
CERIAS Tech Report 2007-77
Towards optimal k-anonymization

 by Tiancheng Li *, Ninghui Li
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

ARTICLE IN PRESS
Data & Knowledge Engineering xxx (2007) xxx–xxx

www.elsevier.com/locate/datak
Towards optimal k-anonymization

Tiancheng Li *, Ninghui Li

CERIAS and Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907-2107, USA
Abstract

When releasing microdata for research purposes, one needs to preserve the privacy of respondents while maximizing
data utility. An approach that has been studied extensively in recent years is to use anonymization techniques such as gen-
eralization and suppression to ensure that the released data table satisfies the k-anonymity property. A major thread of
research in this area aims at developing more flexible generalization schemes and more efficient searching algorithms to
find better anonymizations (i.e., those that have less information loss).

This paper presents three new generalization schemes that are more flexible than existing schemes. This flexibility can
lead to better anonymizations. We present a taxonomy of generalization schemes and discuss their relationship. We present
enumeration algorithms and pruning techniques for finding optimal generalizations in the new schemes. Through exper-
iments on real census data, we show that more-flexible generalization schemes produce higher-quality anonymizations and
the bottom-up works better for small k values and small number of quasi-identifier attributes than the top-down approach.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Privacy; Anonymization; Generalization
1. Introduction

Organizations, industries and governments are increasingly publishing microdata (i.e., data that contain
unaggregated information about individuals) for data mining purposes, e.g., for studying disease outbreaks
or economic patterns. While the released datasets provide valuable information to researchers, they also con-
tain sensitive information about individuals whose privacy may be at risk. A major challenge is to limit dis-
closure risks to an acceptable level while maximizing data utility. To limit disclosure risk, Samarati and
Sweeney [17] and Sweeney [18,19] introduced the k-anonymity privacy requirement, which requires each
record in an anonymized table to be indistinguishable with at least k � 1 other records within the dataset, with
respect to a set of quasi-identifier attributes. To achieve the k-anonymity requirement, Samarati and Sweeney
[17] and Sweeney [19] used both generalization and suppression for data anonymization. Generalization

replaces a value with a ‘‘less-specific but semantically consistent’’ value. Tuple suppression removes an entire
0169-023X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2007.06.015

* Corresponding author. Tel.: +1 765 586 7289.
E-mail address: li83@cs.purdue.edu (T. Li).

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

mailto:li83@cs.purdue.edu

2 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
record from the table. Unlike traditional privacy protection techniques such as data swapping and adding
noise, information in a k-anonymized table through generalization and suppression remains truthful.

A major thread of research in the area of data anonymization aims at generating k-anonymous tables with
better data quality (i.e., less information loss). This thread of research has resulted in a number of generaliza-
tion schemes. Each generalization scheme defines a space of valid generalizations. A more flexible scheme
allows a larger space of valid generalizations. Given a larger solution space, an optimal generalization in
the space is likely to have better data quality. A larger space also requires a better search algorithm.

Samarati and Sweeney [17] and Sweeney [19] used a generalization scheme that utilizes a value generaliza-
tion hierarchy (VGH) for each attribute. In a VGH, leaf nodes correspond to actual attribute values, and
internal nodes represent less-specific values. Fig. 1 shows a VGH for the work-class attribute. In the scheme
in [17,19], values are generalized to the same level of the hierarchy. One effective search algorithm for this
scheme is Incognito, due to LeFevre et al. [9]. Iyengar [8] proposed a more flexible scheme, which also uses
a fixed VGH, but allows different values of an attribute to be generalized to different levels. Given the
VGH in Fig. 1, one can generalize Without Pay and Never Worked to Unemployed while not generalizing
State-gov, Local-gov, or Federal-gov. Iyengar [8] used genetic algorithms to perform a heuristic search in
the solution space. Recently, Bayardo and Agrawal [4] introduced a more flexible scheme that does not need
a VGH. Instead, a total order is defined over all values of an attribute, and any order-preserving partition (i.e.,
no two blocks in the partition overlap) is a valid generalization. This scheme has a much larger solution space
than previous schemes. Bayardo and Agrawal [4] used the approach in [15] to systematically enumerate all
anonymizations and the OPUS framework by Webb [21] to search for the optimal anonymization. They devel-
oped several effective pruning techniques to reduce the search space that needs to be explored.

The work in this paper is motivated by three observations. First, the scheme proposed by Bayardo and
Agrawal [4] requires a total order on the attribute values. However, it is difficult to define a total order for
a categorical attribute and such a total order limits the possible solutions. For example, consider the attribute
in Fig. 1, assume that one orders the values from left to right; then generalizations that combine State-gov and
Federal-gov but not Local-gov are not considered in this scheme. Second, a VGH reflects valuable information
about how one wants the data to be generalized; this is not utilized in [4]. Again consider Fig. 1, it is more
desirable to combine State-gov with Local-gov than with Private. Therefore, one may combine State-gov with
Private only when all values under Government have been combined together. In other words, one could use
VGHs to eliminate some undesirable generalizations. Third, the search algorithm in [4] is a top-down
approach, which starts from the most general generalization, and gradually specializes it. Such an approach
works well when the value k is large. For smaller k, a bottom-up search is likely to find the optimal general-
ization faster.

In this paper, we improve the current state of the art by proposing three new generalization schemes. Given
a categorical attribute, these schemes allow any partition of an unordered set of values to be treated as a valid
generalization. They also allow a VGH to be used to eliminate some undesirable generalizations. We present a
taxonomy of existing generalization schemes and the new schemes proposed in this paper, and analyze the
relationship among them.

We also develop an approach for systematically enumerating all partitions in an unordered set. Bayardo
and Agrawal [4] used algorithms developed in the artificial intelligence community [15] for enumerating all
Fig. 1. A value generalization hierarchy for the attribute work-class.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 3

ARTICLE IN PRESS
partitions in an ordered set. As we could not find an existing algorithm for the unordered case, we developed
an enumeration algorithm. We believe that such an algorithm may be useful in other contexts.

We perform experiments to compare the performance of these generalization schemes and demonstrate that
optimal k-anonymizations can be obtained for various generalization schemes and flexible generalization
schemes can produce better-quality datasets at the cost of reasonable performance degradation. We find
the optimal anonymization in a bottom-up manner. Comparing with the performance of top-down methods
in [4], we conclude that bottom-up methods are more suitable for smaller k values while top-down methods are
more suitable for larger k values.

The rest of the paper is organized as follows. We present new generalization schemes and a taxonomy of
these schemes in Section 2. In Section 3, we give enumeration algorithms for the three new generalization
schemes. Cost metrics and pruning rules are discussed in Section 4.4 and experimental results are given in Sec-
tion 5. We discuss related work in Section 6 and conclude in Section 7.

