
CERIAS Tech Report 2007-110
An examination of user behavior for user re-authentication

 by Pusara, Maja
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



 

Graduate School ETD Form 9 PURDUE UNIVERSITY (01/07) 
GRADUATE SCHOOL
 

Thesis Acceptance
 

This is to certify that the thesis prepared 

Maja Pusara By 

Entitled An Examination of User Behavior for User Re-Authentication 

Complies with University regulations and meets the standards of the Graduate School for originality 
and quality 

Doctor of Philosophy 
For the degree of 

Final examining committee members 

Carla E. Brodley, Co-Chair Robert L. Givan 
, Chair 

Eugene H. Spafford, Co-Chair Silvio Micali 

Cristina Nita-Rotaru 

Christopher W. Clifton 

Carla E. Brodley Approved by Major Professor(s): 

Eugene H. Spafford 

Mark J. T. Smith Approved by Head of Graduate Program: 

7/3/07Date of Graduate Program Head's Approval: 



 

 
 
 
 

 
 



AN EXAMINATION OF USER BEHAVIOR FOR USER
 

RE-AUTHENTICATION
 

A Thesis 
  

Submitted to the Faculty
 

of
 

Purdue University
 

by
 

Maja Pusara
 

In Partial Fulfillment of the
 

Requirements for the Degree
 

of
 

Doctor of Philosophy
 

August 2007
 

Purdue University
 

West Lafayette, Indiana
 



UMI Number: 3291194 

UMI Microform 3291194 
Copyright 2008 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346
 Ann Arbor, MI 48106-1346 



ii 

I dedicate  this  dissertation  to  my  parents  who  stood by  me  every  step  of  the  way  

and whose belief in me gave me the strength and courage to persevere. 



iii 

ACKNOWLEDGMENTS 

I would like to acknowledge Professors Carla E. Brodley and Eugene H. Spafford 

for going above and beyond their roles as advisors and Professor Cristina Nita– 

Rotaru for being one of my role models. I would like to acknowledge Doctoral 

Advisory Committee members for their insightful guidance and support and Dr. 

Tom Goldring of the NSA for his belief in the project and financial support. 

would also like to acknowledge Professors Carla E. Brodley, Cristina Nita–Rotaru, 

Judith Stafford and Chris Powers for helping me  conduct  a  class–wide  data  collection  

without which the research presented in this document would not have been possible. 

Finally, I would like to acknowledge my parents for their love and support. 

I 



iv 

TABLE OF CONTENTS 

Page
 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii
 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi
 

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvi
 

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii
 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
 

2 Related  Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
 

2.1 User Authentication in Computer Security . . . . . . . . . . . . . . .  9
 

2.1.1 Keystroke Dynamics . . . . . . . . . . . . . . . . . . . . . . .  10
 

2.1.2 Mouse Dynamics . . . . . . . . . . . . . . . . . . . . . . . . .  14
 

2.2 Behavioral Re–Authentication in Computer Security . . . . . . . . .  15
 

2.2.1 System Calls and Call Stack Information in Program Profiling 15
 

2.2.2 Command–Line Input Data . . . . . . . . . . . . . . . . . .  20
 

2.2.3 Keystroke Dynamics . . . . . . . . . . . . . . . . . . . . . . .  22
 

2.2.4 Mouse Dynamics and GUI Events . . . . . . . . . . . . . . .  24
 

2.2.5 Audit Log Data . . . . . . . . . . . . . . . . . . . . . . . . . .  25
 

2.2.6 Subverting Classification . . . . . . . . . . . . . . . . . . . .  30
 

2.3 Machine Learning Approaches in Behavioral Modeling . . . . . . . . .  30
 

2.3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . .  31
 

2.3.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . .  32
 

2.3.3 Multi–modal Data Analysis . . . . . . . . . . . . . . . . . . .  33
 

3 Data Sources and Feature Extraction . . . . . . . . . . . . . . . . . . . . .  34
 

3.1 Overview of the User Re-Authentication Process . . . . . . . . . . . .  34
 

3.2 The Data Collection Process . . . . . . . . . . . . . . . . . . . . . . .  35
 



v 

Page 

3.3 Data Sources and Features Extracted for each Source . . . . . . . . .  36
 

3.3.1 Mouse Data . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
 

3.3.2 Mouse Features . . . . . . . . . . . . . . . . . . . . . . . . . .  40
 

3.3.3 Keystroke Data . . . . . . . . . . . . . . . . . . . . . . . . . .  42
 

3.3.4 Keystroke Features . . . . . . . . . . . . . . . . . . . . . . . .  44
 

3.3.5 GUI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
 

3.3.6 GUI Features . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
 

3.3.7 Summary of the Feature Space . . . . . . . . . . . . . . . . .  47
 

4 Empirical Analysis of Biometric Sources in User Re–Authentication . . . .  50
 

4.1 Building a Model of Normal Behavior . . . . . . . . . . . . . . . . . .  50
 

4.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . .  51
 

4.2.1 Feature Subset Selection and Classification . . . . . . . . . . .  52
 

4.2.2 Data Set I . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
 

4.2.3 Implementation Schemes . . . . . . . . . . . . . . . . . . . . .  58
 

4.3 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . .  60
 

4.3.1 Experiment I: Pairwise Discrimination . . . . . . . . . . . . .  62
 

4.3.2 Experiment II: Anomaly Detection . . . . . . . . . . . . . . .  67
 

4.3.3 Experiment III: Reducing the Feature Space . . . . . . . . . .  95
 

4.3.4 Experiment IV: Evaluation of the Feature Hierarchy . . . . . . 101
 

4.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 103
 

5 Boosting  Performance  when  the  Amount  of  Data  is  Limited  per  User  . . . 105
 

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
 

5.1.1 Similarity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 106
 

5.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 111
 

5.2.1 Smoothing Filter Functions . . . . . . . . . . . . . . . . . . . 112
 

5.2.2 The Optimization Criterion . . . . . . . . . . . . . . . . . . . 113
 

5.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
 

5.3.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
 



vi 

Page 

5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 124
 

6 User Re-Authentication with the Combined Data Source . . . . . . . . . . 125
 

6.1 Detecting Previously Unseen Intruders . . . . . . . . . . . . . . . . . 125
 

6.1.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 126
 

6.1.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 127
 

6.2 Tracking a Valid User . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
 

6.2.1 Data Set II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
 

6.2.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 131
 

6.2.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 131
 

6.3 Anomaly Detection with Behavioral Constraints . . . . . . . . . . . . 132
 

6.3.1 Data Set III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
 

6.3.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 134
 

6.3.3 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 138
 

6.4 A Study of Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 139
 

6.4.1 Experimental Methodology . . . . . . . . . . . . . . . . . . . . 140
 

6.4.2 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 141
 

6.5 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 141
 

6.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 142
 

7 Summary  and  Significance  . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
 

7.1 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
 

7.1.1 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . 149
 

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
 

7.2.1 Boosting and Cost Functions . . . . . . . . . . . . . . . . . . 150
 

7.2.2 Subverting the System . . . . . . . . . . . . . . . . . . . . . . 151
 

7.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
 

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
 

A Data  Collection  Executable  Algorithm  . . . . . . . . . . . . . . . . . . . . 162
 

B Data  Collection  Library  Algorithm  . . . . . . . . . . . . . . . . . . . . . . 173
 



vii 

Page
 

C GUI  Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
 

D List  of  Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
 

E Data  Collection  Assignment  . . . . . . . . . . . . . . . . . . . . . . . . . . 216
 

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
 



viii 

LIST OF TABLES 

Table	 Page 

3.1	 A list of frequent events. . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
 

4.1	 A contingency table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
 

4.2	 Performance metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59
 

4.3	 The average and the standard deviation values of FP, FB, FN and Error
 
Rates and the Bell Count over all 61 users for the basic and smoothing
 
implementation schemes in the Pairwise Detection experiment. Tables
 
(a), (b), (c) and (d) show results from the keystroke, mouse, GUI and
 
combined data, respectively. . . . . . . . . . . . . . . . . . . . . . . . . .  66
 

4.4	 The average and the standard deviation values of FP, FB, FN and Error
 
Rates and the Bell Count over all 61 users for the basic and smoothing
 
implementation schemes in the Anomaly Detection experiment. Tables
 
(a), (b), (c) and (d) show results from the keystroke, mouse, GUI and
 
combined data, respectively. . . . . . . . . . . . . . . . . . . . . . . . . .  73
 

4.5	 The ten most significant keystroke features over all 61 users in the Anomaly
 
Detection experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75
 

4.6	 The average and the standard deviation values of FP, FB, FN and Error
 
Rates and the Bell Count over all 17 users for the basic and smoothing
 
implementation schemes in the Anomaly Detection experiment for the
 
reduced keystroke data source. . . . . . . . . . . . . . . . . . . . . . . . .  77
 

4.7	 Users with false bell rate above 4.0% for the mouse data source in the
 
Anomaly Detection experiment. . . . . . . . . . . . . . . . . . . . . . . .  81
 

4.8	 Users with false negative rate above 6.0% for the mouse data source in
 
the Anomaly Detection experiment. . . . . . . . . . . . . . . . . . . . . .  82
 

4.9	 The ten most significant mouse features over all 61 users in the Anomaly
 
Detection experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83
 

4.10 The average and the standard deviation values of FP, FB, FN and Error
 
Rates and the Bell Count over all 52 users for the basic and smoothing
 
implementation schemes in the Anomaly Detection experiment for the
 
reduced mouse data source. . . . . . . . . . . . . . . . . . . . . . . . . .  85
 



ix 

Table	 Page 

4.11 Users	 with false bell rate above 5.0% for the GUI data source in the
 
Anomaly Detection experiment. . . . . . . . . . . . . . . . . . . . . . . .  88
 

4.12 Users with false negative rate above 3.0% for the GUI data source in the
 
Anomaly Detection experiment. . . . . . . . . . . . . . . . . . . . . . . .  88
 

4.13 The ten most significant GUI features over all 61 users in the Anomaly
 
Detection experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
 

4.14 Users with false bell rate above 5.0% for the combined data source in the
 
Anomaly Detection experiment. . . . . . . . . . . . . . . . . . . . . . . .  92
 

4.15 Users with false negative rate above 3.5% for the combined data source
 
in the Anomaly Detection experiment. . . . . . . . . . . . . . . . . . . .  92
 

4.16 The ten most significant features over all 61 users in the Anomaly Detec­
tion experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93
 

4.17 The ten most correlated features in the 280–feature space. . . . . . . . .  95
 

4.18 The ten least correlated features in the 280–feature space. . . . . . . . .  96
 

4.19 The average and the standard deviation values of FP, FB, FN and Error
 
Rates and the Bell Count over all 52 users for the basic and smoothing
 
implementation schemes in the Feature Space Reduction experiment. Ta­
bles (a), (b), (c) and (d) show results for feature subsets of 280 (i.e., the
 
full feature space), 134, 113 and 89 features, respectively. . . . . . . . . .  99
 

4.20 The average Tree Size and the number of Unique Features per User over
 
all 52 users in the Feature Space Reduction experiment. . . . . . . . . . 102
 

4.21 The Feature Hierarchy experiment results. . . . . . . . . . . . . . . . . . 102
 

5.1	 Notation used to describe Uniqueness, Bayes 1-Step Markov, Hybrid
 
Multi–step Markov, Compression and IPAM methods. . . . . . . . . . . 107
 

5.2	 The average values of FP, FB, FN and Error Rates and the Bell Count
 
over all 61 users for the majority vote smoothing function (W = 100).  . . 119
 

5.3	 The average values of FP, FB, FN and Error Rates and the Bell Count
 
over all 61 users for the majority vote smoothing function (W = 300).  . . 120
 

5.4	 The average values of FP, FB, FN and Error Rates and the Bell Count
 
over all 61 users for the majority vote smoothing function (W = 500).  . . 121
 

5.5	 The average values of FP, FB, FN and Error Rates and the Bell Count
 
over all 61 users for the majority vote smoothing function (W = 300).  . . 122
 

6.1	 The average FN rates in the Detecting Previously Unseen Intruders ex­
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
 



x 

Table	 Page 

6.2	 FP and FN rates in the Tracking a Valid User experiment. . . . . . . . . 132
 

6.3	 The average and the standard deviation of FP, FB, FN and Error Rates 
and the Bell Count over all 73 users for the basic and smoothing im­
plementation schemes in the Anomaly Detection with Behavioral Con­
straints experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 

6.4	 The average and the standard deviation of FP, FB, FN and Error Rates 
and the Bell Count over 20, 40, 60 and 73–user subsets for the basic and 
smoothing implementation schemes in the Scalability Experiment. . . . . 141 

C.1	 List of GUI Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
 

D.1	 A complete list of mouse features. . . . . . . . . . . . . . . . . . . . . . . 181
 

D.2	 A complete list of Keystroke features. . . . . . . . . . . . . . . . . . . . . 191
 

D.3	 A complete list of GUI features. . . . . . . . . . . . . . . . . . . . . . . . 200
 



xi 

LIST OF FIGURES 

Figure	 Page 

3.1	 Overview of the user re–authentication system operation. . . . . . . . . .  35
 

3.2	 Excerpt from User 10 raw data file. . . . . . . . . . . . . . . . . . . . . .  36
 

3.3	 Mouse events in Windows. . . . . . . . . . . . . . . . . . . . . . . . . . .  38
 

3.4	 Mouse Feature Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . .  39
 

3.5	 Mouse Features: The top figure shows features extracted from the mouse
 
events; the center figure show features extracted from the NC movements;
 
and the bottom figure shows features extracted from the mouse movements. 41
 

3.6	 Frequency example for k = 3.  Distance  is  computed  between  the  ith and
 
i + 3rd  data  point.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
 

3.7	 Keystroke Feature Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . .  43
 

3.8	 Keystroke Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44
 

3.9	 GUI Feature Hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
 

3.10 Temporal only and temporal+spatial GUI data. . . . . . . . . . . . . . .  46
 

3.11 GUI Features:	 The top figure shows features extracted from the spatial
 
and temporal events; and the bottom figure shows features extracted from
 
the temporal only events. . . . . . . . . . . . . . . . . . . . . . . . . . . .  48
 

4.1	 A decision tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
 

4.2	 Number of mouse feature vector instances per user. Nine users have fewer
 
than 150 instances in their data sets. . . . . . . . . . . . . . . . . . . . .  57
 

4.3	 Algorithm to compute FB rate. . . . . . . . . . . . . . . . . . . . . . . .  58
 

4.4	 Overlapping windows of size n with the step size of s = 2.  . . . . . . . .  60
 

4.5	 Upper left figure shows the false positive rates; upper right shows the false
 
bell rates; center left shows the false negative rates; center right figure
 
shows the overall error rates, and bottom figure shows the number of false
 
bells from the keystroke data for all 61 users in the Pairwise Detection
 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62
 



xii 

Figure	 Page 

4.6	 Upper left figure shows the false positive rates; upper right shows the false 
bell rates; center left shows the false negative rates; center right figure 
shows the overall error rates, and bottom figure shows the number of 
false bells from the mouse data for all 61 users in the Pairwise Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

4.7	 Upper left figure shows the false positive rates; upper right shows the 
false bell rates; center left shows the false negative rates; center right 
figure shows the overall error rates, and bottom figure shows the number 
of false bells from the GUI data for all 61 users in the Pairwise Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

4.8	 Upper left figure shows the false positive rates; upper right shows the false 
bell rates; center left shows the false negative rates; center right figure 
shows the overall error rates, and bottom figure shows the number of false 
bells from the combined data for all 61 users in the Pairwise Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 

4.9	 The top left figure shows the false positive rates; the top right shows the 
false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count from 
the keystroke data for each of the 61 users in the Anomaly Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 

4.10 The	 top left figure shows the false positive rates; the top right shows 
the false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count from the 
mouse data for each of the 61 users in the Anomaly Detection experiment. 69 

4.11 The top left figure shows the false positive rates; the top right shows the 
false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count from 
the GUI data for each of the 61 users in the Anomaly Detection experiment. 70 

4.12 The top left figure shows the false positive rates; the top right shows the 
false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count from 
the combined data for each of the 61 users in the Anomaly Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

4.13 The bar graphs show the error rates in the descending order for each of 
the 61 users. The pie charts show the percentage distribution of users 
across each error–rate range. From the top, the bar graphs and the cor­
responding pie charts representing FP, FB, FN and Error rates obtained 
from the combined data in the Anomaly Detection experiment are shown. 72 



xiii 

Figure Page 

4.14 ROC graph for the keystroke data source in the Anomaly Detection ex­
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

4.15 Number of keystroke feature vector instances per user. Only seventeen 
users have at least 150 instances in their data sets. . . . . . . . . . . . .  76 

4.16 The top left figure shows the false positive rates; the top right shows the 
false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count on the 
reduced keystroke data for each of the 17 users in the Anomaly Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

4.17 ROC graph for the reduced keystroke data source in the Anomaly Detec­
tion experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

4.18 ROC graph for the mouse data source in the Anomaly Detection experiment. 80 

4.19 The top left figure shows the false positive rates; the top right shows the 
false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count on the 
reduced mouse data for each of the 52 users in the Anomaly Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 

4.20 ROC graph for the reduced mouse data source in the Anomaly Detection 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4.21 ROC graph for the GUI data source in the Anomaly Detection experiment. 87 

4.22 ROC graph for the combined data source in the Anomaly Detection ex­
periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

4.23 Performance measurements versus the time to alarm for the combined 
data source in the Anomaly Detection experiment. . . . . . . . . . . . .  90 

4.24 Upper left figure shows the false positive rates; upper right shows the 
false bell rates; center left shows the false negative rates, center right 
shows the overall error rates and the bottom figure shows the Bell Count 
on the 134–feature subset for all 52 users in the Feature Space Reduction 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 

4.25 ROC graph for the 134–feature mouse subset in the Feature Space Re­
duction experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 

4.26 The average FP, FB, FN and Error rates and the Bell Count for each 
feature subset over all 52 users in the Feature Space Reduction experiment.101 



xiv 

Figure	 Page 

5.1	 Upper left figure shows the false positive rates; upper right shows the 
false bell rates; center left shows the false negative rates; center right 
figure shows the overall error rates, and bottom figure shows the number 
of false bells for W = 100  for  all  61  users.  . . . . . . . . . . . . . . . . . 114 

5.2	 Upper left figure shows the false positive rates; upper right shows the 
false bell rates; center left shows the false negative rates; center right 
figure shows the overall error rates, and bottom figure shows the number 
of false bells for W = 300  for  all  61  users.  . . . . . . . . . . . . . . . . . 115 

5.3	 Upper left figure shows the false positive rates; upper right shows the 
false bell rates; center left shows the false negative rates; center right 
figure shows the overall error rates, and bottom figure shows the number 
of false bells for W = 500  for  all  61  users.  . . . . . . . . . . . . . . . . . 116 

5.4	 Upper left figure shows the false positive rates; upper right shows the 
false bell rates; center left shows the false negative rates; center right 
figure shows the overall error rates, and bottom figure shows the number 
of false bells for W = 1000  for  all  61  users.  . . . . . . . . . . . . . . . . . 117 

5.5	 Upper left figure shows the error rates obtained for W = 100;  upper  right  
shows the error rates obtained for W = 300;  lower  left  shows  the  error  
rates obtained for W = 500,  and  lower  right  figure  shows  the  error  rates  
obtained for W = 1000  when  m ∈ [1 : 2 : 29] for all 61 users with majority 
vote as the smoothing function. . . . . . . . . . . . . . . . . . . . . . . . 123 

6.1	 The average FN rates on an unseen intruder for each profiled user in the 
61-user dataset in the Detecting Previously Unseen Intruders experiment. 127 

6.2	 The average FN rates as the number of seen intruders increased from 1 
to 59 in the Detecting Previously Unseen Intruders experiment. . . . . . 128 

6.3	 The average TTA values for each user in the 61-user dataset in the De­
tecting Previously Unseen Intruders experiment. . . . . . . . . . . . . . . 129 

6.4	 An electronic copy of a travel expense form used to collect the 73 user 
dataset in the Anomaly Detection with Behavioral Constraints Experiment.133 

6.5	 The top left figure shows the false positive rates; the top right shows 
the false bell rates; center left shows the false negative rates; center right 
shows the error rates; and the bottom figure shows the bell count for each 
of the 73 users in the Anomaly Detection with Behavioral Constraints 
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 



xv 

Figure	 Page 

6.6	 The bar graphs show the error rates in the descending order for each of
 
the 73 users. The pie charts show the percentage distribution of users
 
across each error–rate range. From the top, the bar graphs and the cor­
responding pie charts representing FP, FB, FN and Error rates in the
 
Anomaly Detection with Behavioral Constraints experiment are shown. . 136
 

6.7	 Performance measurements versus the time to alarm in seconds for the
 
combined data source in the Anomaly Detection with Behavioral Con­
straints experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
 

6.8	 ROC curve for the 73–user dataset in the Anomaly Detection with Be­
havioral Constraints experiment. . . . . . . . . . . . . . . . . . . . . . . 139
 

6.9	 Scalability of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
 

A.1	 Declaration and Initialization steps in the EXE file. . . . . . . . . . . . . 163
 

A.2	 Global variables in the EXE file. . . . . . . . . . . . . . . . . . . . . . . 164
 

A.3	 Initial setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
 

A.4	 Executable and Library shared mapping. . . . . . . . . . . . . . . . . . . 166
 

A.5	 Records GUI data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
 

A.6	 Records keystroke data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
 

A.7	 Records mouse data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
 

A.8	 Program activation code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
 

A.9	 Rate limited client–area mouse movement setup via a timer. . . . . . . . 171
 

A.10 Wrap-up code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
 

B.1	 Declaration and Initialization steps in the DLL file. . . . . . . . . . . . . 173
 

B.2	 Interception of GUI events in the DLL file. . . . . . . . . . . . . . . . . . 174
 

B.3	 Interception of keystroke events in the DLL file. . . . . . . . . . . . . . . 175
 

B.4	 Interception of mouse events in the DLL file. . . . . . . . . . . . . . . . . 176
 

B.5	 Exported functions in the DLL file. . . . . . . . . . . . . . . . . . . . . . 177
 



xvi 

SYMBOLS 

U 

M 

N 

W 

f 

a single  user  

a single  machine  

number of users 

window size 

frequency 



xvii 

ABBREVIATIONS 

GUI Graphical User Interface 

HIDS Host based Intrusion Detection System 

FSS Feature Subset Selection 



xviii 

ABSTRACT 

Pusara, Maja. Ph.D., Purdue University, August, 2007. An Examination of User 
Behavior for User Re-Authentication. Major Professors: Carla E. Brodley and 
Eugene H. Spafford. 

The research presented addresses the problem of insider threat mitigation and de­

tection in computer security. The underlying hypothesis is that one can successfully 

model user behavior on the basis of user’s inputs  and  on  GUI  changes  as  a  response  

to those inputs. In particular, the goal is to determine to what extent users can be 

characterized by their mouse movements, keystroke dynamics and GUI events. The 

implemented system raises an alarm when the current behavior of user U , deviates  

sufficiently from learned “normal” behavior of user U . A  closed–setting  deployment  

scenario is assumed and a supervised learning algorithm is applied to discriminate 

among N users. The strength of the keystroke, mouse and GUI classifier, individ­

ually and in combination, is investigated on a set of 61 users. The results obtained 

show that by combining all three sources of information one can differentiate these 

individuals with a false positive rate of 14.47% and a false negative rate of 1.78% 

with the detection time of 2.20 minutes (if user utilized I/O devices). Experiments 

with a second dataset of 73 users illustrate that even if all users are given an identical 

task – in this case filling in a form word-by-word from a template – they can still be 

discriminated. The scalability of the system is examined to determine how well the 

approach scales to more users or to a scenario where one cannot know the behavior 

of all users in advance and therefore wants to discriminate between whether it is or 

is not the valid user. Finally, the accuracy and the computational efficiency of the 

system are investigated in the presence of a limited amount of data for the profile of 

user. 



1 

1. INTRODUCTION 

An integral part of computer security is user authentication, which seeks to confirm 

the identity of a user for the purpose of granting individual users access to their 

respective accounts. Authentication can be achieved by something the user knows 

(e.g., access passwords, PIN codes), something the user owns (e.g., access tokens, ID 

badges, PC cards, smart cards [1], wireless identification agents [2]) or something the 

user is (e.g., a fingerprint [3], a palm print [4], a voice sample [5], an iris pattern [6], 

which are referred to as biometrics [7]). User re-authentication refers to the process 

of continuous authentication of a user for the duration of the user’s login session. 

Typically, authentication is performed once at the start of each user session. 

Detecting whether the current user of a computer system was still the valid user who 

initially authenticated or whether the authentication itself had been compromised 

(e.g., via a weak or stolen password [8]) has long been an issue of concern in the 

privacy and security communities. User re-authentication has been addressed by 

the research community in two ways 1) indirectly by profiling the operating system 

and its applications and 2) directly by profiling a valid user. The majority of prior 

research efforts have focused on the indirect approach – building a model of what 

constituted “normal” software operation. These  intrusion  detection  systems  could  

be used to determine the authenticity of a current user based on his/her library [9] 

and system call invocation [10–20], call-stack data operation [21] or program trace 

analysis [22–41]. Direct approaches to user re–authentication have investigated the 

authenticity of a current user based on his/her command line input data [42–53], 

keystroke dynamics [54–58] or mouse activity [41, 59, 60]. 

The classical intrusion detection systems [14,22,33,39] while successful in flagging 

system–based intrusions (e.g., intrusions that occur in memory, operating system or 



2 

applications), lacked the ability to detect intrusions by impostors or masqueraders. 

Consider a situation in which a trusted user’s password had been stolen and an 

intruder had access to the trusted user’s data. This particular intrusion would have 

evaded detection by the classical intrusion detection systems, because the behavior of 

an operating system or an application could have very well continued to be “normal.” 

To address this problem we propose a biometric user re–authentication system that 

uses keystroke dynamics, mouse movements1 and Graphical User Interface (GUI) 

events to identify a valid user and detect a masquerader or an intruder. 

Before proceeding further it is important to discuss two deployment scenarios 

for a user re–authentication system. In an open–setting scenario, exemplified by 

a public  library  or  an  Internet  cafe,  users  are  allowed  and,  in  fact,  encouraged  to  

use computer systems at will. In such a setting it is virtually impossible to collect 

the data from all users (i.e., the data is not labeled) and an unsupervised learning 

method [61] may be used to build a model of valid user behavior. In unsupervised 

learning, only the valid user’s data is available to build a profile of his/her behavior. 

Data from other users is assumed not to be obtainable. In such an environment, it 

is difficult to draw a boundary between the “normal” behavior of a valid user and 

the “anomalous” behavior of an intruder (i.e., self versus not self discrimination). 

If the boundary is too tight, the valid user’s instances can be misclassified as those 

belonging to an intruder – this is referred to as the false positive or the false alarm 

rate. If the boundary is too loose some intruder’s instances can be misidentified 

as those belonging to the valid user – this is referred to as the false negative rate. 

This is a well-known design trade-off in most stochastic models. If the detection of 

intruders is of primary importance, a model of valid user behavior is built with tight 

bounds thereby causing a potentially high rate of false alarms. If we wish to limit the 

number of false alarms so as not to ask a user to authenticate him/herself repeatedly, 

1The proposed system can be implemented with different kinds of pointing devices (e.g., a mouse, 
touchpad, joystick, etc.). 



3 

a model  of  user  behavior  is  built  with  loose  bounds  thereby  allowing some  intruders  

to go undetected. 

In the closed–setting scenario admittance to the premises is restricted and ac­

cess to the hosts is strictly monitored (e.g., a  financial  institution  or  a  government  

building). In such a setting, it is viable to assume  that  data  can  be  collected  from  

the entire personnel present at the site and that an intruder is likely to come from 

“within” (this form of vulnerability is known as the “insider threat” in the computer 

security community). In the closed-setting scenario supervised learning [61] can be 

applied to learn a model of normal user behavior. In supervised learning, data is 

available from both a trusted user and an intruder(s) before a profile  of  normal be­

havior is generated. As a result, the boundary between the “normal” behavior of the 

valid user and the “anomalous” behavior of an intruder produces lower false positive 

and false negative rates than in unsupervised learning. Our goal is to determine 

which one of the employees is currently using a workstation. To this end, we assume 

a closed–setting  scenario  and  apply  supervised learning algorithms to build a profile 

of normal user behavior. 

In the absence of a user re–authentication process, a computer system is more 

susceptible to attack or misuse. Research  showed  that  although  hackers,  viruses  and  

other external hazards received considerable media attention, there is a significant 

threat presented by insiders who might be employees, temporary workers and/or 

consultants. Each year different branches of the government announce their findings 

on cyber–security. According to the 2006 CSI/FBI Computer Crime and Security 

Survey, unauthorized access was the second greatest source of financial loss [62]. 

The recently released comprehensive report analyzing insider threats to banking 

and finance sector generated by the Secret Service’s National Threat Assessment 

Center (NTAC) and the Software Engineering Institute’s CERT Coordination Center 

informed the public of the following findings [63]: 

1. “Most of the incidents (83%) were executed physically from within the insider’s 

organization and took place during normal business hours.” 



4 

2. “The impact of nearly all insider incidents in the banking and finance sector 

was a financial loss for the victim organization: in 30% of the cases the financial 

loss exceeded $500,000. Many victim organizations incurred harm to multiple 

aspects of the organization.” 

We propose a user re–authentication system that employs machine learning tech­

niques for authentication using behavioral biometrics. Specifically, we address the 

scenario in which we wish to detect if a trusted user or an intruder has gained ac­

cess to a user account. Our system is developed in view of the following research 

objectives: 

Computer Security Objective: To design and implement an on–line, scalable 

user re–authentication system founded on the  data  collected  from  user’s  in­

puts (mouse and keyboard) and Graphical User Interface (GUI) events for the 

purpose of detecting an attacker. 

Machine Learning Objective: To design an accurate, classification system for 

detecting outliers (e.g., intruders) in high dimensional temporal sequence data 

when the amount of data per user is limited. 

We conjecture that the proposed system will be able to accomplish the following: 

1. Detect insiders pretending to be other insiders; 

2. Detect outsiders pretending to be insiders; 

3. Discriminate users in a pair–wise sense; 

4. Determine the sensitivity of user profiles on different hardware configurations; 

5. Discriminate users when they are behaving in an identical manner; 

6. Determine the degree of system’s scalability and computational efficiency; 

7. Determine the strength of each data source (e.g., the mouse, keystrokes and 

GUI) individually and in combination; 



5 

8. Exploit granularity of the data to obtain a comprehensive feature space; 

9. Reduce the candidate feature space to a subset of most predictive features; and 

10. Improve the accuracy measure when the amount of data per user dataset is 

limited; 

We began the dissertation with a description of the related work. We introduced 

the data sources used and explained the feature extraction process. We postulated 

that in our candidate feature space there was  some subset  of  most  uncorrelated  and  

discriminatory features and validated our conjecture empirically. 

In Chapter 4 we studied the strength of each biometric source individually and 

in combination on a set of 61 users. Initially, we constructed a classifier for each pair 

of users to gain insight into which of our biometric sources was most discriminatory. 

We then investigated the ability of our system to detect insiders pretending to be 

other insiders. We determined the accuracy of the system when a profile of “normal” 

user behavior was built after seeing a valid user’s dataset and the remaining N − 1 

intruders’ datasets. The results showed that 1) by combining all three sources of 

information (mouse, keyboard and GUI events) one could differentiate individuals 

and detect intrusions from the inside; 2) features extracted from the mouse wheel, 

mouse movements, control keys and GUI combo box and icon events were the best 

indicators of user’s behavior; and 3) more data was needed per user to improve the 

performance. In this chapter we also studied feature space reduction as one possible 

method to improve the run-time efficiency while maintaining accuracy. 

In Chapter 5 we examined the performance of the system when a limited amount 

of data was available per user profile. We used smoothing functions such as entropy 

and majority vote applied over the m most recent classifications to improve the 

accuracy measurement. Smoothing refers to a process used to reduce the noise, 

in our case, minor, transient changes in the current user’s behavior. Our results 

showed that smoothing over several windows resulted in higher accuracy than simply 



6 

increasing the window size, W , of  the  data  points.  Furthermore, we  observed  that  

as m increased the detection time increased. 

In Chapter 6 we studied 1) the classifier’s ability to detect outsiders pretending 

to be insiders; 2) whether we could track a valid  user  as  he/she  was  using different 

computer and I/O system configurations; 3) whether we could discriminate users 

when they were given an identical task to perform; and 4) the scalability and com­

putational efficiency of our user re-authentication system. The following paragraphs 

outline each of these experiments and describe their significance. 

In Chapter 4 we assumed a closed–setting scenario (data must be collected from 

all users) and applied a supervised learning algorithm to build a profile of normal 

user behavior. In Chapter 6 we concentrated on a scenario where one could not 

know the behavior of all users in advance (e.g., temporary workers or visitors) and 

therefore wished to detect an outsider pretending to be an insider. We considered 

the following two cases: 

1. We had a 3-user dataset (Alice, Bob and  Carol). 	  We  built  a  classifier  C1 to 

discriminate Alice from Bob. We wished to use C1 to discriminate Alice from 

Carol. 

2. We had an	 N–user dataset, where N was large. We built a classifier C2 to 

discriminate Alice from Bob, Dave, Ed and potentially hundreds of other users. 

We wished to use C2 to discriminate Alice from (previously unobserved) Carol. 

We conjectured that the classifier C2 would produce lower error rates when dis­

criminating Alice from Carol than C1. To  validate  our  conjecture  we  tested  the  

behavior of a supervised classifier on a previously unseen user dataset as N grew 

large. We also computed the amount of time it took a classifier to raise an alarm 

when an intrusion occurred. 

Our next objective was to examine the ability of the proposed system to track 

a valid  user  as  he/she  was  using different computer and I/O configurations. We 



7 

observed that user profiles were highly sensitive to hardware configurations and con­

cluded that a separate user profile should be built for each hardware configuration. 

We then studied whether we could discriminate users when they were behaving in 

an identical manner. To this end, we collected a dataset by a group of 73 users who 

were given an identical task to perform. The users were asked to fill out an electronic 

copy of a travel expense sheet word-by-word from a template. The accuracy of the 

combined data source was tested when a profile of “normal” user behavior was built 

after seeing a valid user’s dataset and the remaining N − 1 intruders’  datasets.  The  

results indicated that 1) there was still a strong signal of user identity; and 2) datasets 

dense with I/O events produced more accurate models of user behavior. 

The scalability of the system was investigated on the larger of the two datasets 

(i.e., on the 73-user dataset). The accuracy of the combined data source was tested 

again when a profile of “normal” user behavior was built after seeing a valid user’s 

dataset and the remaining N −1 intruders’  datasets  on  three  subsets  that  we  created  

by randomly picking 20, 40 and 60 users. The tests showed that the system produced 

consistent and nearly constant levels of false positive, false negative and overall 

error rates as the number of users increased from 20 to 40 to 60 to 73, thereby 

demonstrating empirically the scalability of  the  system.  However,  we  concluded  

that to truly test the scalability of a system hundreds and even thousands of user 

datasets were needed. 

As a final point, we examined the computational efficiency of the proposed system 

and determined a computational bottleneck to be the computation of features used 

to build a valid user’s profile. 

The remainder of this document is structured as follows: Chapter 2 discusses the 

related work in both behavioral authentication and re–authentication. Chapter 3 de­

scribes the data sources and the features extracted from each data source. Chapter 4 

explains the design and implementation of our user re–authentication system, investi­

gates the performance of each biometric source empirically and conducts an in-depth 

analysis of the feature space. Chapter 5 examines seven smoothing functions with 



8 

the goal of improving the performance of the system when the amount of data per 

user is limited. Chapter 6 relaxes the closed-setting scenario constraints to study the 

performance of a supervised biometric classifier on an unlabeled dataset. Addition­

ally, the issues of the system’s scalability and computational efficiency are addressed 

in detail. Chapter 7 summarizes our approach to behavioral re–authentication and 

discusses its significance in a real–world setting. 



9 

2. RELATED WORK 

This chapter reviews two related bodies of work in authentication; those used for the 

initial authentication of a user to a resource (host) and those used to continuously 

monitor the user after authentication. The chapter  concludes  with  a  discussion  of  

the machine learning techniques used for learning models of normal behavior. 

2.1 User Authentication in Computer Security 

User authentication, commonly referred to as personal identification, is a tech­

nique whereby a user registers some secret “identity–verifying” information in ad­

vance, and then on each attempt to access the system (login) this information is 

used for authentication. The “identity–verifying” information falls into one of the 

following categories [64]: 

1. Biometrics: fingerprints,  retina  pattern,  face pattern,  voice  print  and  handprint  

2. Objects: ID  card,  credit  card  and  smart  card  

3. Knowledge: password,  PIN  and  digital  signature  

4. Actions: signature and patterns of behavior 

Biometrics encompass the physiological properties of a person – they represent 

what person is in a physiological sense. A drawback of biometrics is the high cost 

of their implementation. Additionally, users may not accept them because of per­

ceptions of invasions of privacy or even physical danger (e.g., retina scan). There is 

a stability–sensitive  distinction  between  biometrics; those that cannot be changed 

such as fingerprints and retina patterns [3, 6] and those that can be altered such as 



10 

voice print or handprint [4, 5]. For example, a cold can distort a biometric based on 

a voice  print.  

