
CERIAS Tech Report 2007-94
The Search for Optimality in Online Intrusion Response for a Distributed E-Commerce System

 by Yu-Sung Wu, Gaspar Modelo-Howard, Matthew Glause, Bingrui Foo, Saurabh Bagchi, Eugene Spafford
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

 1

The Search for Optimality in Online Intrusion Response for a Distributed E-
Commerce System

Yu-Sung Wu, Gaspar Howard, Matthew Glause, Bingrui Foo, Saurabh Bagchi, Eugene Spafford+

CERIAS and School of Electrical and Computer Engineering
+CERIAS and School of Computer Science

Purdue University
{yswu, gmodeloh, mglause, foob, sbagchi, spaf}@purdue.edu

Abstract

Providing automated responses to security incidents in a

distributed computing environment has been an important
area of research. This is due to the inherent complexity of
such systems that makes it difficult to eliminate all
vulnerabilities before deployment and costly to rely on
humans for responding to incidents in real time.

Here we formalize the process of providing automated
responses in a distributed system and the criterion for
asserting global optimality of the responses. We show that
reaching the globally optimal solution is an NP-complete
problem. Therefore we design a genetic algorithm
framework for searching for good solutions. In the search
for optimality, we exploit the similarities among attacks, and
use the knowledge learnt from previous attacks to guide
future search. The mechanism is demonstrated on a
distributed e-commerce system called Pet Store with
injection of real attacks and is shown to improve the
survivability of the system over the previously reported
ADEPTS system.
Keywords: automated intrusion response, intrusion
containment, optimal response, distributed e-commerce
system, survivability.

1 Introduction
Distributed systems comprising multiple services

interacting among themselves to provide end-user functions
are becoming an increasingly important platform for
business-to-business (B2B) and business-to-consumer (B2C)
systems. An example is electronic commerce, or e-commerce
systems. The huge financial stake involved in e-commerce
makes the distributed system infrastructure supporting it a
prime candidate for computer security attacks.

This motivation has long led to interest in securing
distributed systems through detection of intrusions and of
late, through automated responses to intrusions. The
rudimentary response mechanisms often bundled with anti-
virus or intrusion detection system (IDS) products
overwhelmingly consider only immediate local responses
that are directly suggested by the detected symptom. For
example, a suspect packet being flagged by a network IDS
may cause the specific network connection to be terminated.
These are applicable in stand-alone systems and do not
account for interaction effects among multiple components

in a distributed system as a result of which the attack can
spread from one service to another.

Our model for the application or payload system being
protected is that it comprises multiple services (web service,
authentication service, admin service) running on separate
hosts and communicating through standardized protocols,
such as SOAP. An example is provided by a distributed e-
commerce system. Our model for the target attack is that it is
an external multi-stage attack which first compromises the
services that have external interfaces and using this “foot in
the door” compromises internal services with the goal of
disrupting some transactions supported in the system or
violating some of the goals in the system. This is the model
commonly used in the literature for distributed intrusion
response systems (IRSs) [4][12].

The few available dedicated IRSs for distributed systems
[4]-[9] have one or more of the following characteristics—
they have a static mapping of symptoms from the detector to
the response, do not take feedback into account for
determining future responses, assume perfect detectors with
no missed and no false alarms, or assume perfect success rate
for a deployed response. The complex interactions among
the complex software running the distributed applications,
the non-determinism in the execution environment, and the
reality of new forms of intrusions surfacing would make any
one of the above characteristics undesirable. Importantly, the
existing work does not present a method for reasoning about
or evaluating the optimality of a chosen set of responses. The
presented protocols, including our earlier work in a system
called ADEPTS, take a greedy approach and do not give a
globally optimal solution. How far each solution is from the
optimal is also not clear. Optimality is an important metric
because it allows a system designer to reason about how well
a given set of responses with which the IRS is populated can
work for the target attack scenarios. This may point to
modification of the response repository in the IRS.

In this paper, we present a framework to reason about the
optimality of a chosen set of responses in a distributed
system of interacting services. The optimality criterion takes
into account the impact of a deployed response to the
services in the system and the impact of not deploying a
response to the services due to the further spread of the
attack. Note that this framework has to be probabilistic since
the future spread of the attack and the effectiveness of a
response are unknowns and can only be estimated. The
optimality of a response set is a global or system-wide

 2

property and thus optimizing the response choice on each
service may not be sufficient. The global optimal solution
must account for the fact that there exist dependencies
between responses available at the different services. For
example, blocking all traffic from a specific subnet at the
ingress point will make it redundant to impose restrictions at
an internal service on traffic from a host within the subnet.

We develop three kinds of response actions—recovery-
focused, reactive containment-focused, and proactive
containment-focused. The first class is used to recover
services that have already been impacted, to a more
functional state. The second class deploys responses on the
services that are currently at the “front” of the attack.
Qualitatively, front of an attack is the set of services such
that all its predecessor services (the services that are invoked
before it in satisfying a user transaction) are estimated to be
affected and none of its successor services is. The third class
is comprised of responses that are deployed at services that
have not yet been affected, but the system estimates will be,
based on current knowledge. This is thus a proactive
mechanism since alerts have not yet been seen for the
services on which the responses are deployed. The
techniques are incorporated in our existing IRS called
ADEPTS1. ADEPTS takes alerts from detectors embedded in
the payload system, executes its algorithms, and sends
response actions back to the system. The detectors are
imperfect and can generate false or missed alarms.

We prove that solving the optimal response determination
problem is NP-complete. This is fundamentally because of
the dependencies that exist between responses and the
universe of possible responses, taking into account the
targets of each response, is very large. In our candidate
applications subjected to automated multi-stage attacks, it is
imperative to deploy prompt responses at runtime. Hence, we
come up with an approximate solution to the problem.

The approximate solution relies on history of the attacks
seen in the system and the paths they have taken, and
estimate of the effectiveness of responses deployed earlier.
The former is stored in a structure called the attack phase
cache which captures the evolution of previous attack
instances using a graph representation. Each graph node
represents one snapshot of the attack and the edges represent
the evolution from one snapshot to the next. Each node itself
is a graph where a node determines the attack goal that is
achieved (such as, a root shell is spawned on the Apache
web server machine) and the edges represent the causal
relationships between the goals (such as, a buffer overflow
must be performed before a root shell can be obtained).

