
CERIAS Tech Report 2007-07

PRIVACY-PRESERVING INCREMENTAL DATA DISSEMINATION

by Ji-Won Byun, Tiancheng Li, Elisa Bertino, Ninghui Li, and Yonglak Sohn

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Privacy-Preserving Incremental Data Dissemination

Ji-Won Byun, Tiancheng Li,
Elisa Bertino, and Ninghui Li

Computer Science
Purdue University

West Lafayette, IN 47906

{byunj,li83,bertino,ninghui}@cs.purdue.edu

Yonglak Sohn
.

Computer Engineering
Seokyeong University

Seoul, Korea

syl@skuniv.ac.kr

ABSTRACT
Although the k-anonymity and ℓ-diversity models have led
to a number of valuable privacy-protecting techniques and
algorithms, the existing solutions are currently limited to
static data release. That is, it is assumed that a complete
dataset is available at the time of data release. This assump-
tion implies a significant shortcoming, as in many applica-
tions data collection is rather a continual process. Moreover,
the assumption entails “one-time” data dissemination; thus,
it does not adequately address today’s strong demand for
immediate and up-to-date information. In this paper, we
consider incremental data dissemination, where a dataset
is continuously incremented with new data. The key issue
here is that the same data may be anonymized and pub-
lished multiple times, each of the time in a different form.
Thus, static anonymization (i.e., anonymization which does
not consider previously released data) may enable various
types of inference. In this paper, we identify such inference
issues and discuss some prevention methods.

1. INTRODUCTION
When person-specific data is published, protecting in-

dividual respondents’ privacy is a top priority. Among
various approaches addressing this issue, the k-anonymity

model [12, 10] and the ℓ-diversity model [8] have recently
drawn significant attention in the research community. In
the k-anonymity model, privacy protection is achieved by
ensuring that every record in a released dataset is indis-
tinguishable from at least (k − 1) other records within the
dataset. Thus, every respondent included in the dataset
corresponds to at least k records in a k-anonymous dataset,
and the risk of record identification (i.e., the probability of
associating a particular individual with a released record)
is guaranteed to be at most 1/k. While the k-anonymity
model primarily focuses on the problem of record identi-
fication, the ℓ-diversity model, which is built upon the k-
anonymity model, addresses the risk of attribute disclosure
(i.e., the probability of associating a particular individual
with a sensitive attribute value). As an attribute disclosure
may occur without records being identified (e.g., due to lack
of diversity in a sensitive attribute), the ℓ-diversity model,
in its simplest form∗, additionally requires that every group
of indistinguishable records contain at least ℓ distinct sensi-
tive attribute values; thereby the risk of attribute disclosure
is bound to at most 1/ℓ.

∗We discuss more robust ℓ-diversity requirements in Sec-
tion 2.

Although these models have yielded a number of valuable
privacy-protecting techniques [1, 4, 5, 6, 7, 11], existing ap-
proaches only deal with static data release. That is, all these
approaches assume that a complete dataset is available at
the time of data release. This assumption implies a signif-
icant shortcoming, as in many applications data collection
is rather a continuous process. Moreover, the assumption
entails “one-time” data dissemination. Obviously, this does
not address today’s strong demand for immediate and up-
to-date information, as the data cannot be released before
the data collection is considered complete.

As a simple example, suppose that a hospital is required
to share its patient records with a disease control agency. In
order to protect patients’ privacy, the hospital anonymizes
all the records prior to sharing. At first glance, the task
seems reasonably straightforward, as existing anonymiza-
tion techniques can efficiently anonymize the records. The
challenge is, however, that new records are continuously col-
lected by the hospital (e.g., whenever new patients are ad-
mitted), and it is critical for the agency to receive up-to-date
data in timely manner.

One possible approach is to provide the agency with
datasets containing only the new records, which are inde-
pendently anonymized, on a regular basis. Then the agency
can either study each dataset independently or merge mul-
tiple datasets together for more comprehensive analysis.
Although straightforward, this approach may suffer from
severely low data quality. The key problem is that relatively
small sets of records are anonymized independently so that
the records may have to be modified much more than when
they are anonymized together with previous records [3].
Moreover, a recoding scheme applied to each dataset may
make the datasets inconsistent with each other; thus, col-
lective analysis on multiple datasets may require additional
data modification. Therefore, in terms of data quality, this
approach is highly undesirable. One may believe that data
quality can be assured by waiting for new data to be accu-
mulated sufficiently large. However, this approach may not
be acceptable in many applications as new data cannot be
released in a timely manner.

A better approach is to anonymize and provide the en-
tire dataset whenever it is augmented with new records
(possibly along with another dataset containing only new
records). In this way, the agency can be provided with up-
to-date, quality-preserving and “more complete” datasets
each time. Although this approach can also be easily im-
plemented by using existing techniques (i.e., anonymizing
the entire dataset every time), it has a significant drawback.

That is, even though each released dataset, when observed
independently, is guaranteed to be anonymous, the com-
bination of several released datasets may be vulnerable to
various inferences. We illustrate these inferences through
some examples in Section 3.1. As such inferences are typi-
cally made by comparing or linking records across different
tables (or versions), we refer to them as cross-version infer-

ences to differentiate them from inferences that may occur
within a single table.

Our goal in this paper is to identify and prevent cross-
version inferences so that an increasing dataset can be incre-
mentally disseminated without compromising the imposed
privacy requirement. In order to achieve this, we first define
the privacy requirement for incremental data dissemination.
We then discuss three types of cross-version inference that
an attacker may exploit by observing multiple anonymized
datasets. We also present our anonymization method where
the degree of generalization is determined based on the pre-
viously released datasets to prevent any cross-version infer-
ence. The basic idea is to obscure linking between records
across different datasets. We develop our technique in two
different types of recoding approaches; namely, full-domain
generalization [6] and multidimensional anonymization [7].
One of the key differences between these two approaches is
that the former generalizes a given dataset according to pre-
defined generalization hierarchies, while the latter does not.
Based on our experimental result, we compare these two ap-
proaches with respect to data quality and vulnerability to
cross-table inference. Another issue we address is that as
a dataset is released multiple times, one may need to keep
the history of previously released datasets. We thus discuss
how to maintain such history in a compact form to reduce
unnecessary overheads.

The remainder of this paper is organized as follows. In
Section 2, we review the basic concepts of the k-anonymity
and ℓ-diversity models and provide an overview of related
techniques. In Section 3, we formulate the privacy require-
ment for incremental data dissemination. Then in Section 4,
we describe three types of inference attacks based on our as-
sumption of potential attackers. We present our approach
to preventing these inferences in Section 5 and evaluate our
technique in Section 6. We review some related work in
Section 7 and conclude our discussion in Section 8.

2. PRELIMINARIES
In this section, we discuss the key concepts of the k-

anonymity and ℓ-diversity models and briefly review related
techniques.

2.1 Anonymity Models
The k-anonymity model assumes that data are stored in

a table (or a relation) of columns (or attributes) and rows
(or records). It also assumes that the target table contains
person-specific information and that each record in the table
corresponds to a unique real-world individual. The process
of anonymizing such a table starts with removing all the
explicit identifiers, such as name and SSN, from the table.
However, even though a table is free of explicit identifiers,
some of the remaining attributes in combination could be
specific enough to identify individuals. For example, it has
been shown that 87% of individuals in the United States can
be uniquely identified by a set of attributes such as {ZIP,
gender, date of birth} [12]. This implies that each attribute

alone may not be specific enough to identify individuals,
but a particular group of attributes together may identify a
particular individuals [10, 12].

