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Abstract— The transmission energy required for a wireless
communication increases superlinearly with the communicton
distance. In a mobile wireless network, nodal movement cane
exploited to greatly reduce the energy required by postpomig
communication until the sender moves close to a target recesr,
subject to application deadline constraints. In this paper we
characterize the fundamental performance limit, namely tre
lower bound expected communication distance, achievableyb
any postponement algorithm within given deadline constraits.
We consider a realistic map based stochastic movement modeff
which the well known random waypoint model is a special case.
For the random waypoint model, we develop a tight analytical
lower bound of the achievable expected communication distee.
In addition, we present a close analytical approximation ofthe
lower bound that has a low computational complexity. For the
general map based model, we characterize the lower bound
distance experimentally. We also address the practical adin-
ment of distance reduction (and hence, energy savings) thugh
movement predicted communication. Specifically, whereasrior
work has presented a least distance (LD) postponement algigiim
and established its effectiveness experimentally, we prie an
absolute performance measure of how closely LD can match
the theoretical optimum. We show that LD achieves an average
reduction in the expected communication distance within 6%
to 94% of the optimal, over a realistic range of nodal speedspr
both the map based and random waypoint models. Moreover, the
algorithm’s absolute performance increases as the nodal sed
or the allowable postponement delay increases.

|. Introduction

yau, jcchin}@cs. purdue. edu

(with possible speed limits) for terrestrial movement. Bsd
move within accessible areas of the network in a succession
of trips, each of which is defined by a starting and ending
location. The exact route taken for each trip can then be
specified by a giverroute selectionalgorithm. The route
selection algorithm might similarly reflect how real people
plan their road trips. For example, Internet tools like Map&t

and Yahoo Maps can return routes based on shortest travel
time, most direct paths (say, major roads preferred witstlea
number of road changes), etc. A model instantiation with nul
accessibility constraint and the selection of straight lraths

in every trip would be similar to the well known random
waypoint model [6], except that our grid based formulation
will lead to a finite set of possible trip locations, whereas th
original random waypoint model will have an infinite number
of the possible locations.

For the random waypoint model, we derive tight lower
bound expected communication distances achievablariyy
postponement algorithm, as a function of the average nodal
speed and the allowable postponement delay. We also show
how approximations of the lower bounds can be obtained by
ignoring certain correlations in the sequence of cellstedsi
within a trip. The approximation has a low computational
complexity, but is remarkably close to the accurate bound in
practice.

The lower bound results will allow us to fundamentally

To achieve energy efficient wireless communication, movevaluate the performance of practical postponement algo-
ment prediction [1] has been proposed to reduce the corithms. For example, several postponement algorithms are
munication distance and hence communication energy feroposed and evaluated in [1]. Simulation and implementatio
delay-tolerant applications. The basic idea is for a mobikxperiments, for an enhanced version of the random waypoint
sender to postpone communication, subject to given applicaodel [9], show that deast-distance(LD) algorithm has
tion deadlines, until a time when the sender is likely to mowde best practical performance despite its simplicity. ¢¢en

close to the receiver, or the communication target. Since
practice, the energy requirement of sending is proportitma

Whereas the prior work in [1] demonstrates the advantages
of LD relative to competing algorithms, we for the first time

the third or higher powers of the communication distance, tiprovide anabsoluteperformance measure of how closely LD
reduction in sending energy can be significant. In [1], s@lvercan match the theoretical optimum. Our results show that LD
postponement algorithmare proposed to determine the besichieves an average reduction in the expected communicatio

time of communication within application deadline constts.

distance within 62% to 94% of the optimal. Moreover, the

This paper is concerned with both the fundamental and pradgorithm’s absolute performance increases as the nodabsp

tical performance of such energy-efficient movement-mtedi
communication. We consider a general and realistigp-based

or the allowable delay increases.
Besides the analytical results, we present experiments to

network model. In the model, a given geographical area éharacterize the performance of movement prediction in a
divided into a grid of fixed size cells. Nodal movement imealistic instantiation of the map-based model to roadefrav

the area can be regulated by givaocessibility constraints

in Lafayette, Indiana, USA. We also systematically evaluate

modeling, for example, a map of freeways, roads, and strebtsv important system parameters such as the network grid



size can affect algorithm performance. is divided into fixed sizes by s square regions. Each square
region is called acell. Cells form a virtual grid over the
network area, and each cell has a unique integer cell ID. To
The main contributions of this paper are as follows: simplify boundary conditions, we assume that bathand Y’
« We have developed a general map-based network aamré integer multiples of. Thus the whole network has x n
movement model to capture realistic nodal movemerells, wherem = X /s andn = Y/s.
while admitting the widely used random waypoint modeAC
as a special case. We have applied the map-based m(mg
to evaluate the performance of movement prediction n g
the Lafayette, Indiana area.