To solve the approximate problem, we use genetic
algorithm (GA) based search through the universe of
possible responses. A critical factor in the performance of a
GA based solution is the quality of the initial gene pool used
to initiate the search. The initial pool includes responses that
are locally optimal for each service. Since GA guarantees

1 We use the name ADEPTS to denote the augmented system with
the features that we are presenting here. The earlier version of the
system is referred to as baseline ADEPTS.

that the quality of the final solution is better than any
element in the initial pool, we are guaranteed that ADEPTS
will never choose a response that is worse (with respect to
our optimality criterion) than baseline ADEPTS after incurring
any initial loss of performance due to inaccuracy in initial
parameter settings. As multiple attack instances of a given
type are seen in ADEPTS, the effectiveness of the deployed
responses are updated and the quality of the gene pool used
to initiate the GA-based search is improved. Thus, ADEPTS
adapts to provide better responses as history builds up in the
system.

It is widely observed that multi-stage attacks take
polymorphic forms and detecting the different forms of a
given attack poses a challenge for an IRS. In ADEPTS, we
provide an algorithm for approximate matching of the
current attack instance with previous instances. The
approximate graph matching algorithm enables ADEPTS to
“borrow” previously computed effective responses for
mitigating the current attack instance.

The ADEPTS system is demonstrated on a distributed three
tier e-commerce system called Pet Store that uses the J2EE
platform and is developed by Sun Microsystem’s Java
BluePrints program. The testbed has the classic structure of
the web server, the application server (implemented using
communicating Enterprise Java Beans (EJBs)), and the
database server. We create a library of multi-stage attack
scenarios. A set of network-based and host-based detectors
generates alarms. The output metric is survivability, a high-
level metric that is based on the transactions that are
supported and the system goals that are maintained in the
application once the attack is injected and the responses
determined by ADEPTS are deployed. The relative importance
of each is determined by the system owner as weights in the
survivability computation. The experiments show the
survivability with ADEPTS compared to baseline ADEPTS, the
ability of ADEPTS to adapt its responses as increasing
numbers of attack instances are seen, its ability to handle
polymorphic forms of an attack, and the latency of response
determination in the two systems.

The rest of the paper is organized as follows. Section 2
presents the design of the framework for reasoning about
optimality. Section 3 describes the algorithms used to search
for the optimal responses. Section 4 describes the e-
commerce testbed and the attack scenarios. Section 5
presents the experiments and the results. Section 6 discusses
some subtle aspects of the presented solution. Section 7
surveys related work and Section 8 concludes the paper.

2 Framework for Optimality
2.1 Modeling Spread of an Attack: Background

A representation called an Intrusion Graph (I-GRAPH) is
used for modeling the spread of the attack. The final goal of
the intrusion may be disrupting some high level system
functionality, such as “Denial of service achieved against the
online store”. This final goal is achieved through multiple
intermediate intrusion goals and each is represented as an I-
GRAPH node. The node in the I-GRAPH may be a predicate
corresponding to a low-level attack manifestation, or

 3

propositional with parameterized variables, corresponding to
a higher level manifestation. The intrusion goals have mutual
dependency relationships which are modeled using the I-
GRAPH edges (such as, a buffer overflow must be performed
before a root shell can be obtained). Thus, an edge may be
OR/AND/Quorum indicating any, all, or a subset of the goals
of the nodes at the head of the edge (parent nodes) need to be
achieved before the goal at the tail (child node) can be
achieved. An I-GRAPH node may have zero, one, or more
detectors whose alerts map to it. The I-GRAPH representation
is derived from the idea of attack graphs and fault trees. Our
work can leverage efforts at building complete and succinct
attack graphs, e.g., using model checking approaches.
Automatic ways to build a graph based on specifications are
shown in [8]. We do not focus on generation of the graph,
rather on using the representation for automated response.

When alerts are received at ADEPTS for a node in the I-
GRAPH, ADEPTS calculates a Compromised Confidence
Index (CCI) value for all the nodes. CCI is a measure of the
likelihood that the node has been achieved (“a node is
achieved” implies the goal represented by the node has been
achieved by the attack). For a leaf node, the CCI value
comes from the alert confidence corresponding to the alert
that is mapped to the node. Each detector has a confidence
value for its alerts, termed alert confidence. This can be
provided by the meta-detector which correlates alarms from
multiple simple detectors [1] or can be a value calculated by
ADEPTS through its missed and false alarm detection
algorithms ([13] Sec. 4.1.1, 4.1.2). Through this paper, we
use the term CCI of a node and the probability that a node
has been achieved synonymously.
2.2 Response Model

The response mechanism incorporates three kinds of
responses. The first two kinds are both containment-oriented
responses which block the attack propagation from one node
to the other node in I-GRAPH. In our response model, we use
the failure probability of these responses to attenuate the CCI
values on the child nodes from the parent nodes. Specifically,
CCIchild = CCIparent * P(the response X on the edge from the
parent node to the child node fails). The probability measure
of the response is the complement of the Effectiveness Index
of a response which is determined by ADEPTS through
observation of alerts. This mechanism is the same as in
baseline ADEPTS [12] and is thus not described here. In
Figure 1, responses RP and RQ fall in this category, and CCIB
= CCIA * P(RP fails).

A
(CCIA)

B
(CCIB)

C
(CCIC)

RP

RQ

RX

A
(CCIA)

B
(CCIB)

C
(CCIC)

RP

RQ

RX

Figure 1. Response model for fragment of I-GRAPH. Node
A has been achieved, and containment responses are being

evaluated to block nodes B and C from being reached.

The second type of response is the recovery response. This
kind of response is used to recover a compromised node
back to a more functional state. In our model, these
responses have the effect of resetting the CCI value on a
node to a default value. We assume the effect from the
recovery responses is not persistent. Thus if the node is
compromised again right after some recovery response was
deployed, the CCI value of that node will be increase to
reflect the new attack effect. This is in contrast to the
blocking response, which has a prolonged effect on deterring
the attack propagation. Response RX in Figure 1 falls into the
recovery response category. The effect from response RX
would be CCIA ← CCIA_default. The default value of CCI is
dependent on the response that is deployed.

2.3 Response Mechanism for a Multi-Stage Attack

a

b c
d

a

b

RX RY RZ

X Y

a

b c
d

Z

ce
f

Figure 2. Three different snapshots for a given attack

scenario. Three responses RX, RY, RZ are deployed between
the snapshots.

