
CERIAS Tech Report 2007-06

PRIVACY-PRESERVING CREDIT CHECKING

by Atallah, M., K. Frikken, and C. Zhang

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Privacy-Preserving Credit Checking ∗

Keith Frikken
Computer Sciences

Department and CERIAS
Purdue University

kbf@cs.purdue.edu

Mikhail Atallah
Computer Sciences

Department and CERIAS
Purdue University

mja@cs.purdue.edu

Chen Zhang
School of Management

Purdue University

zhang153@mgmt.purdue.edu

ABSTRACT
Typically, when a borrower (Bob) wishes to establish a trade-
line (e.g., a mortgage, an automobile loan, or a credit card)
with a lender (Linda), Bob is subjected to a credit check by
Linda. The credit check is done by having Linda obtain fi-
nancial information about Bob in the form of a credit report.
Credit reports are maintained by Credit Report Agencies,
and contain a large amount of private information about
individuals. Furthermore, Linda’s criteria for loan qualifi-
cation are also private information. We propose a “privacy-
preserving” credit check scheme that allows Bob to have
his credit checked without divulging private information to
Linda while protecting Linda’s interests. We give protocols
for achieving the above while: i) protecting Bob’s private
information, ii) making sure that Bob cannot lie about his
credit (thus Linda is assured that the information is accu-
rate), iii) that Linda’s qualification criteria are protected,
and iv) that the CRA does not learn from the protocols
anything other than “Bob requested a loan from Linda”.
What distinguishes this work from the traditional two-party
privacy-preserving framework is (i) the need for secure and
privacy-preserving third-party verification of the accuracy of
the inputs used, and (ii) the fact that the function being
computed is private to the lender and should not be revealed
to either the borrower or to the above-mentioned third-party
verifier. Although we choose to present the techniques of
this paper for the credit checking application domain, they
have much broader applicability and in fact work for any
situation where there is a repository of public and private
information about individuals, that is subsequently used for
making decisions that impact the individuals (a credit rating
agency is but one example of such a repository).

∗Portions of this work were supported by Grants IIS-
0325345, IIS-0219560, IIS-0312357, and IIS-0242421 from
the National Science Foundation, Contract N00014-02-1-
0364 from the Office of Naval Research, by sponsors of
the Center for Education and Research in Information As-
surance and Security, and by Purdue Discovery Park’s e-
enterprise Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’05, June 5–8, 2005, Vancouver, British Columbia, Canada.
Copyright 2005 ACM 1-59593-049-3/05/0006 ...$5.00.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—
security

General Terms
Design, Security

Keywords
Privacy, secure multi-party computation, e-commerce, se-
cure protocol

1. INTRODUCTION
Typically, when a borrower (Bob) wishes to establish a

tradeline (e.g., a mortgage, an automobile loan, or a credit
card) with a lender (Linda), Bob is subjected to a credit
check by Linda. The reason that Linda does a credit check
is so that she will have confidence that Bob is trustworthy
enough to pay back the loan. In order for Linda to do a
credit check on Bob, she contacts a Credit Report Agency
(CRA) and obtains a credit report about Bob. It is the
purpose of the CRAs to track financial information about
an individual, and currently there are three main CRAs:
Equifax [1], Experian [2], and TransUnion [3]. When Linda
obtains Bob’s credit report, she determines if he qualifies for
the loan by determining if his credit report satisfies certain
criteria that she defines. There is a substantial amount of in-
formation in a credit report including: how many tradelines
a person has, how much debt a person owes (and to whom),
the number of late payments that a person has made in the
past, and many other facts about the borrower’s financial
history [1, 2, 3].

The problem with revealing a borrower’s credit report to
the lender is that it unnecessarily reveals too much infor-
mation, often too shady entities who may perform mischief.
While many lenders are typically credible organizations, this
is not always the case, and even for credible lenders some
employees of the lender may be corrupt. Another problem
besides the obvious leakage of private information is that
this can be an aid for identity thieves as it could serve as a
filtering process for them to see who has good credit, and
more dangerously, to see who checks their own credit (as
this information is contained in the credit report and some-
one who periodically looks at his own credit report is not as
likely to be victimized as someone who never looks at it).
Furthermore, Lenders do not need to know all of the infor-
mation in the credit report, but only need to know if certain
conditions are satisfied. One naive way to provide privacy

147

would be for Linda to reveal her criteria to the CRA who
would then report back to Linda if Bob satisfies her criteria.
This is not acceptable for a couple of reasons: i) the CRA
becomes a bottleneck of the loan-processing system and ii)
Linda’s criteria for loan qualification are often private. An-
other possibility is for the CRA and Linda to engage in a
two-party private protocol, however the CRA is still a bot-
tleneck in this architecture.

We propose the usage of privacy-preserving protocols to
solve the apparent contradictory goals of being able to deter-
mine if a borrower satisfies certain criteria while not reveal-
ing private information about the borrower’s credit report.
After engaging in the protocol, all that Bob should learn is
whether or not he qualifies for a loan. Furthermore, all that
Linda should learn is whether or not Bob qualifies for the
loan. However, there is the additional requirement that the
borrower should not be able to lie about his credit report,
and thus the information needs to be verified by a CRA. It
is also desirable that the information flow of the proposed
protocol should mimic the way loan-processing takes place
today. All that the CRA should learn is that Bob applied
for some line of credit with Linda; of course if Bob qualifies
and then accepts the loan from Linda, then she would report
the information about the loan to the CRA. With such a set
of protocols it would be possible for borrowers to have the
option of privacy-preserving credit checking.

