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Abstract

The need for communication privacy over public net-
works is of growing concern in today’s society. As a result,
privacy-preserving authentication and key exchange proto-
cols have become critical primitives in building secure dis-
tributed systems. Secret handshakes provide such a service
by allowing two members of the same group to secretly and
privately authenticate to each other and agree on a shared
key for further communication.

This paper presents the first efficient secret handshake
schemes with unlinkable, reusable credentials that do not
rely on random oracles for their security (solving open
problems from prior literature). In previous work, secret
handshakes were extended with roles, so that a group mem-
ber A can specify the role another group member B must
have in order to successfully complete the protocol with A.
We generalize the traditional and role-based secret hand-
shake in two ways. First, we present a secret handshake
with dynamic matching, in which each party can specify
both the group and the role the other must have in order to
complete the handshake. Second, we provide a novel exten-
sion of secret handshakes to include attributes, allowing the
handshake to be based on approximate (or fuzzy) matching.

We demonstrate the practicality and efficiency of our
protocols by evaluating a prototype implementation. We in-
tegrate our dynamic matching protocol into IPsec, and we
detail the performance tradeoffs associated with our fuzzy
matching scheme. Our experiments indicate that our solu-
tions offer attractive performance.

∗Supported in part by NSF.
†Supported by Intel Ph.D. fellowship.

1 Introduction

A secret handshake scheme, introduced by Balfanz et
al. [5], allows two members of the same group to secretly
authenticate to each other and agree on a shared key for
further communication. Such authentication is privacy pre-
serving, meaning that if the participants belong to the same
group, they only learn that they are members of that group
(without learning each other’s identities), and learn noth-
ing about each other otherwise. The most commonly used
example of such interaction is the mutual authentication of
CIA agents. That is, consider a CIA agent who wants to
authenticate to another agent but does not want to reveal
his credentials to anyone other than CIA agents. Obviously,
two CIA agents should be able to successfully complete the
handshake, and other parties should not be able to perform
or recognize the handshake. Such schemes can also be used
by members of secret societies to identify other members,
by the military to discover and use a secret service, etc.

Another important application of secret handshakes that
has not been considered in prior literature is handshakes for
High-bandwidth Digital Content Protection (HDCP) sys-
tems, designed to protect video data from unauthorized
copying. In the HDCP protocol, two devices engage in an
identity-based authentication protocol to agree on a key that
is subsequently used to encrypt the data transmitted on the
DVI bus. The protocol used in HDCP was a custom solu-
tion, designed to meet efficiency requirements; however, it
was shown in [15] to be insecure. An efficient, provably se-
cure handshake protocol could help to fill this gap, as only
devices with legitimate credentials would be able to authen-
ticate to each other and agree on a key.

Another domain where secret handshakes proved to be
useful is anonymous routing in ad-hoc networks. A recent
publication by Li and Ephremides [29] shows that direct
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usage of secret handshakes for anonymous routing outper-
forms all existing solutions. Earlier work in that direction
[47, 46] is also reminiscent of (and was inspired by) secret
handshake schemes.

An important extension of secret handshakes is to in-
clude roles: users can require that group members’ affili-
ations are revealed only to members who hold specific roles
in the group. For example, a vehicle operator Alice might
want to authenticate herself to Bob only if Bob can authen-
ticate as a policeman. In this case, Alice specifies what
role Bob must have in order for the handshake to succeed,
and Bob specifies what role Alice must have. In this work,
we take the flexibility of secret handshakes with roles to a
new level: in addition to being flexible in specifying user
roles, members can now specify the group of the person
with whom they would like to perform a secret handshake.
This dynamic matching (rather than a static group setting) is
what distinguishes our protocols from prior work. This new
model will allow for successful handshakes between, for in-
stance, members of sister societies, instead of just members
of the same society.

Furthermore, we extend the framework of secret hand-
shakes to support attributes and provide approximate (or
fuzzy) attribute-based matching. That is, now each mem-
ber has a number of attributes (call it n) associated with her
membership, such as the group, role, seniority, possibly an
alternative group, etc. At the time of a handshake Alice
specifies what attributes Bob must have, and the handshake
succeeds if Bob’s credentials match d or more of the at-
tributes specified by Alice for some threshold d ≤ n. The
same applies to Bob who specifies attributes for Alice. Such
an extension adds a lot of flexibility and power to the au-
thentication rules of secret handshakes. For instance, now
Alice can require Bob to be a CIA agent and have either
top secret or secret clearance level. We refer to our new no-
tion of secret handshakes (in both of the above settings) as
unrestricted secret handshakes.

Perhaps the most appealing application of secret hand-
shakes with the new extended capabilities, which already
can be used today, is social networks such as online dat-
ing. That is, consider Alice who has a set preferences that
her potential partner must satisfy. The preferences she has
are private, and she does not want to reveal them to others.
Similarly, Bob has a set of requirements that his partner
must match. Attribute-based secret handshakes then natu-
rally allow them to check whether each of them meets the
expectations of the other without revealing any additional
information and, if so, exchange their contact information
using the shared key.

Many existing authentication and signature schemes fall
short of solving this seemingly simple authentication prob-
lem. That is why secret handshakes received a fair amount
of attention in the literature (see, e.g., [5, 44, 13, 40, 39,

42, 48]). Despite this, an efficient secret handshake scheme
with unlinkable reusable credentials secure in the standard
model remained to be an open problem. In this paper, we
show that solutions to secret handshakes exist that combine
efficiency and unlinkability and do not rely on random ora-
cles in their security, even in our new flexible models, thus
closing this gap. Our protocols are built using an Identity-
Based Encryption (IBE) and are the first of their kind. Our
solution to secret handshakes with fuzzy matching also uses
the ideas underlying the construction of fuzzy IBE [36].

To demonstrate the practicality and efficiency of our pro-
tocols, we provide a prototype implementation. It consists
of (i) integrating secret handshakes with dynamic matching
into the key management functionality of IPsec, which re-
sulted in only a small overhead, and (ii) evaluating an imple-
mentation of our fuzzy handshake scheme, which resulted
in very reasonable performance.

To summarize, our contributions consist of the follow-
ing: We extend secret handshakes to permit dynamic match-
ing and present an IBE-based solution to the problem. We
also introduce attributes into secret handshakes and extend
the model to permit fuzzy matching, which significantly en-
riches the set of policies that secret handshakes can support.
We provide solutions to both types of unrestricted secret
handshakes, which are the first schemes that are simultane-
ously (a) efficient, (b) use unlinkable reusable credentials,
and (c) secure in the standard model. Our experimental
results indicate that both of our solutions perform well in
practice.

The rest of this paper is organized as follows: in Sec-
tion 2 we give an overview of secret handshake literature.
Section 3 defines a secret handshake scheme and its secu-
rity, and Section 4 provides background information. Sec-
tion 5 gives our construction for secret handshakes with dy-
namic matching, and in Section 6 we show how to build
secret handshakes with approximate matching. In Section 7
we comment on deployment issues, and Section 8 reports
on implementation results. Lastly, Section 9 concludes the
paper.

2 Related Work

In this section we review only existing literature on se-
cret handshakes and other closely related constructions. For
other anonymity tools that cannot adequately address the
problem of secret handshakes see, for instance, [5, 44].

The first solution to the problem of secret handshakes
is due to Balfanz et al. [5]. Their scheme is simple and
efficient but requires single-use pseudonyms to achieve un-
linkability, which means that each user must store a large
number of credentials. The solution supports authentication
of members with roles, and the scheme is proven to be se-
cure in the random oracle model.
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Castelluccia, Jarecki, and Tsudik [13] addressed the
problem of secret handshakes through the use of so-called
CA-oblivious encryption. This solution is slightly more ef-
ficient, but it still does not support reusable credentials. It is
secure in the random oracle model.

The work by Xu and Yung [44] permits the use of multi-
show credentials, and the security of their construction does
not rely on random oracles, but they achieve only a limited
notion of anonymity, namely, k-anonymity. Unlinkability is
achieved by allowing each user to authenticate as one of k
members by selecting k− 1 public keys of group members,
resulting in O(k) computation (the expensive computation
is, however, only O(1)). Members can reuse their creden-
tials because they always authenticate as someone out of k
users.

Tsudik and Xu [40, 39] extend the notion of secret
handshakes to a multi-party setting. Their work combines
three building blocks (a group signature scheme, a central-
ized group key distribution scheme, and distributed group
key agreement) to create a framework for multi-user hand-
shakes. Unlinkability is achieved by using group signatures,
but this solution is not very efficient. Jarecki, Kim, and
Tsudik [23] also provide a solution to multi-party hand-
shakes by integrating previous work on secret handshakes
[13] with a group key agreement protocol. As in [13], one-
time certificates are used.

Finally, Vergnaud [42] constructs secret handshakes us-
ing RSA; and Zhou, Susilo, and Mu [48] do so by using
ElGamal and DSA. Both papers rely on random oracles in
their security.

The notions of Oblivious Signature-Based Envelope
(OSBE) [28, 33] and Hidden Credentials [21, 12] are also
related to secret handshakes. The authors of [33] show how
to construct basic secret handshakes by using OSBE in both
directions. Also, work of [20, 22] explores the relationship
between CA-oblivious encryption (introduced in [13]), hid-
den credentials, OSBE, and secret handshakes.

3 Model and Definitions

A secret-handshake scheme SHS consists of the follow-
ing algorithms:

• Setup is a trusted algorithm that, given a security pa-
rameter 1κ, outputs public parameters params com-
mon to all subsequently generated groups.

• CreateGroup is a key generation algorithm run by a
group administrator GA which, given params, outputs
the group’s public information G and group’s secret
sG.