A. Our contributions

essibility constraints: The network is associated with a
defining the accessible areas of the network. In the map,

et of pathways(e.g., freeways, roads, and streets) may

exist. These pathways constrain the routes between differe

« We contribute to the understanding of fundamental pdocations in the network. Speed limits may be specified for
formance limits in movement-predicted wireless commueach pathway.

ggcgf:mr'].gﬁo:a\éitgﬁrc“éidaiﬂh; fg}’:rbboungste);%ee(fte‘f'rip—based movement model: In our model, nodes move
unicatl : eV by postp W(i]Ihin the accessible areas of the network in a succession of

ment algorithm, as a function of the average nodal SpeFrlps, each of which is defined by a starting and an ending
and the allowable postponement delay. Lower commy-

o . . . . t5cations (i.e., the ending location of a trip forms the titay
mca_\tlon dlstgnces readllly translate |nt0_ h|gher ENeTG¥cation of the next trip). The starting location of the fitsp
savings for single hop wireless communication.

is chosen randomly from the whole area of the network under

« We report extensive experimental results to verify ana uniform distribution. The ending location of a new trip is
illustrate the analytical results. In particular, we quBnti chosen upon reaching the ending location of the current trip
how closely the LD postponement algorithm in [1] camwhich is again chosen uniformly randomly from the whole
match the lower bound expected distances under differrea.
ent deployment scenarios. In addition, our experimental Once the end points of a trip are decided, they will be passed
results systematically evaluate how important systefd a route selection algorithm (to be discussed below), whic
parameters such as the network grid size can effagturns a sequence of pathways directing the mobile node fro
algorithm performance. the starting location to the ending location. The actuaksge

for the node to travel along each pathway are then chosen

randomly between a minimum speéd,;, and a maximum

The balance of the paper is organized as follows. A genegﬂeedvmw (given as the speed limits of the pathway) under
and realistic system model is given in Section Il. Then Wg niform distribution.

derive theoretical lower bounds of the expected communica- ) ) ) ) )

tion distance in motion-predicted wireless communicaiion ROute selection algorithm: Given the starting and ending
Section I1l. We review the basics of movement prediction arfgcations of a trip, the route selection algorithm genevate
the LD algorithm in Section IV. Diverse experimental resultfoute between them that satisfies the accessibility cantra
verifying our theoretical analysis are presented in Sectio Several map software and services (e.g., Google Maps, Mi-
In Section V, we also quantify the ability of the LD algorithmcrosoft MapPoint, Yahoo Maps, etc.) are available to previd
in matching the upper bound distance savings, at variolf&P based route sel_ectlon. Also, in case a chosen Iocatl_on
average nodal speeds. An approximation of the theoreti@@PPens to be in an inaccessible region, most route selectio
lower bounds of the expected communication distance imgive©ftware automatically substitutes a nearest accessike |

in Section VI that has a low computational complexity. Retat tion, and returns the corresponding route.

B. Paper organization

work is discussed in Section VII. Section VIIl concludes. ~ Thus, with a specific map of a given area (say a city or a
state), our model may be used to generate movement patterns
[l. Movement Model within the area.

In this section, we propose a general stochastic movement,jom waypoint model—A special caself the accessible
model that is based on the actual road maps to capture 'rteali]ségion is the whole network ared,, in the trip-based
nman

nj(\)[dal m;vemen:]s. sz\;t/th;matlcall);], the modkel IS ‘;‘, quadrupier ement model is set @ and the route selection algorithm
W, M, T,R) where N denotes the network configuration v returns the direct line segment between the staatiog

Q/lddenotes ;he accl;es&gnny constralntsd5||m|larcuto a m""Bnding locations, our map-based movement model is the same
enotes the trip-based movement model, ddlenotes .o yhe \yell known random waypoint movement model [6],

the route selection algorithm. Details about each tuplehef texcept that our grid based formulation will lead to a finite

model are given as follows. set of possible trip locations, whereas the original random
Network configuration: In our model, a network is a two- waypoint model will have an infinite number of the possible

dimensionalX by Y rectangular area associated with a malpcations. By setting/},..,, to be greater thaf instead, the

of that area, wher& andY (in distance units) are the widthrandom waypoint model is rectified so that it will reach a

and the height of the network, respectively. The whole nétwomeaningful steady state average speed [9]. In this papart ap



from studying the general map-based movement model, wgbsection, we give a matrix representation that captines t
will also give a specific case study of the rectified randoprobabilities of attaining the specific shortest distarige,
waypoint model. for all possible trips wherY = 1, and based on that, we

To characterize the properties of the map-based stochastiow how to calculate the expected shortest distance to the
movement model, we use the notations defined in Table I. communication target in the general case.