The most popular forms of authentication are  objects  and  knowledge.  Objects  or  

possessions are identity–verifying information that a person has, whereas  knowledge  

is what person knows. Objects  and  knowledge  have  their  advantages  over  other  

methods. They require minimum or no additional hardware to implement and are 

unobtrusive to the user. Unfortunately, different types of cards can be lost, stolen, 

and passwords can be guessed or overheard. In addition, hackers can break many 

poorly chosen passwords with apparent ease [65]. 

The final category is the actions that represent what person does and how she 

does it. Actions model patterns of user behavior and hence they are often referred 

to as a behavioral modeling approach. This is the approach used in this research on 

user re–authentication and therefore we describe these methods in detail next. 

Behavioral modeling can be used as stand–alone authentication systems or in 

combination with other authentication mechanisms as a method of password hard­

ening [66]. The behavioral patterns that arise from the user input and interaction 

with the receiving machine are sources of data for user authentication. These input 

patterns are generated via input devices such as the keyboard and mouse. 

2.1.1 Keystroke Dynamics 

Perhaps the best known method of authentication was based on keystroke dy­

namics. By analyzing users’ typing patterns, it was possible to identify users based 

on certain habitual typing rhythm patterns [67]. The motivation to use keystroke 

dynamics was derived from handwriting recognition systems, which used correlation 

analysis of writing–hand movements, pressure measurements on the signature sur­

face, and power spectrum estimation of written scripts to identify individuals [68–74]. 

Early studies focused on determining whether users could be discriminated based 

on latency between two character sequences (digraphs). In 1980, Gaines et al. [75] 



11 

conducted an experiment with seven secretaries, each of whom was given the task of 

retyping the same three paragraphs at two different times four months apart. They 

recorded the digraph latency timings and computed the means of those digraph times 

whose rate of occurrence was at least ten. Then they compared latencies between 

two sessions to determine if the means and the variances were the same at both 

sessions. Although the population sample was too small to draw any conclusions, 

the results were promising, but unacceptable for authentication purposes. 

Similar experiments were conducted by Leggett and Williams with 17 program­

mers instructed to type the same text consisting of approximately one thousand 

words [76]. A user was “accepted” if more than 60.0% of the comparisons between 

the test signature and the mean reference latencies were within 0.5 standard devia­

tions of the mean reference digraph latency. Leggett and Williams reported a false 

positive rate of 5.5% and false negative rate of 5.0%. The main drawback of this 

study was the amount of text participants needed to enter for authentication. 

To compute the degree of similarity between the current signature and stored 

records of latency some authentication methods used the Mahalanobis distance [77] 

and the Euclidean distance [78]. Both approaches made a use of two additional data 

sources: 1) the keystroke pressures and 2) the time it took to type a predefined 

number of words as their attributes. However, the results for both of these methods 

were unavailable, because the experiments were  conducted  for  commercial  ventures.  

Joyce and Gupta [64] also examined latency in an experiment with 33 users who 

were instructed to type a quadruplet (login name, password, first and last name) 

eight times for the purpose of training and another five times for the purpose of 

testing. The mean reference signature for each user was computed as a collection of 

individual signatures, one for each string of the quadruplet, by calculating the mean 

and standard deviation of the eight values for each digraph latency and discarding 

any outliers (datum greater than three standard deviations above the mean). A user 

was considered him/herself if the comparison between the test signature and the 

mean reference signature was within 1.5 standard deviations. The authors reported 



12 

false positive rate of 16.36% and false negative rate of 0.25%. Even though this 

method used less than forty characters for authentication its high false positive rate 

made it infeasible in practice. 

Bleha et al. examined whether latency could be applied to distinguish between 

samples of legal users and imposters. They employed a Bayes classifier and a mini­

mum distance classifier [79]. Fourteen valid and 25 invalid users were instructed to 

type their first and last names and a password. To create each valid user’s profile, 

time duration between successive keystrokes was collected on two occasions and the 

two entries were then combined into a single entry by choosing the shorter of the 

two corresponding time intervals between keystrokes (a.k.a. the shuffling technique). 

For each of the classifiers, the normalization procedure was applied to accommodate 

the variation in the name lengths and a different threshold value was used. An entry 

was rejected if the threshold values were exceeded for both of the classifiers thereby 

producing an unacceptable false positive rate of 8.1% and false negative rate of 2.8%. 

Brown and Rogers were the first to collect keystroke duration in addition to 

keystroke latency [80]. Authentication was done in three ways, using the Euclidean 

distance between the raw keystroke data, backpropagation, and partially connected 

backpropagation neural networks. Two groups of users (21 in the first group and 

25 in the second group) were tested on an input of their own first and last name 

(approximately 15–16 characters in length). The best results were achieved with a 

partially connected backpropagation neural network with a 0.0% false negative rate 

and a false positive rate of 12.0% on the first 21 users and 21.2% false positive rate 

on the other 25. 

A similar  line  of  research  in  terms  of  physical  measurements  (keystroke  duration  

and latency) was found in Obaidat and Sadoun, in which fifteen users provided 

their login name 225 times each day over a period of eight weeks [81, 82]. Fifteen 

individuals then attacked each of the 15 users 15 times. It was unclear whether 

all 15 of the attackers were the same set of users trying to log into each other’s 

accounts or a new group of users. The results reported were zero false positive and 



13 

zero false negative rates. The results were encouraging and it would be interesting 

to repeat the same experiment for the purpose of re–examining false negative rate 

when attackers were allowed to practice typing the legal users’ login names before 

their data was used for evaluation. 

Monrose and Rubin conducted experiments with 31 user (originally they had 42 

participants, but some of the data had to be eliminated because of timing errors) 

and were the first to investigate the use of “Free–style” (i.e., non–structured) text 

as opposed to constant chosen phrases such as usernames [83, 84]. Their users were 

not restricted to a single machine; rather they were given the freedom to collect 

data at their own convenience with their own machines. Both keystroke latency 

and duration were collected. They reported results with three different similarity 

measures in their experiments: Euclidean distance,  non–weighted  probability  and  

weighted probability. Classification was done by K–Nearest Neighbor hierarchical 

clustering [85]. They reported an identification rate (i.e., how well one identified 

him/herself) of approximately 90.0%. 

Monrose et al. also studied password hardening where a hash of password and 

attributes of keystroke dynamics was stored in the  profile  [66].  Experimental  evalu­

ation produced a perfect false negative rate and 48.4% false positive rate. The high 

false positive rate was not surprising considering that normal behavior was modeled 

on short character strings (user name and password). 

Bergadano et al. [57] used the degree of disorder in trigraph latencies as a dis­

similarity metric. The classification was done statistically by classifying an unknown 

instance as belonging to the user with the smallest mean distance between the un­

known instance and the user’s profile of normal behavior. They evaluated their 

approach on 154 individuals achieving a false positive rate of 4.0% and a false nega­

tive rate of 0.01%. This performance was reached using the same sampling text (683 

characters) for all individuals and allowing typing errors. 

The most recent research in keystroke dynamics (duration and latency) was by 

Sang et al. in 2004 in which they used one–class Support Vector Machines (SVMs) 



14 

to classify ten users with the false positive rate of 0.02% and false negative rate of 

0.1% [86]. Their approach outperformed two–class SVMs, back–propagation neural 

network and Levenberg–Marquardt neural network [87]. 

2.1.2 Mouse Dynamics 

Behavioral modeling based on mouse dynamics has received far less attention 

than its counterpart keystroke dynamics. However, recently a study was conducted 

by Everitt and McOwan on a Java–based internet biometric authentication sys­

tem [88]. They combined two distinct tests to ensure authenticity, a typing style 

test and a mouse–based signature test, achieving an overall false negative rate of 

4.4% and false positive rate of 1.0%. A group of 41 participants was tested and 

they were instructed to provide username, password and signature forty times. The 

authentication was done remotely and each user had her own machine and her own 

mouse or pointing device. Latency and hold times were analyzed for keystrokes, and 

Euclidean distance and angle were analyzed for actual mouse signatures. Similarity 

measure was the chromosome fitness rank used in genetic algorithms [89]. The fitness 

for a relationship between two points in space was given by the standard deviation 

equation of a function f that calculated either the distance or angle between the 

points for a particular signature. Relationships were then ranked in order of fitness 

and the ten fittest angle and ten fittest distance relationships were used for signature 

representation. Classification was done with three different back–propagation neural 

networks. Results reported for the mouse–based authentication system only were 

16.3% false positive rate and on average 3–4% false negative rate. The mouse–based 

authentication system was clearly outperformed by the combined mouse– and key– 

based authentication system. Some of the details  of  the system  were omitted in  the  

paper because the project was a commercial venture. 



15 

2.2 Behavioral Re–Authentication in Computer Security 

User re–authentication, or what is sometimes referred to as continuous authenti­

cation, is primarily achieved by behavioral modeling. One could envision a biometric 

system with similar capabilities, but this kind of system would be exceedingly im­

practical, expensive and, most importantly, annoying to users. Consequently, the 

primary focus of the research community in the field of re–authentication has been 

behavioral modeling. 

Anderson was first to recognize the need for modeling host behavior in computer 

security [90]. Alongside the development and wider use of computer networks as 

well as the increased need for shared access of information, security, protection and 

privacy of both information and hosts, have become overwhelmingly important [91]. 

To this end, a multitude of data sources, descriptive features and classifiers have 

been proposed and used, each improving upon the accuracy of its predecessors. At 

the time of writing this document, all research efforts in the area have used one of the 

following data sources for software behavioral modeling: system call traces [10–20], 

command–line input [42–53], keystroke dynamics [54–56, 58], mouse dynamics [41, 

60], various audit logs [22–41], call–stack data [21] and computer usage statistics 

which overlapped with some of the other sources. Preference for a particular data 

source was somewhat subjective, yet for a specific purpose certain sources have been 

known to outperform other sources, for an example, to model the behavior of a host 

computer (e.g., server) system call and program–execution traces have been a good 

choice. 

2.2.1 System Calls and Call Stack Information in Program Profiling 

In the context of this work we believed that it was important to consider program 

profiling approaches in addition to user profiling approaches, because there was a 

pronounced overlap in the data sources and techniques used to model normal be­

havior in general. We limited ourselves to the intrusion detection systems employed 



16 

on the hosts and moreover, we did not consider those host–based IDSs that used 

the network traffic data  for  modeling  system’s  normality.  Reason  for  this  exclusion  

was that models stemming from the network traffic were  inherently  subject  to  a  

great degree of external factors that distinguished them from other more traditional 

host–based IDSs. 

System call analysis for the purpose of program re–authentication has received 

the most attention. This interest in system call analysis stemmed from the fact that 

most intrusion detections (e.g., buffer overflows, etc.) could be detected by observing 

sequences of system calls. To study evolution of these systems, we examined both 

static and dynamic analysis of system calls. Static analysis has bordered on secure 

software engineering and operating systems design and has been characterized by 

specifications of normal program behavior at compile or link time. Conversely, dy­

namic analysis has been performed at run–time, when the program counter and the 

stack information were available. 

The callgraph model of Wagner et al. analyzed system calls via static analysis 

of the program code [10]. A non–deterministic finite automaton (NDFA) was used 

to model system call sequences. This model is innately non-deterministic because 

the branching information cannot be predicted statically. If all non-deterministic 

paths are blocked at some point, the system signals an anomaly. There were no 

false alarms because all paths were considered in the model. However, the model did 

produce some impossible paths that were able to potentially impede the detection 

process by failing to detect intrusions. Unlike some other behavioral models that 

express their results in terms of false positive and false negative rates, behavioral 

models based on system call traces express results in terms of performance (runtime 

overhead) and precision (robustness of detection against a targeted attack). Wagner 

et al. reported overhead of 40.0 seconds per transaction for half of the programs in 

their experiments. 

Giffin et al. also used static analysis, but applied it to binary executables rather 

than source code [11]. They developed many optimization and obfuscation tech­



17 

niques to improve precision and efficiency. Specifically, “inserting null calls” helped 

reduce the amount of non-determinism thereby solving the impossible paths prob­

lem and increasing the precision. However, this technique required rewriting of the 

executables and renaming the name space, which could be cumbersome in certain 

situations. They reported a 0.5% overhead for the unoptimized, non–deterministic 

finite state automaton and 13% overhead at moderate levels of optimization while 

simultaneously reaching a detection rate of 74%. 

The method proposed by Sekar et al. [12] modeled program behavior with a finite 

state automaton (FSA) at runtime. System calls were captured at the user level and 

therefore did not require any changes to the kernel. Runtime monitoring for intrusion 

detection was done by examining the states of the FSA model of normal program 

behavior. If there was no transition between the current state and the new state 

labeled with the system call name that was intercepted, the new state was consid­

ered anomalous and an anomaly count was incremented. When the anomaly count 

exceeded a threshold, an intrusion was flagged. Their method associated different 

weights with different kinds of anomalies, so instead of incrementing the anomaly 

count by one, it was incremented by the weight associated with the anomaly ob­

served. The runtime overhead caused by system call interception was 100–250% and 

the false positive rate was 0.0% after 10,000 system calls used in training. Sekar and 

Uppuluri later devised an efficient runtime detection system at the kernel level [13]. 

They used interposition techniques1 at the operating system’s system call interface 

to enable the kernel–resident state machines to observe application process behav­

ior. This resulted in an overhead of less than 1.5% for the ftpd, telnet and http 

benchmarks. 

Forrest et al.’s approach moved a sliding overlapping window of length n across 

a symbolic  audit  data stream  thereby  creating  a series  of  n–grams, each  containing  

a series of  n consecutive system calls [14–16]. The distinction between normal and 

1System call interposition is a method for regulating and monitoring application behavior. It 
intercepts system calls issued by a user–mode application program and it either allows or denies 
them based on rules and policy. 



18 

anomalous traces was done by a simple comparison in which a new trace was com­

pared against all of the traces in the profile’s database. If only an exact match of 

sequence length n was found, was the trace considered normal. Subsequent exten­

sions of this work considered some alternate classification models HMMs [92] and a 

manually constructed FSA [16]. 

Unlike the study of Forrest et al. which analyzed fixed–length sequences, Wespi 

et al. used the Teiresias [93] algorithms to construct variable–length sequences of 

system calls [17, 18]. The pattern matching algorithm was designed to match the 

sequences exactly (i.e., they could not be matched as ordinary expressions using 

wildcards). The algorithm looked for the exact match first and then for the best 

partial match. If no pattern in the profile matched the beginning of the string, then 

the first event was counted as uncovered and removed. The algorithm then searched 

recursively for other patterns that exactly covered the continuation of the string up 

to a given depth D or to the end of the string whichever came first. For each string 

the algorithm extracted the number of system call events that were uncovered. The  

decision whether to raise an alarm was based on the length of the uncovered sequences 

(i.e., the greater the length of the uncovered sequences the more likely it was that 

an intrusion occurred). They compared their algorithm with the algorithm proposed 

in [14]. The results were remarkably similar for both algorithms: variable–length 

and fixed–length, achieved 0.0% false positive and 20.0% false negative rate when 

the fixed–length of three was used in [14]; and [14] achieved 0.03% false positive and 

10.0% false negative rate when the fixed–length was set at four. It was not clear that 

there was a compelling reason for implementing a variable–length sequence matching 

algorithm considering that its accuracy was comparable  to  the  fixed–length  algorithm  

and its efficiency was lower because of the algorithm’s complexity. 

The generic software wrappers proposed by Ko et al. were designed to enforce 

access control and intrusion detection checks triggered by events during process ex­

ecution [19]. They were implemented in the kernel to analyze system call data. 

They combined signature-based intrusion detection technique with sequence- and 



19 

behavior-based intrusion detection techniques. Although software wrappers are a 

powerful mechanism they are difficult to port, incur system slow-down, and are 

somewhat cumbersome to manage and configure. 

BlueBox [20] was an example of an intrusion detection system based on sys­

tem call introspection.2 It was a policy driven technique similar to sandboxing,3 

which theoretically improved upon both anomaly detection and misuse detection 

techniques. Unlike misuse detection, sandboxing was capable of detecting novel at­

tacks and unlike anomaly detection it was not prone to a high false alarm rate. 

However, its disadvantages were that it was version–specific, hence it needed to be 

reconfigured with each software update; and  it  was  not  capable  of  detecting  in–  

memory attacks. BlueBox operated via system call handler wrappers. This kind of 

implementation alleviated some of the problems faced by typical in–kernel imple­

mentations. BlueBox achieved a perfect detection rate on the system calls data set 

at the cost of a 10.0% slow–down during the runtime. 

Oleg et al. examined call stack data for the purpose of intrusion detection [21]. 

They generated the so–called “VtPath” by using the return addresses from the stack. 

They were able to detect the following anomalies: stack, return address, system call 

and virtual path anomalies. They solved the impossible path exploit4 and they were 

able to treat dynamically loadable libraries (DLLs) like statically linked functions.5 

The false positive rate was virtually zero when one million system calls were used 

for training purposes. Runtime overhead was 150 milliseconds per process. 

2Introspection is an approach typically used for inspecting a virtual machine from the outside for 
the purpose of analyzing the software running inside. 
3Sandboxing is a technique that adds a layer of protection between an exploited program and the 
computer. It confines the normal behavior of a program to a certain domain, so that when the 
program tries to perform an action outside of this domain for no apparent reason, this action is 
treated as suspicious behavior. 
4The impossible path exploit is another name for the impossible path problem. It is a path from 
one system call to the next that goes undetected because of the non–deterministic nature of Control 
Flow Model (CFG) of normal program behavior. 
5They were able to treat DLLs, which are normally linked during the runtime, as if they were 
present in the source code or loaded at the compile time. 



20 

2.2.2 Command–Line Input Data 

Lane and Brodley were the first to experimentally investigate intrusion detec­

tion based on a behavioral model of user command–line input data [42–47]. In the 

instance based learning framework (IBL) they collected fixed–length sequences of a 

user’s commands as a profile. To determine if a current sequence was from the same 

user they applied a similarity measure that counted the matches with the adjacency 

bias and a polynomial upper bound. Experiments were conducted with eight users 

and results reported varied by user as to false positive and false negative rates with 

an average accuracy of 70.0%. Unlike system calls data, for which there were a 

pre–specified number of sequences of system calls, the sheer number of user–driven 

command line input data sequences was capable of potentially exhausting system 

resources. For the purpose of data reduction they applied a version of a greedy 

clustering algorithm, which reduced the size of the user model by 70.0% with only a 

small loss in accuracy. 

Computer intrusion detection based on Bayes Factors for comparing command 

transition probabilities was implemented in [48]. In this context, a Bayes Factor6 

statistic was used to test the null hypothesis that the observed command transition 

probabilities came from the profiled user’s transition matrix. The Bayes Factor tests 

based on the observation of a block of 100 commands had a false alarm rate of 6.6% 

while detecting about 78% of blocks from simulated intrusions performed on fifty 

users each contributing 15,000 commands. To address  the  problem  of  concept  drift  

(i.e., how user behavior changes over time) the authors implemented exponentially 

weighted discount mechanism that needed to be intrusion-free for a certain run-size 

before updating could take place. The work was extended in [49] by implementing 

five different statistical models Uniqueness, Bayes one-step Markov, Hybrid multi­

step Markov, Compression, Sequence-Match [42] and IPAM. The best results were 

6Bayes Factor statistic is the posterior probability of the null hypothesis when the prior probability 
of the null hypothesis is one-half. 



21 

obtained with Bayes one-step Markov with 6.7% false positive rate and 30.7% false 

negative rate evaluated on the command-line data provided by seventy users. 

ADMIT was a real–time host–based IDS that created user profiles using semi-

incremental clustering techniques [50]. The Longest Common Subsequence (LCS) 

was used as a similarity metric when comparing new sequences to the existing user 

profiles. LCS gave the length of the longest subsequence of tokens that the two 

sequences had in common. Authors used the past sequences to determine if the cur­

rent sequence was only noise or if it was a true change from profile. They called this 

process sequence rating and they used a number of possible rating metrics LAST n, 

WEIGHTED and DECAYED WEIGHTS to do it. K–means algorithm was used 

for dynamic clustering. The system was evaluated on the same data set as [42] 

producing a false positive rate of 15.3% and a false negative rate of 19.7%. 

Fawcett and Provost applied their fraud detection algorithm to intrusion de­

tection to discriminate among different users based on their command-line input 

data [51]. They applied the DC-1 algorithm, which used a discrimination method 

called change detection. Change  detection  modeled  the  transitions  that  occurred  

from normal to anomalous activity for each individual user. Change detection was 

effective when there was little commonality within anomalous activity and significant 

differences between normal and anomalous activity. The DC-1 system was evaluated 

on 77 users and a total of 8,000 login sessions. Although the system performed better 

than random, it was defeated by a simple Chi–square profiling technique. 

Coull et al. used bioinformatics techniques for a pair–wise semi–global sequence 

alignment7 to characterize the similarity between the monitored session and the past 

user’s behavior [52]. The pair-wise sequence alignment algorithm was a variation 

of the classic Smith-Waterman algorithm [94]. The scoring scheme was designed so 

that matches positively influenced the score of the alignment and so that matches 

were preferred to gaps. Command-line data was used to build a profile for the user. 

Empirical evaluation was conducted with seventy participants. The method proved 

7Semi-global alignment allows gaps at the ends. 



22 

to be superior to Bayes 1-step Markov, Naive Bayes (with and without updating), 

Hybrid Markov, IPAM, Uniqueness, Sequence Matching [42] and Compression. It 

achieved a false positive rate of 7.7% and a false negative rate of 24.0%. 

Leu and Yang [53] ran statistical tests to see if they could recognize a current user 

as being him/herself. To do this, they first assigned each command a score, which 

was an integer representing the degree of “normalcy” (i.e., the higher the score, the 

more anomalous a command was). Then they assigned a frequency weight to each 

sequence of commands so that the weight was dependent upon the rate of occurrence 

of each sequence. The most frequent sequences of commands were included in the 

user’s profile. The recognition was done by comparing a new instance with the profile 

of current user’s behavior. The results reported had a true positive rate of 72.43% 

on 772 participants who executed a total of 90,000 commands. 

2.2.3 Keystroke Dynamics 

While keystroke dynamics has been extensively applied for authentication, less 

attention has been paid to their use for re–authentication. In [54] 30 subjects en­

tered the same reference text of 2,200 characters twice as a measure of their normal 

behavior. Two different texts of 574 and 389 characters were also collected to be 

used as intruder behavior. Statistical analysis was performed on digraph latencies 

and thresholds were set so that the system would correctly accept both smaller text 

samples when compared against the reference profile of the user who provided them. 

The false negative rate was 15.0% with 26.0% of the impostors detected in the first 

forty keystrokes of the testing samples and most of the impostors (i.e., > 50%) 

detected within 160 keystrokes. 

Dowland et al. [55] ran statistical analysis and different data mining algorithms 

on the users’ data sets. They achieved 50.0% correct classification rate on four 

users. The experiment was then refined in [56] to include some application specific 

information for PowerPoint, Word, Messenger and Internet Explorer. The best true 



23 

acceptance rate was measured to be 60.0% on eight users who collected the data over 

the period of three months. 

Bergadano et al. [58] created a system that measured the time between the de­

pression of the first key and the depression of the nth key for each n-graph8. The  

distance between two typing samples was expressed as the sum of the absolute values 

of the distances of each n–graph of the second sample with respect to the position 

of the same n–graph in the first sample. This distance was normalized by the maxi­

mum number of n–graph occurrences in the two samples. If more than one n–graph 

distance was of interest, the cumulative sum of the individual normalized distances 

was computed. Two different texts, each 300 characters long were used in the ex­

periments on forty users (trusted users) instructed to type both of the text samples 

for an overall total of 137 samples of the first text and 137 samples of the second 

text. Another ninety users (impostors) were instructed to type the second text only 

once. To classify an unknown instance X, the  mean  distance  between  X and each 

user’s profile was computed as the mean of the distances between X and each sam­

ple in the profile. An instance X was said to belong to user U if the mean distance 

value between X and U was the m-th smallest mean distance among all legal users. 

The 5-th smallest distance produced 12.5% false negative rate and zero false positive 

rate. The authors improved their false negative rate by implementing a supervised 

learning scheme that computed the mean and the standard deviation of the distances 

between every sample in U ’s profile and every sample in someone else’s profile. This 

lowered the false negative rate to 5.36% while maintaining a false positive rate of 

zero. They also evaluated the performance of their system on varying text lengths, 

specifically, the text of lengths 150, 75 and 38 characters and obtained the follow­

ing rates FA=5.84% FN=7.5%, FA=9.49% FN=7.5% and FA=32.11% FN=7.5% 

respectively. 

8N–graph denotes n characters in a sequence. For an example, digraph means two characters in a 
sequence. 

http:FA=32.11


24 

2.2.4 Mouse Dynamics and GUI Events 

Data sources used to model a server’s behavior are often inadequate for user 

profiling. These sources best describe the behavior of programs, kernels and oper­

ating systems, and they fail to capture the individuality and uniqueness of human 

behavior. Graphical User Interface (GUI) events  and  mouse  dynamics  model  user  

behavior more directly. However, little work as of yet has used mouse dynamics and 

GUI events with the exception of Goecks and Shavlik [60] and Pusara and Brod­

ley [95]. 

Goecks and Shavlik described a set of potential features for predicting user be­

havior in the World Wide Web (WWW) environment [60]. The feature set included 

counts of the number of hyperlinks clicked on by the user, the number of scrolling 

events and the amount of mouse activity in a time period. The actions of resizing 

a window  and  the  usage  of  the  Edit  menu  and/or  a scroll  bar  were  termed  scrolling 

events by the authors. The mouse activity was the usage of the menu, in this case 

the Main menu, and just the fact that a link was highlighted when the cursor was 

above it. The authors never recorded the mouse movements or even mouse events 

other than clicks on the hyperlinks. Their fundamental goal was, given the HTML 

text of a web page, to predict the amount of normal user actions on the page. They 

used a fully connected, three-layer neural network as a learning algorithm. Empir­

ical results were designed to measure the accuracy in predicting their three chosen 

user actions. One of the authors collected the data by visiting some 200 web pages, 

clicking on one-fifth of the hyperlinks on each web page and producing a total of 

forty scrolling-related and seventy mouse-related events. The results obtained had a 

root mean squared error of 7.0%, 5.0% and 13.0% for the hyperlinks clicked, scrolling 

activity and mouse activity, respectively. 

In [95] user re–authentication system via mouse movements was designed and 

implemented. We showed that users could be distinguished based on the way they 

operated their computer mouse device. To create a model of normal behavior cursor 



25 

coordinates and mouse events (e.g., clicks, double  clicks,  etc.)  were  recorded.  Sta­

tistical measurements of distance, angle and speed were computed and mouse events 

were counted. Decision tree classifier was used to obtain the final results. Empirical 

evaluation was conducted on eighteen users producing a false positive rate of 0.43% 

and a false negative rate of 1.75%. 

2.2.5 Audit Log Data 

In 1985 Denning and Neumann proposed an architectural prototype of an intru­

sion detection system which jumpstarted the  development  of  IDSs  as  we  know  them  

to be today [22]. Denning and Neumann envisioned many aspects that later became 

the foundation of modern IDSs (e.g., the structure of an audit record). They were 

the first to define different vulnerabilities/threats and propose profile structure and 

profile templates. 

Lunt and a team of developers at SRI International were the first to actually im­

plement many of the ideas proposed by Denning and Neumann [23–27]. They came 

up with the Intrusion Detection Expert System (IDES), followed by an improved 

version Next-generation IDES (NIDES). Both IDES and NIDES observed user be­

havior on a monitored computer system and adaptively learned what was normal 

for individual users, groups, remote hosts, and  the  overall  system  behavior.  Ob­

served behavior was flagged as a potential intrusion if it deviated significantly from 

the expected behavior or if it triggered a rule in the expert-system rule base. The 

normal behavior was statistically modeled with multivariate  distributions.  Known  

anomalies (e.g., worms and viruses) were modeled by a set of rules stored in the 

expert database. Because of the vast amount of space occupied by observed audit 

data, they only kept the frequency counts, the means and the covariance of the data 

in the history of profiles. To address the issue of periodic activity updates, they 

implemented exponential decay aging on the history data whereby giving a half-life 



26 

to each measure in the profiles. Winkler and Page proposed an architecture similar 

to the one found in IDES [28]. 

The concept of expert rules characterizing either program or user normal behav­

ior over time became widely accepted in the early 1990’s. In [29] sequential rules 

describing a user’s behavior over time were examined. Attributes measured were 

the event type, name of the executable file, object name, object type, privileges, 

status of an execution and process ID. Sequential rules were then extracted from 

these attributes and the percentage of “cover” was examined (i.e., how well the rules 

covered new sequences of attributes). The authors reported that 9.5% of the rules 

covered 63.5% of the events observed, but what one must keep in mind is that there 

was a subset of the events observed that were not covered by any rule, the so-called 

“unknown events,” which were then forwarded to the sys admin for further inves­

tigation. Consequently, true detection and false positive rates were not reported in 

the paper. 

Debar et al. [30] used recurrent neural networks with backpropagation for user 

identification. The authors collected a variety of audit log data such as login/out 

signals, user commands, timestamps, memory and I/O usage, key hit and latency. 

They reported a 6.12% error in identifying a single user (i.e., the experiment had only 

one user). Another neural network approach on audit log data emerged recently [31]. 

In this paper, a radial basis function (RBF) network was used for intrusion detection 

and it produced accuracy of 74.0% when detecting two attacks (format and ffb). 

In the tradition of its predecessors, [32] proposed software architecture and a rule-

based language for universal audit trail analysis, without conducting any empirical 

evaluation of the prototype. The main contribution of the paper was the rule–based 

language, RUSSEL, which was tailor–made for the analysis of sequential files in a 

single pass. 

Helman and Liepins [33] investigated statistical foundations of audit trail analysis 

for the detection of computer misuse. They modeled computer transactions as gen­

erated by two stationary stochastic processes, the legitimate (normal) process N and 



27 

the misuse process M . They  formally  demonstrated  that the accuracy was bounded 

by a function of the difference of the densities of the two processes. When the dis­

tributions were unknown, as was often the case in practice, the authors suggested a 

frequentist approach to estimating the normal behavior (i.e., the most frequent user 

actions were considered normal) and random approach to estimating anomalies (i.e., 

the occurrence of anomalous events was completely random in nature). This random 

assumption for anomalies is rarely if ever true in practice. To construct the model, 

the authors used a supervised expert rule–base approach. They also reduced the 

dimensionality of their feature space by attribute projection and value aggregation. 

The system was evaluated on the audit command data set collected from eight users. 

It contained 30,000 transactions. The reported results had a 5.0% false positive rate 

and 5.0-7.0% false negative rate which was high considering that the data was labeled 

(i.e., supervised-learning model) and the number of users was small. 

Circa 2000, a group of publications came from UCSB presenting the State Tran­

sition Analysis Technique (STAT) tool suite which included USTAT (User STAT), 

NSTAT (remote Network-host STAT), NetSTAT (Network STAT) and WinSTAT 

(Windows STAT) [34]. The approach supported reusability, portability and ex­

tendibility. It was conceived as a misuse detection method to describe computer 

penetrations as sequences of actions that an  attacker  performed  to  compromise  the  

security of a computer system. The attack scenarios were graphically represented by 

the state transition diagrams. 

Markov chain model of normal behavior was attempted in [35]. Audit data of the 

Sun Solaris system containing a total of 284 different event types (i.e., system calls) 

was used for the empirical evaluation of the system. Fifteen attacks were added 

to the “clean” data set for testing purposes: password guessing, symbolic links to 

gain root privileges, gaining unauthorized access remotely, etc. All 284 event types 

were represented by one of the states in the Markov chain. The construct the model 

of normal behavior Ye computed the transitional probabilities between the states. 

The model was evaluated on 1613 data instances and it achieved a perfect detection 



28 

rate with a zero false positive rate on the fifteen attacks above mentioned. These 

results were surprising considering that the likelihood of every one of the event types 

occurring in the set of 1613 data instances was low. Furthermore, it was always 

possible to invoke a rare event type as part of the normal behavior. Such rare events 

could then induce false alarms. Attacks such as password guessing and remote access 

were easily detectable with this model because they invoked only a small subset of 

different event types. It would have been interesting to measure the performance of 

the proposed system on some other attacks including the obfuscated attacks. Ye [36] 

also implemented a scalable clustering technique for intrusion signature detection. 

In this work he compared the results obtained by supervised clustering versus those 

obtained by the decision tree algorithm C4.5. To construct a model of normal be­

havior in his supervised clustering method he  used  the  distance–based  similarity  

metric. He had thirty different attributes (i.e., features) in the data set, each at­

tribute representing the frequency count of a particular system call. The purpose of 

the empirical evaluation was to determine the degree to which the thirty system calls 

could be identified. The results were perfect (i.e., FP=FN=0%) for the clustering 

method while the decision tree produced a false negative rate of 5.0%. No practical 

application was known to us that could benefit from identification of system calls. 

Most recent architecture for audit log data analysis was proposed by [37–39]. Lee 

et al. suggested the use of adaptive learning algorithms to facilitate model construc­

tion, to perform incremental updates and to improve usability. They also suggested 

the use of unsupervised anomaly detection algorithms  to  reduce  the  reliance  on  la­

beled data. The key ideas were to use data mining techniques (the association rules 

algorithm and the frequent episodes algorithm) to discover consistent and useful pat­

terns of system features that described program and user behavior, and use the set of 

relevant system features to compute (inductively learned) classifiers that could rec­

ognize anomalies and known intrusions. The authors used the RIPPER algorithm, 

an inductive rule learner, to compute the detection rules for various attacks. They 

also introduced the concept of artificial anomaly generation whereby anomalies were 



29 

“man-made” by near-miss instances that were close to the known data, but were 

not in the training data. To meet the challenges of both efficient learning (mining) 

and real-time detection, they proposed an agent-based architecture for intrusion de­

tection systems where the learning agents continuously compute and provide the 

updated models to the detection agents. 

Shavlik and Shavlik [41] proposed an algorithm that created a model representing 

“each particular computer’s range of normal behavior. [41]” Parameters that deter­

mined when an alarm should be raised, because of abnormal activity, were set on 

a per  computer  basis.  A  total  of  200 different measurements including the number 

of bytes transferred, CPU load and the number of programs currently running were 

recorded. For each of the measurements the following features were obtained: actual 

value measured, average of the previous 10 and the previous 100 values, difference 

between current and previous value, difference between current and average of last 

10, difference between current and average of last 100 and difference between aver­

ages of previous 10 and previous 100. Classification was done by taking weighted 

votes from a pool of individual features and continually adjusting the weights to 

improve accuracy. The method was evaluated on a set of sixteen users who collected 

the data over a period of fifty days. At the window length of 1200 seconds true 

detection rate was measured to be 95.0%, the false positive rate was one per day and 

the CPU cycle usage was approximately 1.0%. From the paper, it was not clear if 

the system was designed to model the behavior of users or programs. The authors 

claimed that it was capable of modeling both, but this might not have been the case 

considering that users and programs differ in many ways (i.e., unlike users, programs 

are version specific or operating system specific and unlike programs, user behavior 

is not bounded by a finite set of possible actions). 



30 

2.2.6 Subverting Classification 

When considering the weaknesses of any security mechanism we needed to ex­

amine the worst–case scenario, which in the case of behavioral modeling was an 

attacker having access to the data sources, learning algorithm and a classifier. Given 

this knowledge, could an attacker working in probabilistic  polynomial  time  subvert  

the classification of the system and remain undetected?  Any  model  that  is  computer  

generated (i.e., a generative model) is vulnerable to a clever attacker, because there 

is always a way to reverse engineer it. For an example, Wagner and Soto investigated 

mimicry attacks on system call IDSs [96]. They concluded that an attacker could 

evade the detection simply by inserting sequences of no–op instructions into attack 

sequence of system calls. Keystroke and mouse dynamics IDSs were somewhat more 

difficult to subvert because it was virtually impossible for an attacker to reproduce 

the same duration and latency timings for the  keystrokes  or  the  same  distribution  

of the mouse clicks and mouse movements for the mouse by simply using the input 

devices. For the attacker to be successful in this case, an additional PC device was 

required to transmit the attack sequence from the serial port of the attacker’s PC to 

the serial port of the target PC. This inherently assumed that there was an algorithm 

for converting the attacker’s signature into the trusted user’s signature running on 

the attacker’s PC. The best way to prevent an attacker from subverting the system 

would be to ensure the privacy of the model of normal behavior. One way that this 

might be achieved is by encrypting the model, which in turn would make it difficult 

for the attacker to break the system but it also might make it harder for us to use 

the model. 

2.3 Machine Learning Approaches in Behavioral Modeling 

There are two machine learning approaches that are commonly applied to anomaly 

detection: supervised and unsupervised learning.  Which was  chosen depended on  

whether data was available for each user that could possibly use a particular host. 



31 

In such cases, supervised learning has been used, otherwise, unsupervised learning 

was applied. Note that in some cases data could be available for some users, but not 

for all and we investigated this scenario in Chapter 6. 

Smoothing filter functions have found a wide area of application in the continuous 

time series domain [97]. In this document, we explored the applicability of smoothing 

filter functions to discrete, temporal sequence data (sometimes referred to as event 

sequence data). Smoothing refers to a process of reducing noise in a dataset, in our 

case, reducing minor, transient changes in user behavior. In Chapter 5 we showed 

that smoothing could effectively lower the number of false alarms. We differ the 

discussion of the related work in this area until Chapter 5. 