• AddMember is a protocol between the GA and a user,
which takes GA’s secret sG and public parameters G

and params as input and results in the user becoming a
member of the group G with credentials cred.

• Handshake is the authentication protocol executed be-
tween players A and B on public input params and
private input of A credA and private input of B credB .
At the end of the protocol, if A’s requirements for B
are matched by B’s credentials and B’s requirements
for A are matched by A’s credentials, A and B authen-
ticate by sharing a common key. Such authentication
fails otherwise.

In the original setting, the handshake protocol results in ac-
ceptance if A and B are members of the same group, but it
can be extended with roles and other attributes.

Also, the definition of a secret handshake scheme
in certain prior publications includes another algorithm,
TraceUser, run by the system administrator. That is, if the
scheme supports tracing, then given a transcript T of in-
teraction of user U with one or more users, this algorithm
outputs the identity of a user whose keys were used by U
during the interaction. We, however, do not consider trace-
ability in this work.

Our secret handshake schemes must provide the follow-
ing core security properties:

Correctness: honest members satisfying the handshake
rules (e.g., belonging to the requested group) will al-
ways successfully complete the handshake.

Impersonator resistance: an adversary not satisfying the
rules of the handshake protocol is unable to success-
fully authenticate to an honest member.

Detector resistance: an adversary not satisfying the rules
of the handshake protocol cannot decide whether some
honest party satisfies the rules or not.

Unlinkability: it is not feasible to tell whether two execu-
tions of the handshake protocol were performed by the
same party or not, even if both of them were success-
ful.

4 Background and Building Blocks

4.1 Preliminaries

In this section, we describe notation used in the rest of
this paper and list number-theoretic preliminaries and cryp-
tographic assumptions. A function ε(κ) is negligible if for
every positive polynomial p(·) and all sufficiently large κ,
ε(κ) < 1

p(κ) . The notation G = 〈g〉 means that g generates
the group G. Our solutions use groups with pairings, and
we review concepts underlying such groups next.
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Definition 1 (Bilinear map) A one-way function e : G1 ×
G2 → GT is a bilinear map if the following conditions
hold:

• (Efficient) G1, G2, and GT are groups of the same
prime order p, and there exists an efficient algorithm
for computing e.

• (Bilinear) For all g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp,
e(ga, g̃b) = e(g, g̃)ab.

• (Non-degenerate) If g generates G1 and g̃ generates
G2, then e(g, g̃) generates GT .

Throughout this work, we assume that there is a trusted
setup algorithm Set that, on input a security parameter
1κ, outputs the setup for groups G1 = 〈g〉 and G2 =
〈g̃〉 of prime order p that have a bilinear map e, and
e(g, g̃) generates GT (which also has order p). That is,
(p, G1, G2, GT , g, g̃, e)← Set(1κ).

Our schemes are built using subgroups of elliptic curves
with pairings where the decisional Diffie-Hellman (DDH)
problem is hard. This setting has been recently used in
many publications ([38, 9, 6, 3, 4] and others), and, ac-
cording to [18], is the most efficient and versatile type of
pairings. The use of DDH-hard pairing groups requires
the Symmetric External Diffie-Hellman (SXDH) assump-
tion [6], and we also rely on the standard Bilinear Diffie-
Hellman (BDH) assumption in asymmetric bilinear groups
(first introduced in [10]), both of which are given next.

Definition 2 (SXDH assumption) We say that the SXDH
assumption holds if, given values y, y1, y2, y3 ∈ G1, it is
not computationally feasible to decide if there is an integer
a ∈ Zp such that y1 = ya and y3 = ya

2 , i.e., G1 is a DDH-
hard group. The same requirement must hold for G2, i.e., it
is also a DDH-hard group.

Definition 3 (BDH assumption) Let g be a generator of
G1 and h be a generator of G2. We say that the BDH as-
sumption holds if, given g, ga, gb, gc ∈ G1 and g̃, g̃a, g̃b ∈
G2 for random a, b, c ∈ Zp, it is not possible to compute
e(g, g̃)abc with a non-negligible probability.

4.2 Identity-based encryption

Our secret handshake scheme with dynamic match-
ing is built upon the Identity-Based Encryption (IBE)
scheme. The first practical IBE scheme is due to Boneh
and Franklin [10], but the scheme we use in this work was
introduced by Waters [43] and is an improved version of
the Boneh-Boyen scheme [8]. An overview of the scheme
is given in Appendix A.

Fuzzy IBE [36] is a new type of identity-based encryp-
tion where instead of using strings to represent identities,

identities are viewed as a set of descriptive attributes. A user
with the secret key for the identity w is able to decrypt a ci-
phertext encrypted with the public key w′ iff w and w′ are
within a certain distance of each other (according to some
metrics). This introduces interesting applications such as
usage of biometric identities and attribute-based encryption
(which can supersede hierarchical IBE); see [36] for more
information. As the approach that we use to achieve secret
handshakes with approximate matching borrows techniques
from this work, we review the construction of [36] in Ap-
pendix A.

4.3 Privacy-preserving set operations

Our fuzzy handshake scheme requires computing set in-
tersection over private datasets, and here we first briefly re-
view prior literature on private set intersection and then give
an overview of the protocol that we chose to use.

Early solutions to computing secure set operations
involved secure multiparty computation introduced by
Yao [45], but have a high communication complexity. Con-
sequently, the problem of set intersection and its variants
have been considered in many recent publications [14, 2,
17, 26, 41, 27, 30]. Agrawal, Evfimievski, and Srikant [2]
propose a more efficient solution to the two-party set inter-
section problem in the semi-honest adversarial setting, us-
ing a commutative encryption function as a building block.
Freedman, Nissim, and Pinkas [17] address problems re-
lated to two-party set intersection, or private matching,
in both the semi-honest and malicious settings, where the
datasets are represented as the roots of a polynomial. More
recently, Kissner and Song [27] provide a generic multi-
party framework in which to securely and privately com-
pute operations over multisets, including union, intersec-
tion, and element reduction. Kiayias and Mitrofanova [26]
address the problem of two-party set disjointness on private
datasets, i.e., computing whether their intersection is empty
or not.

In this paper we are interested in two problems: comput-
ing the set intersection of two private datasets and comput-
ing whether the cardinality of the intersection of two sets
is above a certain threshold. Among the solutions available
in the literature, we chose the set intersection protocol of
Freedman et al. [17], since it does not require the use of
random oracles and is relatively simple. Note that this pro-
tocol is secure in the semi-honest model (i.e., the players
follow the protocol as prescribed but might try to learn ad-
ditional information about the other party’s data by using
intermediate results of the computation). In case of secret
handshakes, we assume that it is in the best interest of the
players to authenticate (and deviating from the prescribed
behavior might prevent this), and the players follow the set
intersection protocol correctly. If security beyond the semi-
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honest behavior is needed, other solutions from the existing
literature can be used with our scheme instead.

Let player Alice with dataset X = {x1, x2, . . . , xk}
and player Bob with dataset Y = {y1, y2, . . . , yk} par-
ticipate in the set intersection protocol of [17]. Al-
ice sets up a semantically-secure homomorphic en-
cryption scheme and publishes the public parameters.
She constructs a polynomial of degree k with roots
{x1, . . . , xk} and sends Bob encryptions of the coefficients,
{Enc(α0), Enc(α1), . . . , Enc(αk)}. Bob uses the homo-
morphic properties of the encryption scheme to evaluate
Alice’s polynomial at each point y in his dataset, since
Enc(P (y)) = Enc(

∑k
u=0 αuyu). He can also compute

Enc(rP (y) + y), with r being chosen at random for each
y. If y is a root of the polynomial (i.e., it matches one of
Alice’s elements), then the ciphertext will equal Enc(y).
When Alice decrypts the ciphertexts, she therefore com-
putes the intersection as any xi ∈ X for which there is a
corresponding decrypted value. Note that the protocol is
asymmetric, in that only Alice obtains the result. This is
exactly what is needed in our handshake scheme with fuzzy
matching.

When Alice and Bob engage in our handshake protocol,
they will also need to compute the function (|X1 ∩ Y1| ≥
d) ∧ (|X2 ∩ Y2| ≥ d) for some fixed threshold d, where
X1 and X2 are known to Alice, Y1 and Y2 are known to
Bob, and |X | denotes the size of set X . None of the pre-
vious solutions (other than circuit evaluation) allow us to
compute this function directly, and the general circuit eval-
uation results are too inefficient for this problem. We there-
fore use the cardinality threshold matching protocol of [17],
which combines a modified set intersection protocol with
boolean circuit evaluation. In this modified version, Bob
encodes random values ry instead of his true y to obtain
Enc(rP (y) + ry), Alice enters rP (y) + ry , and Bob en-
ters ry into the circuit. The circuit then computes whether
these values matched, counts the number of matches, com-
pares that number to the threshold, and outputs a bit. Alice
and Bob run the modified protocol on inputs X1 and Y1

and inputs X2 and Y2 as described above, the circuit then
computes the AND of the bits, and the result of the compu-
tation is sent to both of them. Boolean circuits of small size
are rather efficient and they are one of the best approaches
available for performing comparison.

5 Secret Handshakes with Dynamic Match-
ing

Dynamic matching means that Alice can specify what
group and role Bob must have in order for the handshake
to succeed, and similarly Bob can specify the group and
role that Alice must have. As mentioned earlier, this exten-
sion allows for more flexible and user-chosen authentication

rules.

5.1 The scheme

We modify the IBE scheme (described in Appendix A.1)
to achieve key privacy through the use of asymmetric DDH-
hard groups. By key privacy we mean the inability of an
adversary to determine the identities of the protocol partic-
ipants. The use of DDH-hard groups to achieve key pri-
vacy for Waters IBE scheme was mentioned in [6] and [11].
Some of the ideas used in [6] in the context of storage sys-
tems are used in our scheme as well. The main difference
between our solution and Waters scheme is that, in order
to make it key-private, we force the messages transmitted
during the protocol to be in the same group (using Waters
scheme in the asymmetric setting leads to having values in
both G1 and G2, disallowing the scheme to be key-private).

