
CERIAS Tech Report 2007-08

A FRAMEWORK FOR SPECIFICATION AND VERIFICATION OF GENERALIZED
SPATIO-TEMPORAL ROLE BASED ACCESS CONTROL MODEL

by Arjmand Samuel, Arif Ghafoor, Elisa Bertino

Center for Education and Research in
 Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

1

A Framework for Specification and Verification

of Generalized Spatio-Temporal Role Based

Access Control Model

Arjmand Samuel∗, Student Member, IEEE, Arif Gahfoor†, Fellow, IEEE,

and Elisa Bertino‡, Fellow, IEEE

Abstract

We are witnessing an exponential growth in the use of mobile computing devices such as laptops,

PDAs and mobile phones, accessing critical data while on the move. The need to safeguard against

unauthorized access to data in a mobile world is a pressing requirement. Access to critical data depends

on users’ identity as well as environmental parameters such as time and location. While temporal

based access control models are well suited for enforcing access control decisions on fixed users, they

loose their effectiveness when users employing mobile computing devices are not fixed in space and

are moving from a secure locale to an insecure one, or vice versa. Issues of location as a context

parameter for access control have been addressed by a number of researchers but definition of rich

spatial constraints which effectively capture semantics and relationship of physical and virtual (e.g.

membership to an IP group) locales is still missing. The inclusion of multiple constraints (temporal and

spatial) to the access control policy exposes the need to be able to compose a policy which is verifiable

for consistency and structural integrity. Further, the access control policy is expected to evolve over

time and inclusion of new constraints, permissions or user rights may conflict with the existing ones.

In this regard, we draw upon techniques developed for software engineering and use them for policy

specification modeling and conflict resolution. The first contribution in this paper is the development

of the Generalized Spatio-Temporal Role Based Access Control (GST-RBAC) model, by proposing

a formal framework for composition of complex spatial constraints exploiting topological relationship

∗Purdue University, Electrical and Computer Engineering; West Lafayette, IN 47907. amsamuel@purdue.edu. Corresponding

Author

†Purdue University, Electrical and Computer Engineering; West Lafayette, IN 47907. ghafoor@purdue.edu.

‡Purdue University, Department of Computer Science; West Lafayette, IN 47907. bertino@purdue.edu.

February 23, 2007 DRAFT

2

between physical and virtual locales. Spatial constraints are defined for spatial role enabling, spatial user-

role assignment, spatial role-permission assignment and spatial activation of roles. The notion of spatial

separation of duty is also developed whereby a user is not permitted to activate two roles simultaneously

if the roles are being activated from specific locales. Another feature of the proposed GST-RBAC is

the spatial role hierarchy, which allows inheritance of permissions between roles, contingent upon roles

being activated from predefined locales. The second contribution in this paper is GST-RBAC policy

specification framework using light weight formal modeling language, Alloy and, analysis of access

control policy model using the accompanying constraint analyzer. In addition, for consistent evolution

of access control policy, the policy administrator can specify additional policy fragments in the policy

model and can verify consistency of the overall policy for conflict free composition of the actual policy.

I. INTRODUCTION

The need to safeguard against unauthorized access to data by users using mobile devices such

as laptops, PDAs and mobile phones bring to the forefront the requirement for incorporating

spatial context to access control mechanisms. While using temporal based access control mech-

anisms was considered sufficient for fixed users, it has proven to be ineffective for mobile users

because security characteristics of one location are different from another and uniform access to

secure and privileged information every where is not a realistic solution.

A motivating example in this regard is that of a physician accessing Electronic Health Records

(EHR) of a patient. Complete access to designated portions of EHR is granted to him while he

is at his clinic. However, the same physician accessing the same part of EHR from his home

may not be allowed the same level of privileges since the privacy of the patient may not be

protected from his home, as it is from the hospital. Similarly, a consultant may have full access

to records relevant to the company he is consulting to, as long as he remains within the confines

of the company offices. For reasons of privacy and business competition, he may not have any

access to the same records when he is at home or at the premises of another client.

Location as a context parameter exhibits a number of characteristics making its use in access

control decisions challenging. Prominent among them is heterogeneity; the fact that location can

be referred to as a noun (name of a city) or as a collection of numbers (longitude, latitude).

Another challenge is the fact that multiple locations are semantically related to each other (city

is in a state, which in turn is in country) and arriving at a standard relationship may not always

February 23, 2007 DRAFT

3

be that obvious.

The need to develop a fine-grained access control mechanism which utilizes spatial information

has been pointed out by a number of researchers, such as [1]. Role Based Access Control (RBAC)

has emerged as a de-facto model for specifying security requirements of large organizations. Its

strength lies in the definition of user roles more akin to the functional responsibilities of users

in the organization and abstracting object permissions as roles [2]. The Generalized Temporal

RBAC (GTRBAC) incorporates a set of language constructs for the specification of temporal

contextual constraints [3]. However GTRBAC does not allow the specification of rich spatial

constraints in which relationship between spatial contexts effect access control decisions. In the

current paper we extend GTRBAC model to include rich spatial constraints and define spatial

role hierarchy and separation of duty. We call this extension the Generalized Spatio-Temporal

Access Control (GST-RBAC) model.

Typically a set of access control directives is referred to as a policy. Policies are defined as

information which can be used to modify the behavior of a system [4]. Recently, the use of policies

in the context of network and distributed applications and services has been an area of active

research and is considered as an emerging software domain [5]–[9]. Policies have been applied

to access control mechanisms [10], to Policy Based Network Management Systems (PBNM) [6],

[11], to express the enterprise viewpoint [12] of ODP (Open Distributed Processing), to agent

based systems [13], and to Web Services Policy (WS-Policy) [14]. Our contribution regarding

spatial extension of GTRBAC can clearly spill over to the use of spatial contextual parameters

in the above mentioned areas as well.

In order to effectively compose consistent and verifiable policies, we borrow techniques

from software engineering and apply them for access control policy composition and conflict

resolution. The nexus of software and policy specification results in a generic methodology which

is rooted in a known discipline and is aimed at solving an emerging challenge. Specifically, we

propose a framework for specification of GST-RBAC access control policies using the lightweight

formalism provided by Alloy [15]. Alloy has been effectively used to model structural behavior

of a number of software systems [16]. Our proposed specification model formally captures the

policy constraints and assertions and provides a conflict resolution mechanism using the Alloy

constraint analyzer, which can effectively be used for conflict resolution. It may be noted here

that removing conflicts from a policy specification results in an artifact which is consistent and

February 23, 2007 DRAFT

4

has been verified to exhibit conflict free behavior, a process known to the software engineering

community as verification.

The remainder of this paper is organized as follows. Section II provides motivation for spatial

extension of GT-RBAC and for specification modeling of GST-RBAC policies. In this section

we also discuss the challenges of using location as a context parameter for access control and

set the stage for the rest of the paper by enumerating goals for both spatial access control and

policy specification modeling. Section III provides the background for the rest of the paper.

Section IV defines the concepts to be used later in the paper. We propose the generalized spatio-

temporal role based access control model in Section V and discuss its conflicts in Section VI. Our

discussion of GST-RBAC is finally exemplified with an example in Section VII. We introduce the

Alloy modeling language in Section VIII along with a step by step methodology for the creation

of a specification model for GST-RBAC, complete with its conflict resolution and verification

methodology. Section IX provides insight into similar work done by other researchers for the

sake of providing background information and pointing out research challenges that we have

addressed. Finally, Section X concludes this paper by outlining some limitations of our approach

and venues of future research.

II. MOTIVATION AND GOALS

As outlined in Introduction, we now provide detailed motivation for a spatially and temporally

aware access control model and define goals of such an access control model. Next, we motivate

for development of a access control policy specification and conflict resolution framework.

A. Challenges of Spatial Context Parameters

The importance of context parameters in computing has been emphasized by a number of

researchers such as [17]. The use of time as one of the context parameters involved in access

control decisions has been a topic of research for some time. While authorization for use of

resources based on time allows organizations to exercise fine grained temporal control, the

importance of spatial context is also being realized lately. This realization has been amplified

with the advent of mobile computing devices utilizing wireless networks and allowing users to

access computing resources while on the move.

February 23, 2007 DRAFT

5

Increasingly, spatial context parameters are being used to tailor content for mobile users. A

user traveling through a city may be presented a list of surrounding restaurants and gas stations,

thus allowing selection of the same based on the user’s location. It is also possible to provide

spatially tailored content to stationary users who request resources from disparate locations. A

user may have access to his companies accounts when he logs into the system from his office,

but on the other hand, he may be denied access to all of the information when he logs into the

system from his home. In this case the location may be sensed by employing physical location

sensing technology, or may be sensed using virtual location such as membership to a specific

IP address pool.

Unlike time, location parameter can be defined using a number of representations such as

geometric, symbolic and virtual. In addition, locations may be related to each other in more

than one way, such as a university may be contained in a city and symbolically referring to

the university implies being in the city as well. The key challenges posed by location context

parameter are discussed below.

Heterogeneity: Location as a context parameter can be represented in a number of formats.

Prominent among these representations is the symbolic and geometric. Symbolic location can

simply be defined as the names given to locations such as cities, roads etc. On the other hand,

geometric location is the location attribute defined in a coordinate system, in two or three-

dimensions. There are a number of widely recognized coordinate systems such as cartesian

coordinates, polar coordinates, earth centered north pointing coordinates, to name a few. With

location being represented in such a wide variety of formats, interpreting and using location

context by applications posses a heterogeneity challenge.

Scalability: While it is desirable to be able to apply location constraints to a computing envi-

ronment with the highest possible resolution, issues of scalability do not allow this. Scalability

of location context is further exacerbated when using one form of location representation rather

than the other. Various forms of location representation are discussed in Section IV.

Non-monotonicity: Unlike time, which is increasing monotonically, same values of location

context can be revisited by the computing application. Non-monotonicity of location context

makes its use in the computing environment more complex.

Flexibility: While a number of researchers have proposed the use of location context in the

computing environment, a globally accepted representation remains a challenge [18]. A flexible

February 23, 2007 DRAFT

6

and globally usable schema for location context will allow different applications to use location

context without the need to translate it to an acceptable format.

B. Spatial Extension of Temporal Access Control Model

Applying spatial constraints for access control requires incorporation of spatial parameters

in a formal access control model. In order to achieve this we extend the GT-RBAC model and

introduce a mechanism for defining spatial parameters in constraints. Our rationale for extending

GT-RBAC for spatial constraints is outlined next.

While temporal constraints for resource authorization may be sufficient for most fixed ap-

plication in which users assume similar access rights no matter where they are located, spatial

constraints are required in applications with mobile users or users with access control rights

varying with location. In addition, a flat location constraint may suffice to represent simple

locations with pre-defined resolution but a multi-resolution and hierarchical definition of spatial

constraints is required to capture all possible spatial scenarios that may arise when the application

is deployed.

In practical application environments, location and time both play a vital role to effectively

manage enterprise resources. For this reason instead of proposing a spatial access control model,

we propose an extension to GT-RBAC, which already provides a well-defined temporal frame-

work.

C. Goals of a Spatio-temporal Access Control Model

Extension of GT-RBAC to include spatial constraints is based on a set of goals which are

outlined below. As we discuss in the related works section (Section IX), to the best of our

knowledge, no single access control model satisfies all of those goals and consequently poses an

opportunity for a comprehensive spatio-temporal access control model. A spatio-temporal access

control model must be able to

• define time and location based constraints;

• exploit the semantic relationship between locations to compose rich spatial constraints;

• scale up with the increase in number of locations, implying using inter-location semantics

to control the number roles in the system.

February 23, 2007 DRAFT

7

While the above remain the stated goals of this paper, a number of related issues also surface

which are detailed next. The issue of location sensing with appropriate resolution presents a

research challenge which has been addressed by a number of researchers [19]–[21] and will be

outlined in the related works section (Section IX). This paper builds on top of the techniques

developed in the mentioned references. The issue of relationship between locations has been

researched in the Geomatics literature and we build on work reported in [22].

D. Goals of Policy Specification modeling and Conflict Resolution of Access Control Policies

The composition of access control policies is an activity performed by policy administrators

of an organization. Since this is inherently a labor intensive activity usually composed and im-

plemented in piece meal, chances for introduction of conflicts are very high. Conflicts introduced

in a large and practical policy may not be obvious to human inspection but at the same time may

cause serious violations of organizational security doctrine. The problem is further exacerbated

by the fact that access control policies of organizations evolve over time and addition/deletion

of policy fragments may introduce conflicts.

Creating an access control policy specification model allows design of a consistent policy

model and helps to uncover design flaws. Conflict resolution is also possible if the specification

modeling environment exhibits some form of formalism. Key research challenges in specification

modeling and conflict resolution of access control policies arise from the need to,

• model access control policy specifications for verification of policy design;

• model an instance of the access control policy incorporating time and location;

• provide the ability to support light weight formalism for effortless composition, visualization

and conflict resolution.

III. PRELIMINARIES AND BACKGROUND

Location is traditionally defined as a place or site in physical space expressed relative to the

position of another point or thing. Recently the applicability of location context in computing is

highlighted with the advent of mobile and ubiquitous computing, where a user may be provided

varying levels of service depending on location. In order to set the stage for using spatial

contextual parameters for access control, we provide an overview of spatial representation defined

by the community [1], [23].