In general, a multi-stage attack consists of multiple
snapshots. Each snapshot contains the detector alerts which
have been generated thus far, and the fragment of the I-
GRAPH with nodes for which alerts have been received. This
fragment of the I-GRAPH is called the Attack Sub-Graph
(ASG). Figure 2 shows three snapshots X, Y, and Z of an
attack scenario. Generally, for a multi-stage attack consisting
of k snapshots {s1,s2,..sk}, the response mechanism is
formally described by

RCi = f (si, H)
si is the ith snapshot, H generally speaking is the history

information. With respect to our Genetic Algorithm
framework, it corresponds to the EI of the responses and the
snapshots in the ATL.

RCi is the response combination decided by ADEPTS.
Therefore, in Figure 2, we have RX=f(sX,H), RY=f(sY,H),

and RZ=f(sZ,H).
In general, there is more than one way to partition a multi-

stage attack into its snapshots. One extreme is to treat each
incoming detector alert as creating a new snapshot, while the
other extreme is to consider the whole attack as a single
snapshot. Practically speaking, we can assume there are
groups of alerts that arrive in a batch and ADEPTS cannot
deploy a response within a batch of alerts. This batch creates
a snapshot.
2.4 Impact Vector Metric

We come up with a metric called Impact Vector for
evaluating the favorableness of a response set. Firstly, we
assume that the protected target system has a set of
transactions and security goals that would be desirable to
meet during its operation. The impact vector Iv used in a
system of n transactions and m security goals is an (n+m)
element vector, with each element representing the impact

 4

value on the corresponding transaction or security goal. The
dimensions may not be independent, in which case assigning
the Iv values has to be done carefully taking the dependence
into account. The higher the value is, the more severe the
impact is. The range of Iv values is arbitrary with 0 being the
lower bound. The summation of two impact vectors is also
an impact vector and is defined as follows:

Iv = Iv1+Iv2 = [max(Iv1,1,Iv2,1), max(Iv1,2,Iv2,2), ….,
max(Iv1,n,Iv2,n)]

For each response r, there is an associated impact vector
Iv(r) which indicates the impact value on the system as a
result of deploying the response. This may be specified by
the system administrator or determined automatically by
calculating the services affected by the response and
computing which transactions and security goals are violated
as a result. For each I-GRAPH node n, there is an associated
impact vector Iv(n) which gives the impact value as a result
of this node being achieved by an adversary.
2.5 Optimality of a Response Combination

Let us assume an attack has resulted in i snapshots s1,s2,..,si.
Let us assume the I-GRAPH has m nodes n1,n2,..nm. Then we
evaluate the cost of a response combination RCi = f(si,H),
which consists of n responses {r1,r2,..,rn}. Assume the
probability of each node being achieved in the attack
considering the responses in RCi is Prob(n1), Prob(n2),…,
Prob(nm). Then the cost of RCi is defined by Eqn. (1).

1 1

() | () | () Pr () ()
m n

i i k k k
k k

Cost RC Iv RC Iv n ob n Iv r
= =

= = +∑ ∑ (1)

 Under this metric, the optimal response combination to a

given attack at a specific snapshot (corresponding to a
specific point in time) is the one which yields the minimum
value of |Iv|.

 , arg min | () |
i

i opt i
RC

RC Iv RC= (2)

This optimization is under the constraint that RCp∩RCq, p≠q,
only contains recovery responses. This is from the
assumption that containment responses are permanently
deployed. We have traded off the additional power of
considering responses with fixed lifetimes for simplicity.
2.6 Optimal Response Determination is NP-

Complete
We prove that the problem of optimal response

determination (ORD) for a given system is NP-hard while
the decision version of the problem is NP-complete (NPC).
The knowledge that can be assumed is the I-GRAPH and the
probability of success of each response. We prove that ORD
is NPC by showing first that it is NP and then reducing the
set covering problem which is known to be NPC using a
polynomial time transformation to ORD.

Given a response set R and a cost number k, it is possible
in polynomial time to determine if the cost of R is less than k
(decision version of problem). This is essentially the
calculation in Eqn. (1) which is linear in complexity.

N1 Nt
…

N0

Edge e1 with possible
set of responses R1

IV=∞ IV=∞

Node is already
compromised

Figure 3. Transformation to map set covering problem to
optimal response determination (ORD). In the simple I-

GRAPH here, solving ORD solves set covering.
For the polynomial time reduction of set covering, consider

the small I-GRAPH in Figure 3. Let E = {e1, …, et}. Each edge
in E has a set of possibly overlapping responses. Each
response has the same probability of success and identical
IVs. The IV of each node N1, …, Nt is ∞. Thus ORD will
deploy a response on each edge in E. By definition of ORD,
it will generate a response set R such that the cost is
minimized, which for the special settings implies that the
number of responses is minimized. Thus the responses in R
cover the set E. This is the solution to the set covering
problem. The reduction is obviously polynomial.
2.7 Domain Graph

The domain graph D(s) ⊇ ASG and is a subgraph of I-
GRAPH, which provides an approximate and a conservative
bound on the nodes that may be reached by an adversary
from the snapshot s. In Eqn. (1), when we calculate the
expected impact vectors due to the nodes in the I-GRAPH, we
consider all the nodes in the I-GRAPH. Practically, this will
adversely impact the performance since the I-GRAPH is likely
a large structure for any large real-world distributed systems
and many nodes in it will have vanishingly low probability
of being achieved based on the observed alerts. The domain
graph subsets the nodes to be considered so that a more
timely reaction to the attack can be deployed.
DEFINITION: DOMAIN GRAPH

Given the I-GRAPH I and an snapshot s, the domain graph
D(s) = (V, E) where V = {node n∈ I such that Prob(n) ×
|n.Iv| is greater than a given threshold T} and E={e|e∈I.E
and (u, v) where u, v∈V} .
Prob(n) is the probability of node n being achieved by the
adversary based on snapshot s and is estimated by a call to
GEN_PROB(n,s,I, rNULL).
ALGORITHM: GEN_PROB(n,s,I,rc)
/* Notation: n: node, s: the snapshot, I: I-GRAPH, rc: response
combination deployed
Resp(x,n)∈rc: the response on the edge from node x to node
n, epp(x,n): the probability of a propagation on the edge from
x to n.
*/
{

for node n∈ASG
Prob(n) = Alert confidence for alert for node n;

for node n∉ASG
if n has no parent nodes,

Prob(n) = 0
if n has OR-type parent nodes,

Prob(n) = max { Prob(x) * (1- Resp(x,n).EI)*epp(x,n)
| x∈parent(n) }

if n has AND-type parent nodes,

 5

Prob(n) = min { Prob(x) * (1-
Best_Resp(x,n).EI)*epp(x,n) |
x∈parent(n)

}
This algorithm is based on the observation that for an AND

node all parent nodes will have to be achieved and therefore
a min operator is taken for probability of achieving the child
node from all its parent nodes. For an OR node, since any
path works, a max operator is used. The edge propagation
probability calculation is discussed in Section 3.2. For
generation of the Domain Graph, no response is taken into
account so that the largest possible sub-graph of the I-GRAPH
is used during the response determination process. This
algorithm is approximate in that it does not take into account
the possibility that two OR/AND edges leading to a child
node may be dependent. Such information is not available in
the I-GRAPH and therefore is not available to the GEN_PROB
algorithm either.

