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Abstract— The transmission energy required for a wireless
communication increases superlinearly with the communication
distance. In a mobile wireless network, nodal movement can be
exploited to greatly reduce the energy required by postponing
communication until the sender moves close to a target receiver,
subject to application deadline constraints. In this paper, we
characterize the fundamental performance limit, namely the
lower bound expected communication distance, achievable by
any postponement algorithm within given deadline constraints.
We consider a realistic map based stochastic movement model, of
which the well known random waypoint model is a special case.
For the random waypoint model, we develop a tight analytical
lower bound of the achievable expected communication distance.
In addition, we present a close analytical approximation ofthe
lower bound that has a low computational complexity. For the
general map based model, we characterize the lower bound
distance experimentally. We also address the practical attain-
ment of distance reduction (and hence, energy savings) through
movement predicted communication. Specifically, whereas prior
work has presented a least distance (LD) postponement algorithm
and established its effectiveness experimentally, we provide an
absolute performance measure of how closely LD can match
the theoretical optimum. We show that LD achieves an average
reduction in the expected communication distance within 62%
to 94% of the optimal, over a realistic range of nodal speeds,for
both the map based and random waypoint models. Moreover, the
algorithm’s absolute performance increases as the nodal speed
or the allowable postponement delay increases.

I. Introduction

To achieve energy efficient wireless communication, move-
ment prediction [1] has been proposed to reduce the com-
munication distance and hence communication energy for
delay-tolerant applications. The basic idea is for a mobile
sender to postpone communication, subject to given applica-
tion deadlines, until a time when the sender is likely to move
close to the receiver, or the communication target. Since in
practice, the energy requirement of sending is proportional to
the third or higher powers of the communication distance, the
reduction in sending energy can be significant. In [1], several
postponement algorithmsare proposed to determine the best
time of communication within application deadline constraints.

This paper is concerned with both the fundamental and prac-
tical performance of such energy-efficient movement-predicted
communication. We consider a general and realisticmap-based
network model. In the model, a given geographical area is
divided into a grid of fixed size cells. Nodal movement in
the area can be regulated by givenaccessibility constraints
modeling, for example, a map of freeways, roads, and streets

(with possible speed limits) for terrestrial movement. Nodes
move within accessible areas of the network in a succession
of trips, each of which is defined by a starting and ending
location. The exact route taken for each trip can then be
specified by a givenroute selectionalgorithm. The route
selection algorithm might similarly reflect how real people
plan their road trips. For example, Internet tools like MapQuest
and Yahoo Maps can return routes based on shortest travel
time, most direct paths (say, major roads preferred with least
number of road changes), etc. A model instantiation with null
accessibility constraint and the selection of straight line paths
in every trip would be similar to the well known random
waypoint model [6], except that our grid based formulation
will lead to a finite set of possible trip locations, whereas the
original random waypoint model will have an infinite number
of the possible locations.

For the random waypoint model, we derive tight lower
bound expected communication distances achievable byany
postponement algorithm, as a function of the average nodal
speed and the allowable postponement delay. We also show
how approximations of the lower bounds can be obtained by
ignoring certain correlations in the sequence of cells visited
within a trip. The approximation has a low computational
complexity, but is remarkably close to the accurate bound in
practice.

The lower bound results will allow us to fundamentally
evaluate the performance of practical postponement algo-
rithms. For example, several postponement algorithms are
proposed and evaluated in [1]. Simulation and implementation
experiments, for an enhanced version of the random waypoint
model [9], show that aleast-distance(LD) algorithm has
the best practical performance despite its simplicity. Hence,
whereas the prior work in [1] demonstrates the advantages
of LD relative to competing algorithms, we for the first time
provide anabsoluteperformance measure of how closely LD
can match the theoretical optimum. Our results show that LD
achieves an average reduction in the expected communication
distance within 62% to 94% of the optimal. Moreover, the
algorithm’s absolute performance increases as the nodal speed
or the allowable delay increases.

Besides the analytical results, we present experiments to
characterize the performance of movement prediction in a
realistic instantiation of the map-based model to road travel
in Lafayette, Indiana, USA. We also systematically evaluate
how important system parameters such as the network grid



size can affect algorithm performance.

A. Our contributions

The main contributions of this paper are as follows:

• We have developed a general map-based network and
movement model to capture realistic nodal movement,
while admitting the widely used random waypoint model
as a special case. We have applied the map-based model
to evaluate the performance of movement prediction in
the Lafayette, Indiana area.

• We contribute to the understanding of fundamental per-
formance limits in movement-predicted wireless commu-
nication. We have derived tight lower bound expected
communication distances achievable byany postpone-
ment algorithm, as a function of the average nodal speed
and the allowable postponement delay. Lower commu-
nication distances readily translate into higher energy
savings for single hop wireless communication.

• We report extensive experimental results to verify and
illustrate the analytical results. In particular, we quantify
how closely the LD postponement algorithm in [1] can
match the lower bound expected distances under differ-
ent deployment scenarios. In addition, our experimental
results systematically evaluate how important system
parameters such as the network grid size can effect
algorithm performance.