2. A taxonomy of generalization schemes

In this section, we describe some notations and discuss generalization schemes and their relationship. We
also present a taxonomy of these generalization schemes.

2.1. Preliminaries

The attribute domain of an attribute is the set of all values for the attribute. An attribute generalization g

for an attribute is a function that maps each value in the attribute domain to some other value. The function g

induces a partition among all values in the attribute’s domain. Two values vi and vj are in the same partition if
and only if g(vi) = g(vj).

An anonymization of a dataset D is a set of attribute generalizations {g1, . . . ,gm} such that there is one attri-
bute generalization for each attribute in the quasi-identifier. A tuple t = (v1, . . . ,vm) in D is transformed into a
new tuple t 0 = (g1(v1), . . . ,gm(vm)).

Another anonymization technique is tuple suppression, which removes the entire record from the table.
Tuple suppression can be very effective when the dataset contains outliers. By removing outliers from the
table, much less generalization is needed and the overall data quality improves. Tuple suppression can be
incorporated into the framework of generalization by first transforming the dataset D into a new dataset
D 0 using anonymization g and then deleting any tuples in D 0 that fall into an equivalence class of size less than
k. Anonymizations that do not allow suppression can be modeled by assigning the penalty of a suppressed
tuple to be infinity. Before discussing algorithms for finding optimal anonymizations, we investigate several
generalization schemes.

2.2. Existing generalization schemes

2.2.1. Basic Hierarchical Scheme (BHS)

Earlier work on k-anonymity focuses on the Basic Hierarchical Scheme (BHS), for example [9,17,18]. In
BHS, all values are generalized to the same level of the VGH. Thus the number of valid generalizations for
an attribute is the height of the VGH for that attribute. For example, there are 3 valid generalizations for
the attribute work-class in Fig. 1. As BHS has a very small space for valid generalizations, it is likely to suffer
from high information loss due to unnecessary generalizations. This motivated the development of other more
flexible generalization schemes.

2.2.2. Group Hierarchical Scheme (GHS)

Iyengar [8] proposed a more-flexible Group Hierarchical Scheme (GHS). Unlike BHS, GHS allows different
values of one attribute to be generalized to different levels. In GHS, a valid generalization is represented by a
‘‘cut’’ across the VGH, i.e., a set of nodes such that the path from every leaf to the root encounters exactly one
node (the value corresponding to the leaf will be generalized to the value in that node). GHS allows a much
larger space of valid generalizations than BHS. For example, for the VGH in Fig. 1, there are 24 + 1 = 17
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

Fig. 2. Partition on continuous attribute Age.

4 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
valid generalizations.1 GHS is likely to produce better-quality anonymizations than BHS. However, the solu-
tion space is still limited by the VGH, and the quality of the resulted dataset depends on the choice of the
VGH.

2.2.3. Ordered Partitioning Scheme (OPS)

The fact that the quality of the resulted dataset depends on the choice of VGHs motivated the Ordered Par-
titioning Scheme (OPS) by Bayardo and Agrawal [4]. OPS does not require predefined VGHs. Instead, a total
order is defined over each attribute domain. Generalizations are defined by a partition according to the order-
ing. For example, a partition of the age attribute domain is given in Fig. 2.

Suppose an attribute domain contains n values, the total number of generalizations is 2n�1. For example,
the total number of valid generalizations for the work-class attribute in Fig. 1 is 27 = 128. While the solution
space is exponentially large, Bayardo and Agrawal [4] showed the feasibility of finding the optimal solution in
OPS through a tree-search strategy exploiting both systematic enumerating and cost-based pruning.

2.3. New generalization schemes

We propose three new generalization schemes, each of which aims at producing higher-quality datasets by
allowing a larger solution space while incorporating semantic relationships among values in an attribute
domain.

2.3.1. Set Partitioning Scheme (SPS)

OPS requires a pre-defined total order over the attribute domain. While it is natural to define a total order
for continuous attributes, defining such a total order for categorical attributes is more difficult. Moreover, this
total order unnecessarily imposes constraints on the space of valid generalizations. Consider Fig. 1, suppose
the total order is defined using the left-to-right order, then OPS does not allow generalizations that combine
State-gov and Federal-gov but not Local-gov; OPS also does not allow generalizations that combine the three
values {Private, Without Pay, Never Worked}, without Inc and Not inc.

We propose the Set Partitioning Scheme (SPS), in which generalizations are defined without the constraint
of a predefined total order or a VGH; each partition of the attribute domain represents a generalization. In
Section 3, we discuss in detail how to enumerate all valid generalizations in SPS. The number of different par-
titions of a set with n elements is known as the Bell number Rota [14], named in honor of Eric Temple Bell.
They satisfy the recursion formula: Bnþ1 ¼

Pn
k¼0

n
k

� �
Bk. The first few Bell numbers are: B0 = B1 = 1, B2 = 2,

B3 = 5, B4 = 15, B5 = 52, There are B8 = 4140 generalizations for the work-class attribute shown in
Fig. 1, as compared to 128 generalizations in OPS. SPS is the most flexible generalization scheme among gen-
eralization schemes with the consistency property.

2.3.2. Guided Set Partitioning Scheme (GSPS)

SPS does not take into account the semantic relationship among values of an attribute domain. For exam-
ple, the three values State-gov, Local-gov, and Federal-gov are semantically related while State-gov and Private

are not.
1 Except for the most general generalization, each ‘‘cut’’ contains a subset of the four nodes in the middle layer and some nodes on the
leaf layer. Thus the total number of ‘‘cuts’’ is one plus the number of subsets of the four nodes in the middle layer.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 5

ARTICLE IN PRESS
To incorporate such semantic information, we propose the Guided Set Partitioning Scheme (GSPS), which
generalizes data based on the VGHs. GSPS defines a generalization g to be valid if whenever two values from
different groups are generalized to the same value v, all values in that two groups should all be generalized to v.
If we define the semantic distance between two values to be the height of the lowest common ancestor of the
two values in the VGH, then the intuitive idea behind GSPS is that if two values x and y are in one partition,
then any value that is semantically closer to x than y must also be in the same partition. (The same applies to
any value that is semantically closer to y than x.) Note that a value that has the same semantic distance to x as
y does not need to be in the same partition. For example, consider the VGH for work-class attribute shown in
Fig. 1, if Local-gov and Inc are combined together, then the five values (State-gov, Local-gov, Federal-gov, Inc,
Not Inc) must be in the same partition while the other three values do not need to be in that partition.

