S NS

NS1S

DS

DSDS

1 2 NSS S

1

Case DCase B

Case C

Case A

DS 2S

S

DS

DS

N DS

DS

2+N/2S1+N/2S

1S 2S N/2S

Figure 2.8. Case study for the total time to complete the update

Table 2.1
Notations for efficiency analysis

DS
T1 Total time for deciphering and enciphering packages
T2 Total time for calculating hash values and encrypting them
T3 Total time for integrity check of received packages

Subjects

T4 Total time for deciphering and enciphering packages
T5 Total time for integrity checking
T6 Total time for executing operations (read, update)
T7 Total time for calculating hash values and encrypting them

N Number of subjects in the path, not including DS
E Average time for enciphering a package
D Average time for deciphering a package
H Average time for checking integrity of regions in a re-

ceived package
U Average time for a subject in Path executing opera-

tions(read/update)
h Average time for a subject or DS in Path calculating

the hash values for the region objects that it authored
and encrypting them

1. No recovery. We can easily estimate the time for the centralized system. For

the S-RPF, the time varies. We study the cases in Figure 2.8 which represent a

high-level parallel updates (Case A and Case C) and low-level parallel updates

(Case B). Table 2.2 reports the time complexity.

From Table 2.2, we can see that when N > 1 the S-RPF for Case B takes more

time than Case C:

TB − TC = (N − 1)(h + U)

25

Table 2.2
Time analysis in the case of no recovery

Centralized S-RPF (Fig 2.8)
approach Case A Case B Case C Case D

T1 N × (D + E) N×(D+E)
2

D + E N × (D + E) N × (D + E)

T2 0 h h h h

T3 0 N×H
2

H N × H N × H

T4 N × (D + E) 2(D + E) N × (D + E) D + E N×(1+N)(D+E)
2

T5 0 2H N × H H N×(N+1)H
2

T6 N × U 2U N × U U N × U
T7 0 2h N × h h N × h

Also, Case B takes more time than Case A:

TB − TA =
(N − 2)(D + E + H + 2h + 2U)

2

The best time for S-RPF to complete the update is hard to find. For example,

TC − TA = (N−2)(D+E+H)
2

− (h + U). If the average time for an object executing

operation takes longer time than the time of N(D+E+H)
2

, then Case C is better

than Case A. If N is large and the average time for a subject finishing operations

is fast, then Case A can be better than Case C.

The worst case for S-RPF is when DS sends a package to each subject and each

subject sends a package to everyone following it (Case D). However, the time to

complete the update is far less than
∑i=7

i=1 Ti in Table 2.2. As S1 is deciphering

the package and executing integrity checking, all other subjects following it will

also check integrity of the packages they received from DS. So the worst time

of the S-PRF is

T ≤
E ×N2 + 3N × E

2
+ (N + 1)(D + h + H) + N × U

The time difference between the centralized approach with the S-RPF Case B

is N(D +E−h−H)− (D +E +H +h). Since D ≈ E and h ≈ H in Case B, it

can be simplified as N(2D− 2H)− 2D− 2H. This means that, if deciphering a

26

package takes similar time as integrity checking a package, then the centralized

approach has similar time as S-RPF case B.

Next we compare a centralized approach with S-RPF Case A, where subjects

can execute parallel operations on the document. Since normally D ≈ E and

h ≤ H:

3N × D + N × U ≥
N × H

2
+ 4D + 3h + 2U + 2H

=⇒ U ≥
H

2
− 3D +

6H − 2D

N − 2

Under the situation that D ≥ 2H
N−2

, when the average time for a subject execut-

ing operation is longer than half time of integrity checking, then S-RPF in this

case requires less time to complete update than the centralized approach.

2. Recovery: If a recovery has to be executed because of the first type of error, for

the centralized system, the extra time is 2D + 2E; for n recoveries, the extra

time increases linearly, that is, n(2E + 2D). For the S-RPF protocol, the extra

time varies. It depends on the S-RPF graph computed by DS and the location

of the recovery. It may even not increase the total time due to the parallel

operations among all participants.

If the recovery has to be executed because of the second type of error, no

extra time is required for the centralized approach. For S-RPF, the additional

incurred time varies. If the number of subjects involved in the recovery is very

small, then the overall completion time may not increase. If many subjects are

involved in the recovery, the extra time may increase substantially.

Since encipher and decipher operations can be very fast, while human interactions

are in most cases involved in the update, S-RPF can complete the update faster than

centralized approach if subjects are cooperative. When more subjects are involved,

even if U ≤ H, S-RPF could be still more efficient than centralized systems.

27

2.5 Conclusion and future work

In this chapter, we have proposed a protocol for distributed document update

in cooperative systems.The protocol enforces both flow and security policies of a

document and simultaneous updates on different parts of a document can be executed.

In a cooperative system, when several subjects update a large document, S-RPF can

reduce the time to complete the update, especially when human beings are involved

in update process. If the recovery is not due to malicious subjects, the frequency of

recovery to be executed by DS is low. However, if a malicious subject is detected, the

recovery can be expensive.

Flow policies and access control policies can be static or dynamic. Subjects in-

volved in static flow policies will not change and their order of receiving a document

is pre-fixed. In static access control policies, each subject’s privilege over a document

will not change during the update process. By contrast, in dynamic flow policies, a

subject may join in or drop out of during the update. The privilege of a subject over

a document may also change. This protocol applies to static flow and access control

policies. It can also be extended to certain dynamic security policies; however, due

to space limits, we do not detail such extensions here. Future work includes to test

our protocol’s performance in real systems.

28

3 XML DOCUMENT UPDATES IN BYZANTINE AND FAILURE-PRONE

DISTRIBUTED SYSTEMS

In this chapter, we present an approach for the cooperative updates of XML docu-

ments particularly suited for Byzantine and failure-prone distributed systems. With

the term Byzantine, we mean a party involved in the process that does not obey the

defined protocols. The proposed approach is based on a specific infrastructure that

extends the one already presented in [36]. Here we introduce the possibility of spec-

ifying the path that a document must follow and of modifying it during the update

process. We support such feature through flow paths and related policies for its speci-

fication and modification. The most important feature of the proposed system is that

recovery is fully distributed as the last correct version of a corrupted document is co-

operatively built by a set of subjects, called delegates, instead of by one trusted party.

In the previous approach ([36]), the DO is responsible for the recovery. However,

there are many situations under which the DO cannot do this. For example, under

the principle of separation of duty, the DO is not allowed to access the document

until it finished. Furthermore, we allow some Byzantine and failure prone delegates

exist. The approach we proposed in this chapter achieves the security requirements

as previous chapter, while at the same time, meets all these constraints.

3.1 Motivating example

In this section, we provide an example that motivates the need for our infrastruc-

ture, cast in the domain of pharmaceutical surveys. In such surveys, doctors from

different hospitals are asked to give feedback on several drugs used for common dis-

eases. These drugs are manufactured by different companies. As the survey results

29

will be made public later, these companies would like to see that the feedback favors

their medicines.

Participating hospitals are chosen based on an agreement with these companies.

The survey document should be circulated among each of the participating hospitals.

The order of circulation is fixed before the survey starts. Doctors of a participating

hospital will answer the questions asked in the survey document when they receive it.

Doctors may also extend the circulation path by adding their nurses, who may update

certain sub-sections of the survey for their doctors. Nurses however are not permitted

to alter other sub-sections. Only doctors are allowed to extend the circulation path;

nurses should not do so.

In order to ensure that the survey is processed correctly, parties such as public

notaries are required. These parties are chosen based on the agreement with the

companies. If the survey document is corrupted by a malicious participant (for ex-

ample, in order to favor a certain company, a doctor/nurse may overwrite information

on the survey without authorization), the notaries are responsible for recovering the

uncorrupted document. We would like to choose the fewest number of notaries pos-

sible. However, it is extremely difficult to make all companies to believe that one

trusted notary exists which will execute the recovery correctly. In fact, it is possible

for a notary to damage the integrity of the survey quite easily. For example, if a

doctor extends the document circulation path by letting his nurse fill in parts of it,

and if the nurse fills information which does not favor a particular company which

patronizes the notary, the notary could delete the information filled by the nurse, as

if the doctor did not extend the survey path. Therefore, it is difficult to have a single

trusted notary. However, among a number of notaries, we could be confident that a

certain number of them would be honest. For example, assume that 80% of the time,

any given notary behaves honestly. With 10 notaries public, we expect 8 of them

will behave honestly, even though at the beginning of the survey, we are not sure

which ones are honest. Also, in reality, some notaries may not always be available

for monitoring the process due to circumstances beyond their control. Waiting until

30

every notary becomes available may delay the time for completing the survey, which

in turn may delay the involved companies from executing business operations which

depends on the result of such surveys (e.g., advertising campaigns).

Another concern is to ensure that the survey is unbiased. Doctors or nurses may

be influenced by the answers filled in by people from different hospitals. Thus infor-

mation provided by doctors or nurses of different hospitals should be kept confidential.

Additionally, a doctor or nurse may fill in some information that violates the secu-

rity and privacy policies of their hospital. Therefore, after they finish answering the

survey, the administrative staff of the hospital should check if there are any such

violations. If so, they should be able to remove them. However, administrative staff

should should not access information provided by other hospitals.

3.2 Related work

An overview of research work and commercial products related to XML security

can be found in [40]. Most of the proposals deal with confidentiality issues and do not

consider the problem of controlled document updates. Even though we are not aware

of other proposals to which our system can be directly compared, related work in-

cludes: proposals concerning the update of XML documents [41–43]; group communi-

cation techniques and the fault tolerance problem in distributed systems [44–46]; and

proposals to manage the illegal behaviour of Byzantine subjects ([47–51]). In general,

approaches dealing with updates of XML documents do not deal with security [41,43]

or rely on centralized approaches [42]. Therefore they are not suitable for highly de-

centralized approaches, as the one considered in this chapter. The distributed nature

of the collaborative update of XML documents presented in this chapter implies, as

a requirement, the use of group communication techniques. A survey of the main

group communication specifications is given in [44]. Our protocols take into account

the fault tolerance problem inherent in the asynchronous and failure-prone nature of

distributed systems. Our design has been heavily influenced by protocols proposed

31

in [45, 46]. The main difference between the previous approaches [44–46] and ours is

these approaches are based on the notion of Views of a communicating group. That

is, messages must be exchanged only between members of the current view. Thus a

stop of the communication is generated whenever the view changes according to the

insertion of a new member or the exit of a current one. We adopt a group management

specification which requires considering at each instant the initial entire communicat-

ing group chosen by the DO, that is, DG. Another feature of our protocols is that it

provides methods to mitigate malicious behaviors of a limited number of Byzantines.

The Byzantine problem has been extensively investigated ([47–51]). Most approaches

are based on the specification of conditions according to which it is possible to de-

tect malicious behaviors of Byzantines and to continue without affecting the global

computation. We borrow from the above mentioned proposals the idea of adding a

number of redundant subjects in a communicating group in order to prevent the sup-

posed number of Byzantine subjects in the group from affecting the communication

protocol with their behavior. Moreover, we borrow the idea that when dealing with

a set of entities containing some Byzantine ones, each entity must receive a number

of messages determined according to the estimated number of Byzantines, to allow

the protocols to correctly progress.

3.3 Specification languages

Before we present the specification languages that we have developed to support

the collaborative and distributed XML document updating, we first describe the

example survey document that will be used.

Example 2 The survey document (Figure 3.1) is named ”Medicine Effect”. For

simplicity, the survey concerns medicines M1 to M10 which are manufactured by

drug companies ”C1” to ”C10” respectively. The subjects who update this document

are doctors from hospitals ”H1” to ”H50”. The doctors should give the positive and

negative effects for each medicine, the number of times they prescribed it, and the

32

overall efficacy rating of the medicine. Doctors may also extend the document flow

path by permitting their nurses to update the document.

 <Medicine name = "M2" company = "C2">

<\Survey>

 <\Medicine>

 <\Medicine>
 ...
 <\Doctor>

 <Doctor name = "Don" hospital = "H2">
 <\Doctor>
 <Overall rate = ".." recommend=".."/>
 <Num_of_use> N/A <\Num_of_use>
 <Negative> fill in <\Negative>
 <Positive> fill in <\Positive>
 <Doctor name = "Tony" hospital = "H1">
 <Medicine name = "M1" company = "C1">
Survey name = "Survey.xml" note="Medicine Effect">

Figure 3.1. An example of XML document

Access control policies are encoded using the X -sec language [52]. The term Policy

Base (PB) denotes the XML file encoding access control policies that apply to the

DO’s XML documents.1 The Policy Base is specified according to the X -Sec Policy

Base template shown in Figure 3.2(a). Note currently, our Policy Base template does

not support add element and add attribute privileges. We plan to include them in

future work.

Example 3 Figure 3.2(b) shows a PB referring to the XML document in Figure

3.1. According to the policies in Figure 3.2(b) administrative employees can browse

all information filled by doctors or nurses of their hospital. They can also delete

information contained in Num of use elements for security reason. A doctor or nurse

can only update information.

1We assume that each policy is uniquely identified by an identifier, generated by the system when
the policy is specified.

33

<!DOCTYPE policy base[

<!ELEMENT policy base

(policy spec*)>
<!ELEMENT policy spec

EMPTY>
<!ATTLIST policy spec

pid ID

cred expr CDATA

#REQUIRED

target CDATA

#REQUIRED

path CDATA #IMPLIED

priv (update attr

| delete attr

| delete elemt

| view

| navigate

| browse all)

#REQUIRED

prop (CASCADE

| FIRST LEVEL

| NO PROP)

#REQUIRED>
]>

(a)

<policy base>
<policy spec pid=‘P1’

cred expr=‘//Type[@Role=‘Admin’ AND
host=‘H1’]’
target=‘Survey.xml’ path=‘//Doctor[@host=’H1’]’
priv=‘browse all’ prop=‘CASCADE’/ >

<policy spec pid=‘P2’

cred expr=‘//Type[@Role=‘Doctor’ AND
host=‘H1’]’ target=‘Survey.xml’
path=‘//Doctor[@host=’H1’]’
priv=‘update’ prop=‘NO PROP’/ >

<policy spec pid=‘P3’

cred expr=‘//Type[@Role=‘Doctor’ AND
host=‘H2’]’ target=‘Survey.xml’
path=‘//Doctor[@host=‘H2’]’
priv=‘update’ prop=‘CASCADE’/ >

<policy spec pid=‘P4’

cred expr=‘//Type[@Role=‘Nurse’ AND
host=‘H1’]’ target=‘Survey.xml’
path=‘//Doctor[@host=’H1’]’ priv=‘update’
prop=‘CASCADE’/ >

<policy spec pid=‘P5’

cred expr=‘//Type[@Role=‘Admin’ AND
host=‘H1’]’ target=‘Survey.xml’
path=‘//Doctor[@host=’H1’]/Num of use’
priv=‘delete elemt’ prop=‘CASCADE’/ >

...
</policy base>

(b)

Figure 3.2. (a) The X -Sec Policy Base template and (b) an example of Policy Base

Subjects, to which an access control policy applies, are specified by means of

credentials, encoded in XML using X -Sec [52]. Examples of X -Sec credentials are

presented in Figure 3.3.