In what follows, || denotes concatenation of two strings.
We also assume that all identities are n-bit strings (i.e., iden-
tities shorter than n bits are padded to the right length).

Setup. Given a security parameter 1κ, run (p, G1, G2,
GT , g, g̃, e) ← Set(1κ). Choose h

R
← G2 and α

R
← Zp

and set gα = gα. Then choose n + 1 random values
u′, u1, . . ., un

R
← Zp and set G′ = gu′

, G1 = gu1 , . . . ,
Gn = gun , H ′ = g̃u′

, H1 = g̃u1 , . . . , Hn = g̃un . The
public parameters are params = (p, G1, G2, GT , e, g, h,
gα, G′, G1, . . ., Gn).

CreateGroup. There is no computation associated with
creating a new group other than selecting a name for the
group to which we refer to as groupID. The GA must know
hα = hα, and the values g̃, H ′, H1, . . ., Hn to be able to
issue group member credentials.

AddMember. Adding a new member with role r to group
groupID consists of issuing to that member a private key
corresponding to the identity groupID||r. Let rep1(v) ∈ G1

denote representation of an n-bit string v in G1 such that
rep1(v) = G′

∏

i∈V Gi, where V ⊆ {1, . . ., n} is the set
of indices i for which the ith bit of v is equal to 1. Simi-
larly, let rep2(v) = H ′

∏

i∈V Hi denote the representation
of string v in G2.1 Then the private key of the member
of groupID with role r is created as cred = (d1, d2) =

(g̃s, hα(rep2(groupID||r))s), where s
R
← Zp, and d1, d2 ∈

G2.

Handshake. Suppose Alice with a secret credA = (dA
1 , dA

2 ),
which is a private key on the identity groupIDA||rA, and
Bob with a secret credB = (dB

1 , dB
2 ), which is a private

key on the identity groupIDB||rB , engage in a handshake

1Note that e(g, rep
2
(v)) = e(rep

1
(v), g̃).
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protocol. They should successfully complete the protocol if
the group and the role specified by Alice for Bob matches
Bob’s credentials and the group and the role specified by
Bob for Alice matches Alice’s credentials. The protocol
proceeds as follows:

1. A chooses x
R
← Zp and sends gx and

(rep1(groupID′
B||r

′
B))x to B, where r′B (groupID′

B)
is the role (resp., group) that B must have in order to
complete the handshake.

2. Similarly, B chooses y
R
← Zp and sends gy and

(rep1(groupID′
A||r

′
A))y to A, where r′A (groupID′

A) is
the role (resp., group) that A must have in order to
complete the handshake.

3. Using her knowledge of x and what she just received
from B, A computes the following keys:

k1 = e(gα, h)x and

k2 =
e(gy, dA

2 )

e((rep1(groupID′
A||r

′
A))y , dA

1 )
.

4. Using y and what he just received from A, B computes
the keys:

k1 =
e(gx, dB

2 )

e((rep1(groupID′
B||r

′
B))x, dB

1 )

and k2 = e(gα, h)y.

If groupIDA = groupID′
A, groupID′

B = groupIDB , rA =
r′A, and rB = r′B , then at the end of the handshake both A
and B share the key k = (k1, k2), where k1 = e(gα, h)x

and k2 = e(gα, h)y . That is, for Alice we have:

k2 =
e(gy, dA

2 )

e((rep1(groupID′
A||r

′
A))y, dA

1 )

=
e(gy, hα(rep2(groupIDA||rA))s)

e((rep1(groupIDA||rA))y , g̃s)

=
e(g, h)yαe(g, rep2(groupIDA||rA))sy

e(rep1(groupIDA||rA), g̃)sy

= e(gα, h)y.

Similarly, for Bob k1 = e(gα, h)x if the groups and roles
matched.

We also would like to note that it might be possible to
prove our scheme to be a key-private IBE scheme2. In addi-
tion, other key-private IBE schemes can be used to construct
such a handshake scheme. In particular, a recent anony-
mous IBE scheme of Boyen and Waters [11] is a good al-
ternative to our approach.

2As in other IBE schemes, a message M can be encrypted by sending
e(gα, h)xM in addition to gx and (rep

1
(recipientID))x .

5.2 Security

To prove the security of the above scheme, we need to
show that all of the required security properties listed in
Section 3 hold. We first define each of them in more detail.
Our definitions largely follow the definitions of the original
secret handshakes paper [5].

For an adversary A we define a member impersonation
game, during which A is allowed to corrupt users of her
choice, then selects a target group Gt and target role Rt,
and tries to impersonate a member of Gt with role Rt dur-
ing a handshake protocol with an honest user. A wins if
she is successful in impersonating, when she has never cor-
rupted any member of Gt with role Rt. Then we say that
a secret handshake scheme is impersonator resistant if any
polynomial-time adversary A can win the member imper-
sonation game with at most negligible probability. A more
detailed and formal description of this (as well as other) se-
curity games and more precise security definitions are pro-
vided in Appendix B.

Now consider a member detection game, in whichA can
corrupt users of her choice, then chooses a target user Ut

(having a specific role Rt in group Gt). Intuitively, A can-
not detect members if her interaction with them yields no
new information. Thus, A is asked to engage in a hand-
shake protocol with either Ut or a random simulator and
must decide with which entity she is interacting. We say
that a secret handshake scheme is detection resistant if any
A who never corrupted any member of Gt with role Rt has
probability of winning the member impersonation game at
most negligibly larger than 1/2.

Finally, the unlinkability property requires that A is un-
able to tell whether two executions of the protocol corre-
spond to the same user or not. Thus, in the linking game A
corrupts users, chooses a target user Ut, and then is asked to
engage in a secret handshake with either Ut or another user
with similar credentials. A wins if she is able to correctly
guess with whom she was interacting during the challenge
protocol. Then we say that a secret handshake scheme is un-
linkable if anyA who never corrupted the users she is asked
to interact with wins the linking game with the probability
at most negligibly larger than 1/2. As mentioned above,
more precise definitions can be found in Appendix B.

Now we are ready to state the security of our scheme.
The proof of this and other theorems in this paper can be
found in Appendix B.

Theorem 1 The above scheme is a secure secret handshake
scheme with dynamic matching assuming that the BDH and
SXDH assumptions hold.
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6 Secret Handshakes with Fuzzy Matching

In this section we extend the notion of secret hand-
shakes to support approximate attribute-based matching and
present a scheme that achieves such handshakes. In what
follows, let each member have credentials consisting of n
descriptive attributes. At the time of a handshake Alice
specifies an n-element set of attributes for Bob, and Bob
specifies an n-element set of attributes for Alice. The hand-
shake protocol succeeds if Bob’s credentials matched at
least d of the attributes specified by Alice, and Alice’s cre-
dentials matched at least d attributes specified by Bob, for a
fixed d ≤ n.

6.1 The scheme

Our secret handshake scheme with fuzzy matching is
built on the fuzzy IBE scheme [36]. As before, we modify
the setting to DDH-hard groups and introduce other modifi-
cations to achieve secrecy. In particular, we make sure that
all messages transmitted during the protocol are in the same
group, and this is what allows us to achieve key privacy.

Setup. Given a security parameter 1κ, run (p, G1, G2, GT ,
g, g̃, e) ← Set(1κ). Choose h

R
← G2 and α

R
← Zp, and

set gα = gα. Then choose n, d, and t1, . . ., tn+1
R
← Zp,

and set G1 = gt1 , . . . , Gn+1 = gtn+1 , H1 = g̃t1 , . . . ,
Hn+1 = g̃tn+1 . The public parameters are params = (p,
G1, G2, GT , e, g, h, gα, n, d, G1, . . ., Gn+1). Also,
the functions T1(x) = gxn ∏n+1

i=1 G
Li,N (x)
i and T2(x) =

g̃xn ∏n+1
i=1 H

Li,N (x)
i , where Li,S =

∏

j∈S,j 6=i
x−j
i−j

is the
Lagrange coefficient for i and set S and N = {1, . . ., n+1},
are public.

CreateGroup. There is no computation explicit to creation
of a group or a set of attributes. The GA must know α, g̃,
and H1, . . ., Hn+1 to be able to issue member credentials.

AddMember. Membership credentials for a user with at-
tributes u = (u1, . . ., un), where each ui ∈ Z∗

p, are is-
sued similar to the way they are issued in the fuzzy IBE
scheme described in Section A.2. The GA chooses at ran-
dom a d − 1 degree polynomial q such that q(0) = α.
The user credentials are cred = ({Dui

}ui∈u, {dui
}ui∈u),

where Dui
= hq(ui)T2(ui)

ri , dui
= g̃ri , and ri

R
← Zp for

all 1 ≤ i ≤ n.

Handshake. As before, suppose member A with cre-
dentials credA = ({DA

ui
}ui∈uA

, {dA
ui
}ui∈uA

) for at-
tributes uA and member B with credentials credB =
({DB

ui
}ui∈uB

, {dB
ui
}ui∈uB

) for attributes uB engage in a
handshake protocol. Their interaction then proceeds as fol-
lows:

1. A prepares a set of attributes u′
B that B must match

and B prepares a set of attributes u′
A that A must

match. They execute a secure protocol for function
f = (|uA ∩ u′

A| ≥ d) ∧ (|uB ∩ u′
B| ≥ d) as described

in Section 4.3. At the end of the protocol either both of
them learn 0, in which case they abort the handshake
protocol, or both of them learn 1, in which case they
continue.