In this paper we introduce privacy-preserving protocols
for achieving the above-defined problem. The protocols are
efficient in that they require communication and compu-
tation (modular exponentiations, which are typically the
slowest operation) proportional to the size of the credit re-
port and the policy of the lender, and while the compu-
tational overhead for the CRA is much larger than in the
current non-private setting, much of this work can be pre-
computed off-line. Furthermore, our protocols are simple in
that they mimic the way loan-processing takes place today
with the only difference being that a borrower must reg-
ister with the CRA(s) if he wishes to use such protocols.
Finally, the protocols are private in that they satisfy the
privacy requirements outlined above and are correct in that
the lender has certainty that the borrower’s information is
accurate. What distinguishes this work from the traditional
two-party privacy-preserving framework is (i) the need for
secure and privacy-preserving third-party verification of the
accuracy of the inputs used, and (ii) the fact that the func-
tion being computed is private to the lender and should not
be revealed to either the borrower or to the above-mentioned
third-party verifier. Somewhat surprisingly, our solution re-
lies on the beneficiary of the loan application (the borrower)
to honestly carry out the computation of the outcome: What
keeps him honest is the fact that the encoding of that out-
come (as well as of all the other intermediary results) is
known only to the lender; the borrower can only hurt him-
self by not following the protocol.

Although we choose to present the techniques of this pa-
per for the credit checking application domain, they have
much broader applicability and in fact work for any situation
where there is a repository of public and private information
about individuals, that is subsequently used for making de-
cisions that impact the individuals (a credit rating agency
is but one example of such a repository). Other repositories
contain information collected and maintained for different
purposes than credit ratings, e.g., information about peo-

ples’ shopping habits and preferences, level of education,
income, number and age of their children, history of con-
tributions and donations to charities, etc. The information
in these repositories is typically collected without the active
and knowing participation of the individuals concerned, and
the repositories often contain wrong information that the
individual never gets a chance to correct. Moreover, these
repositories are often used for purposes the individual would
not approve of, such as junk mail, spam, and more nefarious
purposes such as identity theft. A privacy-respecting repos-
itory of the kind we envision may, because its reputation
and business model are based on offering privacy to its cus-
tomers, cause individuals to actually contribute additional
(and accurate) information to the repository, thereby in-
creasing its value over the competition’s. Such a repository
may have information (backed with proof or certification)
that John Doe is fluent in French, has a degree in Mechani-
cal Engineering, has extensive experience in the analysis of
seismic data, all in addition to the usual financial and per-
sonal information stored in today’s CRAs. The lender-like
entities who use such a repository would inquire about a spe-
cific individual only with the individual’s permission (e.g.,
when he applies for a loan, a security clearance, a permis-
sion to buy restricted merchandise) would benefit not only
from the more accurate information in the repository, but
also from the fact that no one (including the repository) will
know the precise nature of their credit-like inquiries about
an individual; this is especially important when screening a
candidate for a security-sensitive position, for access to re-
stricted online material, for eligibility to a special discount,
or any other situation where there is fear that a malevolent
individual could “game” the screening system if such an in-
dividual knew the precise screening criteria and algorithm.

The rest of this paper is organized as follows. In Section
2 we formally define the problem and outline the privacy
requirements of our protocols. In Section 3 we survey the
related work in this area. In Section 4 we define building
blocks that are needed by our protocols. In Section 5 we
define a preliminary protocol for privacy-preserving credit
checks, and this protocol is extended in several ways in Sec-
tion 6. Finally, our results are summarized and future di-
rections are discussed in Section 7.

2. PROBLEM DEFINITION

2.1 Problem Definition
The credit report essentially is a set of of booleans (e.g.,

“has the borrower ever filed for bankruptcy in the past?”)
and a set of integers (e.g., the amount of debt owed). A
credit report contains other types of information (such as
to whom the current debt is owed), but this information is
not necessary to make a decision on loan qualification (the
type of tradeline might be useful, but this can be encoded
as an integer). The credit report can be represented as a
set of boolean attributes, where the value is true if a per-
son satisfies that attribute. For boolean information, the
encoding is trivial; for example “has person X ever been
bankrupt?” would be an attribute. To encode integer val-
ues, an attribute would be defined for each bit in the binary
representation of the value; an example in this case would
be “is the 5th bit of person X’s debt true?”. The lender
has many criteria that it looks at for loan qualification; the
criteria can be computed from one or more attributes. Ex-

148

ample criteria include: “does person X have any liens on
their home?”, “is person X’s debt below some threshold?”,
and “is the number of tradelines that person X has had in
the past above some threshold?”. If an attribute or a crite-
rion is true for a person, we say that the person satisfies the
attribute or criterion. We denote the attributes for a credit
report by a1, . . . , am and the criteria by c1, . . . , cn, where
each criterion is a function of a subset of the attributes. We
define a boolean function sat where sat(ai) and sat(ci) rep-
resent whether or not the person satisfies attributes ai and
criterion ci respectively (i.e., sat(ci) = 1 if ci is satisfied and
is 0 otherwise). Finally, the lender has a policy for deter-
mining if a borrower qualifies for a specific loan. This policy
is some function of sat(c1), . . . , sat(cn).