We can view SPS as a special case of GSPS. GSPS becomes SPS when the VGH is degenerated, i.e., a VGH
that has only two levels: one root at the root level and all values at the leaf level. However, with the constraints
imposed by VGHs, undesired generalizations that do not maintain semantic relationship among values of an
attribute domain can be eliminated while the time needed to find an optimal anonymization reduces as the
search space is smaller.

While both GSPS and GHS use VGHs, they are different in a number of ways. GHS requires that values in
the same group be generalized to the same level; whereas in GSPS, values in the same group can be generalized
to different levels. GSPS allows a larger space of valid generalizations than GHS does. When no VGH is pro-
vided (or one uses the degenerated VGH), there are only two valid generalizations in GHS, while the number
of valid generalizations in GSPS is maximized to be the same as in SPS.
2.3.3. Guided Ordered Partitioning Scheme (GOPS)

Similar to SPS, OPS does not keep semantic relationship among values in an attribute domain. Consider
the age attribute, one may consider [20–29] and [30–39] to be two different age groups and two values in the
two groups should not be in the same partition unless the two groups are merged in order to achieve a desired
level of anonymity. Thus, partitions such as [28–32] are prohibited.

To impose these semantic constraints, we propose the Guided Ordered Partitioning Scheme (GOPS).
GOPS defines a generalization g to be valid such that if two values x and y (x < y) from two different groups
are in the same partition pg, any value between the least element in x’s group and the largest element in y’s
group must also be in pg.

The relationship between GOPS and OPS is the same as that between GSPS and SPS. GOPS reduces to
OPS when a degenerated VGH is used.
2.4. Putting it all together

Fig. 3 shows a taxonomy of the generalization schemes. We now analyze the relationship among them with
regard to the space of valid generalizations. Given two generalization schemes g1 and g2, the notation g1 � g2

means that the space of valid generalizations allowed by g1 is a proper subset of the space of valid generaliza-
tions allowed by g2. We then have the following relationship:
2.4.1. BHS � GHS � GOPS

It is easy to see that if all values are generalized to the same level, values in the same group are also general-
ized to the same level. Also, if we define the total order among all values with respect to the hierarchy. For the
‘‘workclass’’ attribute, we can define the total order: State-gov � Local-gov � Federal-gov � Pri-
vate � Inc � Not Inc �Without Pay � Never worked. Then we can easily see that any valid generalization
in GHS is also valid in GOPS.
2.4.2. GOPS � OPS � SPS

When no hierarchies are defined, GOPS becomes OPS. When no orderings are defined, OPS becomes SPS.
Hierarchies and orderings add more constraints to the definition of valid generalizations.
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

Fig. 3. A taxonomy of generalization schemes.

Fig. 4. ‘‘Solution space’’ relationship.

6 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
2.4.3. GOPS � GSPS � SPS

When no orderings are defined, GOPS becomes GSPS. When no hierarchies are defined, GSPS becomes
SPS. Hierarchies and orderings add more constraints to the definition of valid generalizations.

The partial order relationship among the six generalization schemes is shown in Fig. 4.
We point out that one can use a combination of generalization schemes for different attributes. For exam-

ple, one can use SPS for categorical attributes and OPS for continuous attributes.

3. Enumeration algorithms

We now study how to find the optimal anonymizations in the three new generalization schemes: SPS, GSPS
and GOPS. To find the optimal anonymization in a scheme, we need to systematically enumerate all anony-
mizations allowed by the scheme and find the one that has the least cost. The problem of identifying an opti-
mal anonymization in OPS has been framed in [4] as searching through the powerset of the set of all attribute
values, which can be solved through the OPUS framework in [21]. OPUS extends a systematic set-enumeration
search strategy in [15] with dynamic tree arrangement and cost-based pruning for solving optimization prob-
lems. The set-enumeration strategy systematically enumerates all subsets of a given set through tree expansion.
See [4] for a description of the algorithm.

In Section 3.1 we present our algorithm for enumerating all generalizations of a single attribute in SPS
using tree expansion. In Section 3.2, we present an algorithm for enumerating all anonymizations in SPS,
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 7

ARTICLE IN PRESS
which revokes the algorithm for a single attribute in Section 3.1. We describe how to adapt the algorithms for
GOPS and GSPS in Section 3.3.

3.1. An enumeration algorithm for a single attribute in SPS

Let R be the domain of one attribute. In SPS, each generalization for the attribute corresponds to one par-
tition of R. A partition of R is a family of mutually disjoint sets S1,S2, . . . ,Sm, such that
R = S1 [S2 [� � � [Sm. Our objective is to enumerate all partitions on R without visiting any partition more
than once. We use breadth-first search (BFS) strategy to build an enumeration tree of all partitions of R. The
root of the tree is the partition in which each value itself is in a set; this represents the most specific general-
ization, where no value is generalized. Each child of the node is generated by merging two sets in the partition
into one set. The challenge is to generate each partition exactly once. Before describing the algorithm, we show
the partition enumeration tree for the alphabet {1, 2,3,4} in Fig. 5. This may help understand the key ideas
underlying the enumeration algorithm.

Given a node that has partition P = hS1, . . . ,Sti, a child node of P is generated by merging two sets Sj and Si

(1 6 j < i 6 t) in P. If all pairs of Si and Sj are allowed to be merged, then a partition may be encountered
multiple times. The challenge is to identify under which conditions can Si and Sj merge so that each partition
is generated exactly once.

The algorithm is given in Fig. 6. The key component of the algorithm is the Child_Nodes procedure which
finds all the child nodes of a given partition P. In the algorithm, two sets Sj and Si can be merged if and only if
all three of the following conditions are satisfied. For each of the condition, we briefly explain the intuition
behind it.

(1) Si contains a single element e. Suppose that Si = {e1,e2}, then the child partition with Si and Sj merged
can be generated elsewhere in the tree with Sj first merged with {e1} and then with {e2}.

(2) Each set in between (i.e., Sj+1, . . . ,Si�1) contains a single element. Suppose there is a k such that
j + 1 6 k 6 i � 1 and Sk contains more than one element, then elsewhere in the tree, we have a partition
in which Sk is replaced by several sets, each of which contains exactly one element. The partition with Si

and Sj merged will be generated there.
(3) Each element in Sj is less than e. Suppose that Sj = {e1,e2} with e1 < e < e2, then the partition with Si and

Sj merged can be generated elsewhere in the tree with {e1} first merged with {e} and then with {e2}. Note
that Sj must contain an element that is less than e, because Sj comes before Si.