February 23, 2007 DRAFT

8

A. Spatial Characterization

1) Physical: Physical location is the most widely used representation for location. It can

include names of places (Miami, New York etc) or can include names of places by their functions

(stadium, mall etc). Additionally, physical location can be represented by using various types of

coordinate systems in terms of numbers and elevation etc. In this context physical location can

be represented according to three dimensions, namely longitude, latitude and height. Physical

location can be divided into symbolic and geometric representations. When a physical location

is represented by referring to its name or some property, it is said to be symbolic location. A

more rigorous definition is stated in Section IV. Symbolic location can be represented by using

nouns (e.g. name of a city) and hence is easier to implement. However with a large number of

symbolic locations it offers a scalability challenge in terms of the number of names that can

be given to physical locations. Geometric location, which is representation of physical location

using some coordinate system, is by far much more accurate and offers higher resolution. It is

also universal if the coordinate system is known. However, geometric location exhibits a flat

structure and eventual usage may actually require a conversion to symbolic locations.

2) Virtual or Logical: Location attribute of a user can be represented using a virtual or logical

construct. A computer IP address is one example of such a construct. Another example is an

overlay ID for a host which is part of an overlay network. Figure 1 depicts a hierarchy of IP

based logical grouping of computing devices. Devices in the logical group of 128.46.122.x have

the same prefix and are separated by the last identifier. Similarly, going up the hierarchy, hosts

having IP addresses starting with 128.46 are part of a group which is different from 128.47. It

may be noted here that an IP based logical grouping of hosts creates virtual groups at a lower

level.

B. Location Sensing

An overview of context discovery, especially location sensing is given in [18]. Sensing location

context accurately and reliably is at the core of applying spatial constraints in the computing

environment. A number of techniques have been reported and can be divided into two broad

categories, namely: outdoors and indoors. The obvious choice for outdoor sensing of location is

the Global Positioning System (GPS) [24]. GPS enables a cheap and accurate means of acquiring

longitude, latitude and altitude by using time of flight and geometry of satellite transmitters as

February 23, 2007 DRAFT

9

128.x.x.x

128.47.x.x128.46.x.x 128.48.x.x

128.46.122.x 128.46.125.x

Fig. 1. An example of a virtual or logical location.

a basis of calculations. The accuracy of GPS has recently been further enhanced with the US

Government turning off the degradation of the civilian data streams from the satellites.

Due to the fact that GPS signals can not be received indoors, a number of indoor location sens-

ing techniques have been proposed. Notable among them the Olivetti Active Badge System [19],

Xerox ParcTab [20] and the Cyberguide project [21].

Our current work builds on the location sensing research conducted by the community and

assumes the availability of location contextual parameter with the desired resolution and repre-

sentation. In this regard, the location acquisition and integration framework proposed by [18]

serves as an appropriate underlying architecture for integration of location data from multiple

heterogeneous sources.

C. Access Control Models

The NIST standard Role Based Access Control (RBAC) model proposed by [2] has four

components: A set of users Users, a set of roles Roles, a set of permissions Permissions and a

set of sessions Sessions. A role is abstracted as a set of permissions granted to users, which can

be humans or software agents. Sessions are mechanisms to link roles with each other. A user

can request the activation of a role if he is authorized to do so. Users, Roles, Permissions and

Sessions have a number of functions defined in this model. The assignment of users to roles is

achieved by the user role assignment (UA) function. Similarly, permissions are mapped to a role

by a function called role permission assignment (PA). An important and useful feature of this

February 23, 2007 DRAFT

10

model is the definition of role hierarchy between roles whereby the r1 ≥ r2 implies r2 inheriting

the permissions of r1.

Generalized Temporal RBAC (GTRBAC) model [3] is the extension of RBAC that allows

specification of a set of temporal constraints on role enabling and activation. Roles in GTRBAC

have states associated with them which are disabled, active and enabled. The disabled state

indicates that the role cannot be used in any user session. An active role signifies that authorized

users can activate the role. Once the role is activated by a user, it said to be enabled.

IV. DEFINITIONS

User: A user is a human being or a physical computing device which can interact with the

computing environment in any way. Examples of physical computing devices are software agents,

network processors, embedded devices etc. We represent the set of all users by U . u ∈ U is

atomic in nature, by which we mean that a user cannot occupy multiple physical locations at

the same time.

Physical Location: Physical location is defined as a symbolic or geometric representation of

physical space which can be used for defining constraints on users. The set of all locations is

denoted by L. l1 ∈ L is fully bounded and self contained space of N dimensions where N ≥ 2.

It may be noted here that certain locations can also be non-stationary, such as the inside of a

vehicle or an airplane. Non-stationary locations become more relevant as access control decisions

are made for users in an ambulance or a search and rescue aircraft which is not stationary.

Physical Symbolic Location: A physical location l is referred to as symbolic if it can be

represented using symbols not having any relationship to its physical proximity or connection to

any other location. Symbolic location can be grouped in and can have hierarchical relationship

with other symbolic locations.

v (p) Operator: v, is a hierarchy operator between symbolic locations and p is a topological

relationship between symbolic locations forming hierarchical relationships. L1 v (p)L2, where

L1, L2 ∈ L and p ∈ P , denotes that L1 and L2 have a topological relationship with each other

which is represented by p. A hierarchical relationship between locations can also be multilevel.

For example, L3 v (pb)L2∪L4 v (pc)L2∪L2 v (pa)L1 where L1, L2, L3, L4 ∈ L and pa, pb, pc ∈

P . pa, pb and pc may be disjoint and the hierarchy may still hold. L1 can also be a set of locations

and L1 v (p)L2 means that ∀Li ∈ L1 a hierarchical relationship exists between L1 with L2.

February 23, 2007 DRAFT

11

Elements of set P have been defined in the literature as the topological relations between spatial

regions [22]. We represent the members of this set as P = {d,m, o, e, ct, i, cv, cB}, where

each member stands for disjoint, meet, overlap, equal, contains, inside, covers and coveredBy,

respectively (refer to [22] for precise definitions). These relations are mutually exclusive and any

one of these relationships can hold for a given hierarchical relationship. An Example of symbolic

location is Cities v (c)NewY ork, where Cities = {NewY orkCity, Albany, Chester}, and c

refers to the topological relationship of containment.

Virtual Location: Virtual location v of a user implies his membership to a group defined in

some computational sense. Example of a virtual group is the membership of a mobile computing

device in an IP pool. Although the device may not be physically collocated with other members

having IP addresses from the IP pool, the membership itself implies that all members are virtually

collocated. It may be noted here that virtual locations may also exhibit hierarchical relationships

amongst themselves. In order to represent virtual relationships between locations we extend the

set P defined above and include vm as a new member. vm implies virtual membership of one

virtual location in another virtual location. G1 v (vm)G2, where G1, G2 ∈ v and vm ∈ P , implies

all members of G1 are virtual members of G2.

Figure 2 depicts the hierarchical relationship between symbolic locations and illustrates topo-

logical relationship between locations. In this example there is a contains (c) relationship between

Washington DC and the Smithsonian Institute. Similarly, the relationship between Smithsonian

Institute and Postal Museum is also contains (c), and so is between Smithsonian Institute

and Picture Gallery. The topological relationship between Smithsonian Institute and National

Zoo is that of overlap (o). It may be noted here that some parts of the zoo are physically

located within the bounds of the institute and some are outside these bounds but these are still

considered part of the institute. Formally, this topological relationship can be depicted as follows.

(DC v (c)SI) ∪ (SI v (c)PG) ∪ (SI v (c)PM) ∪ (SI v (o)NZ)

V. THE GENERALIZED SPATIO -T EMPORAL ROLE BASED ACCESS CONTROL MODEL

In order to exercise spatial access control of secure objects by applying spatial constraints in

addition to temporal constraints, we propose the Generalized Spatio-Temporal RBAC (GSTR-

BAC) model which is the extension of the GTRBAC model for spatial constraint definition. In

this regard the proposed model allows the specification of spatial constraints for role-activation,

February 23, 2007 DRAFT

12

DC

SI

PM

NZ

PG

Washington DC

Smithsonian Institute (SI)

Picture

Gallery

(PG)

Postal

Museu

m (PM)

c

c c

N
at

io
na

l Z
oo

(N
Z
) o

(b)(a)

Fig. 2. hierarchical relationship between symbolic locations (a) Geographical relationship between Washington DC, Smithsonian

Institute, Picture Gallery, Postal Museum and National Zoo. (b) hierarchical relationship between geographical entities along

with topological relations.

role-enabling, role-disabling and role-permission assignment, in addition to the existing temporal

constraints in GTRBAC.

A. Spatial Constraint Definition

As pointed out in [3], role activation takes place when at least one user has activated a given

role. There are situations when a role can only be activated if the user is in a specific location.

Activation of roles based on spatial conditions can be achieved by defining spatial constraints.

In order to model spatial constraints on such actions as role activation, user-role assignment and

role-permission assignment, we define spatial constraints as follows.

Formally, we define a spatial constraint spC as an expression of the form < [L1[v (p)L2][∪] . . . Ln−1[v

(p)Ln]], li >, where

• l1 . . . li, . . . , ln are symbolic locations ∈ L.

• v (p) is the hierarchical relationship between locations and p represents a member of the

set P (defined in Section III).

• The constraint may be composed as a union between hierarchical relationships between

multiple locations using the set ∪ operator.

February 23, 2007 DRAFT

13

The above defined spatial constraint expression may include a hierarchy of topologically

related locations, complete with their relationship operators. Spatial constraints may be utilized

for role enabling, spatial user-role assignment, spatial role-permission assignment and spatial

activation. Location li refers to the spatial location at which the assigned action takes place

and the defined hierarchy adds further resolution to the constraint. It may also be noted here

that constraint expressions may be defined for the top level symbolic location in the hierarchy

and topological relationships defined down the hierarchy. This ensures scalability in terms of

role definition as new locations can be defined within the hierarchy without the need for role

activation/de-activation/assignment/de-assignment expressions for each constituent location in the

hierarchy.

B. Spatial Constraints in GST-RBAC

GTRBAC enforces access control decisions by evaluating constraint expressions in the tempo-

ral domain [3]. The constraint expressions defined in GTRBAC are temporal constraints (which

we denote by TempC) for role enabling, user-role and role-permission assignments, activation

constraints for duration and cardinality, constraint enabling, run-time requests and triggers. To

these temporal constraints we add spatial constraints namely, spatial constraint for role-enabling,

spatial constraint for user-role assignment, spatial constraint for role-permission assignment and

spatial activation constraint. Next we list these spatial constraints along with the constraint

expressions and detailed explanation of each.

Spatial role enabling. The enabled state of a role signifies that any authorized user can activate

the role. Spatial role enabling constraint defines the spatial relationship between locations for

which the role can be enabled. A certain role may be enabled at a certain location, while it may

not be enabled at other locations. Formally, we define a spatio-temporal role enabling expression

as follows,

([TempC], [spC], enable/disable, r) where r ∈ R.

The expression above has both the temporal constraint [3] (TempC) and spatial constraint

(spC) as optional. In case one or both of these constraints is not defined in the expression, it is

assumed that the role can be enabled without the relevant constraint. Once the role is enabled,

any authenticated user can activate it.

Spatial user-role assignment. Assignment of a user to a role is performed by the user-role

February 23, 2007 DRAFT

14

assignment function. In case of spatial constraint spC, the user u ∈ U is assigned to role r ∈ r

if the user satisfies a certain spatial constraint over locations l1 . . . ln for n locations. Formally,

we define the spatio-temporal user-role assignment as,

([TempC], [spC], assignu/deassignu, u, r) where r ∈ R, and u ∈ U .

Again, the temporal and spatial constraints are optional in this expression. A similar function

is composed for each user in the policy base for assignment to as many roles as desired.

Spatial role-permission assignment. Assignment of permissions to roles is performed by

the role-permission assignment function. When applied to spatial constraints, permissions are

assigned to roles depending on the location. Formally we define the spatio-temporal role-

permission assignment as

([TempC], [spC], pr, assignp/deassignp, r) where r ∈ R, and pr ∈ set of all permissions.

The permissions associated with a role depend on the location at which the role is being

activated. This mechanism may be applied in situations where the access rights of users are

restricted in some locales whereas are not restricted in others. For example, an employee

accessing company records from his office may be presented with more details as compared

to accessing the same records from his home.

Spatial activation. Users activate a role by sending an activation request. The request, along

with other components like the user id, also contains the location parameter of the user. The

spatial constraint defines the location at which the user can activate/deactivate the role. Activation

of a role by a user may also be dictated by additional constraints such as temporal ones. We

define the spatio-temporal activation constraint as

([TempC], [spC], li, activer/deactivater, u, r)∀li ∈ L, r ∈ R, u ∈ U .

The above expression allows a user to activate/de-activate a role based on temporal and

spatial constraints. Since spC is the location constraint composed as a hierarchy of topological

relationship between locations, we define li as the location from within the spC where the role

activation actually takes place. Activation at other locations within spC is evaluated based on

the topological relationships between locations (spC).

C. Spatial Separation of Duty Constraints (spSoD)

In order to curtail conflicts of interest in a role based system, RBAC offers Separation Of

Duty (SoD), which allows definition of constraints for users to be authorized to activate roles.

February 23, 2007 DRAFT

15

SoD constraint does not allow a user to be activated to conflicting roles. The roles involved are

mutually exclusive to the user. We extend this concept to include spatial constraints on SoD

resulting in mutual exclusiveness of roles being dictated by the location of the user.

We define two types of SoD constraints, namely: spatially unrestricted SoD and spatially

restricted SoD or spSoD. A spatially unrestricted SoD constraint remains unaffected by the

location of the users and has the same semantics as defined by [2]. The spatially restricted SoD

dictates spatial constraints on the application of SoD constraints on role activation.

A motivating example for a situation where spSoD is useful can be found in the health

care domain. Two roles Radiologist and GeneralPractitioner cannot be activated by the same

physician in the clinic. However, the same physician can activate both these roles simultaneously

if he is in the ER of the hospital. The rational behind this is that in case of an emergency,

the system should facilitate the attending physician fully, by allowing access to all possible

information regarding a patient.