TABLE |
MAP-BASED STOCHASTIC MOVEMENT MODEL VARIABLES A. Matrix representation of probabilities when ¢ =1
Variable Definition Type
X width of the network area| input parameter Assuming that the mobile node takes one trip, we define
Y height of the network areg input parameter a two-dimensional matrix3 to represent the probabilities of
s cell size input parameter . . . . .
Vs maximum nodal speed | input parameter attalnmg_a speC|f!c shortest distance for each pair ofistart
Vinin minimum nodal speed input parameter and endlng locations as follows. The matdx hasm x n
v nodal speed random variable rows andm x n columns as illustrated below. Each element
T travel time random variable bij (Where0 < i,j < mn — 1) represents a trip from cell
E[V] expected speed statistical property - . . .
E[T] expected trip tme Statistical property to cell j. Instead of storing a real-valued number as in the

normal matrix definition, each elemeby; is a vector of size
N. Each elemenb, ;[k], where0 < k < N — 1, defines the
probability that the shortest distanceli;, for the trip from
cell i to cell 5. E.g., elemenb, 3[1] gives the probability that
the shortest distance to the targefls, for a trip from cell2
In this section, we derive a method to obtain the theoretiGg) cell 3. Observe that for each element; in B, the length-

lower bound of the expected communication distance undgfvector has exactly one entry beingand all other entries
our movement model. We assume that there is a galt  peing(rs.

the network, which we call thearget cell and contains a
stationary receiver that we wish to communicate with. (We
defer to Section V the experimental study of the lower bound bo.o . bo.; .. bo.mn—1
when the receiver is mobile.) A mobile node moves around the
network area from one cell to another during a trip, and the
distance to the target cell may change accordingly. We waBit = bio b ;
to calculate the expected distance between the targetroell a
the closest cell visited by the mobile intrips, which gives a
lower boundon the expected communication distance between brn—1,0 - bmn-15 0 bmn—1mn—1
the mobile and the receiver during thestips.

To begin with, we recall that the whole network area is
divided into a total ofm by n cells, and each cell is a square
of fixed sizes by s. We now defined(i, g), where0 < i < B Matrix representation for a general /
mn — 1, to be the Euclidean distance between a ¢edind
the target cellg; for simplicity, such a distance is measured Assuming that the mobile node has traveled fotrips,
between the centers of the two cells. IXétdenote the number we want to compute the corresponding matrix representation
of distinct values ofd(i, g) over alli. We partition the cells denoted byB‘, of the probabilities of attaining a specific
into IV sets so that cells in the same set have the same distagidertest distance for each possible pair of starting anéhgnd
to the target. We denote each set of cellsdyy(where0 < locations of the travel. Then, in the next subsection, wewsho
j < N —1), and we denote the distance between any céllat the expected shortest distance can be computed easily
in S; and the target cell bys,. For ease of discussion, webased on this matrix representation.
assume that thé;'s are sorted in increasing order &g ; Observe that attaining the shortest distafe after trav-
that is, Ds;, < Dg, ., for all j. eling ¢ trips with starting locationi and ending locatiory

Now, consider the simple case whefe= 1 (i.e., the occurs when the minimum of the two distances, namely (i)
mobile node takes only one trip). To find the expected shortéle shortest distance attained during the first 1 trips and
distance between the node and the target cell (which forms {fii) the shortest distance attained at the last tripDig, . Let
lower bound on expected communication distance), we ne&d; , denote the event that the starting and ending locations
to compute for each possible trip the different probaltiti of traveling ¢ trips is i and j, respectively, and leD(i, j, ¢)
to attain a specific distanc®s, as the shortest distancedenote the shortest distance attained by the corresponding
After that, the desired expected distance can be computedrawvel. Then, based on the above observation, the prolyabilit
a straightforward manner. P(D(i,j,£) = Dg,)—which is the probability of attaining

To solve the case for a generd]l we can apply the shortestDg, after ¢ trips with starting location and ending
same technique. To simplify our discussion, in the follagvinlocation j—can be expressed as:

[1l. Theoretical Lower Bound of Expected
Communication Distance

bi,mn—l



C. Computing the theoretical lower bound

mn—1
. . ) Once the matrixB¢ is computed, we can make use of the
P(E;z-1)P D(i,x, £ —1),D(x,j,1)} =D . . ' )
;J (Eiz,e-1) P(min{ DG, 2 ), Diw,j, 1)} st following theorem to obtain the expected shortest distance

a1 (which forms a lower bound on the expected communication
— Z (min{D(i,z,¢— 1),D(z,j, 1)} = Dg,), distance).
mn

Theorem 1The expected shortest distance to the target after
where the Iast equality follows from the fact thay trips can be calculated by:

P(E;ze—1) = 1/(mn), since destination of every trip is

chosen uniformly randomly among all cells. mn—1 mn—1N—1
For the term)_"" " "Pmin{D(i,z,0 —1),D(z,5,1)} = Eldmin,] = — Z Z Z Dg, x b
Dg, ), it can be computed if we have the matri® and mn j=0 k=0

the matrix B‘~!, and the computation resembles a matrix
multiplication. This suggests that the matiX can be defined  proof: By the definition of BY, the expected shortest