In view of the restriction on the search space to the Domain
Graph, we restate the optimality criterion. Assuming an
attack snapshot P, an attack domain D, the response
repository R, and the set of deployed response RCdeployed, an
optimal assignment of responses is a selection RCopt∈ (R-
RCdeployed) =
arg

iRC
min |Iv(RCi∪RCdeployed)| + E[|Iv(nodes in (D-P) that will

be achieved by the adversary with RCi∪RCdeployed in place)|]
+ E[|Iv(nodes in P that will be recovered by the responses
RCi |] (3)
2.8 Attack Template Library (ATL)

ADEPTS seeks to adapt its responses based on previous
attack scenarios. Thus it is important to store the history of
attack snapshots and prior responses. This is maintained in
the Attack Template Library (ATL). The ATL is a directed
graph where each node corresponds to an attack snapshot of
an attack scenario. An edge, say from X to Y, represents the
evolution of the attack scenario from snapshot X to snapshot
Y. Responses, if any, that were deployed between the two
snapshots are associated with the ATL edge. Figure 4 shows
an example ATL.

Rx

Ry

Rz

Rw

Figure 4. Example of Attack Template Library (ATL).
Here two different attack scenarios are shown with 5 and 4

attack snapshots. 4 responses have been deployed.

3 Design of Search Algorithms
3.1 Maintenance of Attack Template Library

The ATL houses snapshots of attacks seen so far. Each
snapshot entry s in the template library contains the
following information: s.g: the sub-graph of the I-GRAPH
with nodes that have been achieved at snapshot s and the

corresponding edges; s.predict: the path prediction table used
to predict the propagation trend in the I-GRAPH from the
snapshot s (more detailed information in Section 3.2);
s.best_genes: the previous responses used by ADEPTS for
snapshot s.
Matching and Creation of a New Snapshot

Without loss of generality, let us assume that the current
snapshot in the attack is s0. The detection framework
observes activity in the ongoing attack, which translates into
a subgraph gnew in the I-GRAPH being flagged with respect to
the new changes. A new snapshot s1 is created with s1.g =
s0.g ∪ gnew.

Now, ADEPTS checks in the ATL if there is an existing sx
such that sx.g = s1.g. If there is, s1 is discarded and sx is made
the current snapshot for the attack. A directed edge from s0
to sx is added if it did not exist in the ATL. Otherwise, if
such a sx does not exist, the new node s1 is added to the ATL
with s1.best_genes = NULL and s1.predict = 0. A edge from
s0 to s1 is added.
Deletion of Attack Snapshot

If space is a constraint, ADEPTS deletes snapshots from the
ATL by various criteria-by time of creation or time of last
access (the oldest is deleted), frequency of access, or the
snapshot with the lowest cumulative Iv of its nodes.
3.2 Attack Snapshot Prediction Table

Given an attack snapshot s, while there are an
exponentially many possible next snapshot for the attack, in
practice, some are much more likely. It would be useful to
estimate the possible next snapshots for deploying the
proactive containment responses. For tracking this likelihood,
ADEPTS maintains a prediction table s.predict for each
snapshot. The table entry s.predict[e] tracks the number of
traversals of the edge e in the I-GRAPH following the
snapshot s.

Now we wish to calculate the edge propagation probability
for two edges in the I-GRAPH.

For an edge e which connects node a to node b in the I-
GRAPH, the edge propagation probability epp(a,b) (as used
in GEN_PROB(n,s,I,r)), can be calculated from s.predict as
follows:

epp(a,b) = epp(e) =

-1 Bias
Scale

Max Bias

s.predict[e] dtan d
d d

π/2

⎛ ⎞+
×⎜ ⎟+⎝ ⎠

dMax =][.max

].[
epredicts

gsedgese∈

dScale and dBias are tunable values. Till dMax becomes
comparable to dBias, the epp value is relatively insensitive in
discriminating between the edges. If the predict values are
small, then dScale is used to scale the epp value to close to 1
so that the range of the function becomes (0, 1). ADEPTS uses
values 9 and 10 respectively for dScale and dBias.

The reason for the above function for epp is that it converts
large values (s.predict[e]) to a small range and using the
factor in the denominator epp is constrained to be ∈ (0, 1).

 6

3.3 Genetic Algorithm Framework
As the problem of deciding the optimal responses for an

attack snapshot s has been proved to be a NP-Complete
problem, we focus on an approximation solution using a GA
framework. In this framework, we have an instantiation of
the general function f(sk,H) as Respond(sk-1, ASG). Assume
the attack has undergone k snapshots together with k
responses from the system as
{s1→f(s1,H1)→s2→f(s2,H2) …sk→f(sk,Hk)}.