<H_staff> <H_staff>

 <Eid> 112 </Eid> <Eid> 235 </Eid>
 <Type Role="Admin" host ="H1"\> <Type Role="Nurse" host = "H2"\>
<\H_staff> <\H_staff>
<H_staff> <H_staff>

 <Eid> 110 </Eid> <Eid> 253 </Eid>
 <Type Role="Doctor" host ="H1"\> <Type Role="Doctor" host = "H2"\>
<\H_staff> <\H_staff>

 <Name> Ann </Name> <Name> Cathy </Name>

 <Name> Brian </Name> <Name> Don </Name>

Figure 3.3. Examples of X -Sec credentials

A flow policy denotes the sequence of subjects that must receive the document.

This sequence can be fully specified at the beginning of the update process, or partially

34

 <ExtSpec Id="8">nosubpath</ExtSpec>
 </ReceiverProfile>
 </ReceiverSpec>
 </ReceiverSpec>
 <ReceiverSpec Id = "9">
 <ReceiverProfile Id="10">
 <CredSpec Id = "11">
 //Type[@Role="Doctor" AND @host="H2"]
 </CredSpec>
 <ExtSpec Id="12">subpath</ExtSpec>
 </ReceiverProfile>
 </ReceiverSpec>
 ...
<\Fpa>

 </CredSpec>

<Fpa ...>
 <ReceiverSpec Id = "1">
 <ReceiverProfile Id="2">
 <CredSpec Id = "3">
 //Type[@Role="Doctor" AND @host="H1"]
 </CredSpec>
 <ExtSpec Id="4">subpath</ExtSpec>
 </ReceiverProfile>
 </ReceiverSpec>
 <ReceiverSpec Id = "5">
 <ReceiverProfile Id="6">
 <CredSpec Id = "7">
 //Type[@Role="Admin" AND @host="H1"]

Figure 3.4. A possible flow policy

specified when the process starts and then modified and extended by authorized

subjects. A flow policy contains some receiver specifications, that is, properties that

have to be verified by the receivers. Each receiver specification contains one or more

alternative receiver profiles. A receiver satisfies a receiver specification if it satisfies

at least one of the receiver profiles contained in that specification. Receiver profiles

consist of a credential expression, that is, a condition specified against credentials by

means of XPath [53]. Our flow policy specification language enables also an originator

to grant a receiver the permission of extending a flow policy by inserting a sub flow

policy.

Example 4 Figure 3.4 shows a flow policy associated with the document in Figure

3.1. It specifies that the first receiver must be a doctor in hospital ”H1” and the second

receiver must be the administrative employee of ”H1”. Only doctors can extend the

flow policy by inserting a new sub flow policy. Thus a doctor may let his/her nurses

update the information.

35

Modifications to flow policies are governed by flow modification rules, which state

which subjects can modify a flow policy. Like credentials and access control policies,

flow modification rules are encoded using X -Sec. We denote with the term Rule

Base (RB) an XML file encoding a set of flow modification rules. This specification

language is very similar to that used to specify access control policies, thus we omit

the formal presentation of such a language.

3.4 Control information

In this section, we introduce the control information needed by subjects to check

document content integrity, and to correctly exercise their modification rights on

the document content. Before presenting document control information, we have to

introduce some preliminary concepts.

3.4.1 Preliminary definitions

Our approach to ensure confidentiality is based on encryption techniques. All the

document portions to which the same policies apply are encrypted with the same

encryption key. Each subject that has an authorization over some portions of a docu-

ment receives all and only the keys needed to decrypt those portions. Further details

about this encryption method are available in [54]. In particular, the encryption of a

document consists of two main phases: the first, referred to as marking phase, marks

all document portions with a label containing a list of access control policy identifiers,

whereas the second, referred to as encryption phase, encrypts all document portions

according to the strategy explained above.

This leads to the definition of document atomic element, which is the basic portion

of an XML document that is individually encrypted.

Definition 3.4.1 (Document Atomic Element). Let d be an XML document.

The set DocAE(d) of document atomic elements of d is defined as follows: 1) for

36

each element e in d, and for each attribute2 a in e: e.a ∈ DocAE(d);3 2) for each

element e in d, e.tags ∈ DocAE(d).

Note that the reason why we can encrypt the start and end tag of an element

with a different key wrt the one used for its content and attributes is that we support

attribute-level access control policies. Therefore, elements belonging to an XML doc-

ument d give rise to two or three non-contiguous atomic components in the encrypted

document, depending on their type. By contrast, an attribute always corresponds to

a single atomic element (that is, the attribute name and its value, or only the value

for data content). For this reason, each encrypted document atomic element docae

has associated a position information that specifies where docae’s components are

located into d.

Example 5 Examples of atomic elements in the XML document in Figure 3.1 are:

a) ‘name = ‘D1”: the first attribute of the Doctor element;

b) ‘N/A’: the data content of the Num of use element;

c) ‘<Overall’, ‘/ >’: the two components of the empty-element Overall;

d) ‘<Doctor’, ‘>’, ‘</Doctor>’: the three components of the start and end tag of

Doctor element.

The set of atomic elements encrypted with the same key is called a document

region. We assume that each document region is uniquely identified by an identifier.

The DO of an XML document and/or of a flow policy generates a set of signed

certificates, containing information concerning the privileges a subject can exercise

over the document and/or flow policy, according to its PB and RB. Certificates

generated for XML documents are called document modification certificates, whereas

those for flow policies are called flow policy modification certificates. These certificates

are used by a subject who has modified a document/flow policy portion, to prove its

right of modifying that portion to the subsequent receivers of the package.

2For simplicity, we consider the data content associated with an element as an attribute, denoted as
“dc”.
3Here and in what follows we use the dot notation to denote a component of a given structure.

37

We do not provide certificates for add element and add attribute privileges

because new inserted nodes should be labeled according to the stated DO’s access

control policies, thus requiring an additional centralized marking phase.

Definition 3.4.2 (Document Modification Certificate). Let d be an XML doc-

ument managed by the DO and let PB be its policy base. Let Auth P (d) ⊆ PB be

the set of authoring access control policies that apply to d, and let acp be a policy in

Auth P (d). Let Sbj PK(acp) be the set of public keys of subjects authorized to modify

d according to acp. A document modification certificate dmc, generated according to

acp, is a tuple (cert id, doc id, priv, sbj pk, obj, signature), where: cert id is the cer-

tificate identifier that univocally identifies a document modification certificate among

those generated by the DO; doc id is the identifier of d; priv is the privilege contained

in acp; sbj pk ∈ Sbj PK(acp); obj is one or a set of document regions where sbj has

privilege priv over them according to the acp; signature is the digital signature of DO

over the certificate.

Example 6 Consider user Ann, an administrator belonging to the hospital H1. Con-

sider moreover the document in Figure 3.1 and the access control policies in Fig-

ure 3.2(b). Furthermore, we assume that: R1 is the identifier of the document

region corresponding to: //Doctor[hospital =“H1”]/Num of use, whereas R2 is the

region containing the document atomic elements corresponding to //Doctor[hospital

=“H1”]/Positive. Then, (10, Survey, delete attr, PKAnn, R1, signature) 4 is a valid

certificate. Since according to the DO’s access control policies, Ann is authorized to

delete the atomic elements belonging to R1. By contrast, (22, Survey, delete attr,

PKAnn, R2, signature) is not a valid certificate, since Ann can only view the atomic

elements belonging to R2.

We omit the description of the flow policy modification certificates, since they are

very similar to the document modification certificates.

4With the notation PKs we denote the public key associated with subject s.

38

3.4.2 Document control information

Table 3.1
Modification declaration structure

Notation Structure Semantics
ReceiverSpec (..., DocDecl, ...) Single receiver specification information

inserted by the corresponding receiver

DocDecl (Doc-UpAttr-Decl, Modification declaration inserted by a
Doc-DelAttr-Decl, receiver when it modifies the document
Doc-DelEl-Decl)

Doc-UpAttr-Decl set of r id document region ids declared as updated

Doc-DelAttr-Decl set of (r id, del-docae) Declaration inserted by the receiver when it
deletes some attributes of region r id

del-docae set of docae id set of document atomic elements (attributes)
declared as deleted by the receiver

Doc-DelEl-Decl set of (doc-root id, del-reg) deletion declaration of some sub-trees
root at doc-root id

del-reg set of r id set of region ids involved in the deletion

The update of the document requires the insertion in the flow policy attachment

some modification declarations, having the structure reported in Table 3.1. More-

over, at the end of the document update, sc must insert in the document, for each

modification operation executed on the document, some control information. This

guarantees subsequent receivers that sc possesses the privilege required to execute

that operation, and, in case the privilege is update attr, it must compute a new

signature on the updated content.

Each document atomic element is marked with a label containing the set of access

control policies that apply to it. We can distinguish two main categories of document

atomic elements, according to the privileges of those policies: non-deletable atomic

elements and deletable atomic elements. Since a deletable element requires the com-

putation of additional control information wrt a non-deletable one, in this way, we

can minimize the amount of control information to be computed and inserted in the

document package. Examples of deletable atomic elements are attributes to which

at least an access control policy with the delete attr privilege applies or attributes

and tags to which at least an access control policy with a delete elemt privilege

39

applies. Table 3.2 shows control data structures associated with both the categories,

whereas Table 3.3 presents the components of the structures introduced in Table 3.2.

Table 3.2
Control data structures for document atomic elements

Name Notation Structure Semantics
Control structure NDAE LIST list of TNDAE , one Control information
for non-deletable for each non-deletable associated with the
document atomic document atomic element non-deletable document
elements of d belonging to a atomic elements of d belonging

particular region r id to a particular region r id

Control tuple for TNDAE (docae id, position, Information corresponding
non-deletable data) to a non deletable
document atomic atomic element docae
element of a document d

Control structure DAE LIST list of TDAE , one Control information
for deletable for each deletable associated with the
document atomic document atomic deletable document atomic
elements element of d belonging to elements of d belonging

a particular region r id to a particular region r id

Control tuple for TDAE (docae id, position, Information corresponding
deletable data, h docae) to a deletable document
document atomic atomic element docae
element of a document d

Table 3.3
Components of the control data structures for document atomic elements

Component Semantics
docae id identifier of the document atomic element docae

position value that specifies where docae’s components are located in the document

data encrypted docae’s content

h docae hash value computed over the data component

Similarly, document regions generated by the document marking can be divided in

non-modifiable and modifiable regions. A region is non-modifiable if all policies that

apply to it contain only browsing privileges (i.e., view, navigate, and browse all);

a region is modifiable otherwise. Table 3.4 presents the control data structures for

non-modifiable regions, whereas Table 3.5 illustrates the semantics of components

presented in Table 3.4. We use character (∗) to denote the string concatenation

operator, whereas we use the notation (
∑∗

x∈ListX x) to denote the concatenation of

all the elements belonging to ListX, in the order in which they are listed. Modifiable

40

regions can be further classified into five sub-categories, according to the different

authoring privileges contained in the access control policies that apply to them. This

distinction is made for efficiency purposes. Indeed, in this way, we maximize the

amount of content statically protected by specific control information and we also

reduce the total amount of control information needed to allow integrity check of a

region, thus reducing the time required for the integrity check procedure executed by

the protocols.

Table 3.4
Control data structures for non-modifiable document regions

Name Notation Structure Semantics
Control structure for NMR list of TNMR, one for Information used by a subject to
non-modifiable each non-modifiable verify integrity of non-modifiable
document regions region of d document regions of d

Control tuple for TNMR (r id, NDAE LIST, Information corresponding
non-modifiable h nmr static) to a specific non-modifiable
document regions document region r id of d

Table 3.5
Components of the control data structures for non-modifiable document regions

Component Semantics
r id identifier of a non-modifiable document region of a document d
h nmr static hash value computed over NDAE LIST

belonging to r id: H(
P

∗
t∈NMR[r id].NDAE LIST

t.docae id ∗ t.position ∗ t.data)

Table 3.6 presents these five sub-categories, giving for each sub-category the corre-

sponding authoring privileges. For example, the set of authoring privileges contained

in the access control policies that apply to a region classified as PDUR must be equal

to {update attr, delete attr}.

Without lack of generality, in the following we focus only on fully deletable and

updatable regions (FDUR), because they are the modifiable regions on which the

whole set of authoring privileges supported by our model can be exercised. Thus, they

represent the most general and complex modifiable region sub-category. According to

this assumption, Table 3.7 presents control data structures for FDUR regions only,

41

Table 3.6
Modifiable region classification

Sub-category Notation Privileges
Updatable regions UR {update attr}
Partially deletable regions PDR {delete attr}
Fully deletable regions FDR {delete elemt} or {delete elemt delete attr}
Partially deletable and updatable regions PDUR {update attr, delete attr}
Fully deletable and updatable regions FDUR {update attr, delete elemt} or

{update attr, delete elemt delete attr}

Table 3.7
Control data structures for modifiable document regions

Name Notation Structure Semantics
Control structure for DMR (UR, PDR, FDR, Information used to
document modifiable PDUR, FDUR, verify correctness of
regions delete elmt cert) document modifiable regions

...

Control structure for FDUR list of TFDUR, one Information used by a
fully deletable and for each fully deletable subject to verify integrity of
updatable regions and updatable region FDUR regions

Control tuple for TFDUR (r id, DAE LIST, Information
fully deletable and h fdur static, sig fdudocae, corresponding to a
updatable regions update cert, specific FDUR

delete attr cert) region r id

whereas Table 3.8 presents the components of the introduced data structures. With

reference to Table 3.8, the delete elmt cert component contains the certificates with

delete elemt privilege, inserted by subjects when they exercised their modification

rights, that apply to disjoint set of atomic elements, thus defined non-overlapping

certificates.

The signature generated by the last subject that has modified the content of a

modifiable region is computed on the components h docae associated with the atomic

elements belonging to that region and not on their content (data component). Such

signature is used to check the integrity of the region. That is, we need to check

the integrity of the components h docae and then check the correspondence between

each h docae component and the corresponding atomic element content (component

42

Table 3.8
Components of the control data structures for FDUR

Component Meaning and formal specification
delete elmt cert it contains non-overlapping authoring certificates, with delete elemt privilege

inserted by the subjects that have executed a deletion over document regions

r id identifier of a modifiable document region

h fdur static hash value computed by DO over docae id, position and h docae of the
document atomic elements that are tags and also over docae id and position

components of the document atomic elements that are attributes listed in
DAE LIST belonging to r id: H((

P∗
t∈FDUR[r id].DAE LIST,type(t)=tags

t.docae id ∗ t.position ∗ t.h docae) ∗ (
P∗

t∈FDUR[r id].DAE LIST,type(t)=attribute

t .docae id∗ t.position))

sig fdudocae digital signature computed over the h docae component of all the
document atomic elements that are attributes listed in DAE LIST

belonging to r id by the last subject (slast) that has modified the region and
whose modification declaration is contained in the receiver specification
identified by the information: (fpa-id, ver, rs-id, orig), where fpa-id is a fpa

identifier, ver is a fpa version, rs-id is a receiver specification identifier and
orig is a fpa originator
Sslast

((
P

∗
t∈FDUR[r id].DAE LIST,type(t)=attribute t.h docae) ∗ fpa-id

∗ ver ∗ rs-id ∗ orig)

update cert it contains the authoring certificate with update attr privilege inserted in a
region r id by the last subject that has updated that region

delete attr cert it contains the authoring certificate with delete attr privilege inserted in a
region r id by the last subject that has deleted at least one attribute of that
region

data), only for those elements not declared as deleted. The same must be done for

modification operations executed on the flow policy.