recursively as follows: distance after¢ trips, given celli is starting location, is
(1/(mn)) ST S0y D, x bfS[k]. The theorem thus
B' = B“'xB, follows since each cell is equally likely to be the starting
location in our map-based movement model. O
where thex operator performs the correct computation of the
vector values of each element B¢ based onB’~! and B. Theorem 1 illustrates the theoretical lower bound of the
Precisely, Ietb‘ denote the row-column< element inB¢, expected communication distance after a mobile node savel
then thex operator performs the following: ¢ trips. However, in practice, it is more interesting to know
the lower bound after a mobile node travels for some amount
mn—1 of time instead. E.g., we may want to know the lower
b, = — Z bl x by, bound expected communication distance if the mobile node
mnoi=o is allowed to communicate at any time within the next 500
where seconds. Thus, we may want to obtain the theoretical lower

bound as a function of the total travel time, or more commonly
_ _ the maximum allowable delay
b by )[0] =1 — (1 =05, 0]) (1 — by . : : .
( Z’fl b 5)[0) ( 'y e 10D 4[00) In the following, we discuss how to obtain (or approximate)
(bip *bz )1 =1—(b;, *bs;)[0] such a time-based lower bound under the rectified random
- (1- bf;l[()] _ bf;l 1)(1 = by 4[0] = bs 1)), waypoint model. Firstly, the lemma below gives the expected
’ ’ ' time for the mobile node to travel a single trip in the model.

Lemma 1 Let a = arctan(Y/X). In the rectified random
waypoint model, the expected time for a single trip can be
expressed by

k=0
' : log(vmaz/vmin) X3 1
-(1- kbe@l[k])(l - kz bz, [K]), E[T] = Vinaz — Vinin {151’2 (1= cos3 04)+
0 =0
X2 1+ sina sin « ys 1
_(ln + ) + (1 — .3 )
6Y cos o cos? o 15X2 sin® o
Y2 cosa nl—cosa
N—2 6_X sin2a - sin «v '
(bi " # be ) [N = > (05, b )R]
h=0 Proof: Please refer to Appendix I. O

To see why the above computationsois correct, we notice
that the tern’(b’“’ 'xb, ;)[t] stores the probability of the event Based on the expected single trip tif#7] in Lemma 1,
that Dg, is the shortest distance aftértrips whenz is the when we want to obtain the lower bound of the expected
ending point of the(¢ — 1)-th trip. This event occurs if and communication distance after traveling some titnave can
only if the shortest distance attained at the fifst 1 trips use/’ = ¢/E[T] to estimate the number of trips traveled. In
and the shortest distance attained at the last trip are biothcase/’ is an integer, we may apply Theorem 1 with= ¢’ to
leastDg,, but excluding the cases where the eventual shortegitain an approximation of the desired lower bound. However

distance after’ trips is Dg,, Ds,,..., or Dg, ,. Based on in the general case whe¥ is not an integer, we may then
this reasoning, we derive the formulation fi igl * by ;)[t] obtain this approximation through interpolation (of varso
as shown in the above definition. E[dmin,] values computed by Theorem 1).



IV. Movement Prediction Algorithm using the probability matrix approach. (The corresponding

In previous sections, we illustrate how to obtain the thtéore (Vmin: Vimaz) for them are(4, 6), (10, 15), and (20, 30), re-
cal lower bound of the expected communication distanceh SUFPECtiVely.) We also the measured expected shortest déstan
a theoretical lower bound provides the best achievable, (i.8Nd the average communication distance achieved by the
shortest) communication distance between a mobile noda arfdP. @l9orithm, which are obtained experimentally over 100
receiver. Therefore, it remains for us to design an algorith independent 2,000,000-second simulation runs. We omit the

achieve the communication distance as close to the theaketfT0r bars because the corresponding standard deviatiens a
lower bound as possible. small. i

The design of such an algorithm has been studied in [1],From the figure, we observe that the pgrformance of LD
in which several movement prediction algorithms are preposi/'céases as the expected nodal speed increases or as the

and evaluated. Among them, themst-distancéLD) algorithm maximum allowab!e delay increases. We also notice that the
is the simplest and has the best practical performance. calcul_ated theoretical lower bound matches closely wm_h th

The LD algorithm is based on the 37% rule of the BesgXPerimental lower bound. For the average reduction in the
choice¢) algorithm, which solves the well known Secretagxpected communication distance, we find that it is within
problem [3]. In our case, we approximately track the first 379%5% 10 94% of the optimal.

or more of the candidate positions in the movement history of " Figure 2, we illustrate comparison results in a larger
the mobile node, and find the least distantg,, between network. The dimensions of the network area are 270 m by

the mobile node and the receiver in the movement histoR/0 M. and the area is divided into 81 cells of size 30 m by
Then, in each of the nexd time units, whereD specifies the 0 m; the target cell is set to be the center of the networknFro
maximum allowable delay, we check if the current distand8® results, we find that with a larger network, it takes lange
between the mobile node and the receiver is less than or ecf@41@ Mobile node to find a closer position to communicate
t0 duin. If SO, We communicate immediately; otherwise, wdith the target. At the same time, the results show that
communicate at théth time unit. our theoretical lower bound of the expected communication
The performance of the LD algorithrelative to other pre- distance closely matches the experimental results. We fatd th
diction algorithms has been studied before [1]. In Sectign 1€ gve_zrageoreductlgn in the expected communication distan
we will evaluate the effectiveness of the LD algorithm bys Within 75% to 94% of the optimal.
comparing 't. Wlth.the theoretical Iovygr bound of the expdctes performance of LD in map based movement model
communication distance, thus providing a nalbsolutemea-