Within this framework, we map each response combination
onto a gene, and the problem of searching for the best
response for an attack snapshot is then translated into
looking for the best gene from the gene pool over multiple
evolutions. Often using genetic algorithm to perform
optimization is an expensive process [23] due to search
through a huge gene pool over many evolution cycles to get
a good solution. Our framework reduces the execution time
in two ways. First, ADEPTS relies on the history information
from the snapshot, namely sk.best_genes. Second, ADEPTS
relies on the information from similar attacks, namely
sx.best_genes for sx.g ≈ sk.g. These are added to the initial
gene pool to speed the convergence of the GA. The basic
execution flow of the GA framework is shown below. Here
ADEPTS is trying to determine the optimal response
combination at snapshot sk.
/*
R: response repository; Rdeployed: deployed responses; ATL:
attack template library; gene_pool_size: a constant on the
gene pool size; v% : the percentage of top genes to be kept in
the history; max_evolutions: maximum number of evolutions
per iteration for the GA
*/
Respond(sk, Rdeployed)
{

Create domain graph D=D(sk);
pool = GA_PopulateGenePool (ATL, sk, D, gene_pool_size);

/* defined in 3.3.3 */

for i=1 to max_evolutions

pool = GA_NextGeneration(pool); /* through operations
defined in 3.3.4 */

best_genes∈ {the top v% of genes in pool (with respect
to the fitness metric on gene)};

sk.best_genes = the top x% of genes from
(sk.best_genes∪ best_genes); //
updating history and x% keeps size of
sk.best_genes constant

Find gene c∈best_genes with the highest fitness;
Return(response combination RC corresponding to gene c);

}

3.3.1 Relation of gene to response combination

Here we describe how to create the genes prior to calling
Respond(sk, Rdeployed). We only consider responses within the
domain graph which are not deployed yet. This set of
applicable responses is given by
 () (){ }().A deployed kR r r R R D s resp= ∈ − ∩ (4)

Here D(sk).resp is the set of responses on the nodes or
edges of domain graph D(sk). The gene with respect to the

this run of Respond(.) uses the encoding scheme such that
each gene c is an RA-bit vector, with each bit uniquely
mapped to a response r∈RA.
3.3.2 Definitions: Fitness and Similarity

The fitness of a gene c, is determined by the response
combination RC for c. The fitness of gene c is defined as

fitness(c) = exp(exp(1/exp(Cost(RC)/S))) (5)
where S is a scaling factor. The curious function satisfies
some desirable properties – high cost translates to low fitness,
cost of zero or infinity are handled, and the outermost
exponentiation has the desired effect of spreading out the
range of fitness which is needed for the GA to discriminate
between good and bad responses.

Given two attack snapshot sa and sb, the similarity metric to
compare the two is defined as in
Similarity(sa,sb) =

a b a b

a b

(#common nodes in s .g and s .g) (#common edges in s .g and s .g)
nodes and edges in s .g s .g

+

∪
 (6)

The range of Similarity(sa,sb) is between 0 and 1.
3.3.3 Populating the Gene Pool

The gene pool is populated through the following
algorithm. As mentioned earlier, we use both the history
information corresponding to the attack snapshot sk and the
history information from similar snapshots to increase the
convergence speed of the GA algorithm. Note that the initial
pool includes the greedy responses that would have been
chosen by baseline ADEPTS. Choosing genes from a similar
snapshot enables ADEPTS to respond to attack variants.
GA_PopulateGenePool (ATL, sk, D, gene_pool_size) {

pool_sec1 = {genes with the corresponding binary
encodings filled with random bit stream};

pool_sec2 = sk.best_genes;
pool_sec3 = ∪ sx.best_genes for sx ∈ ATL with

Similarity(sx,sk) ≥ 0.7;
pool_sec4 = Genes corresponding to selection of

responses by baseline ADEPTS;
return the top gene_pool_size genes from
{pool_sec1∪ pool_sec2∪ pool_sec3 ∪ pool_sec4};

}
3.3.4 Evolution from One Generation to the Next

We employ the standard GA algorithm here for generating
the next generation gene pool from the current one. The
standard procedures include three steps:
(i) c = crossover(pool), which is to generate a new child

from two parents randomly picked from current gene
pool with probability of each parent being chosen
proportional to the fitness values.

(ii) Mutate(c), which is to incur mutation onto the child
gene c by flipping bits in the bit vector with a given
probability which is typically kept very low.

(iii) Elitism, which is to keep the top x% of genes from the
previous generation in the pool for the new generation.

4 Experimental Testbed
The experimental testbed deployed for evaluating ADEPTS

is an e-commerce system, where users interact through a web
browser with a three-tier server structure. First, a load

 7

balancer distributes the incoming traffic to a pair of Apache
Tomcat web servers. Two JBoss application servers hold the
J2EE application, one running as the application controller
and the other as the component repository. The application is
Sun Microsystem’s Java Pet Store (version 1.4). In the
backend, a MySQL database server runs as a repository of
information, including customer accounts, product catalog
and inventory, and order history. Figure 5 shows the testbed
used for the experiments.

Figure 5. Layout of three-tier e-commerce testbed for
ADEPTS. Each box runs on a separate host. (AS: Application

Server, Tomcat: Web Server)
The testbed emulates the common features of many

service-oriented e-commerce systems. The Pet Store
application provides a separate web interface for
administrators, regular users and suppliers. We deployed
many common TCP/IP services, such as FTP, SNMP, SSH
and VNC, on these boxes so that they contribute
vulnerabilities and therefore enable attack scenarios. Also,
common configuration errors were induced, such as sharing
of user accounts and passwords among many hosts or using
weaker security policies on the internal network, as
compared to access from external network. The objective
was to replicate the complexity and lack of strong security
policies often found in real e-commerce systems.

0.C Ping or traceroute to
web servers

1.C Run portscanner on
web servers

2.A Exploit ssldump
vuln. on web server

2.B.1 Access web
server admin site

2.B.2 Brute force admin
password

3.A Copy hacker tool to
web svr using tftp

3.B Install vuln. scanner
on web svr

4.C Run port scanner
on internal network

5.A Exploit rpc.statd
service on app controller

6.A Brute force root pwd
on app controller

7.C Run MySQL
modification queries on

database tables

6.B Exploit remote vuln.
on MySQL

Figure 6. Attack scenarios 3 and 4, used for experimental

evaluation. Boxes with A and B denote the stages for

scenario 3 and 4 respectively, while C denotes stages
common to both.

The ADEPTS implementation is tested against a set of attack
scenarios based on popular vulnerabilities published by the
electronic payment industry [24], the web security
community [25], and in the CVE dictionary [26]. Six attack
scenarios were developed to extensively test ADEPTS. Each
attack scenario is made up a set of individual stages that
could be run independently or mixed to form dynamic attack
scenarios. Dynamic attack scenarios mimic the real-world
attacks where an attacker might have several options to
continue the intrusion after reaching a certain intermediate
goal, or has to choose alternate stages since a previous one
failed. For each service there are multiple detectors, but these
are imperfect. This is simulated by artificially generating
false alarms or suppressing alerts according to a given rate.

Figure 6 shows attack scenarios 3 and 4 both of which
have the end goal of corrupting or leaking information from
the database. These scenarios share several stages in
common and can thus be merged to form a dynamic attack
scenario.