B. Paper organization

The balance of the paper is organized as follows. A general
and realistic system model is given in Section II. Then we
derive theoretical lower bounds of the expected communica-
tion distance in motion-predicted wireless communicationin
Section III. We review the basics of movement prediction and
the LD algorithm in Section IV. Diverse experimental results
verifying our theoretical analysis are presented in Section V.
In Section V, we also quantify the ability of the LD algorithm
in matching the upper bound distance savings, at various
average nodal speeds. An approximation of the theoretical
lower bounds of the expected communication distance is given
in Section VI that has a low computational complexity. Related
work is discussed in Section VII. Section VIII concludes.

II. Movement Model

In this section, we propose a general stochastic movement
model that is based on the actual road maps to capture realistic
nodal movements. Mathematically, the model is a quadruple
〈N ,M, T ,R〉 whereN denotes the network configuration,
M denotes the accessibility constraints similar to a map,
T denotes the trip-based movement model, andR denotes
the route selection algorithm. Details about each tuple of the
model are given as follows.

Network configuration: In our model, a network is a two-
dimensionalX by Y rectangular area associated with a map
of that area, whereX andY (in distance units) are the width
and the height of the network, respectively. The whole network

is divided into fixed sizes by s square regions. Each square
region is called acell. Cells form a virtual grid over the
network area, and each cell has a unique integer cell ID. To
simplify boundary conditions, we assume that bothX andY
are integer multiples ofs. Thus the whole network hasm×n
cells, wherem = X/s andn = Y/s.

Accessibility constraints: The network is associated with a
mapdefining the accessible areas of the network. In the map,
a set of pathways(e.g., freeways, roads, and streets) may
exist. These pathways constrain the routes between different
locations in the network. Speed limits may be specified for
each pathway.

Trip-based movement model: In our model, nodes move
within the accessible areas of the network in a succession of
trips, each of which is defined by a starting and an ending
locations (i.e., the ending location of a trip forms the starting
location of the next trip). The starting location of the firsttrip
is chosen randomly from the whole area of the network under
a uniform distribution. The ending location of a new trip is
chosen upon reaching the ending location of the current trip,
which is again chosen uniformly randomly from the whole
area.

Once the end points of a trip are decided, they will be passed
to a route selection algorithm (to be discussed below), which
returns a sequence of pathways directing the mobile node from
the starting location to the ending location. The actual speeds
for the node to travel along each pathway are then chosen
randomly between a minimum speedVmin and a maximum
speedVmax (given as the speed limits of the pathway) under
a uniform distribution.

Route selection algorithm: Given the starting and ending
locations of a trip, the route selection algorithm generates a
route between them that satisfies the accessibility constraints.
Several map software and services (e.g., Google Maps, Mi-
crosoft MapPoint, Yahoo Maps, etc.) are available to provide
map based route selection. Also, in case a chosen location
happens to be in an inaccessible region, most route selection
software automatically substitutes a nearest accessible loca-
tion, and returns the corresponding route.

Thus, with a specific map of a given area (say a city or a
state), our model may be used to generate movement patterns
within the area.

Random waypoint model—A special case:If the accessible
region is the whole network area,Vmin in the trip-based
movement model is set to0, and the route selection algorithm
always returns the direct line segment between the startingand
ending locations, our map-based movement model is the same
as the well known random waypoint movement model [6],
except that our grid based formulation will lead to a finite
set of possible trip locations, whereas the original random
waypoint model will have an infinite number of the possible
locations. By settingVmin to be greater than0 instead, the
random waypoint model is rectified so that it will reach a
meaningful steady state average speed [9]. In this paper, apart
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from studying the general map-based movement model, we
will also give a specific case study of the rectified random
waypoint model.

To characterize the properties of the map-based stochastic
movement model, we use the notations defined in Table I.

TABLE I

MAP-BASED STOCHASTIC MOVEMENT MODEL VARIABLES

Variable Definition Type
X width of the network area input parameter
Y height of the network area input parameter
s cell size input parameter
Vmax maximum nodal speed input parameter
Vmin minimum nodal speed input parameter
V nodal speed random variable
T travel time random variable
E[V ] expected speed statistical property
E[T ] expected trip time statistical property

III. Theoretical Lower Bound of Expected
Communication Distance

In this section, we derive a method to obtain the theoretical
lower bound of the expected communication distance under
our movement model. We assume that there is a cellg in
the network, which we call thetarget cell and contains a
stationary receiver that we wish to communicate with. (We
defer to Section V the experimental study of the lower bound
when the receiver is mobile.) A mobile node moves around the
network area from one cell to another during a trip, and the
distance to the target cell may change accordingly. We want
to calculate the expected distance between the target cell and
the closest cell visited by the mobile inℓ trips, which gives a
lower boundon the expected communication distance between
the mobile and the receiver during theseℓ trips.

To begin with, we recall that the whole network area is
divided into a total ofm by n cells, and each cell is a square
of fixed sizes by s. We now defined(i, g), where0 ≤ i ≤
mn − 1, to be the Euclidean distance between a celli and
the target cellg; for simplicity, such a distance is measured
between the centers of the two cells. LetN denote the number
of distinct values ofd(i, g) over all i. We partition the cells
into N sets so that cells in the same set have the same distance
to the target. We denote each set of cells bySj (where0 ≤
j ≤ N − 1), and we denote the distance between any cell
in Sj and the target cell byDSj

. For ease of discussion, we
assume that theSj ’s are sorted in increasing order ofDSj

;
that is,DSj

< DSj+1
for all j.