2. A and B execute secure protocols for set intersection
uA ∩ u′

A and uB ∩ u′
B, at the end of which A learns

wA = uA ∩ u′
A and B learns wB = uB ∩ u′

B (see
Section 4.3 for more detail).

3. A chooses x
R
← Zp and sends to B gx and

{T1(ui)
x}ui∈u′

B
. Similarly, B chooses y

R
← Zp and

sends to A gy and {T1(ui)
y}ui∈u′

A
.

4. A computes k1 = e(gα, h)x and chooses an arbi-
trary d-element subset S of wA. A then computes

k2 =
∏

ui∈S

(

e(gy ,DA
ui

)

e(T1(ui)y,dA
ui

)

)Lui,S(0)

and sets the

shared key to k = (k1, k2).

5. Similarly, B chooses a d-element subset S of wB

and computes k1 =
∏

ui∈S

(

e(gx,DB
ui

)

e(T1(ui)x,dB
ui

)

)Lui,S(0)

.

Then B computes k2 = (gα, h)y and sets k = (k1, k2).

To see that A’s k2 is in fact the same as B’s (i.e., k2 =
e(gα, h)y), we derive the key as follows:

k2 =
∏

ui∈S

(

e(gy, DA
ui

)

e(T1(ui)y, dA
ui

)

)Lui,S(0)

=
∏

ui∈S

(

e(gy, hqA(ui)T2(ui)
rA

i )

e(T1(ui)y, g̃rA
i )

)Lui,S(0)

=
∏

ui∈S

(

e(gy, hqA(ui))e(gy, T2(ui)
rA

i )

e(T1(ui)rA
i , g̃y)

)Lui,S(0)

=
∏

ui∈S

e(g, h)qA(ui)yLui,S(0)

= e(g, h)αy = e(gα, h)y

The transition from the third line to the fourth is due to
the fact that e(g, T2(x)) = e(T1(x), g̃). The same deriva-
tion can be performed for B’s k1, which will result in
k1 = e(gα, h)x.

Note that this protocol prescribes the users to stop after
Step 1 if their credentials did not match. This gives outside
observers information about whether the handshake proto-
col succeeded or not, thus violating the indistinguishability
to eavesdroppers property. To mitigate this problem, we
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advise the users to proceed with the protocol, even if they
receive 0 at the end of Step 1. In this case, however, they
use randomly generated values to finish the protocol instead
of using their true credentials.

6.2 Security

In secret handshakes with attribute-based matching, the
notion of the group is replaced with attributes. Thus, now
the member impersonation game for an adversary A con-
sists of corrupting users, selecting a target user Ut, and
declaring credentials u, an owner of which she would like
to impersonate. User Ut must have at least d attributes in
common with u and no user controlled by A can have d or
more attributes in common with u. The same modifications
apply to the member detection game as well.

Because we no longer have groups, for the property of
detector resistance we require that an adversaryAwho does
not have the required d overlapping attributes with the tar-
get user does not learn any information about Ut’s attributes
during a protocol execution. Note, however, that this does
not imply perfect hiding of information about attributes a
user has, and will be true of any protocol with threshold-
based matching. In particular, the threshold-based nature
of the protocol allows for probing of user attributes. In our
current protocol, a malicious player A can try different val-
ues for uA and u′

B in the attempt to learn as much infor-
mation as possible about B’s credentials from Step 1 of the
protocol. One possibility for solving this problem is to en-
sure that A uses her true credentials uA during Step 1 of
the protocol by, for instance, requiring them to be signed
by the GA. This would not completely mitigate the prob-
ing attacks, but will significantly constrain the attacker in
its capabilities. As the techniques that could be used for
such binding of credentials are inefficient, they were not
implemented in this work, and we leave a more detailed in-
vestigation of this problem as a direction for future work.

The security of our solution holds in the so-called Fuzzy
Selective-ID model [36]. Informally, this means that the ad-
versary commits to the identity it would like to impersonate
prior to system setup. A more detailed description of this
setting is given in Appendix B.

Theorem 2 The above scheme is a secure fuzzy secret
handshake scheme in the Fuzzy Selective-ID model assum-
ing that the BDH and SXDH assumptions hold.

7 Deployment Issues

As remarked by Castelluccia, Jarecki, and Tsudik [13],
real-world deployments of secret handshake protocols re-
quire strengthened security notions. This is in order to

prevent man-in-the-middle attacks or any other active at-
tacks that affect traditional key agreement protocols. As
suggested in [13], a good strategy would consist in adopt-
ing well-established techniques devised for Authenticated
Key Agreement (AKE) protocols. Signatures, for instance,
are usually employed to prevent active attacks. How-
ever, within the secret handshake framework, credentials
are secret, so it is not possible to generate non-repudiable
signatures since there is nothing to verify them against.
A possible solution is to create signatures on handshake
transactions using public credentials, or “double identities.”
That is, each user has two types of credentials, one secret
(e.g., CIA agent) for secret handshake and one public (e.g.,
teacher) for digital signatures. We elaborate more on this in
Section 8.1.1.

Related to this, it should be noted that secret handshake
protocols do not provide certain security guarantees when
plainly deployed within a networked environment. For in-
stance, an adversary that monitors network traffic would be
able to learn which nodes in the network had a successful
secret handshake (even if the traffic is authenticated and en-
crypted) by measuring the amount of traffic between nodes
immediately after the handshake. Even though the adver-
sary will not learn nodes’ group affiliations or roles, this
information could be valuable. Solutions in this case range
from generating fake traffic to employing full-fledged sys-
tems that provide anonymous and untraceable communica-
tion.

8 Applications and Performance Evaluation

In this section, we demonstrate the practical applicabil-
ity of our secret handshake protocols in two ways. First,
we describe our experience integrating our dynamic match-
ing protocol into the key management functionality of IPsec
and evaluate its performance in a prototype implementation.
We then evaluate the performance of an implementation of
our fuzzy handshake scheme. We also compare the perfor-
mance of our fuzzy scheme to that of the original fuzzy IBE.

8.1 IPsec integration

The original work on secret handshakes [5] showed how
to use a secret handshake to authenticate the SSL/TLS hand-
shake [16]. SSL operates at the transport layer of the net-
work stack and can be used to provide application-level au-
thentication. In this paper, we integrate our dynamic match-
ing protocol at the IP level by extending the key exchange
capability of IPsec [25]. Since IPsec operates at the network
level, it is the most general and flexible way to achieve se-
curity. Our integration thus allows any services using IP to
benefit from the private authentication guarantees afforded
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by the secret handshake paradigm. Our dynamic match-
ing protocol is well-suited for integration with IPsec be-
cause of its flexibility and efficiency. Communicating par-
ties can specify arbitrary groups and roles during the hand-
shake, allowing for use across administrative and applica-
tion domains. As will be shown, our protocol performs well
enough to be useful in practice.

8.1.1 Integration description

IPsec implements services for confidentiality, authentica-
tion, and key management. Communicating entities nego-
tiate and establish security associations (SA’s), which de-
scribe and dictate the way in which traffic flowing between
them is protected. In establishing an SA, two nodes running
IPsec use a key exchange protocol to agree on shared keying
material, from which encryption and authentication keys are
derived. We integrated our dynamic matching protocol into
the Internet Key Exchange protocol (IKE) [19], which IPsec
uses to establish these shared keys. Specifically, we re-
place the authenticated Diffie-Hellman exchange described
in the standard with our own protocol. Our prototype ex-
tends the functionality of the openswan-2.4.5 implementa-
tion of IPsec [1], which supports IKEv1. We note that our
extensions can be embedded into the message exchanges of
the more recent IKEv2 [24] using similar techniques and
are therefore also applicable to the current standard.

IKEv1 is designed within the framework of the Inter-
net Security Association and Key Management Protocol
(ISAKMP) [32]. ISAKMP defines the message exchanges
and payload formats that can be used to negotiate the pa-
rameters of protected channels and establish shared keys.
Establishing security associations proceeds in two phases.
In the first phase, two nodes running IPsec (the initiator
and the responder) set up an ISAKMP security association,
which is used to protect further traffic between their key-
ing daemons. In the second phase, the daemons negoti-
ate and set up an IPsec security association, which protects
traffic between the ends of the SA. We embed our hand-
shake protocol into the Phase One key exchange. The stan-
dard defines two exchange modes for Phase One (Main and
Aggressive). We integrated our protocol into Main Mode,
which is the identity-protection mode of ISAKMP, in which
key exchange and authentication material are transmitted
separately.

Main Mode consists of three round-trips. In the first
round, the initiator and the responder agree on several
security parameters, including encryption and hash algo-
rithms and parameters of the key exchange algorithm to
be used. These parameters are contained in a Proposal
payload, which contains one or more Transform payloads.
The Proposal payload indicates that a handshake-based key
agreement is to be run. We place a description of the pub-

lic parameters used by our protocol in a Transform payload.
Specifically, we include a group identifier field, which refers
to the particular set of public parameters used by the keying
daemons running the handshake. Since these messages are
sent in the clear, we assume a sufficient number of groups
exists such that an eavesdropper cannot connect the parties
participating in the handshake to a group just from the fact
that the messages are sent.

In the second round, the keying daemons perform a key
exchange. We embed the credentials sent in our dynamic
matching protocol in a Key Exchange payload. Upon re-
ceiving a Round 2 message, a daemon generates shared
keying material by performing the pairing computations de-
tailed in our protocol. It then derives encryption and authen-
tication keys from the shared keying material in the same
way as defined by IKE.