We make several assumptions in our initial protocol for
this problem (see Section 5); many of these assumptions are
relaxed in Section 6. The assumptions include:

1. Bounded Credit Report Size: We assume that each in-
teger value in the credit report can be bounded by
some value, and that the total number of entries in
the credit report can also be bounded for all people.
To protect the size of the credit report the CRA must
insert dummy entries into each credit report to make
all credit reports not distinguishable by size.

2. Accurate CRA Assumption: It is assumed that the
CRA is trusted by the lenders to provide accurate in-
formation, however the CRA is not a “trusted-third
party” in that it should not learn information about a
lender’s policy. We discuss techniques for handling a
malicious CRA that colludes with borrowers to probe
a lender’s policy in Section 6.5.

3. Single CRA Assumption: Initially, we assume that
there is a single CRA which has all information re-
quired by the lender to make a decision about a bor-
rower, however this is not realistic. There may be mul-
tiple CRAs with the same information and it is pos-
sible that there could be a discrepancy between the
CRAs’ information. We discuss extensions of our pro-
tocols to multiple CRAs in Section 6.5.

4. Criteria Assumption: We assume that the criteria come
in one of two forms: i) a single attribute criteria or ii)
a comparison against a threshold criteria. This cap-
tures most (if not all) common things done to a credit
report by the lender. It is not difficult to extend our
protocols to other type of criteria, and we discuss some
mechanisms for this in 6.3.

5. Known Criteria Assumption: We assume that the lender
does not mind revealing the general form of his or her
criteria. For example, the lender is not worried about
revealing that it has a criterion that compares a per-
son’s debt against a threshold, but the lender does not
want to reveal the threshold. In many cases a global
set of criteria may be used by multiple lenders with-
out revealing specific information. This is generalized
in Sections 6.3.

6. Policy Assumption: Initially, we assume that the pol-
icy is of the form: a borrower qualifies for a loan if he
satisfies at least t criteria (where t is a private thresh-
old defined by the lender). While this is not a realistic
form of policy in many cases, it is a preliminary step.
We explore generalized policies in Sections 6.1, 6.2,
and 6.3.

7. Passive Behavior Assumption: Initially, we assume

that the parties are passive (i.e., honest-but-curious)
in that they will engage in the steps of the protocols,
but will try to learn additional information. We gen-
eralize our protocols to a malicious adversary model
(for borrowers and lenders) in Section 6.4. We discuss
techniques for handling a malicious CRA that colludes
with borrowers to probe a lender’s policy in Section
6.5.

2.2 Privacy and Correctness Requirements
We now define the privacy and correctness requirements

of our protocols.
Borrower: All that the borrower should learn is whether

or not he qualified for the loan, and nothing else (except of
course what he can deduce from this outcome and from his
knowledge of his own credit report, which is unavoidable).
Furthermore, the borrower should not be able to lie about
his credit report (i.e., his values must be the values stored
at the CRA).

Lender: The lender should learn whether or not the bor-
rower qualified for the loan, and nothing else (except of
course what he can deduce from this outcome and from his
knowledge of his own policy, which is unavoidable).

CRA: The CRA should learn only that a specific bor-
rower is applying for a loan with a specific lender. He should
learn neither the lender’s policy, nor whether the borrower
qualified for the loan. Of course, in practice, if the loan is
approved and does happen, the CRA will be informed by the
lender of this fact so he can update the borrower’s record
– but if the loan is approved yet does not happen for some
reason (e.g., the borrower and lender could not agree on an
interest rate) then the CRA never learns whether the loan
was approved or not.

3. RELATED WORK
Secure Multi-party Computation (SMC) was introduced

in [19], which contained a scheme for secure comparison;
suppose Alice (with input a) and Bob (with input b) desire
to determine whether or not a < b and without revealing
any information other than this result (this is referred to
as “Yao’s Millionaire Problem”). More generally, SMC al-
lows Alice and Bob with respective private inputs a and b

to compute a function f(a, b) by engaging in a secure pro-
tocol for some public function f . Furthermore, the protocol
is private in that it reveals no additional information. By
this what is meant is Alice (Bob) learns nothing other than
what can be deduced from a (b) and f(a, b). Elegant general
schemes are given in [8, 7, 4, 6] for computing any function
f privately. However, these general solutions are considered
impractical for many problems, and it was suggested in [9]
that more efficient domain-specific solutions can be devel-
oped. Also, a constant round malicious-adversary protocol
has been introduced recently [11]. Furthermore, there has
been recent work on developing an implementation of the
general SMC results [13]. The framework for the general
results of SMC is similar to the work in this paper, but our
framework is different for a couple reasons: i) the inputs of
the borrower need to be verified by a third party, and ii)
the lender’s policy function needs to be hidden. Our results
are also similar to some work on private auctions [16] where
there was a third party (an auction issuer) involved in the
computation, but in this case the third party was an active
member of the protocol.

149

There are two areas that are related to privacy-preserving
credit checking, and we outline these problems here:

1. Selective Private Function Evaluation (SPFE): SPFE
was introduced in [5] whose goal is for one party to
compute a private function over a subset of another
party’s database without revealing the function. This
is similar in that it computes a hidden function, but
the problem proposed in this paper is not a special case
of SPFE, because: i) the work in [5] focuses on simple
functions like summation of a subset of the database
and ii) it does not compute the functions in a third-
party verifiable manner.