. In this subsection, we illustrate the performance of the LD
sure of performance for the algorithm.

algorithm in the general map-based movement model. In our
V. Simulation Results model, we use a local map of Lafayette, Indiana, USA, as

This section verifies our theoretical results experiméytal e accessibility constraints. The map is shown in Figure 3,
and studies the performance of the LD algorithm under difthich contains all the streets and roads in an 10,800 m
ferent network scenarios. The experiments are divided it 11,500 m area. Ten mobile nodes are present in the
three parts. Par compares the lower bounds on the expecté’lftwc_’rk- The destinations of the nodes are chosen randomly
communication distance computed by the probability matrd independently, and the nodes move along the routes
approach in Section Il and the approximation approach generated by the route s_electlon so_ftware_. Each simulation
Section VI. Par illustrates the absolute performance of th&!nS 20,000 seconds. During each simulation run, each node
LD algorithm. Both PariA and Part8 assume the movementcommgnlcates with a randomly_chosen node as the recellver.for
model to be the rectified random waypoint model. In Fart 1000 times. We measure the distance of ea}ch commumcatlon,
we evaluate the performance of LD in the general maé—nd report the average distance over three independenirruns

based movement model. Further experimental results (aey., igure 4. Confidence intervals are also included in the graph

effects of the network cell size) can be found in [2]. fomtgt&&en(&)_ shows the communication distance achieved by
the LD algorithm as a function of the maximum allowable
A. Absolute performance of the LD algorithm delay. We find that the LD algorithm significantly reduces the

This section illustrates the absolute performance of tltemmunication distance under the realistic instantiatibtihe
LD algorithm, by comparing the communication distance iap-based model in this section. The results show that LD has
achieves against the lower bound computed by the probabilitgnsistently good performance as in the prior work congider
matrix approach and the lower bound obtained experimgntalhe simpler random waypoint movement model [1]. We find
We again assume the rectified random waypoint model #t the average reduction in the expected communication
the movement model. In the experiment, the mobile nodistance is around 62% of the optimal.
moves in a 150 m by 150 m network area divided into 25 In Figure 4(b), we illustrate the percentage communication
cells of size 30 m by 30 m. The target cell (inside which thdistance savings as a function of the maximum allowable
receiver is located) is set to be the center of the network. delay. As the maximum allowable delay increases, the distan
In Figure 1, we illustrate the results for different expekctesaving also increases. In the same graph, we show also the
nodal speeds of 5 m/s, 10 m/s, 25 m/s, respectively Inyeasured distance savings in relation to the theoretigagup
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Fig. 1. Comparison of performance of LD with experimentabented shortest distance, and the theoretical lower baumetivork area of size 150 m by
150 m divided into 25 cells. (Error bars are omitted becadssmall standard deviations.)
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Fig. 4. Performance of LD with a map-based movement modeli@onication distance is significantly reduced within re&ly small delay.

bounds. Notice that in contrast to the random waypoint modeénds under the rectified random waypoint model.
results, the communication distances achieved by LD in this
case do not converge to the experimental lower bounds, as th&Ve also illustrate the actual communication delay by the LD
allowable delay increases. This is because the averagé spagorithm in Figure 4(c), which is the time when LD decides to
is relatively low compared with the size of the area. (Thperform the communication. In general, LD will communicate
average nodal speed is about 10 m/s due to speed limitsbefore the allowable delay expires, when it concludes that t
the local streets, whereas the area has dimensions 10,800umient position is likely to be close enough to the target
by 11,500 m.) If a higher speed is allowed, we conjecture thaceiver. By comparing the actual delay of LD with the
the performance of LD would increase, according to observatiowable delay, we find that the algorithm is consistenbiea

to predict a good position to communicate, within a small
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TEEEE MaDPoinﬁ the approximate approach makes, and then describe how to

| N D 1A H-R % approximate the lower bound based on the number of cells
N Y\ fotin 2 visited.
Yillage
n . :2 m A. Assumptions to simplify calculation
Mcgzim Let P, denote the probability of a mobile node entering
RS ) cell i when it leaves the current cell. Also, as in the previous
231 {25 section, we assume cells are partitioned ineets according
] 1 " E to their distances to the target cell, and we will re-use the
N o } 3 notations ofS;'s and Dg,'s as before. For each sét;, we
Elston

define the probability’s; of a mobile node entering any cell

25 . .
in S; when it leaves the current cell. Here, we have
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Fig. 3. A local map of Lafayette area. st ~ Z P,
€S
fraction of the allowable delay. Note that the above equation is not an equality. For the first

reason, it is because of the correlation among cells when a

realistic instantiation of the map-based movement model; obllletnodg moves frorr]n onteh cteltlhto an(i;[hte)_::tT(irzlllzstrate g;e
find that the LD algorithm continues to perform effe<:tive|;5x)rre"Jllon ISsue, we show that the probabiiity that a moblle

and significantly reduce the communication distance. node visits a set of cells (i.e., to visit any cell in the set) is
not the sum of the probabilities that it visits each indiatu