2.3.1 Supervised Learning 

Consider a machine that receives some sequence of inputs x1, x2, x3, .., xn where 

the xi are a sensory input, in this case user’s keystroke, mouse or GUI events. This 

is the data that is collected for each user. In supervised learning for each input 

sequence there is a corresponding output sequence y1, y2, y3, .., yn labeling which of 

the N users is currently using a workstation (e.g., labeling the current user as either 

a trusted  user  or  an  intruder)  [61].  The  goal  in  supervised  learning  is  to produce  the  

correct output (i.e., new label) given a new input. In this dissertation, we wished 

to determine if the current user of a computer system was the trusted user or an 

intruder, where an intruder was an employee whose dataset was collected in advance 

and whose data was available to us a priori  to building a model of the trusted user 

behavior. 

There are a multitude of supervised learning techniques available for building 

models of normal behavior when data is available for all users of interest. Neu­

ral networks (NNs) [30, 31, 80, 88], decision trees (DTs) [95], support vector ma­

chines (SVMs) [86], Finite State Automaton Machines (FSAM) [10–13], supervised 

sequence matching [52] and supervised statistical models [23–27, 58] are well known 



32 

supervised learning methods. In comparison to unsupervised learning methods, these 

techniques produced lower error rates and fewer false alarms, which was not surpris­

ing considering the training set had labeled data (i.e., it had instances of both normal 

and anomalous behaviors). Among the various techniques, SVMs have been shown to 

outperform others, but only when the dataset did not have skewed class-distributions 

and the number of irrelevant features (i.e., attributes) was not overwhelming [98,99]. 

The keystroke authentication approach in [86] that used one–class SVMs outper­

formed other methods with a false positive rate of 0.02% and a false negative rate 

of 0.1%. 

2.3.2 Unsupervised Learning 

Consider again a machine that receives a sensory input as a sequence of inputs 

x1, x2, x3, .., xn – in  the  domain  of  our  user  re-authentication  system  these  inputs  

are user’s keystroke, mouse or GUI events. Unlike supervised learning, no corre­

sponding sequence of outputs is present a priori to building a model of normal user 

behavior [61]. Only the valid user data is available, and the intruder(s) data is either 

unobtainable or does not exist. In such an environment, it is difficult to draw a 

boundary between the “normal” behavior of a valid user and the “anomalous” be­

havior of an intruder. If the boundary is too tight, the valid user’s instances can be 

misclassified as those belonging to an intruder – this is referred to as the false pos­

itive or the false alarm rate. If the boundary is too loose some intruder’s instances 

can be misidentified as those belonging to the valid user – this is referred to as the 

false negative rate. This is a well-known design trade-off in most stochastic systems. 

If the detection of intruders is of primary importance, a model of valid user behavior 

is built with tight bounds thereby causing a potentially high rate of false alarms. If 

we wished to limit the number of false alarms so as not to ask a user to authenticate 

him/herself repeatedly, a model of user behavior should be built with loose bounds 

thereby allowing some intruders to go undetected. 



33 

Many unsupervised learning techniques have been applied to anomaly detection: 

clustering [36, 50, 77–80, 83, 84], sequence matching [14–18, 42–44, 46, 47, 53], Markov 

Models (MMs) [35, 48, 49], statistical modeling [23–27, 33, 41, 54–56, 60, 64, 66, 75, 76, 

79,81] and expert rules [29, 32, 34, 37–39] are the most prominent choices. 

2.3.3 Multi–modal Data Analysis 

Multi–modal data analysis refers to situations in which there is more than one 

data source. The sources could be combined at the data level [100], at the feature 

level [95, 101] and at the classifier level [102–104]. Combination at the data level 

meant that all of the incoming data was merged into a single data file before any kind 

of processing was performed on it. A single set of features was then extracted from 

the combined data file without regard to each individual data source. This approach 

did not produce optimal results when each data  source  had  unique  characteristics  

not reflected in the obtained feature set. 

Combination at the feature level meant that the feature/attribute values ex­

tracted on a per data–source basis were combined into a single feature file which 

was then forwarded to the classifier. Combination at the classifier level meant that 

a separate  classifier  was  generated  for  each  of  the  data sources  and  some  kind  of  a  

voting scheme was implemented to produce the final classification decision. 

In this document we constructed a combined classifier by merging features ex­

tracted from each data source (e.g., keystrokes, mouse and GUI) into a single feature 

vector (see Chapter 3). The optimal combination of different data sources is an active 

area of research in many scientific fields, but it is outside the scope of this thesis. 



34 

3. DATA SOURCES AND FEATURE EXTRACTION 

User re–authentication has been tackled by the research community in two ways 

1) indirectly by profiling the operating system and/or applications and 2) directly 

by profiling a valid user. Our research efforts took the direct approach to user re– 

authentication. We investigated the authenticity of a current user based on his/her 

keystroke dynamics, mouse activity1 and GUI events. This chapter gives an overview 

of the user re–authentication process, describes the data collected and features ex­

tracted for each data source. 

3.1 Overview of the User Re-Authentication Process 

The goal of a user re–authentication system in an operational setting is to detect 

and flag anomalies in the behavior of a current user. To accomplish this task, the user 

re–authentication system first collects clean data from each user. The clean data is 

considered to be a collection of data points that are known to belong to a particular 

user who behaved in accordance with the computer security policy during the data 

collection process. Collecting the clean data can necessitate significant resources and 

be expensive in practice. When the data collection is completed, a profile of normal 

user behavior is built for each user. This profile is then used to compare the current 

user’s behavior with that of a valid user. Any significant difference between the two 

profiles should signal an intrusion to a system administrator. 

The overview of the system’s operation is shown in Figure 3.1. Without any loss 

of generality let us assume that the user on the left was a trusted user and that the 

user on the right was an insider trying to access some confidential information that 

1The proposed system can be implemented with different kinds of pointing devices (e.g., a mouse, 
touchpad, joystick, etc.). 



35 

Fig. 3.1. Overview of the user re–authentication system operation. 

was either stored on our trusted user’s computer or was remotely accessed through 

her account. During the data collection phase, the system collected data from both 

employees and created two profiles of each user’s normal behavior. When the intruder 

was using our trusted user’s computer to access the confidential information, the 

system was collecting his mouse movements, keystrokes and GUI events and was 

comparing his behavior to that of the valid user. Mismatch between the two profiles 

raised an alarm and alerted the system administrator to a possible intrusion. 

3.2 The Data Collection Process 

Borland’s Delphi 7.0 was used to program the data collection algorithm for the 

Windows operating system environment. The executable and the library file used 



36 

Fig. 3.2. Excerpt from User 10 raw data file. 

to collect the data are shown in Appendices A and B. The SetWindowsHookEx 

procedure was used to capture Windows API calls  (i.e.,  events)  on  the  return path  

from an application to the kernel. Three SetWindowsHookEx procedures were em­

ployed: 1) WH MOUSE for the mouse data; 2) WH KEYBOARD for the keystroke 

data; and 3) WH CALLWNDPROCRET for the GUI data. 

The data collection was conducted in the computer labs of Tufts University and 

Purdue University. The computers used in the  data  collection  were  Dell  Worksta­

tions. 

3.3 Data Sources and Features Extracted for each Source 

We considered three sources of data for user re–authentication: keystrokes, mouse 

movements and GUI events. For each user, we recorded his/her keystroke, mouse 

and GUI data points in the order in which they were induced. For each data point we 

recorded the identification number of the event, the X and Y screen coordinates, the 

time when it happened and the application in which  the  data  point  occurred.  Each  



37 

collected data instance we referred to as the raw data instance and each collected 

data file we referred to as the raw data file. 

An excerpt from user–10’s raw data file is shown in Figure 3.2. The first column 

shows a unique identification number of each event (this was the number assigned 

to a particular event by the Windows operating system), the second and the third 

columns show the cursor’s screen coordinates, the fourth column shows the system 

time when the event occurred and the last column shows the application in which 

the event occurred. We recorded the application information to ensure that users 

followed the data collection instructions and used the specified software. We did 

not use the application information as a feature, because we wished to determine 

the strength of each data source for the duration of the entire user login session, 

which in a practical setting entailed switching among several different applications. 

We did, however, test our user re–authentication system when users were given an 

identical task to perform (see Chapter 6). 

We computed features by examining a window of W data points at a time. In 

this section we describe all candidate features. Our goal is to determine a predictive 

feature subset. Thus, we first designed a comprehensive candidate feature space, 

that we subsequently reduced to a subset of most discriminative features in Chapter 

4. 

3.3.1 Mouse Data 

To capture a user’s mouse behavior we recorded all Windows mouse events. In 

Figure 3.3, the “ID” column lists unique mouse–event identification numbers and 

the “Message Name” column displays the name of each mouse event defined by the 

Windows operating system. Upon a closer examination of the different mouse events, 

we grouped them according to their type into a hierarchy, because we conjectured 

that a hierarchical view of the data would enable feature extraction at varying levels 

of granularity. 



38 

Fig. 3.3. Mouse events in Windows. 

Figure 3.4 shows the mouse hierarchy. At the top level of the mouse hierarchy 

were all mouse data points. At the next level, the mouse data was split into “mouse 

events” and “client” and “non–client” (NC) area “mouse movements” (the client 

area was defined to be the area of the application window below the menu and 

toolbars). The client area mouse movements were not collected at the rate at which 

they were induced because this rate was prohibitively high (approximately several 

hundred movements per second); consequently, capturing all of them would have 

created a volume of data that was intractable. To mediate this problem, client–area 

mouse movements were rate limited by being recorded every 100msec if and only 

if the mouse position changed. We set the time interval to be 100msec because 

we speculated that the time it took human beings “to do things” was measured 

in seconds or even minutes. Although a 100msec interval was a long time from a 

computer processor’s perspective, it was a relatively short time for a human, who 

might or might not have moved a mouse even by a pixel in this period. 

The “mouse events” data was divided into mouse “wheel” movements and “clicks” 

and the “click” data was further divided into “single” and “double” clicks. Both 



39 

Fig. 3.4. Mouse Feature Hierarchy. 

client and non-client area clicks were combined in the “clicks” category. Moreover, 

client and non-client area left, right and middle button single clicks were combined 

into the “single” category and client and non-client area left, right and middle button 

double clicks were combined into the “double” category. This was because single and 

double clicks were the most infrequent mouse events. Consider a user searching for 

a specific  document  on  the  World  Wide  Web.  He/she  used  a  keyboard  to type  in  a  

search string, a mouse wheel or a scroll-bar to  navigate  through  the  search  engine  

results, left mouse click to make a selection and likely spent the rest of the time 

reading the selected document. Observing his/her mouse behavior over time, it was 

clear that the amount of click-data was negligible in comparison to the mouse and 

wheel movement data. Consequently, we did not get better performance from higher 

granularity of the click–data. 



� 

40 

3.3.2 Mouse Features 

For each data point (mouse, keystrokes and GUI events) we recorded the cursor’s 

screen coordinates X and Y and the system time when the event occurred. The 

client area mouse movements were rate sampled every 100msec and recorded if and 

only if the screen cursor moved. This difference resulted in differences in how features 

were extracted from client and non-client area mouse movements. We next describe 

the features extracted from the mouse data. 

Mouse event features: Over a window of W data points we counted the number 

of events in each mouse event category and subcategory. The other features were 

extracted from examining either two subsequent mouse events or mouse events sep­

arated by k data points. The parameter k, called  the  frequency, was  customized  for  

each user and each type of events. We discussed it’s selection in Section 3.3.7. We 

computed the mean, standard deviation and skewness (i.e., the third moment) of: 1) 

distance, 2) speed=distance(Pi,Pj ) , where  Pi = (xi, yi) and  Pj = (xj , yj) were  two  data  
time(Pi,Pj) 

points, 3) angle of orientation, 4) X, 5)  Y coordinates and 6) n–graph duration,2 

where n ∈ [1, 8]. For example of k = 3,  then  to  compute  the  distance  between  the  

ith and i + 3rd  data  point  we  calculated  distance=  (xi+3 − xi)2 + (yi+3 − yi)2 (see 

Figure 3.6). 

We chose a range of [1, 8] for n in the n-graph duration, because research in 

keystroke dynamics achieved accurate results when monitoring the duration between 

the first to fourth keystroke [57]. Our value of n went to eight because each mouse 

event induced two separate events during the data collection (i.e., a button–up and 

a button–down event). This created 200 features. On the top row of Figure 3.5, the 

table on the right lists the features extracted from each shaded category of mouse 

event data shown on the left. 

NC moves features: Over a window of W data points we counted the number of 

NC moves and compute the mean, standard deviation and skewness of: 1) distance, 

2The n–graph duration is defined as the elapsed time between the first and the nth data point [57]. 



41
 

Fig. 3.5. Mouse Features: The top figure shows features extracted 
from the mouse events; the center figure show features extracted from 
the NC movements; and the bottom figure shows features extracted 
from the mouse movements. 



42 

Fig. 3.6. Frequency example for k = 3.  Distance  is  computed  be­
tween the ith and i + 3rd  data  point.  

2) speed 3) angle of orientation, 4) X, 5)  Y coordinates and 6) n–graph duration, 

where n ∈ [1, 8], between either two subsequent NC moves or NC moves separated 

by k data points. This created 40 features. The center row of Figure 3.5 lists the 

features extracted from the shaded “NC moves” category of mouse data. 

Client–area mouse moves features: Over a window of W data points we counted 

the number of mouse movements and compute the mean, standard deviation and 

skewness of: 1) distance, 2) speed 3) angle of orientation, 4) X, 5)  Y coordinates 

and 6) n–graph duration, where n ∈ [1, 8], between either two subsequent mouse 

moves or mouse moves separated by k data points. This created 40 features. The 

bottom row of Figure 3.5 gives the features extracted from the shaded “Mouse moves” 

category of mouse data. 

3.3.3 Keystroke Data 

There were only two keystroke events in the Windows operating system envi­

ronment: WM KEYUP and WM KEYDOWN. Each one of these events carried 

a unique  identifier  describing  the  exact  keyboard  button  that  was  pressed  or  de­

pressed. To build an accurate model of normal user keystroke behavior we recorded 



43 

Fig. 3.7. Keystroke Feature Hierarchy. 

each keystroke event. Similar to the mouse data, we grouped keystrokes according 

to their type into a hierarchy, which is shown in Figure 3.7. 

The top level of the hierarchy contained all keystroke data points. At the next 

level the keyboard data was split into “function” keys (e.g., F1–F12), “control” keys 

(e.g., Control, Alt and Delete), “regular” keys  (i.e.,  letters  of  the  alphabet  and  num­

bers), “mouse” keys (i.e., keys used by expert users to navigate through a computer 

system without the use of a mouse device, such were Page Up/Down, Tab, arrow 

keys, etc.) and “other” keys (e.g., punctuation keys, Pause/Break, PrtSc/SysRq, 

etc.). Finally, the “regular” keys were divided into “letters” and “numbers.” 



44
 

Fig. 3.8. Keystroke Features. 

3.3.4 Keystroke Features 

Although we recorded the cursor’s X and Y screen coordinates for each keystroke 

event we did not use this information to compute features for the keystroke data. 

Keystroke features: Over a window of W data points we counted the number of 

events in each keystroke category and we computed the mean, standard deviation 

and skewness of the n–graph duration between consecutive keystrokes in the category 

where n ∈ [1, 8]. Each keystroke event also induced two separate events during the 

data collection (i.e., a key–up and a key–down event). Because keystroke events were 

less frequent than mouse events we computed the n–graph durations between two 

subsequent events only, i.e., k = 1 for the keystroke data. We also counted the 

number of occurrence of each alphabet letter and  each  numeral  thereby  obtaining  26  

alphabet features (i.e., A(a)–Z(z)) and ten (i.e., 0–9) numeric features. This created 



45 

Fig. 3.9. GUI Feature Hierarchy. 

236 features. Figure 3.8 lists the features extracted from each shaded keystroke 

category. 

3.3.5 GUI Data 

We collected data induced by 138 GUI events (see Appendix C for a complete list). 

Similar to the mouse and keystroke data, we grouped  GUI  events  according  to  their  

function into a hierarchy, which is shown in Figure 3.9. The top level of the hierarchy 

contained all GUI events. At the next level the GUI data was split into the “spatial 

and temporal” and “temporal” only data because some of the GUI events were 

purely temporal in nature and some were both temporal and spatial. The “temporal 

and spatial” data was split into “window” (i.e., scroll bar, minimize, maximize, 

restore, move, etc.), “control” (i.e., application and process control, open/close, etc.), 



46 

Fig. 3.10. Temporal only and temporal+spatial GUI data. 

“menu” (e.g., open, select, navigate, close) and “item” (e.g., list, button, etc.) events 

and the “temporal” data was split into “icon,” “dialog,” “query,” “combo box” 

(e.g., open/close, select, move, resize, etc.) and “miscellaneous” events (e.g., power 

up/down, language change, background color change, etc.). 

3.3.6 GUI Features 

GUI events encompassed those events that carried both spatial and temporal in­

formation and others that carried temporal information only. We listed the different 

types of GUI events in Figure 3.10. The first, second and third columns of Figure 

3.10 list a type of the GUI event, description and whether a particular event was 

temporal (T) or both temporal and spatial (T & S), respectively. 

Spatial features: Over a window of W data points we counted the number of 

events in each spatial category and we computed the mean, standard deviation and 

skewness of: 1) distance, 2) speed, 3) angle of orientation, 4) X, 5)  Y coordinates 

and 6) n–graph duration, where n ∈ [1, 8], between either two subsequent spatial 

events or events separated by k data points. This created 200 features. The top sub– 



47 

Table 3.1
 
A list  of  frequent  events. 
  

# Event Description 

1 

2 

3 

4 

5 

6 

7 

8 

9 

All mouse events 

Mouse movements 

Mouse wheel movements 

NC mouse movements 

All GUI events 

Spatial+Temporal 

Temporal 

Window 

Dialog 

figure of Figure 3.11 lists the features extracted from the shaded “Spatial+Temporal” 

category of GUI data. 

Temporal features: Over a window of W data points we counted the number of 

events in each temporal category and we computed the mean, standard deviation 

and skewness of the n–graph duration between consecutive temporal events where 

n ∈ [1, 8]. Similarly to the mouse data, we computed the n–graph durations either 

between two subsequent temporal events or between two events separated by k data 

points. This created 240 features. The bottom sub–figure of Figure 3.11 lists the 

features extracted from the shaded “Temporal” category of GUI data. 

3.3.7 Summary of the Feature Space 

Ideally, the window size W is specified for each user and the frequency k is 

specified for each user and each subcategory of events in the data hierarchies of 

Figures 3.4 to 3.9 for the mouse, keystroke and GUI, respectively. We examined 



48
 

Fig. 3.11. GUI Features: The top figure shows features extracted 
from the spatial and temporal events; and the bottom figure shows 
features extracted from the temporal only events. 



49 

the following candidate values {100, 300, 500, 1000} for W and {1, 5, 10, 15, 20} for 

k. In  the  experiments  in  Chapter  4  we  set  W to be 5003 data points and k to be 

8 for  frequent  events  (see  Table  3.1)  and  1 otherwise.  We  deemed  frequent  those  

events that were induced at least ten times per second and infrequent otherwise. In 

Chapter 5 we revisited the selection of W and investigated the performance of our 

user re–authentication system for different values of W . 

A complete  list  of  features  can  be  found  in  Appendix  D.  The  size  of  the  candidate 

feature space was 956. We postulated that some subset of the most uncorrelated 

features was the best discriminator of a user’s behavior and validated our supposition 

in Sections 4.3.2 and 4.3.3. The most uncorrelated features in our dataset were those 

features generated from the leaves of each tree–hierarchy (see Figures 3.4 to 3.9). We 

also examined the strength of each data source (i.e., mouse, keystrokes and GUI) 

individually and in combination in Chapter 4. 

Furthermore, we studied the conjecture that grouping data points according to 

their type improved performance. We tested this conjecture on the mouse data. 

We selected the mouse dataset because its hierarchy had the most levels – four, 

whereas the GUI and keystrokes each had three. In Chapter 4 we first removed 

the features associated with the fourth level of the mouse hierarchy and re–ran the 

Anomaly Detection experiment (see Section 4.3.2) to obtain new measurements of 

the mouse classifier performance. Then we removed the features associated with 

both the fourth and the third level of the mouse hierarchy and once again re–ran 

the Anomaly Detection experiment to obtain a new set of results. We showed that 

grouping mouse points by function outperformed the non–hierarchized data set. 

3W = 500  was  equivalent  to  a  fifty  second  time  period  if  the  user  utilized  I/O  devices.  



50 

4.	 EMPIRICAL ANALYSIS OF BIOMETRIC SOURCES 

IN USER RE–AUTHENTICATION 

To determine whether the current user’s behavior was anomalous or not one must 

first build a model of normal behavior. Building the model required an initial training 

phase, during which the user’s data was collected, model parameters were selected 

and the final model was produced. This model was then used to continually monitor 

the user’s account. If the current behavior of a user deviated significantly from the 

model of normal behavior, the system flagged this behavior as anomalous and did one 

or all of the following: alerted the system administrator, asked the user to authen­

ticate again and/or closed the current login session. In this chapter we describe the 

experimental methodology of a user re–authentication system and present results 

that illustrate the strength of each data source, individually and in combination, 

when identifying a user. 

4.1 Building a Model of Normal Behavior 

The problem of user re–authentication could be regarded as either a supervised 

or an unsupervised learning problem. The choice depended on whether public access 

to hosts was restricted or not. In Chapter 1 we stated that in a closed setting, one 

could collect data from all employees, and then apply a supervised learning algorithm 

to obtain a classifier able to discriminate each employee from the others. There were 

two drawbacks to this approach: 1) the data for all users needed to be collected to 

perform the classification - in a practical setting this could be expensive in terms 

of resources; and 2) a highly skewed class distribution would make it difficult for 

many learning algorithms to output a classification that was not the majority class 



51 

prediction (i.e., the “non–uniform” class distribution problem), which occurred in 

our case when the number of classes, (i.e., users), grew large [105]. 

If collecting data from all individuals who had physical access was not feasible, 

then re–authentication might have been viewed as an unsupervised learning problem. 

In this case, the data would have been collected for each individual user whose 

behavior we were trying to model. During the user re–authentication process, a 

“normal” user’s profile, generated from the data during the training phase, was 

compared against the current user’s behavior (i.e., self versus not–self comparison). If 

there was a significant difference between the two, the current behavior was classified 

“anomalous.” Unlike the supervised learning approach, we would not have been 

given the intruder’s profile a priori to detect his/her presence. The difficulty with 

unsupervised anomaly detection is that the false positive rate of such approaches is 

often unacceptably high [106]. 

In our experiments we first assumed a closed–setting scenario and applied a su­

pervised learning algorithm to evaluate the performance of our system. We then 

examined the ability of a supervised classifier to detect previously unseen intruders 

in Chapter 6, with the objective of demonstrating that we were able to preserve 

high accuracy measures of supervised learning approaches while being able to detect 

previously unseen users. 

4.2 Experimental Methodology 

We begin this section with the introduction of the learning algorithm used for 

feature subset selection (FSS) [107] and classification. We then provide the descrip­

tion of the data set and discuss two anomaly detection implementation schemes. 

We present a series of experiments designed to  investigate  the  applicability  of  each  

biometric source, individually and in combination, to user re–authentication. For 

each experiment we explain its purpose, present and discuss the results, and draw 

conclusions. 



52 

Table 4.1
 
A contingency  table. 
  

True Value Classified “+” Classified “-” 

pos 

neg 

TP 

FN 

FP 

TN 

4.2.1 Feature Subset Selection and Classification 

We applied a supervised learning algorithm to determine whether we could dis­

criminate the users. We assumed a closed–setting scenario in which data could be 

readily obtained from all of the employees. The intruders were likely to come from 

“within.” We used a readily–available decision tree algorithm WEKA j48 [108] to 

perform feature subset selection and classify the instances as either belonging or 

NOT belonging to a valid user. We also used Support Vector Machines (SVMs), 

SVMlight [109] and LibSVM [110] packages, to build a model of normal user behav­

ior. SVMs, through the SVMlight [109] and LibSVM [110] were known to produce 

good results on many problems [111], but the results obtained on our datasets were 

inferior to those obtained with the decision tree algorithm. This was because our 

datasets had highly skewed class distributions (i.e., the ratio between the minority 

and majority classes exceeded 1:60 in our experiments) and contained many redun­

dant features [98, 99]. 

To better understand the biases exhibited by different classifiers we considered 

their mechanisms for feature selection and the effect of over-sampling (i.e., randomly 

sampling from a class with a sampling frequency significantly higher than twice the 

highest frequency of the class being sampled). We used a contingency table (see 
tp fnTable 4.1) to categorize features into three groups: 1) positive features > ,
pos neg 

tp fn  tp fn2) negative features < , and  3)  neutral  features  = . A  decision  tree  
pos neg pos neg 

classifier had an embedded feature selection mechanism that led to its selection of 



53 

positive features to branch. Over–sampling increased the complexity of the tree and 

allowed for many negative features to be used in the built trees. Therefore, decision 

trees were sensitive to sampling but insensitive to feature selection [99]. 

Feature selection had a significant impact on SVMs particularly when the number 

of features was large [112]. Positive (minority class) instances tended to reside far 

away from the boundary when the data was skewed. Over–sampling had no effect 

because no new data was generated and hence the support vectors did not change. 

Over–sampling, by increasing the error penalty of the minority class, resulted in a 

change in the margin if there were some misclassifications during training. If no 

error occurred in the minority class during training, over–sampling was ineffective. 

This was especially true when the number of features was large as was the case with 

our dataset [99]. 

To restore the balance between the minority and majority classes in our datasets 

we randomly over–sampled from the minority class. We then used the decision 

tree classifier to build a model of normal user behavior from the balanced dataset. 

Another reason we chose to use decision trees and not SVMs was because they pro­

vided a comprehensible representation of their classification decisions. The regression 

trees [113] were not applicable in our domain because of their quantized output (our 

task was to determine the identity of a current user). Although techniques such as 

boosting [114, 115] might have obtained higher classification accuracy their running 

time was prohibitive for the large scale experiments reported in this paper. In an 

operational setting they should be tested. 

For details regarding the specifics of WEKA j48 the reader is referred to [108]. 

Here are provided only the key aspects of the algorithm related to decision tree esti­

mation, particularly as it pertains to feature selection. A decision tree is a predictive 

model; that is a mapping from observations about an item to conclusions about its 

target value [116]. In a decision tree leaves represent classifications and branches 

represent conjunctions of features that lead to  those  classifications.  In  Figure  4.1  we  



54 

Fig. 4.1. A decision tree. 

showed a simple example of a decision tree (e.g., this tree had three internal nodes 

and five leaves). 

The most important element of the decision tree estimation algorithm is the 

method used to estimate splits at each internal node of the tree. To do this, WEKA 

j48 used a metric called the information gain ratio that measured the reduction in 

entropy in the data produced by a split. In this framework, the test at each node 

within a tree was selected based on splits of the training data that maximized the 

reduction in entropy1 of the descendant nodes. Using this criterion, the training 
 

1Entropy = − P (x) ∗ log2[P (x)], where P(x) is the probability density function of a random 
x 

variable X when X = x. 



55 

data was recursively split such that the gain ratio was maximized at each node of 

the tree. This procedure continued until each leaf node contained only examples of a 

single class or no gain in information was given by further testing. The result was a 

large, complex tree that overfitted the training data. If the training data contained 

errors, then overfitting the tree to the data in this manner could have led to poor 

performance when classifying previously unseen  data.  Therefore,  the  tree  needed  to  

be pruned back to reduce classification errors when data outside of the training set 

was classified. To address this problem WEKA j48 used confidence–based pruning, 

which pruned any rule that did not satisfy a  confidence  threshold.  Furthermore,  any  

rule that was a subset of the pruned rule was also pruned. The details could be 

found in [117]. 

When using the decision tree to classify new examples, WEKA j48 supplied both 

a class  label  and  a confidence  value  for  its  prediction.  The  confidence  value  was  a  

decimal number ranging from zero to one – one meaning the highest confidence – 

and it was given for each classified instance. The confidence values were computed 

by first estimating the success probability (probability of a positive outcome) of each 

prediction and then calculating the corresponding z–scores of a normal distribution 

with the zero mean and the unit variance [118]. The assumption that the success 

probabilities were distributed normally was justified by the Central Limit Theorem 

(CLT). 

4.2.2 Data Set I 

A group  of  61  volunteers  was  asked  to  participate  in  the  data  collection  process.  

The group consisted of undergraduate and graduate  students  majoring  in  computer  

science at either Purdue or Tufts University. Volunteers were instructed to use a 

Windows machine and to behave as they would normally in any other situation. 

They were given a reading assignment followed by a set of twenty questions about 

the material they just read (see Appendix E for more detail). Users were specifically 



56 

instructed to read the assignment off the screen as opposed to reading it from a 

printout in order for us to record as many events as possible while they navigated 

between the reading material and a text editor. They were also given a set of web 

pages to look at and answer yet another set of questions. 

Volunteers collected the data for 4.10 hours on average; the standard deviation 

was 4.52 hours.2 They had ten days to complete the assignment and some of them 

chose to do it in multiple sittings (e.g., they answered five questions, left their work­

station for a couple of minutes, hours or even overnight and then returned to finish 

the remainder). When we computed the time it took each volunteer to complete the 

assignment we chose not to subtract the “pause” time, because the “pause” time 

is a part of natural and normal user behavior. Instead, to mediate any artifacts 

induced by the elapsed time measurements we computed the number of raw data 

instances produced by each volunteer. In Chapter 3 we defined raw data instances 

as the original data points collected by each user. Each raw data instance had the 

unique identification number of the event, the X and Y screen coordinates, the 

time when the event happened and the application in which the event occurred (see 

Figure 3.2). The average and the standard deviation of the number of raw data 

instances per dataset was 92,068 and 55,712, respectively. Regarding the amount of 

storage space needed per user, the average number of raw data instances translated 

to approximately 4.5MB of space. 

In Chapter 3 we postulated that grouping data points according to their type 

improved performance. In this chapter we empirically validated our conjecture on 

the mouse data because it had the most levels of hierarchy - four, while keystrokes 

and GUI each had three. From the 61–user dataset we extracted the mouse data 

points and computed the feature vectors (a feature vector instance was equivalent to 

a classification  instance)  from  the  mouse  hierarchy in Figure 3.4. After computing 

the feature vectors for each user we observed that some users had significantly fewer 

2The average time a user spent on the data collection did not follow the normal distribution because 
it had a heavy right tail. It did however follow the gamma distribution. 



57 

Fig. 4.2. Number of mouse feature vector instances per user. Nine 
users have fewer than 150 instances in their data sets. 

vector instances in their data sets than others (recall that each feature vector was 

a summary  over  a window  of  W raw data points). A classifier building a model of 

valid user behavior could fail to generate an accurate profile when the number of 

instances of one of the classes was small. This classifier would either produce a one– 

node decision tree that classified every instance as the majority class or produce a 

larger decision tree in which the conjunctions of features at the tree nodes would not 

be able to achieve meaningful class separation. To address this issue we decided to 

set a threshold on the number of feature vector instances per user and to omit those 

users whose dataset fell below this threshold for the experiments involving the mouse 

data only (see Sections 4.3.3 and 4.3.4). Our rationale was that we had insufficient 

mouse data to properly analyze whether we could discriminate these users from the 

others. We set the threshold at 150 because in the experiments we used 10% of the 

data for testing (90% for training) and we wanted to have at least 15 test instances 

per user on which to base our results. After examining each user data set in Figure 

4.2 we observed that nine users produced at least one standard deviation below the 



58 

Fig. 4.3. Algorithm to compute FB rate. 

average amount of data. Thus we excluded users 4, 9, 11, 12, 15, 18, 20, 41 and 56 

from the data set, leaving us with 52 users in the mouse dataset. 

4.2.3 Implementation Schemes 

We reported results for two implementation schemes. Our first scheme classified 

one feature vector instance at a time. If the instance belonged to the profile of a valid 

user, we serviced the user’s request. If the instance did not belong to the profile of a 

valid user, we did one or all of the following: alerted  the  system  administrator,  asked  

user to authenticate again and/or closed the current login session. Such a simplistic 

implementation scheme might induce a high rate of false alarms. Consider a user 



 

59 

Table 4.2
 
Performance metrics.
 

Performance Metric Definition 

False Positive Rate FP/(#positive instances) 

False Bell Rate FB/(#positive instances) 

False Negative Rate FN/(#negative instances) 

Error Rate (FP+FN)/(#instances) 

Bell Count Number of bells raised on the test data 

having lunch and operating the keyboard and the mouse device at the same time. 

His/her current behavior might differ from the profile of normal behavior and this 

could prompt the user re–authentication system to raise an alarm(s). We conjectured 

that some minor, transient changes in user’s behavior might be smoothed–out when 

the behavior was observed over several classification instances. 

To this end, we implemented a smoothing filter on top of the basic scheme. 

We looked at a window3 of n ∈ {1 :  11} feature vector instances at a time and if 

m ∈ {1, n} of those instances belonged to a valid user, we serviced the user’s request, 

otherwise we raised an alarm. The values chosen for n and m were user specific and 

empirically derived on the training datasets by minimizing the criterion function: 

min N
i=1(c1 ∗ FP (ui) +  c2FN(ui)); c1, c2 ∈ R+ where u was a user and FP (ui) 

and FN(ui) were  the  false  positive  and  false  negative  rates  of  user  ui, i ∈ [1, N ], 

respectively. We reported results in Section 4.3 with c1 = c2 = 1.  The  choice  of  c1 

and c2 in practice is deployment specific. 

In addition to measuring the false positive and false negative rate we also mea­

sured the false bell rate, which  we  defined  to  be  the  number  of  bells divided by the 

number of positive instances (see algorithm to compute false bell rate in Figure 4.3). 

3We chose a range of 1 to 11 in this chapter because some users have only 15 test instances in their 
datasets. In Chapter 6 we ran experiments on the combined data source only, which  had  more  data  
per user thus allowing us to expand the smoothing range. 



60 

Fig. 4.4. Overlapping windows of size n with the step size of s = 2.  

A single  bell was defined as a sequence of contiguous alarms without the interrupting 

“normal” window. In a practical setting, when the alarm is raised for the first time, 

the bell is turned on and kept on until it is serviced by a system administrator. 

Consecutive alarms are observed as being a part of the original bell. By counting 

the number of bells and dividing this count by the number of positive instances we 

obtained the false bell rate (i.e., FB rate). A high false bell rate was an indicator of 

high variability and inconsistency in user behavior. 

In our experiments we reported the false bell, false positive, false negative and 

error4 rate as well as the actual number of bells sounded for both implementation 

schemes (see Table 4.2 for a complete list of performance metrics). For the combined 

data source we also examined the tendencies of error rates as the smoothing window 

m and the detection time increased. For each experiment we generated the receiver 

operating characteristics (ROC) plots. 

4.3 Empirical Evaluation 

Our experiments in this chapter were designed to address our first objective: 

4Error rate was defined as the sum of the false positives and false negatives divided by the total 
number of classified instances. 



61 

Computer Security Objective: To  design  and  implement  an  on–line,  scal­

able user re–authentication system founded on the data collected from 

user’s inputs (mouse and keyboard) and Graphical  User  Interface  (GUI)  

events for the purpose of detecting an attacker. 

We carried out a detailed analysis of the scalability of our system in Chapter 6. For 

each experiment we reported the results for the basic and smoothing filter imple­

mentation schemes. In Section 3.3.7 we stated that each classification instance was 

computed over a window of W data points where W = 500.  In  our  experiments,  we  

overlapped windows so that a new window was obtained from the previous W − s 

and subsequent s points, where s = stepsize (s = 50  in  our  experiments).  Figure  4.4  

shows overlapping windows of n data points with the stepsize of 2. We overlapped 

windows to reduce the time–to–alarm (e.g., the time it takes to detect an intruder). 

We classified an instance every s points following the classification of the first in­

stance. For a stepsize of s = 50  this  was  roughly  equivalent  to  a  five–second  detection  

time period, if the user was active. We recorded mouse movements every 100msec, 

so 50 data points corresponded approximately to a five-second time interval. 

To evaluate our methods we used a ten–fold cross–validation (CV). For each of 

the ten runs, 90% of the user data set was used for training and the remaining 10% 

was used for testing – a different 10% was used for testing in each run. The results 

reported were averaged over the inner eight cross–validation folds. We omitted the 

results obtained from the first and last 10% of the data because our volunteers used 

this time to familiarize themselves with the data collection software and to wrap–up 

the data collection process, respectively, making their behavior different than the 

remainder of the data collection. A comparison of the feature vector values in each 

data file obtained for each user revealed higher variance in user behavior in the first 

and last 10% of the data. 



62
 

Fig. 4.5. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells from the keystroke data for all 61 
users in the Pairwise Detection experiment. 

4.3.1 Experiment I: Pairwise Discrimination 

Our first experiment was designed to give us an initial insight into the strength 

of each data source (the keystroke, mouse, GUI and combined data source) as a user 



63
 

Fig. 4.6. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells from the mouse data for all 61 users 
in the Pairwise Detection experiment. 

re–authentication tool. We wanted to answer the question of whether there was a 

signal of “normalcy” per user and if so, to what extent. To determine if we could 



64
 

Fig. 4.7. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells from the GUI data for all 61 users in 
the Pairwise Detection experiment. 

distinguish users from one another we built a binary  classifier  for  each  pair  of  users.  