The main objective of the k-anonymity model is thus to
transform a table so that no one can make high-probability
associations between records in the table and the corre-
sponding individuals by using such group of attributes,
called quasi-identifier. In order to achieve this goal, the
k-anonymity model requires that any record in a table be
indistinguishable from at least (k − 1) other records with
respect to the quasi-identifier. A set of records that are
indistinguishable from each other is often referred to as an
equivalence class. Thus, a k-anonymous table can be viewed
as a set of equivalence classes, each of which contains at least
k records. The enforcement of k-anonymity guarantees that
even though an adversary knows the quasi-identifier value of
an individual and is sure that a k-anonymous table T con-
tains the record of the individual, he cannot determine which
record in T corresponds to the individual with a probability
greater than 1/k.

Although the k-anonymity model does not consider sen-
sitive attributes, a private dataset typically contains some
sensitive attributes that are not part of the quasi-identifier.
For instance, in patient table, Diagnosis is considered a
sensitive attribute. For such datasets, the key considera-
tion of anonymization is the protection of individuals’ sen-
sitive attributes. However, the k-anonymity model does not
provide sufficient protection in this setting, as it is possi-
ble to infer certain individuals’ attributes without precisely
re-identifying their records. For instance, consider a k-
anonymized table where all records in an equivalence class
have the same sensitive attribute value. Although none of
these records can be uniquely matched with the correspond-
ing individuals, their sensitive attribute value can be inferred
with probability 1. Recently, Machanavajjhala et al. [8]
pointed out such inference issues in the k-anonymity model
and proposed the notion of ℓ-diversity. Several formulations
of ℓ-diversity are introduced in [8]. In its simplest form, the
ℓ-diversity model requires that records in each equivalence
class have at least ℓ distinct sensitive attribute values. As
this requirement ensures that every equivalence class con-
tains at least ℓ distinct sensitive attribute values, the risk
of attribute disclosure is kept under 1/ℓ. Note that in this
case, the ℓ-diversity requirement also ensures ℓ-anonymity,
as the size of every equivalence class must be greater than or
equal to ℓ. Although simple and intuitive, modified datasets
based on this requirement could still be vulnerable to prob-
abilistic inferences. For example, consider that among the ℓ
distinct values in an equivalence class, one particular value
appears much more frequently than the others. In such a
case, an adversary may conclude that the individuals con-
tained in the equivalence class are very likely to have that
specific value. A more robust diversity is achieved by enforc-
ing entropy ℓ-diversity [8], which requires every equivalence
class to satisfy the following condition.

−
X
s∈S

p(e, s) log p(e, s) > log ℓ

where S is the domain of the sensitive attribute and p(e, s)
represents the fraction of records in e that have sensitive
value s. Although entropy ℓ-diversity does provide stronger
privacy, the requirement may sometimes be too restrictive.
For instance, as pointed out in [8], in order for entropy ℓ-

diversity to be achievable, the entropy of the entire table
must also be greater than or equal to log ℓ.

2.2 Anonymization Techniques
The k-anonymity (and ℓ-diversity) requirement is typi-

cally enforced through generalization, where real values are
replaced with “less specific but semantically consistent val-
ues” [12]. Given a domain, there are various ways to gener-
alize the values in the domain. Intuitively, numeric values
can be generalized into intervals (e.g., [11 − 20]), and cate-
gorical values can be generalized into a set of possible values
(e.g., {USA, Canada, Mexico}) or a single value that rep-
resents such a set (e.g., North-America). As generalization
makes data more vague, the utility of the data is inevitably
downgraded. The key challenge of anonymization is thus to
minimize the amount of ambiguity introduced by general-
ization while enforcing anonymity requirement.

Various generalization strategies have been developed.
In the hierarchy-based generalization schemes, a non-
overlapping generalization-hierarchy is first defined for each
attribute of quasi-identifier. Then an algorithm in this cat-
egory tries to find an optimal (or good) solution which is
allowed by such generalization hierarchies. Here an optimal
solution is a solution that satisfies the privacy requirement
and at the same time minimizes a desired cost metric. Based
on the use of generalization hierarchies, the algorithms in
this category can be further classified into two subclasses.
In the single-level generalization schemes [6, 10, 11], all the
values in a domain are generalized into a single level in the
corresponding hierarchy. This restriction could be a signifi-
cant drawback in that it may lead to relatively high data dis-
tortion due to unnecessary generalization. The multi-level

generalization [4, 5] schemes, on the other hand, allows val-
ues in a domain to be generalized into different levels in the
hierarchy. Although this leads to much more flexible gen-
eralization, possible generalizations are still limited by the
imposed generalization hierarchies.

Recently, hierarchy-free generalization schemes [1, 2, 7]
have been proposed, which do not rely on the notion of
pre-defined generalization hierarchies. In [1], Bayardo et al.
propose an algorithm based on a powerset search problem,
where the space of anonymizations (formulated as the pow-
erset of totally ordered values in a dataset) is explored using
a tree-search strategies. In [7], LeFevre et al. transform the
k-anonymity problem into a partitioning problem and pro-
poses a greedy approach that recursively splits a partition at
the median value until no more split is allowed with respect
to the k-anonymity requirement. [2], on the other hand,
introduces a flexible k-anonymization approach which uses
the idea of clustering to minimize information loss and thus
ensures good data quality.

3. PROBLEM FORMULATION
In this section, we start with an example to illustrate the

problem of inference. We then describe our notion of incre-
mental dissemination and formally define a privacy require-
ment for it.

3.1 Motivating Examples
Let us revisit our previous scenario where a hospital needs

to provide the anonymized version of its patient records with
a disease control agency. As previously discussed, to as-
sure data quality, the hospital anonymizes the patient table

NAME AGE Gender Diagnosis

Tom 21 Male Asthma
Mike 23 Male Flu
Bob 52 Male Alzheimer
Eve 57 Female Diabetes

Figure 1: Patient table

AGE Gender Diagnosis

[21− 25] Male Asthma
[21− 25] Male Flu
[50− 60] Person Alzheimer
[50− 60] Person Diabetes

Figure 2: Anonymous patient table

whenever it is augmented with new records. To make our
example more concrete, suppose that the hospital relies on a
model where both the k-anonymity and ℓ-diversity are con-
sidered; therefore, a ‘(k, ℓ)-anonymous’ dataset is a dataset
that satisfies both the k-anonymity and ℓ-diversity require-
ments. The hospital initially has a table like the one in Fig-
ure 1 and reports to the agency its (2, 2)-anonymous table
shown in Figure 2. As shown, the probability of identity dis-
closure (i.e., the association between individual and record)
and attribute disclosure (i.e., the association between in-
dividual and diagnosis) are kept under 1/2 in the dataset,
respectively. For example, even if an attacker knows that
the record of Tom, who is a 21-year-old male, is in the re-
leased table, he cannot learn about Tom’s disease with a
probability greater than 1/2 (although he learns that Tom
has either asthma or flu). At a later time, three more pa-
tient records (shown in Italic) are inserted into the dataset,
resulting the table in Figure 3. The hospital then releases a
new (2, 2)-anonymous table as depicted in Figure 4. Observe
that Tom’s privacy is still protected in the newly released
dataset. However, not every patient’s privacy is protected
from the attacker.

Example 1. “Alice has cancer!” Suppose the attacker
knows that Alice, who is in her late twenties, has recently
been admitted to the hospital. Thus, he knows that Alice’s
record is not in the old dataset in Figure 2, but in the new
dataset in Figure 4. From the new dataset, he learns only
that Alice has one of {Asthma, Flu, Cancer}. However, by
consulting the previous dataset, he can easily deduce that
Alice has neither asthma nor flu (as they must belong to
patients other than Alice). He now infers that Alice has
cancer.