Formally we define spatial constraints on SoD as follows. L1, L2 ∈ L, r1, r2 ∈ R, such that

r1 6= r2, user u ∈ U , (activateuser(u, r1, L1)∧¬activateuser(u, r2, L1))∨(activateuser(u, r2, L1)∧

¬activateuser(u, r1, L1))∧((activateuser(u, r1, L2)∧activateuser(u, r2, L2)). The above con-

dition is expressed notationally as spSoD(r1, r2, L1)∧¬spSoD(r1, r2, L2) and can be generalized

as spSoD(r1 . . . rn, L1)∧ . . .∧ [¬]spSoD(r1 . . . rn, Lm) for n roles and m locations. The spatial

SoD in the afore mentioned motivating example can be expressed formally as,

spSoD(Radiologist, GeneralPractitioner, Clinic) where Clinic refers to the symbolic name

of the location.

D. Spatial Role Hierarchy

RBAC offers role hierarchy as a means for roles to inherit permissions and users from each

other. Role r1 inherits role r2 (expressed as r1 ≥ r2)if all permissions of r2 are also permissions

of r1. In this case r1 acquires all users of r2. Spatial constraints let us define spatial role

hierarchies between roles activated from disparate physical locations. We define the following

three categories of hierarchies.

1) Spatially unrestricted role hierarchy. Spatial constraints do not have any bearing on the

semantics of role hierarchy and is similar to the one defined in [2].

February 23, 2007 DRAFT

16

Hierarchy type Notation Explanation

Disjoint r1(l1) ≥d r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (d)l2

Meet r1(l1) ≥m r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (m)l2

Overlap r1(l1) ≥o r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (o)l2

Equal r1(l1) ≥e r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (e)l2

Contains r1(l1) ≥c r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (c)l2

Inside r1(l1) ≥i r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (i)l2

Covers r1(l1) ≥cv r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (cv)l2

CoveredBy r1(l1) ≥cB r2(l2)∀r1, r2 ∈ R, l1, l2 ∈ L r2 inherits permissions of r1 iff l1 v (cB)l2

TABLE I

SPATIALLY RESTRICTED TOPOLOGICALLY RELATED ROLE HIERARCHY RELATIONS

2) Simple spatially restricted role hierarchy manifests itself in the form of a simple role

hierarchy when a user activates a role from one location, while on the other hand, no

hierarchy exists when the same role is activated from another location. Formally, r1, r2 ∈ R

r1≥l1r2 where l1 ∈ L. This implies that when a user activates role r1 while at location l1,

the permissions of role r2 will be available to him. However, when the same user activates

role r1 from any location other than l1, the hierarchical relationship does not hold. It may

be noted here that there is no assumption about topological relationship between the two

locations in question.

3) Spatially restricted topologically related role hierarchy occurs when two roles can be

activated at two disjoint locations but can inherit each others permissions (role hierarchy

holds) if the two corresponding locations have a certain topological relationship between

each other. The various types of spatially restricted topologically related role hierarchy

relations are defined in Table I.

VI. DISCUSSION

We now discuss access control implications of using spatial constraints for role activation/de-

activation, assignment/de-assignment, spatial separation of duty and hierarchy. During the life

cycle of an access control policy, constraints are added and removed from the policy. The

evolutionary nature of access control policies open the door for situations in which constraints

February 23, 2007 DRAFT

17

may conflict with each other. Our aim in this regard is to detect situations in which spatial

constraints can be defined and used with harmful and detrimental consequences. In Section VIII

we present a conflict resolution framework for detecting and correcting conflicting situations in

the GST-RBAC policy. We divide our discussion into three broad categories, namely: missing

topological relations, interacting spatial constraints and conflicting constraints.

A. Missing Topological Relations

In order to effectively discuss the effect of a missing topological relation in a spatial constraint

we propose the following proposition.

Proposition 1: Let a location hierarchy be defined by the following topological relationship

expression. (L1 v (p1)L2)∪ (L2 v (p2)L3)∪ . . .∪ (Ln−1 v (pn)Ln). p1 . . . pn ∈ P. Let user u be

located in location Li where i ∈ {2 . . . n}. Let role R be defined for activation/deactivation or

assignment/de-assignment at location L1. Then user u can activate/deactivate or be assigned/de-

assigned to role R if and only if location Li is reachable from L1 through topological relations.

We next illustrate the implications of Proposition 1. Consider locations l1, l2, l3, l4, l5 ∈ L, roles

r1, r2, r3 ∈ R and user u1 ∈ U . The following spatial constraints are defined for spatial role

activation. ((L1 v (c)L2) ∪ (L2 v (c)L3) ∪ (L3 v (c)L4) ∪ (L3 v (c)L5), l1, activater, u1, r1).

Assume user u1 to be at spatial location l6. Since l6 has not been defined in the location hierarchy,

it cannot activate role r1. This role activation scenario is depicted in Figure 3(a).

B. Interacting Spatial Constraints

As pointed out earlier, spatial constraints may interact with each other and present situations

which may be violate access policy rules and intentions. Next we describe such a scenario in case

of role activation with spatial constraints. It may be noted here that interacting spatial constraints

may also have similar effects when used for role de-activation or assignment/de-assignment.

The two spatial constraints depicted in Figure 3(b) and (c) are as follows. ((L1 v (c)L2) ∪

(L2 v (c)L3) ∪ (L3 v (c)L5), l1, activater, u1, r1) and ((L5 v (c)L6), l6, activater, u1, r2)

respectively. As can be observed from the two constraints, r1 can be activated by user being in

any of the the four locations (l1, l2, l3, l5). Similarly, r2 can be activated by the user assuming

either location l5 or l6. Location l5 is the common location for the two constraints and a user

occupying this location activates both r1 and r2. Note that the inclusion of location l5 in two

February 23, 2007 DRAFT

18

L
1

L
2

L
3

L
4

L
5

L
6

No topological

relation

C
C

C

L
1

L
2

L
3

L
4

L
5

C
C

C

L
5

L
6

C
C

C

r
1

u
1

r
1

u
1

u
1

r
2

)c()b()a(

Fig. 3. Spatial hierarchical constraint for activation of roles. (a) Location l6 not connected to location l1, inhibiting u1 to

activate role r1. (b) Spatial hierarchical constraint for activation of role r1 by user u1 at location l5. (c) Spatial hierarchical

constraint for activation of role r2 by user u1 at location l5.

spatial constraints may be done on purpose or may also be inadvertent. This scenario uncovers

the importance and criticality of composing spatial constriants.

C. Conflicting Constraints

We define and detect constraint conflicts which may arise in case of an interplay between

various constraints. Three types of conflicts in GTRBAC have been defined in [3]. The first

type is the conflict between events of the same category, also called Type 1 conflicts, which

are conflicts because of the same pair of states of a role or assignment. The second type (Type

2) is the conflict between different categories. The third type of conflict (Type 3) [3] is the

conflict between constraints. Type 3a conflict is for two constraints defined for role enabling

or role assignment. Type 3b conflict can occur between the per-user activation constraint and

the per-role activation constraint. We will elaborate Type 3 conflicts whereby we add spatial

constraints to the already existing temporal constraints.

In order to incorporate spatial conflicts in the GTRBAC conflicts defined in [3], we extend

the Type 3a conflicts to Type 3a(i), 3a(ii), 3a(iii).

• Type 3a(i), are the role enabling or assignment conflicts as defined in [3], in which the two

conflicting constraints are temporal in nature only.

February 23, 2007 DRAFT

19

• Type 3a(ii) conflict constraints are the role enabling and assignments conflicts in which both

the conflicting constraints are spatial in nature. Consider (Loc1, l1, l2, l3, enable, r1) where

l1, l2, l3 ∈ L, r1 ∈ R and (Loc2, l1, l2, l3, disable, r1) where l1, l2, l3 ∈ L, r1 ∈ R where

Loc1 = Loc2. This implies that the same role r1 will be enabled as well as disabled at the

same location.

In addition, we define spatial hierarchical constraint conflict and designate it as Type 4.

The Type 4 conflict will occur when there is a topological relationship conflict between the

participating locations. r1(l1) ≥d r2(l2) conflicts with r1(l1) ≥c r2(l2) where r1, r2 ∈ R, l1, l2 ∈ L.

Similarly, r1(l1) ≥d r2(l2) conflicts with r1(l1) ≥i r2(l2).

Next, we define the spatial SoD constraint conflict and designate it as Type 5. The Type

5 conflict occurs when a spSoD relationship is defined for the same location. An example is

spSoD(r1, r2, L1) ∧ ¬spSoD(r1, r2, L1) where L1 ∈ L, and r1, r2 ∈ R and r1 6= r2.

Lastly, we define Type 6 constraint as a conflict between interacting spatial constraints and

spatial SoD constraint. This type of conflict manifests itself when in addition to having inter-

acting spatial constraints, we also have a spatial SoD constraint. As an example consider the

interacting spatial constraint depicted in Figure 3(b) and (c), and add a spatial SoD constraint

i.e. spSoD(r1, r2, L5). This constraint implies that a user may not activate roles r1 and r2

simultaneously at location L5. The definition of this SoD causes the access control system to

behave in an undecided manner.

VII. EXAMPLE OF GENERALIZED SPATIO -T EMPORAL RBAC POLICY

Next, we describe an example to illustrate the application and relevance of spatial constraints

in practical environments. We will also use this example to illustrate spatio-temporal policy

modeling in the subsequent sections. The example has been adapted from the one presented

in [3].

We consider an access control policy for an Electronic Health Record (EHR), which has both

temporal and spatial constraints. In order to illustrate composition of spatial constraints for the

access control policy, we consider the layout of a floor in a hospital as depicted in Figure 4.

We next compose spatial constraint expressions as shown in Table II. It may be noted here that

constraint composition in the current example is a hierarchy of symbolic locations up to the

county hospital and can be extended to the city and the state. This hierarchy allows for clear

February 23, 2007 DRAFT

20

definition of spatial context where there can be heterogeneity of symbolic locations (i.e more

than one operation theaters in a hospital). The spatial constraint SpC3, describes the relationship

between the county hospital, surgery building and the second floor of the building. The second

floor of the building is further related to the surgeon prep room, the recovery rooms and clinics.

The relationships between each of these locations is also represented as part of the constraint.

While making access control decisions based on SpC3 constraint, a role defined for any one

constituent location can be activated/de-activated or assigned/de-assigned from all other locations

part of SpC3 constraint.

Corridor

Operation Theater (OR) Surgeon Prep (SP)

Pathology LAB (PL) Nursing

Station (NS)

Recovery

Room

(RR1)

Recovery

Room

(RR2)

Recovery

Room

(RR3)

Recovery

Room

(RR4)

Clinic

(CL1)

Clinic

(CL2)

Storage (SG)

Second Floor (2nd)

Surgery builing (SB)

County Hospital (CH)

Fig. 4. Floor plan of a typical hospital

As described in [3], the periodicity constraint DayTime and NightTime are composed as

follows.

DayTime = ([1/1/2007,∞], all.Days + 10.Hours . 12.Hours), and

NightT ime = ([1/1/2007,∞], all.Days + 22.Hours . 12.Hours).

The roles in the access control policy and the relevant semantics are described in Table III.

A portion of the access control policy exemplifying the application of spatial constraints in

access control is depicted in Table IV. Row 2 of Table IV shows role NightSurgeon being

enabled during temporal constraint NightT ime and at location described by spatial constraint

SpC1. Row 6 of Table IV signifies role PrepSurgery being enabled for location SpC3

if role DaySurgeon or NightSurgeon is enabled. This constraint implies that the role

PrepSurgery can only be enabled if and only if one of the surgeon roles is enabled. Row 8 of

the policy table implies user assignment to roles. User Adam is assigned to role DaySurgeon

February 23, 2007 DRAFT

21

Spatial Constraint Notation Explanation

SpC1 CH v (c)SB v (c)2nd v (c)OR v

(m)SP

Operation theater and surgeon prep area located on the

second floor

SpC2 2nd v (c)NS1 v (m)RR1 v

(m)RR2 v (m)RR3 v (m)RR4

Nursing station and the recovery rooms on the second

floor of the building

SpC3 (CH v (c)SB v (c)2nd v (c)SP)∪

(2nd v (c)RR1 v (m)RR2 v

(m)RR3 v (m)RR4) ∪ (2nd v

(c)CL1 v (m)CL2)

Spatial location spanning the surgeon prep area, the

recovery rooms and the two clinics

SpC4 CH v (c)SB v (c)2nd v

(c)((OR) ∪ (NS v (m)PL))

Spatial location spanning the operation theater and

nursing station which meets the pathology lab

TABLE II

SPATIAL CONSTRAINT EXPRESSIONS FOR GENERALIZED SPATIO - TEMPORAL RBAC POLICY FOR THE HEALTH CARE EHR.

within the confines of location constriant SpC1, during DayTime. User Beth is assigned the

role SeniorNurse while at location SpC2 any time of the day. User Ami is assigned the

role NightNurse only when she is within the confines of Nursing Station (NS) and at time

NightTime. However, Meg is assigned role NightNurse at all locations represented by SpC2

and at NightTime. It may be noted here that although Meg and Ami are being assigned the

same role (i.e. NightNurse) and during the same time of the day, but Ami can only access

permissions of this role within the nursing station, while Meg can access the same permissions

from NS as well as the recovery rooms. In rows 9 and 10 of Table IV, we present activation

constraints of activation/de-activation of users Adam and Mark. Both the users are activated

when they are detected to be within the confines of SpC1 and at specified times of the day. This

serves to restrict the roles active at any one time in any one location. Row 11 of Table IV defines

spatial SoD between roles SeniorNurse and NightNurse in location NS1. A user can be

assigned the two roles simultaneously, at all locations other than NS1. The rational for this

constraint is that in the presence of a senior nurse the junior nurse should not be able to acquire

permissions while at location NS1. However, the two roles can be activated by the same user

in locations other than NS1 but within the spatial definition SpC2. Row 13 shows the activation

constraint for users Ami and Meg for the locations specified in the assignment constraint above.