2. Automated Trust Negotiation: The goal of this work is
to allow people to authenticate themselves for access
control purposes, and while much of the work assumes
that the policies can be discussed publicly, there has
been some work on keeping policies private [12, 10].
However, that type of privacy was different than what
the credit checking problem requires: The privacy in
[12, 10] protects the policies against entities that do
not satisfy the policy, but if an entity satisfies the pol-
icy then it learns the policy (or at least a substantial
amount of information about the policy).

4. BUILDING BLOCKS

4.1 Primitives and Notations
We use the following primitives and notations in this pa-

per:
1. Encryption/Decryption: To represent encryption and

decryption we use the functions Enc and Dec, where
Enc(m, k) (Dec(m, k)) represents the encryption (de-
cryption) of message m with key k. Note that this
notation can be used for symmetric key systems as
well as asymmetric key systems.

2. Oblivious Transfer: There are many equivalent defini-
tions of Oblivious Transfer (OT). In this paper we use
the definition of chosen 1-out-of-k OT to be that Al-
ice has a set of items x1, . . . , xk and Bob has an index
i ∈ {1, . . . , k}. The OT protocol allows Bob to obtain
xi without revealing any information about i to Al-
ice and without revealing any information about other
xj (j 6= i) values to Bob. For a high level survey of
OT the reader is referred to [18] and for more recent
developments see [14, 15].

4.2 Scrambled Circuit Evaluation
To make the paper self-contained, we review scrambled

circuit evaluation in Appendix A. The reader unfamiliar
with the results in this area is encouraged to read the ap-
pendix as it will clarify our protocols substantially. We uti-
lize an efficient mechanism for secure two party circuit simu-
lation in constant rounds (as in [20]). This can be extended
to more than two parties (as in [17]). For two parties, the
protocol requires a 1-out-of-2 OT per input wire, and it re-
quires O(1) evaluations of a pseudorandom function (such
as AES) per gate in the circuit.

4.3 Oblivious Gates/Circuits
In the construction of a scrambled circuit, the gates are

constructed for some publicly defined function f ; typically
a verifiable computation requires that the generator of the
circuit prove to the evaluator that the circuit is well-formed.

However, there are cases where not having the function be
publicly defined can be useful, especially when the function
is private. In this case, the construction defined in the pre-
vious section can easily be modified to use oblivious gates
where the evaluator does not know the function that each
gate computes. This has many useful applications including:

1. It is easy to construct an oblivious comparison circuit
(i.e., one that can compute =, 6=, >, <, ≥, and ≤
without revealing which comparison is done) with size
proportional to the number of bits in the values.

2. A binary tree of oblivious gates (with inputs a1, . . . , an)
can be used to compute many useful functions (with-
out revealing which function is being used) including:
(a)

Vn

i=1 ai,
Wn

i=1 ai,
Ln

i=1 ai, etc.
(b) For any subset of the values S,

V

i∈S
ai,

W

i∈S
ai,

L

i∈S
ai, etc.

(c) Other functions like: for a subset S1 of the first
half of the values and another subset S2 of the
second half of the values, the function

W

i∈S1
ai ∧

W

i∈S2
ai.

3. By using oblivious binary trees on the results of other
binary trees of oblivious gates, a wide variety of poli-
cies can be computed including any monotonic circuit
and many other useful structures.

5. A PRELIMINARY PROTOCOL
In this section we introduce a protocol for achieving privacy-

preserving credit checking. This is not the final protocol, but
rather it should be viewed as a “warmup” for the better pro-
tocols that come later on. There are many extensions and
improvements to this protocol, but to simplify this exposi-
tion we postpone their discussion until Section 6. Further-
more, we use a modular approach to describe the protocol,
but the round efficiency can be greatly improved by combin-
ing many of the phases (which we briefly discuss in Section
5.2). To simplify this protocol we make several assumptions
that are outlined in Section 2.1.

5.1 Protocol Description
Phase 0: Setup: For each borrower, the CRA has a credit

report represented by attributes a1, . . . , am. When Bob reg-
isters with the CRA, the CRA and Bob establish a shared
encryption key (call it k).
Phase 1: Loan Request: When Bob attempts to estab-
lish a loan with Linda, she contacts the CRA to obtain in-
formation about Bob’s credit report. When the CRA re-
ceives a request for a credit report, the CRA generates two
keys (for a symmetric encryption scheme) for each attribute
(note that these values can be pre-computed). Let the pair
for attribute ai be denoted by (e0

i , e
1
i). The CRA sends to

the Lender the following two things: i) All of the key values
e0
1, . . . , e

0
m, e1

1, . . . , e
1
m, and ii) the key values encrypted with

the key k (i.e., Enc((e
sat(a1)
1 , . . . , e

sat(am)
m), k)). The Lender

stores the first part of this message, but forwards the sec-
ond part to the Borrower who decrypts the value and stores
the result. In what follows, the goal is to build a circuit
that determines if the Borrower qualifies for the loan. Thus
we need to address how to obtain the circuit’s input, how
to build a circuit, and how to obtain the results from the
circuit.
Phase 2: Attribute Input: In this phase Linda chooses
two keys (for a symmetric encryption scheme) for each at-

150

tribute, and Bob learns one of the keys if he satisfies the cor-
responding attribute but learns the other key if he does not
satisfy the attribute. Let the keys for attribute ai be denoted

s0
i and s1

i , where the borrower will learn s
sat(ai)
i . For each at-

tribute ai, Linda computes an ordered pair (Enc(s0
i , e

0
i), Enc(s1

i , e
1
i)).