For each set Si in P, the algorithm checks if Si contains more than one element. If so, Si cannot be merged
with any set preceding it. Otherwise (Si contains exactly one element e), the algorithm checks preceding sets
Sj of Si, starting from Si�1. If every element in Sj is less than e, a new child partition is generated by removing Si

and Sj, and adding Si [Sj as the jth element of the partition. Otherwise (some element in Sj is larger than e), Si
Fig. 5. Partition enumeration tree over alphabet {1,2,3,4}.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

Fig. 6. Enumeration algorithm for a single attribute.

8 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
cannot be merged with any set preceding Sj. If Sj contains more than one element, Si cannot be merged with
any set preceding Sj either.

Example 1. Consider the partition h{1},{2,3},{4}, {5}i. This partition has three child partitions by merging
{4} with {2,3}, or merging {5} with {4}, or merging {5} with {2, 3}. The resulting partitions are
h{1}, {2,3,4},{5}i, h{1},{2,3},{4,5}i and h{1},{2,3,5},{4}i.

Example 2. Consider the partition h{1,4}, {2},{3}, {5}i. This partition has four children by merging {3} with
{2}, or merging {5} with {3}, or merging {5} with {2}, or merging {5} with {1,4}. The resulted partitions are
h{1, 4},{2,3},{5}i, h{1,4},{2}, {3,5}i, h{1,4}, {2,5},{3}i, and h{1,4,5},{2},{3}i.

The following theorem states the correctness of the algorithm.

Theorem 1. The algorithm in Fig. 6 enumerates all partitions of S in a systematic manner, i.e., each partition of S

is enumerated exactly once.

Proof Sketch. Consider a partition P ¼ hfa11; a12 . . . a1t1g; fa21; a22; . . . a2t2g; . . . ; fas1; as2; . . . astsggi of S, such
that (1) aij < aik for i = 1,2, . . . , s and 1 6 j < k 6 ti. (2) aj1 < ak1 for 1 6 j < k 6 s. We show that there is exactly
one valid sequence of merging that results in this partition; this shows that the partition is generated exactly
once in the tree.

In order to make the proof concise, we denote ‘‘merging e to the set s’’ as he, si. Then we give an order of
merging that results in P from the initial partition Po:ha12,{a11}i, ha13,{a11,a12}i, . . . , ha1t1

; fa11; a12; . . . a1t1�1gi,
ha22, {a21}i, ha23, {a21, a22}i, . . . , ha2t2

; fa21; a22; . . . a2t2�1gi, . . . , has2, {as1}i, has3, {as1, as2}i, . . ., hasts ; fas1; as2;
. . . asts�1gi.

We can easily see that all
Ps

i¼1ðti � 1Þ merges are valid and therefore the partition P is enumerated in our
algorithm.

We can show that the above ordering is unique through two observations:

(1) aij must be merged before aik for any i = 1,2, . . . , s and 1 6 j < k 6 ti. Since aij < aik and aij cannot be
merged with a set that contains aik which is a larger element than aij.

(2) aip must be merged before ajq for any 1 6 i < j 6 s, 1 < p 6 si and 1 < q 6 sj. Two cases are identified:
Plea
doi:1
• aip < ajq. Since if an element is merged, any other elements before it cannot be merged, we see that aip

must be merged first.
• aip > ajq. Since an element cannot be merged with any set before a set which contains more than one

element, aip must be merged earlier than ajq. h
se cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
0.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 9

ARTICLE IN PRESS
We have shown that our algorithm enumerates all partitions on S and each partition is enumerated exactly
once. The enumeration algorithm is thus systematic. As we have mentioned, the total number of valid gener-
alizations with n values in SPS is Bell Number B(n). The complexity of the enumeration algorithm is thus
O(B(n)). The asymptotic formula of B(n) (according to wikipedia) is BðnÞ � 1ffiffi

n
p ½kðnÞ�nþ

1
2ekðnÞ�n�1 where

k(n) = eW(n) and W(n) is the Lambert W function and satisfies W(n)eW(n) = n.
Note that our enumeration algorithm is ‘‘bottom-up’’ in that it starts from the original dataset and incre-

mentally generalizes the dataset until every value is generalized to the most general value. However, in the rep-
resentation of the enumeration tree, the top node represents the original dataset and a child node represents a
more general generalization. Although our algorithm visits all nodes in a ‘‘top-down’’ manner, our algorithm
is a ‘‘bottom-up’’ algorithm.

3.2. An anonymization enumeration algorithm for SPS

Recall that an anonymization is a set of attribute generalizations {P1,P2, . . . ,Pm} consisting of one attribute
generalization per attribute. In this section, we build an enumeration tree to enumerate all possible anonymi-
zations. Each node in the enumeration tree has m attribute generalizations (one for each attribute) and an
applicator set. An applicator set is an ordered subset of {1, . . . ,m}, denoting the order in which the attributes
are to be expanded. By applying each applicator in the applicator set of a node, we obtain a set of children of
that node. For example, the first set of children of a node is the set of anonymizations created by generalizing
the attribute specified by the first applicator. A child of a node inherits all other applicators and inherits the
applicator that has been applied if the attribute corresponding to the applicator can still be generalized. Fig. 8
shows an enumeration tree of two attributes with three and two values, respectively.

Fig. 7 shows an algorithm using Breadth-First Search (BFS) strategy to systematically enumerate all pos-
sible anonymizations. The Anonymization_Enumeration procedure uses a queue structure. Each time a node is
removed from the queue, all its children computed by the Child_Nodes procedure are inserted to the queue.
The Child_Nodes procedure applies each applicator in the applicator set to the anonymization and calls the
Child_Partitions procedure in Fig. 6 to find all child partitions of the given partition. This child partition
replaces the original partition in the anonymization and the applicator set is updated according to whether
the child partition can still be generalized or not.

Example 3. Consider a node {h{1,2},{3}, {4}i, h{1}, {2}i} with AS = {1,2}. By applying the first applicator 1,
we obtain three child nodes, namely, {h{1, 2,3}, {4}i, h{1},{2}i}, {h{1,2},{3,4}i, h{1}, {2}i}, and
{h{1,2,4},{3}i, h{1},{2}i}. By applying the second applicator 2, we obtain one child nodes, namely,
{h{1,2}, {3},{4}i, h{1, 2}i}. Therefore, this node has four child nodes in total.
Fig. 7. Enumeration algorithm for anonymizations.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

Fig. 8. Enumeration tree of anonymizations with two attributes.