February 23, 2007 DRAFT

22

Role Name Semantics

DaySurgeon The role is enabled and activated at DayTime, every

day of the week and for locations inside Operation

Room and the Surgeon Prep (represented by SpC1

constraint)

NightSurgeon The role is enabled and activated at NightT ime, ev-

ery day of the week and for locations inside Operation

Room and the Surgeon Prep (represented by SpC1

constraint)

SeniorNurse Role enabled and activated all day in locations repre-

sented by spatial constraint SpC2

NightNurse Role enabled and activated in NightT ime at locations

specified by SpC2

TechnicianSurgery Role enabled and activated all day for five working

days of the week at locations represented by spatial

constraint SpC4

PrepSurgery Role enabled and activated all day at locations spec-

ified by SpC3 and only if roles DaySurgeon and

NightSurgeon are enabled

SurgeryLab Role enabled and activated all day at locations speci-

fied by SpC3

TABLE III

ROLE DEFINITION AND SEMANTICS FOR GENERALIZED SPATIO -T EMPORAL ACCESS POLICY OF HEALTH CARE EHR

Row 14 of Table IV depicts the spatial hierarchical relationship between roles SeniorNurse

and NightNurse at location NS1. The permissions of role NightNurse are inherited by

the SeniorNurse only in location NS1. This and the spSoD constraint defined in Row 11

demonstrate how permissions can be made available to a certain role in a certain location while

maintaining a separation of conflicts.

VIII. SPECIFICATION MODELING AND CONFLICT RESOLUTION OF GENERALIZED

SPATIO -T EMPORAL ROLE BASED ACCESS CONTROL

In this section we develop a specification model for GST-RBAC policy and outline method-

ology for formal conflict resolution of access control policies using light-weight formalism.

February 23, 2007 DRAFT

23

1 (DayTime, SpC1, enable, DaySurgeon)

2 (NightT ime, SpC1, enable, NightSurgeon)

3 (SpC2, enable, SeniorNurse)

4 (NightT ime, SpC2, enable, NightNurse)

5 (DayTime, SpC4, enable, TechnicianSurgery)

6 (enable(DaySurgeon) ∨enable(DaySurgeon))→(SpC3, enable, PrepSurgery)

7 (SpC3, enable, SurgeryLab)

8 (DayTime, SpC1, assignu, Adam, DaySurgeon); (NightT ime, SpC1,assignu, Mark, NightSurgeon);

(SpC2, assignu, Beth, SeniorNurse); (NightT ime, NS, assignu, Ami, NightNurse); (NightT ime,

SpC2, assignu, Meg, NightNurse); (PL, assignu, Andrew, TechnicianSurgery); (assignu, Kevin,

PrepSurgery); (assignu, Bill, SurgeryLab)

9 (Daytime, SpC1, OR, activater , Adam, DaySurgeon)→(Nighttime, SpC1, OR, deactivater , Mark,

NightSurgeon)

10 (Nighttime, SpC1, OR, activater , Mark, NightSurgeon)→(Daytime, SpC1, OR, deactivater , Adam,

DaySurgeon)

11 spSoD(SeniorNurse, NightNurse, NS1)

12 (SpC2, NS1, activater , Beth, SeniorNurse)

13 (NightT ime, NS1, activater , Ami, NightNurse); (NightT ime, SpC2, NS1, activater , Meg, NightNurse)

14 SeniorNurse≥NS1
NightNurse

15 SeniorNurse≥NS1
SurgeryLab

TABLE IV

FRAGMENT OF ACCESS CONTROL POLICY FOR GENERALIZED SPATIO -T EMPORAL ACCESS POLICY OF EHR

Our modeling activity in this regard is two tiered. Firstly, we develop a GST-RBAC policy

specification model by capturing the defined GST-RBAC features in a light-weight formal model,

with the hope to uncover potential conflicts in GST-RBAC specifications. We use the Alloy [25]

specification language and the accompanying constraint analyzer to verify the specification

model. Next, we utilize the specification model created thus far to develop model of GST-

RBAC policy for conflict analysis and resolution. The aim in this regard is to provide a formal

framework to the policy administrator to formally compose GST-RBAC policies and verify

policy composition prior to actually implementing it. This methodology also allows conflict

free evolution of both the access control model being used to implement security (in this case

GST-RBAC) and the actual policy instance being implemented in the organization.

February 23, 2007 DRAFT

24

A. Overview of Alloy

Alloy is a predicate logic and set theoretic based first-order modeling notation used to model

software components. It has a number of features which make it convenient for formal specifi-

cation of access control policies. Some of the pertinent ones are mentioned below.

• Software models created using the alloy formalism capture the structure of the original

software rather than the events.

• Alloy models are declarative, implying the model lists a system’s properties and con-

straints [26]. Alloy declarations specify conditions and constraints which cause software

to go from one state to another.

• Once the software is specified using alloy formalism it can be analyzed using the accom-

panying constraint analyzer which allows simulation of the model to generate structure

and behavior in the form of examples of the system. The constraint analyzer also allows

checking of models using a counter example approach which pin-points model properties

which do not hold under the specified conditions.

Access control policies are inherently declarative in nature and exhibit a structure which

is held together using a set of constraints and assertions. Policy assertions cause the security

system to go from one state to the next which can be achieved only if the constraints so allow.

Since access control policies may evolve over time, the need for conflict resolution cannot be

overstated. Creating a policy specification model using Alloy and employing the Alloy constraint

analyzer helps in composition and evolution of consistent access control policies.

Next, we outline the basic components of Alloy as discussed in [27]. For an exhaustive

discussion refer to [15].

Atom An atom is the basic building block of the Alloy model. It is indivisible, immutable

and uninterpreted. All relations are composed of atoms.

Relations A relation establishes relationship between atoms. A relation is a collection of tuples

which in turn are made up of atoms. A scalar is also represented as a singleton relation. The

structure of the software model is composed using relations.

Operators Operators in Alloy are used to compose more expressive expressions. All expres-

sions denote relations. Union, intersection and difference over relations have the same semantics

as in set theory and are denoted by +, & and − , respectively. Another important operator is

February 23, 2007 DRAFT

25

the composition or join denoted by (.). p.q results in a relation by taking every combination of

a tuple of p and a tuple of q, and including their join if it exists.

Formulas Larger formulas can be formed by combining smaller formulas using logical oper-

ators. These operators are && (and), || or, and ! (not). in and = operators are used for subset

and set equality. − > implies implication. Alloy also allows quantifiers for formulas which are

some, all, no and sole. some x|F means these is some x for which F holds. Similarly, all implies

all values of x, no implies no value of x, and sole implies at the most one value of x which

satisfies F .

A brief explanation of the underlying working of Alloy Analyzer is available at [28] and we

restate it here. “The Alloy Analyzer is essentially a compiler. It translates the problem to be

analyzed into a (usually huge) boolean formula. This formula is handed to a SAT solver, and the

solution is translated back by the Alloy Analyzer into the language of the model. All problems

are solved within a user-specified scope that bounds the size of the domains, and thus makes

the problem finite (and reducable to a boolean formula)”.

B. GST-RBAC Policy Specification Modeling using Alloy

In order to capture the structure of the GST-RBAC policy, we define objects as the basic

pillars of the policy, together with constraints defining rules which govern the interplay between

these objects. The complete Alloy model is attached as Appendix I. The model is divided into

four basic parts, namely: declarations, invariants, functions/predicates and assertions.

sig User {}

sig Role{}

sig Permission{}

sig Location {operator: SpatialOperators -> Location}

sig SpatialOperators{}

sig Time {}

sig RoleEnable {re_member :some Role->some Location ->some Time}

sig RoleDisable {rd_member : some Role->some Location ->some Time}

sig UserRoleAssignment {URA_member : some User ->some Role -> some Location ->some Time}

sig UserRoleDeAssignment {URDA_member :some User ->some Role ->some Location ->some Time}

sig RolePermissionAssignment {RPA_member :some Role->some Permission ->some Location ->some Time}

sig RolePermissionDeAssignment {RPDA_member :some Role->some Permission ->some Location ->some Time}

sig UserRoleActivation {URAct_member :some User-> some Role->some Location->some Time}

sig UserRoleDeActivation {URDAct_member :some User->some Role-> some Location->some Time }

sig RoleHierarchy {rh_member: some Role -> some Role -> some Location -> some Time}

Fig. 5. Signature declarations of GST-RBAC policy

February 23, 2007 DRAFT

26

Declarations of objects is in the form of sig structure and includes elements such as fields (see

Figure 5). The sig User, sig Role, sig Permission, sig Location and sig Time are the five basic

signatures of objects of the model. It may be noted here that User, Role and Permission signify

the usual components of the RBAC model. Location and Time are the two context parameters

which are used for all access control decisions. The next two signatures are,

sig RoleEnable {

re_member :some Role->some Location ->some Time}

sig RoleDisable {

rd_member : some Role->some Location ->some Time}

The RoleEnable signature has a field re member that maps Roles to Location to Time. In fact

re member is a four-way mapping associating RoleEnable, Role, Location and Time. re member

can be thought of as a relation which represents the roles which have been enabled for a particular

location and time. Signature RoleDisable has similar dynamics as the RoleEnable, only difference

being that it refers to the set of roles which have been disabled for the respective times and

locations, referred to by the sole attribute rd member.

In order to constrain the structure of the access control policy, facts have been defined. Most

facts in the alloy model of GST-RBAC correspond to the conflicts defined in [3] and in Section VI

of this paper. The constraint UsersEnableNotDisable is defined as follows:

fact UsersEnableNotDisable{//conflict type 1a

some rd: RoleDisable, re: RoleEnable,

r: Role, t: Time, l: Location |

((r -> l-> t) in re.re_member =>

(r -> l-> t) not in rd.rd_member &&

(r -> l-> t) not in re.re_member =>

(r -> l-> t) in rd.rd_member)

}

The fact UsersEnableNotDisable ensures that the if a role has been enabled for a location l

and time t, then it will not be disabled. Conversely, if a role has been disabled at a location l and

time t, then it will not be enabled. The two signature structures, RoleEnable and RoleDisable

are utilized for maintaining the two disjoint sets. This fact is semantically equivalent to conflict

Type 1a defined in [3] and the spatial role enabling conflict defined in Section VI.

In order to enable a role in our model, we write a predicate, EnableRole. The text of the

predicate is as follows:

February 23, 2007 DRAFT

27

pred EnableRole (rd, rd’: RoleDisable,

re, re’: RoleEnable, r: Role, t: Time, l: Location) {

re’.re_member=re.re_member+ (r-> l -> t) &&

rd’.rd_member=rd.rd_member- (r-> l -> t)

}

In predicate EnableRole, re and re’ are the role enabled sets before and after the role enabling

action. The difference between the two sets is the addition of the current tuple of role, location,

time. Additionally, rd and rd’ are the two sets which represent the disabled roles before and after

the role enabling action. Similarly, the DisableRole predicate (see Appendix I) works opposite

to the enable role predicate.

In order to illustrate the role enabling action, we execute the following command,

run EnableRole for 3 but 2 RoleEnable, 2 RoleDisable

Executing the above predicate causes Alloy to look for examples where the facts and the predicate

are true. In case it cannot find such an example, alloy returns with a report of inconsistency.

In our current case it comes up with an example where the fact UsersEnableNotDisable and

predicate EnableRole are true. It is possible to display this example using Alloy in a number of

formats, including visual, as a tree, a table or XML. We feel that for smaller examples a visual

representation is the best, however as the size of the example grows, a table or a tree view is

more convenient. The visual representation of role enabling is depicted in Figure 6. It is noted

that role Role0 has been enabled for location Location0 and at two times Time0 and Time2.

On the other hand the same role, Role0 is disabled at the same location Location0 but at time

Time1, which conforms to the defined fact. The above run command executes the predicate and

looks for examples where the facts (constraints) hold and the predicate evaluates to true.

In order to evaluate the complete working of the EnableRole and DisableRole pair, we create

and execute an assertion which is as follows,

assert CheckRoleEnable {

all rd, rd’, rd’’: RoleDisable, re, re’, re’’: RoleEnable,

r: Role, t: Time, l: Location |

no r.(re.re_member) and

EnableRole (rd, rd’, re, re’, r, t, l)

and DisableRole (rd’, rd’’, re’, re’’, r, t, l)

implies re.re_member=re’’.re_member

February 23, 2007 DRAFT

28

Time1

(UsersEnableNotDisable_t)

Time0

(EnableRole_t)

RoleDisable0

(EnableRole_rd', UsersEnableNotDisable_rd, EnableRole_rd)

RoleEnable1

(EnableRole_re')

RoleEnable0

(UsersEnableNotDisable_re, EnableRole_re)

Time2

rd_member[Role0, Location0]

re_member[Role0, Location0]

re_member[Role0, Location0]

re_member[Role0, Location0]

Fig. 6. Role enable/disable for one role at one location and at three times

}

check CheckRoleEnable for 2

The assertion CheckRoleEnable enables a role and then disables it. Finally, it checks the

contents of the role enable structure before and after and finds the two to be equivalent. This

assertion looks for counter-examples whereby facts and the assertion are at odds with each

other. In our case, no counter example is found, implying that no violations of the conflict 1a

(as defined in [3] and Section VI) were found for two instances of role enabling.