When a Diffie-Hellman key exchange is used (as de-
scribed in the standard), the third round of Main Mode is
used to authenticate the exchange. Messages sent in the
third round are encrypted using the shared encryption key
established after the second round, and they contain Identifi-
cation and Authentication payloads. We note, however, that
this notion of authentication is at odds with the guarantees
of the secret handshake paradigm: having each party sign
with its secret group credentials would violate the privacy-
preserving property. One impact of this is that we cannot,
in general, provide integrity against an active attacker who
tries to subvert the protocol by flipping bits or introducing
noise into the channel. In this case, the handshake will
fail, but the attacker cannot be detected, since this is in-
distinguishable from the case where one of the parties did
not meet the other’s requirements. While not implemented,
one way to overcome this problem would be if each party
had a set of public, non-secret credentials in addition to its
secret credentials, which is likely in environments where
handshakes are run between parties with “double identi-
ties.” Each party could sign using her non-secret creden-
tials in the last round of the exchange to achieve integrity.
Our current implementation uses the third round only to ex-
change encrypted Identification payloads, containing the IP
addresses of each party.

After Main Mode completes, the two nodes run Phase
Two, or Quick Mode, to negotiate an IPsec SA, detailing the
services to be run on the protected channel (e.g., encryption
and/or authentication, tunnel mode, etc.). Our prototype
implementation makes no modification to Quick Mode, as
the keying material generated in Main Mode can be used to
quickly set up IPsec security associations.

8.1.2 Integration environment and results

We integrated our dynamic matching protocol into the
openswan-2.4.5 implementation of IPsec. We configured
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openswan on two Centaur VIA Nehemiah, 1000 Mhz ma-
chines with 256MB memory running Fedora Linux Core 4,
kernel 2.6.11. Key management is handled by a userland
daemon called pluto, which we extended.

We implemented our dynamic matching protocol as a
suite of three C++ programs, one for each portion of the
handshake protocol. The Handshake program runs as a
cryptographic server, with pluto as its client. The two pro-
cesses interact by passing messages to each other.

We use the Miracl [37] cryptographic library for per-
forming big number operations. Miracl provides efficient
tools for generating elliptic curve parameters and for the
pairing operations required by our protocol.

The dynamic matching handshake protocol is run using
DDH-hard subgroups of an MNT elliptic curve with pair-
ings. For simplicity, we used a pre-generated curve pro-
vided with the Miracl library. The curve has an embedding
degree of k = 6 and the subgroup G1 has prime order p,
where p is 157 bits long. We use an identity size of 64 bits,
with 32 bits each for the group identifier and role.

To evaluate the performance our handshake protocol, we
compared its latency with that of the original openswan im-
plementation, which by default uses the Oakley authenti-
cated Diffie-Hellman protocol [34], with 1536-bit RSA sig-
natures for authentication. We measured the time for the
initiating daemon to complete both phases (i.e., the time
to build an IPsec SA). The average time for our dynamic
matching protocol, measured across several runs with var-
ious seeds, was 0.78 seconds, and the average time for the
Oakley protocol was 0.5 seconds. Thus, while more expen-
sive than a Diffie-Hellman exchange, we believe our pro-
tocol is efficient enough to be useful in practice. The effi-
ciency of our protocol stems from the fact that it uses only
three pairing operations per party and only requires opera-
tions in G1, which are considerably cheaper than operations
in G2.

8.2 Fuzzy handshake performance

We also implemented the fuzzy handshake scheme of
Section 6. We focus on the performance of Steps 2–5 of
the protocol; namely, we assume that Alice and Bob have
already executed Step 1 (set intersection and circuit evalu-
ation) to jointly learn if the handshake has a chance of suc-
ceeding. The overhead of Step 1 due to set intersection pro-
tocols is the same as what we report for Step 2, and the the
performance of secure two-party circuit evaluation, accord-
ing to existing results [31], is reasonably fast and practical
for small circuits.

In Step 2 of the fuzzy handshaking protocol, Alice and
Bob run a secure set intersection protocol to determine the
overlapping attributes in their respective sets. We chose to
implement the set intersection protocol of [2] for use in

Step 2 due to its simplicity. We note that the protocol is
secure only in the random oracle model. One could use a
different set intersection protocol, such as the one in [17],
for security in the standard model.

The set intersection protocol of [2] uses as a building
block a commutative encryption function. Our implemen-
tation uses the power function as the encryption function,
i.e., fe(x) ≡ xe mod p, where p is a safe prime and Dom
F is the set of all quadratic residues modulo p. We use re-
peated hashing to map attributes into Qp.

8.2.1 Evaluation environment and parameters

Our experiments were performed on a 2.8GHz Pentium 4
machine with HT technology and 1GB of RAM, running
Fedora Linux Core 4, kernel 2.6.13.

As before, we use the Miracl [37] cryptographic library
for performing big number operations, with the same pre-
generated curve as the one described in Section 8.1.2. The
set intersection protocol run in Step 2 uses the power func-
tion modulo a random 512-bit safe prime for commutative
encryption.

Each user is associated with a file containing the list of n
attributes making up her identity, in addition to a file that de-
scribes those attributes the user wants the other party to have
when engaging in the handshake protocol. Attributes are
chosen from the universe of elements, U , consisting of those
contiguous elements from Z∗

p, beginning with 1, for which
a parameter is generated in the Setup phase. The overlap
parameter, d, specifies the minimum set overlap needed for
a successful handshake. We vary these parameters in the ex-
periments below to assess their impact on the performance
of the protocol.

8.2.2 Results

Setup: The Setup phase generates the parameters needed
in the remaining stages. We assume a suitable elliptic curve
has already been chosen and measure the latency for com-
puting the remaining parameters. Note that the Miracl li-
brary can be used to generate fresh pairing-friendly MNT
curves in several seconds if so desired.

We measured the total latency of the Setup phase as we
scale up the universe size from 10 to 1000 attributes. The
Setup phase takes 0.89 seconds to generate parameters with
a universe size of 10, 7.46 seconds with a universe size of
100, and roughly 73 seconds with a universe size of 1000
attributes. As expected, we observe that the latency scale
linearly in the universe size, with a cost of roughly 75 mil-
liseconds per additional attribute.

AddMember: The AddMember phase of the protocol takes
as input the group’s master secret and the user’s identity and
generates credentials that the user employs in subsequent
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handshakes. The user receives two credential elements in
G2 per attribute in her identity. Generation of the first ele-
ment, di, involves one exponentiation in G2, while gener-
ation of the second element, Di, requires evaluation of the
public function T2.

To measure the cost of the AddMember phase, we gener-
ated random identities consisting of between 10 and 50 at-
tributes, chosen from a universe size of 100. The top line in
Figure 1 shows the total time needed to generate the user’s
credentials for each identity size. We can see a linear in-
crease in the identity size, from roughly 5 seconds at 10
attributes to just below 25 seconds at 50 attributes.

To achieve better performance at the cost of additional
storage space, the group authority can precompute the result
of T2. As seen in Figure 1, the precomputation significantly
decreases the amount of time required, from 2.9 seconds at
10 attributes to 12.8 seconds at 50 attributes.

Handshake: In Step 2 of the fuzzy handshake protocol, two
users compute a secure set intersection on their appropriate
vectors. Figure 1 shows that the intersection protocol adds
only a small amount of latency in relation to the overall cost
of the handshake, ranging from 0.1 seconds at 10 attributes
to 0.5 seconds at 50 attributes. This cost is mostly due to
the application of the encryption function to both sets of
vectors.

After computing the set intersection, the users engage
in the handshake, which uses 2d + 1 pairings per user to
generate the two keys. Each user also evaluates T1 on n
attributes as part of the exchange.

We first investigated the impact of increasing the num-
ber of attributes in the users’ credentials on the handshake
latency. The universe size and overlap variables were kept
constant at 100 and 10 attributes, respectively. We gener-
ated random pairs of overlapping identities for each iden-
tity size. Figure 1 shows a linear increase in latency as the
number of attributes increases, from 2.25 seconds when 10
attributes are used, to 5.29 seconds when 50 attributes are

used. This increase is attributed to the cost of additional
evaluations of T1.

For some applications, a user may be likely to use the
same vector of desired attributes (e.g., u′

B for Alice) across
multiple handshakes. To optimize performance, the T1 eval-
uations can be precomputed. The effect of this precompu-
tation is shown in Figure 1. Since the overlap parameter
remains constant, the slight increase in latency reflects one
additional exponentiation in G1 per attribute, which costs
about 1.6 milliseconds.

Finally, we investigated the impact of increasing the
overlap variable, d, which results in more pairing compu-
tations and multiplications to compute the key. For this ex-
periment, we maintained a constant universe size of 100 at-
tributes, with 50 attributes in each user’s credentials. Figure
2 shows the effects of increasing d from 5 to 50 attributes.
The difference in latency, from 4.34 seconds with d = 5 to
9.36 seconds with d = 50, represents the overhead of the
extra pairings and multiplications.

Remarks: Our measurements show that the fuzzy hand-
shake protocol has the ability to perform reasonably well
in practice. The Setup phase scales linearly in the universe
size, while AddMember scales linearly in the user’s identity
size. A significant reduction in the latency of AddMember
can be achieved via precomputation. As the price of storage
continues to decrease, it is reasonable to assume that a group
administrator will be willing to trade off the additional stor-
age cost for the performance benefits of precomputation.
Similarly, precomputation can reduce the cost of the hand-
shake when a member reuses its vector of desired attributes.
This benefit becomes more pronounced as the identity size
increases, although memory-scarce devices may prefer to
pay a higher cost in latency for reduced storage overhead.
While the pairing computation remains computationally ex-
pensive, the protocol scales well in both the attribute set size
and the overlap size.
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8.3 Performance of Fuzzy IBE

Because Attribute-Based Encryption (ABE), and fuzzy
IBE as a specific instance of ABE, was introduced only re-
cently, in this section we would like to comment on the per-
formance of our solution, which was designed to achieve
privacy, as compared to the original scheme. The only im-
plementation of fuzzy IBE that we are aware of appeared
very recently [35] and provides (among other performance
results) performance evaluation of KeyGen, Encrypt, and
Decrypt algorithms using MNT curves. The goal of this
section is then to compare the performance of KeyGen

(which corresponds to AddMember in SHS), Encrypt, and
Decrypt operations in our implementation of fuzzy IBE us-
ing asymmetric groups and the corresponding computations
in our modified scheme.