10 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
3.3. Enumeration algorithms for GSPS and GOPS

The enumeration algorithm for SPS described in Sections 3.1 and 3.2 can be adapted for GSPS. The only
difference is that when we expand a node, we examine each of its child nodes to see if this child node represents
a valid generalization with respect to the VGH or not. If yes, the child node is added to the queue. Otherwise,
the algorithm identifies all sets of attribute values that need to be merged to get a valid generalization and
check whether such merging is allowed according to the three conditions described in Section 3.1. If such
merging is allowed, then a new node is created. This enumeration approach remains systematic and complete.
GSPS allows fewer valid generalizations than SPS since undesired generalizations that violate the VGHs are
regarded as invalid generalizations in GSPS. GSPS becomes SPS when degenerated VGHs are used. There-
fore, GSPS is a more sophisticated scheme than SPS.

Example 4. Consider the work-class hierarchy in Fig. 1 and the partition h{1},{2,3},{4}, {5,6},{7}, {8}i. In
SPS, this partition has 4 child partitions. But in GSPS, this partition has only 1 child partition by merging {8}
with {7}. The resulted partition is: h{1}, {2,3},{4},{5, 6},{7,8}i. The other 3 child partitions are invalid with
regard to the hierarchy.

Enumeration algorithm for OPS can also be adapted for GOPS using the same approach.

Example 5. Consider the work-class hierarchy in Fig. 1 and the partition h{1},{2,3},{4}, {5,6},{7}, {8}i. In
OPS, this partition has 2 child partitions. But in GOPS, this partition has only 1 child partition by merging {8}
with {7}. The resulted partition is: h{1}, {2,3},{4},{5, 6},{7,8}i.
4. Cost metrics and cost-based pruning

In this section, we discuss several cost metrics and compare them in terms of effectiveness in measuring
information loss. We then employ cost-based pruning rules to reduce the search space.

4.1. Cost metrics

To model an optimal anonymization, we need a cost metric to measure the data quality of the resulted data-
set. One widely used metric is the discernibility metric (DM) in [4], which assigns a penalty to each tuple
according to the size of the equivalence class that it belongs to. If the size of the equivalence class E is no less
than k, then each tuple in E gets a penalty of jEj (the number of tuples in E). Otherwise each tuple is assigned a
penalty of jDj (the total number of tuples in the dataset). In other words,
Plea
doi:1
CDM ¼
X

8E s:t: jEjPk

jEj2 þ
X

8E s:t: jEj<k

jEjjDj
se cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
0.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 11

ARTICLE IN PRESS
DM measures the discernibility of a record as a whole. We propose Hierarchical Discernibility Metric (HDM),
which captures the notion of discernibility among attribute values. For example, consider the work-class attri-
bute in Fig. 1, suppose 50 records have value Inc and 200 records have value Not-inc. If values Inc and Not-inc

are combined (e.g., generalized to Self-employed), we would expect a larger information loss for value Inc than
for value Not-Inc.

Given an attribute generalization g and its corresponding partition P, suppose that a record has value v for
this attribute, and v is in the group e 2 P. We quantify the information loss for generalizing v in this record.
Let N be the total number of records. Let Ne be the number of records that have values in the group e. Let Nv

be the number of records that have value v. In our metric, generalizing values from v to e leads to a penalty of
(Ne � Nv)/(N � Nv). For the earlier example, suppose the total number of records is 1000, generalizing Inc to
Self-employed gets a penalty of (250 � 50)/(1000 � 50) = 4/19 while the penalty is (250 � 200)/
(1000 � 200) = 1/16 when Not-inc is generalized to Self-employed.

The penalty for a single attribute is between 0 and 1. No penalty is incurred when the value is not general-
ized and a penalty of 1 is incurred when the value is generalized to the most general value. The penalty for a
record is the average penalty for each attribute. Therefore, it is also between 0 and 1. Compared with the
entropy-based information loss measure proposed by Domingo-Ferrer and Torra [5], our HDM measure is
a generalization of the discernibility metric (DM) and can be efficiently computed.

4.2. A comparison of cost metrics

Before we present cost-based pruning techniques, we give a brief comparison of DM and HDM. First and
foremost, they differ in that DM calculates discernibility at tuple level, whereas HDM calculates discernibility
at cell level. To more clearly understand their similarities and differences, we consider their effect when the data
has only one attribute in the quasi-identifier.

When we generalize two values vA and vB to a more general value vC, both metrics assign a larger penalty for the
value where fewer records have that value. Suppose that there are nA records with value vA and nB records with
value vB, and we generalize vA and vB to vC where there are nC = nA + nB records having value vC. Using DM, the
extra penalty for records with vA is nC � nA while the extra penalty for records with vB is nC � nB. If nA > nB, then
records with vB will get a larger penalty than those with vA. The same is true for HDM, where the extra penalty for
records with vA is (nC � nA)/(n � nA) = 1 � (n � nC)/(n � nA) and the extra penalty for vB is (nC � nB)/
(n � nB) = 1 � (n � nC)/(n � nB). Here, n is the total number of records in the table. If nA > nB, then vB will
get a larger penalty than vA. In this aspect, the two metrics are consistent with each other.

The two metrics differ in that HDM considers the relative frequency of a value in the overall table while
DM relies only on the relative frequency of a value in the group. In other words, HDM considers the total
number of records in the whole table in assigning a penalty to a value while DM does not. Recall that the
average penalty for generalizing vA to vC in DM is nC � nA. Therefore, for DM, generalizing a value where
2 records have that value to a group of 4 records is exactly the same for generalizing a value where 1000
records have that value to a group of 1002 records. However, intuitively, the first value should get a larger
penalty. Our HDM metric captures that aspect.

Another difference between DM and HDM is that DM is defined on one table whereas HDM is defined based
on one generalization. We can also define HDM based on one table as follows. Suppose there are nA records with
the original value vA, and in one table T1, vA is generalized to vA1 where there are nA1 records with value vA1. Then,
the cost associated with table T1 on value vA1 is defined as nA1/(n � nA). Generalizing vA to vA1 will then take cost
(nA1 � nA)/(n � nA), which is exactly what we have defined for HDM. Generalizing vA1 to vA2 will take cost
(nA2 � nA1)/(n � nA). The sum of the two costs is (nA2 � nA)/(n � nA), which is exactly the cost for generalizing
vA directly to vA2. This shows that our HDM metric satisfies the addition property.

4.3. Cost-based pruning

Using the cost metrics, we can compare the data quality of a dataset produced by an anonymization. The
optimal anonymization is defined as one that results in the least cost. To find the optimal anonymization, the
naive way may traverse the whole enumeration tree using some standard strategies such as DFS or BFS. But
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

12 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
such an algorithm is impractical when the number of possible anonymizations becomes exponentially large.
Some pruning heuristics must be applied in order to reduce the search space and make the algorithm practical.
Significant performance improvement can be achieved if we can effectively prune parts of the enumeration tree
that will not produce an optimal solution.