The next pair of signatures are the UserRoleAssignment and UserRoleDeAssignment. In line

with RoleEnable signature, UserRoleAssignment refers to the set of users which have been

assigned roles for certain locations and times. The UserRoleDeAssignment is the set of users,

roles, locations and times which have be deassigned.

We represent conflict Types 1b and 2 (as defined in [3] and Section VI) as facts UsersAssigned-

NotDeassigned and RoleEnabledThenAssigned, listed in Appendix I. In order to incorporate

conflict Type 1b in the model, the fact UsersAssignedNotDeassigned ensures that if a user is

assigned to a role at a specific location and time, then the same user cannot also exist as a

deassigned user of a role for the same location and time. This is made possible by the following

alloy formula:

((u->r -> l-> t) in ura.URA_member =>

(u->r -> l-> t) not in urda.URDA_member &&

(u->r -> l-> t) not in ura.URA_member =>

(u->r -> l-> t) in urda.URDA_member)

February 23, 2007 DRAFT

29

ura and urda are instances of the signatures UserRoleAssignment and UserRoleDeAssignment.

Conflict Type 2 has been incorporated in the model as fact UsersAssignedNotDeassigned which

ensures that a user can only be assigned to an enabled role. We assign users with the help

of predicate UserRoleAssignPred. Relevant portion of the output generated Alloy is shown in

Figure 7.

UserRoleAssignment

policy/UserRoleAssignment_0,

URA_member : (policy/User) ->some ((policy/Role) ->some ((policy/Location) ->some

(policy/Time)))

policy/UserRoleAssignment_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_0

policy/UserRoleAssignment_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_0

policy/UserRoleAssignment_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_0

policy/UserRoleAssignment_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_0

UserRoleDeAssignment

policy/UserRoleDeAssignment_0,

URDA_member : (policy/User) ->some ((policy/Role) ->some ((policy/Location) ->some

(policy/Time)))

policy/UserRoleDeAssignment_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_1

policy/UserRoleDeAssignment_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_1

policy/UserRoleDeAssignment_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_1

policy/UserRoleDeAssignment_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_1

Fig. 7. Partial Alloy output after running predicate UserRoleAssignPred

Note that user User 0 has been assigned to roles Role 0 and Role 1 at two locations (Loca-

tion 0, Location 1) and times (Time 0, Time 1). The tables depicting UserRoleAssignment and

UserRoleDeAssignment are both disjoint because of fact UsersAssignedNotDeassigned.

Similar analysis is done for modeling of conflicts between events of role activation and

role deactivation (Conflict 1d in [3] and the spatial role activation conflict, Type3a(ii), defined

in Section VI). We use the signatures UserRoleActivation and UserRoleDeActivation which

correspond to the set of activated users and the set of deactivated users. The conflict has been

February 23, 2007 DRAFT

30

represented by the fact UsersActivatedNotDeActivated.

The predicate used to test this conflict is UserRoleActivationPred. Part of the example gener-

ated by Alloy is depicted in Figure 8. As may be noted, user User 0 has been assigned to roles

Role 0 and Role 1 at two locations (Location 0, Location 1) and times (Time 0, Time 1) and

the two sets UserRoleActivation and UserRoleDeActivation have disjoint tuples. It may be noted

that the Alloy outputs shown in Figure 7 and Figure 8 are are not the same runs and may not

correlate with each other.

UserRoleActivation

policy/UserRoleActivation_0,

URAct_member : (policy/User) -> ((policy/Role) -> ((policy/Location) ->

(policy/Time)))

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_0

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_1

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_0

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_0

UserRoleDeActivation

policy/UserRoleDeActivation_0,

URDAct_member : (policy/User) -> ((policy/Role) -> ((policy/Location)

-> (policy/Time)))

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_0

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_1

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_1

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_1

Fig. 8. Relevant Alloy output after running predicate UserRoleActivationPred

Conflict between events of different types is also encoded within the alloy GST-RBAC policy

model (Type 3(i) and (ii) as defined in [3] and Section VI). The two facts which represent

these conflicts are RoleEnabledThenAssigned and RoleAssignedThenActivated and are listed in

Appendix I. RoleAssignedThenActivated ensures that the user is only assigned to a role which

February 23, 2007 DRAFT

31

has been enabled. Similarly, RoleAssignedThenActivated ensures that a user can only activate

a role from a certain location and time which has been assigned for the specified location and

time. Relevant output generated by Alloy is depicted in Figure 9.

UserRoleAssignment

policy/UserRoleAssignment_0,

URA_member : (policy/User) -> ((policy/Role) -> ((policy/Location) -> (policy/Time)))

policy/UserRoleAssignment_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_0

policy/UserRoleAssignment_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_1

policy/UserRoleAssignment_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_0

policy/UserRoleAssignment_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_0

UserRoleDeAssignment

URDA_member : (policy/User) -> ((policy/Role) -> ((policy/Location) -> (policy/Time)))

policy/UserRoleAssignment_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_0

policy/UserRoleAssignment_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_1

policy/UserRoleAssignment_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_1

policy/UserRoleAssignment_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_1

UserRoleActivation

policy/UserRoleActivation_0,

URAct_member : (policy/User) -> ((policy/Role) -> ((policy/Location) -> (policy/Time)))

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_0

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_0 policy/Time_1

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_0

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_0

UserRoleDeActivation

policy/UserRoleDeActivation_0,

URDAct_member : (policy/User) -> ((policy/Role) -> ((policy/Location) -> (policy/Time)))

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_0

policy/UserRoleActivation_0 policy/User_0 policy/Role_0 policy/Location_1 policy/Time_1

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_0 policy/Time_1

policy/UserRoleActivation_0 policy/User_0 policy/Role_1 policy/Location_1 policy/Time_1

Fig. 9. Relevant Alloy output after running predicate UserRoleActivationPred

The definition of spSoD (as formally treated in Section VI) in the alloy specification model

of GST-RBAC model is achieved by adding the following predicate to the model,

pred SoD (r1, r2:Role, u:User, uract: UserRoleActivation,

February 23, 2007 DRAFT

32

l:Location, t: Time){

(u->r1-> l-> t) in (uract.URAct_member) =>

(u->r2-> l-> t) not in (uract.URAct_member)

}

run SoD for 2

This predicate ensures that spSoD can be defined between roles r1 and r2 at location l and

time t. The signature object used in this case is UserRoleActivation. A user u can activate role

r1 at location l and at time t but cannot activate role r2 at the same time and location. spSoD

has been defined as a predicate so that it can be called during composition of the policy. Note

that this predicate can also be used to define time-based separation of duty constraints as defined

in [3].

Spatial role hierarchy, as defined in Section VI is captured in the GST-RBAC Alloy specifi-

cation model by the signature RoleHierarchy, shown below,

sig RoleHierarchy

{rh_member :textit{Role} -> Role -> Location -> Time}

The attribute rh member is a five way mapping between role hierarchy, senior role, junior

role, location and time. The addition of time parameter in this mapping attribute ensures that

this structure can be utilized to define temporal role hierarchies proposed in [3]. The fact

OneWayHierarchy ensures that if there is a role hierarchy defined between two roles r1 and r2,

then it cannot be defined in the reverse sense (r2 to r1). Note that this relationship is constrained

in the temporal and spatial dimension, implying that the direction of a hierarchy is preserved

for a given time and location.

fact OneWayHierarchy{

some rh: RoleHierarchy,

u: User, r1, r2: Role, t: Time, l: Location|

((r1->r2 -> l-> t) in rh.rh_member =>

(r2->r1 -> l-> t) not in rh.rh_member)

}

In the above discourse, we have introduced a methodology for the creation of the GST-RBAC

specification model using Alloy. This has been achieved by representing conflicts as facts and

ensuring that each fact can be validated for the signatures depicted in Figure 5. Complete listing

of the GST-RBAC specification model is placed as Appendix I.

February 23, 2007 DRAFT

33

C. GST-RBAC Access Control Policy Modeling using Alloy

In the previous subsection we developed the GST-RBAC specification model using the Alloy

framework. In this subsection we use the policy framework created thus far to model an access

control policy and illustrate the conflict resolution mechanism afforded by Alloy to create conflict

free policy artifact which can be composed and analyzed piece-meal. In the following discussion

we demonstrate the access control policy using example from Section VII. In favor of brevity

and to demonstrate out approach, we describe in detail role-enabling, user-role-assignment, user-

role-activation and spatial SoD functions of the GST-RBAC policy.

The complete listing of the policy specification for role enabling is placed at Appendix II. Role

signature is extended by DaySurgeon, Time signature is extended by DayTime and NightTime,

and Location signature is extended by SpC1. The policy assertions stated in Rows 1 and 3 of

Table IV are represented in the Alloy model as facts shown below,

fact DaySurgeonEnableAtDayTime{

some rd: RoleDisable, re: RoleEnable,

r: DaySurgeon, t: DayTime, l: SpC1 |

(r -> l-> t) in re.re_member

}

fact DaySurgeonDisableAtNightTime{

some rd: RoleDisable, re: RoleEnable,

r: DaySurgeon, t: NightTime, l: SpC1 |

(r -> l-> t) in rd.rd_member

}

fact NightSurgeonEnableAtNightTime{

some rd: RoleDisable, re: RoleEnable,

r: NightSurgeon , t: NightTime, l: SpC1 |

(r -> l-> t) in re.re_member

}

fact NightSurgeonDisableAtDayTime{

some rd: RoleDisable, re: RoleEnable,

r: NightSurgeon, t: DayTime, l: SpC1 |

(r -> l-> t) in rd.rd_member

}

The facts DaySurgeonEnableAtDayTime and NightSurgeonEnableAtNightTime enable the role

DaySurgeon and NightSurgeon at DayTime and NightTime, respectively. We next run the predicate

EnableRole and observe the output, a partial view of which is depicted in Figure 10. Since

the predicate evaluates to true and no fact is violated, Alloy outputs an example. As can

February 23, 2007 DRAFT

34

be seen in this output, the role DaySurgeon 0 is enabled at Daytime and at location SpC1.

On the other hand the role DaySurgeon 0 is disabled at NightTime at location SpC1. Next,

we create a fact NightSurgeonDisableAtNightTime which violates the previously defined fact

NightSurgeonEnableAtNightTime, as follows,

fact NightSurgeonDisableAtNightTime{ //conflict

some rd: RoleDisable, re: RoleEnable,

r: NightSurgeon, t: NightTime, l: SpC1 |

(r -> l-> t) in rd.rd_member

}

As expected Alloy does not return an example for the role enable and disable signatures and

states that the model is inconsistent.

RoleEnable

policy/RoleEnable_0,

re_member : (policy/Role) -> ((policy/Location) -> (policy/Time))

policy/RoleEnable_0 policy/DaySurgeon_0 policy/SpC1_0 policy/DayTime_0

policy/RoleEnable_0 policy/NightSurgeon_0 policy/SpC1_0 policy/NightTime_0

RoleDisable

policy/RoleDisable_0,

rd_member : (policy/Role) -> ((policy/Location) -> (policy/Time))

policy/RoleDisable_0 policy/DaySurgeon_0 policy/SpC1_0 policy/NightTime_0

policy/RoleDisable_0 policy/NightSurgeon_0 policy/SpC1_0 policy/DayTime_0

Fig. 10. Relevant Alloy output after running predicate EnableRole for the EHR example in Section VII

We now model the first two assignment functions from Row 8 of Table IV. Two users, Adam

and Mark are being assigned to roles DaySurgeon and NightSurgeon, respectively. The constraints

on the two assignments are both temporal as well as spatial. We extend the User signature for

Adam and Mark and define four new facts to represent the assignment function, as follows.

Complete Alloy listing of the model is placed as Appendix III.

fact AdamAssignedToDaySurgeonAtDayTimeAtSpC1{

February 23, 2007 DRAFT

35

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Adam,

r: DaySurgeon, t: DayTime, l: SpC1 |

(u->r -> l-> t) in ura.URA_member and

(u->r -> l-> t) not in urda.URDA_member

}

fact AdamNotAssignedToDaySurgeonAtNightTimeAtSpC1{

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Adam,

r: DaySurgeon, t: NightTime, l: SpC1 |

(u->r -> l-> t) not in ura.URA_member and

(u->r -> l-> t) in urda.URDA_member

}

fact MarkAssignedToNightSurgeonAtNightTimeAtSpC1{

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Mark,

r: NightSurgeon, t: NightTime, l: SpC1 |

(u->r -> l-> t) in ura.URA_member and

(u->r -> l-> t) not in urda.URDA_member

}

fact MarkNotAssignedToNightSurgeonAtDayTimeAtSpC1{

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Mark,

r: NightSurgeon, t: DayTime, l: SpC1 |

(u->r -> l-> t) not in ura.URA_member and

(u->r -> l-> t) in urda.URDA_member

}

The fact AdamAssignedToDaySurgeonAtDayTimeAtSpC1 ensure that Adam is assigned to

the role DaySurgeon at time DayTime and location SpC1. similarly, the fact and MarkAs-

signedToNightSurgeonAtNightTimeAtSpC1 does a similar assignment for Mark at a different

time, but the same location. The facts AdamNotAssignedToDaySurgeonAtNightTimeAtSpC1 and

MarkNotAssignedToNightSurgeonAtDayTimeAtSpC1 ensure that Adam and mark are not assigned

to the wrong roles at the wrong times.

We run the predicate UserRoleAssignPred and Alloy returns an example for the policy which

February 23, 2007 DRAFT

36

is depicted in Figure 11. Note that users Adam and Mark have been made part of the User-

RoleAssignment signature structure for role assignment at designated times and locations. On

the other hand they have been made part of the UserRoleDeAssignment signature structure for

the specified roles, time and locations.