Before presenting the data we collected, we describe
how the experiments were conducted.

Fuzzy IBE Scheme using Asymmetric Groups: The best
implementation choice of the fuzzy IBE scheme (described
in Section A.2) using asymmetric groups G1 and G2 is to
set g, g1 ∈ G2 and g2 ∈ G1. This gives us that the com-
putation of the function T (·) will always be in G1, opera-
tions in which are significantly more efficient than in G2.
In this case, a private key for identity w consists of values
{Di}i∈w ∈ G1 and {di}i∈w ∈ G2.

As suggested in [35], decryption optimization is possible
by decrypting the message using the order of operations as
in

M =
E′
∏

i∈S e
(

E
Li,S(0)
i , di

)

e
(

∏

i∈S D
Li,S(0)
i , E′′

)

instead of

M = E′
∏

i∈S

(

e(Ei, di)

e(Di, E′′)

)Li,S(0)

Our results indicate that in this scheme the above order of
computation results in a significant improvement of the de-
cryption time. We also add a slight optimization to the en-
cryption operation by computing the first term of the en-
cryption tuple E′ as e(gs

2, g1) instead of e(g2, g1)
s.

Finally, we measure the performance of KeyGen and op-
timized Encrypt algorithms assuming that the evaluations
of function T have been precomputed.

Our SHS-based Scheme: Recall that for privacy reasons
the values composing an encryption of a message have to
be in the same group (in our case, they are in G1). Then
all parts of the private keys {Di}i∈w and {di}i∈w are in
G2. Also, computation of the function T (·) in both G1 and
G2 is needed. Fortunately, computing T in G2 is needed
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Figure 3. Comparison of Fuzzy IBE KeyGen and
our AddMember Performance

only during the issuance of secret keys, which is performed
once per user by the (powerful) server, but not during en-
cryption/decryption operations. The need to evaluate T in
G2 means that our AddMember algorithm is unavoidably
slower than KeyGen in the original scheme.

Unfortunately, the decryption optimization described
above does not result in faster performance in our SHS-
based scheme. In our case, this optimization amounts to
computing:

M =
E′
∏

i∈S e
(

E
Li,S(0)
i , di

)

e
(

E′′,
∏

i∈S D
Li,S(0)
i

) .

As can be seen from the equation, this order of operations
requires us to execute additional operations in G2 (as op-
posed to G1 in fuzzy IBE), where operations are expensive,
mitigating the benefits of the reduced number of pairing
computations. The other kind of optimization (though very
minor) is still possible by computing e(gx

α, h).
Similar to the previous case, we measure the perfor-

mance of the regular, optimized, and optimized with pre-
computation implementations.

The execution environment and implementation param-
eters we used here were the same as those described in
Section 8.2. Figure 3 compares performance of fuzzy IBE
KeyGen and our AddMember algorithms for different iden-
tity sizes. Figure 4 provides a comparison of the encryption
operation in fuzzy IBE and the corresponding computation
in our scheme. Note that the optimization of the encryp-
tion operation results in negligible advantage, and for clar-
ity of the figure we do not plot such results. Figure 5 shows
the results of our experiments for the decryption operation.
As was mentioned above, the optimization technique pro-
posed in [35] does not offer computational advantage for
our scheme, and thus such results are not included in the
figure. Also, since precomputation cannot be done for de-
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cryption operations, such data is not available in this case.
Similar to the experiments of Section 8.2, we varied the
identity size in Figures 3, 4, and 5 from 10 to 50 attributes
with the universe size of 100 and the overlap size of 10 at-
tributes.

Finally, since performance of the decryption operation is
determined by the threshold d (minimum overlap size re-
quired) rather than the number of attributes in the identity,
Figure 6 illustrates the performance of this operation as a
function of the overlap size. We varied the overlap size
from 5 to 50 attributes, with the universe size of 100 and
the identity size of 50 attributes.

We can see from Figure 4 that our encryption compu-
tation achieves very similar (and even slightly faster) per-
formance to the fuzzy IBE scheme, both with and without
precomputation. Figure 5 shows that our decryption com-
putation has the same cost as the unoptimized fuzzy IBE
scheme, but that the optimization for fuzzy IBE results in
a significant speedup. While the SHS-based key generation
and decryption computations result in slower performance,
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Figure 6. Comparison of Decryption Computa-
tions, Overlap Scalability

our scheme achieves key privacy, which is not available in
the original fuzzy IBE scheme. Thus, the difference in the
performance can be viewed as the cost of privacy in this
setting.

9 Conclusions

This works extends the original definition of secret hand-
shakes where two users engage in a mutual authentication
protocol and jointly agree on a key for further communica-
tion only if both of them are members of the same group.
In this work, we allow each participant to specify the role
and group of the other party and thus add flexibility to the
authentication rules. We call such authentication rules dy-
namic matching. Furthermore, we extend secret handshakes
to support arbitrary attributes and define approximate or
fuzzy matching authentication rules. Additionally, our re-
sult is the first fully unlinkable and efficient secret hand-
shake scheme secure in the standard model.

We provide an implementation showing the feasibility
of our approach. Our implementation of secret handshakes
with dynamic matching was integrated into IPsec by ex-
tending its key exchange capability, and our implementa-
tion of secret handshakes with fuzzy matching showed that
their performance is efficient enough to be used in practice.
Additionally, we provide performance of the original fuzzy
IBE scheme and compare it to the performance of our mod-
ified approach which achieves user privacy.
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A Background

A.1 Identity-Based Encryption

The IBE scheme described in this section is due to Wa-
ters [43]. Let (p, G, GT , g, e) ← Set(1κ). As in any other
IBE scheme, identities serve the role of public keys and are
represented as bitstrings of length n (they can also be rep-
resented as bitsrings of arbitrary length and n be the output
length of a collision-resistant hash function). The encryp-
tion scheme then consists of the following algorithms:

Setup. Choose α
R
← Zp, and g2

R
← G, where g2 generates

G; set g1 = gα. Also choose u′ R
← G and an n-length

vector U = (ui), whose elements are chosen at random

from G. The public parameters are g, g1, g2, u′, and U .
The master secret is gα

2 .

KeyGen. Let v be an n-bit identity and vi denote its ith bit.
Also let V ⊆ {1, . . ., n} be the set of all indices i for which
bit vi = 1. A private key for identity v is generated by first
randomly choosing r

R
← Zp and then setting the private key

to dv = (d1, d2) = (gα
2 (u′

∏

i∈V ui)
r, gr).

Encrypt. A message M ∈ GT is encrypted for identity v by
first choosing t

R
← Zp and then constructing the ciphertext

as C = (C1, C2, C3) = (e(g1, g2)
tM, gt, (u′

∏

i∈V ui)
t).

Decrypt. Given a valid ciphertext C = (C1, C2, C3) that
corresponds to the encryption of M under the identity v,
decrypt C using key dv = (d1, d2) as:

C1
e(d2, C3)

e(d1, C2)
= (e(g1, g2)

tM)
e(gr, (u′

∏

i∈V ui)
t)

e(gα
2 (u′

∏

i∈V ui)r , gt)

=
(e(g1, g2)

tM)e(g, (u′
∏

i∈V ui)
rt)

e(g1, g2)te((u′
∏

i∈V ui)rt, g)

= M.

A.2 Fuzzy Identity-Based Encryption

Fuzzy IBE [36] is a new type of identity-based encryp-
tion, where identities are viewed as a set of descriptive at-
tributes. A user with the secret key for the identity w is able
to decrypt a ciphertext encrypted with the public key w′ iff
w and w′ are within a certain distance of each other. We
briefly review the construction of [36] next.

Let identities be represented as sets of attributes, and let
d represent the minimal number of them that must overlap
in order for decryption to succeed (i.e., d represents the er-
ror tolerance). Then the authority can create a private key
for a user by associating a random (d − 1)-degree polyno-
mial q(x) with her identity. Let (p, G, GT , g, e)← Set(1κ)
and the identities be of length n for some fixed n. The La-
grange coefficient Li,S for i ∈ Zp and a set S of elements
in Zp is defined as Li,S(x) =

∏

j∈S,j 6=i
x−j
i−j

. Identities will
be sets of n elements of Z∗

p.

Setup. Given n and d, choose g1 = gy , g2 ∈ G, and
t1, . . ., tn+1

R
← G. Let N = {1, . . ., n+1} and let the func-

tion T (x) = gxn

2

∏n+1
i=1 t

Li,N (x)
i (T can be viewed as the

function gxn

2 gh(x) for some n-degree polynomial h). The
published public key is g1, g2, t1, . . ., tn+1, and the private
key is y.

KeyGen. To generate a private key for identity w, a (d−1)-
degree random polynomial q is chosen such that q(0) = y.
The private key then consists of a set {Di}i∈w, where Di =
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g
q(i)
2 T (i)ri and ri is a random element of Zp defined for all

i ∈ w, and another set {di}i∈w, where di = gri .

Encrypt. To encrypt a message M ∈ GT with the pub-
lic key w′, first choose s

R
← Zp and then construct the ci-

phertext as E = (w′, E′ = Me(g1, g2)
s, E′′ = gs, {Ei =

T (i)s}i∈w′).