In [4], the authors identified a number of pruning rules using a branch and bound approach. Their pruning
algorithm first tries to prune the node itself. A node can be pruned only when we are assured that none of its
descendants could be optimal. This decision can be made by the lower-bound cost computation, which calcu-
lates the lowest cost possible for any node in the subtree rooted at that node. When a node is encountered, the
lowest cost for the subtree rooted at that node is computed and compared with the current best cost. If it is no
less than the current best cost, the whole subtree rooted at that node can be pruned. If the node cannot be
pruned, the algorithm employees useless value pruning which tries to prune value from the applicator set
which cannot lead to a better anonymization.

In our bottom-up approach, these two pruning rules can be applied. Starting from the original data, we use
BFS to go through the anonymization enumeration tree built in the previous section. We keep track of the
current best cost and compare with the lower-bound cost of each node we encounter to decide whether
the node can be pruned or not. If not, we compare the lower-bound cost of a new node by applying one of
the applicators to decide whether the applicator can be pruned from the applicator set or not.

The key component of the pruning framework is the lower-bound cost computation, which calculates the
lowest cost possible for any node in a subtree. In this section, we first describe how to estimate the lower-
bound cost that nodes in a subtree can have. Then we discuss several new pruning techniques that can be used
to dramatically cut down the search space.

4.3.1. Lower-bound cost computation for HDM

The lower-bound cost of a node N is an estimate of the lowest cost possible for any node in the subtree
rooted at N. The lower-bound cost can be used to decide whether a whole subtree can be pruned, i.e., if
the lower-bound cost of N is no less than the current best cost, then the whole subtree rooted at N can be
pruned.

Calculating the lower-bound cost for DM is described in [4]. We now describe how to calculate lower-
bound cost for HDM. Let A be an ancestor of node N. We denote the penalty assigned to record r at node
N as penalty(N, r). Let r1 be a record that is not suppressed by A. We observe that r1 is also not suppressed by
N. Moreover, the equivalence class that contains r1 at A is a subset of the equivalence class that contains r1 at
N and therefore penalty(N, r1) P penalty(A, r1). Let r2 be a record that is suppressed by A. Then r2 may be sup-
pressed by N or not. penalty(N, r2) can be as small as 0.

Based on the above argument, we can compute the low-bound cost of node A as LBHDM(A)
Plea
doi:1
LBHDMðAÞ ¼
X
r2D

penaltyðA; rÞ if r is not suppressed

0 otherwise

�

Since the applicability of pruning rules is dependent on what cost metric is used. Here, we identify the prop-
erties that a cost metric should have so that the pruning rules are applicable:

(1) Penalty for a suppressed record should be at least as high as that for an unsuppressed record.
(2) If an unsuppressed record is generalized, the penalty for that record increases after the generalization.

This two requirements on cost metric are both sufficient and necessary for the pruning rules to be applica-
ble. Below we identify two kinds of pruning rules: node pruning and applicator pruning.

4.4. New pruning techniques

In this paper, we introduce a new type of pruning technique: useful applicator pruning. This category of
rules tries to identify applicators that must be applied in order to reach an optimal solution and prune nodes
that do not generalize on that applicator. Such an applicator is called useful. Then we can prune nodes that do
not include that applicator. The following criteria identifies useful applicators.
se cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
0.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 13

ARTICLE IN PRESS
Useful applicators can be identified by checking whether the applicator is the only one that can lead to a k-
anonymized table. Specifically, if for any combination of applicators other than v, there exists a record r such
that r falls into an equivalence class of size less than k, then v is a useful applicator since only by generalizing
on v we can have a k-anonymized table without suppressing record r. However, this has the limitation that we
require all records satisfy k-anonymity property and suppression is not allowed.

For our pruning techniques to be effective, it is imperative that we find an anonymization close to the opti-
mal anonymization early, since it can then be used to eliminate a large number of suboptimal anonymizations.
We propose two techniques that can be used effectively to identify an anonymization that is close to the opti-
mal anonymization, i.e., find a cost that is close to the best cost:

4.4.1. Seeding

Seeding involves the initialization of the best cost. The initial best cost can be set as the cost associated with
the original dataset(e.g., jDj * jDj for DM and jDj for HDM). However, more pruning can be done if the ini-
tial best cost value can be estimated more precisely. For example, the initial best cost can be estimated using
costs associated with a set of randomly selected nodes.

4.4.2. Modified BFS search strategy

We modify the simple BFS search strategy to achieve this. One solution is that when we find a node whose
lower-bound cost is smaller than the current best cost, we do not immediately add all its children to the queue.
Instead, we add that node to the queue for later re-consideration. Since the cost associated with that node has
already been computed, it is available when it is retrieved from the queue for the second time. At that point,
since the current best cost may have decreased, it is likely that the lower-bound cost of that node is larger than
the current best cost, in which case the whole subtree rooted at that node can be pruned.

During our search process, we often need to select a node from the queue or an applicator from the appli-
cator set as the next node or applicator for consideration. The choice of a good node or application selection
order would eliminate a large number of nodes or application from examination.

4.4.3. Node rearrangement
At each step of the search algorithm, we choose one node from the queue for consideration. In simple BFS, we

choose the node at the front of the queue to be the next node for consideration. A better approach is to choose the
node with smallest lower-bound cost, with the hope that the best cost can be identified more quickly.

4.4.4. Applicator rearrangement

Once we decide to consider a node, we need to apply one applicator to get its children. But which applicator
to use is a subjective issue. One approach is to order all the applicators according to ascending order of how
many equivalence classes are merged by generalizing on that applicator. A good choice of the next applicator
to be applied can improve the performance of the algorithm; otherwise, good anonymizations are distributed
uniformly among the search tree.

We will evaluate and compare the effectiveness of different pruning techniques in cutting down the search
space in the experiment.

5. Experiments

The goal of the experiments is to compare the performance (both in terms of efficiency and data quality) of
different generalization schemes, the efficiency of the bottom-up approach and the top-down approach, and
the effectiveness of different pruning techniques. To achieve this goal, we implemented all six generalization
schemes and performed experiments using a real-world dataset.

5.1. Experimental setup

The dataset used in the experiments is the adult dataset from the UC Irvine machine learning repository,
which is comprised of data collected from the US census. We used nine attributes of the dataset, as shown in
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

14 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
the following figure. Records with missing values are eliminated and there are 30162 valid records in total. The
dataset used in the experiment is described in Fig. 9. The algorithms are implemented in JAVA and experi-
ments are run on a 3.4 GHz Pentium 4 machine with 2 GB Physical Memory Space.

5.2. Experimental results

We use coarse partitioning on the age attribute, where the domain was pre-partitioned into 15 intervals,
with each interval containing exactly a 5-year range. Using coarse partitioning, the search space is reduced
dramatically while still large enough to define the optimal anonymization.

