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ABSTRACT

Shen, Shuo Ph.D., Purdue University, May, 2007. Finite Fields of Low Characteristic
in Elliptic Curve Cryptography. Major Professor: Samuel S. Wagstaff, Jr.

The use of finite fields of low characteristic can make the implementation of elliptic

curve cryptography more efficient. There are two approaches to lower the characteris-

tic of the finite field in ECC while maintaining the same security level: Elliptic curves

over a finite field extension and hyperelliptic curves over a finite field. This thesis

solves some problems in both approaches.

The group orders of elliptic curves over finite field extensions are described as

polynomials. The irreducibility of these polynomials is proved, and hence the pri-

mality of the group orders can be studied. Asymptotic formulas for the number of

traces of elliptic curves over field extensions with almost prime orders are given and a

proof based on Bateman-Horn’s conjecture is given. Hence the number of curves for

cryptographic use is known. Experimental data is given. The formulas fit the actual

data remarkably well.

Finally, the arithmetic of real hyperelliptic curves is studied. We study the algo-

rithm for divisor addition on the real hyperlliptic curves and give the explicit formulas.
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1. INTRODUCTION

1.1 Elliptic/Hyperelliptic Curve Cryptography

It is well known that the sets of rational points on elliptic curves over finite fields

form finite groups and the sizes of these finite groups are of the same magnitude as

the size of the base fields. Elliptic curve cryptosystems (ECC) were first proposed in

1985 independently by Neal Koblitz and Victor Miller based on the group structure

of elliptic curves over finite fields. ECC’s security depends on the computational

complexity of the discrete logarithm problem(DLP) over elliptic curve groups, i.e.,

looking for m given rational points P and mP in an elliptic curve group, where

m is a natural number less than the order of the elliptic curve group. Thus, large

elliptic curve groups or prime order subgroups of elliptic curve groups are needed to

guarantee that m can be large and the discrete logarithm problem hard. To reach the

same security level1 as 1024-bit RSA, the size of of the elliptic curve groups should

be over 163 bits according to NIST guidelines for public key sizes. For more details

about the ECC standard, see NIST FIPS 186-2.

The curves used in cryptography ares are those over F2m :

y2 + xy = x3 + ax2 + b with a, b ∈ F2m , (1.1)

and the elliptic curves over Fp, where p is an odd prime greater than 3, in short

Weierstrass form:

y2 = x3 + ax + b with a, b ∈ Fp. (1.2)

The use of hyperelliptic curves in cryptography was started in 1989 by Koblitz [18].

As with the elliptic curve cryptosystem, the discrete logarithm problem over the

1The security level usually refers to the size of key space, for example: one has to try 21024 keys to

launch a brute force attack on a 1024-bit security level cryptosystm.
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Jacobian of hyperelliptic curves of low genus is computationally infeasible when the

size of the Jacobians is large. See Müller et al. [26], Gaudry [13], Enge [10] and

Theriault [34].

Hyperelliptic curves have the form y2 + h(x)y = f(x), where h and f are polyno-

mials. The degree of f is 2g +1 or 2g +2 and the degree of h is no higher than g +1,

where g is the genus of the curve; see Cohen et al. [7] for details. Formal definitions

will be given in Chapter 3.

1.2 Elliptic Curves over Finite Fields

Elliptic curves over finite fields of characteristic 2 are very efficient and widely used

because of their convenience in implementation, fast addition operation on binary

computer systems and the key-per-bit-strength is good. But the elliptic curves with

coefficients in F2 are very limited:

E(F2) : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6. (1.3)

Of the 25 = 32 possible curves, most are singular, supersingular or anomalous, which

are either trivial or vulnerable curves in elliptic cryptography. E(F2p) (p is a prime)

are the most casually used elliptic curves.

The number of possible elliptic curves over a large prime order finite field Fp is

enormous because for each integer n ∈ (p+1−2
√

p, p+1+2
√

p), we can find an elliptic

curve with group order n (see Section 2.1.1). We want n to be a prime because we

need a large prime order elliptic curve group to make the discrete logarithm problem

hard. The number of group orders we could choose is the number of primes in

(p + 1− 2
√

p, p + 1 + 2
√

p) and the number of curves is even more than that.