Now, consider the simple case whereℓ = 1 (i.e., the
mobile node takes only one trip). To find the expected shortest
distance between the node and the target cell (which forms the
lower bound on expected communication distance), we need
to compute for each possible trip the different probabilities
to attain a specific distanceDSj

as the shortest distance.
After that, the desired expected distance can be computed in
a straightforward manner.

To solve the case for a generalℓ, we can apply the
same technique. To simplify our discussion, in the following

subsection, we give a matrix representation that captures the
probabilities of attaining the specific shortest distanceDSj

for all possible trips whenℓ = 1, and based on that, we
show how to calculate the expected shortest distance to the
communication target in the general case.

A. Matrix representation of probabilities when ℓ = 1

Assuming that the mobile node takes one trip, we define
a two-dimensional matrixB to represent the probabilities of
attaining a specific shortest distance for each pair of starting
and ending locations as follows. The matrixB has m × n
rows andm × n columns as illustrated below. Each element
bi,j (where0 ≤ i, j ≤ mn − 1) represents a trip from celli
to cell j. Instead of storing a real-valued number as in the
normal matrix definition, each elementbi,j is a vector of size
N . Each elementbi,j[k], where0 ≤ k ≤ N − 1, defines the
probability that the shortest distance isDSk

for the trip from
cell i to cell j. E.g., elementb2,3[1] gives the probability that
the shortest distance to the target isDS1

for a trip from cell2
to cell 3. Observe that for each elementbi,j in B, the length-
N vector has exactly one entry being1, and all other entries
being0’s.

B =



















b0,0 · · · b0,j · · · b0,mn−1

...
. . .

. . .
. . .

...

bi,0
. . . bi,j

. . . bi,mn−1

...
. . .

. . .
. . .

...
bmn−1,0 · · · bmn−1,j · · · bmn−1,mn−1



















B. Matrix representation for a general ℓ

Assuming that the mobile node has traveled forℓ trips,
we want to compute the corresponding matrix representation,
denoted byBℓ, of the probabilities of attaining a specific
shortest distance for each possible pair of starting and ending
locations of the travel. Then, in the next subsection, we show
that the expected shortest distance can be computed easily
based on this matrix representation.

Observe that attaining the shortest distanceDSk
after trav-

eling ℓ trips with starting locationi and ending locationj
occurs when the minimum of the two distances, namely (i)
the shortest distance attained during the firstℓ − 1 trips and
(ii) the shortest distance attained at the last trip, isDSk

. Let
Ei,j,ℓ denote the event that the starting and ending locations
of traveling ℓ trips is i and j, respectively, and letD(i, j, ℓ)
denote the shortest distance attained by the corresponding
travel. Then, based on the above observation, the probability
P (D(i, j, ℓ) = DSk

)—which is the probability of attaining
shortestDSk

after ℓ trips with starting locationi and ending
locationj—can be expressed as:
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mn−1
∑

x=0

P (Ei,x,ℓ−1)P (min{D(i, x, ℓ − 1), D(x, j, 1)} = DSk
)

=
1

mn

mn−1
∑

x=0

P (min{D(i, x, ℓ − 1), D(x, j, 1)} = DSk
),

where the last equality follows from the fact that
P (Ei,x,ℓ−1) = 1/(mn), since destination of every trip is
chosen uniformly randomly among all cells.

For the term
∑mn−1

x=0
P (min{D(i, x, ℓ − 1), D(x, j, 1)} =

DSk
), it can be computed if we have the matrixB and

the matrix Bℓ−1, and the computation resembles a matrix
multiplication. This suggests that the matrixBℓ can be defined
recursively as follows:

Bℓ = Bℓ−1 ∗ B,

where the∗ operator performs the correct computation of the
vector values of each element inBℓ based onBℓ−1 and B.
Precisely, letbℓ

i,j denote the row-i column-j element inBℓ,
then the∗ operator performs the following:

bℓ
i,j =

1

mn

mn−1
∑

x=0

bℓ−1

i,x ∗ bx,j,

where

(bℓ−1

i,x ∗ bx,j)[0] = 1 − (1 − bℓ−1

i,x [0])(1 − bx,j[0]),

(bℓ−1

i,x ∗ bx,j)[1] = 1 − (bℓ−1

i,x ∗ bx,j)[0]

− (1 − bℓ−1

i,x [0] − bℓ−1

i,x [1])(1 − bx,j[0] − bx,j[1]),

...

(bℓ−1

i,x ∗ bx,j)[t] = 1 −
t−1
∑

k=0

(bℓ−1

i,x ∗ bx,j)[k]

− (1 −
t

∑

k=0

bℓ−1

i,x [k])(1 −
t

∑

k=0

bx,j[k]),

...

(bℓ−1

i,x ∗ bx,j)[N − 1] = 1 −
N−2
∑

k=0

(bℓ−1

i,x ∗ bx,j)[k].

To see why the above computation of∗ is correct, we notice
that the term(bℓ−1

i,x ∗ bx,j)[t] stores the probability of the event
that DSt

is the shortest distance afterℓ trips whenx is the
ending point of the(ℓ − 1)-th trip. This event occurs if and
only if the shortest distance attained at the firstℓ − 1 trips
and the shortest distance attained at the last trip are both at
leastDSt

, but excluding the cases where the eventual shortest
distance afterℓ trips is DS0

, DS1
, . . ., or DSt−1

. Based on
this reasoning, we derive the formulation for(bℓ−1

i,x ∗ bx,j)[t]
as shown in the above definition.