3.5 General system overview

Parties involved in the collaborative update process are: a Cooperative Group,

denoted as CG, a Delegates Group, denoted as DG, and the DO. Subjects belonging

to CG are chosen by the DO at the beginning of the process. They are the only ones

that can be chosen to be the receivers of the XML document. CG can contain an

unlimited number of Byzantine subjects. DG is a set of subjects also chosen by the

DO at the beginning of the update process. They are responsible for checking the flow

policy integrity (Fpa-Checking) at each step of the process and, whenever required

by a subject in CG, to execute document content recovery. The set of delegates is

43

partitioned into three subsets: the set of Byzantine delegates (B, with |B| ≥ 0), the

set of operative delegates (OP , with |OP| ≥ 0), and the set of down delegates (D, with

|D| ≥ 0). More precisely, operative delegates obey the protocol and are reachable by

the subjects, whereas down delegates are unreachable. A down delegate can become

operative again, whereas an operative delegate goes down whenever a failure occurs.

Note, for each delegate in DG, no one can tell whether it belongs to B, D, or OP at

the beginning of the update.

The DO is the subject who generates the XML document package (DocDO) to

be updated and the associated flow policy attachment (FpaDO). This subject also

specifies the set of access control policies that apply to DocDO and the set of flow

modification rules that apply to FpaDO.

During the update process, the document generated by the DO is sent to a first

chosen subject in CG. Each subject sc (except the first one) in CG performs the

document integrity checking when it receives it, according to the control information

in the document it received from the previous subject, and the Fpa it received from the

delegates. Whenever an error occurs to the document content, the subject contacts

all delegates in DG to start a recovery. At the end of this recovery, the subject obtains

the last correct version of the document and can thus update the document according

to its modification rights. During recovery, delegates interact with subjects in CG to

obtain the last correct version of the document and build the recovered document to

be sent to the requester.

After subject sc executes its operations on the document and/or Fpa according to

the privileges it possesses, it will insert certificates which can be verified by the later

subjects. sc then sends the Fpa to DG for Fpa Checking. That is, sc should have

Q signatures from delegates which approve the current version of Fpa (as sc may

modify the Fpa). Before sc sends the document to the next subject, it will make all

operative delegates’ states stable (this is called Change-Delegates-State). That is, sc

will send to all delegates Fpa which is signed by at least Q delegates. Upon receiving

the message, each operative delegate will forward this message to other delegates if

44

the message is correct (Fpa is signed by at least Q delegates). Thus all operative

delegates will have the same Fpa. Also, if sc requested recovery of the document,

it also needs to send the recovered document version which is signed by at least Q

delegates. The purpose of Change-Delegates-State is to ensure that all operative

delegates have the same information. That is, they have the same Fpa, recovered

document version, etc. Finally, sc sends the document to the next subject according

to the flow policy attachment content. All delegates will send the approved Fpa to

the next subject.

After the last subject in the Fpa sends the document to the DO, if the document is

correct, the DO sends a message to end the process. Otherwise, the DO requests the

DG to recover the document in order to get the last correct version of the document.

Before we describe our protocols in detail, we first present our assumptions of the

system and how to set the parameters.

3.5.1 Assumptions

Our approach relies on a set of assumptions. First, we assume that the DO,

each delegate and each subject involved in the update process possesses a private

key and that all the other parties know or can retrieve the public key of each other.

The DO is in charge of informing, at the beginning, all subjects and delegates of

which users compose CG and DG. Moreover, we assume that there is a finite upper

bound on message transmission time. This means that if an honest party sends a

message to another honest and reachable party, the message is received by a fixed

amount of time (MTTIME). Each sent message is always signed by the sender for

integrity and authentication purposes. To avoid deadlocks caused by the malicious

behavior of a Byzantine subject sc, a Rollback procedure is executed to replace sc with

another subject after a fixed amount of time by the last change of state executed by

an operative delegate.5

5In the protocols specified in this paper, we do not address this issue, that it is assumed to be a
parallel process auditing the delegate behaviour and starting its task when needed.

45

3.5.2 Protocol parameters setting

At the beginning of the update process, the DO has to set two parameters: b

and d, that respectively represent the maximum number of Byzantine delegates that

do not affect the protocol, and the maximum number of down delegates that do not

delay the protocol. The parameter b may be set by the system with the default vale

of 0, or may be set by the DO. Value d is set as dc · fe where f is an estimated

average number of failures proposed by the system and c is the correction parameter

set by the DO, the default value of which is 1.

Another important parameter op, which is the number of operative delegates, is

strictly related to Quorum Q, which is the minimum number of delegates required

for making progress. The relationship between op and Q is:

op ≥ Q (constraint 1)

b + (op + d)/2 < Q (constraint 2)

Constraint 1 states that op must be greater than or equal to Q, because in case

Byzantine delegates do not answer a request, only operative delegates will be able to

sign a message content for which the protocol requires at least Q valid signatures.

Constraint 2 enforces that a Byzantine cannot able to obtain two sets of valid

signatures of cardinality at least equal to Q for two different messages of the same

type, or for two messages of the same priority, exchanged in the same step, when

there is the maximum number of Byzantine delegates and no down delegate.6 The

minimum value of op that assures all the above requirements is (2b + d + 1) and the

corresponding value for Q is (2b + d + 1) too.

3.6 Distributed and cooperative update process protocols

Our approach relies on a suite of protocols, namely: the protocol executed by the

DO (Document Originator Protocol); the protocol executed by the subjects in CG

6More details about message types/priorities are presented in Section 3.6.

46

(Subject Protocol); and the protocol executed by the operative delegates (Delegate

Protocol). First, we explain some terminologies and data structures we used in these

protocols.

3.6.1 Terminology and structures

We call Statex
dl the state associated with a delegate dl ∈ OP at step x of the

process. We call step all the operations/interactions executed by a subject sc ∈ CG

and delegates, from the reception of the document and flow policy attachment by sc, to

the delivery of the updated document to the next receiver (snext ∈ CG). The complete

cooperative and distributed update process thus consists of a set of steps. Statex
dl

which is stored in the local storage of dl, contains following components that can be

possibly updated step by step: a Document (Doc), a flow policy attachment (Fpa),

a structure containing the invalid modification document declarations (IMDD), a

structure used during the recovery that indicates when the last recovery occurred for

each region (LSRR), a vector of progressive numbers used to protect against replay

attacks (NIP , where IP = CG ∪DG ∪{DO}). For a delegate dl ∈ OP , a step x ends

and the subsequent one (x + 1) begins when dl makes Statex+1
dl stable, that is, the

values of modifiable information contained in Statex
dl are replaced with the new ones,

according to the information contained in the last correct message sent by sc to all

delegates.

Next, we explain some data structures used by a delegate in detail.

• IMDD (Invalid Modification Document Declarations) This structure contains

invalid declarations inserted during each recovery (see example 3.6.1). Invalid

declarations are stored in IMDD according to the subject that has inserted

them in Fpa, and according to the type of operation associated with it (up-

date attr/delete attr/delete elmt privilege). A subject is identified in IMDD

through the information that specifies its position in Fpa at the time of insertion

of that declaration in Fpa itself.

47

Example 7 Don did not extend the survey path to his nurse Cathy. However,

Cathy modified the attribute rate filled by Don and inserted in the document

control information and Fpa her modification declarations. When the document

passed to Lynn, who is the administrative staff of the hospital, she found the

document corrupted. Lynn asked notaries for a recovery. Notaries will recover

the document by undoing Cathy’s modifications, and put Cathy’s modification

declarations into IMDD.

• LSRR (Last Saved Region Recovery) This structure is used by a delegate during

the recovery. It stores, for each modifiable region, the information that identifies

the subject in Fpa that has generated the last detected as corrupted version

of the document wrt that region. During a recovery, only subjects that have

declared some modifications on a region to be recovered and that appear in

Fpa in a position greater than that stored in LSRR for that region, will be

contacted to obtain the most recent correct region content. Since previous

recovery has stored the most recent correct region content wrt the declarations

in Fpa inserted by subjects in a position less than that stored in LSRR for

that region, the recovery process will use it to recover the region if it does not

receive a more recent correct region content by the contacted subjects.

• NIP This structure is a vector of progressive numbers, initially sets to all

zeros, one for each party involved in the process. It is used to keep track of the

number of steps a subject or the DO has taken part in, and how many times

a delegate has requested an agreement. Whenever a subject/DO participates

in a step, the corresponding progressive number is increased. The indication of

the receiver in the messages sent by a delegate, together with the insertion of

the value stored in NIP , which corresponds to that receiver, prevents Byzantine

subjects and/or Byzantine delegates from replaying messages exchanged in a

step x during a step y, with y > x.

48

• Queue This structure stores all the received messages. During a generic step x,

a delegate needs a strategy to choose among all the received messages the next

one to process. This strategy is called received messages scheduling policy and

it is applied each time a message has been completely processed or when the

time assigned to a process that processes a message ends. This policy collects

among all the messages in Queue only the messages valid according to Statex,

and the values of the previous introduced variables. Then, it selects from this

set the messages with higher priority and in case of more than one message, the

message received first.

• state This variable contains a string which indicates the state in which the

delegate is. For example, the value norec for this variable indicates that the

delegate has not yet requested a recovery or it is completing a step without the

need of a recovery.

• requests This variable is an integer, indicates the number of processed requests

wrt the value of variable state. If no recovery has been requested, variable

requests reaches at most value 1, whereas it reaches value 2 in presence of

recovery. Variable state and requests are used to avoid replay attacks within

the same step.

The Subject Protocol also makes use of variable state to represent the action the

subject is executing or has just executed. A subject also use a structure NCG which

is similar to NIP , to keep track of the number of steps all subjects have taken part

in. Whenever a subject s sends a message, this message contains the progressive

number associated with s (NCG[s]). This information is used by a receiver to discard

old messages.

Parties involved in a cooperative and distributed update process communicate by

exchanging messages. Table 3.9 gives more details about the exchanged messages.

In the table, messages are presented in terms of type, sender, receiver(s), and their

complete structure and semantics. Only messages received by a delegate have associ-

49

ated a priority. This is because only Down Delegate and Delegate Protocols use this

information to choose the next message to process. Figure 3.5 shows the message

exchanged between the involved parties.

Recovery sub-phase

(err, Doc,
 MReg
 ,
 N
CG
[
s
c
]
)

)
,
,
,
Re
,
,
(
 sbj
dl
dl
 n
sbj
Doc
g
M
IMDD
rec

c
c

)
)}
(
,
{
,
(
 D
dl
dl
 m
S
m
rec
-
fw
 Î

)
,
,
Doc

MReg,
,
IMDD
merge,
-
rec
(

c
c

dl
dl
 sbj
n
sbj

s
c

dl
1

dl
2

dl
|DG|

...

time

Fpa
-Checking sub-phase
 time

s
c

dl
1

dl
2

dl
|DG|

...

)
,
(
)
,
(

c
c
 s
s
 Fpa

ar
-
fpa
-
new
|

Fpa

nr
-
fpa
-
new

)
,
(
)
,
(

c
c
 s
s
 Fpa

ar
-
fpa
-
signed
|

Fpa

nr
-
fpa
-
signed

Change-Delegates-State sub-phase
 time

s
c

dl
1

dl
2

dl
|DG|

...

)
)}
ˆ
(
{
,
ˆ
,
)}
(
{
,
,
(

|
)
)}
(
{
,
(

ˆ
Q
dl
dl
Q
dl
dl

Q
dl
dl

m
S
m
m
S
m
ar
fpa
signed
fw

m
S

m,

nr
fpa
signed
fw

Î
Î

Î

-
-
-

-
-
-

)
)}
ˆ
(
{
,
ˆ
,
)}
(
{
,
,
(

|
)
)}
(
{
,
(

ˆ
Q
dl
dl
Q
dl
dl

Q
dl
dl

m
S
m
m
S
m
ar
fpa
signed
fw

m
S

m,

nr
fpa
signed
fw

Î
Î

Î

-
-
-

-
-
-

Down-Delegate-agreement sub-phase
 time

dl
2

dl
|DG|-1

...

dl
1

dl
down

state
 down
 MTTIME
 (agreement)

(agreement-
 resp
, history,
 hpm
, agreements, dl, N
 IP
[dl]
)

Figure 3.5. Messages exchange

50

Table 3.9
Messages

P Type Sender Rcvr(s) Content and Semantics
- init-dg DO DG (init-dg, d id, DocDO, FpaDO, CG, DG)

Message sent by the DO to all
delegates containing the original version of the document,
the initial flow policy attachment and the set of delegates
and subjects involved in the process

- init-cg DO CG (init-cg, d id, regkeyss, docmodcerts, fpmodcerts,CG,DG)
Message sent by the DO to each subject s
containing s’s decryption keys, document/flow policy
certificates and the set of subjects and delegates

0 agreement dl ∈ D DG (agreement)
Message sent by a down delegate to all delegates
in DG to receive information needed to reach the same
state of the operative delegates

- agreement-resp DG dl ∈ D (agreement-resp, history, hpm, agreements, dl,NIP [dl])
Message sent by delegates to a down delegate containing
the history of all previous steps, in terms of messages of
type fw-signed-fpa-nr or fw-signed-fpa-ar that cause the
step change (history), their last processed message (hpm),
all the received but not still processed agreement messages
(agreements) and information required to prevent other
delegates to replay this message (a progressive number and
the public key of the down delegate receiver)

1 err sc ∈ DG (err, m, Ssbj(m), MReg,NCG [sc])
CG | DO Message sent by the current subject/DO to all delegates when

an error occurs to the document content to collect (b + 1)
recovery versions

- rec DG sc ∈ (rec, IMDDdlc , MReg,Docdlc , sbj, nsbj)
CG | DO Message sent by delegates to the current subject/DO

containing the result of their recovery: a Doc and the
updated IMDD structure

2 fw-rec sc ∈ CG DG (fw-rec, {m, Sdl(m)}dl∈D)
Message sent by the current subject to all delegates to
receive the last correct document version wrt its accessible
modifiable regions, obtained unifying the |D| = (b + 1)
forwarded recovery versions

- rec-merge DG sc ∈ CG (rec-merge, IMDDdlc ,MReg, Docdlc , sbj, nsbj)
Message sent by delegates to the current subject containing
a Doc, union of the (b + 1) received recoveries, and the IMDD
structure, updated according to the (b + 1) received recoveries

3 new-fpa-nr sc ∈ CG DG (new-fpa-nr,Fpasc
)

Message sent by the current subject to all delegates to
propose a new Fpa to be made stable, in absence of recovery

- signed-fpa-nr DG sc ∈ CG (signed-fpa-nr, Fpa)
Message sent by delegates to the current subject if the
proposed Fpa is correct, in absence of recovery

3 new-fpa-ar sc ∈ CG DG (new-fpa-ar,Fpasc
)

Message sent by the current subject to all delegates to
propose a new Fpa to be made stable, after a recovery

- signed-fpa-ar DG sc ∈ CG (signed-fpa-ar, Fpa)
Message sent by delegates to the current subject if the
proposed Fpa is correct, after a recovery

4 fw-signed-fpa-nr sc ∈ DG (fw-signed-fpa-nr, m, {Sdl(m)}dl∈Q)
CG | DG Message sent by the current subject to all delegates and then

forwarded by delegates to each other delegate to make stable
the Fpa contained in m and previously signed by |Q| = Q
delegates

4 fw-signed-fpa-ar sc ∈ DG (fw-signed-fpa-ar, m, {Sdl(m)}
dl∈Q

, bm, {Sdl(bm)}
dl∈ bQ

)

CG | DG Message sent by the current subject to all delegates and then
forwarded by delegates to each other delegate to make stable
the Doc contained in bm and the Fpa contained in m and

previously signed by |Q| = | bQ| = Q delegates
5 end DO DG ∪ CG (end, d id)

end the update process

51

3.6.2 DO protocol

The DO chooses CG and DG, and distributes to all delegates information (DocDO,

FpaDO, CG, DG). Then, it distributes the decryption keys and document/flow policy

modification certificates to the corresponding subjects in CG. Finally, the DO sends

to the first subject the DO’s version of the document to be updated (DocDO) and

the DO’s version of the associated flow policy attachment (FpaDO).