C. Summary cell in the set. In Figure 5, the poirt indicates the current

By comparing the calculated theoretical lower bounds afgeation of the mobile node. We want to find the probabilities
the measured expected communication distances to thé tafge the mobile node to visit cell, to visit cell 4, or to visit

cell, we can find that the theoretical bounds very closelycimatgjther one of the cell, respectively.

the measured results in all the network scenarios. Also, the 4t the areas of the shaded regions in Figure 5(a)-5(c) be
LD algorithm shows good performance by achieving commu. " anqs. respectively. Also, let the overall network area

nication distances close to the lower bounds. Moreover, tgg ¢ Assuming the random waypoint movement model, the
performance improves as the nodal speed increases, werify ohapility P, that the mobile node will visit cell 1 from
our claims in Section |II. _ locationC' is s;/S. Similarly, the probability that the mobile
The LD algorithm has been experimentally evaluated {Q,qe il visit cell 4 fromC is given by P, = s,/S. Finally,
perform well despite its simplicity, when compared Withe hronapility of visiting either cell 1 or cell 4 is given by
several other postponement algorithms in [1]. The results b, = s3/5. We may find that?s # P, + Py ass; + 52 # s3
this paper additionally quantify how close LD can matcypich means the probability that a mobile node moves to set of
the theoret|ca,I lower bounds for any postponement algurith oq|is js not exactly equal to the sum of probabilities to move
Moreover, LD's performance approaches the lower bounds @Seach individual cell. Thus, in general, we cannot assume

To summarize, we have evaluated the LD algorithm in

nodal speed increases. Ps; = Y,cs, P Nevertheless, as a first assumption of the
VI. Further Discussion: An Approximation to the approximation approach, we assume that the effect of such a
Theoretical Lower Bound correlation is negligible.

To calculate the theoretical lower bound fbttrips based Even with the correlation issue neglected, we are still not

on the probability matrix approach, we need to obt#ih able to asserPs, = ;cg, Fi. The reason is thaks, should
first, which requiresO((mn)?f) of the previously defined be dependent of the current location of the mobile node. ;Thus

« operations, each of which is performed on two length- our second assumption ssumes that irrespective of thenturre

vectors. Thus, each operation take)(N) time, and the Ioganon, the_ Im0b|le node will always move o a cell
overall complexity isO((mn)3¢N) time. This approach is With probability Ps, = 3 _;cs, P;. Based on this, the next
slow even for moderate-size andn. In this section, we give subsectlon.glves the descrlptlc.)n. of how we can approximate
an alternative approach to obtain a close approximatiohef 1€ theoretical lower bound efficiently. _
theoretical lower bound of expected communication distanc W& summarize our assumptions (though affecting the cor-
the time complexity of the approximation approach is onl{fctness, but simplifying the computation a lot) to get the
O(mn + N). approximated lower bound as follows:

Our approximation approach considers the theoreticallowe « We assume that the correlation between a cat visiting
bound of expected communication distance as a function of each cell at the next step is negligible.
the number of cells visited by the mobile node. It trades « We assume that the cat will always move to ¢ehext
accuracy for speed by simplifying the calculations using tw  with a fixed probabilityPs;, irrespective of the current
assumptions. In the following, we describe the assumptions location.



(a) Probability for cell 1 (b) Probability for cell 4 (c) Probability for cells 1 and 4

Fig. 5. Example to show that probability of a set of cells is exactly the sum of the probabilities of each cell in the gt tb correlations among cells.

Later, in our simulation result, we shall see that the approdtemma 1, we give the following lemma to help in expressing
mated lower bound is indeed very close to both the theoletithe approximated lower bound as a functiontiafe instead.

lower bound derived in Section IIl.

B. Approximating the theoretical lower bound

In this subsection, we based on the two assumptions an
describe how to approximate the theoretical lower boundeNo

that equality signs in the equations are in general inctrbet
will be correct under our two assumptions.