C. Computing the theoretical lower bound

Once the matrixBℓ is computed, we can make use of the
following theorem to obtain the expected shortest distance
(which forms a lower bound on the expected communication
distance).

Theorem 1The expected shortest distance to the target after
ℓ trips can be calculated by:

E[dminℓ
] =

1

mn

mn−1
∑

i=0





1

mn

mn−1
∑

j=0

N−1
∑

k=0

DSk
× bℓ

i,j[k]



 .

Proof: By the definition of Bℓ, the expected shortest
distance afterℓ trips, given cell i is starting location, is
(1/(mn))

∑mn−1

j=0

∑N−1

k=0
DSk

× bℓ
i,j[k]. The theorem thus

follows since each celli is equally likely to be the starting
location in our map-based movement model. �

Theorem 1 illustrates the theoretical lower bound of the
expected communication distance after a mobile node travels
ℓ trips. However, in practice, it is more interesting to know
the lower bound after a mobile node travels for some amount
of time instead. E.g., we may want to know the lower
bound expected communication distance if the mobile node
is allowed to communicate at any time within the next 500
seconds. Thus, we may want to obtain the theoretical lower
bound as a function of the total travel time, or more commonly,
the maximum allowable delay.

In the following, we discuss how to obtain (or approximate)
such a time-based lower bound under the rectified random
waypoint model. Firstly, the lemma below gives the expected
time for the mobile node to travel a single trip in the model.

Lemma 1 Let α = arctan(Y/X). In the rectified random
waypoint model, the expected time for a single trip can be
expressed by

E[T ] =
log(Vmax/Vmin)

Vmax − Vmin

[

X3

15Y 2
(1 − 1

cos3 α
)+

X2

6Y
(ln

1 + sin α

cosα
+

sin α

cos2 α
) +

Y 3

15X2
(1 − 1

sin3 α
)

+
Y 2

6X
(

cosα

sin2 α
− ln

1 − cosα

sin α
)

]

.

Proof: Please refer to Appendix I. �

Based on the expected single trip timeE[T ] in Lemma 1,
when we want to obtain the lower bound of the expected
communication distance after traveling some timet, we can
useℓ′ = t/E[T ] to estimate the number of trips traveled. In
caseℓ′ is an integer, we may apply Theorem 1 withℓ = ℓ′ to
obtain an approximation of the desired lower bound. However,
in the general case whereℓ′ is not an integer, we may then
obtain this approximation through interpolation (of various
E[dminℓ

] values computed by Theorem 1).
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IV. Movement Prediction Algorithm

In previous sections, we illustrate how to obtain the theoreti-
cal lower bound of the expected communication distance. Such
a theoretical lower bound provides the best achievable (i.e.,
shortest) communication distance between a mobile node anda
receiver. Therefore, it remains for us to design an algorithm to
achieve the communication distance as close to the theoretical
lower bound as possible.

The design of such an algorithm has been studied in [1],
in which several movement prediction algorithms are proposed
and evaluated. Among them, theleast-distance(LD) algorithm
is the simplest and has the best practical performance.

The LD algorithm is based on the 37% rule of the Best-
choice(r) algorithm, which solves the well known secretary
problem [3]. In our case, we approximately track the first 37%
or more of the candidate positions in the movement history of
the mobile node, and find the least distancedmin between
the mobile node and the receiver in the movement history.
Then, in each of the nextD time units, whereD specifies the
maximum allowable delay, we check if the current distance
between the mobile node and the receiver is less than or equal
to dmin. If so, we communicate immediately; otherwise, we
communicate at theDth time unit.

The performance of the LD algorithmrelative to other pre-
diction algorithms has been studied before [1]. In Section V,
we will evaluate the effectiveness of the LD algorithm by
comparing it with the theoretical lower bound of the expected
communication distance, thus providing a newabsolutemea-
sure of performance for the algorithm.

V. Simulation Results
This section verifies our theoretical results experimentally,

and studies the performance of the LD algorithm under dif-
ferent network scenarios. The experiments are divided into
three parts. PartA compares the lower bounds on the expected
communication distance computed by the probability matrix
approach in Section III and the approximation approach in
Section VI. PartB illustrates the absolute performance of the
LD algorithm. Both PartA and PartB assume the movement
model to be the rectified random waypoint model. In PartC,
we evaluate the performance of LD in the general map-
based movement model. Further experimental results (e.g.,the
effects of the network cell size) can be found in [2].

A. Absolute performance of the LD algorithm
This section illustrates the absolute performance of the

LD algorithm, by comparing the communication distance it
achieves against the lower bound computed by the probability
matrix approach and the lower bound obtained experimentally.

We again assume the rectified random waypoint model as
the movement model. In the experiment, the mobile node
moves in a 150 m by 150 m network area divided into 25
cells of size 30 m by 30 m. The target cell (inside which the
receiver is located) is set to be the center of the network.

In Figure 1, we illustrate the results for different expected
nodal speeds of 5 m/s, 10 m/s, 25 m/s, respectively by

using the probability matrix approach. (The corresponding
(Vmin, Vmax) for them are(4, 6), (10, 15), and (20, 30), re-
spectively.) We also the measured expected shortest distances
and the average communication distance achieved by the
LD algorithm, which are obtained experimentally over 100
independent 2,000,000-second simulation runs. We omit the
error bars because the corresponding standard deviations are
small.