5.2.1. Efficiency comparisons of the bottom-up approach and the top-down approach

Our first experiment compares the efficiency of the bottom-up approach with that of the top-down
approach. We first compare the two approaches using fixed four QI values: {Age,Marital_Status,Race,Gen-

der}. Fig. 10a shows the Efficiency of the bottom-up approach and the top-down approach with varied k val-
ues using OPS and SPS. As we can see, the bottom-up approach runs faster than the top-down approach for
small k values like 2 or 3. However, for larger k values like 10, 15 or 20, the top-down approach finds the opti-
mal anonymization faster. This is because for smaller k values, the original dataset does not need to be gen-
Attribute Type # of values Height
1 Age Numeric 74 5
2 Work-class Categorical

Categorical
Categorical
Categorical
Categorical
Categorical

8 3
3 Education 16 4
4 Country 41 3
5 Marital—Status 7 3
6 Race 5 3
7 Gender 2 2
8 Occupation Sensitive 14 3
9 Salary Sensitive 2 2

Fig. 9. Description of the Adult dataset used in the experiment.

Fig. 10. Efficiency comparisons of the bottom-up approach and the top-down approach.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 15

ARTICLE IN PRESS
eralized much in order to achieve k-anonymity. Therefore, a bottom-up approach which starts from the ori-
ginal dataset would find the optimal anonymization faster. On the contrary, for larger k values, a top-down
approach would run faster since the dataset has to be generalized much to achieve k-anonymity.

We also compare the two approaches using varied QI size. Fig. 10b shows the performances of the two
approaches with regard to different QI size using OPS and SPS. From the figure, we see that the bottom-
up approach outperforms the top-down approach when QI size is small and the top-down approach works
better when the QI size is large. For smaller QI size, few generalization steps are needed in order to achieve
k-anonymity. Therefore, the bottom-up approach would find the optimal anonymization faster. On the con-
trary, when the QI size is large, most of the attributes have to be generalized to high levels on the taxonomy
tree. This is consistent with the finding by Aggarwal [1] that large amount of information has to be lost in
order to achieve k-anonymity, especially when the data contains a large number of attributes.

5.2.2. Efficiency comparisons of different generalization schemes

Our second experiment compares the efficiency of various generalization schemes. We first compare the effi-
ciency with varied quasi-identifier size, shown in Fig. 11a with fixed k = 5. As we expect, the exponentially
increasing search space greatly increases the running time. Also, for the same generalization scheme, the run-
ning time increases as we use a larger quasi-identifier.

We also compare the efficiency of the six generalization schemes with varied k values. Fig. 11b shows the
experimental results. Since we use a bottom-up search method, we would expect to find the optimal solution
very quickly for small k values. As we expect, the running time of the generalization schemes increases as k
increases for each generalization scheme. The data reported in [4] shows that a top-down search method
can find the optimal solution quickly for larger k values. The two search directions thus complement each
other.

5.2.3. Data quality comparisons of different generalization schemes

Our third set of experiment measures the data quality of the resulted dataset produced by the six general-
ization schemes, with varied k values. We measure the data quality by computing the cost associated with the
anonymized dataset. The cost metrics used here are DM and HDM discussed in Section 4.1. For the same
generalization scheme, the cost increases as k increases. This can be explained by the fact that a larger k value
implies higher privacy level, which in turn results in a larger cost. For the same k value, the cost decreases for
the more sophisticated generalization schemes. This can be explained by the fact that the more sophisticated
generalization schemes allow more valid generalizations and produce a dataset with better data quality.
Fig. 11. Efficiency comparisons of the six generalization schemes.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

16 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
The experiment results are consistent with our analysis. Fig. 12a shows the discernibility metric cost for the
six generalization schemes with varied k values. Fig. 12b shows the hierarchical discernibility metric cost for
the six generalization schemes with varied k values.

5.2.4. Effectiveness of different pruning techniques

Finally, we experimented with the effectiveness of different pruning techniques in cutting down the search
space. We test the two classes of techniques described in Section 4.4: (1) seeding & modified BFS, and (2) node
& applicator rearrangement. The results are shown in Fig. 13. As we can see, the use of these two classes of
techniques can effectively the performance in finding the optimal anonymizations. The combination of these
Fig. 13. Effectiveness comparisons of different pruning techniques.

Fig. 12. Data quality comparisons of the six generalization schemes.

Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx 17

ARTICLE IN PRESS
two techniques could reduce the running time by up to 60%. In general, the first technique is more effective (it
can reduce the running time by up to 40%). Thus, early identification of an anonymization close to the optimal
anonymization is an effective approach to elimination the examination of a large number of suboptimal
anonymizations.

6. Related work

Many generalization schemes have been proposed in the literature to achieve k-anonymity. Most of these
schemes require predefined value generalization hierarchies, for example [7–9,16,17,20]. Among these schemes,
some require values be generalized to the same level of the hierarchy in [9,16,17]. Iyengar [8] extends previous
schemes by allowing more flexible generalizations. In addition to these hierarchy-based schemes, partition-
based schemes have been proposed for totally-ordered domains in [4]. These schemes and their relationship
with our proposed schemes are discussed in detail in Section 2.

All schemes discussed above satisfy the ‘‘consistency property’’, i.e., multiple occurrences of the same attri-
bute value in a table are generalized in the same way. There are also generalization schemes that do not have
the consistency property. In these schemes, the same attribute value in different records may be generalized to
different values. For example, LeFevre et al. [10] propose Mondrian multidimensional k-anonymity, where
each record is viewed as a point in a multidimensional space and an anonymization is viewed as a partitioning
of the space into several regions. Another technique to achieve k-anonymity requirement is clustering, e.g.,
[6,3]. In this paper, we focus on generalization schemes that have the consistency property. We feel that the
consistency property is a desirable property for many usages of the data, especially for data mining
applications.

On the theoretical side, optimal k-anonymity has been proved to be NP-hard for k P 3 in [2,13], and
approximation algorithms for finding the anonymization that suppresses the fewest cells have been proposed
in [2,13].

Recently, Machanavajjhala et al. [12] proposed the notion of ‘-diversity as an alternative privacy require-
ment to k-anonymity. Li et al. [11] addressed the limitations of ‘-diversity and proposed the notion of t-close-
ness as a new privacy requirement. The generalization schemes for k-anonymity discussed in this paper can be
adapted for ‘-diversity or t-closeness.