The results for each user are shown in Figures 4.5 to 4.8 for the keystroke, mouse, 



65
 

Fig. 4.8. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells from the combined data for all 61 
users in the Pairwise Detection experiment. 

GUI and combined data sources, respectively. Table 4.3 summarizes the results 

obtained for three implementation schemes for each data source over all 61 users. 



66 

Table 4.3 
The average and the standard deviation values of FP, FB, FN and 
Error Rates and the Bell Count over all 61 users for the basic and 
smoothing implementation schemes in the Pairwise Detection exper­
iment. Tables (a), (b), (c) and (d) show results from the keystroke, 
mouse, GUI and combined data, respectively. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

31.85±18.93% 

26.78±17.47% 

2.51±1.95% 

1.33±1.17% 

33.49±18.19% 

31.23±13.52% 

25.03±6.10% 

22.74±7.07% 

3.73±3.0 

1.93±1.77 

(a) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

13.0±8.60% 

9.66±7.18% 

3.29±1.64% 

1.65±1.19% 

14.62±4.25% 

14.28±5.0% 

12.58±4.12% 

10.87±3.63% 

5.82±3.60 

2.68±2.73 

(b) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

5.60±4.23% 

4.57±3.57% 

1.63±1.04% 

1.18±0.68% 

7.26±2.08% 

5.99±2.04% 

6.20±2.62% 

5.14±2.30% 

2.83±2.10 

1.88±0.95 

(c) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

5.12±5.05% 

4.52±4.58% 

1.32±0.93% 

1.13±0.65% 

6.76±2.03% 

5.45±2.05% 

5.48±2.63% 

4.64±2.43% 

2.30±1.95 

1.86±1.18 

(d) 

The second and third row of each sub–table in Table 4.3 show the results produced 

by the basic and smoothing implementation schemes, respectively. 

The lowest error rates were generated by the combined classifier demonstrating 

that for these users a combination of different sources carried a stronger signal of 

normalcy than each data source individually. The  average  false  positive,  false  bell,  



67 

false negative and error rates of the combined classifier over all 61 users were 4.52%, 

1.13%, 5.45% and 4.64%, respectively. The average bell count was 1.86 bells. The 

ranking by accuracy for the individual data sources was 1) GUI, 2) mouse and 3) 

keystroke. This was not surprising considering that the average number of raw 

data instances in the 61–user dataset was 67,700.25, 11,510.54 and 1674.06 for the 

GUI, mouse and keystroke data, respectively. The amount of the GUI data was 

significantly higher than that of the other two sources thus generating more accurate 

results. The amount of keystroke data was so small that feature vectors computed 

for the keystroke classifier over a window of W = 500  data  points  were  zero–vectors  

for most users. 

Closer examination of different implementation schemes (see Table 4.3) revealed 

that the smoothing scheme outperformed the basic implementation scheme. This 

was not surprising considering that the smoothing filter function averaged out minor, 

transient changes in user behavior thereby effectively reducing the number of false 

alarms. The results obtained supported our initial conjecture that there was a signal 

of “normalcy” per user. 

4.3.2 Experiment II: Anomaly Detection 

In this experiment our goal was to determine if we could detect an insider imper­

sonating another insider. Specifically, we studied if a binary classifier could build an 

accurate model of normal user behavior after seeing the behavior of a valid user A 

and the behavior of the remaining N − 1 users  in  the  role  of  intruders.  The  obtained  

results are shown in Figures 4.9 to 4.12 for the keystroke, mouse, GUI and combined 

data sources, respectively. Figure 4.13 shows the results from Figure 4.12 in a rate– 

descending order. The bar graphs of Figure 4.13 show the false positive, false bell, 

false negative and error rates, respectively, in the descending order for each of the 61 

users. The corresponding pie charts of Figure 4.13 show the percentage distribution 

of users across each respective error–rate range. Table 4.4 summarizes the results 

http:11,510.54
http:67,700.25


68
 

Fig. 4.9. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count from the keystroke data for each of the 61 users in the 
Anomaly Detection experiment. 

obtained for three implementation schemes for each data source over all 61 users. 

The second and third row of each sub–table in Table 4.4 show the results produced 



69
 

Fig. 4.10. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count from the mouse data for each of the 61 users in the 
Anomaly Detection experiment. 

by the basic and smoothing implementation schemes, respectively. We examined the 

performance of each data source in more detail. Our goal was to understand the 



70
 

Fig. 4.11. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count from the GUI data for each of the 61 users in the 
Anomaly Detection experiment. 

reasons behind high false positive, false bell and false negative rates for some users 



71
 

Fig. 4.12. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count from the combined data for each of the 61 users in the 
Anomaly Detection experiment. 

and to investigate the characteristics of decision trees generated for each data source 

to determine which features were best in discriminating among different users. 



72 

Fig. 4.13. The bar graphs show the error rates in the descending 
order for each of the 61 users. The pie charts show the percentage 
distribution of users across each error–rate range. From the top, 
the bar graphs and the corresponding pie charts representing FP, 
FB, FN and Error rates obtained from the combined data in the 
Anomaly Detection experiment are shown. 



73 

Table 4.4 
The average and the standard deviation values of FP, FB, FN and 
Error Rates and the Bell Count over all 61 users for the basic and 
smoothing implementation schemes in the Anomaly Detection exper­
iment. Tables (a), (b), (c) and (d) show results from the keystroke, 
mouse, GUI and combined data, respectively. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

94.57±9.90% 

85.77±20.98% 

1.94±1.84% 

1.30±0.87% 

0.27±0.27% 

0.81±1.04% 

1.78±1.02% 

2.14±1.35% 

3.62±5.12 

1.98±1.49 

(a) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

75.08±18.84% 

48.41±29.24% 

5.99±3.01% 

2.10±0.99% 

0.84±0.47% 

2.91±1.88% 

2.04±1.17% 

3.59±2.15% 

10.82±8.09 

3.41±1.97 

(b) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

53.42±27.18% 

33.36±28.88% 

6.65±2.82% 

2.45±1.36% 

0.59±0.33% 

1.49±0.84% 

1.41±0.81% 

2.0±1.12% 

11.59±7.53 

4.26±3.30 

(c) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

45.70±17.30% 

23.37±15.97% 

6.28±1.70% 

1.76±0.94% 

0.54±0.27% 

1.50±1.40% 

1.21±0.60% 

1.77±1.01% 

10.85±5.76 

2.66±1.82 

(d) 

Keystroke Data Source 

The keystroke data source produced the average false positive, false bell, false 

negative and error rates of 85.77%, 1.30%, 0.81% and 2.14%, respectively and a bell 

count of 1.98 bells. It had the highest false positive rate among all four data sources 



74

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1 

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

False Negative Rate 

Fig. 4.14. ROC graph for the keystroke data source in the Anomaly 
Detection experiment. 

(e.g., 31 users had FP=100%). The ROC curve for the smoothed keystroke classifier 

is shown in Figure 4.14. The area under the ROC curve was 0.60 which indicated 

that the performance of the keystroke classifier although poor was still better than 

random guessing (e.g., random guessing has equal chances of correctly detecting an 

intruder when intrusion occurred or correctly identifying a current user - it produces 

the area under the ROC curve of 0.5). 

As discussed in the pairwise experiment the amount of keystroke data was so small 

in the 61-user dataset that most users had zero-vectors in their datasets. Because 

the amount of data per user was limited to that extent, the classifier was unable to 

build an accurate model of user behavior. Consequently, even small variations in 

human activities caused it to misclassify a new  instance  as  belonging to  an  intruder  

and raise an alarm. The final outcome was a high false positive and a low false 

negative rate. The false bell rate of the keystroke classifier was low which suggested 

that most alarms occurred in a sequence as one long alarm. 



75 

Table 4.5 
The ten most significant keystroke features over all 61 users in the 
Anomaly Detection experiment. 

# Feature Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Mean of the 1–graph of letters 

Standard deviation of the 8–graph of mouse–keys 

Mean of the 7–graph of numbers 

Mean of the 8–graph of all keystrokes 

The third moment of the 1–graph of other keys 

Number of the control keys 

Standard deviation of the 2–graph of other keys 

Standard deviation of the 6–graph of other keys 

Skewness of the 1–graph of mouse–keys 

Mean of the 3–graph of all keystrokes 

Analysis of error rates: Considering the discussion in the above paragraph we 

found it interesting to discover why user 10 had a false positive rate of only 0.32% 

for the keystroke data. The user with the next lowest false positive rate of 30.73% 

was user 61. Closer examination of the user 10’s dataset revealed that this user 

collected twice the average number of raw data instances (e.g., 3120) over a period 

of 25.1 hours. The most distinguishing features for this user was the percentage of 

all keystroke points (the top level of the keystroke hierarchy in Figure 3.7) and the 

number of “other” keystrokes which led us to  conclude  that  this user  utilized  the  

keyboard for quick multimedia launch (i.e., opening a web browser, e-mail account, 

etc. directly from the keyboard). This behavior in addition to the assigned data 

collection task described in Section 4.2.2 made user 10 distinguishable from the 

other sixty users. 



76 

Fig. 4.15. Number of keystroke feature vector instances per user.
 
Only seventeen users have at least 150 instances in their data sets.
 

Analysis of features and decision trees: We examined what characteristics 

and what attributes discriminated users the best. Accordingly, we analyzed the 

size of the decision trees produced by the keystroke classifier and the features used 

to describe users. The average number of unique features per tree was 57 and the 

average size of the trees was 257 nodes (excluding leaves), which suggested that some 

features appeared more than once in the same tree, but with a different range test 

Fi > a, where  Fi was a feature and a was a value in its obscured range. This was 

an important result from an efficiency standpoint because the number of features 

computed for each user was directly proportional to the time it took to classify a 

current user. To obtain an understanding of which attributes best captured a user’s 

behavior, we examined the ten most significant keystroke features over all 61 users 

(see Table 4.5). We obtained these features by observing a root node of each decision 

tree and selecting those root nodes that appeared in the largest number of trees. The 

decision trees of 35 users had as a root node one of these ten most significant features. 



77 

Table 4.6 
The average and the standard deviation values of FP, FB, FN and 
Error Rates and the Bell Count over all 17 users for the basic and 
smoothing implementation schemes in the Anomaly Detection exper­
iment for the reduced keystroke data source. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

65.45±26.73% 

63.82±28.30% 

7.70±2.82% 

7.70±2.82% 

2.47±1.99% 

2.36±2.03% 

6.08±2.70% 

5.90±2.82% 

1.70±0.77 

1.70±0.77 

In Chapter 3 we postulated that features computed from the leaves of the keystroke 

feature hierarchy in Figure 3.7 were uncorrelated and most discriminatory. This ex­

periment showed that eight of the ten most significant features were computed from 

the leaves of the keystroke hierarchy: mouse–keys, control and other keys, and let­

ters and numbers. The other features were computed from the regular keys. Closer 

inspection of these ten features suggested that mean and standard deviation were 

the most reliable statistical measurements, and that the 8–graph duration was the 

best “raw” measurement for modeling user behavior. 

Results on the reduced keystroke dataset: To test the strength of the 

keystroke data source in more detail, we repeated the Anomaly Detection experiment 

on a reduced dataset. We investigated the number of keystroke feature vectors 

produced for each user in the 61–user dataset (see Figure 4.15) and eliminated those 

users who had fewer than 150 vector instances. This left us with only 17 users in the 

reduced dataset. New results are shown in Figure 4.16. Table 4.6 summarizes the 

error rates over all 17 users for the basic and smoothing implementation schemes. 

The ROC curve is shown in Figure 4.17. The area under the ROC curve was 0.63 

which was better than the results obtained from the keystroke data on the 61–user 

dataset. 

The reduced keystroke dataset produced the average false positive, false bell, 

false negative and error rates of 63.82%, 7.70%, 2.36% and 5.90%, respectively, and 



78
 

Fig. 4.16. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count on the reduced keystroke data for each of the 17 users 
in the Anomaly Detection experiment. 

a bell  count  of  1.70  bells.  The  false  positive  rate  went  from  85.77%  for  the  61–user  

dataset down to 63.82% for the 17–user dataset. At the same time false bell, false 



79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1 

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

False Negative Rate 

Fig. 4.17. ROC graph for the reduced keystroke data source in the 
Anomaly Detection experiment. 

negative and error rates increased and the bell count remained the same. There was 

a trade-off between the false positive and false negative rates and it depended on: 1) 

the number of users in the dataset (e.g., as the number of users increased the false 

positive rate increased and the false negative rate decreased), and 2) the amount of 

data per user (e.g., although each of the 17 users had at least 150 feature vector 

instances in their datasets, additional data was needed per user to further lower the 

false positive and false negative rates). Only four users had below 50% false positive 

rate and two users had above 5% false negative rate. 

The average tree size was 79 internal nodes (excluding leaves) for the decision 

trees of the reduced keystroke dataset. The average number of unique features per 

tree was 28. 



80

 0

 0.2

 0.4

 0.6

 0.8

 1

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

0  0.2  0.4  0.6  0.8  1 
False Negative Rate 

Fig. 4.18. ROC graph for the mouse data source in the Anomaly 
Detection experiment. 

Mouse Data Source 

On average, the mouse classifiers produced false positive, false bell, false negative 

and error rates of 48.41%, 2.10%, 2.91% and 3.59%, respectively, and a bell count 

of 3.41 bells. The ROC curve for the mouse data is shown in Figure 4.18. The area 

under the ROC curve was 0.73. The performance of the mouse data source was 

significantly better than that of the keystroke classifier, which was not surprising for 

two reasons 1) there was more mouse than keystroke data in the 61-user dataset and 

2) each mouse data point had both spatial and temporal information about a user’s 

behavior whereas keystroke data had only temporal  information.  Both  the  GUI  and  

the combined classifier outperformed the mouse classifier. 

Analysis of high FB and FN rates: We examined individual users’ raw data files, 

feature vectors and decision trees generated by  the  mouse  classifier  to  determine  why  

some users produced high error rates. Our observations are summarized in Tables 



81 

Table 4.7 
Users with false bell rate above 4.0% for the mouse data source in 
the Anomaly Detection experiment. 

ID FB Rate Elapsed Time SD(Moves) SD(Events) 

3 

20 

52 

4.49% 

4.54% 

4.17% 

1.63 hrs 

0.23 hrs 

0.97 hrs 

34.33 

51.03 

235.95 

29.74 

37.87 

34.26 

AVG 2.1% 4.1 hrs 55.25 26.04 

4.7 and 4.8. Table 4.7 shows users with a false bell rate above 4.0%. The first 

column of the table shows the User ID, the second column reports the false bell 

rate for the specific user; the third column reports the time it took user to complete 

(or not complete) the data collection process; and the fourth and fifth column show 

the standard deviation measurements of the  number  of mouse  movements  and  the  

number of all mouse events (e.g., wheel, NC moves, clicks, etc.), respectively. The 

last row of the table shows the average values across all 61 users. Table entries 

printed in bold highlight those values that are at least one standard deviation above 

or below the average. 

Examination of Table 4.7 revealed that all three users spent less than two hours 

collecting the data. Users 20 and 52 spent only 13.8 and 58.2 minutes on the data 

collection. Moreover, users 20 and 52 exhibited a high variance in their behavior, 

particularly with regard to the mouse movements and mouse events, respectively. 

Short data collection time and inconsistent behavior produced high false bell rates 

for these users. 

Table 4.8 shows users with a false negative rate above 6.0%. The first column of 

the table shows the User ID, the second column has the user’s false negative rate, the 

third column reports the time it took user to complete the data collection process; 

and the fourth and fifth columns show the average number of all mouse events and 



82 

Table 4.8 
Users with false negative rate above 6.0% for the mouse data source 
in the Anomaly Detection experiment. 

ID FN Rate Elapsed Time #Events #Wheel 

17 

22 

34 

51 

58 

6.9% 

6.94% 

6.03% 

6.6% 

9.84% 

2.63 hrs 

2.48 hrs 

0.83 hrs 

0.73 hrs 

13.94 hrs 

16.78 

20.31 

14.77 

6.03 

7.61 

0.0 

0.17 

2.17 

2.75 

1.28 

AVG 2.91% 4.1 hrs 20.45 1.89 

mouse wheel movements, respectively. Examination of Table 4.8 revealed users 34 

and 51 spent less than one-quarter of the average time collecting the data points. 

Users 17 and 22 induced virtually no mouse wheel movements and users 51 and 58 

produced approximately one-third of the average number of all mouse events. An 

interesting case was user 58 who spent 13.94 hours collecting the data and induced 

the highest false negative rate of all 61 users. We previously concluded that a short 

data collection time and a limited amount of data per user might lead to poor 

classifier performance. The performance of user 58 suggested that in addition to a 

longer collection time and larger datasets, the mouse classifier needed mouse event 

data (e.g., single and double clicks, wheel movements, etc.) to build a more accurate 

model of normal user behavior. The only event data user 58 produced within one 

standard deviation of the average was mouse wheel data. Therefore, passive user 

behavior and the absence of event data might induce high error rates too. 

Analysis of features and decision trees: Similarly to the keystroke data we 

analyzed the size of the decision trees produced by the mouse classifier and the 

features used to describe users. The average number of unique features per tree 

was 111, while the average size of the trees was 625 nodes (excluding leaves). The 



83 

Table 4.9 
The ten most significant mouse features over all 61 users in the 
Anomaly Detection experiment. 

# Feature Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Number of all mouse events 

Mean of Y coordinates of mouse movements 

Skewness of Y coordinates of mouse movements 

Skewness of Y coordinates of NC movements 

Standard deviation of Y coordinates of NC movements 

Mean of the 6–graph of mouse movements 

Mean of the 4–graph of all clicks 

Standard deviation of the 6–graph of wheel movements 

Skewness of the 7–graph of wheel movements 

Mean of the speed of double clicks 

average size of the trees was interesting because it was larger than that constructed 

from each of the other three data sources (including the combined classifier). Usually 

large training datasets create large decision trees [119], but this was not true for the 

mouse data source. One possible explanation for the size of the mouse decision trees 

was a higher variance of user mouse behavior. The space of possible outcomes of the 

raw mouse data (e.g., user’s X and Y screen coordinates) was higher  than  that  of  

keystrokes and temporal GUI events. 

Eight of the ten most significant mouse features were computed from the leaves 

of the mouse hierarchy: NC and mouse moves, wheel movements and double clicks 

thereby supporting our claim that the most discriminatory features also the most 

uncorrelated features (see Table 4.9). The other two features were computed from 

the clicks and mouse events categories. The decision trees for 39 users had as a 

root node one of these ten features. The mean and skewness were the most reliable 



84
 

Fig. 4.19. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count on the reduced mouse data for each of the 52 users in 
the Anomaly Detection experiment. 

statistical measurements, and Y coordinates of the screen cursor were the best “raw” 

measurements for modeling mouse behavior. 



85
 

Table 4.10 
The average and the standard deviation values of FP, FB, FN and 
Error Rates and the Bell Count over all 52 users for the basic and 
smoothing implementation schemes in the Anomaly Detection exper­
iment for the reduced mouse data source. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

61.43±28.45% 

43.66±31.93% 

8.96±4.97% 

5.26±3.06% 

0.89±0.60% 

2.04±1.39% 

2.03±0.94% 

2.84±1.48% 

2.29±1.16 

1.40±0.82 

Results on the reduced mouse dataset: Similar to the keystrokes we repeated 

the Anomaly Detection experiment on a reduced mouse dataset. In Section 4.2.2 we 

eliminated nine users from the 61–user mouse dataset which left us with 52 users 

(see Figure 4.2). The results on the reduced mouse dataset are shown in Figure 4.19. 

Table 4.10 summarizes the error rates over all 52 users for the basic and smoothing 

implementation schemes. The ROC curve is shown in Figure 4.20. The area under 

the ROC curve was 0.78 which was better than the results obtained on the 61–user 

mouse dataset. 

The reduced mouse dataset produced the average false positive, false bell, false 

negative and error rates of 43.66%, 5.26%, 2.04% and 2.84%, respectively, and a 

bell count of 1.40 bells. The false positive, false negative and error rates went from 

48.41%, 2.91% and 3.59% for the 61–user dataset down to 43.66%, 2.04% and 2.84% 

for the 52–user dataset. The bell count decreased from 3.41 to 1.40 bells. Only the 

false bell rate increased from 2.10% to 5.26% which suggested that false alarms on 

the 52–user dataset were sporadic as opposed to consecutive. The average tree size 

was 95 internal nodes (excluding leaves) and the average number of unique features 

per tree was 33. 



86

 0

 0.2

 0.4

 0.6

 0.8

 1

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

0  0.2  0.4  0.6  0.8  1 
False Negative Rate 

Fig. 4.20. ROC graph for the reduced mouse data source in the 
Anomaly Detection experiment. 

GUI Data Source 

Among the individual data sources, the GUI classifier performed the best. It 

produced the average false positive, false bell,  false negative  and  error  rates  and  a  

bell count of 33.36%, 2.45%, 1.49%, 2.0% and 4.26 bells, respectively. The ROC 

curve for the GUI data is shown in Figure 4.21. The area under the ROC curve was 

0.80. 83.7% of the 61-user dataset was composed of the GUI data. 

Analysis of high FB and FN rates: Similarly to the mouse classifier we ex­

amined the behavior of those individual users with high false bell or false negative 

rates. Table 4.11 shows users with false bell rate above 5.0%. The first column 

of the table shows User ID, second column has the false bell rate for the specific 

user; the third column has the time it took user to complete the data collection 

process; and the fourth, fifth and sixth columns show the average number of “item” 

and “miscellaneous” points and the standard deviation of “miscellaneous” points, 



87

 0

 0.2

 0.4

 0.6

 0.8

 1

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

0  0.2  0.4  0.6  0.8  1 
False Negative Rate 

Fig. 4.21. ROC graph for the GUI data source in the Anomaly 
Detection experiment. 

respectively. Users 15, 40 and 46 had the highest false bell rate on the GUI dataset. 

We mentioned previously that a short data collection time, a small amount of data 

per user and a high variance in user behavior resulted  in  the  classifier  incorrectly  

classifying a valid user as an intruder. These conclusions were valid for the GUI 

data also. All three users spent less than one-third of the average time collecting the 

data. A small number of “item” events was induced by users 40 and 46, and also 

“miscellaneous” events by user 40 (see GUI feature hierarchy in Figure 3.9). Finally, 

user 15 only sporadically induced “miscellaneous” events which resulted in a high 

variance in his/her behavior with respect to this type of GUI data. 

Table 4.12 shows users with false negative rate above 3.0%. The first column of 

the table shows User ID, second column has the  user’s  FN  rate,  third  column  has the  

elapsed time of the data collection; and the fourth, fifth, sixth and seventh columns 

show the average number of “dialog” events, and the standard deviation of all GUI, 

“temporal” and “dialog” events, respectively. Users 26 and 49 collected the data 



88 

Table 4.11 
Users with false bell rate above 5.0% for the GUI data source in the 
Anomaly Detection experiment. 

ID FB Time #Item #Miscellaneous SD(Miscellaneous) 

15 

40 

46 

6.10% 

5.26% 

6.67% 

0.70 hrs 

1.21 hrs 

1.60 hrs 

21.0 

5.43 

8.52 

24.93 

1.17 

4.82 

30.72 

2.63 

8.81 

AVG 2.45% 4.1 hrs 22.20 6.18 9.84 

Table 4.12 
Users with false negative rate above 3.0% for the GUI data source in 
the Anomaly Detection experiment. 

ID FN Time #Dialog SD(GUI) SD(Temporal) SD(Dialog) 

8 3.57% 18.43 hrs 6.90 85.59 45.91 14.07 

26 3.66% 1.44 hrs 31.68 181.16 77.66 75.05 

49 3.07% 0.81 hrs 0.05 308.12 156.58 0.36 

AVG 1.49% 4.1 hrs 18.46 161.93 80.19 30.58 

for under an hour and a half thereby producing a high variance in their behavior in 

regard to all GUI and “temporal” events for user 49, and “dialog” events for user 26 

(see GUI feature hierarchy in Figure 3.9). Moreover, user 49 induced virtually zero 

“dialog” events. User 8 was an interesting case because he/she spent 18.43 hours 

collecting the data. Similarly to user 58 who produced a high false negative rate 

on the mouse data, user 8 was an example of a passive user who only sporadically 

interacted with the I/O devices. 

Analysis of features and decision trees: The GUI classifier used on average 103 

unique features per tree and generated on average 442-node decision trees (excluding 

leaves). High tree-size to feature ratio was interesting from an efficiency standpoint. 



89 

Table 4.13 
The ten most significant GUI features over all 61 users in the 
Anomaly Detection experiment. 

# Feature Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Number of temporal events 

Standard deviation of X coordinates of window events 

Skewness of X coordinates of spatial events 

Skewness of the 7–graph of icon events 

Mean of the 8–graph of item events 

Mean of the 3–graph of query events 

Standard deviation of the 7–graph of dialog events 

Mean of the 8–graph of spatial events 

Mean of the angle of orientation of control events 

Skewness of the 1–graph of temporal events 

Six of the ten most significant features were computed from the leaves of the GUI 

hierarchy: window, icon, query, dialog, control and item events (see table 4.13). The 

other most significant features were computed for the temporal and spatial event 

categories. We assessed that the decision trees of 51 users had as a root node one of 

these ten most significant features. Both mean and skewness were the most reliable 

statistical measurements; and 7- and 8-graph durations and the X coordinates of 

the screen cursor were the best “raw” measurements for modeling user behavior. 

Combined Data Sources 

The combined classifier had the lowest error rates. When smoothed over m ∈ 

[1, 11], the time to alarm (TTA) was 50 seconds (m = 11)  and  the  average  false  

positive, false bell, false negative and error rates and a bell count of the combined 

classifier were 23.37%, 1.76%, 1.50%, 1.77% and 2.66 bells, respectively. The ROC 



90

Tr
ue

 P
os

iti
ve

 R
at

e 

1

 0.8

 0.6

 0.4

 0.2

 0
Average ROC Line 

0  0.2  0.4  0.6  0.8  1 
False Negative Rate 

Fig. 4.22. ROC graph for the combined data source in the Anomaly 
Detection experiment. 

Fig. 4.23. Performance measurements versus the time to alarm for 
the combined data source in the Anomaly Detection experiment. 



91 

curve for the combined data is shown in Figure 4.22. The area under the ROC curve 

was 0.82. It was evident that for this dataset a combination of different biometric 

sources improved accuracy. Figure 4.23 shows the error rates as the time to alarm 

increased from 5 to 185 seconds. The lowest false positive, false bell, false negative 

and error rates of 16.34%, 1.09%, 2.1% and 2.40%, respectively, and a bell count of 

1.50 bells were obtained when the detection time was 131 seconds and the results were 

smoothed over m = 29  classification  instances.5 We next analyzed the performance 

of the combined classifier in more detail. 

Analysis of high FB and FN rates: Table 4.14 shows users with a false bell 

rate above 5.0%. The first column of the table shows User ID, second column has 

the false bell rate for the specific user; the third column has the time it took user 

to complete the data collection process; and the fourth and fifth columns show the 

average number of all mouse points and all keystroke points, respectively. Detailed 

examination of Table 4.14 revealed that the number of mouse points was very low for 

users 4 and 18. Although these users moved a mouse to complete the assignment, 

they induced very few mouse events which made it difficult for the classifier to 

distinguish them from the rest. Similarly, users 4, 18 and 38 had only a few keystroke 

points. Finally, users 18, 38 and 44 spent less than an hour collecting the data 

which was one–quarter of the average data collection time. Although the combined 

classifier combined the keystrokes, mouse and GUI data, it needed to have enough 

of the combined data to build an accurate profile of normal behavior. 

Table 4.15 shows users with false negative rate above 3.5%. The first column 

of the table shows User ID, second column has the  user’s  false  negative  rate,  third  

column has the elapsed time of the data collection; and the fourth and fifth columns 

show the average number of mouse movements and keystroke points, respectively. 

Analysis of the Table 4.15 entries revealed that users 22, 28, 42 and 48 spent less 

than two and a half hours collecting the data which was about half the average 

5Higher values of m increased the average error rates, because of the limited number of classification 
instances per user. 



92 

Table 4.14 
Users with false bell rate above 5.0% for the combined data source 
in the Anomaly Detection experiment. 

ID FB Rate Elapsed Time #All Mouse #Keystrokes 

4 

18 

38 

44 

5.34% 

9.32% 

8.67% 

8.11% 

8.88 hrs 

0.38 hrs 

0.87 hrs 

0.90 hrs 

37.4 

31.0 

141.6 

156.9 

18.41 

2.0 

1.3 

22.8 

AVG 1.76% 4.1 hrs 86.0 28.4 

Table 4.15 
Users with false negative rate above 3.5% for the combined data 
source in the Anomaly Detection experiment. 

ID FN Rate Elapsed Time #Mouse Moves #Keystrokes 

2 

8 

22 

28 

42 

48 

3.73% 

3.76% 

3.74% 

3.76% 

3.73% 

3.75% 

3.35 hrs 

18.43 hrs 

2.48 hrs 

1.33 hrs 

0.72 hrs 

0.72 hrs 

37.3 

44.6 

32.2 

57.8 

81.5 

188.3 

34.2 

3.8 

11.2 

63.3 

23.1 

58.6 

AVG 1.50% 4.1 hrs 65.5 28.4 

time. Furthermore, users 2 and 22 had less than two–thirds of the average number 

of mouse movements; and users 8 and 22 had well below the average number of 

keystroke points. All these factors contributed to the failure of the combined classifier 

to generalize well. We concluded that the classifier overfit the data and created a 

too broad a profile  of  the  valid  user’s  behavior.  Subsequently,  when  an  intrusion  

occurred the intruder’s behavior was misidentified as that of the valid user and an 



93 

Table 4.16 
The ten most significant features over all 61 users in the Anomaly 
Detection experiment. 

# Feature Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Number of item events 

Number of combo box events 

Mean of Y coordinates of mouse wheel 

Skewness of Y coordinates of mouse moves 

Number of icon events 

Number of regular keys 

Mean of Y coordinates of mouse events 

Number of mouse events 

Number of control keys 

Mean of Y coordinates of double clicks 

alarm was not raised. This suggested that more active data (i.e., event data) per user 

dataset was needed to improve the overall accuracy. We conjectured that this was 

particularly true as the number of users to be discriminated increased. We validate 

our conjecture in Chapter 6. 

Analysis of features and decision trees: Finally, we analyzed the size of the 

decision trees produced by the combined classifier and the features used to describe 

users. The average number of unique features per tree was 150, while the average 

size of the trees was 372 nodes (excluding leaves). Seven of the ten most significant 

features were computed from the leaves of the hierarchies in Figures 3.4 to 3.9: item, 

combo box, mouse wheel, mouse movements, icon, control keys and double clicks. 

The other most significant features were computed from the regular keys and mouse 

events (see Table 4.16). The decision trees of 47 users had as a root node one of 

these ten most significant features. The number of events in a particular category 



94 

was the prevailing measurement, and the Y screen coordinates of the cursor were 

the best “raw” measurements for modeling user behavior. 

Discussion 

We concluded the Anomaly Detection experiment with a brief discussion of our 

findings. Empirical results suggested the advantage of using a combination of data 

sources in user re–authentication as opposed to using each source as a standalone 

classifier. The results also showed benefit from applying a smoothing filter function 

on top of the basic anomaly implementation scheme. Closer examination of the 

data sets of those users who produced either a high false bell or false negative rate 

revealed that these users had spent less time doing the data collection and/or had 

under–utilized their I/O devices. We inferred that  a  longer  data  collection time and 

more raw data instances per user are needed to build a more accurate profile of user 

behavior. 

We assumed a closed–setting scenario (i.e., data could be collected from all users) 

and applied a supervised learning algorithm to learn a profile of normal user behavior. 

As we shall see in Chapter 6, we relaxed the closed–setting scenario constraints and 

investigated: 

1. The performance of the combined classifier on a previously	 unseen intruder 

dataset (e.g., the detection of an outsider pretending to be an insider); 

2. The ability to track a valid user across different computer and I/O configura­

tions; 

3. The degree of distinguishability among users when they were given an identical 

task to perform; and 

4. Whether the approach was scalable, i.e., did the accuracy measurement remain 

fairly consistent as the number of users increased; 



95 

Table 4.17
 
The ten most correlated features in the 280–feature space.
 

# Feature Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Skewness of the 2–graph of all mouse events 

Skewness of the 3–graph of all mouse events 

Skewness of the 4–graph of all mouse events 

Skewness of the 5–graph of all mouse events 

Skewness of the 6–graph of all mouse events 

Skewness of the 7–graph of all mouse events 

Skewness of the 8–graph of all mouse events 

Standard deviation of the distance of mouse movements 

Standard deviation of the distance of double clicks 

Standard deviation of the angle of wheel movements 

4.3.3 Experiment III: Reducing the Feature Space 

In this experiment we addressed the issue of feature space reduction. It was 

well known that a classifier was only as good as the features it used [107]. The 

importance of feature space reduction was amplified  when  the  feature  set  was  high–  

dimensional as was the case with our system. In Chapter 3 we conjectured that 

there existed some subset of most uncorrelated and discriminatory features in our 

candidate feature space. In this section we introduced a heuristic approach to feature 

space reduction. We evaluated the performance of classifiers constructed from the 

reduced feature set on the mouse data only. We  used  the  mouse  dataset  because  its  

feature space had higher granularity than keystroke and GUI data. 

We wished to determine how many features could be eliminated from the dataset 

before the classification error rates began to rise. To accomplish this task, we em­

ployed the following heuristic: 



96 

Table 4.18
 
The ten least correlated features in the 280–feature space.
 

# Feature Description 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Mean of X coordinates of single clicks 

Mean of X coordinates of double clicks 

Standard deviation of X coordinates of NC mouse movements 

Standard deviation of Y coordinates of NC mouse movements 

Skewness of Y coordinates of NC mouse movements 

Mean of speed of mouse movements 

Standard deviation of the speed of mouse movements 

Skewness of the speed of mouse movements 

Mean of Y coordinates of mouse movements 

Standard deviation of the speed of NC mouse movements 

1. We computed the pairwise correlation between each two candidate mouse fea­

tures. There were 280 of them. 

2. We counted the number of features each feature was correlated with a corre­

lation factor of 0.86 and above.7 Features extracted from the mouse events 

had a correlation factor of 1.0 with features extracted from the mouse wheel 

and clicks. We showed the ten most (i.e., with the highest correlation coeffi­

cient) and the ten least (i.e., with the lowest correlation coefficient) correlated 

features in Tables 4.17 and 4.18, respectively. 

3. We selected a subset of those features which had a correlation factor of 0.8 and 

above with at most n other features. 
6We set the threshold at 0.8 because we wanted to reduce the feature space to the extent of observing
 
increased error rates on a reduced feature space during classification.
 
7We experimented with higher threshold values in step (3).
 



97 

4. We repeated the Anomaly Detection experiment on the reduced feature subsets 

to determine the performance of the classifiers. 

Correlation matrix: For each pair of features, (fi, fj), we computed the correlation 

coefficient r(fi, fj ) for each  feature  fi. Then,  we  counted  the  number  of  features  

fj (i �= j) such  that  r(fi, fj) ≥ 0.8. If this count, ni for feature fi was ≤ cutoff , then  

we retained the feature, otherwise we eliminated it. We evaluated values for cutoff 

in the set [10, 15, 25] which produced subsets of size 134, 113 and 89, respectively. 

The 134–, 113– and 89–feature subset represented a 52%, 60% and 68% reduction 

in the feature space size, respectively. 

We compared the performance of using the full 280, and of the 134, 113 and 

89 feature subsets using the same experimental setup as in the Anomaly Detection 

experiment (see Section 4.3.2). Our hypothesis was that the absence of noisy or 

irrelevant features would reduce errors due to classification overfitting and improve 

the overall accuracy. Furthermore, we anticipated a decrease in the amount of time 

required to train a mouse classifier. 

Anomaly detection: To obtain a model of normal user behavior we trained a 

binary mouse classifier on a valid user dataset and the remaining N − 1 user  datasets  

in the role of intruders. We used all four feature subsets: 1) 280–, 2) 134–, 3) 

113– and 4) 89–feature subset to determine the overall accuracy of the system. The 

results shown in Figure 4.24 were obtained by the 134-feature subset. The average 

false positive, false bell, false negative and error rates were 40.06%, 4.84%, 2.20% 

and 2.93%, respectively, and a bell count was 1.29 bells over all 52 users. Table 

4.19 summarizes the results obtained for each mouse feature subset. The first row 

of Table 4.19 shows the results obtained by the two implementation schemes (e.g., 

basic and smoothing) from the 280–feature space. The second, third and fourth rows 

of Table 4.19 show the results obtained from the 134–, 113– and 89–feature subset, 

respectively. In Section 4.3.2 Figure 4.19 showed results for each user obtained from 

the 280–feature space. 



98
 

Fig. 4.24. Upper left figure shows the false positive rates; upper 
right shows the false bell rates; center left shows the false negative 
rates, center right shows the overall error rates and the bottom figure 
shows the Bell Count on the 134–feature subset for all 52 users in 
the Feature Space Reduction experiment. 