At the end of update, the DO receives from the last receiver subject (sbj) in Fpa

a message m containing the document (Docsbj) and a message signed by (2b + d + 1)

delegates containing Fpa and IMDD. It checks the document integrity and, if an

error occurs, it sends to all delegates an error message for recovery. Each delegate

dl ∈ DG generates a document recovery version by contacting subjects in CG and

then sends a message containing its version to the DO. The DO accepts the first

(b+1) messages from the delegates and then composes them to obtain the last correct

document version. 7 The original document is thus replaced by this new document.

At this point, the DO sends a message (end, d id) to all delegates and subjects, to end

the cooperative update process concerning document with identifier equal to d id.

3.6.3 Subject protocol

When subject sc ∈ CG receives a message m from a subject sbj ∈ CG, and at least

b + 1 messages from different delegates such that the structure of Fpa and IMDD

are all the same from these messages of the delegates, it can check if m contains a

corrupted document according to the received IMDD and Fpa. As we will see in the

delegate protocol, an operative delegate will not send Fpa and IMDD to a subject

unless at least (2b + d + 1) delegates approves this Fpa and IMDD.

If there is no error in m, sc executes the operation on the document. Otherwise, it

sends to all delegates a recovery message to obtain the last correct document version

wrt the set of regions it can access.

7More details about the recovery functionality are presented in Section 3.7.

52

sc accepts the recovery reply messages from (b + 1) delegates and then puts these

messages in a message m and sends m to all delegates. Next, sc waits to receive

recovery messages from at least (2b + d + 1) delegates. The recovery results from

these (2b + d + 1) delegates must be the same. Then this finishes the recovery and sc

can start operations on the correct document version.

After executing the operation on the document and/or Fpa, sc has to send its

updated Fpa to all delegates in order to be checked and signed (This is called

Fpa Checking). If no recovery has been requested by sc during the step, sc sends

a message (new-fpa-nr,Fpasc
) to all delegates; a message (new-fpa-ar,Fpasc

) is sent

otherwise. sc has to send to each delegate a message whose type depends on whether

it has requested a recovery or not in the step. A delegate verifies if the updated Fpa

is correct, that is, if sc has the certificates which authorize it to update the Fpa and it

inserted these certificates in the Fpa. If so, the delegate signs the message containing

the Fpa and sends it back. Example 8 illustrates the importance of Fpa Checking.

Example 8 When Don extends the flow path by letting his nurse Cathy update the

survey, he should get enough signatures (at least of Q) from delegates by requesting

Fpa Checking for the new proposed flow path. Subsequent modification made by Cathy

will be valid if she inserts her credentials (see Figure 3.3). However, if Don does not

extend the flow path, any modification made by Cathy will be invalid, even though she

inserts her credentials. Fpa Checking is also important to prevent Byzantine delegates

from damaging the integrity of the update. As previously mentioned in Section 3.1,

if a Byzantine delegate deleted what Cathy filled in because the information does not

favor the drug company he favors, he must have a message from Don who proposed

the flow path without extension. However, he could not get such message.

When sc receives (2b+d+1) such signatures from delegates, it is ready to change

delegate state. That is, before sending the document to the next subject, sc has to

notify all delegates the document recovery version and corresponding IMDD struc-

ture generated during the recovery, if any, and the correct Fpa proposed. sc does

53

this by sending a message m̃ to all delegate. If no recovery happened in the step, m̃

is of type fw-signed-fpa-nr and it contains the new Fpa and (2b + d + 1) signatures

of it from delegates. Otherwise, m̃ is of type of fw-signed-fpa-ar and it contains: 1)

message m of type fw-signed-fpa-ar containing the new Fpa; 2) (2b + d + 1) delegate

signatures on m; 3) message m̂ of type rec-merge containing the document recovery

version and associated IMDD structure; 4) (2b+ d+1) delegate signatures computed

on m̂.

After sc sends m̃, it sends the document to the next subject according to the

Fpa. sc needs to wait until receiving a message from the DO indicating that the

update process ends. Before the update process end, some delegates may contact sc

for recovering the document.

As we will see in the delegate protocol, a subject cannot generate a valid message

of type fw-signed-fpa-nr and another valid message of type fw-signed-fpa-ar in the

same step, because the protocols prevent this subject from collecting Q signatures

for a message of type new-fpa-nr and Q signatures for a message of type new-fpa-ar.

Indeed, in the same step, a delegate does not accept messages with the same priority.

Example 9 After Don extended the path and got Fpa Checking, the document passed

to Cathy. Cathy filled in parts of the survey. Later on, a Byzantine delegate cannot

undo Cathy’s update, even by colluding with Don. This is because at least Q delegates

should sign Fpa. Don cannot get Q delegates sign a different Fpa.

3.6.4 Delegate protocol

The initial state of a delegate is norec. If a delegate dl receives a recovery message

from sbj who is in CG, dl checks the following before doing any recovery: 1) according

to the Fpa stored in the current state, sbj should be the subject doing update process

now. As we will show later, all operative delegate always have the same and correct

Fpa at each step, due to the State consistancy; 2) the request associated with the

current step is 0; 3) current state variable is norec; 4) the document contained in

54

the recovery message is signed by a previous subject who is before sbj in the Fpa;

5) this is not a replay attack, according to the information stored in NIP . If there is

any error, dl just ignores the message. Otherwise, it generates a document recovery

version and the corresponding IMDD updated structure by contacting subjects in

CG and then sends to sbj a message containing the generated information.

If dl receives from sbj a message m of type fw-rec, it will check the following: 1)

variable state is rec; 2) sbj ∈ CG; 3) variable requests is 0; 4) according to the Fpa,

sbj is the current subject who is updating the document; 5) there are (b+1) recovery

messages signed by different delegates. If there is no error, dl sets requests = 1 and

m as the hpm; then it generates a merge version of Doc and IMDD and sends it to

sbj.

When dl receives a message m from sbj ∈ CG for Fpa Checking, it checks the

following. If the message m is of type new-fpa-nr, state variable must be norec and

requests must be equal to 0, as this is the first request from sbj in this step. If the

message m is of type new-fpa-ar, state variable must be rec and requests must be

equal to 1. Also, from the Fpa stored in dl’s State, sbj should be the current subject

requesting for Fpa Checking. If all above are satisfied, dl increases the variable

requests by 1 and set m as the hpm. dl then checks the integrity of the proposed

Fpa from sbj. If no error in the proposed Fpa, dl sends a signed message of type

signed-fpa-nr or type signed-fpa-nr to sbj, depending whether a recovery happened

or not in this step.

When dl receives a message m of type fw-signed-fpa-nr or fw-signed-fpa-ar from

sbj for commit the step, it checks the following. 1) In the case that m is of type fw-

signed-fpa-nr, them m must contain a message m of type signed-fpa-nr and (2b+d+1)

delegate signatures on m. This indicates that at least (2b + d + 1) delegates agree

with the Fpa proposed in m. 2) In the case that m is of type fw-signed-fpa-ar,

them m must contain a message m of type signed-fpa-ar and (2b + d + 1) delegate

signatures on m. Also, m must contain a message m̃ of type rec-merge which contains

a recovered version of document and the corresponding IMDD, and (2b + d + 1)

55

delegate signatures on m̃. If the above are satisfied and the message is not a replay

attack according to the information stored in NIP , dl updates the components of

State, that is, it sets the variable state as norec, requests = 0, hpm = m and puts

m into history. dl also sends the received message m to other delegates, in case sbj

did not send m to them. So all the operative delegates will have the same state.

That is, in case m of type fw-signed-fpa-ar, all operative delegates set components of

their State, such as the current document version, IMDD, LSRR etc. according to

the one contained in m̃. dl thus finishes a step, and State is stable. It then sends a

message containing Fpa and IMDD to the next subject in the path.

The designed protocols assure that each operative delegate signs only once such

information at each step, thus preventing Byzantine subjects from obtaining two

different contents signed by at least Q distinct delegates and forcing different dele-

gates, such as dli, dlj ∈ OP , to make stable Statex+1
dli

and Statex+1
dlj

with Statex+1
dli

6=

Statex+1
dlj

.

3.7 Recovery

The goal of recovery is to retrieve the last correct version of the regions accessible

by sc. It accomplishes this task by contacting subjects in CG that have received till

that point at least a document package and that have executed at least a modification

operation on at least one region accessible by sc. Also, it is desirable to limit as

much as possible the number of subjects to be contacted. Correctness of a region is

determined according to the set of valid modification declarations inserted in Fpa.

A declaration of deletion of a document sub-tree is valid if 1) a certificate cor-

responding to this declaration exists or 2) a certificate corresponding to a deletion

declaration of a document sub-tree that includes the deleted sub-tree exists.

A delete attr modification declaration is valid if the subject that has inserted

this declaration in Fpa has also inserted in the document control information of the

currently analyzed document version a corresponding certificate. A delete attr mod-

56

ification declaration is also valid if it is not evaluated as invalid till that point and

another valid subsequent delete attr declaration exists in Fpa. That is, A delete attr

declaration is considered valid if a subsequent subject s will correctly exercise the

delete attr privilege on the same region. The same strategy applies to update attr

and delete elemt modification declarations. Even more, a valid declaration for the

deletion of a sub-tree a, and its corresponding certificate, makes other not yet evalu-

ated deletions of a sub-tree b such that b ⊆ a, valid. This implies that a recovery is

done from backwards.

An update attr declaration is valid in presence of a proper certificate and when

the content of h docae components associated with elements of the modified region

are correct wrt the signature computed by the subject who generated the declaration.

Moreover, content of atomic elements not declared as deleted must be correct wrt the

corresponding h docae component.

Next, we give a high level description of the recovery algorithm. This algorithm

is used by a delegate to generate a document recovery version and the corresponding

IMDD structure.

Initially, the algorithm replaces all non-modifiable information in the document

to be recovered (Doc), with those in the stable version of the document (Docst).

Then function Rec-MDD-Collection collects all modification declarations, not yet

inserted in the stable version of IMDD and associated with at least a region in

MReg, in structure MDD. Each delete attr/update attr declaration, among the

previous selected ones, is collected if it is present in a position of Fpa greater than

the position stored in LSRR corresponding to the region to which the modification

declaration is associated with. Each delete attr modification declaration (dad) in

MDD associated with a region r contains: 1) the r’s identifier, 2) the cumulative set

of elements declared as deleted, that is, the union of the sets of elements declared as

deleted by all the delete attr declarations, for r, in MDD that precede dad in Fpa

and the set of elements specified in dad, and 3) the public key of the subject that has

57

generated dad. In MDD are also inserted, for each region in MReg, the most recent

valid update attr/delete attr declarations determined during the last recovery.

The algorithm considers the position in Fpa corresponding to the subject (sbj(Doc))

that has generated the corrupted document to be recovered as the initial recovery po-

sition. Component set-del-docae will contain all the elements declared as deleted in

valid delete elemt/delete attr declarations. It analyzes declarations in MDD until

the set is empty and when required it contacts a subject to obtain a document ver-

sion against which to evaluate the declarations in MDD. The algorithm starts by

the document version to be recovered and then, if required, other document versions

are obtained in reverse order wrt the order associated with receiver specifications in

Fpa.

When the algorithm analyzes certificates associated with delete elemt privileges,

it removes all certificates that are not correct, or that are not associated with a

delete elemt declaration, or that are contained in another certificate. Delete elemt

declarations are considered valid according to the strategy we described at the be-

ginning of this Section. Elements declared as deleted in these valid declarations are

saved in set-del-docae component.

Similarly, the algorithm analyzes each region for which there exists a delete attr

declaration in MDD. It determines the most recent delete attr declaration in MDD

for a region r (dad). If its position is less than or equal to that stored in LSRR for r,

then there are no valid delete attr declarations after the last recovery. Therefore the

certificate inserted in Doc is copied by Docst, also inserting in set-del-docae the set of

elements declared as deleted associated with dad in MDD. If there is a corresponding

correct certificate in the currently analyzed document version, then it inserts in Doc

this certificate, saves all elements declared as deleted in set-del-docae, and removes

from MDD all delete attr declarations associated with r. At point 5, the algorithm

analyzes update attr declarations.

Next, at point 7 all declarations with position in the Fpa equal to that of the

currently analyzed document version are removed from MDD, since no other sub-

58

sequently required document version can make them valid. They are inserted in

IMDD.

Then, the algorithm determines the set decl set which contains the declarations of

the subject who is at the highest position of the Fpa among these subjects who made

declarations in MDD. If at least one declaration is at a position greater than that

stored in LSRR for the corresponding region, then a request is sent to the subject that

has generated this set of declarations to obtain its last stored document version, if this

subject has not been contacted up to that point. If the subject is unreachable, the

algorithm removes decl set from MDD and inserts decl set in IMDD, then it deter-

mines the new value of decl set according to the content of MDD. When decl set does

not contain anymore delete elemt declarations and delete attr/update attr declara-

tions with position greater than that stored in LSRR for the corresponding region,

the algorithm removes decl set from MDD and for each declaration in decl set it

copies content and certificate (in case of update attr declaration) or only certificate

(in case of delete attr declaration) in Doc from the stable document version Docst.