Example 2. “Bob has alzheimer!” The attacker knows
that Bob is 52 years old and has long been treated in the hos-
pital. Thus, he is sure that Bob’s record is in both datasets
in Figures 2 and 4. First, by studying the old dataset, he
learns that Bob suffers from either alzheimer or diabetes.
Now the attacker checks the new dataset and learns that
Bob has either alzheimer or heart disease. He can thus con-
clude that Bob suffers from alzheimer. Note that three other
records in the new dataset are also vulnerable to similar in-
ferences.

As shown in the examples above, anonymizing a dataset
without considering previously released information may en-
able various inferences.

NAME AGE Gender Diagnosis

Tom 21 Male Asthma
Mike 23 Male Flu
Bob 52 Male Alzheimer
Eve 57 Female Diabetes
Alice 27 Female Cancer

Hank 53 Male Hepatitis

Sal 59 Female Flu

Figure 3: Updated patient table

AGE Gender Diagnosis

[21− 30] Person Asthma
[21− 30] Person Flu
[21− 30] Person Cancer
[51− 55] Male Alzheimer
[51− 55] Male Hepatitis
[56− 60] Female Flu
[56− 60] Female Diabetes

Figure 4: Updated anonymous patient table

3.2 Incremental data dissemination and
privacy requirement

Let T be a private table with a set of quasi-identifier at-
tributes Q and a sensitive attribute S. We assume that T
consists of person-specific records, each of which corresponds
to a unique real-world individual. We also assume that T
continuously grows with new records and denote the state
of T at time i as Ti. For the privacy of individuals, each
Ti must be “properly” anonymized before being released to
public. Our goal is to address both identity disclosure and
attribute disclosure, and we adopt an anonymity model†that
combines the requirements of k-anonymity and ℓ-diversity as
follows.

Definition 1. ((k, c)-Anonymity) Let table T be with a
set of quasi-identifier attributes Q and a sensitive attribute
S. With respect to Q, T consists of a set of non-empty
equivalence classes, where ∀ e ∈ T , record r ∈ e ⇒ r[Q] =
e[Q]. We say that T is (k, c)-anonymous with respect to Q
if the following conditions are satisfied.

1. ∀ e ∈ T, |e| ≥ k, where k > 0.

2. ∀ e ∈ T, |{r|r∈e∧r[S]=s}|
|e|

≤ c, where 0 < c ≤ 1.

The first condition ensures the k-anonymity requirement,
and the second condition enforces the diversity requirement
in the sensitive attribute. In its essence, the second con-
dition dictates that the maximum confidence of association
between any quasi-identifier value and a particular sensitive
attribute value in T must not exceed a threshold c.

At a given time i, only an (k, c)-anonymous version of

Ti, denoted as bTi, is released to public. Thus, users, in-
cluding potential attackers, may have access to a series of

(k, c)-anonymous tables, bT1, bT2, . . ., where |bTi| ≤ | bTj | for
i < j. As every released table is (k, c)-anonymous, by
observing each table independently, one cannot associate a
record with a particular individual with probability higher
than 1/k or infer any individual’s sensitive attribute with

†A similar model is also introduced in [14].

confidence higher than c. However, as shown in Section 3.1,
it is possible that one can increase the confidence of such
undesirable inferences by observing difference between the
released tables. For instance, if an observer can be sure that
two (anonymized) records in two different versions indeed
correspond to the same individual, then he may be able to
use this knowledge to infer more information than what is
allowed by the (k, c)-anonymity protection. If such a case
occurs, we say that there is an inference channel between
the two versions.

Definition 2. (Cross-version inference channel) Let

Θ = {bT1, . . . , bTn} be the set of all released tables for private

table T , where bTi is an (k, c)-anonymous version released at

time i, 1 ≤ i ≤ n. Let θ ⊆ Θ and bTi ∈ Θ. We say that

there exists cross-version inference channel from θ to bTi,

denoted as θ
bTi, if observing tables in θ and bTi collectively

increases the risk of either identity disclosure or attribute

disclosure in bTi higher than 1/k or c, respectively.

When data are disseminated incrementally, it is critical to
ensure that there is no cross-version inference channel among
the released tables. In other words, the data provider must
make sure not only that each released table is free of un-
desirable inferences, but also that no released table creates
cross-version inference channels with respect to the previ-
ously released tables. We formally define this requirement
as follows.

Definition 3. (Privacy-preserving incremental data

dissemination) Let Θ = {bT0, . . . , bTn} be the set of all

released tables of private table T , where bTi is an (k, c)-
anonymous version of T released at time i, 0 ≤ i ≤ n. Θ

is said to be privacy-preserving if and only if ∄ (θ, bTi) such

that θ ⊆ Θ, bTi ∈ Θ, and θ
bTi.

4. CROSS-VERSION INFERENCES
We first describe potential attackers and their knowledge

that we assume in this paper. Then based on the attack
scenario, we identify three types of cross-version inference
attacks in this section.

4.1 Attack scenario
We assume that the attacker has been keeping track of

all the released tables; he thus possesses a set of released

tables {bT0, . . . , bTn}, where bTi is a table released at time i.
We also assume that the attacker has the knowledge of who
is and who is not contained in each table; that is, for each

anonymized table bTi, the attacker also possesses a popula-
tion table Ui which contains the explicit identifiers and the

quasi-identifiers of the individuals in bTi. This may seem
to be too farfetched at first glance; however, we assume the
worst case, as we cannot rely on attacker’s lack of knowledge.
Also, such knowledge is not always difficult to acquire for a
dedicated attacker. For instance, consider medical records
released by a hospital. Although the attacker may not be
aware of all the patients, he may know when target indi-
viduals in whom he is interested (e.g., local celebrities) are
admitted to the hospital. Based on this knowledge, the at-
tacker can easily deduce which tables may include such in-
dividuals and which tables may not. Another, perhaps the
worst, possibility is that the attacker may collude with an

insider who has access to detailed information about the pa-
tients; e.g., the attacker could obtains a list of patients from
a registration staff. Thus, it is reasonable to assume that
the attacker’s knowledge includes the list of individuals con-
tained in each table as well as their quasi-identifier values.
However, as all the released tables are (k, c)-anonymous, the
attacker cannot infer the individuals’ sensitive attribute val-
ues with a significant probability, even utilizing such knowl-
edge. That is, in each released table, the probability that
an individual with a certain quasi-identifier has a particular
sensitive attribute is still bound to c. Therefore, the goal
of the attacker is to increase his/her confidence of attribute
disclosure (i.e., above c) by comparing the released tables
all together. In the remainder of this section, we describe
three types of cross-version inferences that the attacker may
exploit in order to achieve this goal.

4.2 Notations
We first introduce some notations we use in our discussion.

Let T be a table with a set of quasi-identifer attributes Q and
a sensitive attribute S. Let A be a set of attributes, where
A ⊆ (Q ∪ S). Then T [A] denotes the duplicate-eliminating
projection of T onto the attributes A. Let ei = {r0, . . . , rm}
be an equivalence class in T , where m > 0. By definition, the
records in ei all share the same quasi-identifier value, and
ei[Q] represents the common quasi-identifier value of ei. We
also use similar notations for individual records; that is, for
record r ∈ T , r[Q] represents the quasi-identifier value of
r and r[S] the sensitive attribute value of r. In addition,
we use T 〈A〉 to denote the duplicate-preserving projection
of T . For instance, ei〈S〉 represents the multiset of all the
sensitive attribute values in ei. We also use |N | to denote
the cardinalities of set N .