UserRoleAssignment

policy/UserRoleAssignment_0, policy/UserRoleAssignment_1,

URA_member : (policy/User) -> ((policy/Role) -> ((policy/Location) -> (policy/Time)))

policy/UserRoleAssignment

_0

policy/Adam

_0

policy/DaySurgeon_

0

policy/SpC1_

0

policy/DayTime_

0

policy/UserRoleAssignment

_0

policy/Mark_

1

policy/NightSurgeon

_0

policy/SpC1_

0

policy/NightTime

_1

policy/UserRoleAssignment

_1

policy/Adam

_0

policy/DaySurgeon_

0

policy/SpC1_

0

policy/DayTime_

0

policy/UserRoleAssignment

_1

policy/Mark_

1

policy/NightSurgeon

_0

policy/SpC1_

0

policy/NightTime

_1

UserRoleDeAssignment

policy/UserRoleDeAssignment_0, policy/UserRoleDeAssignment_1,

URDA_member : (policy/User) -> ((policy/Role) -> ((policy/Location) -> (policy/Time)))

policy/UserRoleDeAssignme

nt_1

policy/Adam

_0

policy/DaySurgeon_

0

policy/SpC1

_0

policy/NightTime

_0

policy/UserRoleDeAssignme

nt_1

policy/Mark_

1

policy/NightSurgeon

_1

policy/SpC1

_1

policy/DayTime_

0

Fig. 11. Relevant Alloy output after running predicate UserRoleAssignPred for the EHR example in Section VII

Next, we activate user Adam in roles DaySurgeon at time DayTime and at location SpC1.

At the same time we also deactivate user Adam (if he is active) from role NightSurgeon. This

activation and deactivation corresponds to row 9 of Table IV. We introduce the following facts

to the alloy model created thus far,

fact AdamActivatesDaySurgeonAtDayTimeAtSpC1{

some uract: UserRoleActivation, urdact:

UserRoleDeActivation, u: Adam, r: DaySurgeon, t: DayTime, l: SpC1 |

(u->r -> l-> t) in uract.URAct_member and

(u->r -> l-> t) not in urdact.URDAct_member

}

February 23, 2007 DRAFT

37

fact MarkDeActivatesNightSurgeonAtDayTimeAtSpC1{

some uract: UserRoleActivation, urdact:

UserRoleDeActivation, u: Adam, r: NightSurgeon, t: DayTime, l: SpC1 |

(u->r -> l-> t) not in uract.URAct_member and

(u->r -> l-> t) in urdact.URDAct_member

}

It may be noted that these two facts can also be combined into one fact using the => operator,

however, we feel that it is better to structure all facts independent of each other so that they

can be reused later. We test the model by running the following predicate and Alloy presents an

example where the above facts are true. in order to converse space we do not show the actual

output of the Alloy constraint analyzer.

pred UserRoleActivationPred (ura, ura’:

UserRoleActivation, urda, urda’: UserRoleDeActivation,

u: User, r: Role, l: Location, t: Time){

ura’.URAct_member=ura.URAct_member+ (u->r->l->t) &&

urda’.URDAct_member=urda.URDAct_member- (u->r-> l -> t)

}

run UserRoleActivationPred for 4

In order to illustrate the composition of spatial SoD we define spSoD for roles DaySurgeon

and NightSurgeon which are conflicting for user Adam. Note that this situation is not defined

in the example in Section VII. We introduce the following fact to the above created policy.

fact AdamSoDForDaySurgeonAndNightSurgeon {

some r1: DaySurgeon, r2:NightSurgeon,

u: Adam, uract: UserRoleActivation, l:SpC1, t: DayTime|

(u->r1-> l-> t) in (uract.URAct_member) =>

(u->r2-> l-> t) not in (uract.URAct_member)

}

Note that the above fact allows Adam to activate role DaySurgeon but de-activates Adam

in role NightSuregeon. Again we execute the predicate UserRoleActivationPred and observe

the output generated by Alloy. The desired tuples appear in the UserRoleActivation signature

establishing the enforcement of spatial SoD.

In this section we have demonstrated the proposed methodology for composition of GST-

February 23, 2007 DRAFT

38

RBAC policy using the GST-RBAC specification model developed in Section VIII-B. Note that

this composition methodology can be employed to analyze policy components before actually

implementing in an organization. Also note that an Alloy policy model can help the administrator

to add new constraints, permissions, roles to the policy, through out its life time in a consistent

and conflict free manner.

IX. RELATED WORK

We discuss the work related to this paper according to two broad categories; firstly, we discuss

the state of the art in spatial access control models; secondly, we touch briefly on some of the

defining work in the area of specification modeling of software in general and access control

models in particular.

A number of researchers have addressed the issues of spatially aware access control mech-

anisms. One of the pioneering thrusts in this direction was [29], which primarily deals with

the application of access control to satellite image maps. More recently, the same authors have

proposed an authorization model for geo-spatial data in [30]. In this work, access to spatial

imagery is restricted by defining credentials of subjects and authorization privileges. While this

work provides insight into effective management of spatial images by considering both spatial

and temporal dimensions, it does not lay down a formal framework for definition of a complete

access control policy.

Similarly, an access control model for spatial data on the web is proposed in [31]. The

model defines authorization spaces, and grants access to requests for objects only within the

authorization space. While this model is effective in controlling access to spatial data on the Web,

it lacks flexibility to define relationships (hierarchical or flat) between locations and authorization

decisions based on these relationships.

Another effort in the direction of a spatially aware access control model is the definition of

environmental roles in [32]. Environmental roles not only define the spatial properties of a role

but also defines other contextual properties such as temporal. While environmental roles can

be integrated into an RBAC policy, our current methodology of defining spatial constraints and

attaching them to existing roles affords simpler extension of existing systems such as GT-RBAC.

Closest to the current work is GEO-RBAC [33], an extension of the RBAC model which

defines spatial roles, which can be assumed within a defined spatial extend or boundary. This

February 23, 2007 DRAFT

39

approach is close to the above mentioned environmental roles in [32]. Spatial information with

regard to a role is represented as a role schema. However, GEO-RBAC defines one spatial

extent for each role, which implies that each spatial location in an organization needs to have its

own role, clearly a scalability issue. On the other hand, our proposed GST-RBAC model allows

definition of semantic relationship between locations in the form of rich spatial constraints.

This approach results in de-linking of the number of roles from the number of locations in

an organization, clearly a desirable feature. Further, in our current work we represent spatial

information as spatial constraint which can be attached to any role already existing in an access

control policy, thus allowing a simpler spatial extension of GT-RBAC. GEO-RBAC also defines

hierarchies of roles based on containment of locations. In our work we also define hierarchies

of roles but with added ability of defining spatial hierarchy on role hierarchies. Users in GEO-

RBAC have a position which can be both real and logical. Real position in GEO-RBAC model

is defined as the coordinate position of the user with respect to any earth bound coordinate

system. On the other hand, logical position in this model refers to position representation which

is independent from the underlying positioning technology and can be computed using position

mapping functions. By contrast, in our model virtual location refers to the location defined by

membership of a computing group such as an IP pool, with no reference to physical location.

Further, we recognize the difference in geometric and symbolic locations and present an access

control model which works for these as well as virtual locations. Our current work is also close

to [34], in which constraints on role activation are specified using an XML based grammar. In

this work constraints are defined as temporal and non-temporal, where spatial constraints are

defined as the later. However, [34] does not exploit the relationship between locations and roles

based on spatial relations.

Requirements and specification modeling of software has been researched for some time

and an excellent overview of classical work and future directions has been presented in [35].

The challenges of software requirement modeling are effectively addressed by [36]–[41], using

state transition diagrams, context diagrams, formal languages, and visual representations. A

philosophical treatment of the subject can be found in [42]. Some of the work more relevant to

this paper is briefly outline next. The use of state transition diagrams for modeling user interaction

was first researched by [43] and [44] introduced a modeling technique for capturing entities and

events. The interaction of software with the environment was first explored by [45] using Context

February 23, 2007 DRAFT

40

Diagrams. A formal framework for modeling agents and their interfaces was proposed in the form

of GIST [36], which provided reasoning about individual choice of behavior and responsibility

for constraints. The appropriateness of formal specification languages for the description of user

interface phenomena has been investigated in [46] and [47]. In [46] a hybrid model and notation

to address status and event phenomena symmetrically is proposed. A method for automatically

analyzing formal, state-based requirements specifications for some aspects of completeness and

consistency has been proposed by [48]. The approach uses a low-level functional formalism,

simplifying the analysis process. A taxonomy and some preliminary principles for designing

visual representations of formal specifications has been addressed in [49]. They exemplify with

the help of an aircraft control system and formulate the question based decision diagrams for

representing user requirements.

Recently, the use of policies in the context of network and distributed applications and services

has been an area of active research and is considered as an emerging software domain [5]–

[9]. Policies have been applied to access control mechanisms [10], to Policy Based Network

Management Systems (PBNM) [6], [11], to express the enterprise viewpoint [12] of ODP

(Open Distributed Processing), to agent based systems [13], and to Web Services Policy (WS-

Policy) [14]. Also, a number of researchers have applied principles of software engineering to

policy composition by considering policy as a software artifact [34] [50] [51] [52], [53] [54]

but have not addressed the issue related to requirement modeling methodology needed by the

end user for context-aware (both temporal and spatial) policies. Further, analogous to generic

software applications, systems employing policies also operate in a physical environment and

adapt to changing system and environment contextual parameters such as time and location.

The effect of environmental constraints on the computing environment has been emphasized

by many researchers [20], [41], [55], [56] and has found new impetus in the ubiquitous and

pervasive computing paradigms. An analysis of the condition functions or predefined attributes

in an access control policy has been presented by [57]. They present the design of the novel

Antigone Condition Framework (ACF). This framework implements a general-purpose condition

specification, implementation, and evaluation service.

UML [58] has proved quite useful for representing system requirements and models. Some

of the notable work in using UML as a modeling environment for secure software has been

reported in [59], [60] which propose extensions to UML by defining stereotypes to evaluate

February 23, 2007 DRAFT

41

diagrams and to indicate possible vulnerabilities. In [51], researchers have proposed using UML

to support role engineering. In [52] a use case diagram is used for representing static view of

roles in policies, a use-case diagram for the functional view and a collaboration diagram for the

dynamic model. In [54] UML template class diagram is used to capture the structure of policies.

An insightful comparison between policies and requirements can be found in [5], along with

guiding principles for composing policies with focus on software requirements. Currently, the

extension mechanism of stereotypes [58] in UML is employed to represent context parameters

other than time. While this approach is satisfactory for a small set of context parameter values,

it does not scale well to larger set of values of the same context parameter. For example,

privacy policy of electronic health record may dictate separate definition of accesses for a large

number of locations in a hospital. Using stereotypes results in a number of similar use case

diagrams with different stereotypes. This problem is further exacerbated with end-users defining

multiple contextual constraints on a specific policy requirement. Within UML, Object Constraint

Language (OCL) is used to specify pre-conditions, post-conditions, invariants, and other kind

of constraints [61]. While OCL can be used to define a small number of constraints, it is not

scalable for multiple dimensions of contextual constraints. In addition, a number of shortcomings

of OCL have also been reported [62] which mostly have concern with its expressiveness. While

the above mentioned work on composition of policies as software artifacts using UML provides

valuable insight into the issues surrounding policy engineering, UML is intrinsically informal

and does not provide in-built formalism for conflict resolution and hence is deemed unfit to

satisfy our stated goals.

Another candidate for access control policy specification modeling is Z modeling language [63].

In Z composition of system properties is done using schema calculus. However Z lacks fully

automatic analysis of the composed model in the style of a model checker. In our current work

we use Alloy [15] for modeling and conflict resolution of GST-RBAC policies. An exhaustive

comparison regarding the strengths and weaknesses of UML, Z and Alloy is provided in [15]. An

Alloy model is declarative: it can describe the effect of a behavior without giving its mechanism.

It also allows partial models to be created and tested for pre-defined conflicts. Modeling of access

control policies using Alloy has been attempted before [64], however this model is for RBAC [2]

without temporal and spatial constraints.

February 23, 2007 DRAFT

42

X. CONCLUSION

In this paper, we have presented GST-RBAC, the spatial extension of GTRBAC. We have

formally developed the notion of rich spatial constraints in which participating locations have

semantic relationship with each other and access control decisions are dependent on these

relationships. We also define spatial separation of duty and role hierarchy with rich spatial

constraints. We further analyze the proposed GST-RBAC model by defining conflicts which may

arise while using spatial constraints in addition to temporal ones. We exemplify GST-RBAC

with an example from the health care domain where location of a user has direct bearing on the

access control rights available to him.

In order to analyze the proposed GST-RBAC model, we develop its formal specifications

using the light-weight formal modeling environment, Alloy. The specification model is analyzed

utilizing the accompanying Alloy constraint analyzer for pin-pointing conflicts and subsequent

resolution. Next, we illustrate the composition of an organization’s access control policy using the

GST-RBAC policy specification model. Conflicts which may arise while composing an access

control policy become evident using the Alloy constraint analyzer. We show that simulating

an access control policy in a light-weight formal environment, before it is implemented in an

organization, helps to uncover unwanted and dangerous flaws. We also demonstrate that conflict

resolution for access control policies may be done piece-meal allowing the policy to be analyzed

step by step during its engineering phase.

While Alloy offers an excellent formalism for modeling access control specifications, it suffers

from performance issues, especially when the policy model includes hundreds of roles. Although,

modeling portions of the policy at time mitigates this drawback, a full analysis may become

time consuming. Further, the formalism afforded by Alloy is expressive enough for developing

an access control model, but it is more desirable to do so using some form of visual tools. This

observation is more pertinent since policy is to be composed by a policy administrator who may

not have the desire or the inclination to fully understand Alloy syntax. In the future we plan

to develop such a visual interface for access control policy specification so that Alloy coupled

with this interface can find more applications in the industry.