From the figure, we observe that the performance of LD
increases as the expected nodal speed increases or as the
maximum allowable delay increases. We also notice that the
calculated theoretical lower bound matches closely with the
experimental lower bound. For the average reduction in the
expected communication distance, we find that it is within
76% to 94% of the optimal.

In Figure 2, we illustrate comparison results in a larger
network. The dimensions of the network area are 270 m by
270 m, and the area is divided into 81 cells of size 30 m by
30 m; the target cell is set to be the center of the network. From
the results, we find that with a larger network, it takes longer
for a mobile node to find a closer position to communicate
with the target. At the same time, the results show that
our theoretical lower bound of the expected communication
distance closely matches the experimental results. We find that
the average reduction in the expected communication distance
is within 75% to 94% of the optimal.

B. Performance of LD in map based movement model
In this subsection, we illustrate the performance of the LD

algorithm in the general map-based movement model. In our
model, we use a local map of Lafayette, Indiana, USA, as
the accessibility constraints. The map is shown in Figure 3,
which contains all the streets and roads in an 10,800 m
by 11,500 m area. Ten mobile nodes are present in the
network. The destinations of the nodes are chosen randomly
and independently, and the nodes move along the routes
generated by the route selection software. Each simulation
runs 20,000 seconds. During each simulation run, each node
communicates with a randomly chosen node as the receiver for
1000 times. We measure the distance of each communication,
and report the average distance over three independent runsin
Figure 4. Confidence intervals are also included in the graphs
for reference.Figure 4(a) shows the communication distance achieved by
the LD algorithm as a function of the maximum allowable
delay. We find that the LD algorithm significantly reduces the
communication distance under the realistic instantiationof the
map-based model in this section. The results show that LD has
consistently good performance as in the prior work considering
the simpler random waypoint movement model [1]. We find
that the average reduction in the expected communication
distance is around 62% of the optimal.

In Figure 4(b), we illustrate the percentage communication
distance savings as a function of the maximum allowable
delay. As the maximum allowable delay increases, the distance
saving also increases. In the same graph, we show also the
measured distance savings in relation to the theoretical upper
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(a) Expected speed = 5 m/s
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(b) Expected speed = 10 m/s
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(c) Expected speed = 25 m/s

Fig. 1. Comparison of performance of LD with experimental expected shortest distance, and the theoretical lower bound in network area of size 150 m by
150 m divided into 25 cells. (Error bars are omitted because of small standard deviations.)
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(a) Expected speed = 5 m/s
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(b) Expected speed = 10 m/s
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Fig. 2. Comparison of performance of LD with experimental expected shortest distance, and the theoretical lower bound in network area of size 270 m by
270 m divided into 81 cells. (Error bars are omitted because of small standard deviations.)
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Fig. 4. Performance of LD with a map-based movement model: Communication distance is significantly reduced within relatively small delay.

bounds. Notice that in contrast to the random waypoint model
results, the communication distances achieved by LD in this
case do not converge to the experimental lower bounds, as the
allowable delay increases. This is because the average speed
is relatively low compared with the size of the area. (The
average nodal speed is about 10 m/s due to speed limits of
the local streets, whereas the area has dimensions 10,800 m
by 11,500 m.) If a higher speed is allowed, we conjecture that
the performance of LD would increase, according to observed

trends under the rectified random waypoint model.

We also illustrate the actual communication delay by the LD
algorithm in Figure 4(c), which is the time when LD decides to
perform the communication. In general, LD will communicate
before the allowable delay expires, when it concludes that the
current position is likely to be close enough to the target
receiver. By comparing the actual delay of LD with the
allowable delay, we find that the algorithm is consistently able
to predict a good position to communicate, within a small
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Fig. 3. A local map of Lafayette area.

fraction of the allowable delay.
To summarize, we have evaluated the LD algorithm in a

realistic instantiation of the map-based movement model; we
find that the LD algorithm continues to perform effectively
and significantly reduce the communication distance.

C. Summary
By comparing the calculated theoretical lower bounds and

the measured expected communication distances to the target
cell, we can find that the theoretical bounds very closely match
the measured results in all the network scenarios. Also, the
LD algorithm shows good performance by achieving commu-
nication distances close to the lower bounds. Moreover, the
performance improves as the nodal speed increases, verifying
our claims in Section III.

The LD algorithm has been experimentally evaluated to
perform well despite its simplicity, when compared with
several other postponement algorithms in [1]. The results in
this paper additionally quantify how close LD can match
the theoretical lower bounds for any postponement algorithm.
Moreover, LD’s performance approaches the lower bounds as
nodal speed increases.

VI. Further Discussion: An Approximation to the
Theoretical Lower Bound

To calculate the theoretical lower bound forℓ trips based
on the probability matrix approach, we need to obtainBℓ

first, which requiresO((mn)3ℓ) of the previously defined
∗ operations, each of which is performed on two length-N
vectors. Thus, each∗ operation takesO(N) time, and the
overall complexity isO((mn)3ℓN) time. This approach is
slow even for moderate-sizem andn. In this section, we give
an alternative approach to obtain a close approximation of the
theoretical lower bound of expected communication distance;
the time complexity of the approximation approach is only
O(mn + N).