Regardless of recoding schemes, we consider a generalized
value as a set of possible values. Suppose that v is a value
from domain D and bv a generalized value of v. Then we
denote this relation as v � bv, and interpret bv as a set of
values where (v ∈ bv) ∧ (∀vi ∈ bv, vi ∈ D). Overloading this
notation, we say that br is a generalized version of record r,
denoted as r � br, if (∀qi ∈ Q, r[qi] � br[qi]) ∧ (r[S] = br[S]).
Moreover, we say that two generalized values bv1 and bv2 are
compatible, denoted as bv1 ⊲⊳ bv2, if bv1∩ bv2 6= ∅. Similarly, two
generalized records br1 and br2 are compatible (i.e., br1 ⊲⊳ br2) if
∀qi ∈ Q, bri[qi]∩ brj [qi] 6= ∅. We also say that two equivalence
classes e1 and e2 are compatible if ∀qi ∈ Q, e1[qi]∩e2[qi] 6= ∅

4.3 Difference attack

Check Difference Attack
Input: Two (k, c)-anonymous tables bTi and bTj

Output: true if the two tables are vulnerable to
difference attack and false otherwise

if (DirectedCheck(bTi, bTj) = true) return true

else return DirectedCheck(bTj , bTi)
end if

Figure 5: Algorithm for checking if given two tables
are vulnerable to difference attack

Let bTi = {e0,1, . . . , e0,n} and bTj = {e1,1, . . . , e1,m} be two
(k, c)-anonymous tables that are released at time i and j
(i 6= j), respectively. As previously discussed in Section 4.1,
we assume that an attacker knows who is and who is not in

each released table. Also knowing the quasi-identifier values

of the individuals in bTi and bTj , for any equivalence class e

in either bTi or bTj , the attacker knows the individuals whose
records are contained in e. Let I(e) represent the set of
individuals in e. With this information, the attacker can
now perform difference attack as follows. Let Ei and Ej be

two sets of equivalence classes, where Ei ⊆ bTi and Ej ⊆bTj . If ∪e∈EiI(e) ⊆ ∪e∈Ej I(e), then set D = ∪e∈Ej I(e) −
∪e∈EiI(e) represents the set of individuals whose records are
in Ei, but not in Ej . Furthermore, set SD = ∪e∈Ej e〈S〉 −
∪e∈Ej e〈S〉 indicates the set of sensitive attribute values that
belong to those individuals in D. Therefore, if D contains
less than k records, or if the most frequent sensitive value
in SD appears with a probability larger than c, the (k, c)-
anonymity requirement is violated.

The pseudo-code in Figures 5, 6, and 7 gives an algorithm
for checking whether two (k, c)-anonymous tables are vulner-
able to the difference attack. The Check Difference Attack

procedure in Figure 5 is the main procedure that checks for
the vulnerability between two tables bidirectionally.

DirectedCheck
Input: Two (k, c)-anonymous tables bTi and bTj , wherebTi = {ei,1, . . . , ei,m} and bTj = {ej,1, . . . , ej,n}

Output: true if bTi is vulnerable to difference attack

with respect to bTj and false otherwise

Q = {(∅, 0)}
while Q 6= ∅

Remove the first element p = (E, index) from Q
if E 6= ∅

E′ ← GetMinSet(E, bTj)
if |E′ − E| < k

return true
else if (E′〈S〉 − E〈S〉) does not satisfy c-diversity

return true
end if

end if
for each ℓ ∈ {index + 1, . . . , m} // generates subsets

with size |E|+ 1
insert (E ∪ ei,ℓ, ℓ) into Q

end for
end while
return false

Figure 6: Algorithm for checking if one table is vul-
nerable to difference attack with respect to another
table

The DirectedCheck procedure in Figure 6 checks if the first
table of the input is vulnerable to difference attack with re-
spect to the second table. This procedure enumerates all the

subset equivalence class sets of bTi, and for each set E, the
procedure calls GetMinSets procedure in Figure 7 to get the

minimum set E′ of equivalence classes in bTj that contains
all the records in E. We call such E′ the minimum cover-

ing set of E. The procedure then checks whether there is
vulnerability between the two equivalence classes E and E′.

As the algorithm checks the all the subsets of bTi, the time
complexity is apparently exponential (i.e, it is O(2n), where

n is the number of equivalence classes in bTi). As such, for
large tables with many equivalence classes, this brute-force
check is clearly unacceptable. In what follows, we discuss a

GetMinSet
Input: An equivalence class set E and a table bT
Output: An equivalence class set E′ ⊆ bT that is
minimal and contains all records in E

E′ = ∅
while E 6⊆ E′

choose a tuple t in E that is not in E′

find the equivalence class e ∈ bT that contains t
E′ = E′ ∪ {e}

end while
return E

Figure 7: Algorithm for obtaining a minimum equiv-
alence class set that contains all the records in the
given equivalence class set

few observations that result in effective heuristics to reduce
the space of the problem in most cases.

Observation 1. Let E1 and E2 be two sets of equivalence

classes in bTi, and E′
1 and E′

2 be their minimal covering sets

in bTj , respectively. If E1 and E2 are not vulnerable to dif-
ference attack, and E′

1 ∩ E′
2 = ∅, then we do not need to

consider any subset of bTi which contains E1 ∪ E2.

That E1 and E2 are not vulnerable to difference attack
means that sets (E′

1 − E1) and (E′
2 − E2) are both (k, c)-

anonymous. As the minimum covering set of E1 ∪ E2 is
E′

1∪E′
2, and E′

1 and E′
2 are disjoint, (E′

1∪E′
2)−(E1∪E2) is

also (k, c)-anonymous. This also implies that if each E1 and
E2 is not vulnerable to difference attack, then neither is any
set containing E1 ∪ E2. Based on this observation, we can
modify the method in Figure 6 as follows. In each time we
union one more element to a subset to create larger subsets,
we check if their minimum covering sets are disjoint. If they
are, we do not insert the unioned subset to the queue. Note
that this also prevents all the sets containing the unioned
set from being generated.

Observation 2. Let E1 and E2 be two sets of equivalence

classes in bTi, and E′
1 and E′

2 be their minimal covering sets

in bTj , respectively. If E′
1 = E′

2, then we only need to check
if E1 ∪ E2 is vulnerable to difference attack.

In other words, we can skip checking if each of E1 and
E2 is vulnerable to difference attack. This is because unless
E1 ∪ E2 is vulnerable to difference attack, E1 and E2 must
not be vulnerable. Thus, we can save our computational
effort as follows. When we insert a new subset to the queue,
we check if there exists another set with the same minimum
covering set. If such a set is found, we simply merge the new
subset to the found set.

Observation 3. Consider the method in Figure 6. Sup-

pose that bTi was released after bTj ; that is, bTi contains some

records that are not in bTj . If equivalence class e ∈ bTj con-
tains such records, then we do not need to consider that
equivalence class for difference attack.

It is easy to see that if e ∈ bTi contains some record(s) thatbTj do not, the minimum covering set of e is an empty-set.
Since e itself must be (k, c)-anonymous, e is safe from dif-
ference attack. Based on this observation, we can purge all

such equivalence classes from the initial problem set. As the
method in Figure 5 shows, our algorithm checks two tables
in both directions. While it may seem that this doubles the
already-heavy computation, this observation relieves such
concern.