She sends all of these pairs to Bob. For each attribute

ai, Bob computes Dec(Enc(s
sat(ai)
i , e

sat(ai)
i), e

sat(ai)
i). Af-

ter this step Bob has only the keys that correspond to his
attributes. Note that it is possible for Linda and Bob to
skip the previous step by using the values (e0

i , e
1
i) as Linda’s

output and e
sat(ai)
i as Bob’s output for the phase. However,

this does not allow Linda to precompute circuits for loan
qualification.
Phase 3: Determining Satisfiability of Criterion: For
each criterion C, we need to be able to compute sat(C). A
criterion C has a certain set of attributes, and for each at-
tribute there are two possible keys (one corresponding to
Bob satisfying the attribute and another to Bob not satisfy-
ing it), and his input to the circuit will be his corresponding
keys for the attributes. In order to be able to use a circuit
on the output of this satisfiability computation the output
of this part should be one of two keys (which Linda chooses),
where one corresponds to a borrower that satisfies the crite-
rion and the other corresponds to a borrower that does not
satisfy the criterion. If the criterion is a single attribute,
then this is trivially done by using the attribute’s input key
as the output key. If the criterion is a comparison, then
a standard circuit for comparison can be used. Thus either
type of criterion can be implemented in communication pro-
portional to the number of attributes in the criterion.
Phase 4: Result Combination: After the previous phase,
for each criterion Linda has two keys and Bob has one of
these keys. During this phase Linda and Bob evaluate a
circuit that determines if he qualifies for the loan. Recall
our assumption that Bob qualifies if he satisfies at least t

criteria, in other words Bob qualifies if
Pn

i=1 sat(ci) > t for
some t ≤ n. This can easily be done with the addition cir-
cuit, followed by a comparison circuit with value t. Note
that the size of this circuit is of size proportional to number
of criteria.
Phase 5: Obtaining Result: After the previous phase, Bob
has one of two keys k0 or k1 (both of which were generated
by Linda). Key k1 corresponds to Bob qualifying for the
loan, and key k0 corresponds to Bob not qualifying for the
loan. The question now becomes how does Bob prove he
qualified for the loan to Linda. Bob proves this to Linda
by sending her the key that he receives (recall that we as-
sume for now the honest-but-curious model). When Linda
receives k1 from Bob, she is convinced that he qualified for
the loan, and if instead she receives k0 then she denies him
the loan.

5.2 Summary of the Protocol
We now state the above protocol in more concise terms,

leaving out the details but describing the information flow:
1. To use the privacy-preserving credit check, Bob reg-

isters with the CRA and sets up an account for this
service, the CRA and Bob establish a private key (call
it k).

2. When Bob requests a loan from Linda, she contacts the
CRA with a request to run a protocol that determines
for her whether Bob’s credit report satisfies her criteria
(without revealing the report itself to her).

3. The CRA sends Linda a set of encryption keys; there
are two keys for each attribute (one corresponding to
each possible value of the attribute). The CRA also
sends a single decryption key for each attribute (the
one that corresponds to Bob’s actual attribute) en-
crypted with the value k.

4. Linda builds a scrambled circuit (see Appendix A) that
determines if Bob qualifies for a loan. To obtain the in-
put for the circuit, she encrypts the encodings (again
see Appendix A) with the encryption functions that
she received from the CRA. She sends Bob the follow-
ing items: the circuit, a set of messages from which he
can obtain the input wire encodings of the circuit, and
the message from the CRA with the decryption keys.

5. Bob decrypts the decryption keys and obtains the in-
puts to the circuit using these keys. He then evaluates
the circuit and upon finding the output, sends the re-
sult to Linda.

6. Linda tells Bob whether or not he qualifies for the loan.
The communication complexity of the above is propor-

tional to the number of attributes, and requires one round
of messages between Linda and the CRA and another be-
tween Bob and Linda. The CRA must generate the key
pairs for each attribute, but this is not expensive because
it is just random number generation. The CRA must also
encrypt the decryption keys, but this can be done using a
fast symmetric key encryption system (such as AES). Linda
needs to do two symmetric encryption operations for each
attribute and needs to generate a circuit for the credit check,
but the latter can be pre-computed. Bob needs to perform a
single symmetric key operation for each attribute, and then
needs to evaluate a circuit (where the circuit has size pro-
portional to the number of attributes), but since this is in
the passive model these operations can be a symmetric key
system. The correctness of the protocols trivially follows
from the correctness of secure circuit evaluation.

5.3 Security of Protocols
We now discuss the security of the above protocol.
Borrower: During Phase 2, the borrower has only one

key per attribute and thus he can obtain at most one input
for the circuit. Thus the borrower can find at most one value
for the output of the circuit (assuming he is computationally
bounded).

Lender: This design goals for the lender are trivially
satisfied in the passive model as the lender learns only a
single value after the computation of the circuit, and because
the message from the CRA is encrypted with a key unknown
to Linda.

CRA: The CRA sees only a request from Linda about
Bob.