Our approximation approach considers the theoretical lower
bound of expected communication distance as a function of
the number of cells visited by the mobile node. It trades
accuracy for speed by simplifying the calculations using two
assumptions. In the following, we describe the assumptions

the approximate approach makes, and then describe how to
approximate the lower bound based on the number of cells
visited.

A. Assumptions to simplify calculation

Let Pi denote the probability of a mobile node entering
cell i when it leaves the current cell. Also, as in the previous
section, we assume cells are partitioned intoN sets according
to their distances to the target cell, and we will re-use the
notations ofSj ’s and DSj

’s as before. For each setSj , we
define the probabilityPSj

of a mobile node entering any cell
in Sj when it leaves the current cell. Here, we have

PSj
≈

∑

i∈Sj

Pi

Note that the above equation is not an equality. For the first
reason, it is because of the correlation among cells when a
mobile node moves from one cell to another. To illustrate the
correlation issue, we show that the probability that a mobile
node visits a set of cells (i.e., to visit any cell in the set) is
not the sum of the probabilities that it visits each individual
cell in the set. In Figure 5, the pointC indicates the current
location of the mobile node. We want to find the probabilities
for the mobile node to visit cell1, to visit cell 4, or to visit
either one of the cell, respectively.

Let the areas of the shaded regions in Figure 5(a)-5(c) be
s1, s2, ands3, respectively. Also, let the overall network area
be S. Assuming the random waypoint movement model, the
probability P1 that the mobile node will visit cell 1 from
locationC is s1/S. Similarly, the probability that the mobile
node will visit cell 4 fromC is given byP2 = s2/S. Finally,
the probability of visiting either cell 1 or cell 4 is given by
P3 = s3/S. We may find thatP3 6= P1 + P2 ass1 + s2 6= s3,
which means the probability that a mobile node moves to set of
cells is not exactly equal to the sum of probabilities to move
to each individual cell. Thus, in general, we cannot assume
PSj

=
∑

i∈Sj
Pi. Nevertheless, as a first assumption of the

approximation approach, we assume that the effect of such a
correlation is negligible.

Even with the correlation issue neglected, we are still not
able to assertPSj

=
∑

i∈Sj
Pi. The reason is thatPSj

should
be dependent of the current location of the mobile node. Thus,
our second assumption ssumes that irrespective of the current
location, the mobile node will always move to a cell inSj

with probability PSj
=

∑

i∈Sj
Pi. Based on this, the next

subsection gives the description of how we can approximate
the theoretical lower bound efficiently.

We summarize our assumptions (though affecting the cor-
rectness, but simplifying the computation a lot) to get the
approximated lower bound as follows:

• We assume that the correlation between a cat visiting
each cell at the next step is negligible.

• We assume that the cat will always move to cellj next
with a fixed probabilityPSj

, irrespective of the current
location.
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Fig. 5. Example to show that probability of a set of cells is not exactly the sum of the probabilities of each cell in the set due to correlations among cells.

Later, in our simulation result, we shall see that the approxi-
mated lower bound is indeed very close to both the theoretical
lower bound derived in Section III.

B. Approximating the theoretical lower bound
In this subsection, we based on the two assumptions and

describe how to approximate the theoretical lower bound. Note
that equality signs in the equations are in general incorrect, but
will be correct under our two assumptions.

We definePDj
(k), where 0 ≤ j ≤ N − 1 to be the

probability that the shortest distance between the mobile node
and the target cell isDSj

after visitingk cells. The calculation
of PDj

(k) is then straightforward:

PD0
(k) = P (visiting some cell inS0)

= 1 − P (does not visit any cell inS0)

= 1 − (1 − PS0
)k

,

PD1
(k) = P ((does not visit any cell inS0) and

(visiting some cell inS1))

= P (does not visit any cell inS0) · P ((visiting some

cell in S1) | (does not visit any cell inS0))
1

= (1 − PS0
)k

»

1 − (1 −
PS1

1 − PS0

)k

–

,

PDj
(k) = (1 − PS0

− PS1
− ... − PSj−1

)k ×
»

1 − (1 −
PSj

1 − PS0
− PS1

− ... − PSj−1

)k

–

,

...

PDN−1
(k) = P

k

SN−1
.

Then, we have the expected shortest distance as follows

E[dg(k)] =

N−1
∑

j=0

PDj
(k)DSj

.

The above equation gives the approximated lower bound
of the expected communication distance as a function of
number of cells a mobile node visited. Similar to the use of

1According to conditional probability,P (AB) = P (A)P (B|A).

Lemma 1, we give the following lemma to help in expressing
the approximated lower bound as a function oftime instead.

Lemma 2 Within a single trip, the expected time the mobile
node stay

1) in the starting and ending cells is

8R

3π(Vmax − V min)
log

Vmax

Vmin
;

2) in the cell when it is passing through the cell

4R

π(Vmax − V min)
log

Vmax

Vmin
.

Proof: Please refer to Appendix II. �

Suppose that we have obtained the probabilitiesPinside and
Pcrossing of a mobile node staying inside an end point and
crossing a cell, respectively, through experiments. Then,we
can calculate the expected time that a mobile node stays in a
cell, called expected sojourn timeE[Ts], as

E[Ts] = PinsideE[Ti] + PcrossingE[Tc].