RESPONSE

MESSAGES

AT
TA

CK

M
ES

SA
GE

Figure 7. A drone-based implementation for attack

scenarios in the e-commerce testbed. A drone allows for
the manifestation of an attack stage without needing to

exploit the vulnerability.
To implement the attack scenarios, a java-based drone was

implemented on each host (Figure 7). A drone shows the
manifestation of a successful attack stage without having to
go through the exploit to achieve this. It thus provides an
easy tool for creating different attack scenarios. A drone
control center was also developed to centrally control each
drone and launch an attack scenario by sending commands to
drones on individual hosts. It can vary parameters like time
between attack stages and probability of success between
stages. Each attack stage could trigger an alarm on the
corresponding drone, depending on the false alarm/missed
alarm rates defined for the detector. On receiving an alert
from a drone, ADEPTS calculates a set of responses according
to the algorithms described in Section 3. The resulting set of
responses is sent to the control center.

The I-GRAPH is generated manually based on the attack
scenarios covering all the attack goals. A subset of the nodes
have associated detectors. The detectors used are (i) Snort:
detects attack patterns in network traffic; (ii) Libsafe: detects
buffer overflow attacks of protected C library functions; (iii)
Process monitor: monitors unauthorized process invocation
and execution based on a specified white-list; (iv) File access

 8

monitor: monitors and compares file access attempts of
selected processes against preset rules; (v) Password brute-
force detector: detects failed authentication attempts; (vi)
EJB monitor: separate EJB that monitors other running EJBs
in the same process space and flags alerts when unexpected
behavior is observed (e.g. termination of an essential EJB).
The responses specified for each node or edge in the I-
GRAPH are manually selected from the response repository in
[13]. The impact vectors for these responses are created
based on the effect the responses have on the e-commerce
testbed. The I-GRAPH has 55 nodes, 96 edges, 5 nodes with
no detectors, and 72 responses. The max, min, and average
in-degree and out-degree are (7, 0, 1.7) and (5, 0, 1.7).

It may be argued that a more realistic experiment would be
to actually exploit the vulnerabilities, and deploy the
detectors and the responses on the hosts. However, this
would restrict the universe of attack scenarios we can try
since vulnerabilities are often quite quickly patched in
production systems such as ours. Also it would make it
exceedingly difficult to vary experimental parameters such
as missed and false alarm rates from the detectors and
success rate of the responses. Ultimately this would not bring
out the strengths and weaknesses of the proposed algorithms
in an experimentally rigorous manner. The presentation of
overall ADEPTS capabilities with real vulnerabilities being

exploited and actual detectors put in place is left for a
follow-on paper.

5 Results
The output metric used in the experiments is survivability.

It is qualitatively meant to capture the value of the system to
the owner in terms of the transactions that can be supported
and the system goals that are met when the attack and the
responses have occurred. Quantitatively, it is given by:

1

[]
m n

i

C Iv i
+

=

−∑ (7)

Where C is a scaling constant representing the perfect
survivability and Iv=∑Iv(deployed responses)+∑Iv(achieved
I-GRAPH nodes). The dimension of Iv for PetStore is 24,
divided equally between transactions and system goals. Iv[i]
denotes the ith dimension. The other relevant metric is
latency, which is measured from the time an alert arrives at
ADEPTS to when the response is communicated to the drone
control center. Thus, it does not include the time to actually
deploy the response, which is justified since that is a
characteristic of the response and not ADEPTS’ algorithm.

7.8

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of iterations

Su
rv

iv
ab

ili
ty

ADEPTS

Baseline
ADEPTS

Attack Scenario 2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8

8.1

8.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of iterations

Su
rv

iv
ab

ili
ty

ADEPTS

Baseline
ADEPTS

Attack Scenario 3

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of iterations

Su
rv

iv
ab

ili
ty

ADEPTS

Baseline
ADEPTS

Attack Scenario 4

0

10

20

30

40

50

60

70

80

2 4 8 16

Nu m b e r o f e vo lu tio n s

L
a

te
n

c
y

 (
A

D
E

P
T

S
)/

L
a

te
n

c
y

(B
a

s
e

li
n

e
)

No. of
evolutions 2 4 8 16
ADEPTS 963.60 1197.24 1864.84 3195.39 Average

latency
(ms) Baseline

ADEPTS 47.92 48.34 48.07 47.40

Attack Scenario 3

Figure 8. Results from attack injection (a)-(c) show the performance of ADEPTS relative to baseline ADEPTS for three
different attack scenarios (Experiment 1). (a) has perfect choice of initial responses, (c) mimics inaccurate initial settings by

 9

the sysadmin. In all the survivability of ADEPTS outperforms that of baseline ADEPTS. (d) shows the increased latency in
ADEPTS due mainly to the multiple generations of the genetic algorithm (Experiment 2)

In the interest of space, here we provide the results of
injecting two attack scenarios—scenarios 2, 3, and 4 (Figure
6). These scenarios are complex, multi-stage, and touch all
three tiers of the e-commerce system. Additionally they share
some stages and therefore can be used to test the ability of
ADEPTS to learn from attack variants. The perfect
survivability value (constant C in Eqn. (7)) is 10.

For experiment 1 (Figure 8(a)-(c)) we compared
survivability between ADEPTS and baseline ADEPTS, by
running them against attack scenarios 2, 3, and 4. Each
attack scenario was executed multiple times (# iterations on
the plots) and history was cleared for each attack scenario at
the start of the experiment. Thus the performance of ADEPTS
at the beginning is dependent on default EI values for the
responses. The GA runs two evolutions per iteration. For
attack scenario 3 (AS3), ADEPTS consistently performed
better than baseline ADEPTS, except for the very first
iteration. ADEPTS is more pessimistic at the beginning, by
considering the possibility of responses failing and therefore
deploying proactive responses. However, later ADEPTS
updates the EI values based on observed performance of the
responses and therefore outperforms baseline ADEPTS. For
AS2, both ADEPTS and baseline ADEPTS provided a set of
responses that do not change over the iterations. This is due
to the fact that the responses chosen at the outset were close
to perfect. Still ADEPTS came up with a better set of
responses due to its ability to consider the implication of the
response over the entire domain graph rather than the greedy
approach of baseline ADEPTS. This allows further
propagation of the attack since it is determined that the cost
of preventing is higher than the cost incurred if the node is
achieved. As opposed to this, the limited responses provided
by baseline ADEPTS cannot make this decision.