February 23, 2007 DRAFT

43

APPENDIX I

ALLOY SPECIFICATION MODEL OF GENERALIZED SPATIO -T EMPORAL ROLE BASED

ACCESS CONTROL

Listing of the Alloy specification of the generalized spatio-temporal role based access control

policy

module policy

-------------- Signature Declarations --------

sig User {}

sig Role{

}

sig Permission{}

sig Location {operator: SpatialOperators -> Location}

sig SpatialOperators{}

sig Time {}

sig RoleEnable {re_member : Role-> Location -> Time}

sig RoleDisable {rd_member : Role-> Location -> Time}

sig UserRoleAssignment

{URA_member : User -> Role -> Location -> Time}

sig UserRoleDeAssignment

{URDA_member : User -> Role -> Location -> Time}

sig RolePermissionAssignment

{RPA_member : Role-> Permission -> Location -> Time}

sig RolePermissionDeAssignment

{RPDA_member : Role-> Permission -> Location -> Time}

sig UserRoleActivation

{URAct_member : User-> Role-> Location-> Time}

sig UserRoleDeActivation

{URDAct_member : User->Role->Location->Time }

----------------Facts------------------------

fact UsersEnableNotDisable{ //conflict type 1a

some rd: RoleDisable, re: RoleEnable,

r: Role, t: Time, l: Location |

((r -> l-> t) in re.re_member =>

(r -> l-> t) not in rd.rd_member &&

(r -> l-> t) not in re.re_member =>

(r -> l-> t) in rd.rd_member)

February 23, 2007 DRAFT

44

}

fact UsersAssignedNotDeassigned{ //conflict type 1b

some urda: UserRoleDeAssignment, ura: UserRoleAssignment,

u: User, r: Role, t: Time, l: Location |

((u->r -> l-> t) in ura.URA_member =>

(u->r -> l-> t) not in urda.URDA_member &&

(u->r -> l-> t) not in ura.URA_member =>

(u->r -> l-> t) in urda.URDA_member)

}

fact RolePermissionAssignedAndDeassigned { //conflict type 1c

some rpa: RolePermissionAssignment, rpda: RolePermissionDeAssignment,

p: Permission, r: Role, l:Location, t:Time|

((r -> p-> l-> t) in rpa.RPA_member =>

(r ->p-> l-> t) not in rpda.RPDA_member &&

(r -> p-> l-> t) not in rpa.RPA_member =>

(r -> p-> l-> t) in rpda.RPDA_member)

}

fact RoleEnabledThenAssigned{ //conflict type 2

some ura: UserRoleAssignment, re: RoleEnable,

u: User, r: Role, t: Time, l: Location |

r->l->t in (re.re_member) =>

u -> r->l->t in (ura.URA_member)

}

fact RoleAssignedThenActivated{

some uract: UserRoleActivation, ura: UserRoleAssignment,

u: User, r: Role, t: Time, l: Location |

u -> r->l->t in (ura.URA_member) =>

u -> r->l->t in (uract.URAct_member)

}

fact UsersActivatedNotDeActivated{ //conflict type 1d

some ura: UserRoleActivation, urda: UserRoleDeActivation,

u: User, r: Role, t: Time, l: Location |

((u->r -> l-> t) in ura.URAct_member =>

(u->r -> l-> t) not in urda.URDAct_member &&

(u->r -> l-> t) not in ura.URAct_member =>

February 23, 2007 DRAFT

45

(u->r -> l-> t) in urda.URDAct_member)

}

----------------------Predicates/Functions------------

pred EnableRole (rd, rd’: RoleDisable, re, re’: RoleEnable,

r: Role, t: Time, l: Location) {

re’.re_member=re.re_member+ (r-> l -> t) &&

rd’.rd_member=rd.rd_member- (r-> l -> t)

}

pred DisableRole (rd, rd’: RoleDisable, re, re’: RoleEnable,

r: Role, t: Time, l: Location) {

re’.re_member=re.re_member- (r-> l -> t) &&

rd’.rd_member=rd.rd_member+ (r-> l -> t)

}

run EnableRole for 3 but 2 RoleEnable, 2 RoleDisable

pred UserRoleAssignPred (ura, ura’: UserRoleAssignment,

urda, urda’ : UserRoleDeAssignment, u: User, r: Role,

t: Time, l: Location, re’: RoleEnable) {

ura’.URA_member=ura.URA_member+ (u->r->l->t)&&

urda’.URDA_member=urda.URDA_member- (u->r-> l -> t)

}

pred UserRoleDeAssignPred (ura, ura’: UserRoleAssignment,

urda, urda’ : UserRoleDeAssignment, u: User,

r: Role, t: Time, l: Location) {

ura’.URA_member=ura.URA_member- (u->r->l->t) &&

urda’.URDA_member=urda.URDA_member+ (u->r-> l -> t)

}

run UserRoleAssignPred for 2

pred RolePermissionAssignPred (rpa, rpa’:

RolePermissionAssignment,

rpda, rpda’ : RolePermissionDeAssignment,

r: Role, p:Permission, t: Time, l: Location) {

rpa’.RPA_member=rpa.RPA_member+ (r->p-> l-> t) &&

rpda’.RPDA_member=rpda.RPDA_member- (r-> p-> l-> t)

}

pred RolePermissionDeAssignPred (rpa, rpa’:

February 23, 2007 DRAFT

46

RolePermissionAssignment,

rpda, rpda’ : RolePermissionDeAssignment,

r: Role, p:Permission, t: Time, l: Location) {

rpa’.RPA_member=rpa.RPA_member- (r->p-> l-> t) &&

rpda’.RPDA_member=rpda.RPDA_member+ (r-> p-> l-> t)

}

run RolePermissionAssignPred for 2

pred UserRoleActivationPred (ura, ura’:

UserRoleActivation,

urda, urda’: UserRoleDeActivation,

u: User, r: Role, l: Location, t: Time){

ura’.URAct_member=ura.URAct_member+ (u->r->l->t) &&

urda’.URDAct_member=urda.URDAct_member- (u->r-> l -> t)

}

pred UserRoleDeActivationPred (ura, ura’:

UserRoleActivation,

urda, urda’: UserRoleDeActivation,

u: User, r: Role, l: Location, t: Time){

ura’.URAct_member=ura.URAct_member- (u->r->l->t) &&

urda’.URDAct_member=urda.URDAct_member+ (u->r-> l -> t)

}

run UserRoleActivationPred for 2

pred SoD (r1, r2:Role, u:User,

uract: UserRoleActivation,

l:Location, t: Time){

(u->r1-> l-> t) in (uract.URAct_member) =>

(u->r2-> l-> t) not in (uract.URAct_member)

}

run SoD for 2

pred ACPolicy (Adam : User, DaySurgeon: Role, SpC1: Location,

DayTime: Time, re, re’: RoleEnable,

rd, rd’: RoleDisable,ura, ura’: UserRoleAssignment,

urda, urda’ : UserRoleDeAssignment,

rpa, rpa’: RolePermissionAssignment,

February 23, 2007 DRAFT

47

rpda, rpda’ : RolePermissionDeAssignment, p:Permission,

uract, uract’: UserRoleActivation,

urdact, urdact’: UserRoleDeActivation) {

EnableRole (rd, rd’, re, re’,

DaySurgeon, DayTime, SpC1) and

RolePermissionAssignPred (rpa, rpa’, rpda, rpda’,

DaySurgeon, p, DayTime, SpC1) and

UserRoleAssignPred (ura, ura’, urda, urda’, Adam,

DaySurgeon, DayTime, SpC1, re’) and

UserRoleActivationPred (uract, uract’, urdact,

urdact’, Adam, DaySurgeon, SpC1, DayTime)

}

run ACPolicy for 2

------------------------Assertion----------------------

assert CheckRoleEnable {

all rd, rd’, rd’’: RoleDisable, re, re’, re’’: RoleEnable, r

: Role, t: Time, l: Location |

no r.(re.re_member) and EnableRole (rd, rd’, re, re’, r, t, l)

and DisableRole (rd’, rd’’, re’, re’’, r, t, l)

implies re.re_member=re’’.re_member

}

check CheckRoleEnable for 2

assert CheckUserRoleAssignment {

all ura, ura’, ura’’: UserRoleAssignment, urda,

urda’, urda’’: UserRoleDeAssignment, u: User, r: Role,

t: Time, l: Location, re: RoleEnable |

no u.(ura.URA_member) and

UserRoleAssignPred (ura, ura’, urda, urda’, u, r, t, l, re) and

UserRoleDeAssignPred (ura’, ura’’, urda’, urda’’, u, r, t, l)

implies ura.URA_member=ura’’.URA_member

}

check CheckUserRoleAssignment for 2

assert CheckRolePermissionAssigned {

all rpa, rpa’, rpa’’: RolePermissionAssignment,

rpda, rpda’, rpda’’: RolePermissionDeAssignment,

r: Role, p: Permission, t: Time, l: Location |

no r.(rpa.RPA_member) and

February 23, 2007 DRAFT

48

RolePermissionAssignPred (rpa, rpa’, rpda, rpda’, r, p, t, l) and

RolePermissionDeAssignPred (rpa’, rpa’’, rpda’, rpda’’, r, p, t, l)

implies rpa.RPA_member=rpa’’.RPA_member

}

check CheckRolePermissionAssigned for 2

assert CheckUserRoleActivation {

all uract, uract’, uract’’: UserRoleActivation, urdact,

urdact’, urdact’’: UserRoleDeActivation, u: User,

r: Role, t: Time, l: Location |

no (r->t->l->u).(uract.URAct_member) and

UserRoleActivationPred (uract, uract’, urdact, urdact’, u, r,l, t) and

UserRoleDeActivationPred (uract’, uract’’, urdact’, urdact’’, u, r, l, t)

implies uract.URAct_member=uract’’.URAct_member

}

check CheckUserRoleActivation for 2

assert ACPolicyAssert {

lone Adam : User, DaySurgeon: Role, SpC1: Location, DayTime: Time,

re, re’: RoleEnable,rd, rd’: RoleDisable,

ura, ura’: UserRoleAssignment,

urda, urda’ : UserRoleDeAssignment,

rpa, rpa’: RolePermissionAssignment,

rpda, rpda’ : RolePermissionDeAssignment, p:Permission,

uract, uract’: UserRoleActivation,

urdact, urdact’: UserRoleDeActivation |

EnableRole (rd, rd’, re, re’, DaySurgeon,

DayTime, SpC1) and

RolePermissionAssignPred (rpa, rpa’, rpda, rpda’,

DaySurgeon, p, DayTime, SpC1) and

UserRoleAssignPred (ura, ura’, urda, urda’, Adam,

DaySurgeon, DayTime, SpC1, re’) and

UserRoleActivationPred (uract, uract’, urdact, urdact’,

Adam, DaySurgeon, SpC1, DayTime)

}

check ACPolicyAssert for 2

February 23, 2007 DRAFT

49

APPENDIX II

ALLOY MODEL OF ROLE ENABLING FOR GST-RBAC B ASED ACCESS CONTROL POLICY

DEPICTED IN SECTION VII

module policy

------------- Signature Declarations --------------

sig User {}

sig Role{}

sig Permission{}

sig Location {

operator: SpatialOperators -> Location}

sig SpatialOperators{}

sig Time {}

sig RoleEnable {

re_member : Role-> Location -> Time}

sig RoleDisable {

rd_member : Role-> Location -> Time}

sig UserRoleAssignment {

URA_member : User -> Role -> Location -> Time}

sig UserRoleDeAssignment {

URDA_member : User -> Role -> Location -> Time}

sig RolePermissionAssignment {

RPA_member : Role-> Permission -> Location -> Time}

sig RolePermissionDeAssignment {

RPDA_member : Role-> Permission -> Location -> Time}

sig UserRoleActivation {

URAct_member : User-> Role-> Location-> Time}

sig UserRoleDeActivation {

URDAct_member : User->Role->Location->Time }

sig RoleHierarchy {

rh_member: Role -> Role -> Location -> Time}

sig DaySurgeon extends Role{}

sig NightSurgeon extends Role{}

sig DayTime extends Time{}

sig NightTime extends Time{}

sig SpC1 extends Location{}

----------------------Facts--------

fact UsersEnableNotDisable{ //conflict type 1a

February 23, 2007 DRAFT

50

some rd: RoleDisable, re: RoleEnable,

r: Role, t: Time, l: Location |

((r -> l-> t) in re.re_member =>

(r -> l-> t) not in rd.rd_member &&

(r -> l-> t) not in re.re_member =>

(r -> l-> t) in rd.rd_member)

}

-----------------Predicates/Functions---------

pred EnableRole (rd, rd’: RoleDisable,

re, re’: RoleEnable, r: Role,

t: Time, l: Location) {

re’.re_member=re.re_member+ (r-> l -> t) &&

rd’.rd_member=rd.rd_member- (r-> l -> t)

}

pred DisableRole (rd, rd’: RoleDisable,

re, re’: RoleEnable, r: Role, t: Time, l: Location) {

re’.re_member=re.re_member- (r-> l -> t) &&

rd’.rd_member=rd.rd_member+ (r-> l -> t)