6. EXTENSIONS

6.1 Weighted Threshold Based Policies
In the protocol in Section 5, Bob qualifies for a loan if

he satisfies at least t out of n criteria (where t is a private
parameter defined by Linda). This can be generalized to
add more flexibility to the system. For example, some crite-
ria may be more important than other criteria. In the case
where the criteria are globally defined (by and for all lenders)
some of the criteria may not apply to Linda. In this section
we propose a weighted threshold based policy. Each crite-

151

rion ci is assigned a weight wi, where wi ∈ {0, . . . , N − 1}.
Bob qualifies if

Pn

i=1(sat(ci)wi) > t for some threshold t

(again t is privately defined by Linda). The techniques in
Section 5 can be used, however between phases 3 and 4
another step must then be added to replace sat(ci) with
wisat(ci). Essentially each criterion value must be expanded
to a (log N)-bit scrambled value. This can easily be done
with a 2-ary gate having (log N) outputs, and size O(log N).
The circuit is also changed to add the larger values. Note
that the circuit size is now O(m + n log N) where m is the
number of attributes and n is the number of criteria.

6.2 Combinatorial Circuit Based Policies
The previous notion of a weighted policy allows the def-

inition of many policy types, but it does not allow policies
of the following forms:

1. “(At least 3 out of these specific 4 criteria) and (At
least 2 out of these specific 5 criteria)”.

2. “Criterion A or (Criterion B and Criterion C), but not
(Criterion A and Criterion B).

Thus if the policy has a complex structure, then there
may not be a way to represent it with a weighted threshold
system, and even if there is such a representation, it may
not be intuitive. In this section, we propose a more generic
structure that is more powerful and more intuitive. For this
representation the lender defines several “super-criteria”,
which are expressible as threshold policies, weighted thresh-
old policies, or other combinatorial based circuit policies.
The lender defines a set of these super-criteria and then
combines the results using a binary tree of oblivious gates.
Clearly, anything that can be expressed with threshold poli-
cies or weighted threshold policies can be expressed with
this mechanism, and the examples given above can easily
be expressed with this representation. This reveals the gen-
eral structure of the policy but none of its specifics – actual
values of thresholds, cutoffs, etc. (as discussed in Section
4.3). However, to hide the structure, padding the circuit
with “dummy” entries can further hide the structure of the
circuit.

6.3 General Policies or Criteria
While the combinatorial circuit-based policies described

in the previous section allow the lender to represent a large
class of policies, it is still limited. In addition, compli-
cated criteria composed of multiple attributes cannot be
represented. To handle such requirements one could ex-
tend the techniques to represent an arbitrary policy (by us-
ing an n input gate that represents the policy). However,
such an extension would require exponential communica-
tion/computation.

6.4 Malicious Adversaries
In our previous protocols we assumed that the behavior

of the parties is passive or honest-but-curious (i.e., that the
parties will follow the protocols, but will try to glean ad-
ditional information). We postpone discussion of malicious
CRAs until Section 6.5, and thus in this Section we assume
that the CRA is honest (as it has very little incentive to
behave otherwise). However, in this section we look at what
happens when Linda or Bob deviates from the protocol.

• As a borrower, there is little Bob can do to deviate
from the protocol. The only type of attack we worry
about is Bob falsely qualifying for a loan, and since

his only messages are his loan request and the mes-
sage which states whether or not he obtained the loan
(which he cannot forge with non-negligible probabil-
ity), a malicious Bob has no extra advantage.

• Linda violates Bob’s privacy if she learns additional
information about Bob’s credit report. She can do
some things to try to probe Bob’ credit, and there are
essentially three ways in which she can do this: i) abort
the protocol after receiving the results, ii) having the
output gate output more than two things, iii) creating
a malformed circuit. We now examine each of these in
more detail (note that this solution does not require
the gates to be some form of encryption that can be
verified with Zero-Knowledge proofs):

1. Linda could create a circuit that reveals some-
thing other than whether or not Bob qualifies,
and then she could abort the protocol after re-
ceiving Bob’s response. This “abort” could take
the form of a contrived network failure, and Bob’s
only choice would be to run the protocols again
with Linda. To avoid this we propose a modi-
fication of Phase 5 of the protocol. Instead of
revealing a random string, the circuit reveals one
of two random keys. As part of the circuit Linda
also sends a message, which is an encryption with
the “qualify” key of a signed message stating that
Bob qualifies for the loan. Now, Linda cannot do
the above abort attack, because Bob can resend
the signed message.

2. Linda could make the output of the gate have
more than two outputs, which would reveal addi-
tional information to her about Bob’s credit re-
port. However, this is already handled by the
solution offered for the previous problem, assum-
ing that it is hard to generate two different keys
that encrypt to the same value for two different
signatures.

3. Linda could send a circuit that is malformed (i.e.,
some inputs will lead to an output, but other sets
of inputs lead to Bob not being able to compute
the output by not being able to decrypt any mes-
sage at a gate). If Bob reports a problem, then a
malicious Linda has more information since there
are now two fail states. To avoid this Bob, sends
the same message if there is an error in the cir-
cuit as if he gets to the output gate but does not
qualify.