Decrypt. Suppose, given a ciphertext E encrypted with a
key for identity w′, we would like to decrypt it using a key
for identity w such that |w ∩ w′| ≥ d. To do so, choose an
arbitrary d-element subset S of w ∩ w′ and compute:

M = E′
∏

i∈S

(

e(di, Ei)

e(Di, E′′)

)Li,S(0)

= Me(g1, g2)
s
∏

i∈S

(

e(gri, T (i)s)

e(g
q(i)
2 T (i)ri, gs)

)Li,S(0)

= Me(g1, g2)
s
∏

i∈S

(

e(gri, T (i)s)

e(g
q(i)
2 , gs)e(T (i)ri, gs)

)Li,S(0)

= Me(g, g2)
ys
∏

i∈S

1

e(g, g2)q(i)sLi,S(0)
= M.

B Security Definitions and Proofs

In this section we first formally define the properties of
impersonation resistance, detection resistance, and unlinka-
bility; and then provide security proofs of both of our con-
structions with respect to these security properties.

B.1 Security definitions

Consider the following member impersonation game for
a (polynomial-time) adversary A: A interacts with users
of her choice and obtains secrets for some of them; let UA
denote the users that A controls. Then A selects a target
group Gt a member of which she wants to impersonate,
a target role Rt under which she wants to impersonate a
user, and a target user Ut such that Ut 6∈ UA with whom
she would like to communicate. In other words, the adver-
sary will interact with Ut trying to impersonate a member
of group Gt with role Rt. We also require that A did not
corrupt the GA. A engages in a handshake interaction with
Ut and wins the game if Ut cannot distinguish betweenA’s
messages and the real execution of the handshake protocol
and at the end of the interaction A can compute the same
key that Ut obtains. Following the member impersonation
games employed in prior literature, we assume that, at the
end of the game,A outputs the key she computed.

Let Adv
imp
A denote the probability that adversaryA wins

the member impersonation game. Also, let UGt,Rt
denote

the set of users who are members of group Gt under role Rt.
Then the security property of a secret handshake scheme
regarding member impersonation can be stated as follows:

Definition 4 (Impersonator resistance) We say that the
secret handshake scheme SHS is impersonator resistant if
an adversary A who never corrupts any member of the tar-
get group Gt with role Rt and never corrupts the GA has at
most negligible probability in winning the member imper-
sonation game for Gt and Rt. That is, if UA ∩ UGt,Rt

= ∅,
then Adv

imp
A is negligible for all A.

Note that this bound must hold even if A corrupts members
of Gt or users with roles Rt, as long as a corrupted member
does not have group Gt and role Rt simultaneously.

For an adversary A we also define a member detection
game. Intuitively, A cannot detect members of a certain
group if her interaction with a group member during a hand-
shake yields no new information to the adversary. More
formally, A should not be able to distinguish between in-
teraction with a group member (having a specific role) and
a random simulator. Thus, the member detection game is
defined as follows: A interacts with users of her choice and
obtains secrets for some users UA. Then A selects a tar-
get user Ut 6∈ UA. A random bit b ← {0, 1} is flipped. If
b = 0, A interacts with Ut. If b = 1, A interacts with a
random simulator. Finally, A outputs a guess b′ for b and
wins if b = b′. The member detection advantage Advdet

A of
A is defined as the probability of A winning the member
detection game minus 1/2. Then the corresponding security
definition is:

Definition 5 (Detector resistance) Let Gt be the group to
which Ut belongs and Rt be the role that she has in Gt. We
say that a scheme SHS is detector resistant if an adversary
A who did not corrupt any member of Gt with role Rt and
did not corrupt the GA has at most negligible member de-
tection advantage. That is, if UA∩UGt,Rt

= ∅, then Advdet
A

is negligible for all A.

The last security property that we need to define here is un-
linkability of two executions of the secret handshake pro-
tocol. Intuitively, in a scheme that support unlinkability an
adversary who participates in one handshake protocol and
then engages in another should not be able to tell whether
she is communicating with the same or a different user.
Since we do not want the adversary to make this distinction
based on the outcome of the protocol (i.e., if the handshake
succeeds in the first execution and fails in the second, she
knows that they correspond to members of different groups
and the users must be distinct), we will assume that if a dif-
ferent user is chosen for the second, challenge, handshake
protocol, the protocol will result in the same outcome as the
first execution.
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As before, we consider a polynomial-time adversary A
who this time participates in a linking game: A interacts
with users of her choice and obtains secrets for some users
UA. Then A selects a target user Ut 6∈ UA such that A
did not corrupt the GA of Ut’s group, and engages in a
handshake protocols with Ut. A random bit b ← {0, 1}
is flipped. If b = 0, A engages in a handshake protocol
with the same member. If b = 1, A engages in a hand-
shake protocol with a different member whom she did not
corrupt. Finally, A outputs her guess b′ for b and wins if
b = b′. The linking advantage of A, denoted by Advlink

A , is
the probability that A wins the linking game minus 1/2.

Definition 6 (Unlinkability) We say that a scheme SHS is
unlinkable if an adversary A who did not corrupt the mem-
bers with whom it interacts and the GA, has at most negli-
gible linking advantage.

In secret handshakes with attribute-based matching, the
above member impersonation and member detection games
and the corresponding definitions must be modified to take
into account user attributes. Thus, in the member imperson-
ation game for secret handshakes with fuzzy matching, A
selects the target user Ut and the attributes u, an owner of
whichA would like to impersonate. We require that Ut has
at most d attributes in common with u and the users cor-
rupted by A do not have d or more attributes in common
in u. Similar modifications apply to the member detection
game.

As mentioned earlier, the member impersonation prop-
erty of our secret handshakes with fuzzy matching holds in
the Fuzzy Selective-ID model [36], which we describe next.

Fuzzy Selective-ID: The adversary A declares the chal-
lenge identity u. The challenger runs the setup algorithm,
providesA with public parameters, and creates users. Next,
A is allowed to corrupt users with identities wj by request-
ing their private keys from the challenger, as long as the
number of attributes that u and wj have in common is less
than d, i.e., |u∩wj | < d. Finally,A engages in a handshake
protocol with the challenger impersonating the identity u.
At the end of the protocolA outputs the key and wins if she
was able to correctly compute it.

B.2 Security of the secret handshake scheme with
dynamic matching

Before we proceed with showing the properties required
of the handshake scheme, we show that the scheme pro-
vides privacy of identities. This result will be used to
show other security properties of the scheme. In more de-
tail, the privacy property requires that given two messages
(gx, (rep1(v1))

x) and (gy, (rep1(v2))
y) for identities v1 and

v2, respectively (which correspond to the data exchanged

in the secret handshake protocol), it is not possible to tell
whether v1 = v2.

Lemma 1 Under the SXDH assumption, the secret hand-
shake scheme with dynamic matching provides privacy of
identities.

Proof Let A be an adversary who can violate the privacy
property of the scheme with a certain probability. We then
construct an adversary A′ who uses A as a black box to
solve an instance of the decisional Diffie-Hellman prob-
lem. A′ receives values g, g1, g2, g3 ∈ G1 and must de-
termine whether there is an integer a such that g1 = ga

and g3 = ga
2 . A′ first sets up the environment for A by

choosing h ∈ G2 and initializing the rest of the parame-
ters as in the secret handshake scheme to obtain params =
(p, G1, G2, GT , e, g, h, gα, G′, G1, . . ., Gn). A′ adds users
as usual, and A is allowed to communicate with them and
corrupt some users who are denoted by UA.

Then A receives two messages of the form
(gx, (rep1(v))x) and is asked to decide whether they
correspond to the same identity or not. A′ constructs
these messages as follows: she chooses x, y, s, t

R
← Zp,

then forms the first message as (gsx, gtx
1 ) and the second

message as (gsy
2 , gty

3 ). If A replies indicating that they
correspond to the same identity,A′ answers to its challenge
saying that such an integer a exists; and if A says the
messages correspond to different strings, A′ replies saying
that no such integer a exists.

It is clear that if A wins with a non-negligible probabil-
ity, so doesA′, leading to a contradiction to our assumption
of G1 being DDH-hard. Therefore, the scheme must pro-
vide privacy of identities. �

Note that if it is difficult to decide whether such messages
correspond to the same identity or not, it implies the diffi-
culty of determining whether they (or one of them) corre-
spond to a specific identity.

Lemma 2 Under the BDH and SXDH assumptions, the se-
cret handshake scheme with dynamic matching provides im-
personator resistance.

Proof Sketch Let A be an adversary who attacks imper-
sonation resistance of the secret handshake scheme and can
impersonate a member with a certain probability. Then
we construct A′ who uses A to solve an instance of the
BDH problem. A′ is given g1, g

a
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, where
g1 ∈ G1 and g2 ∈ G2 and the challenge is to compute
e(g1, g2)

abc.
The proof strategy we employ is similar to that used in

the security proof of Waters IBE scheme [43], which we
adapt to the case of asymmetric groups. Therefore, we do
not provide the full details of it here.
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The simulator A′ sets an integer m = 4q, where q is the
upper bound on the number of private key queries that an
adversary can make, and chooses k

R
← {0, n}. She then

chooses a random vector X = {xi}ni=1, where each xi
R
←

{0, m − 1}, and also x′ R
← {0, m − 1}. Additionally, A′

chooses a random vector Y = {yi}ni=1, where each yi
R
←

Zp, and y′ R
← Zp.