Finally, when MDD is empty, the algorithm sets to null all elements of Doc saved

in set-del-docae. The algorithm ends returning Doc, the produced document recovery

version, and the corresponding updated IMDD structure.

Given (b + 1) document recovery versions, there must be one that is consistent

with these of all operative delegates. All operative delegates will sign such one and

send it to the requester. A recovery responses merge algorithm can be found in [55]).

3.8 Performance evaluation

This section evaluates the performance of our approach. We compare it with the

case that only one party (trusted) is involved for flow path integrity checking and

document recovery.

59

3.8.1 Experimental setup

We measure the time to complete one step. Both delegates (or the trusted party)

and subjects ran on identical Solaris workstations. These workstations have 450MHz

CPUs and 2GB of memory. The network bandwidth is 100MB/s. Point-to-point

communications is implemented using TCP. RSA of 1024-bit modulus is used for

digital signatures. To ensure the confidentiality of the document, AES with a key

size of 256 bit is used for encryption.

We performed the experiment with 1 Byzantine delegate, 0 down delegate. There-

fore, there are 3 operative delegates; totally 4 delegates. Fpa is about 5KB and the

document is 100KB.

3.8.2 Results

Figure 3.6 reports the time complexity when no recovery is requested. In this

case, our approach does not have much more delay than the one-party approach.

The overhead introduced in our approach is from the time spending on the change-

delegate-state sub-phase. This sub-phase requires the subject to collect 3 signatures

on the proposed Fpa and then broadcast them to all delegates, which takes less

than 10ms. This low overhead is due to the fact that the subject does not need to

perform any encryptions or generating any signatures; it only needs to verify at most

4 signatures. Compared to the overall time (362ms) of the one-party case when the

operation time is 20ms, this overhead is only 3%. When operation time increases,

this overhead decreases.

Next, we measured the time complexity when recovery is requested. Figure 3.7

reports the results when only one subject needs to be contacted by delegates (or one-

party) for recovery of the document regions which is of size 0.5KB. As we can see,

the overall time increases for both approaches. Even for a one-party case, the time

is almost double that of no recovery. This due to the fact that the party needs to

decrypt the document, and then find the subjects to be contacted in order to recover

60

20 30 40 50 60 70 80 90 100
360

370

380

390

400

410

420

430

440

450

Updating time by subject
Ti

m
e

One−Party
Byzantine

Figure 3.6. Time (no recovery)

20 30 40 50 60 70 80 90 100
600

650

700

750

800

850

900

950

1000

1050

1100

Updating time by subject

Ti
m

e

One−Party
Byzantine

Figure 3.7. Time (with recovery)

the document. Encryption/Decryption are needed for the communication between

the subjects and the delegates (one-party). This process also requires the signatures

computation and verification, and transferring the recovered version to the requested

subject. Thus, recovery almost doubles the time needed for both approaches. How-

ever, the Byzantine approach has more overhead relative to one-party case. For

example, when the operation time is 20 ms, the Byzantine approach needs 991ms

while one party needs 647ms. The overhead is almost 35%.

This overhead is mainly due to the encryption and decryption of recovered versions

for recovery-merge operations and also the delegates sending back the merged version.

61

Furthermore, the subject needs to make delegates states stable by sending the merged

version and signatures on it. We optimized performance by reducing the size of

messages for recovery merge. If the first b + 1 recovered versions are the same, only

one copy is sent to the delegates, along with all the digital signatures of the version.

Similarly, a delegate only needs to send back the digital signature on the version that

it approves. Figure 3.8 shows the results. The overhead is now reduced to only 18%.

20 30 40 50 60 70 80 90 100
600

650

700

750

800

850

900

Updating time by subject

Ti
m

e
One−Party
Byzantine

Figure 3.8. Time (with optimizations)

3.9 Conclusion and future work

In this chapter, we have proposed an approach supporting cooperative updates in

Byzantine and failure prone distributed systems. The protocols we have developed

are resistant to a number of colluding Byzantine subjects, and they are not affected

by a maximum number of failures specified at the beginning. We have also devel-

oped a language and an infrastructure to specify dynamic paths, called flow policies,

stating which subjects have to receive the document. In particular, we provide the

possibility of modifying the specification of these flow policies during the update pro-

cess, according to the stated modifications rules. Another important feature is the

recovery process provided as part of our approach. Indeed, recovery is distributed,

that is, the last correct version of the document content is built by a set of subjects,

62

called delegates, using the document versions received by the contacted subjects in

CG.

We plan to extend the work presented in this paper in several directions. First,

we want to develop protocols to manage rollback. Second, we plan to extend our work

with mechanisms supporting receiver anonymity, and add element and add attribute

privileges. We also plan to relax the constraint that subjects in CG cannot be changed

once the update starts, which is currently a limitation of our approach. Finally, we

will deal with how to allow different subjects to concurrently update disjoint XML

document portions in a parallel distributed setting [56], giving the possibility of gen-

erating independent flow policies to be used on these portions.

63

4 A CRYPTOGRAPHIC APPROACH TO ACCESS CONTROL FOR PRIVACY

PRESERVING COLLABORATIONS

In this chapter, we propose a cryptographic approach for distributed multi-party col-

laborations on document access and updating. Our solution ensures secure dynamic

group communication, access privilege privacy, and participating anonymity. We

provide security analysis for the protocol and time complexity analysis.

4.1 Introduction

Previous approaches we have developed are not scalable in that before a col-

laboration starts, each participants must receive some secret information securely.

Therefore, each collaboration involves secret control information to be sent to each

participant. Moreover, no previous approach addresses privacy in collaboration. By

privacy, we means that in a distributed environment, each party’s participation and

its privileges should not be revealed to others unless necessary, during the collabo-

ration. One simple approach to ensure privacy is by letting a trusted party to fully

moderate the collaboration process. That is, a trusted party sends the data to the

first participant, and after receiving the response, the trusted party sends the data

to the next participant. However, the communication cost in this simple approach is

high and more importantly, the trusted party is a bottleneck for collaborations.

In this chapter, we provide a scalable distributed protocol which uses crypto-

graphic techniques to provide the following properties for multi-party collaborations:

1. Dynamic group communications: As a collaboration proceeds, the group mem-

bers which are allowed to access the data can change dynamically.

64

2. Data integrity: A recipient should be able to verify that the data received is

authentic, even though it receives the data from another party instead of from

the trusted party;

3. Participating anonymity and completeness: A subject has no idea of who par-

ticipates in the operation, except the one to whom it should send the data after

it finishes the operation on it. However, when a subject receives the data, it

should be able to verify that all its previous authorized subjects have accessed it

already, even though it does not know whom they are. Any missed participation

should be able to be detected by a receiver.

4. Privacy on access privilege: Each subject should know its access privilege, with-

out leaking this information to other participants (except a recipient should

know who authored the data, as this is for integrity purposes); Moreover, each

subject may access data several times, and each time, the privileges may differ-

ent from its previous privileges.

The rest of the chapter is organized as follows. We describe our model in Section

5.2 and preliminary notations in Section 4.3. The distributed privacy preserving

document processing protocols are presented in Section 4.4. A security analysis is

detailed in Section 4.5.

4.2 Model

We model the secure multi-party collaboration by a distributed document access

and update. In such an application, several parties cooperatively update a document

according to the access control policies and data flow policies. We assume that these

policies are already defined for a document, for example, through multi-party negoti-

ation processes. A participant may appear multiple times in a data flow policy. For

each appearance, the corresponding access control policy specifies the access privi-

65

leges. For simplicity, the privileges over the document are read, write, and denied. A

write privilege consumes the read privilege, and the default privilege is denied.

Every party involved in the collaboration is assigned a secret ID, denoted as SIDi

by the trusted party (TP). We assume that each party could be identified in public

by its public key.

4.2.1 Threats

The threats to the collaboration include:

• an unauthorized party may access the document, and thus violates the confi-

dentiality of the document.

• an unauthorized party may modify the document illegally. That is, a party

which does not possess the write privilege from the access control policy may

update the document.

• a party may be skipped during the collaboration and thus violates the partici-

pation completeness of the collaboration.

Other threats to secure multi-party collaboration are that a party, even an autho-

rized party, may want to deduce the SID of the others who are participating in the

collaboration and/or their access privileges.

4.3 Preliminary

In this section, we describe the concepts that are used in our protocol.

Definition 4.3.1 A document id is identified for each collaboration. Therefore, we

denote a collaboration as G(id) where id is the document id used in the collaboration.

A document version is an incremental number starting with 0 and incrementing every

time a subject performs update privileges over it.

66

Example 10 A document with identifier 1211 will be accessed by A1 to A12. Suppose

the data flow path is

A1, A2, A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

where the bold case participants (A1, A4 and A9) have updated privileges, non-bold

cased participants have read access, and others have denied access.

In the above example, document id is 1211, there are 3 version of its. Initial

version is authored by A1, then version 0 is updated by A4 to be version 1, and the

last version 2 is authored by A9 during the collaboration.

Definition 4.3.2 A session group gi(k, a, id) is formed by group members who have

read access to the version i of a document id. The group member communicate with

each other through a secret key k which is shared by the group members. The version

of the document that they have read access is authored by the party a.

In the example, g0(k1, A1, 1211) = {A1, A2, A3, A4}. All members in g0 have read

access to the document modified by A1. The data is encrypted with k1 for secure group

communication. A4 is included since write privilege subsumes read access. Similarly,

g1(k2, A4, 1211) = {A4, A5, A6, A7, A8, A9}. After A4 modifies the document, A1, A2

or A3 is no longer able to access it, since neither of them is in g1.

Therefore, we have the following

• A multi-party collaboration G(id) consists of several gi(ki, ai, id);

• If i 6= j, then ki 6= kj; Each session group has a secret key for its group

communication.

• For any i > 1, gi(ki, ai) ∩ gi−1(ki−1, ai−1) ⊇ ai. For any two sequence g, their

interception contains the author of the last g.

For a collaboration G(id), we have the following definitions.

67

• p: is a large prime from which a finite field Fp is formed.

• f : {0, 1}∗ → {0, 1}p is a one way hash function

• Dynamic collaboration polynomials (DCP)

DCP = {γ1, γ2, . . . , γj}

where γi = 〈Pki
(x), Pai

(x)〉 and secret key polynomial Pki
(x) is a polynomial

over Fp[x] and is defined as

Pki
(x) =

∏

j∈gi(ki,ai,id)

(x− f(SIDj‖Tj‖r1)) + ki

and authentication polynomial Pai
(x) is a polynomial over Fp[x] and is defined

as

Pai
(x) =

∏

j∈g(ki,ai,id)

(x − f(SIDj‖Tj‖r2)) + PubKey(ai)

Tj is the number of times the receiver j has received the document and r1 and

r2 are random variables in Fp.

• A participant completeness polynomial (PCP) for verifying that all previous

receivers have accessed the document

PCP (x) =
∏

i∈G(id)

(x − Qi)

where Qi = f(Qi−1‖SIDi−1‖r3) and r3 is a random variable in Fp. Qi is en-

crypted in the document;

• the next receiver set Φ for finding who is the next receiver.

Φ = {φ1, φ2, . . . , φj}

68

where φi = 〈µi, νi〉, µi = f(SIDi‖r5‖Ti), νi = f(SIDi‖r4‖Ti) ⊕ NextPubKey

and NextPubKey is the public key of the next receiver, r4 and r5 are random

variables in Fp

4.4 Secure collaborative document processing

Before we detail the process, we first state our assumptions.

• A party which is involved in the collaboration will be available until the end of

the collaboration.

• An authorized party will be collaborative. That is, it will send the document

to the next receiver according to the protocol.

Before a collaboration starts, the trusted party publishes f , random variables

{r1, r2, r3, r4, r5} ∈ Fp, and DCP , PCP and Φ for each collaboration G(id). A major

difference with previous approaches is that no secret control information needs to be

sent to each participant for each collaboration. Next we describe the collaboration

protocols.

4.4.1 Updating process protocol

A party i could calculate possible secret keys used in the collaboration by calcu-

lating the polynomial Pki
(f(SIDi||Ti||r1)). When it receives a document, it performs

the following steps:

1. It decrypts the document with key γj.kj such that γj ∈ DCP .

2. If the sender of the document is the trusted party, no integrity needs to be

checked. Otherwise,

• it verifies the integrity of the document according to the γj.aj. That is,

the receiver calculates the PubKeyj = Pai
(f(SIDi||Ti||r2)) and checks if

69

the digital signature signed by the PubKeyj matches the hash value of the

document content;

• it verifies if all previous participants have received the document by check-

ing if PCP (Qi) = 0 where Qi is the value stored in the current version of

the document;

• If there is any error, the participant sends the received data to the data

server for recovery and its operation on the received document is done. We

will detail the recovery process later.

3. The subject checks whether it has write privileges over the document. That is,

it checks if there exist a γi ∈ DCP such that polynomial Pai
(f(SIDi‖Ti‖r2))

equals to its public key. If so, it has write access to the data, and it will increases

Ti by 1. Otherwise, it has read access.

• If the subject has read access and the document it received is from the

trusted party, however,the author of the document is another subject (this

is the case when the trusted party recovered the document), then the

subject finishes its operation on the received document. It does not need

to send anything out;

• Otherwise, the subject

(a) updates value Qi+1 to be f(Qi‖SIDi‖r3) in the document;

(b) If the subject has write access, it modifies the content and should sign

the message digit with its private key.

(c) finds the next subject to send by computing the public key of the next;

That is, it finds a φi such that µi = f(SIDi‖r4‖Ti). The next receiver

is νi ⊕ f(SIDi‖r5‖Ti).

(d) If the subject only has read privileges this time over the document,

it encrypts the document using the same key with which it decrypted

70

the document. Otherwise, it encrypts the document with the key ki

by calculating Pki
(f(SIDi||Ti||r1)).

4. The subject increases Ti by one for the document.

4.4.2 Recovery protocol

The trusted party keeps a record of session group from which the most recent

recovery request has been requested. We denote this session group as gr (note: at the

beginning, gr is null).

When the trusted party receives a recovery request from an authorized party pc,

it decides within which session group gc the error happens this time by executing

algorithm 4.1.

Algorithm: Find Group Session
Input: pc, doc, gr

Output: gr

1. set gc = g(r+1)

2. if(valid(doc))
Get from doc the session group and assign it to gc

3. for all gi ∈ G(id)
find gm s.t. m ≥ c ∧ pc ∈ gm ∧ ∀n s.t. pc ∈ gn, n ≥ m

4. gr = gm
5. return gr

Figure 4.1. Algorithm for finding session group

After finding out the session group of the recovery document, TP gets the docu-

ment from the author of the gr. The trusted party double checks if the next recipient

of the author satisfied PCP (Qa) = 0 and PCP (f(Qa+1||SIDa+1||r3)) = 0.

