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Abstract

We determine rs(n) modulo 2s when s is a prime or a power of 2. For general s, we
prove a congruence for rs(n) modulo the largest power of 2 dividing 2s.
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Let rs(n) denote the number of ways to write an integer n as the sum of s

squares of integers, that is, rs(n) is the number of solutions to

n = x2
1 + x2

2 + · · ·+ x2
s (1)

in integers xi. Clearly, rs(0) = 1.

Exact formulas for rs(n) are known for various small s. These include

r2(n)= 4
∑

2`+1|n

(−1)`, (2)

r4(n)= 8 · 3δ
∑

2`+1|n

(2` + 1), where δ =











1 if n is even,

0 otherwise,
(3)

r8(n)= 16
∑

d|n

(−1)n+dd3. (4)

The formulas (2), (3) and (4) are derived by equating the coefficients in well
known identities of Jacobi. See, for example, page 307 of Smith [3], or Chapter
IX of Hardy [2], or page 121 of Grosswald [1].
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Similar formulas are known for even s up to about 24. Formulas for odd s > 1
are more complicated. They may involve class numbers and, when s > 8,
coefficients of cusp forms.

In this note we prove congruences for rs(n) modulo 2s for infinitely many s.
It is clear from (2), (3) and (4) that for all n ≥ 1 we have

4|r2(n), 8|r4(n), 16|r8(n).

In other words, rs(n) ≡ 0 (mod 2s) for s = 2, 4, 8, and for all n ≥ 1. This
congruence also holds for s = 1.

However, it is not true that rs(n) ≡ 0 (mod 2s) for all s and n ≥ 1. For
example, r3(27) = 32 ≡ 2 (mod 6), r5(20) = 752 ≡ 2 (mod 10), r6(3) = 160 ≡
4 (mod 12) and r9(6) = 7932 ≡ 12 (mod 18). The following theorems explain
these values.

Theorem 1 Let p be a prime and k and n be positive integers. Let s = pk. If

p = 2, then rs(n) ≡ 0 (mod 2s). If p is odd, then

rs(n) ≡











2 (mod 2p) if n = st2 for some positive integer t,

0 (mod 2p) otherwise.

Proof. Suppose first that p = 2 and s = 2k. We prove by induction on k that
rs(n) ≡ 0 (mod 2s). Formulas (2), (3) and (4) give the result for k = 1, 2 and
3.

If we let

ϑ(q) =
∞
∑

n=−∞

qn2

= 1 + 2
∞
∑

n=1

qn2

denote the the generating function of the squares, then it is well known that

(ϑ(q))s = 1 +
∞
∑

n=1

rs(n)qn =
∞
∑

n=0

rs(n)qn

is the generating function for rs(n). Now (ϑ(q))2s = ((ϑ(q))s)2, so for n ≥ 0,

∞
∑

n=0

r2s(n)qn =

(

∞
∑

i=0

rs(i)q
i

)2

.
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When we equate the coefficients of qn on each side we find, for n ≥ 0,

r2s(n) =
n
∑

i=0

rs(i)rs(n− i). (5)

Assume by induction that rs(n) ≡ 0 (mod 2s) for a given s and all n > 0.
Then Equation (5) implies that r2s(n) ≡ 2rs(0)rs(n) (mod 4s2). Using s ≥ 2,
rs(0) = 1 and the inductive hypothesis again, we find r2s(n) ≡ 0 (mod 4s),
and the proof is complete for p = 2.

Now suppose that p is an odd prime and s = pk with k ≥ 1. If the s-tuple
(x1, . . . , xs) is a solution to (1) counted in rs(n), then at least one xi 6= 0. Let
xj be the first nonzero one. Then the pairing

(x1, . . . , xj, . . . , xs)←→ (x1, . . . ,−xj, . . . , xs)

pairs distinct solutions to (1) and shows that their number is even, that is,
rs(n) ≡ 0 (mod 2). (In fact, this pairing shows that rs(n) is even for any
positive integers s and n.)

Let σ denote the permutation of the s-tuple (x1, . . . , xs) that rotates the com-
ponents one position to the left. Let G be the permutation group generated
by σ. Clearly, G is cyclic of order s. When (x1, . . . , xs) is a solution to (1) so
is every permutation of this s-tuple. The rs(n) solutions to (1) are partitioned
by the action of G into disjoint orbits. The size of the orbit of (x1, . . . , xs)
under the action of G divides the order of G, and hence is a power of p. The
size is 1 if and only if xi = t for i = 1, . . ., s and some t. If n = st2, then the
orbits of the two s-tuples (t, t, . . . , t) and (−t,−t, . . . ,−t) each have size 1. In
all other cases the size of the orbit is a multiple of p. Therefore, the number
of solutions to (1) is a multiple of p when n does not have the form st2, and it
is 2 more than a multiple of p when n = st2 for some positive integer t. This
completes the proof.

Corollary 2 If s is an odd prime and n is a positive integer, then

rs(n) ≡











2 (mod 2s) if n = st2 for some positive integer t,

0 (mod 2s) otherwise.

Theorem 3 If s = 2km > 0, with m odd and k ≥ 0, then for all n > 0 we

have

rs(n) ≡ 0 (mod 2k+1).
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Proof. If m = 1, this theorem is just the first part of Theorem 1. Therefore,
we may assume m ≥ 3.

Use induction on k. As noted in the proof of Theorem 1, rs(n) is even for
any positive integers s and n. This shows the base step k = 0. Assume the
congruence holds for some k and some m, that is, for some s. We prove it for
k + 1 and the same m, that is, for 2s. The convolution (5) applies and shows
that r2s(n) ≡ 2rs(n) (mod 22(k+1)). Since 2(k + 1) ≥ k + 2 and 2k+1 divides
rs(n), we have r2s(n) ≡ 0 (mod 2k+2), and the proof is complete.

Remark. Tables of rs(n) suggest that Theorems 1 and 3 describe all congru-
ences modulo a divisor of 2s satisfied by rs(n) for all n > 0. For example,
when s = 9, r9(n) ≡ 0, 2, 6, 8, 12, 14 (mod 18) for n = 1, 225, 3, 9, 6, 81,
respectively. Likewise, r15(n) ≡ 0, 2, 4, . . ., 28 (mod 30) when n = 1, 540, 120,
5, 60, 3, 10, 30, 330, 70, 9, 135, 25, 90, 15, respectively. Also, r18(n) ≡ 0, 4, 8,
. . ., 32 (mod 36) for n = 1, 18, 180, 3, 9, 45, 6, 36, 90, respectively. In each of
these examples, the value of n is the smallest one for which rs(n) lies in the
specified congruence class.
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