 For AS4, ADEPTS evolves over time from a bad starting
point. Baseline ADEPTS performs better over several
iterations until ADEPTS gains enough history (iteration 16).
The case here is of poor assignment of initial EI values, say
by an inexperienced sysadmin. The experiment demonstrates
that ADEPTS is robust to such errors since with growing
history it relies less and less on the default initial
assignments.

Experiment 2 (Figure 8(d)) is a comparison of the latency
of response determination between ADEPTS and baseline
ADEPTS. For this experiment, AS3 is run for different
number of evolutions per iteration and for each run the
history is cleared. The primary contributor to the latency is
the processing of the GA as it processes through multiple
generations. Therefore, the number of generations is kept as
the control parameter. Results shows a higher latency for
ADEPTS, as compared to that from baseline ADEPTS by as
much as a factor of 67 at 16 evolutions per iteration.
However, the absolute value for ADEPTS is less than 3.2
seconds for the highest value of 16 evolutions per iteration.
The latency can be partially hidden by performing the
calculation of gene pool generations offline, when no attack
is occurring. There is a tradeoff between the number of

iterations and the number of evolutions per iteration that the
GA may run. With more iterations, the EI values will be
updated more accurately, while more evolutions per iteration
will make the GA perform better but take more time per
iteration. The optimal value depends on the particular attack
scenario and further exploration of this tradeoff is needed.

Experiment 3 (Figure 9) explores the ability of ADEPTS to
learn from attack scenario variants. This experiment is run
with AS4. For the first case, AS4 is run without having run
its variant AS3 before. For the second case, AS3 is run for
20 iterations. Then, the algorithms can use the previous ATL
containing the snapshots of the attack stages and the best
genes for AS3, and the EI values for responses. We observe
that AS4 with history outperforms AS4 without history until
about the 8th iteration where their performances converge.
This implies that the 8th iteration of AS4 with history
corresponds to the 20th iteration of its variant, namely AS3.
If the variants are closer (in terms of the similarity metric,
say), then the point at which the two cases will converge will
be higher.

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

1 2 3 4 5 6 7 8 9 10
Number of iterations

Su
rv

iv
ab

ili
ty

AS4 with history

AS4 without
history

Attack Scenario 4 and variant Attack Scenario 3

Figure 9. Experiment for evaluating adaptation

capability of ADEPTS to learn from attack variant. For
one case, AS4 is run after running its variant AS3 and

generating history. For the other, AS4 is run without such
history.

6 Discussions
This paper has presented the algorithm in ADEPTS to decide

on optimal responses. Several other aspects of an IRS are
needed to support the presented algorithm, but they cannot
all be described in the confines of this paper. Some of these
aspects have been described in other publications, such as,
diagnosis of the node(s) likely to have been achieved,
creation of I-GRAPH, populating the response repository, and
updating the effectiveness of responses in [12], and
tolerating imperfect detectors and handling unknown alerts
in [13]. Some other aspects are under investigation, such as
handling unanticipated attacks and concurrent attacks.

Several design decisions described here lend themselves to
further experimentation and refinement. For the recovery
oriented responses, ADEPTS resets the CCI of the node at
which the response is deployed. However, some attacks rely

 10

on a sequence of nodes being achieved, e.g., a Trojan which
relies on a continuous network connection to leak
information, and thus a response on one node may reset the
CCI of a chain of nodes. The I-GRAPH structure used here is
static and is implicitly assumed to be complete. However, in
the face of unanticipated attacks it would be imperative to
grow the I-GRAPH. A candidate approach would be using
machine learning mechanisms that create nodes for alerts and
edges between correlated alerts. A challenging issue with
observing events in any distributed system is that the order in
which they are observed may not be the order in which they
have occurred. This is due to the asynchronous nature of the
communication medium and uncertain delays at the
computational nodes. Thus, corresponding to a given attack
scenario, alerts may be observed in different orders. The
ability of ADEPTS to respond to attack variants can handle
the reordering to some extent depending on the similarity
value of the match. However, it may be required to reorder
alerts based on alert-specific attributes and domain
knowledge of causality to effectively respond to the attack.
Here we have seen a level of dependency between responses.
Yet another level of non-determinism is introduced by
concurrent attacks since the response to one attack may
suffice to contain both attacks. The presented framework can
be extended to discriminate between distinct attacks as in [11]
and handle them at the expense of expanding the GA search
space. The expansion factor will be the number of concurrent
attacks. A common drawback for a solution that relies on
history of attacks is that it is unable to handle a hitherto
unseen attack of devastating impact. For ADEPTS, history
helps the GA to converge faster but is not strictly necessary.
The EI values will be less calibrated and the GA has to run
longer to arrive at an acceptable solution. By setting the Iv of
a node to a suitably high value, ADEPTS will deploy a
response, even if drastic, to prevent the node from being
achieved.

7 Related Research
With increasing complexity and ubiquity of distributed

systems, IRSs for such systems have been gaining interest.
The general principles followed in the development of the
IRS naturally classify them into four categories.
1. Static decision making. This class of IRS provides a
static mapping of the alert from the detector to the response
that is to be deployed. The IRS includes basically a look-up
table where the administrator has anticipated all alerts
possible in the system and an expert indicated responses to
take for each. The systems in [14]-[16] fall in this category.
2. Dynamic decision making. This class of IRS reasons
about an ongoing attack based on the observed alerts and
determines an appropriate response to take. The first step in
the reasoning process is to determine which services in the
system are likely affected, taking into account the
characteristics of the detector, the network topology, etc. The
actual choice of the response is then taken dependent on a
host of factors, such as, the amount of evidence about the
attack, the severity of the response, etc. The third step is to
determine the effectiveness of the deployed response to

decide if further responses are required for the current attack
or to modify the measure of effectiveness of the deployed
response to guide future choices. A wide variety is
discernible in this class based on the sophistication of the
algorithms. The systems in [4]-[9], including ADEPTS, fall in
this category.
3. Intrusion tolerance through diverse replicas. This class
of IRS implicitly provides the response to an attack by
masking the effect of the response. The basic approach is to
employ a diverse set of replicas to implement any given
service. The fault model is that the replicas are unlikely to
share the same vulnerabilities and therefore not all will be
compromised by any given attack. An advantage of this
approach is the system can continue operation without a
disruption as in the active replication technique. The systems
in [17]-[19] fall in this category.
4. Responses to specific kinds of attacks. This class of IRS
is customized to respond to specific kinds of attacks, most
commonly, distributed denial of service (DDoS) attacks. The
approach is to trace back as close to the source of the attack
as possible and then limit the amount of resources available
to the potentially adversarial network flows. The system
reported in [10] fall in this category.