4.4 Intersection attack
The key idea of k-anonymity is to introduce sufficient am-

biguity into the association between quasi-identifier values
and sensitive attribute values. However, this ambiguity may
be reduced to an undesirable level if the structure of equiv-
alence classes are varied in different releases. For instance,
suppose that the attacker wants to know the sensitive at-
tribute of Alice, whose quasi-identifier value is qA. Then
the attacker can select a set of tables, θ+

A , that all contain
Alice’s record. As the attacker knows the quasi-identifier of
Alice, he does not need to examine all the records; he just
needs to consider the records that may possibly correspond

to Alice. That is, in each bTi ∈ θ+
A , the attacker only need to

consider an equivalence class ei ⊆ bTi, where qA � ei[Q]. Let
EA = {e0, . . . , en} be the set of all equivalence classes identi-
fied from θ+

A such that qA � ei[Q], 0 ≤ i ≤ n. As every ei is
(k, c)-anonymous, the attacker cannot infer Alice’s sensitive
attribute value with confidence higher than c by examining
each ei independently. However, as every equivalence class
in EA contains Alice’s record, the attacker knows that Al-
ice’s sensitive attribute value, sA, must be present in every
equivalence class in EA; i.e., ∀ei ∈ EA, sA ∈ ei〈S〉. This
implies that sA must be found in set SIA =

T
ei∈EA

ei〈S〉.
Therefore, if the most frequent value in SIA appears with a
probability greater than c, then the sensitive attribute value
of Alice can be inferred with confidence greater than c.

Check Intersection Attack
Input: Two (k, c)-anonymous tables bT0 and bT1

Output: true if the two tables are vulnerable to
intersection attack and false otherwise

for each equivalence class e0,i in bT0

for each e1,j ∈ bT1 that contains any record in e0,i

if (e0,i〈S〉 ∩ e1,j〈S〉) does not satisfy c-diversity
return true

end if
end for

end for
return false

Figure 8: Algorithm for checking if given two tables
are vulnerable to intersection attack

The pseudo-code in Figure 8 provides an algorithm for
checking the vulnerability to the intersection attack for given

two (k, c)-anonymous tables, bT0 and bT1. The basic idea is to

check every pair of equivalence classes ei ∈ bT0 and ej ∈ bT1

that contain the same record(s).

4.5 Record-tracing attack
Unlike the previous attacks, the attacker may be inter-

ested in knowing who may be associated with a particular
attribute value. In other words, instead of wanting to know
what sensitive attribute value a particular individual has,
the attacker now wants to know which individuals possess
a specific sensitive attribute value; e.g., the individuals who

 Ti Ti+1 Tn

ei,1

e i+1,2

ei+1,1

e i+1,3

e i+1,4

ei,2

ei,3

en,1

en,2

en,3

en,5

en,6 sp

sp sp

en,4

sp

sp sp

sp sp

e i+1,5

(i)

(ii)

 . . .

Figure 9: Record-tracing attacks

suffer from ‘HIV+’. Let sp be the sensitive attribute value

in which the attacker is interested and bTi ∈ Θ be the table in
which (at least) one record with sensitive value sp appears.

Although bT may contain more than one record with sp, sup-
pose, for simplicity, that the attacker is interested in a par-

ticular record rp such that (rp[S] = sp) ∧ (rp ∈ ei). As bT is
(k, c)-anonymous, when the attacker queries the population
table Ui with rp[Q], he obtains at least k individuals who
may correspond to rp. Let Ip be the set of such individuals.
Suppose that the attacker also possesses a subsequently re-

leased table bTj (i < j) which includes rp. Note that in each
of these tables the quasi-identifier of rp may be generalized
differently. This means that if the attacker can identify frombTj the record corresponding to rp, then he may be able to
learn additional information about the quasi-identifier of the
individual corresponding to rp and possibly reduce the size
of Ip. There are many cases where the attacker can identify

rp in bTj . However, in order to illustrate our point clearly,
we show some simple cases in the following example.

Example 3. The attacker knows that rp must be con-

tained in the equivalence class of bTj that is compatible with
rp[Q]. Suppose that there is only one compatible equiv-

alence class, ei+1 in bTj (see Figure 9 (i)). Then the at-
tacker can confidently combine his knowledge on the quasi-
identifier of rp; i.e., rp[Q] ← rp[Q] ∩ ei+1[Q]. Suppose
now that there are more than one compatible equivalence

classes in bTi+1, say ei+1 and e′i+1. If sp ∈ ei+1[S] and
sp /∈ e′i+1[S], then the attacker can be sure that rp ∈ ei+1

and updates his knowledge of rp[Q] as rp[Q] ∩ ei+1[Q].
However, if sp ∈ ei+1[S] and sp ∈ e′i+1[S], then rp could
be in either ei+1 and e′i+1 (see Figure 9 (ii)). Although
the attacker may or may not determine which equivalence
class contains rp, he is sure that rp ∈ ei+1 ∪ e′i+1; therefore,
rp[Q]← rp[Q] ∩ (ei+1[Q] ∪ e′i+1[Q]).

After updating rp[Q] with bTj , the attacker can reexamine
Ip and eliminate individuals whose quasi-identifiers are no
longer compatible with the updated rp[Q]. When the size of
Ip becomes less than k, the attacker can infer the associa-
tion between the individuals in Ip and rp with a probability
higher than 1/k.

In the above example, when there are more than one com-

ei,1

e i+1,2

ei+1,1

ei,2

sr sr

(i)

sr
sr

ei,1

e i+1,2

ei+1,1

sr sr

(ii)

sr

sr

Figure 10: More inference in record-tracing

patible equivalence classes {ei+1,1, ..., ei+1,r} in bTi+1, we say
that the attacker updates rp[Q] as rp[Q] ∩ (∪1≤j≤rei+1,j).
While correct, this is not a sufficient description of what the
attacker can do, as there are cases where the attacker can no-

tice that some equivalence classes in bTi+1 cannot contain rp.

For example, let r1 ∈ ei,1 and r2 ∈ ei,2 be two records in bTi,
both taking sr as the sensitive value (see Figure 10(i)). Sup-

pose that bTi+1 contains a single equivalence class ei+1,1 that
is compatible to r1 and two compatible equivalence classes
ei+1,1 and ei+1,2 that are compatible to r2. Although r2

has two compatible equivalence classes, the attacker can be
sure that r2 is included in ei+1,2, as the record with sr in
ei+1,1 must correspond to r1. Figure 10(ii) illustrates an-
other case of which the attacker can take advantage. As
shown, there are two records in ei,1 that take sr as the sen-
sitive value. Although the attacker cannot be sure that each
of these records is contained in ei+1,1 or ei+1,2, he is sure
that one record is in ei+1,1 and the other in ei+1,2. Thus,
he can make an arbitrary choice and update his knowledge
about the quasi-identifiers of the two records accordingly.
Using such techniques, the attacker can make more precise

inference by eliminating equivalence classes in bTi+1 that are
impossible to contain rp.

We now describe a more thorough algorithm that checks
two (k, c)-anonymous tables for the vulnerability to the
record-tracing attack. First, we construct a bipartite graph
G = (V, E), where V = V1 ∪ V2 and each vertex in V1 rep-

resents a record in bTi, and each vertex in V2 represents a

record in bTi+1 that is compatible with at least one record inbTi. We define E as the set of edges from vertices in V1 to
vertices in V2, which represents possible matching relation-
ships. That is, if there is an edge from ri ∈ V1 to rj ∈ V2,
this means that records ri and rj may both correspond to
the same record although they are generalized into different
forms. We create such edges between V1 and V2 as follows.
For each vertex r ∈ V1, we find from V2 the set of records
R where ∀ri ∈ R, (r[Q] ⊲⊳ ri[Q]) ∧ (r[S] = ri[S]). If |R| = 1
and r′ ∈ E, then we create an edge from r to r′ and mark
it with 〈d〉, which indicates that r definitely corresponds to
r′. If |R| > 1, then we create an edge from r and every
r′i ∈ R and mark it with 〈p〉 to indicate that r plausibly cor-
responds to r′i. Now given the constructed bipartite graph,
the pseudo-code in Figure 11 removes plausible edges that
are not feasible and discovers more definite edges by scan-
ning through the edges.