7. Conclusions

In this paper, we introduce three new generalization schemes for k-anonymity and present a taxonomy of
generalization schemes. We give enumeration algorithms for the new generalization schemes and provide
pruning rules and techniques to search for the optimal anonymization using discernibility metric in [4,8]
and the new metric we proposed in Section 4.1. We compared the efficiency and data quality of the general-
ization schemes, the two approaches (bottom-up and top-down), and the effectiveness of pruning techniques
through experiments on a real census data.

References

[1] C. Aggarwal, On k-anonymity and the curse of dimensionality, in: Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB), 2005.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, A. Zhu, Anonymizing tables, in: Proceedings of
International Conference on Database Theory (ICDT), 2005.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, S. Khuller, R. Panigrahy, D. Thomas, A. Zhu, Achieving anonymity via clustering, in:
Proceedings of the 25th ACM Symposium on Principles of Database Systems (PODS), 2006.

[4] R. J. Bayardo, R. Agrawal, Data privacy through optimal k-anonymization, in: Proceedings of the 21st International Conference on
Data Engineering (ICDE), 2005.

[5] J. Domingo-Ferrer, V. Torra, Disclosure protection methods and information loss for microdata, in: Confidentiality, Disclosure and
Data Access: Theory and Practical Applications for Statistical Agencies, 2001, pp. 91–110.

[6] J. Domingo-Ferrer, V. Torra, Ordinal, continuous and heterogeneous k-anonymity through microaggregation, Data Mining and
Knowledge Discovery 11 (2) (2005) 195–212.
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

18 T. Li, N. Li / Data & Knowledge Engineering xxx (2007) xxx–xxx

ARTICLE IN PRESS
[7] B.C.M. Fung, K. Wang, P.S. Yu, Top-down specialization for information and privacy preservation, in: Proceedings of the 21st
International Conference on Data Engineering (ICDE), 2005.

[8] V. S. Iyengar, Transforming data to satisfy privacy constraints, in: Proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), 2002.

[9] K. LeFevre, D. DeWitt, R. Ramakrishnan, Incognito: efficient full-domain k-anonymity, in: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD), 2005.

[10] K. LeFevre, D. DeWitt, R. Ramakrishnan, Mondrian multidimensional k-anonymity, in: Proceedings of the 22nd International
Conference on Data Engineering (ICDE), 2006.

[11] N. Li, T. Li, S. Venkatasubramanian, t-closeness: privacy beyond k-anonymity and ‘-diversity, in: Proceedings of the 23rd
International Conference on Data Engineering (ICDE), 2007.

[12] A. Machanavajjhala, J. Gehrke, D. Kifer, M. Venkitasubramaniam, ‘-diversity: privacy beyond k-anonymity, in: Proceedings of the
22nd International Conference on Data Engineering (ICDE), 2006.

[13] A. Meyerson, R. Williams, On the complexity of optimal k-anonymity, in: Proceedings of the 23rd ACM Symposium on Principles of
Database Systems (PODS), 2004.

[14] G.C. Rota, The number of partitions of a set, American Mathematical Monthly 71 (5) (1964) 498–504.
[15] R. Rymon, Search through systematic set enumeration, in: Proceedings of the 3rd International Conference on Principles of

Knowledge Representation and Reasoning (KR-02), 1992.
[16] P. Samarati, Protecting respondents privacy in microdata release, IEEE Transaction on Knowledge and Data Engineering 13 (6)

(2001) 1010–1027.
[17] P. Samarati, L. Sweeney, Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization

and suppression, Technical Report SRI-CSL-98-04, SRI Computer Science Laboratory, 1998.
[18] L. Sweeney, Achieving k-anonymity privacy protection using generalization and suppression, International Journal on Uncertainty,

Fuzziness and Knowledge-based Systems 10 (5) (2002) 571–588.
[19] L. Sweeney, k-anonymity: a model for protecting privacy, International Journal on Uncertainty, Fuzziness and Knowledge-based

Systems 10 (5) (2002) 557–570.
[20] K. Wang, P.S. Yu, S. Chakraborty, Bottom-up generalization: a data mining solution to privacy protection, in: Proceedings of the 4th

International Conference on Data Mining (ICDM), 2004.
[21] G.I. Webb, Opus: an efficient admissible algorithm for unordered search, Journal of Artificial Intelligence Research (1995) 431–465.

Tiancheng Li received his B.E. degree in Computer Science from Zhejiang University in 2005. He is currently a
Ph.D. candidate in the Computer Science Department at Purdue University. His research interests include data
privacy and database security.
Ninghui Li received his B.E. degree in Computer Science from the University of Science and Technology of China
in 1993, and the M.Sc. and Ph.D. degrees in Computer Science from New York University, in 1998 and 2000. He
is currently an Assistant Professor in Computer Science at Purdue University. Prior to joining Purdue University
in 2003, he was a Research Associate at Stanford University Computer Science Department. Dr. Li’s research
interests are in security and privacy in information systems, with a focus on access control. He has worked on
projects on trust management, automated trust negotiation, role-based access control, online privacy protection,
privacy-preserving data publishing, and operating system access control. He has published more than 50 technical
papers in refereed journals and conference proceedings and has served on the Program Committees of more than
three dozen international conferences and workshops. He is a member of the ACM, the IEEE, the IEEE Com-
puter Society and the USENIX Association.
Please cite this article in press as: T. Li, N. Li, Towards optimal k-anonymization, Data Knowl. Eng. (2007),
doi:10.1016/j.datak.2007.06.015

	Towards optimal k-anonymization
	Introduction
	A taxonomy of generalization schemes
	Preliminaries
	Existing generalization schemes
	Basic Hierarchical Scheme (BHS)
	Group Hierarchical Scheme (GHS)
	Ordered Partitioning Scheme (OPS)

	New generalization schemes
	Set Partitioning Scheme (SPS)
	Guided Set Partitioning Scheme (GSPS)
	Guided Ordered Partitioning Scheme (GOPS)

	Putting it all together
	BHS pr GHS pr GOPS
	GOPS pr OPS pr SPS
	GOPS pr GSPS pr SPS

	Enumeration algorithms
	An enumeration algorithm for a single attribute in SPS
	An anonymization enumeration algorithm for SPS
	Enumeration algorithms for GSPS and GOPS

	Cost metrics and cost-based pruning
	Cost metrics
	A comparison of cost metrics
	Cost-based pruning
	Lower-bound cost computation for HDM

	New pruning techniques
	Seeding
	Modified BFS search strategy
	Node rearrangement
	Applicator rearrangement

	Experiments
	Experimental setup
	Experimental results
	Efficiency comparisons of the bottom-up approach and the top-down approach
	Efficiency comparisons of different generalization schemes
	Data quality comparisons of different generalization schemes
	Effectiveness of different pruning techniques

	Related work
	Conclusions
	References