The concept of survivability was pioneered by SEI at CMU.
It is loosely defined as the capability of a system to fulfill its
mission, in a timely manner, in the presence of attacks,
failures, or accidents ([2],[3]). The researchers identify the
four key properties of survivable systems, namely, resistance
to attacks, recognition of attacks and damage, recovery of
essential and full services after attack, and adaptation and
evolution to reduce effectiveness of future attacks. The part
of the ADEPTS system presented in this paper provides the
second and the fourth properties.

The work presented here differs from previous IRS work in
that it lays down a framework to reason about the optimality
of the response choices made by these systems. The
approach here can be applied to evaluate any available IRS.
Our previous work with the ADEPTS system also did not have
any design to choose globally optimal responses.

There have been some efforts at using genetic algorithms
for intrusion detection [21]-[23] and search for
vulnerabilities [20]. The results have been promising, but
only after careful definition of the syntax of the
chromosomes and tuning of the fitness measure of the
chromosomes. We have not found any prior application of
GA to intrusion response systems.

8 Conclusion
In this paper, we introduced the notion of optimality of

responses deployed by an intrusion response system. We
developed a framework for reasoning about optimality of
responses deployed on a growing set of attack snapshots for
a multi-stage attack. A genetic algorithm based search was
proposed to search for the optimal response set. The
chromosomes for the initial gene pool and the carry over
from one generation to the next are designed to guarantee the
solution is better than the locally optimal response selection
done by the baseline ADEPTS IRS. The claims were

 11

experimentally validated on a three tier e-commerce system
through injection of multi-stage attacks.

9 References
[1] Y.-S. Wu, B. Foo, Y. Mei, and S. Bagchi,

“Collaborative Intrusion Detection System (CIDS): A
Framework for Accurate and Efficient IDS”, ACSAC
2003.

[2] R. Ellison, R. Linger, T. Longstaff, and N. Mead, “Case
Study in Survivable Network System Analysis”,
Technical Report CMU/SEI-98-TR-014, SEI, CMU,
1998.

[3] R. Anderson, A. Hearn, and R. Hundley, “Studies of
Cyberspace Security Issues and the Concept of a U.S.
Minimum Essential Information Infrastructure”,
Information Survivability Workshop, CERT, 1997.

[4] T. Toth and C. Kruegel, “Evaluating the Impact of
Automated Intrusion Response Mechanisms”, ACSAC
2002.

[5] G. White, E. Fisch, and U. Pooch, “Cooperating
Security Managers: A Peer-based Intrusion Detection
System”, IEEE Network, vol 10, no. 1, 1996, pp. 20-23.

[6] P. Porras and P. Neumann, “EMERALD: Event
Monitoring Enabling Responses to Anomalous Live
Disturbances,” NISSC, pp. 353-365, 1997.

[7] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch,
“Adaptation Techniques for Intrusion Detection and
Intrusion Response Systems”, Int. Conf. on Systems,
Man, and Cybernetics, pp. 2344-2349, 2000.

[8] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt, "Using
specification-based intrusion detection for automated
response," RAID, pp. 136–154, 2003.

[9] W. Lee, W. Fan, M. Miller, S. J. Stolfo, and E. Zadok,
"Toward cost-sensitive modeling for intrusion detection
and response," Journal of Computer Security, vol. 10, pp.
5-22, 2002.

[10] D. Sterne, K. Djahandari, B. Wilson, B. Babson, D.
Schnackenberg, H. Holliday, and T. Reid, “Autonomic
Response to Distributed Denial of Service Attacks”,
RAID 2001.

[11] C. Carver, J. Hill, and U. Pooch, “Limiting Uncertainty
in Intrusion Response”, IEEE Workshop on Info.
Assurance and Security, 2001.

[12] B. Foo, Y-S. Wu, Y-C. Mao, S. Bagchi, and E. H.
Spafford, “ADEPTS: Adaptive Intrusion Response using

Attack Graphs in an E-Commerce Environment,” DSN,
pp. 508-517, 2005.

[13] Y-S. Wu, B. Foo, Y-C. Mao, S. Bagchi, and E. H.
Spafford, “Automated Adaptive Intrusion Containment
in Systems of Interacting Services,” In Elsevier Journal
on Computer Networks (in press), Spring 2007.

[14] W. Metcalf et al., "Snort-inline."
[15] Symantec Corp., "Norton Antivirus."
[16] T. Ryutov, C. Neuman, K. Dongho, and Z. Li,

"Integrated access control and intrusion detection for
Web Servers," ICDCS, pp. 394-401, 2003.

[17] D. Wang, B. B. Madan, and K. S. Trivedi, "Security
analysis of SITAR intrusion tolerance system," in ACM
workshop on Survivable and self-regenerative systems,
pp. 23-32, 2003.

[18] C. Cachin, "Distributing trust on the Internet," DSN, pp.
183-192, 2001.

[19] F. B. Schneider and L. Zhou, "Implementing trustworthy
services using replicated state machines," IEEE Security
& Privacy Magazine, vol. 3, pp. 34-43, 2005.

[20] Jacobs, S., D. Dumas, W. Booth, M. Little, "Security
Architecture for Intelligent Agent Based Vulnerability
Analysis," 3rd Annual Fedlab Symposium on Advanced
Telecommunications/Information Distribution Research
Program, pp. 447-451, February 1999.

[21] W. A. Jansen, “Intrusion detection with mobile agents,”
Computer Communications, Volume 25, Issue 15, pp.
1392-1401, 2002.

[22] G. Helmer, J. Wong, V. Honavar and L. Miller,
“Automated discovery of concise predictive rules for
intrusion detection,” Journal of Systems and Software,
Volume 60, Issue 3, pp. 165-175, 2002.

[23] Ludovic Me, “GASSATA: A genetic algorithm as an
alternative tool for security audit trails analysis," RAID
'98.

[24] PCI Security Standards Council. Payment Card Industry
(PCI) Data Security Standard. Version 1.1.
http://pcisecuritystandards.org.

[25] The Open Web Application Security Project. The Ten
Most Critical Web Application Security Vulnerabilities.
2004, www.owasp.org.

[26] The MITRE Corporation. Common Vulnerabilities and
Exposures. http://cve.mitre.org.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