Both 134- and 113–feature subsets outperformed the 280-feature subset thereby 

supporting our claim that many mouse features were highly correlated and hence 



99
 

Table 4.19 
The average and the standard deviation values of FP, FB, FN and 
Error Rates and the Bell Count over all 52 users for the basic and 
smoothing implementation schemes in the Feature Space Reduction 
experiment. Tables (a), (b), (c) and (d) show results for feature 
subsets of 280 (i.e., the full feature space), 134, 113 and 89 features, 
respectively. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

61.43±28.45% 

43.66±31.93% 

8.96±4.97% 

5.26±3.06% 

0.89±0.60% 

2.04±1.39% 

2.03±0.94% 

2.84±1.48% 

2.29±1.16 

1.40±0.82 

(a) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

57.33±28.85% 

40.06±32.20% 

9.22±5.55% 

4.84±2.84% 

0.83±0.58% 

2.20±1.49% 

1.91±0.93% 

2.93±1.56% 

2.38±1.46 

1.29±0.75 

(b) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

60.32±27.73% 

42.30±31.40% 

9.66±4.97% 

5.24±3.02% 

0.83±0.52% 

2.08±1.34% 

1.96±0.88% 

2.85±1.44% 

2.52±1.34 

1.40±0.82 

(c) 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

62.23±28.20% 

43.80±32.98% 

9.64±5.03% 

4.93±3.44% 

0.93±0.64% 

2.30±1.47% 

2.08±1.0% 

3.09±1.57% 

2.48±1.21 

1.23±0.73 

(d) 

redundant. The 89-feature subset obtained slightly higher error rates, but this was 

not surprising considering its size was one–third of the candidate feature space. Areas 

under the ROC curves for the 280–, 134–, 113– and 89–feature subsets were 0.78, 0.79, 

0.77 and 0.73, respectively. We showed the ROC curve for the 134–feature subset 

in Figure 4.25. In Figure 4.26 we plotted the average error rates for each feature 



100

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1 

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

False Negative Rate 

Fig. 4.25. ROC graph for the 134–feature mouse subset in the Feature 
Space Reduction experiment. 

subset as the number of features increased from 89 to 280. The performance of the 

classifiers constructed on the reduced feature subsets was nearly identical to that of 

the complete feature space classifier. We concluded that the performance was similar, 

but that the speed–up achieved during the training phase was significant when we 

performed the feature space reduction (recall that the runtime of the decision trees 

was dependent on the number of features in a dataset). 

Analysis of features and decision trees: To gain more insight into the reduced 

feature subset performance we analyzed the size  of  the decision  trees  and  the fea­

tures used to describe users for all four mouse feature subsets. We summarized the 

average Tree Size and the number of Unique Features per User (i.e., the features 

that appeared at least once in one of the decision trees for a specific user) obtained 

over all 52 users in Table 4.20. The average size of the decision trees was virtually 

identical for all four classifiers. In comparison to the results obtained on the 61-user 

dataset, the 52-user mouse classifier produced six times smaller decision trees with 



101 

Fig. 4.26. The average FP, FB, FN and Error rates and the Bell 
Count for each feature subset over all 52 users in the Feature Space 
Reduction experiment. 

one–third the number of features per tree, because we eliminated those users with 

insufficient amount of training data per dataset. From Table 4.20 we saw that the 

number of unique features per tree was also nearly identical for all four classifiers 

which validated our choice of feature space reduction heuristic. In environments 

where efficiency was more important than accuracy it might be desirable to reduce 

the number of features even further. One way to do it was by a careful examination 

of those decision tree nodes where a tie between two or more features with the same 

entropy value occurred and then selecting the most uncorrelated one to be the node 

feature. 

4.3.4 Experiment IV: Evaluation of the Feature Hierarchy 

Our last experiment described in this Chapter was designed to examine the “use­

fulness” of grouping mouse data into the mouse hierarchy shown in Figure 3.4. First, 

we omitted features associated with the fourth layer of the hierarchy and then re­



102 

Table 4.20 
The average Tree Size and the number of Unique Features per User 
over all 52 users in the Feature Space Reduction experiment. 

Feature Subset 280 Features 134 Feature 113 Features 89 Feature 

Tree Size 

Unique Features per User 

94.70 

33.27 

96.62 

31.50 

98.5 

31.0 

104.27 

30.40 

Table 4.21
 
The Feature Hierarchy experiment results.
 

Feature Set Levels 1, 2, 3 & 4 Levels 1, 2 & 3 Levels 1 & 2 Levels 3 & 4 

FP Rate 

FB Rate 

FN Rate 

Error Rate 

Bell Count 

43.66% 

5.26% 

2.23% 

3.02% 

1.40 

44.84% 

6.34% 

1.48% 

2.31% 

1.69 

49.07% 

6.91% 

1.84% 

2.75% 

1.85 

50.26% 

3.05% 

2.92% 

3.77% 

0.79 

peated the Anomaly Detection experiment using the remaining 200 features. The 

smoothed results averaged over all 52 users are shown in the third column of Table 

4.21. Then we omitted features associated with both the third and the fourth layers 

of the hierarchy, which left us with 120 features, and obtained the smoothed results 

shown in the forth column of Table 4.21. Finally, we omitted features associated 

with the top two layers of the hierarchy, which left us with 120 features, and ob­

tained the smoothed results shown in the fifth column of Table 4.21. The difference 

between these results and the results obtained using the complete feature set shown 

in the first column of Table 4.19 became statistically significant8 when we removed 

8We used the t-test with alpha=0.05 to evaluate the statistical significance. 

http:alpha=0.05


103 

both lower layers or both upper layers of the hierarchy. We concluded that group­

ing mouse data into the mouse hierarchy improved the overall accuracy, but it also 

increased the time it took to generate a profile of valid user behavior. This is a well– 

known design tradeoff that could influence the choice of feature space in practice. 

In an environment where efficiency constraints are present our recommendation is 

to implement the most uncorrelated features first  and  add  additional  features if  the  

measured performance is unsatisfactory. 

4.4 Summary and Conclusions 

In this Chapter we investigated the applicability of keystroke dynamics, mouse 

movements and GUI events, individually and in combination, to continuous authen­

tication of users for the duration of their login sessions. We assumed a closed–setting 

deployment scenario where data could be readily obtained from all users. We col­

lected data from 61 volunteers. We also extracted the mouse only data from the 

61-user dataset to obtain a 52-user dataset which  we  then  used  to  study  the  feature  

space in more detail. 

The first experiment was designed to give us an initial insight into the strength of 

each classifier as a user re–authentication tool. We built a binary classifier to examine 

the degree of discrimination between each pair of users. The obtained results were 

shown in Table 4.3. Our next step was to test if each classifier could build an accurate 

model of normal user behavior after seeing the behavior of a valid user A and the 

behavior of the remaining N − 1 users  in  the  role  of  intruders.  The  results  indicated  

that the combined classifier outperformed each individual classifier (see Table 4.4). 

The decision trees generated in this experiment for each classifier supported our 

hypothesis that most discriminating features were computed from the leaves of the 

feature hierarchies in Figures 3.4 to 3.9. The Feature Space Reduction experiment 

further illustrated this point on the 52-user mouse dataset by employing a heuristic-

driven approach to select some subset of the most  uncorrelated  features.  Finally,  



104 

the fourth experiment was designed to investigate the usefulness of our feature space 

based on the mouse hierarchy from Figure 3.4. Removing features associated with the 

two lower and two upper levels of hierarchy decreased the performance significantly, 

and we concluded that in an environment where efficiency constraints were present 

the most uncorrelated features should be implemented  first.  Additional  features  

might be added if the measured performance was unsatisfactory. 



105 

5. BOOSTING PERFORMANCE WHEN THE AMOUNT 

OF DATA IS LIMITED PER USER 

In this chapter we investigated the performance of a user re–authentication system 

when the amount of data per user dataset was  limited.  This  situation  arises  in  

practice when the data collection resources are insufficient and/or we wish to build 

a profile  of  a  user  whose  presence  at  a computer workstation is sporadic at best. 

During the classification process, we assumed (without any loss of generality) 

that a classifier outputted a binary string of class–labels, “N”’s and “A”’s, where 

“N” stood for the normal and “A” for the anomalous behavior of a current user, for 

each classification instance. Given n raw data instances we wished to determine if it 

was better (e.g., more accurate and more computationally efficient) to let IW I = n 

or let IW I = 
m 
n and applied a smoothing filter to the m classifications. In Chapter 2 

we defined smoothing as a process of reducing noise in a dataset, in our case, reducing 

minor, transient changes in user behavior. 

Accuracy considerations: We conjectured that a classifier constructed over a 

smaller window size W and smoothed over m classification instances was more ac­

curate when discriminating among different users than a classifier constructed over 

windows of size m ∗ W . We  based  this  conjecture  on  the  following  observation:  as  

we increased the window size W and computed a classification instance over W , we  

reduced the granularity of behavioral patterns present in that window. So, when we 

built a classifier over a smaller W and smoothed m such windows, we preserved the 

patterns better, because we were effectively averaging over m + W instead of m ∗ W 

instances. 

Computational efficiency considerations: Additional benefit from constructing 

classifiers over smaller window sizes was increased efficiency. The time it took to 



106 

compute features increased with the window size. For a window size of W , the  time  

it took to compute the features was O(IW I3) (skewness  is  an  O(n3) algorithm).  

Doubling the window size would increase the time it took to compute the features 

by a factor of eight. In our experiments we implemented  overlapping  windows  (see  

Figure 4.4). As a result, the features were computed every 50 data points following 

the computation of the first feature vector instance. 

The remainder of this chapter is organized as follows: Section 5.1 discusses the 

related work. Section 5.2 describes experimental methodology. Seven smoothing 

filter functions and an optimization criterion used to select a threshold for each 

smoothing function are formally defined. Section 5.3 explains the experiments and 

discusses the results. Section 5.4 summarizes and concludes this chapter. 

5.1 Related Work 

Given m binary ∈ [A, N ], sequential outputs our goal was to make a prediction 

for the entire sequence of “A”s and “N”s. To this end, we applied a smoothing 

filter function over m. In  the  published  literature,  the  similarity  metrics  were  most  

closely related to smoothing filter functions, but there were significant differences. 

Similarity metrics were used to classify a sequence  of  attributes  (which  did  not  

need to be binary attributes) by computing the degree of “similarity” between the 

current sequence and an existing profile of normal behavior whereas the smoothing 

filter functions were applied after the current sequence was classified by a classifier 

to smooth-out any minor, transient changes in user behavior. 

5.1.1 Similarity Metrics 

Similarity metrics were used in different areas of machine learning, e.g., in cluster­

ing, instance-based learning, pattern recognition, etc. Before we describe the various 

similarity metrics used in computer security, we first introduced some notation that 

was common to the methods described below (see Table 5.1) [49]. 



 

107 

Table 5.1 
Notation used to describe Uniqueness, Bayes 1-Step Markov, Hybrid 
Multi–step Markov, Compression and IPAM methods. 

Notation Meaning 

C 

c 

Cut 

Nujk 

Nuk 

Nu 

nujk, nuk, nu 

xub 

U 

Uk 

K 

T 

Training data 

Test data 

tth sequence of user u in C 

Number of times user u used the sequence (j, k) in  C 

Number of times user u used sequence k in C 

Length of user u’s training data sequence 

As above for test data 

Score for user u in a sequence b 

Total number of users 

Number of users who have used sequence k in C 

Total number of distinct sequences 

Number of commands in a test data sequence 

Degree of disorder: Bergadano, Gunetti and Picardi used a distance metric, 

d(A1, A2), to compute the similarity between two N -element arrays A1 and  A2 [57].  

They computed d(A1, A2) by first measuring the degree of disorder defined as the 

sum of the distances between the position of each element in A1 and  the  position  of  

the same element in A2. They then normalized the degree of disorder by dividing 

it by the value of the maximum disorder of a N–element array, thereby making it 

possible to compare the disorder of arrays of different sizes. They defined the maxi­

mum disorder of an array of N elements as N
2 

2 
, if  N was even; and (N2 

2 
−1) , otherwise.  

They classified the current instance X as belonging to the user u with the smallest 

mean distance md(u, X), where md(u, X) =  
M 
1 M

i=1 d(ui, X) and  M was the num­

ber of arrays in the user u’s profile. The authors made further refinements to the 



 

 

 

 

108 

classification rule by introducing the mean of the distances of the arrays forming the 

model of user u1’s behavior (denoted by m(u1)) and classifying X as belonging to 

u1 when the following held: md(u1, X) < m(u1) +  |k(md(u2, X) − m(u1))|, where  

k ∈ [0, 1]. In our experiments we used Shannon entropy and the weighted entropy to 

measure the disorder of n classification instances and learn a profile of normal user 

behavior. 

Sequence match: Lane and Brodley [42] defined the similarity function, Sim(X, Y ), 

between sequences X = (x0, x1, ..., xl−1) and  Y = (y0, y1, ..., yl−1) as  Sim(X, Y ) =  

l−1 
i=0 w(X, Y, i), where w(X, Y, i) =  0,  if  i <  0 or  xi =� yi; and  w(X, Y, i) =  

1 +  w(X, Y, i − 1), if xi = yi. Note  that  w(X, Y, i) =  0 for  i <  0 which  re­

sulted in w(X, Y, 0) being well defined when x0 = y0. The  authors  also  defined  

the converse measure, distance, to be Dist(X, Y ) =  Simmax − Sim(X, Y ), where 

l l(l+1) Simmax = Sim(X, X) =  . A  user  profile  was  a  collection  of  sequences  i=1 i = 2 

D and the similarity between the profile and a newly observed sequence X was 

defined to be SimD(X) =  maxY ∈D{Sim(Y, X)}. The  sequence  X was classified 

as normal if SimD(X) ≥ r, r ∈ [0, 1]; and anomalous, otherwise. The “streaks” 

smoothing function described in Section 5.2.1 captured the same idea as Lane and 

Brodley’s sequence matching function. 

Uniqueness: The “uniqueness” approach was based on  the  idea  that  rare  patterns  

of behavior might indicate the presence of an intruder. Schonlau et al defined a 

test statistic, which built on the notion of unpopular and uniquely used sequences 

as [49]: xu = 1 K
k=1 Wuk(1 − Uk )nuk, where  the  weights  Wuk = −vuk if user u’s 

nu U vk 

Nuktraining data contained sequence k and Wuk = 1  otherwise.  They  defined  vuk = 
Nu 

and vk = u vuk. The  fraction  (1  − U
U 
k ) acted  as  a  uniqueness  index.  It  was  0  if  all  

users had used this sequence before and 1 if none of the users had used it before. 

The weights Wuk determined if the uniqueness index should be added or subtracted 

depending on whether the sequence was seen before or not. If xu ≥ t, where  t was 

a threshold,  the  current  user  was  an  intruder  and  if  xu < t, the  current  user  was  a  

valid user. The authors assigned the same threshold of 0.2319, derived empirically, 



109 

to all users. This approach required a history table containing all sequences seen 

for each user in the training data. The table look–up slowed down the classification 

process during testing and hence, degraded the computational efficiency of a user 

re–authentication system. 

Bayes One–Step Markov: The Bayes one–step Markov approach considered the 

one–step transitions from one sequence to the next in addition to the sequence fre­

quencies [49]. It used a Bayes factor statistic to test the null hypothesis that the 

observed one–step sequence transition probabilities were consistent with a historical 

transition matrix. A Dirichlet distribution was  assumed  when  modeling  probabilities.  

Our goal was to smooth–out transient user behavior after a particular instance had 

been classified by a classifier. Each sequence that we observed was a binary string of 

labels, “A”s and “N”s, where “A” stood for anomalous and “N” for normal behav­

ior of the current user. Unlike command–line input data used in [49] which had a 

finite dictionary, our input had 2n possibilities, where n was the length of a sequence 

under observation. A historical transition matrix  produced  by  the  Bayes  one–step  

Markov approach grew exponentially in size with n. As  a  result,  the  smoothing  filter  

functions we described in this chapter were more efficient than the Bayes one–step 

Markov approach. 

Hybrid Multi–step Markov: This method was based on a multi–step Markov 

chain and on an independence model [49]. The  high  dimensionality  inherent  in  a  

multi–step Markov chain was overcome by: 1) restricting attention to a subset of 

the most frequent sequences (with the remaining sequences represented under a sin­

gle sequence termed “other”) and 2) using a mixture transition distribution (MTD) 

approach to model the transition probabilities [49]. In a case when the test data 

contained many sequences unobserved in the training data, a simple independence 

model was used instead of the Markov model. The independence model estimated 

the probabilities from a contingency table of users instead of sequences. The au­

thors designed an approach that automatically toggled between the Markov and the 

independence model. Similarly to the Bayes one–step Markov method, this method 



110 

lacked efficient computation during testing (it is an O(S2T ) algorithm, where S was 

a finite  number  of  states  over  a  time  sequence  given  by  T ) and  we  did  not implement  

it. 

Compression: The hypothesis behind compression approaches was that the test 

data appended to historical training data compressed  more  readily  when  the  test  

data stems from a valid user rather than an intruder [49]. Schonlau et al defined 

a score  x to be the number of additional bytes needed to compress test data when 

appended to the training data as x = compress({C, c})−compress(C), where {C, c} 

was the test data appended to the training data and compress() was a function that 

gave the number of bytes of the compressed data. The authors used the UNIX 

tool “compress” to implement their approach. This approach might be effective 

on a smaller training dataset, but training data could  be  large  in  practice.  In  our  

experiments we had on average 450MB of data per user. Compressing this much 

data to classify each instance was computationally  prohibitive.  

IPAM: Davison and Hirsh developed the Incremental Probabilistic Action Modeling 

(IPAM) algorithm [120]. It was based on a one–step sequence transition probabilities 

estimated on the training data. The estimated probabilities were updated over time 

using an exponential updating scheme. Upon arrival of a new sequence all existing 

transition probabilities were aged by multiplying them with α, and  1  − α was added 

to the most recent addition (α was empirically set at 0.9). Given a sequence, it 

was then possible to predict the next sequence by choosing the one with the highest 

transitional probability. The fraction  of  valid  predictions of the test data formed a 

score. If the score was below a threshold an alarm was raised. This method also 

lacked efficient computation during testing for the same reasons mentioned above 

and we did not implement it. 

To investigate the performance of a user re–authentication system when the 

amount of data per user dataset was limited, we implemented: 1) majority vote, 

2) weighted majority vote, 3) entropy, 4) weighted entropy, 5) information gain, 6) 

weighted information gain and 7) streaks, as a smoothing filter function. 



111 

5.2 Experimental Methodology 

In this section we investigated the performance of a user re–authentication system 

when the amount of data was limited per user dataset. Specifically, we studied if 

a smoothed classifier constructed over a smaller window size could produce better 

or equal accuracy measurements than an unsmoothed classifier constructed over a 

larger window size. To this end, we varied window sizes W ∈ [100, 300, 500, 1000] 

and we determined the effectiveness of: 1) majority vote, 2) weighted majority vote, 

3) entropy, 4) weighted entropy, 5) information gain, 6) weighted information gain 

and 7) streaks, as a smoothing filter function. We formally defined each smoothing 

function and the optimization criterion equation used for threshold selection. Our 

goal was to determine if there existed some behavioral patterns in the classifier’s 

binary output which could be used to achieve comparable  performance  for  different 

values of W . 

The empirical results obtained in Chapter 4 suggested an advantage of using a 

combination of data sources to perform user re–authentication as opposed to using 

each source as a standalone classifier. To this end, we ran experiments in this chapter 

on the combined data source only. We  used  the  61–user  dataset  described  in  Section  

4.2.2. 

We reported the FP, FB, FN and Error rates as well as the actual number of bells 

sounded for the basic and smoothing implementation schemes in our experiments (see 

Table 4.2 for a complete list of performance metrics). 

To evaluate our methods we used a ten–fold cross–validation (CV). In each of 

the ten CV runs we used a randomly-selected 70% of the user dataset for training, 

15% for tuning and the remaining 15% for testing. Recall that in the experiments 

of Chapter 4 we selected the smoothing parameters on the training data. Here, 

we created a separate tuning set for the parameter-selection to obtain more robust 

parameter-values (i.e., class–labels produced by a classifier on the training data were 



112 

more accurate than those on the tuning or testing data). The results reported were 

averaged over ten cross–validation folds. 

5.2.1 Smoothing Filter Functions 

We began by introducing the notation used throughout this section to define the 

smoothing filter functions. Let S be the set of all classification instances and let 

+ −N =
 ISI. We  define  Sm ⊆ S, m ∈ {1, M}. Furthermore,  let  n and n be the m m 

+ −number of valid user and intruder instances in Sm, respectively,  and  let  c and cm m 

be the sum of probabilities of valid user and intruder instances in Sm, respectively.  

We denote the current classification instance as mj , j ∈ [1, m] [121].  

1. Majority Vote: We label the current classification instance in Sm as “N,” 

+if n ≥ t, where  t ∈ [1, m], and “A” otherwise. m 

2. Weighted Majority Vote: We label the current classification instance in 

Sm as “N,” if c+ 
m ≥ t, where  t ∈ [0, m], and “A” otherwise. 

+ 
m+ n3. Entropy: Let p be the probability of valid user instances in =
 + 

m
m −+nn 

− 
m 

− nS
m and let p be the probability of intruder instances in Sm. We  m=
 + 
m

m −+nn m 

+ 
m ∗ log p+ 

m − p− 
m ∗ log p−compute the entropy of Sm as H(Sm) =  −p . We  label  m

the current classification instance in Sm as “N,” if H(Sm) ≥ t, where  t ∈ [0, 1], 

and “A” otherwise. 

+ 
m+ c4. Weighted Entropy: Let p be the probability of valid user in­=
 + 

m
m −+cc m 
− c−stances in Sm and let p be the probability of intruder instances in m=
 + 

m
m −+cc m 

+ 
m ∗ log p+ 

m − p− 
m ∗ log p− 

m.
. We  compute  the  entropy  of  Sm as H(Sm) =  −pS
m

We label the current classification instance in Sm as “N,” if H(Sm) ≥ t, where  

t ∈ [0, 1], and “A” otherwise. 

+ −5. Information Gain: Let p and H(Sm) be as defined  in (3).  We de­, pm m 

fine the information gain between the current and the kth previous instance 



 

113 

to be I(Sm) =  H(Sm) − H(Sm−k), where k ∈ [2, m]. We label the current 

classification instance in Sm as “N,” if I(Sm) ≥ |t|, where  t ∈ [−1, 1], and “A” 

otherwise. 

6. Weighted Information Gain: Let p+ , p− and H(Sm) be  as  defined  in  m m 

(4). We define the information gain between the current and the kth previous 

instance to be I(Sm) =  H(Sm) − H(Sm−k), where k ∈ [2, m]. We label the 

current classification instance in Sm as “N,” if I(Sm) ≥ |t|, where  t ∈ [−1, 1], 

and “A” otherwise. 

7. Streaks: We define L+ , the  streak  function  counting  the  number  of  valid  m

user “streaks” as	 
⎧
 
⎪
 
⎨ 1 +  Lm if mj = mj−1 

L+ = m 
⎪ 
⎩ 0  otherwise  

We label the current classification instance in Sm mas “N,” if L+ ≥ t, where  

t ∈ [1, m], and “A” otherwise. 

5.2.2 The Optimization Criterion 

Similar to Section 4.2.3 we implemented each smoothing filter function over a 

window m ∈ [1, 17]. We increased the upper limit of m from 11 to 17 because we 

increased the size of our testing set from 10% to 15% and we used the combined 

data source only. We empirically selected m for each smoothing function and each 

user so as to optimize the following criterion: min N
i=1(c1 ∗ FP (ui) +  c2FN(ui)); 

c1, c2 ∈ R+ where u was a user and FP (ui) and  FN(ui) were  the  false  positive  and  

false negative rates of user ui, i ∈ [1, N ], respectively. We reported results with 

c1 = c2 = 1  which  assigned  equal  weight  to  both  error  rates.  



114
 

Fig. 5.1. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells for W = 100  for  all  61  users.  



115
 

Fig. 5.2. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells for W = 300  for  all  61  users.  



116
 

Fig. 5.3. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells for W = 500  for  all  61  users.  



117
 

Fig. 5.4. Upper left figure shows the false positive rates; upper right 
shows the false bell rates; center left shows the false negative rates; 
center right figure shows the overall error rates, and bottom figure 
shows the number of false bells for W = 1000  for  all  61  users.  



118 

5.3 Empirical Analysis 

To evaluate the performance of smoothing filter functions we repeated the Anomaly 

Detection experiment from Section 4.3.2. We wished to determine if a binary classi­

fier could build an accurate model of normal user behavior after seeing the behavior 

of a valid user A and the behavior of the remaining N − 1 users  in  the  role  of  intrud­

ers. We varied the window size W and computed each classification instance over a 

window of W ∈ [100, 300, 500, 1000] data points. We overlapped windows so that a 

new window was obtained from the previous W − 50 and subsequent 50 points (see 

Figure 4.4). As a result, a classification was carried out every fifty points following 

the classification of the first instance. If a user utilized his/her I/O devices 50 points 

was approximately equal to a 5–second time interval. We applied a smoothing filter 

over m classification instances, where m ∈ [1 : 2 : 17], i.e., m goes from 1 to 17 in 

steps of 2. 

Anomaly Detection Results: The obtained results are shown in Figures 5.1 to 

5.4 for the window sizes of 100, 300, 500 and 1000, respectively. Figure 5.1 shows 

average false positive, false bell, false negative and error rates and a bell count over 

all 61 users when W = 100  and  m ∈ [1 : 2 : 17], so the corresponding window sizes 

plotted on the x–axis range from 200 to 900 data points, because the windows were 

overlapping. We did not plot a window size of 100 because entropy, weighted entropy, 

information gain and weighted information gain each produced a 100% false positive 

and 0% false negative rate when smoothed over a single instance. This phenomenon 

followed from their definitions (see Section 5.2.1).  We  also  plotted a  horizontal  line  

in each sub–figure of Figure 5.1 to show the false positive, false bell, false negative 

and error rate and a bell count, respectively, for W = 300.  We  did  the  same  for  

W = 500.  

Figures 5.2 to 5.4 show average false positive, false bell, false negative and error 

rate and a bell count over all 61 users when W = 300,  W = 500  and  W = 1000,  

respectively. The range of m was [1 : 2 : 17], so the corresponding window sizes went 



119 

Table 5.2 
The average values of FP, FB, FN and Error Rates and the Bell 
Count over all 61 users for the majority vote smoothing function 
(W = 100).  

Window Size FP Rate FB Rate FN Rate Error Rate Bell Count 

100 58.37% 11.56% 0.61% 1.58% 33.29 

100, m = 1  

200, m = 3  

300, m = 5  

400, m = 7  

500, m = 9  

600, m = 11  

700, m = 13  

800, m = 15  

900, m = 17  

47.12% 

33.79% 

26.23% 

21.29% 

17.75% 

25.02% 

21.76% 

19.0% 

16.83% 

8.0% 

4.53% 

2.99% 

2.22% 

1.67% 

2.10% 

1.92% 

1.60% 

1.40% 

1.07% 

1.92% 

2.70% 

3.43% 

4.14% 

1.42% 

1.68% 

1.93% 

2.18% 

1.84% 

2.43% 

3.07% 

3.71% 

4.34% 

1.80% 

2.0% 

2.20% 

2.41% 

22.92 

12.45 

8.04 

5.82 

4.26 

5.18 

4.63 

3.84 

3.35 

from 400 to 1100, 600 to 1300 and 1100 to 1800 data points for W = 300,  W = 500  

and W = 1000, respectively. Similar to Figure 5.1 we omitted plotting the results 

obtained for m = 1. In each sub–figure of Figure 5.2 we plotted two horizontal lines 

to show the error rates for W = 500  and  W = 1000,  respectively.  In  each  sub–figure  

of Figure 5.3 we plotted a horizontal line to show the error rates for W = 1000.  

The ranking by accuracy for the smoothing filter functions was 1) majority vote, 

2) weighted majority vote, 3) weighted entropy, 4) entropy, 5) streaks, 6) weighted 

information gain and 7) information gain. The difference in performance between 

the weighted and non–weighted smoothing functions was negligible. Both weighted 

entropy and weighted information gain outperformed their non–weighted counter­

parts. For W = 100  and  m = 17  weighted  entropy  produced  lower  false  positive  rate  

than majority vote (15.35% versus 16.83%), but the false negative rate was higher 



120 

Table 5.3 
The average values of FP, FB, FN and Error Rates and the Bell 
Count over all 61 users for the majority vote smoothing function 
(W = 300).  

Window Size FP Rate FB Rate FN Rate Error Rate Bell Count 

300 49.23% 8.15% 0.65% 1.49% 22.75 

300, m = 1  

400, m = 3  

500, m = 5  

600, m = 7  

700, m = 9  

800, m = 11  

900, m = 13  

1000, m = 15  

1100, m = 17  

41.23% 

31.21% 

24.46% 

20.01% 

16.83% 

21.46% 

18.72% 

16.72% 

15.07% 

5.82% 

3.83% 

2.60% 

1.81% 

1.51% 

1.83% 

1.50% 

1.34% 

1.15% 

0.99% 

1.61% 

2.19% 

2.73% 

3.29% 

1.77% 

2.03% 

2.29% 

2.55% 

1.69% 

2.12% 

2.58% 

3.05% 

3.52% 

2.11% 

2.32% 

2.54% 

2.76% 

16.70 

10.82 

7.49 

5.22 

4.32 

4.69 

3.75 

3.24 

2.80 

for weighted entropy (6.69% versus 2.18%). One possible explanation for high er­

ror rates produced by the weighted and non–weighted information gain smoothing 

functions could be that entropy measurements were fairly consistent within m clas­

sification instances - e.g., if a user had some transient changes in his/her behavior, 

such behavior persisted over all m instances. Consequently, no useful information 

was obtained by computing the information gain. 

Tables 5.2 to 5.5 show results for window sizes of 100, 300, 500 and 1000, re­

spectively, obtained by the majority vote smoothing function. The second row of 

each table displays the results obtained by the  basic  classifier  at  a  particular  win­

dow size. The highlighted values show results obtained by a classifier constructed 

over a smaller window size W and smoothed over m classification instances, so that 

m smoothed windows of size W are equal to either 300, 500 or 1000 data points. 



121 

Table 5.4 
The average values of FP, FB, FN and Error Rates and the Bell 
Count over all 61 users for the majority vote smoothing function 
(W = 500).  

Window Size FP Rate FB Rate FN Rate Error Rate Bell Count 

500 43.69% 6.38% 0.56% 1.32% 18.67 

500, m = 1  

600, m = 3  

700, m = 5  

800, m = 7  

900, m = 9  

1000, m = 11  

1100, m = 13  

1200, m = 15  

1300, m = 17  

37.40% 

29.47% 

23.85% 

19.87% 

17.15% 

19.79% 

17.63% 

16.0% 

14.59% 

4.47% 

3.12% 

2.21% 

1.53% 

1.15% 

1.58% 

1.37% 

1.22% 

1.08% 

0.79% 

1.22% 

1.63% 

2.02% 

2.40% 

1.52% 

1.75% 

1.97% 

2.18% 

1.44% 

1.73% 

2.03% 

2.35% 

2.67% 

1.85% 

2.03% 

2.21% 

2.40% 

12.82 

8.78 

6.14 

4.53 

3.51 

4.04 

3.41 

2.98 

2.59 

Observe that a classifier constructed over W = 100  data  points  and  smoothed  over  

m = 5 and  m = 9  instances  produced  lower  error  rates  than  an  unsmoothed clas­

sifier constructed over W = 300  and  W = 500  data  points,  respectively.  Also,  a  

classifier constructed over W = 300  data  points  and  smoothed  over  m = 5  and  

m = 15  instances  outperformed  an  unsmoothed classifier constructed over W = 500  

and W = 1000  data  points,  respectively.  The  obtained  results  suggested  that  the  

performance of a user re–authentication system could be boosted when the amount of 

data per user is limited by applying a smoothing filter function over m classification 

instances. 

Figure 5.5 shows the results obtained with majority vote as a smoothing function 

for window sizes 100, 300, 500 and 1000 data points and m ∈ [1 : 2 : 29]. We 

increased the range of values for m to determine the error rates as m grew large. 



122 

Table 5.5 
The average values of FP, FB, FN and Error Rates and the Bell 
Count over all 61 users for the majority vote smoothing function 
(W = 300).  

Window Size FP Rate FB Rate FN Rate Error Rate Bell Count 

1000 45.11% 4.09% 0.67% 1.50% 11.78 

1000, m = 1  

1100, m = 3  

1200, m = 5  

1300, m = 7  

1400, m = 9  

1500, m = 11  

1600, m = 13  

1700, m = 15  

1800, m = 17  

41.08% 

35.24% 

31.09% 

27.98% 

25.50% 

27.58% 

25.55% 

23.72% 

22.28% 

3.34% 

2.30% 

1.71% 

1.36% 

1.15% 

1.58% 

1.48% 

1.29% 

1.23% 

0.84% 

1.13% 

1.40% 

1.66% 

1.90% 

1.50% 

1.67% 

1.84% 

2.01% 

1.60% 

1.79% 

1.97% 

2.17% 

2.36% 

2.0% 

2.13% 

2.26% 

2.40% 

9.63 

6.73 

5.12 

4.10 

3.53 

3.96 

3.65 

3.16 

3.0 

Figure 5.5 shows that as we increase m, the  overall  accuracy  improves.  To  determine  

the effect of smoothing on the detection time we computed the average threshold 

values, t, for  m = 29  over  all  61  users.  We  obtained  the  threshold  values  of  2.45,  2.37,  

2.61 and 2.52 for the window sizes of 100, 300, 500 and 1000 data points, respectively. 

In Section 5.2.1 we labeled the current classification instance as “N” in the majority 

+vote function, if nm ≥ t, where  t ∈ [1, m], and “A” otherwise. Therefore, we needed 

to observe on average 26.51 intruder’s instances before we raised an alarm. If the 

current user utilized the I/O devices 26.51 instances translated to 2.20 minutes of 

detection time. 



123
 

Fig. 5.5. Upper left figure shows the error rates obtained for W = 
100; upper right shows the error rates obtained for W = 300;  lower  
left shows the error rates obtained for W = 500,  and  lower  right  figure  
shows the error rates obtained for W = 1000  when  m ∈ [1 : 2 : 29] 
for all 61 users with majority vote as the smoothing function. 

5.3.1 Discussion 

Our empirical results showed that a smoothed classifier constructed over a smaller 

window size could produce better accuracy measurements than an unsmoothed clas­

sifier constructed over a larger window size. We explained this outcome with a finer 

granularity of user behavior that was more accurately captured over m windows of 



124 

smaller W than over a single window of m ∗ W data points. Namely, a window of 

m∗ W data points averaged-out finer behavioral patterns  of  users to  a  greater  extent  

than a window of W . As  a  result,  inherent  patterns  of  user  behavior  were  better  

preserved when smoothing m smaller–sized windows. 

Smoothing over several smaller windows was also more computationally efficient, 

because at each step (in our experiments each step was 50 data points) we needed to 

compute feature values over a window of a smaller size. One could use incremental 

updates [122] to improve the computational efficiency of larger window sizes, but with 

small window sizes such was W = 100  in  our  experiments  and  a  window–overlap  of  

50 data points, computational efficiency of larger windows remained inferior. 

Apparent trade–off between the overall accuracy and the detection time became 

non–negligible when we applied smoothing as shown in Figure 5.5. A solution to this 

problem should be found in an operational setting.  We  computed  that  for  our  user  

re–authentication system the detection time of a smoothed output was approximately 

2.20 minutes (if user utilized I/O devices). 

5.4 Summary and Conclusions 

In this chapter we investigated the performance of the user re–authentication 

system when the amount of data was limited per user. The results obtained sug­

gested that smoothing m classification instances each obtained over a window of W 

data points outperformed an unsmoothed classification of m ∗ W data points. We 

explained this phenomenon by a finer level of granularity of user behavior captured 

over smaller W and then averaged over m such instances than over a single big win­

dow of m ∗ W data points. The highlighted values in Tables 5.2 to 5.5 support this 

conclusion. 

We also examined the performance of the system as m grew large and concluded 

that there was an inherent trade–off between the overall accuracy and the detection 

time, which could only be resolved in an operational setting. 



125 

6. USER RE-AUTHENTICATION WITH THE 

COMBINED DATA SOURCE 

In this chapter we used the combined data source to determine: 

1. The performance of the combined classifier on a previously unseen user dataset; 

2. The ability to track a valid user across different computer and I/O configura­

tions; 

3. The degree of distinguishability among users when they were given an identical 

task to perform; 

4. Whether the approach was scalable, i.e., did the accuracy measurement remain 

fairly consistent as the number of users increased; and 

5. The computational efficiency of our user re–authentication system. 

6.1 Detecting Previously Unseen Intruders 

Empirical results obtained in Chapter 4 established the strength of the combined 

data source when trained on all N users, where N = 61  in  our  dataset.  The  results  

obtained demonstrated the ability of our system to detect an insider pretending 

to be another insider. In this section we wish to concentrate on a scenario where 

one cannot know the behavior of all users in advance (e.g., temporary workers or 

visitors) and therefore want to discriminate between whether it is or is not the valid 

user. Specifically, we investigated if we could detect an outsider pretending to be an 

insider. Consider the following two cases: 



126 

1. We had a 3-user dataset (Alice, Bob and  Carol). 	  We  built  a  classifier  C1 to 

discriminate Alice from Bob. We wished to use C1 to discriminate Alice from 

Carol. 

2. We	 had an N–user dataset, where N is large. We built a classifier C2 to 

discriminate Alice from Bob, Dave, Ed and potentially hundreds of other users. 

We wished to use C2 to discriminate Alice from Carol. 