Note that the algorithm above does not handle the case
illustrated in Figure 10(ii). In order to address such cases,
we also performs the following. For each equivalence class

Remove Infeasible Edges
Input: A bipartite graph G = (V, E) where V = V1∪V2

and E is a set of edges representing possible matching
relationships.
Output: A bipartite graph G′ = (V, E′) where E′ ⊂ E
with infeasible edges removed

E′ = E
while true

change1 ← false
change2 ← false
for each rj ∈ V2

e ← all the incoming edges of rj if e contains
both a definite edge and plausible edge(s)

remove all plausible edges in e from E′

change1 ← true
end if

end for
if change1 = true

for each ri ∈ V1

e ← all the outgoing edges of ri

if e contains only a single plausible edge
mark the edge in e as definite
change2 ← true

end if
end for
end if
if change2 = false

break
end if

end while
return (V, E′)

Figure 11: Algorithm for removing infeasible edges
from a bipartite graph

e1,i ∈ bTi, we find from bTj the set of equivalence classes E
where ∀e2,j ∈ E, e1,i[Q] ⊲⊳ e2,j [Q]. If the same number of
records with any sensitive value s appear in both e1,i and
E, we remove unnecessary plausible edges such that each of
such records in e1,i has a definite edge to a distinct record
in E.

After all infeasible edges are removed, each record r1,i ∈
V1 is associated with a set of possibly matching records
{r2,j , . . . , r2,m} (j ≤ m) in V2. Now we can follow the edges

and compute for each record r1,i ∈ bTi the inferrable quasi-
identifier r′1,i[Q] = r1,i[Q] ∩ (

S
ℓ=j,...,m r2,ℓ[Q]). If any

inferred quasi-identifer maps to less than k individuals in

the population table Ui, then table bTi is vulnerable to the

record-tracing attack with respect to bTj .
It is worth noting that the key problem enabling the

record-tracing attack arises from the fact that the sensitive
attribute value of a record, together with its generalized
quasi-identifier, may uniquely identify the record in differ-
ent anonymous tables. This issue can be especially critical
for records with rare sensitive attribute values (e.g., rare dis-
eases) or tables where every individual has a unique sensitive
attribute value (e.g., DNA sequence).

5. INFERENCE PREVENTION
In this section, we describe our incremental data

anonymization which incorporates the inference detection

techniques in the previous section. We first describe our
data/history management strategy which aims to reduce the
computational overheads. Then, we describe the properties
of our checking algorithms which make them suitable for
existing data anonymization techniques such as full-domain
generalization [6] and multidimensional anonymization [7].

5.1 Data/history management
Consider a newly anonymized table, bTi, which is about

to be released. In order to check whether bTi is vulnera-
ble to cross-version inferences, it is essential to maintain
some form of history about previously released datasets,

Θ = {bT0, . . . , bTi−1}. However, checking the vulnerability

in bTi against each table in Θ can be computationally expen-
sive. To avoid such inefficiency, we maintain a history table,
H, which has the following attributes.

• RID : is a unique record ID (or the explicit identifier
of the corresponding individual). Assuming that eachbTi also contains RID (which is projected out before

being released), RID is used to join Hi and bTi.

• TS (Time Stamp) : represents the time (or the version
number) when the record is first released.

• IS (Inferable Sensitive values) : stores the set of sensi-
tive attribute values with which the record can be as-
sociated. For instance, if record r is released in equiv-

alence class ei of bTi, then r[IS]i ← (r[IS]i−1 ∩ ei〈S〉).
This field is used for checking vulnerability to intersec-
tion attack.

• IQ (Inferable Quasi-identifier) : keeps track of the
quasi-identifiers into which the record has previously

been generalized. For instance, for record r ∈ bTi,
r[IQ]i ← r[IQ]i−1 ∩ r[Q]. This field is used for check-
ing vulnerability to record-tracing attack.

The main idea of H is to keep track of the attacker’s ac-
cumulated knowledge on each released record. For instance,
value r[IS] of record r ∈ Hi−1 indicates the set of sensitive
attribute values that the attacker may be able to associate

with r prior to the release of bTi. This is indeed the worst case
as we are assuming that the attacker possesses every released
table, i.e., Θ. However, as discussed in Section 4.1, we need
to be conservative when estimating what the attacker can

do. Using H, the cost of checking bTi for vulnerability can
be significantly reduced; for intersection and record-tracing

attacks, we check bTi against Hi−1, instead of every bTj ∈ Θ‡.

5.2 Incorporating inference detection into
data anonymization

We now discuss how to incorporate the inference detection
algorithms into secure anonymization algorithms. We first
consider the full-domain anonymization, where all values of
an attribute are consistently generalized to the same level
in the predefined generalization hierarchy. In [6], LeFevre et
al. propose an algorithm that finds minimal generalizations
for a given table. In its essence, the proposed algorithm
is an bottom-up search approach in that it starts with un-
generalized data and tries to find minimal generalizations by

‡In our current implementation, difference attack is still
checked against every previously released table.

increasingly generalizing the target data in each step. The
key property on which the algorithm relies is generalization
property: given a table T and two generalization strategies
G1, G2 (G1 � G2), if G1(T) is k-anonymous, then G2(T)
is also k-anonymous§. Although intuitive, this property is
critical as it guarantees the optimality to the discovered so-
lutions; i.e., once the search finds a generalization level that
satisfies the k-anonymity requirement, we do not need to
search further.

Observation 4. Given a table T and two generalization
strategies G1, G2 (G1 � G2), if G1(T) is not vulnerable to
any inference attack, then neither is G2(T).

The proof is simple. As each equivalence class in G2(T)
is the union of one or more equivalence classes in G1(T),
the information about each record in G2(T) is more vague
than that in G1(T); thus, G2 does not create more inference
attacks than G1. Based on this observation, we modify the
algorithm in [6] as follows. In each step of generalization, in
addition to checking the (k, c)-anonymity requirement, we
also checks for the vulnerability to inference. If either check
fails, then we need to further generalize the data.

Next, we consider the multidimensional k-anonymity al-
gorithm proposed in [7]. Specifically, the algorithm consists
of the following two steps. The first step is to find a par-
titioning scheme of the d-dimensional space, where d is the
number of attributes in the quasi-identifier, such that each
partition contains more than k records. In order to find such
a partitioning, the algorithm recursively splits a partition
at the median value (of a selected dimension) until no more
split is allowed with respect to the k-anonymity require-
ment. Note that contrast to the previous algorithm, this
algorithm is a top-down search approach, and the quality of
the search relies on the following property¶: given a partition
p, if p does not satisfy the k-anonymity requirement, then
any sub-partition of p does not satisfy the requirement.

Observation 5. Given a partition p of records, if p is vul-
nerable to any inference attack, then so is any sub-partition
of p.

Suppose that we have a partition P1 of the dataset, in
which some records are vulnerable to inference attacks.
Then, any further cut of P1 will lead to a dataset that is
also vulnerable to inference attacks. This is based on the
fact that any further cut on P1 leads to de-generalization
of the dataset; thus, it reveals more information about each
record than P1. Based on this observation, we modify the
algorithm in [7] as follow. In each step of partition, in addi-
tion to checking the (k, c)-anonymity requirement, we also
checks for the vulnerability to inference. If either check fails,
then we do not need to further partition the data.