As an example of a network divided into 5 by 5 cells,Pinside
and Pcrossing are obtained experimentally to be 0.454 and
0.546, respectively. Further discussions of the sojourn time of
a mobile node can be found at [2].

By applying the expected cell sojourn time given by
Lemma 2, we can calculate the expected shortest distance as
a function of timet. Replacingk by the corresponding travel
time (i.e.,k multiplies the expected cell sojourn timeE[Ts]
given by Lemma 2), we have the approximated theoretical
lower bound of the expected communication distance as a
function of the maximum allowable delay. Finally, for the
complexity of the approximation approach, we observe that
it takesO(mn) time to compute allPSj

’s, andO(N) time to
compute allPDj

(k)’s for anyk; in total, it takesO(mn+N)
time which is independent ofk.
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C. Simulation results: matrix approach versus approxima-
tion approach

This subsection compares the theoretical lower bounds
derived by the probability matrix approach and the approx-
imation approach. We assume the rectified random waypoint
movement model with the following setting: the dimensions
of the network area are 150 m by 150 m; the area is divided
into 25 cells of size 30 m by 30 m; the target cell (inside
which the receiver is located) is set to be the center of the
network. We conduct three sets of calculations, assuming that
the mobile node moves with an average speed of 5 m/s, 10 m/s,
and 25 m/s, respectively. (The corresponding(Vmin, Vmax) for
them are(4, 6), (10, 15), and(20, 30), respectively.)

In Figure 6, we displayed the lower bounds as a function of
the maximum allowable delay. From the figure, we conclude
that though the lower bound from the approximation approach
is not tightly matching the one computed by probability matrix
approach, it is indeed a very close approximation.

We also report the times to compute the theoretical lower
bound based on the two approaches. The maximum allowable
delay is set to40 × E[T ] (recall thatE[T ] is expected time
for a trip), which corresponds to the time for 40 trips in the
probability matrix approach. Two set of timings are taken, for
which the network is partitioned to5×5 cells, and9×9 cells,
respectively. The results are presented in Table II. They show
that the approximation approach takes significantly less time
to compute than the exact approach.

TABLE II

T IME TO COMPUTE LOWER BOUND BY THE TWO APPROACHES. (DELAY =

TIME FOR 40 TRIPS.)

number of cells 5 × 5 9 × 9

time for probability matrix approach (s) 0.174 10.287
time for approximation approach (s) 0.001 0.003

VII. Related Work
The random waypoint model is widely used in mobile

networking research. Our map-based movement model is a
significant generalization of the random waypoint model to
incorporate (realistic) accessibility constraints and route selec-
tion algorithms according to the application. The movementof
mobile users in a cellular network has been studied in [5], [8]
to solve the handoff and channel allocation problems. Previous
work on mobility prediction [4], [7] has been concerned
with improving network connectivity, end-to-end delay, and
network capacity. Their focus is thus quite different from ours,
which is to understand how mobility can be used to provide
a tradeoff between communication delay and communication
distance. The random waypoint model has been analyzed in
[9]. Their analysis focuses only on the steady state average
nodal speed, which leads to the conclusion that the original
model fails to sustain a meaningful average speed necessary
for simulation experiments. Our analysis is significantly more
comprehensive, and can be applied to understand the fun-
damental performance limits of movement predicted wireless

communication. The expected sojourn time result in Lemma 2
(in Section VI-B) can be regarded as an extension of a similar
result by Hong and Rappaport [5].

VIII. Conclusion

We have developed a realistic system model which allows
general accessibility constraints and route selections tobe
specified for a mobile wireless network, while admitting the
well known random waypoint model as a special case. For
movement predicted communication under the random way-
point model, we have derived fundamental tight lower bounds
of the expected communication distance achievable byany
postponement algorithm, as a function of the sender’s nodal
speed and the allowable postponement delay. Our analysis
provides an absolute performance measure of how closely a
postponement algorithm can match the theoretical optimum.In
particular, we show that the least-distance algorithm in prior
work achieves a reduction in the expected communication
distance within 62% to 94% of the optimal, over a realistic
range of nodal speeds. Moreover, the algorithm’s absolute per-
formance increases as the nodal speed or the allowable delay
increases. Our experimental results have further characterized
the performance of movement prediction in an instantiationof
the map-based model to road travel in the Lafayatte, Indiana
area.
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APPENDIX I
Proof of Lemma 1

Proof: Let L denote the single trip distance. Let(x1, y1)
and (x2, y2) denote the starting and ending points of a trip,
respectively. Note that both the starting and destination points
of a trip are uniformly chosen from within the network. Let
Z = |x1 − x2| and W = |y1 − y2|, so that the distance
of the trip, L, is

√
Z2 + W 2. To obtain the expected trip

distanceE[L], we first compute the distributions ofZ and
W as follows.
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(a) Expected speed = 5 m/s
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(b) Expected speed = 10 m/s
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(c) Expected speed = 25 m/s

Fig. 6. Lower bound of expected communication distance (as afunction of delay) computed by probability matrix approachand approximation approach.

The pdf ofx1, or that ofx2, is given byf(x) = 1/X . The
cdf of Z can then be calculated by:

FZ(z) = P (Z = |x1 − x2| < z)

=

∫ X

0

∫ x2+z

x2−z

f(x1)f(x2)dx1dx2

=

∫ X+z

X−z

f(x2)

∫ X

x2−z

f(x1)dx1dx2

+

∫ X−z

z

f(x2)

∫ x2+z

x2−z

f(x1)dx1dx2

+

∫ z

0

f(x2)

∫ x2+z

0

f(x1)dx1dx2

=
2zX − z2

X2
, 0 ≤ z ≤ X.