We conjectured that the classifier C2 would produce lower error rates when dis­

criminating Alice from Carol than C1. To  validate  our  conjecture,  we  trained  a  

biometric classifier on a large number of “seen” intruders and tested it’s accuracy on 

an “unseen” intruder (i.e., an unlabeled sample). We investigated the performance 

of the classifier when all but one randomly selected user dataset (let’s refer to this 

dataset as I) was  seen  in  the  training  phase  and  a  profile  of  normal  user  behavior  

for each user was built by observing the valid user’s behavior and behavior of the 

remaining N − 2 intruders.  We  used  I’s dataset to compute the false negative rate 

during testing. 

6.1.1 Experimental Methodology 

For the experiments in this section we built a classifier from the combined data 

source from the 61–user dataset described in Section 4.2.2. We reported the results 

for the basic and smoothing implementation schemes in each experiment. We used 

the majority vote as a smoothing filter function with m ∈ [1, 11]. We computed each 

classification instance over a window of W = 500  data  points  and  we  overlapped  

windows so that a new window was obtained from the previous 450 and subsequent 

50 points. As a result, a classification was carried out every fifty points following 

the classification of the first instance. To evaluate our methods we used a ten–fold 

cross–validation (CV). In each of the ten CV runs 90% of the user dataset was used 

for training and the remaining 10% was used for  testing.  The  results  reported  were  

averaged over the inner eight CV folds. 



127 

Fig. 6.1. The average FN rates on an unseen intruder for each pro­
filed user in the 61-user dataset in the Detecting Previously Unseen 
Intruders experiment. 

Table 6.1 
The average FN rates in the Detecting Previously Unseen Intruders experiment. 

Error Rate Basic Smoothing TTA 

FN Rate on an Unseen Intruder (N = 61)  

FN Rate on an Unseen Intruder (N = 3)  

FN Rate on N − 1 Seen Users 

0.98% 

51.94% 

0.54% 

2.25% 

63.28% 

1.50% 

49.3 seconds 

48.5 seconds 

50.0 seconds 

6.1.2 Empirical Analysis 

The results obtained by the smoothed implementation scheme are shown in Fig­

ure 6.1. The average false negative rate and time to alarm over all 61 users was 

2.25% and 49.3 seconds, respectively. Table 6.1 shows the time to alarm and the 

average false negative rate on 1) an unseen intruder from the 61–user dataset; 2) 



128 

Fig. 6.2. The average FN rates as the number of seen intruders 
increased from 1 to 59 in the Detecting Previously Unseen Intruders 
experiment. 

an unseen intruder from 3–user datasets;1 and 3) a seen intruder from the Anomaly 

Detection experiment. The average false negative rates on an unseen intruder were 

higher than the false negative rate obtained in the Anomaly Detection experiment 

(compare the second and third with the fourth row of Table 6.1) which was to be 

expected considering that this intruder’s dataset was not used to train the classifier 

in this experiment. The average false negative rate on an unseen intruder, N = 61,  

was significantly lower than the false negative rate on an unseen intruder, N = 3,  

(compare the second with the third row of Table 6.1) which validated our hypothesis 

that the classifier C2 would indeed produce lower error rates when discriminating 

Alice from Carol than C1. 

We also determined the false negative rates on an unseen intruder as the number 

of seen intruders increased from 1 to 59. These results are shown in Figure 6.2. 

We observed that as the number of seen intruders increased the false negative rate 

1We repeated this experiment on 61 3-user datasets to compute the average false negative rate for 
N = 3.  



129 

Fig. 6.3. The average TTA values for each user in the 61-user dataset 
in the Detecting Previously Unseen Intruders experiment. 

decreased. This was not surprising considering that we measured the ability of a 

classifier to detect a majority class (i.e., the intruder’s class) and as the majority 

class became more predominant the classifier produced lower false negative rates. 

We next measured the amount of time it took a classifier to signal an alarm when 

an intrusion occurred. The TTA results obtained by the smoothed implementation 

scheme are shown in Figure 6.3. The average TTA values were 5.0 and 49.3 seconds 

for the basic and smoothing implementation schemes,  respectively.  We  concluded  

that the biometric classifier could accurately detect even a previously unseen intruder 

with the false negative rate of 2.25% and the detection time of 49.3 seconds. 

6.2 Tracking a Valid User 

In Chapter 4 we introduced our 61–user dataset collected by a group of volunteers 

who used the Dell workstation computers. In this section, we investigated to what 

extent a profile of normal user behavior was dependent on the computer and I/O 

configuration. Specifically, we determined if we could correctly identify a valid user 



130 

as he/she was using different I/O devices and going from a desktop to a laptop 

computer. For each pair of computer and I/O  configurations  we  built  a  binary  

classifier to determine if we could track a valid user across different configurations. 

6.2.1 Data Set II 

We asked one user to repeat the data collection process on five different computer 

and I/O configurations. This user was given the same reading assignment followed 

by a set of twenty questions. She was also given the same set of web pages to look 

at and answer yet another set of questions. She had no other behavioral impositions 

placed on her other than the specific task. The entire process lasted 7.28 hours on 

average; the standard deviation was 10.48 hours. The average number of raw data 

points for this user was 284,223 with the standard deviation of 286,604. We showed 

that for this user, a separate profile of normal user behavior should have been built 

for each configuration of computer and I/O devices. Additional users’ datasets were 

needed to test the extent of a user profile’s dependence on the computer and I/O 

configurations. 

The following computer and I/O configurations were used to collect the data: 

1.	 Computer: Laptop, 1.66MHz CPU, 1GB RAM, 80GB hard drive, Windows 

XP OS, Acer 2006; Mouse: Touchpad on a laptop computer, Acer 2006; 

Keyboard: 92–key laptop keyboard with media and web access keys, Acer 

2006. 

2.	 Computer: Desktop, 3.2MHz CPU, 2GB RAM, 250GB hard drive, Win­

dows XP OS, Dell 2004; Mouse: Optical, ergonomic, PS–2 connected wireless 

mouse, Microsoft 2003; Keyboard: 119-key, ergonomic, USB connected wire­

less keyboard with media and web access keys, Microsoft 2003. 

3.	 Computer: Desktop, 3.2MHz CPU, 2GB RAM, 250GB hard drive, Windows 

XP OS, Dell 2004; Mouse: Optical, USB connected mouse with media and web 



131 

access buttons, Dell 2004; Keyboard: 112-key, ergonomic, USB connected 

keyboard with web access keys, Dell 2004. 

4.	 Computer: Desktop, 3.2MHz CPU, 2GB RAM, 250GB hard drive, Windows 

XP OS, Dell 2004; Mouse: Optical, USB connected mouse with media and 

web access buttons, Dell 2004; Keyboard: 105–key, USB connected keyboard, 

Macally 2002. 

5.	 Computer: Desktop, 3.2MHz CPU, 2GB RAM, 250GB hard drive, Windows 

XP OS, Dell 2004; Mouse: Trackball, PS–2 connected mouse, Genius 1998; 

Keyboard: 105-key, PS–2 connected keyboard, Genius 1998. 

6.2.2 Experimental Methodology 

We reported the results for the basic and smoothing implementation schemes for 

a classifier constructed from the combined data source. We used the majority vote 

as a smoothing filter function with m ∈ [1, 11]. We computed each classification 

instance over a window of W = 500 data points and we overlapped windows every 

50 data points. To evaluate our method we used a ten–fold cross–validation (CV). 

In each of the ten CV runs 90% of the user dataset was used for training and the 

remaining 10% was used for testing. The results reported were averaged over all ten 

CV folds. 

6.2.3 Empirical Analysis 

Table 6.2 shows results obtained by the smoothing implementation scheme. The 

eighth and ninth rows of Table 6.2 show the average FP and FN rates over all five 

configurations for the smoothing and basic implementation schemes, respectively. 

The results suggested that for a particular user, a separate profile should have been 

built for each configuration of computer and I/O devices. The lowest error rates (i.e., 

the least successful identification of a user) were produced for the laptop configu­



132 

Table 6.2
 
FP and FN rates in the Tracking a Valid User experiment.
 

Config. ID Config. 1 Config. 2 Config. 3 Config. 4 Config. 5 

Rate (%) FP FN FP FN FP FN FP FN FP FN 

Config. 1 50.0 50.0 0.9 4.3 3.2 11.2 4.7 0.6 4.0 10.1 

Config. 2 4.3 1.7 50.0 50.0 6.3 9.8 7.0 12.8 3.6 1.5 

Config. 3 7.2 4.6 5.6 8.3 50.0 50.0 20.4 5.2 9.8 6.3 

Config. 4 0.5 6.7 7.9 11.0 2.6 26.8 50.0 50.0 1.7 6.4 

Config. 5 5.8 8.3 0.8 3.7 1.7 23.2 2.6 2.9 50.0 50.0 

Average 13.6 14.3 13.0 15.5 12.8 24.2 17.0 14.3 13.8 14.9 

Basic 13.3 14.8 14.4 14.2 20.0 15.3 18.5 14.1 14.5 14.3 

ration; and the highest error rates were produced for configurations 3 and 4 which 

had the computer and the mouse device in  common,  but  configuration 3 had an 

ergonomic keyboard. Configurations 2 and 5 were the two most dissimilar desktop 

configurations and therefore the easiest ones to differentiate. 

6.3 Anomaly Detection with Behavioral Constraints 

In Chapter 4 we conducted our empirical analysis on the 61-user dataset which 

was obtained by a group of volunteers who were given a reading assignment followed 

by a set of twenty questions. The volunteers were also given a set of web pages to 

look at and answer yet another set of questions. They were asked to behave as they 

would normally in any other situation i.e., they had no behavioral limitations placed 

upon them other than the specified task. 

Our goal in this section was to investigate the performance of a classifier when 

users were given an identical task to perform. Specifically, we wished to determine 



133 

Fig. 6.4. An electronic copy of a travel expense form used to col­
lect the 73 user dataset in the Anomaly Detection with Behavioral 
Constraints Experiment. 

if a classifier could correctly identify a valid user and flag an intruder in a controlled 

environment where behavioral constraints were imposed on users. To accomplish 

our task, we created a computer program that collected users’ keyboard and mouse 

input while they were filling out an electronic copy of a travel expense form shown 



134 

in Figure 6.4. They all filled in exactly the same information. We then repeated 

the Anomaly Detection experiment on the new dataset to determine if the binary 

biometric classifier could still build an accurate model of normal user behavior after 

seeing the behavior of a valid user A and the behavior of the remaining N − 1 users  

in the role of intruders. 

6.3.1 Data Set III 

To test the accuracy of a classifier when users are executing the same task we 

collected the third dataset by a group of 73 volunteers. Our volunteers were graduate 

and undergraduate students and Graduate Office staff at Tufts University. Most of 

them were expert keyboard and mouse users. All users were asked to fill out an 

electronic copy of a travel expense form (one page in length) word-by–word from a 

template sheet that was distributed to each user in advance (see Figure 6.4). 

During the data collection process typing mistakes were allowed. Users were 

instructed to use their mouse device when going  from  one  field  of  the  form  to  the  

next (instead of the “Tab” key) so we could record as many mouse movements as 

possible. The data collection process lasted 11.77 minutes on average; the standard 

deviation was 10.02 minutes. The average number of raw data points per user was 

16,350 with a standard deviation of 16,428. In comparison to the 61-, 73–user dataset 

contained virtually no pause time, was much smaller in size and more dense with the 

I/O events. 

6.3.2 Experimental Methodology 

In this experiment we reported the results for the basic and smoothing imple­

mentation schemes for a classifier built from the combination of data sources (i.e., 

mouse, keystroke and GUI) from the 73–user dataset. We used the majority vote 

as a smoothing filter function with m ∈ [1, 11]. We computed each classification in­

stance over a window of W = 500  data  points  and  we  overlapped  windows  every  50  



135
 

Fig. 6.5. The top left figure shows the false positive rates; the top 
right shows the false bell rates; center left shows the false negative 
rates; center right shows the error rates; and the bottom figure shows 
the bell count for each of the 73 users in the Anomaly Detection with 
Behavioral Constraints experiment. 

data points. We also generated a ROC graph and reported the area under the ROC 

curve. To evaluate our method we used a ten–fold cross–validation (CV). In each of 



136 

Fig. 6.6. The bar graphs show the error rates in the descending 
order for each of the 73 users. The pie charts show the percentage 
distribution of users across each error–rate range. From the top, 
the bar graphs and the corresponding pie charts representing FP, 
FB, FN and Error rates in the Anomaly Detection with Behavioral 
Constraints experiment are shown. 



137 

Table 6.3 
The average and the standard deviation of FP, FB, FN and Error 
Rates and the Bell Count over all 73 users for the basic and smoothing 
implementation schemes in the Anomaly Detection with Behavioral 
Constraints experiment. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

48.99±17.80% 

38.38±18.98% 

9.26±4.21 

6.98±3.45 

0.46±0.57 

0.59±1.22 

0.88±1.04 

0.92±1.61 

2.39±2.29 

1.81±1.82 

Fig. 6.7. Performance measurements versus the time to alarm in 
seconds for the combined data source in the Anomaly Detection with 
Behavioral Constraints experiment. 

the ten CV runs 90% of the user dataset was used for training and the remaining 

10% was used for testing. The results reported were averaged over all ten CV folds. 



138 

6.3.3 Empirical Analysis 

The obtained results are shown in Figure 6.5. Figure 6.6 shows the results from 

Figure 6.5 in a rate–descending order. The bar graphs of Figure 6.6 show the false 

positive, false bell, false negative and error rates, respectively, in the descending 

order for each of the 73 users. The corresponding pie charts of Figure 6.6 show the 

percentage distribution of users across each respective error–rate range. Table 6.3 

summarizes the results for the basic and smoothing implementation schemes averaged 

over all 73 users. The smoothed implementation scheme produced the average false 

positive, false bell, false negative and error rates of 38.38%, 6.98%, 0.59% and 0.92%, 

respectively, and a bell count of 1.81 bells. Figure  6.7  shows  the  error  rates  as  the  

time to alarm increased from 5 to 185 seconds. The lowest error rates were obtained 

when the detection time was 14 seconds and the results were smoothed over m = 3  

classification instances.2 The ROC curve is shown in Figure 6.8. The area under the 

ROC curve was 0.68. 

In comparison to the Anomaly Detection experiment  from  Section  4.3.2  this  

experiment yielded higher false positive and false bell rates and lower false negative 

and error rates and the bell count. The reason for this was a significantly shorter 

training time (10.6 minutes as opposed to 3.7 hours). Such a short training time 

did not provide the classifier with enough data  to  build a  more  accurate  model  of  

normal user behavior. More active data per user dataset as needed to improve the 

overall accuracy. This was particularly true because the number of intruders to 

be discriminated against increased. Considering the same amount of training time 

it was interesting that the false positive rate was at 38.38% and not higher. One 

possible explanation for this phenomenon was that the 73-user dataset was denser 

with the data points than the 61-user dataset. Namely, the density of the 73-user 

dataset was 1389.12 raw data points per minute which was nearly four times higher 

than the density of the 61–user dataset at 374.26 raw data points per minute. 

2Higher values of m increased the average error rates, because some user datasets were small. 



139

 0

 0.2

 0.4

 0.6

 0.8

 1

Tr
ue

 P
os

iti
ve

 R
at

e 

Average ROC Line 

0	  0.2  0.4  0.6  0.8  1 
False Negative Rate 

Fig. 6.8. ROC curve for the 73–user dataset in the Anomaly Detec­
tion with Behavioral Constraints experiment. 

Empirical results obtained in this experiment led to the following conclusions: 

1. It was possible to discriminate users even when they were executing the same 

task; and 

2. The performance of the system improved with a) the amount of training data 

used to build a profile of normal user behavior and b) the density of each 

user’s dataset in terms of the number of points collected per a particular time 

interval. 

6.4 A Study of Scalability 

In this section we investigated the scalability of our user re–authentication sys­

tem. Specifically, we wished to determine the performance of the system as the 



140 

Fig. 6.9. Scalability of the system. 

number of users, N , grows  large.  To  this  end, we  used  the  larger  of  the  two  datasets  

(i.e., the 73–user dataset). We repeated the Anomaly Detection experiment on four 

subsets that we created by randomly picking 20, 40, 60 and 73 users. For each sub­

set we computed the average false positive, false bell, false negative and error rates 

and a bell count over all 20, 40, 60 and 73 users, respectively. We then observed the 

tendencies of the error rates for each subset and drew conclusions about the system’s 

scalability. 

6.4.1 Experimental Methodology 

In this experiment we reported the results for the basic and smoothing imple­

mentation schemes for a classifier constructed from the combined data source from 

the 73–user dataset. We used the majority vote as a smoothing filter function with 

m ∈ [1, 11]. We computed each classification instance over a window of W = 500  data  



141 

Table 6.4 
The average and the standard deviation of FP, FB, FN and Error 
Rates and the Bell Count over 20, 40, 60 and 73–user subsets for 
the basic and smoothing implementation schemes in the Scalability 
Experiment. 

Scheme FP Rate FB Rate FN Rate Error Rate Bell Count 

Basic 

Smoothing 

45.84±4.89% 

36.83±2.09% 

8.98±0.76 

6.98±0.63 

0.70±0.28 

0.77±0.23 

1.38±0.55 

1.29±0.55 

2.04±0.51 

1.46±0.26 

points and we overlapped windows every 50 data points. To evaluate our method 

we used a ten–fold cross–validation (CV). In each of the ten CV runs 90% of the 

user dataset was used for training and the remaining  10%  was  used  for  testing.  The  

results reported were averaged over all ten CV folds. 

6.4.2 Empirical Analysis 

Table 6.4 summarizes the results. For the smoothed implementation scheme, 

Figure 6.9 shows that all of the error rates and the Bell Count displayed consistent 

and nearly constant tendencies as the number of users increased from 20 to 40 to 

60 to 73. For the dataset that we had we concluded that our implementation of a 

user re–authentication system was scalable. However, to truly test the scalability of 

a system  hundreds  and  even  thousands  of  user  datasets  are  needed.  

6.5 Computational Efficiency 

Finally, we discussed the computational efficiency of a user re-authentication sys­

tem. We considered both the training time and the runtime overhead of monitoring 

user behavior. 



142 

The training time overhead for the decision trees was n ∗ m ∗ log2(m), where n 

was the number of classification instances and m was the number of features [108]. 

In practice, initial training is carried out in an off–line environment. (Note that 

incremental decision tree algorithms [123, 124] exist for online approaches, but we 

do not investigate them here.) The runtime overhead of monitoring consisted of 

collecting the data points as they were induced by the user, computing a feature 

vector of those features present in the decision tree model of that user, traversing 

the tree to determine the class of the current feature vector instance and applying 

the smoothing filter to reach the final decision.3 

Let the total number of API events (i.e., system calls) that we were monitoring 

be p (p was known to be 161 - see Chapter 3), let the number of unique features 

in the user’s profile be q and let the size of a decision tree be r, then  the  runtime  

of our system could be expressed as O(c1 ∗ p + c2 ∗ q + log2(r) +  c3); c1, c2, c3 ∈ R+ 

where c1, c2 and c3 represented the CPU time to process an API call, compute a 

feature and perform smoothing, respectively. We did not measure c1, c2 and c3 

because they were machine–specific.4 Empirical results from the Anomaly Detection 

experiment in Section 4.3.2 produced q = 150  and  r = 372  for  the  average  number  

of features in the user’s profile and the size of the decision tree (excluding leaves), 

respectively. Therefore, the runtime bottleneck of our system was the computation 

c2 ∗ q. To  mediate  this  problem  one  could  implement parallel processing because of 

the features’ computational independence,  but  a  detailed  discussion  of  this  issue  is  

beyond the scope of this thesis. 

6.6 Summary and Conclusions 

In this chapter we investigated 1) the performance of a classifier on an unseen 

intruder dataset, 2) the ability to track a valid user across different computer and 

3Please note that there could also be a network delay if the user’s profile is stored on a secure 
server. 
4Feedback from the users who participated in the data collection indicated that the entire process 
was unobtrusive and transparent. 



143 

I/O configurations, 3) the degree of distinguishability among different users when 

they are given an identical task to perform, 4) the scalability, and 5) the computa­

tional efficiency of our user re–authentication system. We concluded that a classifier 

constructed from the combined data source from the 61–user dataset could detect a 

previously unseen intruder with a false negative rate of 2.25% and a detection time 

of 49.3 seconds. 

To examine the ability of our system to track a valid user, we asked one user 

to collect the data on five different hardware configurations. We showed that for 

this user, a separate profile of normal user behavior should have been built for each 

configuration of computer and I/O devices. We  concluded  that  additional  users’  

datasets were needed to fully test the extent of a user profile’s dependence on the 

computer and I/O configurations. 

To determine if a classifier could correctly identify a valid user and detect an 

intruder in a controlled environment where behavioral constraints were imposed on 

users we collected the second dataset from 73 volunteers who were asked to fill out 

an electronic copy of a travel expense sheet word-by–word from a template. In 

comparison to the 61-, 73–user dataset contained virtually no pause time, was much 

smaller in size and more dense with the I/O events.  The  experiment  produced  the  

average false positive, false bell, false negative and error rates of 38.38%, 6.98%, 

0.59% and 0.92%, respectively, and a bell count of 1.81 bells. The detection time 

was 14 seconds. We concluded that 1) it was possible to discriminate users even 

when they were behaving in a nearly identical manner, and 2) the performance of 

the system improved with a) the amount of training data used to build a profile 

of normal user behavior and b) the density of  each  user’s  dataset  in  terms  of  the  

number of points collected per a particular time interval. 

We investigated the scalability of our system on the 73–user dataset. We created 

four subsets by randomly picking 20, 40, 60 and 73 users and we computed the 

average false positive, false bell,  false negative  and  error  rates  and  a  bell  count  for  

each subset. We then observed the tendencies of the error rates for each subset as 

http:devices.We


144 

the number of users increased from 20 to 40 to 60 to 73. For the 73–user dataset we 

concluded that our implementation of a user re–authentication system was scalable. 

Finally, we examined the computational efficiency of a user re–authentication 

system and concluded that the computation of  features  present  in the  profile  of  a  

valid user was the run-time bottleneck of the system. We suggested implement­

ing parallel processing because of the features’ computational independence as one 

possible solution to this problem. 



145 

7. SUMMARY AND SIGNIFICANCE 

This dissertation examined a user re–authentication system via behavioral biomet­

rics. The underlying hypothesis was that one could successfully model user behavior 

on the basis of the user’s inputs and GUI changes as a response to those inputs. In 

particular, a model of normal user behavior was derived from the mechanics of the 

user’s mouse movements, keystroke dynamics and GUI events. The proposed user 

re–authentication system was designed to either raise an alarm or alert a system ad­

ministrator when the current behavior of user U , deviated  sufficiently from learned 

“normal” behavior of user U . 

7.1 Summary of Findings 

The development and design of a state–of–the–art user re–authentication system 

was our primary objective. In Chapter 1 we conjectured and in the remaining chap­

ters we presented empirical evidence from the real–world datasets that the proposed 

user re–authentication system was able to accomplish the following: 

1. Detect insiders pretending to be other insiders (Section 4.3.2); 

2. Detect outsiders pretending to be insiders (Section 6.1); 

3. Discriminate users in a pair–wise sense (Section 4.3.1); 

4. Determine the sensitivity of user profiles on different hardware configurations 

(Section 6.2); 

5. Discriminate users when they were behaving in an identical manner (Section 

6.3); 



146 

6. Determine the degree of system’s scalability and computational efficiency (Sec­

tions 6.4 and 6.5); 

7. Determine the strength of each data source (e.g., the mouse, keystrokes and 

GUI) individually and in combination (Sections 4.3.1 and 4.3.2); 

8. Exploit granularity of the data to obtain a comprehensive feature space (Sec­

tion 4.3.4); 

9. Reduce the candidate feature space to a subset 	  of  most  predictive  features  

(Section 4.3.3); and 

10. Improve the accuracy measure when the amount of data per user dataset was 

limited (Section 5.3); 

The greatest challenge we faced was finding an acceptable balance among the per­

formance criteria: 1) accuracy, 2) computational efficiency and 3) scalability. As 

we designed our system, we discovered both its strengths and weaknesses. It was 

our hope that future researchers in this area would find our results constructive and 

helpful. In the remainder of this section we describe  our  datasets  and  also  some  

data–specific findings that influenced the results obtained. 

We began our task with the choice of data sources to be used to model the 

behavior of a human being. At the start, we observed that data sources such as 

system and library calls and network packets were not the optimal choices for our task 

and we turned our attention to user–induced biometric information. We collected 

syntactical data from mouse and keyboard devices and we added a graphical level 

of interpretation to this data by collecting the GUI events. We collected three 

datasets: 1) a 61–user dataset obtained from a group of users who had no behavioral 

limitations placed upon them other than the specified task (Section 4.2.2); 2) a 5– 

user dataset obtained from a single user who was asked to repeat the original data 

collection task on five different computer and I/O configurations (Section 6.2.1); and 

3) a 73–user dataset obtained in a controlled environment from a group of users who 



147 

were instructed to behave in an identical manner (Section 6.3.1). We next review 

our findings as they pertain to the feature space obtained, algorithms applied and 

experimental settings implemented: 

Feature space: (Section 3.3) For each source of data (i.e., mouse, keystrokes and 

GUI events) we built a hierarchical structure to capture finer granularity of 

each user’s mouse, keystroke and GUI  behavior.  We  found that:  

•	 Grouping data into a hierarchy improved the overall accuracy, but it also 

increased the time it took to generate a profile of valid user behavior 

(Section 4.3.4). 

•	 Feature space reduction to a subset of most uncorrelated features im­

proved the computational efficiency of the  system  without  degrading  the  

accuracy (Section 4.3.3). 

•	 A subset  of  the  ten  most  discriminatory  features for the keystroke, mouse, 

GUI and combined data source was largely computed from the leaves of 

each feature hierarchy (Section 4.3.2). 

Algorithm: (Section 4.2.1) We assumed a closed–setting scenario and applied a 

supervised learning algorithm to build a profile of normal user behavior. We 

found that: 

•	 Support vector machines (SVM) algorithms produced high error rates on 

our data, because of the highly skewed class distributions and redundant 

features (Section 4.2.1). 

•	 Decision tree algorithms produced a higher accuracy measurement than 

SVMs, because of the built–in feature subset selection algorithm (Section 

4.2.1). 

Experimental setting: (Section 4.3) To determine the accuracy measurement of 

the proposed user re–authentication system we conducted the following exper­

iments: 



148 

•	 Pairwise Discrimination: A binary  classifier  built  to  discriminate  be­

tween each pair of users indicated that there  was  indeed  a  signal  of  “nor­

malcy” per user on the 61–user dataset. A strong quantitative imbalance1 

among keystroke, mouse and GUI data influenced the ranking of the data 

sources by accuracy: 1) GUI, 2) mouse and 3) keystrokes (Section 4.3.1). 

•	 Anomaly Detection: A classifier  built  to  detect  an  insider  pretending  

to be another insider produced a model of normal user behavior of vary­

ing degrees of accuracy depending on the data source. The ranking of the 

data sources by accuracy on the 61–user dataset was: 1) GUI, 2) mouse 

and 3) keystrokes (Section 4.3.2). The combined data source produced 

the most favorable outcome (Section 4.3.2). A subset of users who utilized 

their keyboard and/or their mouse device produced an improved accuracy 

measurement. Results on the 73–user dataset indicated that it was pos­

sible to discriminate users even when they were behaving in an identical 

manner (Section 6.3). The tendency of  error  rates  was  measured  to  be  

consistent and nearly constant as the number of users increased from 20 

to 40 to 60 to 73 (Section 6.4.2). 

•	 Unseen User Detection: A binary  classifier  built  to  detect  an  outsider  

pretending to be an insider produced a higher false negative rate than 

the classifier from the Anomaly Detection experiment. The false nega­

tive rates decreased as the number of seen intruders the classifier was 

constructed from increased (Section 6.1). 

We concluded that the optimal balance among accuracy, computational efficiency 

and scalability was deployment specific and needed  to  be  tailored in  accordance  with  

the security policy of a particular operational setting. Faced with a trade–off between 

accuracy and efficiency on one end and scalability on the other we chose the former. 

Our implementation of a user re–authentication system achieved a false positive rate 

1The average number of raw data instances in the 61–user dataset was 67,700.25, 11,510.54 and 
1674.06 for the GUI, mouse and keystroke data, respectively. 

http:11,510.54
http:67,700.25


149 

of 23.37% and a false negative rate of 1.50% (the detection time was 50 seconds) 

when evaluated by a supervised learning classifier on the combined data source from 

the 61–user dataset. Our choice to implement a supervised learning method came 

at the expense of scalability, because a supervised learning classifier was not built 

to 1) detect unknown users and 2) discriminate users when the number of users was 

large. To address this problem, we conducted an experiment to determine if our 

supervised classifier was strong enough to detect a previously unseen intruder. The 

results were encouraging at the false negative rate of 2.25% and the detection time of 

49.3 seconds. The tendency of the error rates tested as the number of users increased 

from 20 to 73 established that our implementation of a user re–authentication system 

was scalable on the 73–user dataset. 

Faced with a trade–off between accuracy and detection time, we again chose 

the former. We were able to improve the overall accuracy of our system to a false 

positive rate of 14.47% and a false negative rate of 1.78% by applying a smoothing 

filter function to our original results. As a  consequence,  the  detection  time  of  our  

system increased from 50 seconds to 2.20 minutes. 

7.1.1 Parameter Selection 

We found that the proposed user re–authentication system had varying degrees 

of sensitivity to different parameters. We describe each parameter and its effect on 

the overall performance of the system: 

Window size W : (Section 5.3) The performance of the  system  improved  with  the  

larger window size. The lowest error rates were produced for W = 500  data  

points. 

Frequency k: (Section 3.3.7) The performance of the system was unaffected by the 

frequency parameter. We set k = 8  for  the  frequent  events  and  k = 1  otherwise.  



150 

Smoothing parameter m: (Section 5.3) Smoothing over m smaller windows pro­

duced lower error rates than an unsmoothed larger window. However, the 

detection time increased with m. 

Number of features q: (Section 6.5) The run–time bottleneck was the compu­

tation of features present in the model of a particular user. The run–time 

computational overhead increased with q. 

Training time: (Section 4.3.2) The performance of the  system  improved  with  the  

length of the training time used to build a profile of normal user behavior. The 

73–user dataset produced higher error rates than the 61–user dataset because 

of the smaller training dataset and a shorter training time (10.6 minutes as 

opposed to 3.7 hours) (Section 6.3). 

Density of data: (Section 6.3) The performance of the  system  improved  with  the  

density of each user’s dataset in terms of the number of points collected per a 

particular time interval. The system was able to build a more accurate model 

of normal user behavior when users produced more active data and utilized 

I/O devices (Section 4.3.2). 

7.2 Future Directions 

We consider two areas of future research: 1) implementing  machine  learning  tech­

niques such are boosting and cost functions to improve accuracy and 2) empirically 

evaluating the survivability (e.g., resilience to an attacker) of our system. 

7.2.1 Boosting and Cost Functions 

Machine learning provides means for achieving computer security objectives. As 

part of our future work we intend to investigate the performance impact of two ma­

chine learning techniques, boosting and cost functions, to user re–authentication. 



151 

The technique of boosting is a machine learning meta–algorithm for performing su­

pervised learning [125]. Caruana and Niculescu–Mizil showed that boosted decision 

trees outperformed other supervised learning algorithms when applied to real–world 

datasets [126]. Boosting is a learning algorithm, which occurs in stages, by incremen­

tally adding to the current learned function. At every stage a weak learner (i.e., one 

that has accuracy only slightly greater than chance) is trained with the data. The 

output of the weak learner is then added to the  learned  function,  with  some  strength  

(proportional to how accurate the weak learner is). Then, the data is reweighted: 

examples that the current function gets wrong are “boosted” in importance, so that 

future weak learners will attempt to fix the errors [125]. 

Our datasets had highly skewed class distributions (i.e., the ratio between the 

minority and majority classes exceeded 1:60). In our implementation of a user re– 

authentication system we randomly sampled from the minority class to balance the 

disproportion between the classes. A more accurate method to achieve class–balance 

is by implementing cost functions. The cost functions assign a cost penalty to mis­

classifications [127]. Assignment of a high cost penalty to false positive classifications 

and a low cost penalty to false negative classifications would result in a lower false 

positive and a higher false negative rate. Our current implementation of a user 

re–authentication system produced a dominant false positive rate which might be 

re–balanced by the cost–sensitive classifier. 

7.2.2 Subverting the System 

A design  of  any  computer  security  system  is not complete without an investiga­

tion of operational conditions under which a particular  system  is  considered  “safe.”  

Wagner and Soto investigated mimicry attacks on host based intrusion detection sys­

tems (HIDS) [96]. They showed that it was possible to generate a malicious sequence 

of system calls by mimicking normal system behavior and go undetected by the in­

trusion detection system. Our system was based on the mouse movements, keystroke 



152 

dynamics and GUI events and as such its space of possible outcomes surpassed that 

of an intrusion detection system built from the system calls data. 

Nevertheless, any generative system can be reverse–engineered, which means that 

our user re–authentication system is also vulnerable to an attack. The question 

that we would like to answer in our future work is not whether the security of 

our system can be breached, but under what conditions  can  our  system  survive  an  

attack. Specifically, what amount of knowledge an attacker needs to have to launch 

a successful  and  meaningful  attack  (e.g.,  the raw  data  files,  collection  and  analysis  

algorithms and/or model of normal user behavior)? 

7.3 Significance 

Unlike physical biometrics systems which are obtrusive to the user or systems 

based on tokens and SmartCards that can be stolen or misplaced, the proposed sys­

tem is founded on behavioral biometrics. The implementation of this system used 

mouse movements, keystroke dynamics and GUI events as behavioral biometrics to 

build a model of “normal” user behavior. The implemented system was charac­

terized by its on-line use. It was designed in software and on–top of the existing 

hardware in such a manner that its presence did not disrupt or degrade standard 

operation of the computer. The high–confidence defense of the system was balanced 

by its scalability. Although our implementation of a user re–authentication system 

outperformed similar approaches, the system should be deployed in an operational 

setting with the defense–in–depth strategy in mind. 



LIST OF REFERENCES
 



153 

LIST OF REFERENCES 

[1] Systems HTT. “Access control”. www.htt.com, 2004. 

[2] C.	 E. Landwehr. “Protecting unattended computers without software”. In 
Proceedings of the 13th Annual Computer Security Applications Conference, 
pages 273–283, December 1997. 

[3] Index Security.	 “Index security: Biometric fingerprint ID”. www.index­
security.com, 2004. 

[4] IR Recognition. “Hand geometry technology”. www.recogsys.com, 2004. 

[5] Transcription	 Gear. “Voice recognition solutions”. 
www.transcriptiongear.com, 2004. 

[6] J. G. Daugman. “High confidence visual recognition  of  persons  by  a  test  of  
statistical independence”. In Proceedings of the IEEE Transactions on Pattern 
Analysis and Machine Intelligence, volume  15,  pages  1148–1161,  November  
1993. 

[7] U.S. Biometric Consortium. “Face recognition”. 
www.vitro.bloomington.in.us:8080/ BC, 2004. 

[8] E. Spafford. “Security myths and passwords”. 
http://www.cerias.purdue.edu/weblogs/spaf/general/post-30/, 2006. 

[9] R. Gopalakrishna, E. H. Spafford, and J. Vitek. Efficient intrusion detection 
using automaton inlining. In SP ’05: Proceedings of the 2005 IEEE Symposium 
on Security and Privacy, pages  18–31,  Washington, DC,  USA,  2005.  IEEE  
Computer Society. 

[10] D. Wagner and D. Dean. “Intrusion detection via static analysis”. In Proceed­
ings of IEEE Symposium on Security and Privacy, pages  156–169,  2001.  

[11] J. T. Giffin, S. Jha, and B. P. Miller. “Detection manipulated remote call 
streams”. In Proceedings of the 11th USENIX Security Symposium, pages  61–  
79, August 2002. 

[12] R. Sekar, M. Bender, D. Dhurjati, and P. Bollineni.	 “A fast automation-based 
method for detecting anomalous program behaviors”. In Proceedings of the 
IEEE Symposium on Security and Privacy, pages  144–155,  May  2001.  

[13] R. Sekar and P.	 Uppuluri. “A fast automation-based method for detecting 
anomalous program behaviors”. In Proceedings of the 8th USENIX Security 
Symposium, pages  63–78, August  1999.  

http://www.cerias.purdue.edu/weblogs/spaf/general/post-30
http:www.transcriptiongear.com
http:www.recogsys.com
http:security.com
www.index
http:www.htt.com


154 

[14] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. “A  sense  of  self  for  
UNIX processes”. In Proceedinges of the 1996 IEEE Symposium on Research 
in Security and Privacy, pages  120–128.  IEEE  Computer  Society  Press,  1996.  

[15] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri. “Self-nonself discrimina­
tion in a computer”. In Proceedings of the 1994 IEEE Symposium on Research 
in Security and Privacy, pages  202–212,  Oakland,  CA, 1994.  IEEE  Computer  
Society Press. 

[16] S. Forrest, S. A. Hofmeyr, and A. Somayaji.	 “Computer immunology”. Com­
munications of the ACM, 40(10):88–96,  1997.  

[17] A. Wespi, M. Dacier, and H. Debar.	 “An intrusion-detection system based on 
the teiresias pattern-discovery algorithm”. Technical Report RZ3103, Zurich 
Research Laboratory, IBM Research Division, 1999. 