6. EXPERIMENTS
The main goal of our experiments is to show that our

approach effectively prevents the previously discussed infer-
ence attacks when data is incrementally disseminated. We
also show that our approach produces datasets with good
data quality. We first describe our experimental settings
and then report our experimental results.
§This property is also used in [8] for ℓ-diversity and is thus
applicable for (k, c)-anonymity.
¶It is easy to see that the property also holds for any diver-
sity requirement.

6.1 Experimental Setup

6.1.1 Experimental Environment

The experiments were performed on a 2.66 GHz Intel IV
processor machine with 1 GB of RAM. The operating sys-
tem on the machine was Microsoft Windows XP Professional
Edition, and the implementation was built and run in Java
2 Platform, Standard Edition 5.0. For our experiments, we
used the Adult dataset from the UC Irvine Machine Learn-
ing Repository [9], which is considered a de facto benchmark
for evaluating the performance of anonymization algorithms.
Before the experiments, the Adult data set was prepared as
described in [1, 5, 7]. We removed records with missing
values and retained only nine of the original attributes. In
our experiments, we considered {age, work class, education,
marital status, race, gender, native country, salary} as the
quasi-identifier, and occupation attribute as the sensitive at-
tribute.

6.1.2 Data quality metrics

The quality of generalized data has been measured by var-
ious metric. In our experiment, we measure the data quality
mainly based on Average Information Loss (AIL, for short)
metric proposed in [2]. The basic idea of AIL metric is
that the amount of generalization is equivalent to the ex-
pansion of each equivalence class (i.e., the geometrical size
of each partition). Note that as all the records in an equiv-
alence class are modified to share the same quasi-identifer,
each region indeed represents the generalized quasi-identifier
of the records contained in it. Thus, data distortion can
be measured naturally by the size of the region covered by
each equivalence class. Following this idea, IL measures the
amount of data distortion in an equivalence class as follows.

Definition 4. (Information loss) [2] Let e={r1, . . . , rn}
be an equivalence class where Q={a1, . . . , am}. Then the
amount of data distortion occurred by generalizing e, de-
noted by AIL(e), is defined as:

AIL(e) = |e| ×
P

j=1,...,m

|Gj |

|Dj |

where |e| is the number of records in e, and |Dj | the do-
main size of attribute aj . |Gj | represents the amount of
generalization in attribute aj (e.g., the length of the short-
est interval which contains all the aj values existing in e).

Based on IL, the average information loss of a given tablebT is computed as: AIL(bT) = (
P

e∈ bT IL(e)) / |T |. The key
advantage of AIL metric is that it precisely measures the
amount of generalization (or vagueness of data), while be-
ing independent from the underlying generalization scheme
(e.g, anonymization technique used or generalization hier-
archies assumed). For the same reason, we also use the
Discernibility Metric (DM) [1] as another quality measure
in our experiment. Intuitively, DM measures the quality of
anonymized data based on the size of the equivalence classes,
which indicates how much records are indistinguishable from
each other.

6.2 Experimental Results
We first measured how many records were vulnerable in

statically anonymized datasets with respect to the infer-
ence attacks we discussed. For this, we modified two k-
anonymization algorithms, Incognito [6] and Mondrian [7],
and used them as our static (k, c)-anonymization algorithms.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35

N
u

m
b

er
 o

f
V

u
ln

er
a

b
le

 R
ec

o
rd

s

Table Size (unit = 1,000)

Static Incognito (k=5, c=0.7)

Difference
Intersection

R-Tracing

 0

 1000

 2000

 3000

 4000

 5000

 0 5 10 15 20 25 30 35

N
u

m
b

er
 o

f
V

u
ln

er
a
b

le
 R

ec
o
rd

s

Table Size (unit = 1,000)

Static Mondrian (k=5, c=0.7)

Difference
Intersection

R-Tracing

Figure 12: Vulnerability to Inference Attacks

Using these algorithms, we first anonymized 5K records and
obtained the first “published” datasets. We then generated
five more subsequent datasets by adding 5K more records
each time. Then we used our vulnerability detection algo-
rithms to count the number of records among these datasets
that are vulnerable to each of inference attack. Figure 12
shows the result. As shown, much more records were found
to be vulnerable in the datasets anonymized by Mondrian.
This is indeed unsurprising, as Mondrian, taking a multidi-
mensional approach, produces datasets with much less gen-
eralization. In fact, for Incognito, even the initial dataset
was highly generalized. This clearly illustrates the unfor-
tunate reality; that is, the more precise data are, the more
vulnerable they are to undesirable inferences.

The next step was to investigate how effectively our ap-
proach would work with a real dataset. The main focus was
its effect on the data quality. As previously discussed, in
order to prevent undesirable inferences, one needs to hide
more information. In our case, it means that the given
data must be generalized until there is no vulnerability to
any type of inference attack. We modified the static (k, c)-
anonymization algorithms as discussed in Section 5 and
obtained our inf-checked (k, c)-anonymization algorithms.
Note that although we implemented the full-featured algo-
rithms for difference and intersection attacks, we took a sim-
ple approach for record-tracing attack. That is, we consid-
ered all the edges without removing infeasible/unnecessary
edges as discussed in Section 4.5. We also implemented a
merge approach where we anonymize each dataset indepen-
dently and merge it with the previously released dataset.
Although this approach is secure from any type of inference
attacks, we expected that the data quality would be the

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35

A
v
er

a
g
e

In
fo

rm
a
ti

o
n

 L
o
ss

Table Size (unit = 1,000)

Incognito (k=5, c=0.7)

Static
Merge

Inf_Checked

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35
A

v
er

a
g

e
In

fo
rm

a
ti

o
n

 L
o

ss
Table Size (unit = 1,000)

Mondiran (k=5, c=0.7)

Static
Merge

Inf_Checked

Figure 13: Data Quality: Average Information Loss

worst, as merging would inevitably have a significant effect
on generalization (recoding) scheme.

With these algorithms as well as the static anonymiza-
tion algorithms, we repeated our experiment. As before, we
started with 5K records and increased the dataset by 5K
each time. We then checked the vulnerability and measured
the data quality of such datasets. We measured the data
quality both with AIL and DM , and the results are illus-
trated in Figures 13 and 14, respectively. It is clear that
in terms of data quality the inf-checked algorithm is much
superior than the merge algorithm. Although the static al-
gorithms produced the best quality datasets, these data are
vulnerable to inference attacks as previously shown. The
datasets generated by our inf checked algorithm and the
merge algorithm were not vulnerable to any type of inference
attack.

We also note that the quality of datasets generated by the
inf-checked algorithm is not optimal. This was mainly due
to the complexity of checking for difference attack. Even
though our heuristics to reduce the size of subsets (see Sec-
tion 4.3) were highly effective in most cases, there were some
cases where the size of subsets grew explosively. As such
cases not only caused lengthy execution times, they caused
memory blow-ups. In order to avoid such cases, we set an
upper limit threshold for the size of subsets in this experi-
ment. For example, while our modified algorithm of Incog-
nito is processing a node in the generalization lattice, if the
size of subsets needed to be checked exceeds the threshold,
we stop the iteration and consider the node as a vulnera-
ble node. Similarly, when we encounter such a case while
considering a split in Mondrian, we stop the check and do
not consider the split. Note that this approach does not af-

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30 35

D
is

ce
rn

a
b

il
it

y
 M

et
ri

c
(u

n
it

 =
 1

M
)

Table Size (unit = 1,000)

Incognito (k=5, c=0.7)

Static
Merge

Inf_Checked

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

D
is

ce
rn

a
b

il
it

y
 M

et
ri

c
(u

n
it

 =
 1

M
)

Table Size (unit = 1,000)

Mondrian (k=5, c=0.7)

Static
Merge

Inf_Checked

Figure 14: Data Quality: Discernibility Metric

fect the security of data, although it may negatively affect
the overall data quality. Even if the optimality cannot be
guaranteed, we believe that the data quality seems to be
still acceptable, considering the results shown in Figures 13
and 14.