}

run EnableRole for 3 but 2 RoleEnable, 2 RoleDisable

-----------------Access Control Policy facts -------

fact DaySurgeonEnableAtDayTime{

some rd: RoleDisable, re: RoleEnable,

r: DaySurgeon, t: DayTime, l: SpC1 |

(r -> l-> t) in re.re_member

}

fact DaySurgeonDisableAtNightTime{

some rd: RoleDisable, re: RoleEnable,

r: DaySurgeon, t: NightTime, l: SpC1 |

(r -> l-> t) in rd.rd_member

}

fact NightSurgeonEnableAtNightTime{

some rd: RoleDisable, re: RoleEnable,

r: NightSurgeon , t: NightTime, l: SpC1 |

(r -> l-> t) in re.re_member

}

fact NightSurgeonDisableAtDayTime{

some rd: RoleDisable, re: RoleEnable,

r: NightSurgeon, t: DayTime, l: SpC1 |

(r -> l-> t) in rd.rd_member

February 23, 2007 DRAFT

51

}

APPENDIX III

ALLOY MODEL OF USER ROLE ASSIGNMENT FOR GST-RBAC B ASED ACCESS CONTROL

POLICY DEPICTED IN SECTION VII

The following is the additonal Alloy code added to Appendix II for user role assignment.

sig Adam extends User{}

sig Mark extends User{}

-----------------Facts--------------

pred UserRoleAssignPred (ura, ura’:

UserRoleAssignment, urda, urda’ :

UserRoleDeAssignment, u: User, r: Role,

t: Time, l: Location, re’: RoleEnable)

{

ura’.URA_member=ura.URA_member+ (u->r->l->t) &&

urda’.URDA_member=urda.URDA_member- (u->r-> l -> t)

}

pred UserRoleDeAssignPred (ura,

ura’: UserRoleAssignment, urda,

urda’ : UserRoleDeAssignment,

u: User, r: Role, t: Time, l: Location)

{

ura’.URA_member=ura.URA_member- (u->r->l->t) &&

urda’.URDA_member=urda.URDA_member+ (u->r-> l -> t)

}

run UserRoleAssignPred for 3

------------Access Control Polciy facts --------

fact AdamAssignedToDaySurgeonAtDayTimeAtSpC1{

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Adam,

r: DaySurgeon, t: DayTime, l: SpC1 |

(u->r -> l-> t) in ura.URA_member and

(u->r -> l-> t) not in urda.URDA_member

}

fact AdamNotAssignedToDaySurgeonAtNightTimeAtSpC1{

February 23, 2007 DRAFT

52

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Adam,

r: DaySurgeon, t: NightTime, l: SpC1 |

(u->r -> l-> t) not in ura.URA_member and

(u->r -> l-> t) in urda.URDA_member

}

fact MarkAssignedToNightSurgeonAtNightTimeAtSpC1{

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Mark,

r: NightSurgeon, t: NightTime, l: SpC1 |

(u->r -> l-> t) in ura.URA_member and

(u->r -> l-> t) not in urda.URDA_member

}

fact MarkNotAssignedToNightSurgeonAtDayTimeAtSpC1{

some ura: UserRoleAssignment,

urda: UserRoleDeAssignment, u: Mark,

r: NightSurgeon, t: DayTime, l: SpC1 |

(u->r -> l-> t) not in ura.URA_member and

(u->r -> l-> t) in urda.URDA_member

}

REFERENCES

[1] C. A. Patterson, R. R. Muntz, and C. M. Pancake, “IEEE pervasive computing: Spotlight - challenges in location-aware

computing.” IEEE Distributed Systems Online, vol. 4, no. 10, 2003.

[2] R. S. Sandhu, D. F. Ferraiolo, and D. R. Kuhn, “The NIST model for role-based access control: towards a unified standard.”

in ACM Workshop on Role-Based Access Control, 2000, pp. 47–63.

[3] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A Generalized Temporal Role-Based Access Control Model.” IEEE Trans.

Knowl. Data Eng., vol. 17, no. 1, pp. 4–23, 2005.

[4] E. Lupu and M. Sloman, “Conflicts in policy-based distributed systems management.” IEEE Trans. Software Eng., vol. 25,

no. 6, pp. 852–869, 1999.

[5] A. I. Antón, J. B. Earp, T. A. Alspaugh, and C. Potts, “The role of policy and stakeholder privacy values in requirements

engineering.” in RE. IEEE Computer Society, 2001, pp. 138–145.

[6] R. Chadha, G. Lapiotis, and S. Wright, “Policy-based networking.” IEEE Network., vol. 16, no. 2, pp. 8–9, 2002.

[7] M. Sloman and E. Lupu, “Security and management policy specification.” IEEE Network., vol. 16, no. 2, pp. 10–19, 2002.

[8] P. T. Devanbu and S. G. Stubblebine, “Software engineering for security: a roadmap.” in ICSE - Future of SE Track, 2000,

pp. 227–239.

February 23, 2007 DRAFT

53

[9] S. Reiff-Marganiec and K. J. Turner, “Feature interaction in policies.” Computer Networks, vol. 45, no. 5, pp. 569–584,

2004.

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-based access control models.” IEEE Computer,

vol. 29, no. 2, pp. 38–47, 1996.

[11] D. C. Verma, “Simplifying network administration using policy-based management.” IEEE Network, vol. 16, no. 2, pp.

20–26, 2002.

[12] E. A. Boiten, H. Bowman, J. Derrick, P. F. Linington, and M. Steen, “Viewpoint consistency in ODP.” Computer Networks,

vol. 34, no. 3, pp. 503–537, 2000.

[13] M. Barbuceanu, T. Gray, and S. Mankovski, “Providing telecommunication services through multi-agent negotiation.” in

IATA, 1999, pp. 124–136.

[14] N. Mukhi and P. Plebani, “Supporting policy-driven behaviors in web services: experiences and issues.” in ICSOC, 2004,

pp. 322–328.

[15] D. Jackson, “Alloy: a lightweight object modelling notation.” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 2, pp.

256–290, 2002.

[16] MIT, “Alloy case studies,” 2003, pp. http://alloy.mit.edu/case–studies.php.

[17] G. D. Abowd and A. J. Dix, “Integrating status and event phenomena in formal specifications of interactive systems.” in

SIGSOFT FSE, 1994, pp. 44–52.

[18] U. Leonhardt and J. Magee, “Multi-sensor location tracking.” in MOBICOM, 1998, pp. 203–214.

[19] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active badge location system.” ACM Trans. Inf. Syst., vol. 10, no. 1,

pp. 91–102, 1992.

[20] B. N. Schilit, N. Adams, R. Gold, M. M. Tso, and R. Want, “The PARCTAB mobile computing system.” in Workshop on

Workstation Operating Systems, 1993, pp. 34–39.

[21] G. D. Abowd, C. G. Atkeson, J. I. Hong, S. Long, R. Kooper, and M. Pinkerton, “Cyberguide: A mobile context-aware

tour guide.” Wireless Networks, vol. 3, no. 5, pp. 421–433, 1997.

[22] M. J. Egenhofer and R. D. Franzosa, “Point set topological relations.” International Journal of Geographical Information

Systems, vol. 5, pp. 161–174, 1991.

[23] U. Leonhardt, J. Magee, and P. Dias, “Location service in mobile computing environments.” Computers & Graphics,

vol. 20, no. 5, pp. 627–632, 1996.

[24] G. Dommety and R. Jain, “Potential networking applications of global positioning systems (GPS),” CoRR, vol.

cs.NI/9809079, 1998.

[25] D. Jackson, “Alloy: A logical modelling language.” in ZB, 2003, p. 1.

[26] D. Jackson, I. Shlyakhter, and M. Sridharan, “A micromodularity mechanism.” in ESEC / SIGSOFT FSE, 2001, pp. 62–73.

[27] S. W. Xu, “Modeling the active badge system with alloy and its automatic constraint analyzer,” 2003, p.

http://alloy.mit.edu/contributions/ActiveBadgeInAlloy.pdf.

[28] MIT, “Alloy faq,” 2003, p. http://alloy.mit.edu/faq.php.

[29] S. A. Chun and V. Atluri, “Protecting privacy from continuous high-resolution satellite surveillance.” in DBSec, 2000, pp.

233–244.

[30] V. Atluri and S. A. Chun, “An authorization model for geospatial data.” IEEE Trans. Dependable Sec. Comput., vol. 1,

no. 4, pp. 238–254, 2004.

February 23, 2007 DRAFT

54

[31] E. Bertino, M. L. Damiani, and D. Momini, “An access control system for a web map management service.” in RIDE,

2004, pp. 33–39.

[32] M. J. Covington, W. Long, S. Srinivasan, A. K. Dey, M. Ahamad, and G. D. Abowd, “Securing context-aware applications

using environment roles.” in SACMAT, 2001, pp. 10–20.

[33] E. Bertino, B. Catania, M. L. Damiani, and P. Perlasca, “GEO-RBAC: a spatially aware RBAC.” in SACMAT, 2005, pp.

29–37.

[34] R. Bhatti, E. Bertino, and A. Ghafoor, “X-FEDERATE: A policy engineering framework for federated access management.”

IEEE Trans. Software Eng., vol. 32, no. 5, pp. 330–346, 2006.

[35] B. Nuseibeh and S. M. Easterbrook, “Requirements engineering: a roadmap.” in ICSE - Future of SE Track, 2000, pp.

35–46.

[36] M. S. Feather, “Language support for the specification and development of composite systems.” ACM Trans. Program.

Lang. Syst., vol. 9, no. 2, pp. 198–234, 1987.

[37] K. Yue, “What does it mean to say that a specification is complete?” in IWSSD-4, 1987.

[38] W. N. Robinson, “Integrating multiple specifications using domain goals.” in IWSSD-5, 1989, pp. 219–225.

[39] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed requirements acquisition.” Sci. Comput. Program., vol. 20,

no. 1-2, pp. 3–50, 1993.

[40] M. Jackson, “The meaning of requirements.” Ann. Software Eng., vol. 3, pp. 5–21, 1997.

[41] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications.” in 1st Intl. Workshop on Mobile Computing

Systems and Applications, 1994, pp. 85–90.

[42] P. Zave and M. Jackson, “Four dark corners of requirements engineering.” ACM Trans. Softw. Eng. Methodol., vol. 6,

no. 1, pp. 1–30, 1997.

[43] S. Wasserman, “A specification method for interactive information systems.” IEEE Catalog No. 79 CH1401-9C, pp. 68–79,

1979.

[44] J. A. B. Jr., “Information modeling in the context of system development.” in IFIP Congress, 1980, pp. 395–411.

[45] P. T. Ward, “The transformation schema: An extension of the data flow diagram to represent control and timing.” IEEE

Trans. Software Eng., vol. 12, no. 2, pp. 198–210, 1986.

[46] L. J. Bass, G. D. Abowd, and R. Kazman, “Issues in the evaluation of user interface tools.” in ICSE Workshop on SE-HCI,

1994, pp. 17–27.

[47] S. M. Easterbrook, R. R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton, “Experiences using lightweight formal

methods for requirements modeling.” IEEE Trans. Software Eng., vol. 24, no. 1, pp. 4–14, 1998.

[48] M. P. E. Heimdahl and N. G. Leveson, “Completeness and consistency in hierarchical state-based requirements.” IEEE

Trans. Software Eng., vol. 22, no. 6, pp. 363–377, 1996.

[49] N. Dulac, T. Viguier, N. G. Leveson, and M.-A. D. Storey, “On the use of visualization in formal requirements specification.”

in RE, 2002, pp. 71–80.

[50] R. Crook, D. C. Ince, and B. Nuseibeh, “On modelling access policies: Relating roles to their organisational context.” in

RE, 2005, pp. 157–166.

[51] P. Epstein and R. S. Sandhu, “Towards a UML based approach to role engineering.” in ACM Workshop on Role-Based

Access Control, 1999, pp. 135–143.

[52] M. E. Shin and G.-J. Ahn, “UML-based representation of role-based access control.” in WETICE, 2000, pp. 195–200.

February 23, 2007 DRAFT

55

[53] 5th IEEE International Symposium on Requirements Engineering (RE 2001), 27-31 August 2001, Toronto, Canada. IEEE

Computer Society, 2001.

[54] D.-K. Kim, I. Ray, R. B. France, and N. Li, “Modeling role-based access control using parameterized UML models.” in

FASE, 2004, pp. 180–193.

[55] G. J. F. Jones and P. J. Brown, “Information access for context-aware appliances.” in SIGIR, 2000, pp. 382–384.

[56] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and P. Steggles, “Towards a better understanding of context

and context-awareness.” in HUC, 1999, pp. 304–307.

[57] P. D. McDaniel, “On context in authorization policy.” in SACMAT, 2003, pp. 80–89.

[58] I. Jacobson, G. Booch, and J. E. Rumbaugh, “Excerpt from “the unified software development process”: The unified

process.” IEEE Software, vol. 16, no. 3, pp. 82–90, 1999.

[59] J. Jürjens and G. Wimmel, “Security modelling for electronic commerce: The common electronic purse specifications.” in

I3E, 2001, pp. 489–506.

[60] J. Jürjens, “Towards development of secure systems using UMLsec.” in FASE, 2001, pp. 187–200.

[61] A. Kleppe, J. Warmer, and S. Cook, “Informal formality? the object constraint language and its application in the uml

metamodel.” in UML, 1998, pp. 148–161.

[62] M. Vaziri and D. Jackson, “Isome shortcomings of OCL, the object constraint language of UML.” in Response to Object

Management Group’s request on Information in UML 2.0, 1999, p. http://people.csail.mit.edu/dnj/publications/omg.pdf.

[63] J. P. Bowen, M. G. Hinchey, and D. Till, Eds., ZUM ’97: The Z Formal Specification Notation, 10th International Conference

of Z Users, Reading, UK, April 3-4, 1997, Proceedings, ser. Lecture Notes in Computer Science, vol. 1212. Springer,

1997.

[64] J. Zao, H. Wee, J. Chu, and D. Jackson, “RBAC schema verification using lightweight formal model and constraint

analysis,” 2002, pp. http://alloy.mit.edu/case–studies.php.

February 23, 2007 DRAFT