[18] A. Wespi, M. Dacier, and H. Debar. Intrusion detection using variable-length 
audit trail patterns. In RAID ’00: Proceedings of the Third International 
Workshop on Recent Advances in Intrusion Detection, pages  110–129,  London,  
UK, 2000. Springer-Verlag. 

[19] C. Ko, G.	 Fink, and K. Levitt. “Automated detection of vulnerabilities in 
priviledged programs by execution monitoring”. In Proceedings of the Tenth 
Annual Computer Security Applications Conference, pages  134–144, December  
1994. 

[20] S. N. Chari and P. C. Cheng. Bluebox: A policy-driven, host-based intrusion 
detection system. ACM Trans. Inf. Syst. Secur., 6(2):173–200,  2003.  

[21] H. H. Feng, O.	 M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. “Anomaly 
detection using call stack information”. In Proceedings of IEEE Symposium on 
Security and Privacy, pages  62–78,  2003.  

[22] D.	 E. Denning and P. G. Neumann. “Requirements and model for IDES ­
A real-time  intrusion  detection  system”.  Technical  report, Computer  Science  
Laboratory, SRI International, Menlo Park, CA, 1985. 

[23] T.	 Lunt, J. van Horne, and L. Halme. “Automated analysis of computer 
system audit trails”. In Proceedings of the Ninth DOE Computer Security 
Group Conference, Baltimore,  MD,  May  1986.  

[24] T. F. Lunt.	 “Automated audit trail analysis and intrusion detection: A sur­
vey”. In Proceedings of the 11th National Computer Security Conference, pages  
65–73, Baltimore, MD, 1988. 

[25] T. F. Lunt, R. Jagannathan, P. G. Neumann, H. S. Javitz, A. Valdes, R. Lee, 
S. Listgarten, and D. L. Edwards. “IDES: The  enhanced  prototype,  A real-time  
intrusion detection system”. Technical Report  SRI-CSL-88-12,  SRI  Computer  
Science Laboratory, SRI International, 1988. 

[26] T.	 F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. G. Neumann, H. S. 
Javitz, A. Valdes, and T. D. Garvey. “A real-time intrusion detection expert 
system IDES - Final report”. Technical Report SRI-CSL-92-05, SRI Computer 
Science Laboratory, SRI International, February 1992. 



155 

[27] H. Javitz and A.	 Valdes. “The SRI IDES statistical anomaly detector”. In 
Proceedings of the 1991 IEEE Symposium on Research in Security and Privacy, 
pages 316–327, Oakland, CA, 1991. 

[28] J. R. Winkler and W. J. Page.	 “Intrusion and anomaly detection in trusted 
systems ”. In Proceedings of the 5th Annual Computer Security Applications 
Conference, pages  39–45,  1989.  

[29] H. S. Teng, K. Chen, and S. C. Lu. “Adaptive real-time anomaly detection 
using inductively generated sequential patterns”. In Proceedings of the IEEE 
Symposium on Security and Privacy, pages  278–284.  IEEE  Press,  1990.  

[30] H. Debar, M. Becker,	 and D. Siboni. “A neural network component for an 
intrusion detection system”. In Proceedings of IEEE Symposium on Research 
in Computer Security and Privacy, pages  240–250,  1992.  

[31] A. Rapaka, A. Novokhodko, and D. Wunsch.	 “Intrusion detection using radial 
basis function network on sequences of system calls”. In Proceedings of the 
International Joint Conference, volume  3,  pages  1820–1825,  2003.  

[32] N. Habra, B. L. Charlier, A. Mounji, and I. Mathieu.	 ASAX : Software archi­
tecture and rule- based language for universal audit trail analysis. In European 
Symposium on Research in Computer Security (ESORICS), pages  435–450,  
1992. 

[33] P. Helman and G. Liepins. “Statistical foundations  of  audit  trail  analysis  for  the  
detection of computer misuse”. IEEE Transactions on Software Engineering, 
19(9):886–901, 1993. 

[34] G. Vigna, S. T.	 Eckmann, and R. A. Kemmerer. “The stat tool suite”. In 
Proceedings DARPA Information Survivability Conference and Exposition, vol­
ume 2, pages 46–55, 2000. 

[35] N. Ye.	 “A Markov chain model of temporal behavior for anomaly detection”. 
In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information 
Assurance and Security Workshop, 2000, pages  171–174,  2000.  

[36] N. Ye.	 “A scalable clustering technique for intrusion signature recognition”. 
In Proceedings of the 2000 IEEE Systems, Man, and Cybernetics Information 
Assurance and Security Workshop, June  2001.  

[37] W. Lee, S. J. Stolfo, and P.	 K. Chan. “Learning patterns from UNIX pro­
cess execution traces for intrusion detection”. In Proceedings of the AAAI97 
workshop on AI Approaches to Fraud Detection and Risk Management, pages  
50–56. AAAI Press, 1997. 

[38] W. Lee, S. J. Stolfo, and K. W. Mok.	 “A data mining framework for build­
ing intrusion detection models”. In Proceedings of the IEEE Symposium on 
Security and Privacy, pages  120–132,  1999.  

[39] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller, S. Hershkop, and 
J. Zhang. “Real time data mining-based intrusion detection”. In Proceedings 
of the Second DARPA Information Survivability Conference and Exposition, 
pages 85–100, 2001. 



156 

[40] M. Hossain, S. M. Bridges, and R. B. Vaughn. “Adaptive intrusion detection 
with data mining”. In Proceedings of the IEEE International Conference on 
Systems Man and Cybernetics, volume  4, pages  3097–3103,  2003.  

[41] J. Shavlik, M.	 Shavlik, and M. Fahland. “Evaluating software sensors for 
actively profiling Windows 2000 users”. In Proceedings of the Fourth Interna­
tional Symposium on Recent Advances in Intrusion Detection, October  2001.  

[42] T. Lane and C. E. Brodley.	 “An application of machine learning to anomaly 
detection”. In Proceedings of the Twentieth NIST-NCSC National Information 
Systems Security Conference, pages  366–380, 1997.  

[43] T. Lane and C. E. Brodley.	 “Approaches to online learning and concept drift 
for user identification in computer security”. In Knowledge Discovery and Data 
Mining, pages  259–263,  1998.  

[44] T. Lane and C.	 E. Brodley. “Sequence matching and learning in anomaly 
detection for computer security”. In Fawcett, Haimowitz, Provost, and Stolfo, 
editors, AI Approaches to Fraud Detection and Risk Management, pages  43–49.  
AAAI Press, 1997. 

[45] T. Lane and C. E. Brodley. “Temporal sequence learning and data reduction for 
anomaly detection”. ACM Transactions on Information and System Security, 
2(3):295–331, 1999. 

[46] T.	 Lane. “Machine learning techniques for the computer security domain of 
anomaly detection”. PhD  thesis,  CERIAS,  Purdue  University,  West  Lafayette,  
IN, August 2000. 

[47] T. Lane and C. E. Brodley. “An empirical study of two approaches to sequence 
learning for anomaly detection”. Machine Learning, 51(1):73–107,  2003.  

[48] W. DuMouchel. “Computer intrusion detection based on bayes factors for com­
paring command transition probabilities”. Technical report, National Institute 
of Statistical Sciences, 1991. 

[49] M. Schonlau, W. DuMouchel, W.H. Ju, A. F. Karr, M. Theus, and Y. Vardi. 
Computer intrusion: Detecting masquerades. Statistical Science, 16(1):58–74,  
2001. 

[50] K. Sequeira and M.	 Zaki. “ADMIT: Anomaly-based data mining for intru­
sions”. In Proceedings of the Eighth ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, pages  386–395.  ACM  Press,  2002.  

[51] T. Fawcett and F. Provost. Activity monitoring: Noticing interesting changes 
in behavior. In Chaudhuri and Madigan, editors, Proceedings on the Fifth 
ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining, pages  53–62,  San  Diego, CA,  1999.  

[52] S. Coull, J. Branch, B. Szymanski, and E. Breimer.	 “Intrusion detection: A 
bioinformatics approach”. In Proceedings of the Nineteenth Annual Computer 
Security Applications Conference, pages  24–34, Las  Vegas,  NE,  2003.  

[53] F. Y. Leu and T. Y. Yang. “A host-based real-time  intrusion  detection  system  
with data mining and forensic techniques”. In Proceedings of the 37th Internal 
Carnahan Conference on Security Technology, October  2003.  



157 

[54] S. Furnell, J. Morrissey, P. Sanders, and C. Stockel. “Aplacation of keystroke 
analysis for improved login security and continuous user authentication”. In 
Proceedings of the Information and System Security Conference, pages  283–  
294, 1996. 

[55] P.	 Dowland, H. Singh, and S. Furnell. “A preliminary investigation of user 
authentication using continuous keystroke analysis”. In Proceedings of the 
Workshop Conference on Information Security Management and Small Sys­
tems Security, 2001.  

[56] P. Dowland, S. Furnell, and M. Papadaki. “Keystroke analysis as a method of 
advanced user authentication and response”. In Proceedings of the IFIP/SEC 
17th International Conference on Information Security, 2002.  

[57] F. Bergadano,	 D. Gunetti, and C. Picardi. User authentication through 
keystroke dynamics. ACM Trans. Inf. Syst. Secur., 5(4):367–397,  2002.  

[58] F. Bergadano, D. Gunetti, and C. Picardi. Identity verification through dy­
namic keystroke analysis. Intelligent Data Analysis, 7(5):469–496,  2003.  

[59] A. A. E. Ahmed and I. Traore. Detecting computer intrusions using behavioral 
biometrics. In Proceedings of the 3rd Annual Conference on Privacy, Security 
and Trust. ACM  Press,  October  2005.  

[60] J. Goecks and J. Shavlik. “Automatically labeling web pages based on normal 
user actions”. In Procedings of the IJCAI Workshop on Machine Learning for 
Information Filtering, July  1999.  

[61] Z. Ghahramani. Unsupervised learning. Advanced Lectures in Machine Learn­
ing: Lecture Notes in Computer Science, 3176:72–112,  2004.  

[62] L. A. Gordon, M. P. Loeb, W. Lucyshyn, and 
R. Richardson. “Computer crime and security survey”. 
http://i.cmpnet.com/gocsi/db area/pdfs/fbi/FBI2006.pdf, 2006. 

[63] United States Secret Service. “National threat 
assessment center - insider threat study”. 
www.asisonline.org/newsroom/crisisResponse/insiderthreat.pdf, August 
2004. 

[64] R. Joyce and G.	 Gupta. “User authorization based on keystroke latencies”. 
Journal of the ACM, 33(2):168–176,  1990.  

[65] Wikipedia. “Dictionary attack”. en.wikipedia.org/wiki/, 2005. 

[66] F.	 Monrose, M. K. Reiter, and S. Wetzel. Password hardening based on 
keystroke dynamics. In CCS ’99: Proceedings of the 6th ACM Conference on 
Computer and Communications Security, pages  73–82,  New  York,  NY,  USA,  
1999. ACM Press. 

[67] B. Miller. “Vital signs of identity”. IEEE Spectrum, 31(2):22–30,  1994.  

[68] N. M. Herbst and C. N. Liu.	 “Automatic signature verification based on ac­
celerometry”. Technical report, IBM, 1977. 



158 

[69] K. Zimmermann and J. Werner.	 “SIRSYS-A program facility for handwriting 
signature analysis ”. In Procedings of the Carnahan Conference, pages  153–155,  
May 1978. 

[70] G.	 Bills and K. Zimmerman. Spectral analysis of right-handed versus left 
handed on-line script. In Proceedings of the IEEE Conference on Frontiers of 
Engineering and Computing in Health Care, September  1985.  

[71] M. Eden.	 “Handwriting and pattern recognition”. In Procedings of the IEEE 
Transactions in Information Theory Conference, volume  8,  pages  160–166,  
February 1962. 

[72] J. S. Lew.	 “Optimal accelerometer layouts for data recovery in signature veri­
fication ”. IBM J. Res. Develop., 24(4):496–511,  1980.  

[73] C. Liu, N. Herbst, and J. Anthony.	 “Automatic signature verification: system 
description and field test results”. IEEE Transactions on Systems, Man, and 
Cybernetics, 9(1):35–38,  1979.  

[74] J. Verdenbregt	 and W. Koster. “Analysis and synthesis of handwriting ”. 
Philips Technical Review, 32(3):73–78,  1971.  

[75] R. Gaines, W. Lisowski, S. Press, and N. Shapiro. “Authentication by keystroke 
timing: Some preliminary results”. Technical report, Rand Corporation, Santa 
Monica, CA, 1980. 

[76] J. Leggett and G. Williams. “Verifying identity via keyboard charactersistics”. 
Journal of Man and Machine Studies, 23(1):67–76,  1988.  

[77] J. Garcia. “Personal identification aparatus”. US Patent and Trademark Office, 
1986. 

[78] J. R. Young and R.	 W. Hammon. “Method and apparatus for verifying an 
individual’s identity”. US Patent and Trademark Office, 1989. 

[79] S. Bleha, C. Slivinsky, and B. Hussein.	 “Computer-access security systems us­
ing keystroke dynamics”. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 12:1217–1222, 1990.  

[80] M. Brown and S. J. Rogers.	 “User identification via keystroke characteristics 
of typed names using neural networks”. International Journal of Man and 
Machine Studies, 39:999–1014,  1993.  

[81] M. S. Obaidat	 and B. Sadoun. “A simulation evaluation study of neural 
network techniques to computer user identification”. Information Science, 
102:239–258, 1997. 

[82] M. S. Obaidat and B. Sadoun. “Verification of computer users using keystroke 
dynamics”. IEEE Transactions on Systems, Man and Cybernetics, 27(2):261–  
269, 1997. 

[83] F. Monrose and A. Rubin. “Authentication via keystroke dynamics”. In Pro­
ceedings of the Fourth ACM Conference on Computer and Communications 
Security, pages  48–56,  April 1997.  



159 

[84] F. Monrose and A. Rubin. “Keystroke dynamics as a biometric for authenti­
cation”. http://citeseer.nj.nec.com/monrose99keystroke.html, 1999. 

[85] J. T. Tou and R. C. Gonzalez. Pattern Recognition Principles. Addison-Wesley,  
1981. 

[86] Y. Sang, H. Shen, and P. Fan. Novel impostors detection in keystroke dynamics 
by support vector machine. In K. M. Liew, H. Shen, S. See, W. Cai, P. Fan, 
and S. Horiguchi, editors, PDCAT, volume  3320  of  Lecture Notes in Computer 
Science, pages  666–669.  Springer,  2004.  

[87] Y. Sang, H. Shen, and P. Fan. Keystroke characteristics identity authentication 
based on levenberg-marquardt algorithm. Computer Applications, 24(7):1–3,  
2004. 

[88] R. A. J. Everitt and P. W. McOwan. “Java-based internet biometric authenti­
cation systems”. IEEE Transactions on Pattern Analysis and Machine Intel­
ligence, 25(9):1166–1172,  2003.  

[89] D. E.	 Goldberg. Genetic Algorithms in Search, Optimization and Machine 
Learning. Addison–Wesley  Longman Publishing Co., Inc., Boston, MA, USA, 
1989. 

[90] J. P. Anderson. “Computer security threat monitoring and surveillance”. Tech­
nical report, James P. Anderson Co., Fort Washington, PA, 1980. 

[91] R.	 Wright. “2003 CSI/FBI computer security survey”. 
http://www.security.fsu.edu/docs/FBI2003.pdf, 2003. 

[92] C. Warrender, S. Forrest, and B. A. Pearlmutter. “Detecting intrusions using 
system calls: Alternative data models”. In Proceedings of the IEEE Symposium 
on Security and Privacy, pages  133–145,  1999.  

[93] I. Rigoutsos and A. Floratos.	 “Combinatorial pattern discovery in biological 
sequences”. Journal of Bioinformatics, 14:55–67, 1998.  

[94] R. A. Wagner and M. J. Fisher. “Tstring-to-string correction problem”. Jour­
nal of the ACM, 21:168–173,  1974.  

[95] M. Pusara and C. E. Brodley. User re-authentication via mouse movements. In 
VizSEC/DMSEC ’04: Proceedings of the 2004 ACM workshop on Visualization 
and data mining for computer security, pages  1–8,  New  York,  NY,  USA,  2004.  
ACM Press. 

[96] D. Wagner and P. Soto.	 “Mimicry attacks on host based intrusion detection 
systems”. In Proceedings Ninth ACM Conference on Computer and Commu­
nications Security, pages  255–264.  ACM  Press,  2002.  

[97] R. M. Gray and L. D. Davisson. An introduction to statistical signal processing. 
Cambridge University Press, Cambridge, UK, January 2005. 

[98] E. Gabrilovich and S. Markovitch. Text categorization with many redundant 
features: Using aggressive feature selection to make svms competitive with 
c4.5. In Proceedings of The Twenty-First International Conference on Machine 
Learning, pages  321–328,  Banff, Alberta, Canada,  2004.  Morgan  Kaufmann.  

http://www.security.fsu.edu/docs/FBI2003.pdf
http://citeseer.nj.nec.com/monrose99keystroke.html


160 

[99] L. Tang and H. Liu. Bias analysis in text classification for highly skewed data. 
In ICDM ’05: Proceedings of the Fifth IEEE International Conference on Data 
Mining, pages  781–784,  Washington, DC,  USA,  2005.  IEEE  Computer  Society.  

[100] H. Zhao and S. Ram. Combining schema and instance information for inte­
grating heterogeneous data sources. Data Knowl. Eng., 61(2):281–303,  2007.  

[101] S. Aksoy,	 K. Koperski, C. Tusk, and G. Marchisio. Interactive training of 
advanced classifiers for mining remote sensing image archives. In Proceedings 
of the 2004 ACM International Conference on Knowledge Discovery and Data 
Mining, pages  773–782.  ACM  Press,  August  2004.  

[102] A. Kapoor, H.	 Ahn, and R. W. Picard. Mixture of gaussian processes for 
combining multiple modalities. In Multiple Classifier Systems Workshop, pages  
86–96, 2005. 

[103] E. Kim and J. Ko. Dynamic classifier integration method. In Multiple Classifier 
Systems Workshop, pages  97–107,  2005.  

[104] R. Patenall, D. Windridge, and J. Kittler.	 Multiple classifier fusion perfor­
mance in networked stochastic vector quantisers. In Multiple Classifier Systems 
Workshop, pages  128–135,  2005.  

[105] C. Hsu and C. Lin. “A comparison of methods for multi-class support vector 
machines”. IEEE Transactions on Neural Networks, 13:415–425,  2002.  

[106] S. Axelsson.	 The base-rate fallacy and its implications for the difficulty of in­
trusion detection. In Proceedings of the Sixth ACM Conference on Communica­
tions and Computer Security, Kent  Ridge  Digital  Labs,  Singapore, November  
1999. 

[107] J. G. Dy and C. E. Brodley.	 Feature subset selection and order identification 
for unsupervised learning. In ICML ’00: Proceedings of the Seventeenth Inter­
national Conference on Machine Learning, pages  247–254,  San  Francisco,  CA,  
USA, 2000. Morgan Kaufmann Publishers Inc. 

[108] I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and 
techniques. Morgan  Kaufmann,  San  Francisco,  US,  2005.  

[109] T. Joachims.	 Learning to classify text using support vector machines. Kluwer,  
2002. 

[110] C. C. Chang and C. J. Lin.	 LIBSVM: a library for support vector machines, 
2001. Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm. 

[111] T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02: 
Proceedings of the eighth ACM SIGKDD international conference on Knowl­
edge discovery and data mining, pages  133–142,  New  York, NY,  USA,  2002.  
ACM Press. 

[112] G. Forman. “An extensive empirical study of feature selection metrics for text 
classification”. Journal of Machine Learning, 3:1289–1305, 2003.  

[113] T. Mitchell. “Machine learning”. McGraw-Hill  Companies,  Inc.,  United  States  
of America, 1997. 

http://www.csie.ntu.edu.tw/�cjlin/libsvm


161 

[114] Y. Freund.	 Boosting a Weak Learning Algorithm by Majority. Information 
and Computation, 121(2):256–285,  1995.  

[115] R. E. Schapire. A brief introduction to boosting. In Proceedings of the 1999 In­
ternational Joint Conference on Artificial Intelligence, pages  1401–1406,  1999.  

[116] Y. Yuan and M. J. Shaw.	 “Induction of fuzzy decision trees”. In Fuzzy Sets 
and Systems, volume  69, pages  125–139,  1995.  

[117] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan  Kaufmann,  San  
Mateo, CA, 1993. 

[118] R. A. Fisher.	 Statistical methods and scientific inference. Oliver  and  Boyd,  
Edinburgh, UK, 1956. 

[119] J. Catlett. Overpruning large decision trees.	 In Proceedings of the 12th Inter­
national Joint Conference on Artificial Intelligence, pages  764–769, 1991.  

[120] B. D. Davison and H. Hirsh. Predicting sequences of user actions. In Predicting 
the Future: AI Approaches to Time-Series Problems, pages  5–12, Madison,  
WI, July 1998. AAAI Press. Proceedings of AAAI–98/ICML–98 Workshop, 
published as Technical Report WS98–07. 

[121] J. Avery. Information theory and evolution. World  Scientific,  2003.  

[122] B. P. Welford.	 “Note on a method for calculating corrected sums of squares 
and products”. Technometrics, 4(3):419–420,  1962.  

[123] P. E. Utgoff, N. C.  Berkman,  and  J.  A. Clouse.  Decision  tree  induction  based  
on efficient tree restructuring. Machine Learning, 29(1):5–44,  1997.  

[124] A. Fern, R. Givan, B. Falsafi, and T. Vijaykumar.	 Dynamic feature selection 
for hardware prediction. Technical report, School of Electrical and Computer 
Engineering, Purdue University, 2000. 

[125] R. E. Schapire and Y. Singer. Improved boosting using confidence-rated pre­
dictions. Machine Learning, 37(3):297–336,  1999.  

[126] R. Caruana and A. Niculescu-Mizil.	 An empirical comparison of supervised 
learning algorithms. In ICML ’06: Proceedings of the 23rd international con­
ference on Machine learning, pages  161–168, New  York,  NY,  USA,  2006.  ACM  
Press. 

[127] P. Domingos. Metacost: a general method for making classifiers cost-sensitive. 
In KDD ’99: Proceedings of the fifth ACM SIGKDD international conference 
on Knowledge discovery and data mining, pages  155–164, New  York,  NY, USA,  
1999. ACM Press. 



APPENDICES
 



162 

APPENDIX A
 

DATA COLLECTION EXECUTABLE ALGORITHM
 



163 

Fig. A.1. Declaration and Initialization steps in the EXE file. 



164 

Fig. A.2. Global variables in the EXE file. 



165 

Fig. A.3. Initial setup. 



166 

Fig. A.4. Executable and Library shared mapping. 



167 

Fig. A.5. Records GUI data. 



168 

Fig. A.6. Records keystroke data. 



169 

Fig. A.7. Records mouse data. 



170 

Fig. A.8. Program activation code. 



171 

Fig. A.9. Rate limited client–area mouse movement setup via a timer. 



172 

Fig. A.10. Wrap-up code. 



173 

APPENDIX B
 

DATA COLLECTION LIBRARY ALGORITHM
 

Fig. B.1. Declaration and Initialization steps in the DLL file. 



174 

Fig. B.2. Interception of GUI events in the DLL file. 



175 

Fig. B.3. Interception of keystroke events in the DLL file. 



176 

Fig. B.4. Interception of mouse events in the DLL file. 



177 

Fig. B.5. Exported functions in the DLL file. 



178 

APPENDIX C 

GUI EVENTS 

Table C.1: List of GUI Events 

ID16 Event Name ID16 Event Name 

0 WM NULL 1 WM CREATE 

2 WM DESTROY 3 WM MOVE 

5 WM SIZE 7 WM SETFOCUS 

8 WM KILLFOCUS A WM ENABLE 

B WM SETREDRAW 10 WM CLOSE 

11 WM QUERYENDSESSION 12 WM QUIT 

13 WM QUERYOPEN 16 WM ENDSESSION 

17 WM SYSTEMERROR 1B WM DEVMODECHANGE 

2B WM DRAWITEM 2C WM MEASUREITEM 

2D WM DELETEITEM 2E WM VKEYTOITEM 

2F WM CHARTOITEM 30 WM SETFONT 

32 WM SETHOTKEY 33 WM GETHOTKEY 

37 WM QUERYDRAGICON 39 WM COMPAREITEM 

3D WM GETOBJECT 41 WM COMPACTING 

47 WM WINDOWPOSCHANGED 48 WM POWER 

4B WM CANCELJOURNAL 50 WM INPUTLANGCHANGEREQUEST 

51 WM INPUTLANGCHANGE 52 WM TCARD 

53 WM HELP 54 WM USERCHANGED 

55 WM NOTIFYFORMAT 7B WM CONTEXTMENU 

Continued on next page 



179
 

ID16 Event Name ID16 Event Name 

7D WM STYLECHANGED 7F WM GETICON 

80 WM SETICON 81 WM NCCREATE 

82 WM NCDESTROY 83 WM NCCALCSIZE 

86 WM NCACTIVATE 87 WM GETDLGCODE 

FF WM INPUT 102 WM CHAR 

103 WM DEADCHAR 104 WM SYSKEYDOWN 

105 WM SYSKEYUP 106 WM SYSCHAR 

107 WM SYSDEADCHAR 110 WM INITDIALOG 

111 WM COMMAND 112 WM SYSCOMMAND 

114 WM HSCROLL 115 WM VSCROLL 

116 WM INITMENU 117 WM INITMENUPOPUP 

11F WM MENUSELECT 120 WM MENUCHAR 

122 WM MENURBUTTONUP 123 WM MENUDRAG 

124 WM MENUGETOBJECT 125 WM UNINITMENUPOPUP 

126 WM MENUCOMMAND 127 WM CHANGEUISTATE 

128 WM UPDATEUISTATE 129 WM QUERYUISTATE 

132 WM CTLCOLORMSGBOX 134 WM CTLCOLORLISTBOX 

135 WM CTLCOLORBTN 136 WM CTLCOLORDLG 

137 WM CTLCOLORSCROLLBAR 211 WM ENTERMENULOOP 

212 WM EXITMENULOOP 213 WM NEXTMENU 

214 WM SIZING 215 WM CAPTURECHANGED 

216 WM MOVING 217 WM POWERBROADCAST 

218 WM DEVICECHANGE 10D WM IME STARTCOMPOSITION 

10E WM IME ENDCOMPOSITION 10F WM IME COMPOSITION 

281 WM IME SETCONTEXT 282 WM IME NOTIFY 

283 WM IME CONTROL 284 WM IME COMPOSITIONFULL 

285 WM IME SELECT 286 WM IME CHAR 

Continued on next page 



180
 

ID16 Event Name ID16 Event Name 

288 WM IME REQUEST 290 WM IME KEYDOWN 

291 WM IME KEYUP 220 WM MDICREATE 

221 WM MDIDESTROY 222 WM MDIACTIVATE 

223 WM MDIRESTORE 224 WM MDINEXT 

225 WM MDIMAXIMIZE 226 WM MDITILE 

227 WM MDICASCADE 228 WM MDIICONARRANGE 

229 WM MDIGETACTIVE 230 WM MDISETMENU 

231 WM ENTERSIZEMOVE 232 WM EXITSIZEMOVE 

233 WM DROPFILES 234 WM MDIREFRESHMENU 

300 WM CUT 301 WM COPY 

302 WM PASTE 303 WM CLEAR 

304 WM UNDO 305 WM RENDERFORMAT 

306 WM RENDERALLFORMATS 307 WM DESTROYCLIPBOARD 

308 WM DRAWCLIPBOARD 309 WM PAINTCLIPBOARD 

30A WM VSCROLLCLIPBOARD 30B WM SIZECLIPBOARD 

30C WM ASKCBFORMATNAME 30D WM CHANGECBCHAIN 

30E WM HSCROLLCLIPBOARD 30F WM QUERYNEWPALETTE 

311 WM PALETTECHANGED 312 WM HOTKEY 

31A WM THEMECHANGED 3E0 WM DDE INITIATE 

3E1 WM DDE TERMINATE 3E2 WM DDE ADVISE 

3E3 WM DDE UNADVISE 3E4 WM DDE ACK 

3E5 WM DDE DATA 3E6 WM DDE REQUEST 

3E7 WM DDE POKE 3E8 WM DDE EXECUTE 



181 

APPENDIX D
 

LIST OF FEATURES
 

Table D.1: A complete list of mouse features. 

ID Feature Description 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Number of all Mouse points 

Number of Mouse events 

Number of NC Moves 

Number of Mouse Moves 

Number of Clicks 

Numbers of Wheel Moves 

Number of Single clicks 

Number of Double Clicks 

Mean of X coordinates of mouse events 

Standard deviation of X coordinates of mouse events 

Skewness of X coordinates of mouse events 

Mean of Y coordinates of mouse events 

Standard deviation of Y coordinates of mouse events 

Skewness of Y coordinates of mouse events 

Mean of X coordinates of NC moves 

Standard deviation of X coordinates of NC moves 

Skewness of X coordinates of NC moves 

Mean of Y coordinates of NC moves 

Standard deviation of Y coordinates of NC moves 

Continued on next page 



182 

ID Feature Description 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

Skewness of Y coordinates of NC moves 

Mean of X coordinates of mouse moves 

Standard deviation of X coordinates of mouse moves 

Skewness of X coordinates of mouse moves 

Mean of Y coordinates of mouse moves 

Standard deviation of Y coordinates of mouse moves 

Skewness of Y coordinates of mouse moves 

Mean of X coordinates of wheel moves 

Standard deviation of X coordinates of wheel moves 

Skewness of X coordinates of wheel moves 

Mean of Y coordinates of wheel moves 

Standard deviation of Y coordinates of wheel moves 

Skewness of Y coordinates of wheel moves 

Mean of X coordinates of clicks 

Standard deviation of X coordinates of clicks 

Skewness of X coordinates of clicks 

Mean of Y coordinates of clicks 

Standard deviation of Y coordinates of clicks 

Skewness of Y coordinates of clicks 

Mean of X coordinates of single clicks 

Standard deviation of X coordinates of single clicks 

Skewness of X coordinates of single clicks 

Mean of Y coordinates of single clicks 

Standard deviation of Y coordinates of single clicks 

Skewness of Y coordinates of single clicks 

Mean of X coordinates of double clicks 

Standard deviation of X coordinates of double clicks 

Continued on next page 



183 

ID Feature Description 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

Skewness of X coordinates of double clicks 

Mean of Y coordinates of double clicks 

Standard deviation of Y coordinates of double clicks 

Skewness of Y coordinates of double clicks 

Mean of 1–graph of mouse events 

Standard deviation of 1–graph of mouse events 

Skewness of 1–graph of mouse events 

Mean of 2–graph of mouse events 

Standard deviation of 2–graph of mouse events 

Skewness of 2–graph of mouse events 

Mean of 3–graph of mouse events 

Standard deviation of 3–graph of mouse events 

Skewness of 3–graph of mouse events 

Mean of 4–graph of mouse events 

Standard deviation of 4–graph of mouse events 

Skewness of 4–graph of mouse events 

Mean of 5–graph of mouse events 

Standard deviation of 5–graph of mouse events 

Skewness of 5–graph of mouse events 

Mean of 6–graph of mouse events 

Standard deviation of 6–graph of mouse events 

Skewness of 6–graph of mouse events 

Mean of 7–graph of mouse events 

Standard deviation of 7–graph of mouse events 

Skewness of 7–graph of mouse events 

Mean of 8–graph of mouse events 

Standard deviation of 8–graph of mouse events 

Continued on next page 



184 

ID Feature Description 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

Skewness of 8–graph of mouse events 

Mean of 1–graph of NC moves 

Standard deviation of 1–graph of NC moves 

Skewness of 1–graph of NC moves 

Mean of 2–graph of NC moves 

Standard deviation of 2–graph of NC moves 

Skewness of 2–graph of NC moves 

Mean of 3–graph of NC moves 

Standard deviation of 3–graph of NC moves 

Skewness of 3–graph of NC moves 

Mean of 4–graph of NC moves 

Standard deviation of 4–graph of NC moves 

Skewness of 4–graph of NC moves 

Mean of 5–graph of NC moves 

Standard deviation of 5–graph of NC moves 

Skewness of 5–graph of NC moves 

Mean of 6–graph of NC moves 

Standard deviation of 6–graph of NC moves 

Skewness of 6–graph of NC moves 

Mean of 7–graph of NC moves 

Standard deviation of 7–graph of NC moves 

Skewness of 7–graph of NC moves 

Mean of 8–graph of NC moves 

Standard deviation of 8–graph of NC moves 

Skewness of 8–graph of NC moves 

Mean of 1–graph of mouse moves 

Standard deviation of 1–graph of mouse moves 

Continued on next page 



185 

ID Feature Description 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

Skewness of 1–graph of mouse moves 

Mean of 2–graph of mouse moves 

Standard deviation of 2–graph of mouse moves 

Skewness of 2–graph of mouse moves 

Mean of 3–graph of mouse moves 

Standard deviation of 3–graph of mouse moves 

Skewness of 3–graph of mouse moves 

Mean of 4–graph of mouse moves 

Standard deviation of 4–graph of mouse moves 

Skewness of 4–graph of mouse moves 

Mean of 5–graph of mouse moves 

Standard deviation of 5–graph of mouse moves 

Skewness of 5–graph of mouse moves 

Mean of 6–graph of mouse moves 

Standard deviation of 6–graph of mouse moves 

Skewness of 6–graph of mouse moves 

Mean of 7–graph of mouse moves 

Standard deviation of 7–graph of mouse moves 

Skewness of 7–graph of mouse moves 

Mean of 8–graph of mouse moves 

Standard deviation of 8–graph of mouse moves 

Skewness of 8–graph of mouse moves 

Mean of 1–graph of wheel moves 

Standard deviation of 1–graph of wheel moves 

Skewness of 1–graph of wheel moves 

Mean of 2–graph of wheel moves 

Standard deviation of 2–graph of wheel moves 

Continued on next page 



186 

ID Feature Description 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

Skewness of 2–graph of wheel moves 

Mean of 3–graph of wheel moves 

Standard deviation of 3–graph of wheel moves 

Skewness of 3–graph of wheel moves 

Mean of 4–graph of wheel moves 

Standard deviation of 4–graph of wheel moves 

Skewness of 4–graph of wheel moves 

Mean of 5–graph of wheel moves 

Standard deviation of 5–graph of wheel moves 

Skewness of 5–graph of wheel moves 

Mean of 6–graph of wheel moves 

Standard deviation of 6–graph of wheel moves 

Skewness of 6–graph of wheel moves 

Mean of 7–graph of wheel moves 

Standard deviation of 7–graph of wheel moves 

Skewness of 7–graph of wheel moves 

Mean of 8–graph of wheel moves 

Standard deviation of 8–graph of wheel moves 

Skewness of 8–graph of wheel moves 

Mean of 1–graph of clicks 

Standard deviation of 1–graph of clicks 

Skewness of 1–graph of clicks 

Mean of 2–graph of clicks 

Standard deviation of 2–graph of clicks 

Skewness of 2–graph of clicks 

Mean of 3–graph of clicks 

Standard deviation of 3–graph of clicks 

Continued on next page 



187 

ID Feature Description 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

Skewness of 3–graph of clicks 

Mean of 4–graph of clicks 

Standard deviation of 4–graph of clicks 

Skewness of 4–graph of clicks 

Mean of 5–graph of clicks 

Standard deviation of 5–graph of clicks 

Skewness of 5–graph of clicks 

Mean of 6–graph of clicks 

Standard deviation of 6–graph of clicks 

Skewness of 6–graph of clicks 

Mean of 7–graph of clicks 

Standard deviation of 7–graph of clicks 

Skewness of 7–graph of clicks 

Mean of 8–graph of clicks 

Standard deviation of 8–graph of clicks 

Skewness of 8–graph of clicks 

Mean of 1–graph of single clicks 

Standard deviation of 1–graph of single clicks 

Skewness of 1–graph of single clicks 

Mean of 2–graph of single clicks 

Standard deviation of 2–graph of single clicks 

Skewness of 2–graph of single clicks 

Mean of 3–graph of single clicks 

Standard deviation of 3–graph of single clicks 

Skewness of 3–graph of single clicks 

Mean of 4–graph of single clicks 

Standard deviation of 4–graph of single clicks 

Continued on next page 



188 

ID Feature Description 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

Skewness of 4–graph of single clicks 

Mean of 5–graph of single clicks 

Standard deviation of 5–graph of single clicks 

Skewness of 5–graph of single clicks 

Mean of 6–graph of single clicks 

Standard deviation of 6–graph of single clicks 

Skewness of 6–graph of single clicks 

Mean of 7–graph of single clicks 

Standard deviation of 7–graph of single clicks 

Skewness of 7–graph of single clicks 

Mean of 8–graph of single clicks 

Standard deviation of 8–graph of single clicks 

Skewness of 8–graph of single clicks 

Mean of 1–graph of double clicks 

Standard deviation of 1–graph of double clicks 

Skewness of 1–graph of double clicks 

Mean of 2–graph of double clicks 

Standard deviation of 2–graph of double clicks 

Skewness of 2–graph of double clicks 

Mean of 3–graph of double clicks 

Standard deviation of 3–graph of double clicks 

Skewness of 3–graph of double clicks 

Mean of 4–graph of double clicks 

Standard deviation of 4–graph of double clicks 

Skewness of 4–graph of double clicks 

Mean of 5–graph of double clicks 

Standard deviation of 5–graph of double clicks 

Continued on next page 



189 

ID Feature Description 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

Skewness of 5–graph of double clicks 

Mean of 6–graph of double clicks 

Standard deviation of 6–graph of double clicks 

Skewness of 6–graph of double clicks 

Mean of 7–graph of double clicks 

Standard deviation of 7–graph of double clicks 

Skewness of 7–graph of double clicks 

Mean of 8–graph of double clicks 

Standard deviation of 8–graph of double clicks 

Skewness of 8–graph of double clicks 

Mean of distance of mouse events 

Standard deviation of distance of mouse events 

Skewness of distance of mouse events 

Mean of angle of mouse events 

Standard deviation of angle of mouse events 

Skewness of angle of mouse events 

Mean of speed of mouse events 

Standard deviation of speed of mouse events 

Skewness of speed of mouse events 

Mean of distance of NC moves 

Standard deviation of distance of NC moves 

Skewness of distance of NC moves 

Mean of angle of NC moves 

Standard deviation of angle of NC moves 

Skewness of angle of NC moves 

Mean of speed of NC moves 

Standard deviation of speed of NC moves 

Continued on next page 



190 

ID Feature Description 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

Skewness of speed of NC moves 

Mean of distance of mouse moves 

Standard deviation of distance of mouse moves 

Skewness of distance of mouse moves 

Mean of angle of mouse moves 

Standard deviation of angle of mouse moves 

Skewness of angle of mouse moves 

Mean of speed of mouse moves 

Standard deviation of speed of mouse moves 

Skewness of speed of mouse moves 

Mean of distance of wheel moves 

Standard deviation of distance of wheel moves 

Skewness of distance of wheel moves 

Mean of angle of single wheel moves 

Standard deviation of angle of wheel moves 

Skewness of angle of wheel moves 

Mean of speed of wheel moves 

Standard deviation of speed of wheel moves 

Skewness of speed of wheel moves 

Mean of distance of clicks 

Standard deviation of distance of clicks 

Skewness of distance of clicks 

Mean of angle of clicks 

Standard deviation of angle of clicks 

Skewness of angle of clicks 

Mean of speed of clicks 

Standard deviation of speed of clicks 

Continued on next page 



191 

ID Feature Description 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

Skewness of speed of clicks 

Mean of distance of single clicks 

Standard deviation of distance of single clicks 

Skewness of distance of single clicks 

Mean of angle of single clicks 

Standard deviation of angle of single clicks 

Skewness of angle of single clicks 

Mean of speed of single clicks 

Standard deviation of speed of single clicks 

Skewness of speed of single clicks 

Mean of distance of double clicks 

Standard deviation of distance of double clicks 

Skewness of distance of double clicks 

Mean of angle of double clicks 

Standard deviation of angle of double clicks 

Skewness of angle of double clicks 

Mean of speed of double clicks 

Standard deviation of speed of double clicks 

Table D.2: A complete list of Keystroke  features.  