Another important comparison was the computational ef-
ficiency of these algorithms. Figure 15 shows our experimen-
tal result for each algorithm. The merge algorithm is highly
efficient with respect to execution time (although it was very
inefficient with respect to data quality). As the merge al-
gorithm anonymizes the same sized dataset each time and
merging datasets can be done very quickly, the execution
time is closely constant. While equipped the heuristics and
the data structure discussed in Sections 4.3 and 5.1, the inf-
checked algorithm is still slow. However, considering the
previously discussed results, we believe that this is the price
you have to pay for better data quality and reliable privacy.
Also, when compared to our previous implementation with-
out any heuristics, this is a very promising result.

7. RELATED WORK
While static anonymization has been extensively investi-

gated in the past few years [1, 4, 5, 6, 7, 11], only a few ap-
proaches address the problem of anonymization in dynamic
environments.

In [12], Sweeney identified possible inferences when new
records are inserted and suggested two simple solutions.
The first solution is that once records in a dataset are
anonymized and released, in any subsequent release of the
dataset, the records must be the same or more generalized.
As previously mentioned, this approach may suffer from un-

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

E
x
ec

u
ti

o
n

 T
im

e
(u

n
it

 =
 s

ec
)

Table Size (unit = 1,000)

Incognito (k=5, c=0.7)

Static
Merge

Inf_Checked

 0

 500

 1000

 1500

 2000

 0 5 10 15 20 25 30 35
E

x
ec

u
ti

o
n

 T
im

e
(u

n
it

 =
 s

ec
)

Table Size (unit = 1,000)

Mondrian (k=5, c=0.7)

Static
Merge

Inf_Checked

Figure 15: Execution Time

necessarily low data quality. Also, this approach cannot
protect newly inserted records from difference attack, as dis-
cussed in Section 4. The other solution suggested is that
once a dataset is released, all released attributes (including
sensitive attributes) must be treated as the quasi-identifier
in subsequent releases. This approach seems reasonable as
it may effectively prevent linking between records. How-
ever, this approach has a significant drawback in that every
equivalence class will inevitable have a homogeneous sensi-
tive attribute value; thus, this approach cannot adequately
control the risk of attribute disclosure.

Yao et al. [15] addressed the inference issue when a single
table is released in the form of multiple views. They pro-
posed several methods to check whether or not a given set
of views violates the k-anonymity requirement collectively.
However, they did not address how to deal with such vio-
lations. Recently, Wang and Fung [13] further investigated
this issue and proposed a top-down specialization approach
to prevent record-linking across multiple anonymous tables.
However, their work does not address how to protect records
that are newly inserted to the dataset.

Recently, Wang and Fung [13] further investigated this is-
sue and proposed a top-down specialization approach to pre-
vent record-linking across multiple anonymous tables. How-
ever, their work focuses on the horizontal growth of data-
bases (i.e., addition of new attributes), and does not address
vertically-growing databases where records are inserted.

In [3], we presented a preliminary limited investigation
concerning the inference problem of dynamic anonymization
with respect to incremental datasets. We identified some in-
ferences and also proposed an approach where new records

are directly inserted to the previously anonymized dataset
for computational efficiency. However, compared to this cur-
rent work, our previous work has several limitations.The key
differences of this work with respect to [3] are as follows.
In [3], we focused only on the inference enabling sets that
may exist between two tables, while in this work we consider
more robust and systematic inference attacks in a collection
of released tables. The inference attacks discussed in this
work subsume attacks using inference enabling sets and ad-
dress more sophisticated inferences. For instance, our study
of the record-tracing attack is a new contribution in this
work. We also provide a detailed descriptions of attacks
and algorithms for detecting them. Our previous approach
was also limited to the multidimensional generalization. By
contrast, our current approach considers and is applicable
to both the full-domain and multidimensional approaches;
therefore it can combined with a large variety of anonymiza-
tion algorithms. In this paper we also address the issue of
computational costs in detecting possible inferences. We
discuss various heuristics to significantly reduce the search
space, and also suggest a scheme to store the history (of
previously released tables).

8. CONCLUSIONS
In this paper, we discussed inference attacks against the

anonymization of incremental data. In particular, we dis-
cussed three basic types of cross-version inference attacks
and presented algorithms for detecting each attack. We
also presented some heuristics to address the efficiency of
our algorithms. Based on these ideas, we developed secure
anonymization algorithms for incremental datasets using
two existing anonymization algorithms. We also empirically
evaluated our approach by comparing to other approaches.
Our experimental result showed that our approach outper-
formed other approaches in terms of privacy and data qual-
ity.

For the future work, we are working on essential prop-
erties (e.g, correctness) of our methods and analysis. An-
other interesting direction for the further work is to see if
there are other types of inferences. For instance, one can
devise an attack where more than one type of inference are
jointly utilized. We also plan to investigate inference issues
in more dynamic environments where deletions and updates
of records are allowed.

9. REFERENCES
[1] R. J. Bayardo and R. Agrawal. Data privacy through

optimal k-anonymization. In the 21st International

Conference on Data Engineering, Washington, DC,
USA, 2005. IEEE Computer Society.

[2] J. Byun, A. Kamra, E. Bertino, and N. Li. Efficient
k-anonymization using clustering techniques.
Technical Report 2006-10, Purdue University, 2006.

[3] J. Byun, Y. Sohn, E. Bertino, and N. Li. Secure
anonymization for incremental datasets. In the 3rd

VLDB Workshop on Secure Data Management, San
Diego, CA, USA, 2006. Springer-Verlag.

[4] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down
specialization for information and privacy
preservation. In the 21st International Conference on

Data Engineering, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[5] V. S. Iyengar. Transforming data to satisfy privacy
constraints. In ACM Conference on Knowledge

Discovery and Data Mining, New York, NY, USA,
2002. ACM Press.

[6] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Incognito: Efficient full-domain k-anonymity. In ACM

International Conference on Management of Data,
New York, NY, USA, 2005. ACM Press.

[7] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Mondrian multidimensional k-anonymity. In the 22nd

International Conference on Data Engineering, Los
Alamitos, CA, USA, 2006. IEEE Computer Society.

[8] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. ℓ-diversity: Privacy beyond
k-anonymity. In the 22nd International Conference on

Data Engineering, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[9] C. B. S. Hettich and C. Merz. UCI repository of
machine learning databases, 1998.

[10] P. Samarati. Protecting respondent’s privacy in
microdata release. IEEE Transactions on Knowledge

and Data Engineering, 13(6):1010–1027, 2001.

[11] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. International

Journal on Uncertainty, Fuzziness and

Knowledge-based Systems, 5(10):571–588, 2002.

[12] L. Sweeney. K-anonymity: A model for protecting
privacy. International Journal on Uncertainty,

Fuzziness and Knowledge-based Systems,
5(10):557–570, 2002.

[13] K. Wang and B. Fung. Anonymizing sequential
releases. In ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, New York,
NY, USA, 2006. ACM Press.

[14] R. C.-W. Wong, J. Li, A. W.-C. Fu, and K. Wang. (α,
k)-anonymity: An enhanced k-anonymity model for
privacy-preserving data publishing. In ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, New York, NY, USA, 2006. ACM Press.

[15] C. Yao, X. S. Wang, and S. Jajodia. Checking for
k-anonymity violation by views. In the 31st

International Conference on Very Large Data Bases,
Saratoga, CA, USA, 2005. VLDB Endowment.