Multiplications in extension fields of characteristic 2 are usually slower than in

prime fields, while the the inversion in prime fields can be very expensive. To overcome

these two difficulties, some optimal extension fields are explored, i.e., some special

chosen small prime p and extension degree l make the extension field Fql have optimal
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performance in both multiplications and inversions. See Cohen et al. [7] for details.

In this thesis, we generally study the amount of elliptic curves over extension fields

that are possible for cryptographic use, further studies particular for the choices of p

and l are expected to be done soon.

1.3 Contribution of This Thesis

Two approaches have been tried to make the algebraic operations fast while al-

lowing many choices of elliptic curves. The first approach is to use elliptic curves over

a finite field extension, with curve coefficients in a small finite field, i.e.:

E : y2 = x3 + Ax + B over Fqk (q and k are odd primes, A,B ∈ Fq). (1.4)

This type of curves over finite field extension and with coefficients in small finite

field are called Koblitz curves. Group orders of such type of elliptic curves are eas-

ier to calculate and use of Frobenius equation (Theorem 2.1.2) make make scalar

multiplication over such type of curves faster. See Section 2.1 for more details.

The implementation is faster than for elliptic curves over a huge prime order field

and there are many more choices than for curves with binary coefficients. It turns

out that the order of E in Formula (1.4) can not be prime when k > 1. However, the

order may be “almost prime,” that is, have one large prime factor near qk−1. This

size of order is good enough for use in cryptography.

In this thesis, we give and prove a condition for an elliptic curve over a finite field

extension to have almost prime order. We also give and prove an asymptotic formula

for the number of traces of elliptic curves with almost prime orders. Formulas and

experimental data show that there is a huge space of such elliptic curves for use in

ECC. The safety property of these curves under certain attacks is also studied.

The second approach is to use hyperelliptic curves. A hyperelliptic curve with

genus g over Fq has Jacobian of size about qg. To have the same size of Jacobian as

the size of elliptic curve groups, the base field of a hyperelliptic curve is smaller, thus

the parameters of the curve are smaller. Algorithms for imaginary hyperelliptic curves
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have been widely studied. In this thesis, the explicit formulas for for the addition

operation for a real hyperelliptic curve is given. More improvements for algorithms

for real hyperelliptic curves are being explored with other mathematicians.

1.4 Outline of the Thesis

Chapter 2 studies elliptic curves over finite field extensions. Necessary background

and related material will be introduced briefly. Proofs and experimental data are given

in detail. Chapter 3 focuses on the algorithms for real hyperelliptic curves. Further

work in both approaches is mentioned in both chapters.
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2. ELLIPTIC CURVES OVER FINITE FIELD

EXTENTIONS

2.1 Background

The work in this part of the thesis was started with the counting of elliptic curves

of “almost prime” order by MAGMA. It was found that the ratio |E(Fqk)|/|E(Fq)|
can be described by the value of an irreducible polynomial determined by q and k.

This fact is proved below along with other interesting results. This expression as an

irreducible polynomial makes it possible to find an asymptotic formula for the number

of elliptic curves of “almost prime” order if we assume Bateman-Horn’s conjecture.

2.1.1 Basic Definitions

The classical theory of elliptic curves over a finite field is the basis of the work of

this thesis. See Silverman [30] and Washington [36]. Some important related research

in ECC and number theory will be introduced first.

All elliptic curves over finite fields of characteristic greater than 3 can be written

in short Weierstrass normal form:

y2 = x3 + Ax + B (2.1)

with A and B constants in some base field and the discriminant ∆ = −4A3−27B2 6= 0.

Modifications to the Weierstrass form must be made in characteristics 2 and 3. See

Washington [36], page 11, for more details.

Let Fqk be a finite field, k ≥ 1 and k ∈ Z. For fixed A, B ∈ Fqk , the set

E(Fqk) = {∞} ∪ {(x, y) ∈ Fqk × Fqk | y2 = x3 + Ax + B} (2.2)