Then TP will update the Qi values for the next g(r+1)’s author, and broadcasts

this to every members in the gr.

71

4.5 Security analysis

Before we prove the security properties of the protocol, we first prove that SID

is secure.

Theorem 4.5.1 No party can derive any other one’s SID during the process.

Proof We prove this for the case that a party cannot derive its group member’s

SIDs. All other cases do not give the adversary such advantages.

When adversary i receives a document, it could derive the secret key used for the

group gi. Therefore, the adversary knows ki, the secret key polynomial Pki
. It could

only derive the
∏

j∈gi(ki,ai,id) f(SIDj‖Tj‖r1). Suppose there are only two parties in

this session group. Then the adversary can at most get the value of f(SIDj‖Tj‖r1).

As the f is an one-way function, it is hard to find SIDj. Therefore, no party can

derive any other one’s SID during the process. �

Next, we prove that the confidentiality and integrity of the document is ensured.

4.5.1 Confidentiality

In order to prove that the protocol ensures data confidentiality, it is enough to

prove the following theorem.

Theorem 4.5.2 If a party is not in gi(ki, ai, id), then it cannot get the secret key ki

used in the group communication.

Proof We prove it according to the following cases

1. The adversary j is in gj(kj, aj, id) where i 6= j. That is, the adversary is

authorized to participate in the collaboration, but in a different group. In this

case, the secret key used to for session group i is mixed with the constant
∏

m∈gi(ki,ai,id) f(SIDm‖Tm‖r1).

The worst case is that the adversary and the participants in session group i

were in the same session before, such as session gb. In this case, the adversary

72

could derive the value of
∏

m∈gb(kb,ab,id) f(SIDm‖Tm‖r1) and therefore, to get the

value of
∏

m∈gb(kb,ab,id)m 6=j f(SIDm‖Tm‖r1). However, in session i, the adversary

needs to get the value of
∏

m∈gb(kb,ab,id)m 6=j f(SIDm‖(Tm +1)‖r1). Since the f is

a one way function and SID is secure according to our theorem, the adversary

cannot derive the secret key of ki. Therefore, the confidentiality is ensured.

2. The adversary is not authorized. In this case, an adversary has no advantage

over the previous case, therefore, it cannot derive the secret key.

�

Next we prove that the integrity of the document is ensured.

4.5.2 Integrity

We need to prove that no subject can modify the content issued by another au-

thorized subject.

Theorem 4.5.3 The protocol ensures data integrity.

Proof This is ensured by authentication polynomials Pai
. Each authorized partic-

ipant could derive from the authentication polynomial the public key of the party

which authored this version of the document. Based on the public key signature

scheme, the party will sign the message digest of the content with its private key.

No other party could derive this private key, and more over, the data is different for

different versions of the document (because at least the Q value will be different for

different versions of the document), therefore, the signature on the message digest

cannot be forged or replayed. The data integrity is thus ensured. �

4.5.3 Privacy

We need to prove that the protocol ensures access privilege privacy and participant

privacy. We first prove the participant privacy.

73

Theorem 4.5.4 The protocol ensures participant privacy.

Proof According to our definition, participant privacy means that a participant

cannot know who participates in the collaboration except its next receivers, previous

senders, and authorizers of its session group document versions. �

Theorem 4.5.5 The protocol ensures access privilege privacy.

Proof We need to prove that a party cannot learn the privileges of participants in

its group, except who authors the document. Moreover, a party cannot learn the

privileges of participants that are not within its session groups;

Since our protocol ensures participant privacy, a receiver cannot learn who par-

ticipated in its session group or other sessions, not to mention their privileges. When

a party sends the document to the next receiver, the chance that it will know what

kinds of privileges of the receive has does not increase than it does not know who

is the next receiver. That is, the probability that the sender guesses whether the

receiver has read or write access to the document is still the same. �

4.5.4 Participant completeness

Even though a participant does not know who the participants are, except its

senders, next receivers, and authors of its session groups, it can verify that the all the

previous participants have accessed the document.

Theorem 4.5.6 The protocol ensures participant completeness.

Proof If there is any participant left out, then the receiver can detect it by checking

the participant completeness polynomial. Since in this polynomial, Qi is based on

the participants’ SIDs and the current value of Qi, it is impossible for any one to

forge a Qi, since according to our theorem, SID is secure and Qi is aggregated. �

74

5 TIMELY DISSEMINATION OF CONFIDENTIAL EVENTS IN

CONTENT-BASED PUBLISH/SUBSCRIBE SYSTEMS

In this chapter, we investigate confidentiality and availability problems in the applica-

tion of content-based publish/subscribe (pub/sub) systems. We propose an efficient

approach which increases event availability and ensures event confidentiality in large

scale pub/sub systems. Instead of keeping the subscription information of the whole

network, a broker only needs to keep the subscription information of its group, which

is a small number of brokers. Therefore, not only are storage requirements reduced for

each broker, but also time and network traffic are reduced for subscription informa-

tion propagation. We propose a hierarchical event forwarding scheme. This scheme

increases system availability by tolerating some broker failures. Additionally, our ap-

proach can efficiently determine the subscription groups to which an event has to be

delivered by exploiting locality. Moreover, we propose an efficient encryption scheme,

under which a broker encrypts an event only once. The encryption key can be effi-

ciently derived by subscribers, even though they may belong to different subscription

groups.

5.1 Introduction

Publish/Subscribe (pub/sub) systems provide a new distributed paradigm for event

(message) distribution. In these systems, a publisher publishes an event through a

broker, also called an event dispatcher. Subscribers specify their interests by register-

ing with a broker. Brokers form a network in which they forward events to each other

and, when needed, deliver events to subscribers which have registered with them.

Basically, there are two types of pub/sub systems. The first, referred to as subject-

based or type-based pub/sub, is a system in which events are labeled with predefined

75

subjects to which subscribers may subscribe. The second type, referred to as content-

based pub/sub system, is more flexible and powerful than the subject-based one. In

such a system, both subscriptions and content are specified with respect to a set of

attributes. An attribute is an ordered pair of name and type. A subscriber subscribes

to events by specifying predicates against attributes. For example, if a schema for a

stock trade is (company: string, price: integer, shares: integer), a subscription could

be: (price < 20) ∧ company = “IBM”. Because there are no explicit destination

addresses associated with an event, brokers are responsible for delivering each event

to subscribers whose subscriptions are satisfied by the event, which is called event

matching. Decoupling publishers from subscribers makes the system scalable and

powerful.

In this chapter, we focus on the issue in which confidentiality of events needs to be

guaranteed and at the same time, events should be delivered on time, because their

value decreases with time. Stock trading is one application where such issues are of

paramount importance.

Meeting these two requirements can be contradictory, especially in large scale

content-based pub/sub systems where the volume of published events is huge. To

ensure confidentiality, an event should be encrypted during transmittal, so that only

authorized subscribers are able to decrypt it. Usually, a group key shared by both

the group members and the brokers is used to encrypt the event. However, since

there could be many attributes and thus a large number of complex predicates, for

n subscribers, there are possibly 2n subscription groups that may be interested in an

event. Therefore, encrypting the event with group keys could result in a significant

performance cost and make the timely dissemination of events difficult.

A simple approach such as multicasting an event by the broker from which the

event is published requires replicating subscription information at each broker. How-

ever, broker space requirements are a challenge for such approach.

Another consideration for these timely confidential event distribution applications

is fault tolerance. A broker failure should not prevent subscribers from receiving

76

events on time. System architecture proposed in [57,58] where an event is distributed

along a spanning tree structure, may involve very expensive reconfigurations [59] if

there is a broker failure.

Moreover, the system should minimize registration information propagating time

(RIP time), which is the time delay for new subscription information to be propagated

into the network. For example, broadcasting an event to each broker, who then

distributes the event to authorized subscribers registered from it, has minimal RIP

time. Any newly accepted subscribers will get matched events. However, if the broker

from which an event is published multicasts directly to authorized subscribers, then it

takes time for new subscription to be propagated to each broker, especially when the

network is large. Therefore, some newly accepted subscribers may miss some events.

Our contribution We propose an event forwarding scheme called hierarchical

event routing. This scheme increases system availability by tolerating some broker

failures. Additionally, our approach can efficiently determine the subscription groups

to which an event has to be delivered by exploiting locality. We also propose an

efficient encryption scheme, under which a broker encrypts an event only once. The

encryption key can be efficiently derived by subscribers, even though they may belong

to different subscription groups. In our solution, a broker needs only to keep the

subscription information of its group, which is a small number of brokers. Therefore,

not only are storage requirements reduced for each broker, but also time and network

traffic are reduced for subscription information propagation. We provide theoretical

proofs that our approach ensures event confidentiality. Experiment results validate

the high event throughput of our approach.

The rest of the chapter is organized as follows. We describe our application model

in Section 5.2, and then present our hierarchy event routing scheme in Section 5.3

and our event distribution scheme in Section 5.4. Experimental results and related

work are presented in Sections 5.5 and 5.6, respectively. Section 5.7 concludes the

chapter and outlines future work.

77

5.2 Model

In this chapter, we focus on how to ensure that confidential events are delivered

on time to authorized subscribers. It is important to note that pub/sub systems

involve several security and service quality issues. Here we only address part of them.

Other issues, such as event access control policies, integrity and authentication, are

not the focus of this chapter. Therefore, we assume that brokers are trusted. They

will enforce event access control policies when subscribers subscribe from them; and

they only accept events published by authorized publishers, and guarantee integrity

of events they route.

In our system, a broker may fail, or come under DoS attacks, therefore it may

not be available to deliver events. An unauthorized subscriber of an event (whose

subscription is denied by brokers, or if accepted, the event does not match this sub-

scriber’s subscription) may want to access the event.

Note that even though our approach eliminates the matching performed by brokers

while an event is forwarded among them, a matching algorithm is needed when a

broker has to decide to which groups of subscribers an event should be delivered.

However, such a matching algorithm is likewise not the focus of this chapter. We

assume that such an algorithm exists and that locality is used in the algorithm for

efficiency.

In the next two sections, we describe our schemes for event distribution. It includes

two steps: the first one is that an event is routed from the broker from which the

event is published to some brokers, and the second one is the event is forwarded from

these brokers to authorized subscribers.

5.3 Hierarchial event routing scheme

In this section, we describe our event routing scheme among brokers, followed by

a discussion of the main features of this scheme.

78

5.3.1 Hierarchy event routing

In our pub/sub system, all brokers are labeled with an ID, such labeling can be

performed by the party responsible for accounting the services of the system.

Definition 5.3.1 A leaf broker group (LBG) with label i is denoted as LBGi where

LBGi = {bi1, bi2, . . . , bim} such that

• brokers bi1, . . . , bim ∈ LBGi are located closely in network topology;

• the ID of each broker in LBG has the same prefix as its group ID;

• the size of LBGi is |LBGi| and |LBGi| ≥ t where t is equal to d 1
1−r

e and r is

the estimated broker failure rate; and

• if a subscription request is submitted to and then approved by broker bij ∈ LBGi,

this subscription will be securely multicasted by bij to all other brokers in LBGi.

Therefore, any broker in a LBG maintains the subscription information of subscribers

who are registered with any broker in the LBG.

Based on the labels of LBGs, a tree is formed where LBGs are the leaves and all

inner nodes are formed by virtual broker group (V BG). Specifically, a V BGi has

label i and is virtually formed by either all LBGi∗ or all V BGi∗.

VBG3

LBG31 LBG32 LBG33LBG13LBG12LBG11

VBG

LBG2VBG1

Figure 5.1. A 3-ary tree formed by broker groups

79

Example 11 Figure 5.1 shows an example of 3-ary tree with a height of 2. The

leaves are LBGs. LBG11 includes brokers b111, b112, b113 and b1113. All these brokers

share the same group label prefix (11). Figure 5.2 illustrates the locality of brokers in

Figure 5.1.

Brokers in an LBG periodically authenticate each other and exchange their sub-

scription information; however, a broker does not propagate its subscription informa-

tion to another LBG.

LBG11

LBG31

LBG32

LBG33

LBG12

LBG13

b113

b111

b1113

b112

b232 b221

b212

b231 b211

LBG2

Figure 5.2. The locality of brokers

An additional information kept by each broker is a forwarding table. If a broker

belongs to an LBG at depth h′ of the tree, then the table is of dimension h′× (n−1).

Each entry of such a table stores IP addresses of t brokers of other LBGs. Thus, if

r = 10%, each entry keeps information about 2 brokers. In such a table, each column

has n− 1 entries. For each of these entries, the label of the stored brokers shares the

same prefix as the entry label. These brokers are randomly chosen from their group.

Table 5.1 shows broker 111’s table and Table 5.2 shows broker 213’s table.

A broker periodically authenticates those brokers kept in its forwarding table and

updates the information in case some brokers are under DoS attack or system failure.

80

Table 5.1
Event forwarding table of broker 111

2*(211, 221) 12* (122, 121)
3*(311, 322) 13* (133, 135)

Table 5.2
Event forwarding table of broker 213

1**(114, 132)
3**(312, 321)

Algorithm: Hierarchial Event Routing Scheme
Input: S, H, T
//S: ID of event sender, H: ID of host, T host’s routing table of dimension h′×(n−1)

1. if(S = H)
for(i = 1 to h′)

for (j = 1 to n− 1)
choose a broker in entry (i, j) and forwards the event;

endfor
endfor

2.else let p = max number of matched prefix of S and H
for(i = p+ 1 to h′)

for(j = 1 to n− 1)
choose a broker in entry (i, j) and forwards the event;

endfor
endfor

end

Figure 5.3. Hierarchy event forwarding algorithm

Algorithm 5.3 shows how a broker routes an event. Line 1-5 is the case where

the broker is the one where the event is published. In this case, it routes the event

to one broker in each of its entry in the routing table. Line 8-13 is the case where

the broker receives the event from another broker. In this case, the broker uses the

max common ID prefix with the sender to determine to which level it should start

81

forwarding an event (Line 8), and then starts to forward the event to all entries from

that level.

5.3.2 Discussion

We now discuss our routing scheme with respect to several metrics.

Broker Space Requirements: In most previous approaches, a broker must keep

subscription information about the whole network. In large scale pub/sub systems,

such a requirement implies that all subscription information is replicated at each

broker. Under our approach, a broker only needs to maintain 1/nh of the whole

network’s subscription information, where n and h are the degree and height of the

tree, respectively. In a 4-ary tree with a height of 3, this is only 1/64 of the total

network’s subscribe information.

Subscription Information Update: In most previous approaches, new sub-

scription may need to be propagated to the whole network. Our approach needs only

to multicast such information to 1/nh of the network, which greatly reduces network

traffic.

Subscription Information Propagation Delay Time: Our approach de-

creases the delay time by propagating this information only within 1/nh of the net-

work.