6.5 Multiple CRAs
The assumption that there is a single CRA is not realistic

because in practice there are multiple CRAs. If the informa-
tion is used in independent ways, then this can be handled
by a trivial extension to our protocols. Thus we consider
the case where the lender uses multiple CRAs and wants to
make sure that the borrower satisfies the criteria at all of
the CRAs (which may have conflicting information). When
there are multiple sources for the same information, a lender
would like to add “defense in depth”, and we propose a con-
flict resolution strategy that resolves conflicts with the safest
possible approach. Essentially the circuit computes the cri-
terion for each of the CRAs, and then combines them into
a single value. If the criterion is positive (i.e., it helps Bob
get the loan) then the lender would want to make sure that

152

all of the CRAs information states that Bob satisfies that
criteria, which can easily be done with a set of AND gates.
If the criterion is negative (i.e., it hurts Bob’s chances of
getting the loan) then the safest approach that Linda could
take is that Bob has the property in question if one or more
of the CRAs claim he has that property, and this can easily
be computed with a set of OR gates. Clearly, either of these
cases can be done with a binary tree of oblivious gates.

In the single CRA case, a single malicious CRA that col-
ludes with one or more borrowers to probe a lender’s policy
is unavoidable. However, when multiple CRAs are used and
the policy is to use the safest possible approach (as outlined
above), then unless all of the CRAs are corrupt, the collud-
ing parties are limited in what they learn about the lender’s
policy. The probing of the malicious CRAs is limited to
credit reports that are worse than the borrower’s credit re-
port with the non-colluding CRAs.

7. CONCLUSIONS AND FUTURE WORK
Typically, when a borrower (Bob) wishes to establish a

tradeline (e.g., a mortgage, an automobile loan, or a credit
card) with a lender (Linda), Bob is subjected to a credit
check by Linda. The credit check is done by having Linda
obtain financial information about Bob in the form of a
credit report. Credit reports are maintained by Credit Re-
port Agencies (CRAs) and contain large amounts of private
information about individuals. Furthermore, Linda’s crite-
ria for loan qualification are confidential. Clearly, the cur-
rent mechanisms for credit checking violates the privacy of
borrowers. In this paper we introduce privacy-preserving
protocols that allow the lender to determine if a borrower’s
credit satisfies certain criteria without revealing the credit
report to the lender, without revealing the specific details of
the criteria to the borrower, and in a manner that is verifi-
able by the CRA yet does not reveal to the CRA either the
criteria or the outcome (i.e., whether the criteria are satis-
fied or not). The protocols are efficient in that they require
communication and computation (modular exponentiations,
which are typically the slowest operation) proportional to
the size of the credit report and the policy of the lender,
and while the computational overhead for the CRA is much
larger than the non-private setting, but much of this work
can be pre-computed off-line. Furthermore, our protocols
are simple in that they have a communication architecture
that mimics the current way that credit checks are done,
the only exception being that a borrower must register with
the CRA(s) if he wishes to use such protocols. Finally, the
protocols are private in that they satisfy the privacy require-
ments outlined above, and are correct in that the lender has
certainty that the borrower’s information is accurate. These
protocols largely benefit the borrowers, and thus in order
for the CRAs and the lenders to adopt such systems the
borrower would have to pay extra for such a service. How-
ever, since most members of the population are not that
concerned about privacy, there would be a relatively small
number of users of the privacy service, and the cost would
be higher than if it had been spread over a huge user popula-
tion. We conjecture that it would require legal mandate for
such protocols to be put into place, unless identity theft gets
much worse, or some scandal surfaces about blatant misuse
of credit records. The techniques of this paper for the credit
checking application domain, they have much broader ap-
plicability and in fact work for any situation where there

is a repository of public and private information about in-
dividuals, that is subsequently used for making decisions
that impact the individuals. As future work we propose the
additional problem of how to incorporate multiple entities’
data (employment records, insurance information, etc) with
this methodology to provide even more privacy for the bor-
rower. Also, before this is a functional system there are
many non-trivial interface questions (for the description of
credit reports and the description of policies) that must be
resolved.
Acknowledgments

The authors would like to thank the anonymous reviewers
for their useful comments and suggestions.

8. REFERENCES
[1] Equifax. http://www.equifax.com

[2] Experian. http://www.experian.com

[3] TransUnion. http://www.transunion.com

[4] Michael Ben-Or and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant
distributed computation. In Proceedings of the
twentieth annual ACM symposium on Theory of
computing, pages 1–10. ACM Press, 1988.

[5] R. Canetti, Y. Ishai, R. Kumar, M. Reiter,
R. Rubinfeld, and R. Wright. Selective private
function evaluation with applications to private
statistics, 2001.

[6] David Chaum, Claude Crépeau, and Ivan Damgard.
Multiparty unconditionally secure protocols. In
Proceedings of the twentieth annual ACM symposium
on Theory of computing, pages 11–19. ACM Press,
1988.

[7] O. Goldreich, S. Micali, and A. Wigderson. How to
play any mental game. In Proceedings of the
nineteenth annual ACM conference on Theory of
computing, pages 218–229. ACM Press, 1987.

[8] Oded Goldreich. Secure multi-party computation.
Working Draft, 2000.

[9] Shafi Goldwasser. Multi party computations: past and
present. In Proceedings of the sixteenth annual ACM
symposium on Principles of distributed computing,
pages 1–6. ACM Press, 1997.