ID Feature Description 

1 

2 

3 

4 

5 

Number of all Keystroke points 

Number of Function keys 

Number of Control keys 

Number of Regular keys 

Number of Mouse–keys 

Continued on next page 



192 

ID Feature Description 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Numbers of Other keys 

Number of Letters 

Number of Numbers 

Number of letter A 

Number of letter B 

Number of letter C 

Number of letter D 

Number of letter E 

Number of letter F 

Number of letter G 

Number of letter H 

Number of letter I 

Number of letter J 

Number of letter K 

Number of letter L 

Number of letter M 

Number of letter N 

Number of letter O 

Number of letter P 

Number of letter Q 

Number of letter R 

Number of letter S 

Number of letter T 

Number of letter U 

Number of letter V 

Number of letter W 

Number of letter X 

Continued on next page 



193 

ID Feature Description 

33
 

34
 

35
 

36
 

37
 

38
 

39
 

40
 

41
 

42
 

43
 

44
 

45
 

46
 

47
 

48
 

49
 

50
 

51
 

52
 

53
 

54
 

55
 

56
 

57
 

58
 

59
 

Number of letter Y
 

Number of letter Z
 

Number of numerals 0
 

Number of numerals 1
 

Number of numerals 2
 

Number of numerals 3
 

Number of numerals 4
 

Number of numerals 5
 

Number of numerals 6
 

Number of numerals 7
 

Number of numerals 8
 

Number of numerals 9
 

Mean of 1–graph of all keystrokes
 

Standard deviation of 1–graph of all keystrokes
 

Skewness of 1–graph of all keystrokes
 

Mean of 2–graph of all keystrokes
 

Standard deviation of 2–graph of all keystrokes
 

Skewness of 2–graph of all keystrokes
 

Mean of 3–graph of all keystrokes
 

Standard deviation of 3–graph of all keystrokes
 

Skewness of 3–graph of all keystrokes
 

Mean of 4–graph of all keystrokes
 

Standard deviation of 4–graph of all keystrokes
 

Skewness of 4–graph of all keystrokes
 

Mean of 5–graph of all keystrokes
 

Standard deviation of 5–graph of all keystrokes
 

Skewness of 5–graph of all keystrokes
 

Continued on next page 



194 

ID Feature Description 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

Mean of 6–graph of all keystrokes 

Standard deviation of 6–graph of all keystrokes 

Skewness of 6–graph of all keystrokes 

Mean of 7–graph of all keystrokes 

Standard deviation of 7–graph of all keystrokes 

Skewness of 7–graph of all keystrokes 

Mean of 8–graph of all keystrokes 

Standard deviation of 8–graph of all keystrokes 

Skewness of 8–graph of all keystrokes 

Mean of 1–graph of Function keys 

Standard deviation of 1–graph of Function keys 

Skewness of 1–graph of Function keys 

Mean of 2–graph of Function keys 

Standard deviation of 2–graph of Function keys 

Skewness of 2–graph of Function keys 

Mean of 3–graph of Function keys 

Standard deviation of 3–graph of Function keys 

Skewness of 3–graph of Function keys 

Mean of 4–graph of Function keys 

Standard deviation of 4–graph of Function keys 

Skewness of 4–graph of Function keys 

Mean of 5–graph of Function keys 

Standard deviation of 5–graph of Function keys 

Skewness of 5–graph of Function keys 

Mean of 6–graph of Function keys 

Standard deviation of 6–graph of Function keys 

Skewness of 6–graph of Function keys 

Continued on next page 



195 

ID Feature Description 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

Mean of 7–graph of Function keys 

Standard deviation of 7–graph of Function keys 

Skewness of 7–graph of Function keys 

Mean of 8–graph of Function keys 

Standard deviation of 8–graph of Function keys 

Skewness of 8–graph of Function keys 

Mean of 1–graph of Control keys 

Standard deviation of 1–graph of Control keys 

Skewness of 1–graph of Control keys 

Mean of 2–graph of Control keys 

Standard deviation of 2–graph of Control keys 

Skewness of 2–graph of Control keys 

Mean of 3–graph of Control keys 

Standard deviation of 3–graph of Control keys 

Skewness of 3–graph of Control keys 

Mean of 4–graph of Control keys 

Standard deviation of 4–graph of Control keys 

Skewness of 4–graph of Control keys 

Mean of 5–graph of Control keys 

Standard deviation of 5–graph of Control keys 

Skewness of 5–graph of Control keys 

Mean of 6–graph of Control keys 

Standard deviation of 6–graph of Control keys 

Skewness of 6–graph of Control keys 

Mean of 7–graph of Control keys 

Standard deviation of 7–graph of Control keys 

Skewness of 7–graph of Control keys 

Continued on next page 



196 

ID Feature Description 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

Mean of 8–graph of Control keys 

Standard deviation of 8–graph of Control keys 

Skewness of 8–graph of Control keys 

Mean of 1–graph of Regular keys 

Standard deviation of 1–graph of Regular keys 

Skewness of 1–graph of Regular keys 

Mean of 2–graph of Regular keys 

Standard deviation of 2–graph of Regular keys 

Skewness of 2–graph of Regular keys 

Mean of 3–graph of Regular keys 

Standard deviation of 3–graph of Regular keys 

Skewness of 3–graph of Regular keys 

Mean of 4–graph of Regular keys 

Standard deviation of 4–graph of Regular keys 

Skewness of 4–graph of Regular keys 

Mean of 5–graph of Regular keys 

Standard deviation of 5–graph of Regular keys 

Skewness of 5–graph of Regular keys 

Mean of 6–graph of Regular keys 

Standard deviation of 6–graph of Regular keys 

Skewness of 6–graph of Regular keys 

Mean of 7–graph of Regular keys 

Standard deviation of 7–graph of Regular keys 

Skewness of 7–graph of Regular keys 

Mean of 8–graph of Regular keys 

Standard deviation of 8–graph of Regular keys 

Skewness of 8–graph of Regular keys 

Continued on next page 



197 

ID Feature Description 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

Mean of 1–graph of Mouse–keys 

Standard deviation of 1–graph of Mouse–keys 

Skewness of 1–graph of Mouse–keys 

Mean of 2–graph of Mouse–keys 

Standard deviation of 2–graph of Mouse–keys 

Skewness of 2–graph of Mouse–keys 

Mean of 3–graph of Mouse–keys 

Standard deviation of 3–graph of Mouse–keys 

Skewness of 3–graph of Mouse–keys 

Mean of 4–graph of Mouse–keys 

Standard deviation of 4–graph of Mouse–keys 

Skewness of 4–graph of Mouse–keys 

Mean of 5–graph of Mouse–keys 

Standard deviation of 5–graph of Mouse–keys 

Skewness of 5–graph of Mouse–keys 

Mean of 6–graph of Mouse–keys 

Standard deviation of 6–graph of Mouse–keys 

Skewness of 6–graph of Mouse–keys 

Mean of 7–graph of Mouse–keys 

Standard deviation of 7–graph of Mouse–keys 

Skewness of 7–graph of Mouse–keys 

Mean of 8–graph of Mouse–keys 

Standard deviation of 8–graph of Mouse–keys 

Skewness of 8–graph of Mouse–keys 

Mean of 1–graph of Other keys 

Standard deviation of 1–graph of Other keys 

Skewness of 1–graph of Other keys 

Continued on next page 



198 

ID Feature Description 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

Mean of 2–graph of Other keys s 

Standard deviation of 2–graph of Other keys 

Skewness of 2–graph of Other keys 

Mean of 3–graph of Other keys 

Standard deviation of 3–graph of Other keys 

Skewness of 3–graph of Other keys 

Mean of 4–graph of Other keys 

Standard deviation of 4–graph of Other keys 

Skewness of 4–graph of Other keys 

Mean of 5–graph of Other keys 

Standard deviation of 5–graph of Other keys 

Skewness of 5–graph of Other keys 

Mean of 6–graph of Other keys 

Standard deviation of 6–graph of Other keys 

Skewness of 6–graph of Other keys 

Mean of 7–graph of Other keys 

Standard deviation of 7–graph of Other keys 

Skewness of 7–graph of Other keys 

Mean of 8–graph of Other keys 

Standard deviation of 8–graph of Other keys 

Skewness of 8–graph of Other keys 

Mean of 1–graph of Letters 

Standard deviation of 1–graph of Letters 

Skewness of 1–graph of Letters 

Mean of 2–graph of Letters 

Standard deviation of 2–graph of Letters 

Skewness of 2–graph of Letters 

Continued on next page 



199 

ID Feature Description 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

Mean of 3–graph of Letters 

Standard deviation of 3–graph of Letters 

Skewness of 3–graph of Letters 

Mean of 4–graph of Letters 

Standard deviation of 4–graph of Letters 

Skewness of 4–graph of Letters 

Mean of 5–graph of Letters 

Standard deviation of 5–graph of Letters 

Skewness of 5–graph of Letters 

Mean of 6–graph of Letters 

Standard deviation of 6–graph of Letters 

Skewness of 6–graph of Letters 

Mean of 7–graph of Letters 

Standard deviation of 7–graph of Letters 

Skewness of 7–graph of Letters 

Mean of 8–graph of Letters 

Standard deviation of 8–graph of Letters 

Skewness of 8–graph of Letters 

Mean of 1–graph of Numbers 

Standard deviation of 1–graph of Numbers 

Skewness of 1–graph of Numbers 

Mean of 2–graph of Numbers 

Standard deviation of 2–graph of Numbers 

Skewness of 2–graph of Numbers 

Mean of 3–graph of Numbers 

Standard deviation of 3–graph of Numbers 

Skewness of 3–graph of Numbers 

Continued on next page 



200 

ID Feature Description 

222 

223 

224 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

Mean of 4–graph of Numbers 

Standard deviation of 4–graph of Numbers 

Skewness of 4–graph of Numbers 

Mean of 5–graph of Numbers 

Standard deviation of 5–graph of Numbers 

Skewness of 5–graph of Numbers 

Mean of 6–graph of Numbers 

Standard deviation of 6–graph of Numbers 

Skewness of 6–graph of Numbers 

Mean of 7–graph of Numbers 

Standard deviation of 7–graph of Numbers 

Skewness of 7–graph of Numbers 

Mean of 8–graph of Numbers 

Standard deviation of 8–graph of Numbers 

Skewness of 8–graph of Numbers 

Table D.3: A complete list of GUI features. 

ID Feature Description 

1 

2 

3 

4 

5 

6 

7 

8 

Number of all GUI points 

Number of Spatial+Temporal events 

Number of Temporal events 

Number of Window events 

Number of Control events 

Numbers of Menu events 

Number of Item events 

Number of Icon events 

Continued on next page 



201 

ID Feature Description 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

Number of Dialog events 

Numbers of Query events 

Number of Combo box events 

Number of Miscellaneous events 

Mean of X coordinates of all GUI events 

Standard deviation of X coordinates of all GUI events 

Skewness of X coordinates of all GUI events 

Mean of Y coordinates of all GUI events 

Standard deviation of Y coordinates of all GUI events 

Skewness of Y coordinates of all GUI events 

Mean of X coordinates of Spatial+Temporal events 

Standard deviation of X coordinates of Spatial+Temporal events 

Skewness of X coordinates of Spatial+Temporal events 

Mean of Y coordinates of Spatial+Temporal events 

Standard deviation of Y coordinates of Spatial+Temporal events 

Skewness of Y coordinates of Spatial+Temporal events 

Mean of X coordinates of Window events 

Standard deviation of X coordinates of Window events 

Skewness of X coordinates of Window events 

Mean of Y coordinates of Window events 

Standard deviation of Y coordinates of Window events 

Skewness of Y coordinates of Window events 

Mean of X coordinates of Control events 

Standard deviation of X coordinates of Control events 

Skewness of X coordinates of Control events 

Mean of Y coordinates of Control events 

Standard deviation of Y coordinates of Control events 

Continued on next page 



202 

ID Feature Description 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

Skewness of Y coordinates of Control events 

Mean of X coordinates of Menu events 

Standard deviation of X coordinates of Menu events 

Skewness of X coordinates of Menu events 

Mean of Y coordinates of Menu events 

Standard deviation of Y coordinates of Menu events 

Skewness of Y coordinates of Menu events 

Mean of X coordinates of Item events 

Standard deviation of X coordinates of Item events 

Skewness of X coordinates of Item events 

Mean of Y coordinates of Item events 

Standard deviation of Y coordinates of Item events 

Skewness of Y coordinates of Item events 

Mean of 1–graph of all GUI events 

Standard deviation of 1–graph of all GUI events 

Skewness of 1–graph of all GUI events 

Mean of 2–graph of all GUI events 

Standard deviation of 2–graph of all GUI events 

Skewness of 2–graph of all GUI events 

Mean of 3–graph of all GUI events 

Standard deviation of 3–graph of all GUI events 

Skewness of 3–graph of all GUI events 

Mean of 4–graph of all GUI events 

Standard deviation of 4–graph of all GUI events 

Skewness of 4–graph of all GUI events 

Mean of 5–graph of all GUI events 

Standard deviation of 5–graph of all GUI events 

Continued on next page 



203 

ID Feature Description 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

Skewness of 5–graph of all GUI events 

Mean of 6–graph of all GUI events 

Standard deviation of 6–graph of all GUI events 

Skewness of 6–graph of all GUI events 

Mean of 7–graph of all GUI events 

Standard deviation of 7–graph of all GUI events 

Skewness of 7–graph of all GUI events 

Mean of 8–graph of all GUI events 

Standard deviation of 8–graph of all GUI events 

Skewness of 8–graph of all GUI events 

Mean of 1–graph of Spatial+Temporal events 

Standard deviation of 1–graph of Spatial+Temporal events 

Skewness of 1–graph of Spatial+Temporal events 

Mean of 2–graph of Spatial+Temporal events 

Standard deviation of 2–graph of Spatial+Temporal events 

Skewness of 2–graph of Spatial+Temporal events 

Mean of 3–graph of Spatial+Temporal events 

Standard deviation of 3–graph of Spatial+Temporal events 

Skewness of 3–graph of Spatial+Temporal events 

Mean of 4–graph of Spatial+Temporal events 

Standard deviation of 4–graph of Spatial+Temporal events 

Skewness of 4–graph of Spatial+Temporal events 

Mean of 5–graph of Spatial+Temporal events 

Standard deviation of 5–graph of Spatial+Temporal events 

Skewness of 5–graph of Spatial+Temporal events 

Mean of 6–graph of Spatial+Temporal events 

Standard deviation of 6–graph of Spatial+Temporal events 

Continued on next page 



204 

ID Feature Description 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

Skewness of 6–graph of Spatial+Temporal events 

Mean of 7–graph of Spatial+Temporal events 

Standard deviation of 7–graph of Spatial+Temporal events 

Skewness of 7–graph of Spatial+Temporal events 

Mean of 8–graph of Spatial+Temporal events 

Standard deviation of 8–graph of Spatial+Temporal events 

Skewness of 8–graph of Spatial+Temporal events 

Mean of 1–graph of Temporal events 

Standard deviation of 1–graph of Temporal events 

Skewness of 1–graph of Temporal events 

Mean of 2–graph of Temporal events 

Standard deviation of 2–graph of Temporal events 

Skewness of 2–graph of Temporal events 

Mean of 3–graph of Temporal events 

Standard deviation of 3–graph of Temporal events 

Skewness of 3–graph of Temporal events 

Mean of 4–graph of Temporal events 

Standard deviation of 4–graph of Temporal events 

Skewness of 4–graph of Temporal events 

Mean of 5–graph of Temporal events 

Standard deviation of 5–graph of Temporal events 

Skewness of 5–graph of Temporal events 

Mean of 6–graph of Temporal events 

Standard deviation of 6–graph of Temporal events 

Skewness of 6–graph of Temporal events 

Mean of 7–graph of Temporal events 

Standard deviation of 7–graph of Temporal events 

Continued on next page 



205 

ID Feature Description 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

Skewness of 7–graph of Temporal events 

Mean of 8–graph of Temporal events 

Standard deviation of 8–graph of Temporal events 

Skewness of 8–graph of Temporal events 

Mean of 1–graph of Window events 

Standard deviation of 1–graph of Window events 

Skewness of 1–graph of Window events 

Mean of 2–graph of Window events 

Standard deviation of 2–graph of Window events 

Skewness of 2–graph of Window events 

Mean of 3–graph of Window events 

Standard deviation of 3–graph of Window events 

Skewness of 3–graph of Window events 

Mean of 4–graph of Window events 

Standard deviation of 4–graph of Window events 

Skewness of 4–graph of Window events 

Mean of 5–graph of Window events 

Standard deviation of 5–graph of Window events 

Skewness of 5–graph of Window events 

Mean of 6–graph of Window events 

Standard deviation of 6–graph of Window events 

Skewness of 6–graph of Window events 

Mean of 7–graph of Window events 

Standard deviation of 7–graph of Window events 

Skewness of 7–graph of Window events 

Mean of 8–graph of Window events 

Standard deviation of 8–graph of Window events 

Continued on next page 



206 

ID Feature Description 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

Skewness of 8–graph of Window events 

Mean of 1–graph of Control events 

Standard deviation of 1–graph of Control events 

Skewness of 1–graph of Control events 

Mean of 2–graph of Control events 

Standard deviation of 2–graph of Control events 

Skewness of 2–graph of Control events 

Mean of 3–graph of Control events 

Standard deviation of 3–graph of Control events 

Skewness of 3–graph of Control events 

Mean of 4–graph of Control events 

Standard deviation of 4–graph of Control events 

Skewness of 4–graph of Control events 

Mean of 5–graph of Control events 

Standard deviation of 5–graph of Control events 

Skewness of 5–graph of Control events 

Mean of 6–graph of Control events 

Standard deviation of 6–graph of Control events 

Skewness of 6–graph of Control events 

Mean of 7–graph of Control events 

Standard deviation of 7–graph of Control events 

Skewness of 7–graph of Control events 

Mean of 8–graph of Control events 

Standard deviation of 8–graph of Control events 

Skewness of 8–graph of Control events 

Mean of 1–graph of Menu events 

Standard deviation of 1–graph of Menu events 

Continued on next page 



207 

ID Feature Description 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

Skewness of 1–graph of Menu events 

Mean of 2–graph of Menu events 

Standard deviation of 2–graph of Menu events 

Skewness of 2–graph of Menu events 

Mean of 3–graph of Menu events 

Standard deviation of 3–graph of Menu events 

Skewness of 3–graph of Menu events 

Mean of 4–graph of Menu events 

Standard deviation of 4–graph of Menu events 

Skewness of 4–graph of Menu events 

Mean of 5–graph of Menu events 

Standard deviation of 5–graph of Menu events 

Skewness of 5–graph of Menu events 

Mean of 6–graph of Menu events 

Standard deviation of 6–graph of Menu events 

Skewness of 6–graph of Menu events 

Mean of 7–graph of Menu events 

Standard deviation of 7–graph of Menu events 

Skewness of 7–graph of Menu events 

Mean of 8–graph of Menu events 

Standard deviation of 8–graph of Menu events 

Skewness of 8–graph of Menu events 

Mean of 1–graph of Item events 

Standard deviation of 1–graph of Item events 

Skewness of 1–graph of Item events 

Mean of 2–graph of Item events 

Standard deviation of 2–graph of Item events 

Continued on next page 



208 

ID Feature Description 

198 

199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

Skewness of 2–graph of Item events 

Mean of 3–graph of Item events 

Standard deviation of 3–graph of Item events 

Skewness of 3–graph of Item events 

Mean of 4–graph of Item events 

Standard deviation of 4–graph of Item events 

Skewness of 4–graph of Item events 

Mean of 5–graph of Item events 

Standard deviation of 5–graph of Item events 

Skewness of 5–graph of Item events 

Mean of 6–graph of Item events 

Standard deviation of 6–graph of Item events 

Skewness of 6–graph of Item events 

Mean of 7–graph of Item events 

Standard deviation of 7–graph of Item events 

Skewness of 7–graph of Item events 

Mean of 8–graph of Item events 

Standard deviation of 8–graph of Item events 

Skewness of 8–graph of Item events 

Mean of 1–graph of Icon events 

Standard deviation of 1–graph of Icon events 

Skewness of 1–graph of Icon events 

Mean of 2–graph of Icon events 

Standard deviation of 2–graph of Icon events 

Skewness of 2–graph of Icon events 

Mean of 3–graph of Icon events 

Standard deviation of 3–graph of Icon events 

Continued on next page 



209 

ID Feature Description 

225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

Skewness of 3–graph of Icon events 

Mean of 4–graph of Icon events 

Standard deviation of 4–graph of Icon events 

Skewness of 4–graph of Icon events 

Mean of 5–graph of Icon events 

Standard deviation of 5–graph of Icon events 

Skewness of 5–graph of Icon events 

Mean of 6–graph of Icon events 

Standard deviation of 6–graph of Icon events 

Skewness of 6–graph of Icon events 

Mean of 7–graph of Icon events 

Standard deviation of 7–graph of Icon events 

Skewness of 7–graph of Icon events 

Mean of 8–graph of Icon events 

Standard deviation of 8–graph of Icon events 

Skewness of 8–graph of Icon events 

Mean of 1–graph of Dialog events 

Standard deviation of 1–graph of Dialog events 

Skewness of 1–graph of Dialog events 

Mean of 2–graph of Dialog events 

Standard deviation of 2–graph of Dialog events 

Skewness of 2–graph of Dialog events 

Mean of 3–graph of Dialog events 

Standard deviation of 3–graph of Dialog events 

Skewness of 3–graph of Dialog events 

Mean of 4–graph of Dialog events 

Standard deviation of 4–graph of Dialog events 

Continued on next page 



210 

ID Feature Description 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

274 

275 

276 

277 

278 

Skewness of 4–graph of Dialog events 

Mean of 5–graph of Dialog events 

Standard deviation of 5–graph of Dialog events 

Skewness of 5–graph of Dialog events 

Mean of 6–graph of Dialog events 

Standard deviation of 6–graph of Dialog events 

Skewness of 6–graph of Dialog events 

Mean of 7–graph of Dialog events 

Standard deviation of 7–graph of Dialog events 

Skewness of 7–graph of Dialog events 

Mean of 8–graph of Dialog events 

Standard deviation of 8–graph of Dialog events 

Skewness of 8–graph of Dialog events 

Mean of 1–graph of Query events 

Standard deviation of 1–graph of Query events 

Skewness of 1–graph of Query events 

Mean of 2–graph of Query events 

Standard deviation of 2–graph of Query events 

Skewness of 2–graph of Query events 

Mean of 3–graph of Query events 

Standard deviation of 3–graph of Query events 

Skewness of 3–graph of Query events 

Mean of 4–graph of Query events 

Standard deviation of 4–graph of Query events 

Skewness of 4–graph of Query events 

Mean of 5–graph of Query events 

Standard deviation of 5–graph of Query events 

Continued on next page 



211 

ID Feature Description 

279 

280 

281 

282 

283 

284 

285 

286 

287 

288 

289 

290 

291 

292 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

Skewness of 5–graph of Query events 

Mean of 6–graph of Query events 

Standard deviation of 6–graph of Query events 

Skewness of 6–graph of Query events 

Mean of 7–graph of Query events 

Standard deviation of 7–graph of Query events 

Skewness of 7–graph of Query events 

Mean of 8–graph of Query events 

Standard deviation of 8–graph of Query events 

Skewness of 8–graph of Query events 

Mean of 1–graph of Combo box events 

Standard deviation of 1–graph of Combo box events 

Skewness of 1–graph of Combo box events 

Mean of 2–graph of Combo box events 

Standard deviation of 2–graph of Combo box events 

Skewness of 2–graph of Combo box events 

Mean of 3–graph of Combo box events 

Standard deviation of 3–graph of Combo box events 

Skewness of 3–graph of Combo box events 

Mean of 4–graph of Combo box events 

Standard deviation of 4–graph of Combo box events 

Skewness of 4–graph of Combo box events 

Mean of 5–graph of Combo box events 

Standard deviation of 5–graph of Combo box events 

Skewness of 5–graph of Combo box events 

Mean of 6–graph of Combo box events 

Standard deviation of 6–graph of Combo box events 

Continued on next page 



212 

ID Feature Description 

306 

307 

308 

309 

310 

311 

312 

313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

326 

327 

328 

329 

330 

331 

332 

Skewness of 6–graph of Combo box events 

Mean of 7–graph of Combo box events 

Standard deviation of 7–graph of Combo box events 

Skewness of 7–graph of Combo box events 

Mean of 8–graph of Combo box events 

Standard deviation of 8–graph of Combo box events 

Skewness of 8–graph of Combo box events 

Mean of 1–graph of Miscellaneous events 

Standard deviation of 1–graph of Miscellaneous events 

Skewness of 1–graph of Miscellaneous events 

Mean of 2–graph of Miscellaneous events 

Standard deviation of 2–graph of Miscellaneous events 

Skewness of 2–graph of Miscellaneous events 

Mean of 3–graph of Miscellaneous events 

Standard deviation of 3–graph of Miscellaneous events 

Skewness of 3–graph of Miscellaneous events 

Mean of 4–graph of Miscellaneous events 

Standard deviation of 4–graph of Miscellaneous events 

Skewness of 4–graph of Miscellaneous events 

Mean of 5–graph of Miscellaneous events 

Standard deviation of 5–graph of Miscellaneous events 

Skewness of 5–graph of Miscellaneous events 

Mean of 6–graph of Miscellaneous events 

Standard deviation of 6–graph of Miscellaneous events 

Skewness of 6–graph of Miscellaneous events 

Mean of 7–graph of Miscellaneous events 

Standard deviation of 7–graph of Miscellaneous events 

Continued on next page 



213 

ID Feature Description 

333 

334 

335 

336 

337 

338 

339 

340 

341 

342 

343 

344 

345 

346 

347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

Skewness of 7–graph of Miscellaneous events 

Mean of 8–graph of Miscellaneous events 

Standard deviation of 8–graph of Miscellaneous events 

Skewness of 8–graph of Miscellaneous events 

Mean of distance of all GUI points 

Standard deviation of distance of all GUI points 

Skewness of distance of all GUI points 

Mean of angle of all GUI points 

Standard deviation of angle of all GUI points 

Skewness of angle of all GUI points 

Mean of speed of all GUI points 

Standard deviation of speed of all GUI points 

Skewness of speed of all GUI points 

Mean of distance of Spatial+Temporal events 

Standard deviation of distance of  Spatial+Temporal  events  

Skewness of distance of Spatial+Temporal events 

Mean of angle of Spatial+Temporal events 

Standard deviation of angle of Spatial+Temporal events 

Skewness of angle of Spatial+Temporal events 

Mean of speed of Spatial+Temporal events 

Standard deviation of speed of Spatial+Temporal events 

Skewness of speed of Spatial+Temporal events 

Mean of distance of Window events 

Standard deviation of distance of Window events 

Skewness of distance of Window events 

Mean of angle of Window events 

Standard deviation of angle of Window events 

Continued on next page 



214 

ID Feature Description 

360 

361 

362 

363 

364 

365 

366 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

386 

Skewness of angle of Window events 

Mean of speed of Window events 

Standard deviation of speed of Window events 

Skewness of speed of Window events 

Mean of distance of Control events 

Standard deviation of distance of Control events 

Skewness of distance of Control events 

Mean of angle of single Control events 

Standard deviation of angle of Control events 

Skewness of angle of Control events 

Mean of speed of Control events 

Standard deviation of speed of Control events 

Skewness of speed of Control events 

Mean of distance of Menu events 

Standard deviation of distance of Menu events 

Skewness of distance of Menu events 

Mean of angle of Menu events 

Standard deviation of angle of Menu events 

Skewness of angle of Menu events 

Mean of speed of Menu events 

Standard deviation of speed of Menu events 

Skewness of speed of Menu events 

Mean of distance of Item events 

Standard deviation of distance of Item events 

Skewness of distance of Item events 

Mean of angle of Item events 

Standard deviation of angle of Item events 

Continued on next page 



215 

ID Feature Description 

387 Skewness of angle of Item events 

388 Mean of speed of Item events 

389 Standard deviation of speed of Item events 

390 Skewness of speed of Item events 



216 

APPENDIX E
 

DATA COLLECTION ASSIGNMENT
 

The students were instructed to read “Java–based Internet Biometric Authentica­

tion System” by R. A. J. Everitt and P.W. McOwan [88] and answer the following 

questions: 

1. How can we avoid pitfalls encountered with the traditional authentication sys­

tems? 

2. What is the difference between the physiological and behavioral data? 

3. Describe in your	 own words the characteristics and operation of a “hybrid” 

system. 

4. In the context of the assigned reading material describe what keyboard and 

mouse inputs were required from each user. 

5. How many stages did the authors’ proposed solution have? 

6. What is “registration”? 

7. How did the authors handle noisy data? 

8. Explain the “normalization” process. 

9. What are the hold and latency times? 

10. What is the difference between the within and between class variance? 

11. Describe the difference between the ranking and genetic approach. 

12. Explain the user’s profile space. 

13. What is the “boundary” space? 

14. Why do we need a validation set? 



217 

15. Describe why the generalization is important. 

16. What is FAR and FRR? 

17. Explain how FAR and FRR were computed in the paper? 

18. What results did the authors obtain? 

19. What part of the paper did you like the best? 

20. What part of the paper would you improve? 



VITA
 



218 

VITA 

Maja Pusara 

Research Interests Computer Security, Machine Learning and Data Mining. 

Education 

•	 Ph.D., School  of  Electrical  and  Computer  Engineering,  Purdue  University,  

August 2007. 

•	 M.S., School  of  Electrical  and  Computer  Engineering,  Purdue  University,  De­

cember 2003. 

•	 B.S., School  of  Electrical  Engineering,  Lake  Superior  State  University,  May  

2001. 

•	 B.S., School  of  Computer  Engineering,  Lake  Superior  State  University,  August  

2001. 

•	 B.S., School  of  Computer  Science,  Lake  Superior  State  University,  May  2001.  

•	 A.S., School  of  Engineering,  Dodge  City  Community  College,  August  1998.  

•	 A.A., School  of  Engineering,  Dodge  City  Community  College,  August  1998.  

Honors 

•	 Valedictorian, Graduating  Class,  Lake  Superior  State  University,  2001  

•	 Recipient, Outstanding  Electrical  and  Computer Engineering Graduate, Lake 

Superior State University, 2001 

•	 Recipient, Outstanding  Computer  Science  and Mathematics Graduate, Lake 

Superior State University, 2001 



219
 

•	 Meritorious Winner, Mathematical  Modeling  Contest  (COMAP),  2001  

•	 Recipient, Judge  Fenlon  Award  for  the  Best  Female Student, Lake Superior 

State University, 2000 

•	 Recipient, American  Society  of  Military  Engineers  Scholarship,  Lake  Superior  

State University, 2000 

•	 Recipient, Gerald  M.  Samson  Mathematical  Scholarship,  Lake  Superior  State  

University, 2000 

•	 Recipient, Presidential  Scholarship,  Dodge  City  Community  College,  1997  

•	 Recipient, Endowment  Scholarship,  Dodge  City  Community  College,  1997  

Activities 

•	 Program Committee Member, MIT Organization of Serbian Students (MOST), 

MIT, 2004–present 

•	 Volunteer, Charitable  Concert  to  Benefit  War  Orphans  in  the  Balkans,  MIT,  

2005 

•	 Member, Eta Kappa Nu Electrical Engineering Honorary Society, 2004–present 

•	 Treasurer, Friends of Europe Society, Purdue University, 2002 

•	 Member, Friends  of  Europe  Society, Purdue  University,  2001–2004  

•	 Student Representative, Board  to  Select  and  Outstanding  Faculty  Member  

of the Year, 2001 

•	 Member, Alpha  Chi Engineering  Honorary  Society, 2000  

•	 President, Society  of  Women  Engineers  (SWE),  1998  and  2000  

•	 Member, Society  of  Women  Engineers  (SWE), 1998-present  

•	 Director, Financial  Committee,  Lake  Superior  State  University,  2000  

•	 Counselor, Campus  Connections,  Lake  Superior  State  University,  2000  



220 

•	 Advisor, Business  and  Management  Program, Dodge  City  Community  College,  

1998 

Publications 

•	 Pusara, M. and Brodley, C. E., 2007. “Boosting performance when the amount 

of data is limited”. Under Review for the Proceedings of the 2007 IEEE Inter­

national Conference on Data Mining (ICDM). 

•	 Pusara, M. and Brodley, C. E., 2007. “Dynamics of biometric sources for 

user re–authentication”. Under Review for the Proceedings of the 14th ACM 

Conference on Computer and Communications Security (CCS). 

•	 Pusara, M. and Brodley, C. E., 2007. “Analysis of mouse dynamics for user 

re–authentication”. Under Review for the ACM Transactions on Information 

and System Security (TISSEC). 

•	 Pusara, M. and Brodley, C. E., 2004. “User reauthentication via mouse move­

ments”. In Proceedings of the 2004 ACM CCS workshop on Visualization and 

Data Mining for Computer Security. 

Invited Presentations and Poster Sessions 

•	 Dynamics of Biometric Sources for User Re-authentication, Poster  Session  for  

the Graduate Student Fair, Computer Science Department, Tufts University, 

October, 2005. 

•	 User Re-authentication via Mouse Movements, CERIAS  Information  Security  

Symposium, Purdue University, March, 2004. 

•	 User Re-authentication via Mouse Movements, Workshop  on  Statistical  and  

Machine Learning Techniques in Computer Intrusion Detection, George Mason 

University, September 24-26, 2003. 



221
 

Professional Activities 

• Society of Women Engineers (SWE) 

•	 Reviewer for the ACM SIGKDD International Conference on Knowledge Dis­

covery and Data Mining. 

•	 Reviewer for the SIAM International Conference on Data Mining. 

•	 Reviewer for the Journal of Distributed Systems Computing. 

Work Experience 

Lecturer 
• 

Department of Mathematics, Tufts University 

Research Assistant 
• 

Department of ECE, Purdue University 

Teaching Assistant 
• 

Department of Mathematics, Purdue University 

Research and Development Engineer 
• 

DaimlerChrysler 

Resident Assistant 
• 

Lake Superior State University 

Process Control Intern 
• 

Mead Paper 

Lab Instructor, Women in Robotics Program 
• 

Lake Superior State University 

September 2006 - May 2007 

Medford, MA 

August 2003 - Present 

W. Lafayette, IN 

August 2002 - August 2003 

W. Lafayette, IN 

September 2000 - May 2001 

Chelsea, MI 

September 1999 - May 2001 

Sault Ste. Marie, MI 

June 2000 - September 2000 

Escanaba, MI 

June 1999 - July 1999 

Sault Ste. Marie, MI 