By differentiatingFZ(z), we obtain the pdf ofZ as follows:

fZ(z) = F ′

Z(z) =
2

X
− 2z

X2
.

Similarly, the pdf ofW is given by:

fW (w) = F ′

W (w) =
2

Y
− 2w

Y 2
.

Now, E[L] can be calculated through the joint distribution of
Z andW . Let α = arctan(Y/X). We have

E[L] =

∫ Y

0

∫ X

0

√

z2 + w2fZ,W (z, w)dzdw

=

∫ Y

0

∫ X

0

√

z2 + w2fZ(z)fW (w)dzdw

=

∫ Y

0

∫ X

0

√

z2 + w2(
2

X
− 2z

X2
)(

2

Y
− 2w

Y 2
)dzdw

=
X2

6Y
(ln

1 + sin α

cosα
+

sin α

cos2 α
) +

X3

15Y 2
(1 − 1

cos3 α
)

+
Y 2

6X
(

cosα

sin2 α
− ln

1 − cosα

sin α
) +

Y 3

15X2
(1 − 1

sin3 α
).(1)

For the expected timeE[T ] of a single trip, since (i)
E[T ] = E[LV −1] and (ii) the random variablesL and V

are independent of each other, we haveE[T ] = E[L]E[V −1].
For E[V −1], it can be calculated by:

E[V −1] =

∫ Vmax

Vmin

1

v
f(v)dv =

∫ Vmax

Vmin

1

v(Vmax − Vmin)
dv

=
ln(Vmax/Vmin)

Vmax − Vmin
. (2)

Lemma 1 thus follows by combining Equation 2 with Equa-
tion 1. �

APPENDIX II
Proof of Lemma 2

To begin with, we approximate the network cell by a circle
that has the same area (see Figure 7). The radius of the circle,
denoted byR, is therefore

R =
s√
π

≈ 0.56s.

O

P

B

β

α

R

s/2

ρ

z

Fig. 7. Approximation of cell as a circle.

To calculate the expected cell sojourn time, we consider
two scenarios where a sensor moves in a single trip: (1)
Sensor starts or finishes a trip inside the cell; (2) Sensor
passes through a cell during the trip. Lemma 2 gives the
corresponding expressions.

Proof: We first calculate the expected sojourn time of
Case (i). LetTi denote the sojourn time that a mobile sensor
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is inside the starting cell, and letV denote the nodal speed.
The joint pdf ofTi andV is given by

fTi,V (t, v) = |v|fZ,V (z, v).

whereZ is the distance from the sensor to the cell boundary.

The pdf of Ti can be calculated using the above joint

pdf as follows: LetC1 =
2

πR2(Vmax−Vmin)
and C2(t) =

8R
3πt2(Vmax−Vmin) . Then, we have

fTi
(t) =

∫

∞

−∞

fTi,V (t, v)dv =

∫

∞

−∞

|v|fZ,V (z, v)dv

=































C1

∫ Vmax

Vmin
v
√

R2 − ( tv

2
)2dv, 0 ≤ t ≤ 2R

Vmax
;

C1

∫ 2R/t

Vmin
v
√

R2 − ( tv

2
)2dv, 2R

Vmax
≤ t ≤ 2R

Vmin
;

0, t ≥ 2R
Vmin

.

=







































C2(t)
(

[1 − ( tVmin

2R
)2]3/2 − [1 − ( tVmax

2R
)2]3/2

)

,

0 ≤ t ≤ 2R
Vmax

;

C2(t) [1 − ( tVmin

2R
)2]3/2, 2R

Vmax
≤ t ≤ 2R

Vmin
;

0, t ≥ 2R
Vmin

.

Then, the expected sojourn time in Case (i) becomes

E[Ti] =

∫

∞

−∞

tfT (t)dt

=
8R

3π(Vmax − Vmin)
×

{

∫ 2R
Vmax

0

1

t

[

(1 − (
tVmin

2R
)2)3/2 − (1 − (

tVmax

2R
)2)3/2

]

dt

+

∫ 2R
Vmin

2R
Vmax

1

t
(1 − (

tVmin

2R
)2)3/2dt

}

=
8R

3π(Vmax − Vmin)
ln

Vmax

Vmin
.

To calculate the expected sojourn time in Case (ii), letTc

denote the sojourn time when the sensor is in a cell other
than the starting and the ending cells (i.e., when the sensor
is crossing a cell in the trip). LetZc be the length of chord
where the path of the sensor intersects the cell. The pdf ofZc

is

fZc
(z) =

2

π
√

(2R)2 + z2
, 0 ≤ z ≤ 2R.

Then, the expected chord length is

E[Zc] =

∫ 2R

0

zfZ(z)dz =
4R

π
.

Also, in the proof of Lemma 1, we know that

E[V −1] =
ln(Vmax/Vmin)

Vmax − Vmin
.

Then, the expected sojourn time in Case (ii) becomes

E[Tc] = E[Zc]E[V −1] =
4R

π(Vmax − Vmin)
ln

Vmax

Vmin
.

This completes the proof of Lemma 2. �

11