Execution of Sequential Matching: Our approach requires only a single broker

in a group to perform event matching, thus avoiding the execution of sequential

matching which must be performed by brokers in most tree-based approaches.

Failure Tolerance: Our approach achieves the same level of fault tolerance as

approaches based on event flooding; however, event delivery is faster in our approach

since it takes O(h) for an event to reach a leaf broker. By contrast, under the flooding

approach it takes O(nh) for an event to reach a leaf broker.

Load Balancing: Most tree-based event delivery systems suffer from unbalanced

loads. Leaf brokers in the tree seldom perform event matching and forwarding to other

82

brokers, while brokers which are centroids1 of the tree suffer from a heavy load. In

our approach, the load is almost uniformly distributed among brokers, if a publisher

publishes an event randomly at any broker. Our broker routing table ensures this

property.

Matching Cost: Instead of letting one broker perform matching and event deliv-

ery to all subscribers in the system, in our approach, event matching and distribution

are executed in parallel by nh brokers, each supporting 1/nh of the load. Also, our

scheme possesses locality characteristics and therefore could use caching or popular

group matching algorithms for efficient matching.

Dynamic: When a LBG i has been added too many brokers, such a group could

be handled as a VBG which is formed by several LBGs and all brokers in previous

i are divided into these LBGs. Or when a LBG contains too few brokers as some

brokers have been deleted, such a group could be merged with another LBG.

After a broker finishes routing an event, it needs to distribute the event to autho-

rized subscribers, if any exist. Next, we describe how a broker encrypts an event and

distributes it to all the groups of authorized subscribers within its broker group.

5.4 Confidentiality-preserving event delivery

We assume that brokers accept subscription requests by following the policy of

the system, such as requiring payment evidence. After a subscriber submits its sub-

scription, if the request is permitted, the subscriber receives one or more keys corre-

sponding to the groups in which its subscription falls. Since our focus is not on event

space partitioning algorithms, we denote the event space as follows.

Let G = {G1, . . . , Gn} represent all event space of the subscription information in

a broker group B.

Group Gi is defined as (Si, Ki, Vi) where Si is part of the subscription space, Ki

is the secret key shared by all brokers in B and these subscribers whose subscription

1A centroid of an n-node tree T is a node such that its removal from T leaves no connected compo-
nents of size greater that n/2.

83

predicates p are satisfied by Si, and Vi is a linked list of subscribers which belong

to group Gi. Furthermore, Ki is in {0, 1}l where l is a security parameter. For any

Gi, Gj ∈ G, Si 6= Sj. However, we do not require that Si ∩ Sj = ∅

Note that because brokers in a group share subscription information, they will

assign subscribers the same group and the corresponding key. In another word, all

brokers in a group keep the same Gi.

Given an event e, a broker must first run a matching algorithm match (e, G) which

returns G ⊆ G, that is, a set of groups to which the event should be delivered. Next,

the broker encrypts the event so that it can be decrypted only by the subscribers in

these groups belong to G.

Because an event may match several groups, encrypting the event several times

with different group keys makes event delivery very inefficient. Here we propose an

efficient and practical encryption scheme, which has the property that the encryption

key is independent from the group keys. However, all authorized subscribers can

derive the encryption key. Our strategy is the following:

Assume G= {G1, . . . , Gm} are the groups to which the event should be delivered.

To encrypt an event, the broker

1. generates a random symmetric encryption key T such that T is in {0, 1}l and a

nonce r where r ∈ {0, 1}l;

2. encrypts the event with T ;

3. calculates A = ([G1, D1], . . . , [Gm, Dm]) such that Di = h(Ki ⊕ r) ⊕ T (for

i = 1, · · · , m), where ⊕ is XOR operation and h is a secure one-way function

h : {0, 1}l → {0, 1}l.

Then the broker multicasts the encrypted event to all subscribers in G. In the

encrypted event, the broker appends A and the nonce r. A member of group Gi

can obtain T by Di ⊕ h(Ki ⊕ r) and thus decrypt the event.

84

5.4.1 Discussion

In this subsection, we discuss several important correctness properties of our ap-

proach. We first provide our correctness criteria and then prove that our encryption

scheme satisfies them.

Definition 5.4.1 Completeness Each authorized subscriber should be able to derive

the key to decrypt an event.

Definition 5.4.2 Soundness If an individual is not authorized to access the event,

then it is not able to decrypt the event. Further, a member subj of some group Gi ∈ G,

knowing T , r and A, is not able to derive any secret key Kj of group Gj ∈ G (j 6= i),

unless subj belongs to group Gj.

Definition 5.4.3 Collusion-resilience It is impossible for any set of adversaries

to derive a secret key that none of them possesses.

Theorem 5.4.1 The proposed scheme is complete.

Proof For an event, an authorized subscriber belongs to at least one of Gi ∈ G to

which the event falls; thus, it has at least one key Ki. As a result, the subscriber can

decrypt T as Di ⊕ h(Ki ⊕ r) from the public Di and r, and the event too. �

Theorem 5.4.2 The proposed scheme is sound.

Proof To decrypt an event, an individual must obtain the encryption key T . Since

T is mixed in Dis, in order to obtain T , the individual must get at least one h(Ki⊕r).

If the individual is an outsider or a system subscriber but does not belong to any of

Gi ∈ G, the individual cannot compute any of h(Ki ⊕ r)s. Thus, the individual

cannot obtain T .

Consider a subscriber belonging to Gi ∈ G. Given the nonce r, A and T , the

subscriber can obtain T by computing Hi = h(Ki ⊕ r) and then Di ⊕ Hi. Once

knowing T , the subscriber can compute Hj = Dj⊕T (for any j = 1, i−1, . . . , i+1, m).

85

However, due to the one-way property of h function, the subscriber cannot get Kj

from Hj(i.e., h(Kj ⊕ r)). Thus, the proposed scheme is sound. �

Theorem 5.4.3 The proposed scheme is collusion-resilient.

Proof We consider the collusion of subscribers not outsiders since involvement of

outsiders cannot contribute any bit of information useful to reconstruct the keys.

There are three possible collusion: by the subscribers not belonging to any Gi ∈ G;

by the subscribers belonging to some Gi ∈ G; and by subscribers across several Gi’s

in G. For the first case, these subscribers are equivalent to outsiders, and cannot get

T or any Ki. For the second case, these subscribers can get their T and any of other

Hj = h(Kj ⊕ r)s. Because the security of the one-way function is independent of the

number of users trying to break it, the collusion of these subscribers is no stronger

than an individual subscriber trying to get Kj from Hj. The same principle applies

to collusion of multiple subscribers from different groups.

As a result, the proposed scheme is resilient to any kinds of collusion attacks. �

5.4.2 Dynamics and rekeying

In a dynamic pub/sub system, the user can subscribe to or unsubscribe/be revoked

from the system, even move from one group to the other. In order to guarantee that

all (and only) current subscribers in a group Gi can obtain the events destined to

the group, the group key Ki needs to be updated. The updated key needs to be

distributed to the users securely. We propose using the same scheme a second time

to address such a requirement. During user registration, the system will assign each

user a unique personal secret ID (denoted as UIDi for user Ui). As a result, if a

new Ki needs to be securely distributed to the current users {U1, U2, · · · , Un} of a

group Gi, the following message will be multicast (note: r is a new random nonce):

{r; h(UID1 ⊕ r) ⊕Ki, h(UID2 ⊕ r) ⊕Ki, · · · , h(UIDn ⊕ r)⊕ Ki}.

As for the performance, the proposed scheme is very efficient. The computation

of h depends totally on the algorithm selected and is independent of m, so its compu-

86

tation complexity can be considered as constant, such as O(c) where c is a constant.

The XOR operation is fast and can be considered to run in O(1) time. Thus, time

complexity of computing A is O(mc) (i.e., O(m)).

As it can be seen from the discussion, the proposed scheme is secure, efficient, and

dynamic and is able to enforce content confidentiality for pub/sub systems.

5.5 Simulation results

The simulations were conducted using a 5-ary tree of 3 levels, i.e., there are total

125 broker groups, with each group having 5 brokers. The total number of brokers in

the system is 625.

Each broker has 50 subscribers. For simplicity, the event space is partitioned into

units. Each subscriber subscribes to 1 unit from the event space.

We experimented with different distributions for event popularity and compared

ours with a basic tree-based approach and a multicast-based approach:

• Uniform: Subscribers from any broker subscribe to event space units randomly.

• Normal distribution: Subscribers from a broker i subscribe to event units fol-

lowing a normal distribution. For an event space of n units, the subscription

from broker i has a mean at the unit n ∗ (i + 0.5)/625. We evaluate the effect

of different standard deviations: 1/6 of the event space, 5 and 50. This follows

from the fact that a subscription has locality characteristics: subscribers within

a broker have similar distributions of interests, whereas the greater the distance

between brokers, the more different the subscription distributions.

We present our results on space requirements for a broker, and on the delay in

receiving an event by subscribers.

87

5.5.1 Space Requirements

We measure the space requirement for storing subscription information by a bro-

ker. IP addresses are 4 bytes long and event space is 2 bytes. For each event unit,

if there is at least one subscription, then it forms a subscription group. For each

group, a linked list is used to store subscribers information. Figure 5.4 shows the

result of subscriptions which are uniformly distributed. It reveals that a multicast

approach requires a dramatically large space. When comparing our approach with

the tree-based approach in detail, our approach uses a relatively larger space than a

tree-based approach (see Fig. 5.5). We think this is an acceptable space requirement

(less than 1.4 KB). The results for normal distributions are reported in Fig. 5.6, 5.7,

5.8, 5.9, 5.10, 5.11. They follow similar patterns.

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based
Multicast−based

Figure 5.4. Space re-
quirement [1] for a bro-
ker (uniform)

50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based

Figure 5.5. Space re-
quirement [2] for a bro-
ker (uniform)

Next, we check the number of subscription groups formed under different sub-

scription distributions. These results are reported in Figure 5.12, 5.13, 5.14, 5.15,

5.16, 5.17. In multicast approach, the number of groups is the same as the number of

event space units. When the standard deviation decreases, our approach has a similar

number of groups as the tree-based approach. For a tree-based approach, the routing

88

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based
Multicast−based

Figure 5.6. Space re-
quirement [1](σ = 1/6
of event space)

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based

Figure 5.7. Space re-
quirement [2] (σ = 1/6
of event space)

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based
Multicast−based

Figure 5.8. Space re-
quirement [1] for a bro-
ker (σ =50)

50 100 150 200 250 300 350 400 450 500
0

1

2

3

4

5

6

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based

Figure 5.9. Space re-
quirement [2] for a bro-
ker (σ =50)

information is aggregated, therefore, a broker only needs to maintain the subscription

information from its subscribers. Even for normal distribution with large deviation,

we found that a broker can aggregate these brokers’ subscription information into a

very small space.

89

50 100 150 200 250 300 350 400 450 500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based
Multicast−based

Figure 5.10. Space re-
quirement [1] (σ = 5)

50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Event Space

N
um

be
r o

f S
ub

sc
rip

tio
n

S
pa

ce
 (K

B
)

Gossip−based
Tree−based

Figure 5.11. Space re-
quirement [2] (σ =5)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

U
se

r g
ro

up
s

Gossip−based
Tree−based
Multicast−based

Figure 5.12. Number
of subscription groups
[1] (σ = 1/6 of event
space)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Event Space

U
se

r g
ro

up
s

Gossip−based
Tree−based

Figure 5.13. Number
of subscription groups
[2] (σ = 1/6 of event
space)

5.5.2 Time Delay

We evaluate the time delay for a subscriber to receive an event. In the evaluation,

it takes 1 unit of time to forward an event to a group. Figure 5.18 reports the time to

deliver an event in a uniform distribution. The tree based approach takes more time

90

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

U
se

r g
ro

up
s

Gossip−based
Tree−based
Multicast−based

Figure 5.14. Number of
subscription groups [1]
(σ = 5)

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

Event Space

U
se

r g
ro

up
s

Gossip−based
Tree−based

Figure 5.15. Number of
subscription groups [2]
(σ = 5)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

U
se

r g
ro

up
s

Gossip−based
Tree−based
Multicast−based

Figure 5.16. Number of
subscription groups [1]
(σ =50)

50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

Event Space

U
se

r g
ro

up
s

Gossip−based
Tree−based

Figure 5.17. Number of
subscription groups [2]
(σ =50)

due to the series of event forwarding by brokers in such a structure. By contrast,

multicasting needs to forward to all subscription groups of the whole network. Our

hierarchy approach, however, uses parallel event forwarding, which is very efficient.

Figure 5.18 also shows that when the number of subscription groups increases, the

performance of a multicast approach degrades; it is slower than the tree-based ap-

91

proach when the event space size reaches 350. Figures 5.19, 5.20, 5.21 report the

results for normal distributions. The tree-based approach is relatively stable regard-

less of the standard deviation. When the standard deviation increases, our approach

takes a longer time.

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

Ti
m

e

Gossip−based
Tree−based
Multicast−based

Figure 5.18. Time delay (uniform)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

Ti
m

e

Gossip−based
Tree−based
Multicast−based

Figure 5.19. Time de-
lay (σ = 1/6 of event
space)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

Ti
m

e

Gossip−based
Tree−based
Multicast−based

Figure 5.20. Time delay (σ =5)

50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Event Space

Ti
m

e

Gossip−based
Tree−based
Multicast−based

Figure 5.21. Time delay (σ =50)

92

5.5.3 Broker Involvement

The number of brokers involved in forwarding an event reflects the load that a

broker takes. Figure 5.22 shows the number of brokers that are involved in delivery

of an event. The subscription rate of events is uniformly distributed. The horizontal

axis shows the subscription rate of each broker. The vertical axis shows the number

of brokers involved in delivering an event. For the tree-based approach, a spanning

tree is built by applying Dijkstra’s algorithm on a graph of 625 nodes, each node with

degree d where d is uniformly distributed from 1 to 4. The result is the average of

ten runs, where at each run, an event is published at a randomly chosen broker. We

also present the ideal approach, where only the brokers subscribing to an event are

those which participate in the delivery of the event. From Fig. 5.22, the tree-based

approach needs more brokers to participate in the event delivery, especially when

subscription rate is 20%, half of the brokers involved are not interested in an event.

As the subscription rate increases, the tree-based approach reaches the same number

as the ideal approach at 100%. In that instance, all brokers in a tree-based approach

are interested in the event.

Hierarchical event forwarding uses an almost constant number of brokers for for-

warding an event. If there is no broker failure, this number is equal to the number of

broker groups and it is not related to the subscription rate. Therefore, when the sub-

scription rate is below 20%, our approach needs more brokers than the ideal approach.

Our approach uses less brokers than the tree-based approach when the subscription

rate is above 6%. For a broker with 50 subscriptions, this means an event has popu-

larity below 0.12%. Thus, our approach seldom uses more brokers than the tree-based

approach.