We define Pp, (k), where0 < j < N — 1 to be the
probability that the shortest distance between the molaiten
and the target cell i®)s; after visitingk cells. The calculation
of Pp, (k) is then straightforward:

Pp,(k) = P(visiting some cell inSp)
= 1 — P(does not visit any cell irbo)
= 1-(1-Ps)",

Pp,(k) = P((does not visit any cell irf,) and

(visiting some cell inS1))

Lemma 2 Within a single trip, the expected time the mobile
node stay

(!L) in the starting and ending cells is

SR o, Vinas
37 (Vimas — Viin) 2 Voin

2) in the cell when it is passing through the cell

AR oy Vinaa
Vg — Vimin) 28 Vi

Proof: Please refer to Appendix Il O

Suppose that we have obtained the probabilitgs;q. and
Perossing Of @ mobile node staying inside an end point and

= P(does not visit any cell ir5,) - P((visiting some crossing a cell, respectively, through experiments. Them,

cell in S1) | (does not visit any cell irSy))*

- (1—PSD)’“{1—(1— Ps, )k],

1-— Ps,
Pp,(k) = (1—Ps,—Ps, —..—Ps, )" x
Ps,
{1 — (1 % )’C} :
1—Psy, —Ps, —... — st71
PDN—I(k) = P§N—l'

can calculate the expected time that a mobile node stays in a
cell, called expected sojourn tim&[7], as

E[Ts] - PinsideE[Ti] + PcrossingE[Tc]-

As an example of a network divided into 5 by 5 cell3,, ;4.
and P.,,ssing are obtained experimentally to be 0.454 and

0.546, respectively. Further discussions of the sojoume tbf
a mobile node can be found at [2].

By applying the expected cell sojourn time given by
Lemma 2, we can calculate the expected shortest distance as

Then, we have the expected shortest distance as followsa function of timet. Replacingk by the corresponding travel

N—-1
Eldy(k)] = Y Pp,(k)Ds
j=0

The above equation gives the approximated lower bou

of the expected communication distance as a funct|on
number of cells a mobile node visited. Similar to the use

1According to conditional probabilityP(AB) = P(A)P(B|A).

time (i.e., k multiplies the expected cell sojourn time[T]
given by Lemma 2), we have the approximated theoretical
lower bound of the expected communication distance as a

ction of the maximum allowable delay. Finally, for the

éjmplexny of the approximation approach, we observe that

JstakesO(mn) time to compute allPs;’s, andO(N) time to
compute allPp, (k)’s for any &; in total it takesO(mn + N)

time which is independent df.



C. Simulation results: matrix approach versus approxima- communication. The expected sojourn time result in Lemma 2
tion approach (in Section VI-B) can be regarded as an extension of a similar
This subsection compares the theoretical lower boungisult by Hong and Rappaport [5].
derived by the probability matrix approach and the approx-
imation approach. We assume the rectified random waypoint
movement model with the following setting: the dimensions We have developed a realistic system model which allows
of the network area are 150 m by 150 m; the area is dividégneral accessibility constraints and route selectiondeo
into 25 cells of size 30 m by 30 m; the target cell (insidépecified for a mobile wireless network, while admitting the
which the receiver is located) is set to be the center of tMéll known random waypoint model as a special case. For
network. We conduct three sets of calculations, assumiaty tinovement predicted communication under the random way-
the mobile node moves with an average speed of 5 m/s, 10 n@int model, we have derived fundamental tight lower bounds
and 25 m/s, respectively. (The correspondifign, Vinas) for  Of the expected communication distance achievableaby
them are(4,6), (10,15), and (20, 30), respectively.) postponement algorithm, as a function of the sender’s nodal
In Figure 6, we displayed the lower bounds as a function Peed and the allowable postponement delay. Our analysis
the maximum allowable delay. From the figure, we concluddovides an absolute performance measure of how closely a
that though the lower bound from the approximation approa®stponement algorithm can match the theoretical optintom.
is not tightly matching the one computed by probability rixatr particular, we show that the least-distance algorithm iorpr
approach, it is indeed a very close approximation. work achieves a reduction in the expected communication
We also report the times to compute the theoretical lowéistance within 62% to 94% of the optimal, over a realistic
bound based on the two approaches. The maximum allowaf@ge of nodal speeds. Moreover, the algorithm’s absolette p
delay is set to10 x E[T] (recall thatE[T] is expected time formance increases as the nodal speed or the allowable delay
for a trip), which corresponds to the time for 40 trips in thécreases. Our experimental results have further chaizete
probability matrix approach. Two set of timings are taken, f the performance of movement prediction in an instantiatibn
which the network is partitioned tox 5 cells, and x 9 cells, the map-based model to road travel in the Lafayatte, Indiana
respectively. The results are presented in Table Il. Theysharea.
that the approximation approach takes significantly lesg tim
to compute than the exact approach.

VIIl. Conclusion
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which is to understand how mobility can be used to provide Proof of Lemma 1

a tradeoff between communication delay and communicationProof: Let L denote the single trip distance. Lét;,y;)
distance. The random waypoint model has been analyzedaimd (x5, y>) denote the starting and ending points of a trip,
[9]. Their analysis focuses only on the steady state averagspectively. Note that both the starting and destinatmintp
nodal speed, which leads to the conclusion that the origir@fl a trip are uniformly chosen from within the network. Let
model fails to sustain a meaningful average speed necessary= |z; — z3] and W = |y — 2|, SO that the distance
for simulation experiments. Our analysis is significantlgren of the trip, L, is vZ2 + W?2. To obtain the expected trip
comprehensive, and can be applied to understand the fdistanceE[L]|, we first compute the distributions of and

damental performance limits of movement predicted wiele$l’ as follows.