[10] Jason E. Holt, Robert W. Bradshaw, Kent E.
Seamons, and Hilarie Orman. Hidden credentials. In
Proceedings of the 2nd ACM Workshop on Privacy in
the Electronic Society, October 2003.

[11] J. Katz and R. Ostrovsky. Round optimal secure
two-party computation. In CRYPTO 04, 2004.

[12] Ninghui Li, Wenliang Du, and Dan Boneh. Oblivious
signature-based envelope. In Proceedings of the 22nd
ACM Symposium on Principles of Distributed
Computing (PODC 2003). ACM Press, July 2003.

[13] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
- a secure two-party computation system. In
Proceedings of Usenix Security, 2004.

[14] Moni Naor and Benny Pinkas. Oblivious transfer and
polynomial evaluation. In Proceedings of the
thirty-first annual ACM symposium on Theory of
computing, pages 245–254. ACM Press, 1999.

[15] Moni Naor and Benny Pinkas. Efficient oblivious
transfer protocols. In Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms, pages

153

448–457. Society for Industrial and Applied
Mathematics, 2001.

[16] Moni Naor, Benny Pinkas, and Reuban Sumner.
Privacy preserving auctions and mechanism design. In
EC ’99: Proceedings of the 1st ACM conference on
Electronic commerce, pages 129–139. ACM Press,
1999.

[17] P. Rogaway. The Round Complexity of Secure
Protocols. Ph.d. thesis, MIT, 1991. Available at
http://www.cs.ucdavis.edu/ rogaway/papers.

[18] Bruce Schneier. Applied Cryptography – Protocols,
algorithms, and souce code in C. John Wiley & Sons,
Inc., 1996.

[19] A.C Yao. Protocols for secure computation. In
Proceedings of the 23rd Annual IEEE Symposium on
Foundations of Computer Science, pages 160–164,
1982.

[20] A.C Yao. How to generate and exchange secrets. In
Proceedings of the 27th Annual IEEE Symposium on
Foundations of Computer Science, pages 162–167,
1986.

APPENDIX
A. SECURE CIRCUIT EVALUATION

In this protocol, one party is a generator of a scrambled
circuit and the other party is an evaluator. The generator
creates a scrambled circuit where each wire of the circuit
has two encodings (one for each possible value of the wire),
and the gates contain information that allow an evaluator to
obtain the encoding of the output wire given the encoding
for the gate’s input wires. What makes this a private circuit
evaluation is that the evaluator learns the encoding corre-
sponding to his input for each input wire), and thus learns
only one encoding per wire.

We now describe in more detail a protocol for Scrambled
Circuit Evaluation.

• Circuit Generation: For each wire in the circuit

w1, . . . , wn, the generator creates random encodings for
the wires (in this case the encodings are a key for a
trapdoor function or are a random seed that can be
used by a pseudo-random number generator to generate
such a key). We denote the encodings of 0 and 1 for wire
wi respectively by wi[0] and wi[1]. The question now
becomes how to develop gates that allow an evaluation
of the circuit. To create a 2-ary gate for a function f

with input wires wi and wj and with output wire wk,
the gate consists of four messages (where m is a publicly
defined marker, used to recognize when an item has
been successfully decrypted):

1. Enc(Enc(m||wk[f(0, 0)], wj [0]), wi[0])

2. Enc(Enc(m||wk[f(0, 1)], wj [1]), wi[0])

3. Enc(Enc(m||wk[f(1, 0)], wj [0]), wi[1])

4. Enc(Enc(m||wk[f(1, 1)], wj [1]), wi[1])

Note that the scrambled gate is these messages in a ran-
domly permuted order. Clearly the scrambled circuit
with fan-in 2, can be represented in size proportional to
the size of the circuit. It is a natural extension of this
to create an n-ary gate with m outputs that has size
proportional to 2nm, and while this should be avoided

for large n due to the exponential blowup in gate size,
there are situations where this is useful.

• Learning Input Wires: In order to evaluate a circuit
the evaluator must know the values of the input wires.
For input wires corresponding to the generator’s inputs,
the generator simply sends the evaluator the encoding
of each of his inputs. For input wires corresponding
to the evaluator’s inputs, the two parties engage in a
1-out-of-2 OT where the two “messages” are the gener-
ator’s encodings of 1 and 0, and the evaluator gets the
encoding corresponding to his input for that wire.

• Evaluating the Circuit: To evaluate a gate the evalu-
ator decrypts each message in the gate with the keys
that it has for the input wires. Only one of these de-
crypted messages will contain the marker m (the others
will look random), and thus the evaluator will learn ex-
actly one encoding for the output wire (he will know
it is the correct value for that wire, but of course he
cannot tell whether it corresponds to a 0 or a 1).

• Learning the Result: If the goal is to have the evalu-
ator simply learn the result, then it is enough for the
generator to tell the evaluator both encodings of the
output wire.

With passive adversaries it is enough for the trapdoor
function used for gate construction to be a strong encryption
function (such as AES). Thus any circuit with constant fan-
in can be simulated privately in time proportional to the
size of the circuit. We now briefly review the circuit size for
various functions that are needed for credit checking:

1. Comparing two k-bit values: Requires only O(k) gates
in a 2-ary circuit.

2. Adding two k-bit values: Requires only O(k) gates in a
2-ary circuit.

3. Adding k single bit values: Requires only O(k) gates in
a 2-ary circuit.

154