5.6 Related work

Several studies have been devoted to investigating efficiency issues concerning

pub/sub systems [1, 3, 58–61, 61–70] and several prototype systems have been devel-

93

0

100

200

300

400

500

600

700

0 20 40 60 80 100
N

um
be

r o
f b

ro
ke

rs
 in

vo
lv

ed
Subscription rate (%)

Spanning tree approach
Gossip-based approach

Ideal approach

Figure 5.22. The number of brokers involved

oped. Most approaches like [58,59,66] use a spanning tree structure for event routing.

In order to reduce the matching that has to be performed by brokers from the root to

the leaves, several optimization techniques have been proposed. Virtual groups are

used to reduce the matching performed by brokers [57].

However, security issues [65] in content-based pub/sub systems have not been so

widely investigated. Srivatsa and Liu [1] propose a resilient network which, instead

of providing only a single path from each publisher to its subscribers which is inher-

ited from the spanning tree structure, several independent paths from a publisher to

each of its subscribers are provided. Such paths are built deterministically. In their

approach, building several independent paths from a publisher to every subscriber in-

volves complex topology computations. In dynamic environments, such computation

is expensive. Such expensive reconfigurations of tree structures have been completely

eliminated in our hierarchy event forwarding scheme. Each broker maintains a for-

warding table which ensures that at least one broker in the next forwarding level is

operative.

To avoid unnecessary event broadcasting, Carzaniga et al. [58] proposes an ap-

proach that broadcasts events only along the spanning tree. As previously mentioned,

in dynamic environments, a tree structure is hard to maintain and may become dis-

94

connected. Broadcasting along a disconnected tree involves more redundancy and

does not solve the availability problem.

Opyrchal and Prakash [71] discuss how a broker can encrypt an event and de-

liver it to a possibly very large number of groups. As each group has a secret key

shared by members and brokers, encrypting the event using a group key may involve

performing many encryption operations, and there may be several groups to which

this event should be delivered. Caching and clustering are therefore used to make

fewer encryptions. In our confidentiality-preserving encryption scheme, an event is

encrypted only once. All authorized subscribers can derive the key for decryption the

event efficiently. Our scheme is provably secure.

5.7 Conclusions and future work

In this chapter, we address some security issues of content-based pub/sub sys-

tems. We focus on increasing the availability of events and ensuring confidentiality

when events are delivered to authorized subscribers. Our schemes (hierarchical event

forwarding and confidentiality-preserving encryption) are efficient and scalable. Our

approach is especially suitable for large-scale content-based pub/sub systems. Simu-

lation results validate the efficiency of our approach.

We plan to investigate other security issues in content-based pub/sub systems,

especially how brokers can efficiently authenticate each other, and how to ensure

confidentiality of events forwarded among brokers. We would like to investigate an

efficient mechanism for matching an encrypted event against subscriptions, which is

suitable for large-scale content-based pub/sub systems.

LIST OF REFERENCES

95

LIST OF REFERENCES

[1] M. Srivatsa and L. Liu. Securing publish-subscribe overlay services with event-
guard. In Proceedings of the 12th ACM Conference on Computer and Commu-
nications Security (CCS ’05), 2005.

[2] Y. Diao, S. Rizvi, and M. J. Franklin. Towards an internet-scale XML dissemina-
tion service. In Proceedings of the 30th International Conference on Very Large
Data Bases (VLDB), 2004.

[3] F. Cao and J. P. Singh. Efficient event routing in content-based publish-subscribe
service networks. In Proceedings of IEEE INFOCOM ’04, 2004.

[4] M. J. Freedman, E. Freudenthal, and D. Mazires. Democratizing content publi-
cation with coral. In Proceedings of the USENIX/ACM Symposium on Networked
Systems Design and Implementation (NSDI ’04), 2004.

[5] T. Li, Y. Wu, D. Ma, H. Zhu, and R. H. Deng. Flexible verification of MPEG-4
stream in peer-to-peer CDN. In Proceedings of the 6th International Conference
on Information and Communications Security (ICICS), 2004.

[6] G. Berhe, L. Brunie, and J. Pierson. Modeling service-based multimedia con-
tent adaptation in pervasive computing. In Proceedings of ACM International
Conference on Computing Frontiers, 2004.

[7] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer. Adapting to network and
client variation using active proxies: Lessons and perspectives. IEEE Personal
Communications, 1998.

[8] V. Cardellini, P. S. Yu, and Y. W. Huang. Collaborative proxy system for dis-
tributed web content transcoding. In Proceedings of the 9th ACM International
Conference on Information and Knowledge Management, 2000.

[9] C. Chi and Y. Wu. An XML-based data integrity service model for web inter-
mediaries. In Proceedings of the 7th International Workshop on Web Content
Caching and Distribution, 2003.

[10] C. Chi, Y. Lin, J. Deng, X. Li, and T. Chua. Automatic proxy-based water-
marking for WWW. Computer Communications, 24(2):144–154, 2001.

[11] B. Thuraisingham, A. Gupta, E. Bertino, and E. Ferrari. Collaborative commerce
and knowledge management. Knowledge and Process Management, 9(1):43–53,
2002.

[12] P. Maglio and R. Barrett. Intermediaries personalize information streams. Com-
munications of the ACM, 43(8):99–101, 2000.

96

[13] J-L. Huang, M-S. Chen, and H-P. Hung. A QoS-aware transcoding proxy using
on-demand data broadcasting. In Proceedings of the IEEE INFOCOM, 2004.

[14] Y. Koglin and E. Bertino. Secure content services from cooperative internet
intermediaries. Manuscript, 2005.

[15] S. Chandra and C. S. Ellis. JPEG compression metric as a quality aware image
transcoding. In Proceedings of USENIX 2nd Symposium on Internet Technology
and Systems, 1999.

[16] R. Han, P. Bhagwat, R. LaMaire, T.Mummert, V. Perret, and J. Rubas. Dy-
namic adaptation in an image transcoding proxy for mobile web browsing. IEEE
Personal Communications, 5(6):8–17, 1998.

[17] Y. Koglin, G. Mella, E. Bertino, and E. Ferrari. An update protocol for XML
documents in distributed and cooperative systems. In Proceedings of Interna-
tional Conference On Distributed Computing Systems, 2005.

[18] J. Apostolopoulos. Secure media streaming & secure adaptation for non-scalable
video. Technical Report HPL-2004-186, Hewlett-Packard Laboratories, 2004.

[19] S. Wee and J. Apostolopoulos. Secure transcoding with JPSEC confidentiality
and authentication. Technical Report HPL-2004-185, Hewlett-Packard Labora-
tories, 2004.

[20] S. Wee and J. Apostolopoulos. Secure scalable streaming enabling transcoding
without decryption. In IEEE International Conference on Image Processing,
2001.

[21] S. Wee and J. Apostolopoulos. Secure scalable video streaming for wireless
networks. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2001.

[22] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the world wide web.
Knowledge and Data Engineering, 11(1):95–107, 1999.

[23] B. Li, X. Deng, M. J. Golin, and K. Sohraby. On the optimal placement of web
proxies in the internet. In Proceedings of the IEEE INFOCOM, 1999.

[24] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. V. Steen. Replication for
web hosting systems. ACM Computing Surveys, 36(3):291–334, 2004.

[25] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and zipf-like
distributions: Evidence and implications. In Proceedings of the IEEE INFOCOM,
1999.

[26] S. Buchholz and A. Schill. Adaptation-aware web caching: Caching in the future
pervasive web. In Proceedings of the 13th GI/ITG Conference Kommunikation
in Verteilten Systemen (KiVS), 2003.

[27] C. Lesniewski-Laas and M. F. Kaashoek. SSL splitting: Securely serving data
from untrusted caches. In Proceedings of the 12th USENIX Security Symposium,
2003.

[28] B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. Tuttle. Effective collaboration
without trust in peer-to-peer systems. Manuscript, 2004.

97

[29] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a con-
stant number of rounds of interaction. In Proceedings of the 8th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, 1989.

[30] D. Boneh, G. Durfee, and M. Franklin. Lower bounds for multicast message
authentication. In Advances in Cryptology — EUROCRYPT’01, 2001.

[31] J. Camenisch, J. Piveteau, and M. Stadler. An efficient fair payment system.
In Proceedings of the 3rd ACM Conference on Computer and Communicatons
Security, 1996.

[32] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Advances in Cryptology — CRYPTO’03, 2003.

[33] A. Chan, Y. Frankel, P. MacKenzie, and Y. Tsiounis. Mis-representation of
identities in E-cash schemes and how to prevent it. In Advances in Cryptology
— ASIACRYPT’96, 1996.

[34] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. In Advances in Cryptology — EUROCRYPT’96, 1996.

[35] E. Bertino, E. Ferrari, and G. Mella. An XML-based approach to document flow
verification. In Proceedings of the 7th International Conference on Information
Security(ISC04), 2004.

[36] E. Bertino, E. Ferrari, and G. Mella. An approach to cooperative updates of XML
documents in distributed systems. Journal of Computer Security, 13(2):191–242,
2005.

[37] E. Bertino, G. Correndo, E. Ferrari, and G. Mella. An infrastructure for man-
aging secure update operations on XML data. In SACMAT’03, 2003.

[38] Extensible markup language (XML). Available at: http://www.w3.org/XML/.

[39] W3C XML schema. Available at: http://www.w3.org/XML/Schema.

[40] C. G. Pollmann. The XML security page, 1999. Availabe at: http://www.dcs.
uni-siegen.de/geuer-pollmann/xml security.html.

[41] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In Pro-
ceedings of the 2001 ACM SIGMOD International Conference on Management
of Data, 2001.

[42] C.H. Lim, S. Park, and S.H. Son. Access control of XML documents considering
update operations. In Proceedings of the ACM Workshop on XML Security, 2003.

[43] B. Kane, H. Su, and E. Rundensteiner. Consistently updating XML docu-
ments using incremental constraint check queries. In Proceedings of the 4th
ACM CIKM International Workshop on Web Information and Data Manage-
ment (WIDM’02), 2002.

[44] R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communication
specifications: A comprehensive study. ACM Computing Surveys, 33(4):1–43,
2001.

98

[45] M. K. Reiter. A secure group membership protocol. IEEE Transactions on
Software Engineering, 22(1):31–42, 1996.

[46] M. K. Reiter. Secure agreement protocols: Reliable and atomic group multi-
cast in rampart. In Proceedings of the 2nd ACM Conference on Computer and
Communications Security, 1994.

[47] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[48] D. Malkhi and M. K. Reiter. Byzantine quorum systems. In Proceedings of the
29th ACM Symposium on Theory of Computing, 1997.

[49] D. Malkhi, Y. Mansour, and M. K. Reiter. On diffusing updates in a Byzantine
environment. In Proceedings of the 18th IEEE Symposium on Reliable Distributed
Systems, 1999.

[50] D. Malkhi, M. K. Reiter, O. Rodeh, and Y. Sella. Efficient update diffusion in
Byzantine environments. In Proceedings of the 20th IEEE Symposium on Reliable
Distributed Systems, 2001a.

[51] D. Malkhi, M. K. Reiter, A. Wool, and R. N. Wright. Probabilistic quorum
systems. The Information and Computation Journal, 170(2):184–206, 2001b.

[52] E. Bertino, S. Castano, and E. Ferrari. On specifying security policies for web
documents with an XML-based language. In Proceedings of the 1st ACM Sym-
posium on Access Control Models and Technologies, 2001.

[53] XML Path Language (Xpath). Availabe at: http://www.w3.org/TR/xpath.

[54] E. Bertino and E. Ferrari. Secure and selective dissemination of XML documents.
ACM Transactions on Information and System Security (TISSEC), 5(3):290–
331, 2002.

[55] G. Mella. Distributed and Cooperative Updates of XML Documents. PhD thesis,
University of Milano, DICO Department, Milano, Italy, December 2004. Availabe
at: http://homes.dico.unimi.it/dbandsec/mellagiovanni.

[56] Y. Koglin, G. Mella, E. Bertino, and E. Ferrari. An update protocol for XML
documents in distributed and cooperative systems. In Proceedings of the 25th
International Conference on Distributed Computing Systems, 2005.

[57] R. Zhang and Y. C. Hu. HYPER: A hybrid approach to efficient content-based
publish/subscribe. In In Proceedings of International Conference on Distributed
Computing Systems, 2005.

[58] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A routing scheme for content-
based networking. In Proceedings of the IEEE INFOCOM, 2004.

[59] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Minimizing the reconfigu-
ration overhead in content-based publish-subscribe. In Proceedings of the 19th
ACM Symposium on Applied Computing (SAC04), 2004.

[60] A. K. Datta, M. Gradinariu, M. Raynal, and G. Simon. Anonymous pub-
lish/subscribe in P2P networks. In Proceedings of the International Parallel
and Distributed Processing Symposium, 2003.

99

[61] G. Banavar, T. Chandra, B. Mukherjee, and J. Nagarajarao. An efficient mul-
ticast protocol for content-based publish subscribe systems. In Proceedings of
the 19th International Conference on Distributed Computing Systems (ICDCS),
1999.

[62] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra.
Matching events in a content-based subscription system. In Symposium on Prin-
ciples of Distributed Computing, 1999.

[63] A. Riabov, Z. Liu, J. L. Wolf, P. S. Yu, and L. Zhang. Clustering algorithms
for content-based publication-subscription systems. In Proceedings of the 22nd
IEEE International Conference on Distributed Computing Systems,, 2002.

[64] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. In Pro-
ceedings of ACM SIGCOMM, 2003.

[65] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf. Security issues and require-
ments for internet-scale publish-subscribe systems. In Proceedings of Hawaii
International Conference on System Sciences, 2002.

[66] P. Costa and G. P. Picco. Semi-probabilistic content-based publish-subscribe.
In Proceedings of the 19th International Conference on Distributed Co mputing
Systems (ICDCS), 2005.

[67] G. P. Picco, G. Cugola, and A. L. Murphy. Efficient content-based event dis-
patching in presence of topological reconfigurations. In Proceedings of the 23rd
International Conference on Distributed Computing Systems (ICDCS03), 2003.

[68] H. Zhou and S. Singh. Content based multicast (CBM) in ad hoc networks. In
Proceedings of MobiHoc, 2000.

[69] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola. Epidemic algorithms
for reliable content-based publish-subscribe: an evaluation. In Proceedings of
the 19th International Conference on Distributed Co mputing Systems (ICDCS),
2004.

[70] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Transaction on Computer Systems,
19(3):332–383, 2001.

[71] L. Opyrchal and A. Prakash. Secure distribution of events in content-based pub-
lish subscribe systems. In Proceedings of the 10th USENIX Security Symposium,
2001.

VITA

100

VITA

Yunhua Koglin (née Lu) was born in Laiyang City, Shandong Province, China.

She obtained her bachelor’s degree at the Chengdu University of Technology. In May

2003, she obtained her master degrees in Computer Science and Engineering Geology

from Purdue University. She received the degree of Doctor of Philosophy in December

2006 under the direction of Professor Elisa Bertino. Her research interests are com-

puter security, applied cryptography, distributed systems and privacy enhancement

techniques.