time for probability matrix approach (s) 0.174 | 10.287
time for approximation approach (s)| 0.001 | 0.003
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The pdf ofzy, or that ofz,, is given by f(x) = 1/X. The are independent of each other, we h&/@] =
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cdf of Z can then be calculated by:

Fz(Z)

= |x1 — 22| < 2)

ngrz
/ / .1'1 ,Tg)dwldwg

X+z
.

f(x2)/ B f(x1)dxydry

+/ZXZ f(%)/ﬂ:iz

f(acl)dacl dwg

4—jﬁzjxx2)jﬁm2+zj(aq)dx1dx2

22X — 22
X2 7

0<z<X.
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(b) Expected speed = 10 m/s

By differentiating Fz (=), we obtain the pdf ofZ as follows:

fz(2)

= Fy(z) =

2 2z

X X2

Similarly, the pdf of W is given by:

Jw(w)

Now, E[L] can be calculated through the joint distribution of

= Fy(w) =

2 2w
Y Y

Z andW. Let @ = arctan(Y/X). We have

E[L]

Y X

/ / V22 +w?fzw(z,w)dzdw
o Jo
Y X

/ / V22 + w2 fz(2) fw (w)dzdw

2
- / / TG~ )l - s
X? 1+ sina sin « X3 1
= —(1 1-—
6Y(n cos v c052a)+15Y2( cos3 )
Y2 cos o 1—cosa)+ Y3 (1- a)
X sin® o sin o 15X2 nda

For the expected timeZ[T] of a single trip, since (i)
11 and (ii) the random variableg and V' Case (i). LetT; denote the sojourn time that a mobile sensor

E[T] = E[LV~-

10
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(c) Expected speed = 25 m/s

Lower bound of expected communication distance (ametion of delay) computed by probability matrix approaatid approximation approach.

E[LIE[V-Y.

For E[V 1], it can be calculated by:
1 Vmam 1 Vmaa: 1
EV™ = - dv = - - d
[V ] /7nin ’Uf(v) ! /7nin ’U(Vmaw - le’ﬂ) Y
ln(Vmam/Vmin)
Vmam - szn ( )

Lemma 1 thus follows by combining Equation 2 with Equa-
tion 1. O

APPENDIXII
Proof of Lemma 2

To begin with, we approximate the network cell by a circle
that has the same area (see Figure 7). The radius of the,circle
denoted byR, is therefore

S
R=— ~0.56s.
N °

Fig. 7. Approximation of cell as a circle.

To calculate the expected cell sojourn time, we consider
two scenarios where a sensor moves in a single trip: (1)
Sensor starts or finishes a trip inside the cell; (2) Sensor
passes through a cell during the trip. Lemma 2 gives the
corresponding expressions.

Proof: We first calculate the expected sojourn time of



is inside the starting cell, and 1&f denote the nodal speed.Then, the expected sojourn time in Case (ii) becomes
The joint pdf of T; andV is given by

4R Vmam
B[T.] = B[ZJE[V™] = In :
meV(ta 1)) = |’U|fZ,V(Zv 'U)- 7T(V;“naw - me) Vinin
where 7 is the distance from the sensor to the cell boundar}is completes the proof of Lemma 2. O

The pdf of T; can be calculated using the above joint
pdf as follows: LetC; = TR Vomas—Vor) and Csy(t) =

S8R
32 Vinae—Vorm) Then, we have

/ frov(t,v)dv _[ [v|fzv(z,v)dv

G fv;im R? — (5)2dv, 0<t< g2t
=44 fﬁ/j — (5)2dv, v St
2R
07 tZ %nin '
thm thaz
Ca(t) (1 — (Hgm)23/2 — [1 - (Has=)2p3/2),
0<t< 32
o (1) [1— (thm)z]s/z 2R 4o 2R .
2 2R : Vinaz = = Vinin’
2R
07 tZ Vmin.

Then, the expected sojourn time in Case (i) becomes

E[T)] = /OO tfr(t)dt

— 0o

8R
= ><
37T(Vmam - szn)

2R

Vmaz ] tVinin \o 3/2 tVimaz 2 3/2
[ i gm0

2R
V7n1ﬂn1 tV
Z(1 — (Z2mnN2y3/2 gy
+/2R (1= (=557

Vmax

B 8R ! Vinaa
B 37T(Vma;ﬂ - szn) . szn '

To calculate the expected sojourn time in Case (ii),Tlet
denote the sojourn time when the sensor is in a cell other
than the starting and the ending cells (i.e., when the sensor
is crossing a cell in the trip). Le¥. be the length of chord
where the path of the sensor intersects the cell. The pdf.of
is

2
N=— ___ 0<:<2R
Jz.(2) 7w/ (2R)? + 22

Then, the expected chord length is
2R
Bzl = [ afa(:)ds
0

Also, in the proof of Lemma 1, we know that

ln(Vmaz/Vmin)
Vmam - szn .

4R

™

E[V =

11