Recall that, for an identity v, V ⊆ {1, . . . , n} is the set
of indices i for which the ith bit of v equals to 1. Following
Boneh-Boyen [8] and Waters [43], we define the functions
F (v) = (p−mk) + x′ +

∑

i∈V xi, J(v) = y′ +
∑

i∈V yi,
and K(v) as:

K(v) =

{

0, if x′ +
∑

i∈V ≡ 0 (mod m)
1, otherwise

The simulator sets g = g1, gα = ga
1 , g̃ = g2, h = gb

2,
G′ = (gb

1)
p−km+x′

gy′

1 , Gi = (gb
1)

xigyi

1 , and outputs public
parameters params = (p, G1, G2, GT , e, g, h, gα, G′,
G1, . . ., Gn). Notice that now rep1(v) = G′

∏

i∈V Gi =

g
bF (v)+J(v)
1 .

When A corrupts users by querying their private keys,
A′ can answer those queries as follows. Suppose that the
private key for identity v was requested. If K(v) = 0, A′

aborts and submits a random guess. Otherwise, A′ chooses
r

R
← Zp and computes:

d = (d1, d2)

=
(

(ga
2 )

−1
F (v) gr

2 , (ga
2 )

−J(v)
F (v)

(

(gb
2)

F (v)g
J(v)
2

)r)

.

Observe that d1 = gr̃
2 and d2 = gab

2

(

g
bF (v)+J(v)
2

)r̃

, where
r̃ = r − a

F (v) .
Once A declared the target user Ut (with credentials Gt

and Rt) whom she would like to impersonate, the sim-
ulator needs to send to A a message of the form (gx,
rep1(Gt||Rt)

x). Let v∗ denote the string Gt||Rt. A′ first
checks whether x′ +

∑

i∈V ∗ xi = km. If the equality
does not hold, the simulator aborts and submits a random
guess. Otherwise, F (v∗) ≡ 0 (mod p) (which means that
rep1(v

∗) = g
J(v∗)
1 ), and A′ sends (gc

1, (g
c
1)

J(v∗)) to A. Fi-
nally, A′ submits the key that A outputs as the answer to
her challenge. Note that if A is successful in computing the
key,A′ receives from it e(g1, g2)

abc.
A detailed analysis of the success probability of A′ can

be found in [43], and we omit it here. �

Proof of Theorem 1

Correctness: If the participants satisfy the rules of the hand-
shake protocol, they will successfully share a common key,
as was shown in Section 5.1.

Impersonator resistance: By Lemma 2.

Detector resistance: In the member detection game, the ad-
versaryA selects an (uncorrupted) user of her choice Ut and
engages in a handshake with that user. The goal of the ad-
versary is to distinguish between interaction with that user
and a random simulator. Since in this scheme during the
handshake Ut sends only (gx, (rep1(v))x), where v is the
expected identity of the other end, this message can be gen-
erated by anyone. Therefore, A cannot determine whether
it was sent by Ut or a simulator. And by Lemma 1A cannot
recover v from this message to make her decision based on
the string v.

Unlinkability: In the handshake protocol, the participants
do not send any information about their own credentials,
but instead they only send information about the credentials
they request from the other party. This trivially implies that
an adversary cannot tell apart requests by the same or dif-
ferent users.

However, since the credentials that users request from
others and their own credentials are highly correlated, we
require that it is not possible for the adversary to determine
whether she was asked to provide the same or different cre-
dentials in the linking game. Lemma 1 shows that any ad-
versary cannot do this with a non-negligible probability. �

B.3 Security of the secret handshake scheme with
fuzzy matching

Similar to the previous scheme, we first show that, given
messages destined for two recipients, it is not feasible to tell
whether they were constructed using the same or different
identities (i.e., sets of attributes).

Lemma 3 Under the SXDH assumption, the fuzzy secret
handshake scheme provides privacy of identities.

Proof The proof is similar to the proof of Lemma 1,
and the reduction proceeds in the same way. That is, as-
sume that adversary A attacks privacy of the scheme. We
construct A′ who is given an instance of the decisional
Diffie-Hellman problem g, g1, g2, g3 ∈ G1 and uses A
to make her decision. A′ uses g to set up a fuzzy se-
cret handshake scheme and publishes parameters params =
(p, G1, G2, GT , e, g, h, gα, n, d, G1, . . . , Gn+1). A′ adds
users and lets A to interact with them and corrupt some
of them. Then A receives two messages of the form
(gx, {T1(ui)

x}ni=1) and is asked to decide whether they cor-
respond to the same identity or not. To construct these mes-
sages, A′ first chooses x, y, s, t

R
← Zp and T2, . . ., Tn

R
←

G1. Next,A′ sets the first message to (gsx, gtx
1 , T x

2 , . . ., T x
n )

and the second message to (gsy
2 , gty

3 , T y
2 , . . ., T y

n ). IfA says
that they correspond to the same identity, A′ replies to her
challenge saying that there is an integer a such that g1 = ga
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and g3 = ga
2 ; if A says they correspond to different iden-

tities, A′ replies saying that such an integer does not ex-
ist. Thus, if A succeeds with a non-negligible probability,
so does A′, implying that this scheme provides privacy of
identities. �

Lemma 4 Under the BDH and SXDH assumptions, the
fuzzy secret handshake scheme provides impersonator re-
sistance in the Fuzzy Selective-ID model.

Proof Let A be an adversary who attacks impersonation
resistance of the fuzzy secret handshake scheme and can
impersonate a member in the Fuzzy Selective-ID model
with a certain probability. Then we construct A′ who uses
A to solve an instance of the BDH problem. A′ is given
g1, g

a
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, where g1 ∈ G1 and g2 ∈ G2 and
the challenge is to compute e(g1, g2)

abc.
The proof strategy we employ is similar to the one

used in the security proof of fuzzy IBE scheme [36] (see
also [7]), which we adapt to the case of asymmetric groups.

In the beginning of the game A′ receives from A the
challenge identity u∗, which consists of n elements of Zp.

The simulator A′ sets g = g1, gα = ga
1 , g̃ = g2, and

h = gb
2. A′ then chooses a random n-degree polynomial

f(x) and computes another n-degree polynomial u(x) such
that u(x) = −xn for each x ∈ u∗ and u(x) 6= −xn for
other x. A′ sets Gi = (gb

1)
u(i)g

f(i)
1 and Hi = (gb

2)
u(i)g

f(i)
2

for 1 ≤ i ≤ n + 1. Note that now T1(i) = (gb
1)

in+u(i)g
f(i)
1

and T2(i) = (gb
2)

in+u(i)g
f(i)
2 , and all of Gi’s and Hi’s

are chosen independently at random since f(x) is a ran-
dom polynomial. Finally, A′ outputs public parameters
params = (p, G1, G2, GT , e, g, h, gα, G1, . . ., Gn+1).
A now can request private keys of users whose identi-

ties overlap with the challenge identity u∗ by less than d
attributes. When A corrupts users by querying their private
keys, A′ can answer those queries as follows. Suppose that
the private key for identity w was requested. Let the set X
consist of the overlapping elements X = u∗∩w, the set X ′

be any set such that X ⊆ X ′ ⊆ w, where |X ′| = d−1, and
S = X ′ ∪ {0}.

For each i ∈ X ′, the decryption key components Di and
di are computed as Di = (gb

2)
siT2(i)

ri and di = gri

2 , where
ri, si

R
← Zp. For each i ∈ w\X ′, these values are computed

as:

Di = (
∏

j∈X′

(gb
2)

sjLj,S(i))×

×

(

(ga
2 )

−f(i)
in+u(i)

(

(gb
2)

in+u(i)g
f(i)
2

)r′

i

)L0,S(i)

and

di =
(

(ga
2 )

−1
in+u(i) g

r′

i

2

)L0,S(i)

.

In the above we have that q(i) = si, in addition to having
q(0) = a. Also, the value of in + u(i) will be non-zero for
all i 6∈ u∗ including all i ∈ w \X ′.

If we let ri =
(

r′i −
a

in+u(i)

)

L0,S(i), then we obtain

that Di = (gb
2)

q(i)T (i)ri and di = gri

2 (see [36] for more
details). This means that A′ is able to construct a private
key for identity w.

During the handshake protocol, A′ needs to send to A
a message of the form (gx, {T1(i)

x}i∈u∗). A′ forms it by
sending:

(

gc
1, {(g

c
1)

f(i)}i∈u∗

)

.

Since in + u(i) = 0 for each i ∈ u∗, (gc
1)

f(i) = T1(i)
c for

all i ∈ u∗. Finally, whenA′ receives the key thatA outputs,
she submits the key as the answer to her own challenge. IfA
was able to construct the key correctly, A′ receives exactly
e(g1, g2)

abc. �

Proof of Theorem 2

Correctness: Correctness of the protocol when the number
of overlapping attributes is d or more was shown in Sec-
tion 6.1.

Impersonator resistance: By Lemma 4.

Detector resistance: In this case we deal with an adversary
who corrupts users, selects a target user Ut, engages in the
handshake protocol with Ut and tries to learn whether Ut

possesses a specific attribute or not. When adversaryA en-
gages in the handshake protocol with Ut without having the
required d attributes in common, the protocol will fail in the
first step, which could trivially be performed by a simulator
andA would not be able to detect the difference.

But even beyond that point in the protocol, everything
sent during its execution does not reveal any information
about the attributes used. That is, Lemma 3 showed that it is
impossible to distinguish whether two different executions
of the protocol had different or the same credentials, which
implies the difficulty of discovering what attributes were re-
quested. Since the reduction in Lemma 3 used only a single
attribute of the identity u, this result could be obtained for
any given attribute of u, implying that no information about
each individual attribute (not only the overall u) can be dis-
covered.

Unlinkability: As in the secret handshake scheme with
roles, the values exchanged during the protocol correspond
not to the credentials of the sender but to the expected cre-
dentials of the receiver. However, because such values are
related to the credentials that the players possess, we require
that it is impossible to determine the attributes from the val-
ues exchanged and even tell whether they correspond to the
same attribute or not. This is exactly what was shown in
Lemma 3. �
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