
CERIAS Tech Report 2007-99
Incorporating Temporal Capabilities in Existing Key Management Schemes

 by Mikhail J. Atallah
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Incorporating Temporal Capabilities in Existing Key
Management Schemes

Mikhail J. Atallah1, Marina Blanton2, and Keith B. Frikken3

1 Department of Computer Science, Purdue University
mja@cs.purdue.edu

2 Department of Computer Science and Engineering, University of Notre Dame
mblanton@cse.nd.edu

3 Department of Computer Science and Systems Analysis, MiamiUniversity
frikkekb@muohio.edu

Abstract. The problem of key management in access hierarchies studiesways
to assign keys to users and classes such that each user, afterreceiving her secret
key(s), is able toindependentlycompute access keys for (and thus obtain access
to) the appropriate resources defined by the hierarchical structure. If user privi-
leges additionally are time-based, the key(s) a user receives should permit access
to the resources only at the appropriate times. This paper presents a new, prov-
ably secure, and efficient solution that can be used to add time-based capabilities
to existing hierarchical schemes. It achieves the following performance bounds:
(i) to be able to obtain access to an arbitrary contiguous setof time intervals, a
user is required to store at most 3 keys; (ii) the keys for a user can be computed by
the system in constant time; (iii) key derivation by the userwithin the authorized
time intervals involves a small constant number of inexpensive cryptographic op-
erations; and (iv) if the total number of time intervals in the system isn, then the
server needs to maintain public storage larger thann by only a small asymptotic
factor, e.g.,O(log∗ n log log n) with a small constant.

1 Introduction

This work addresses the problem of key management in access control systems, with
the emphasis on time-based access control policies. Consider a system where all users
are divided into a set of disjoint classes, and a user is granted access to a specific access
class for a period of time specified by its beginning and end. In such systems, it is com-
mon for the access classes to be organized in a hierarchy, anda user obtains access to
the resources at her own class and the resources associated with all descendant classes
in the hierarchy. When a user joins the system and is granted access to a certain class
for a specific duration of time, she is given a key (or a set of keys) which allows her
to independentlyderive access keys for all resources she is entitled to have access dur-
ing her time interval. For hierarchically organized user classes this means that the key
allows the user to access objects at her access class and all descendant classes in the
hierarchy during the time interval specified. Note that the time interval is user-specific
and might be different for each user in the system.

There is a wide range of applications that follow this model and which would ben-
efit from automatic enforcement of access policies through efficient key management.

Such applications include (among others) role-based access control (RBAC) models,
subscription-based services, content distribution, and cryptographic directories or file
systems. In all of these examples we use the current time to enforce time-based poli-
cies. Additionally, instead of being based on the current time, access control policies
can be based on the time in the past and permit access to historical data. For example, a
user might buy access to data such as historical transactions, prices, legal records, etc.
for a specified time interval in the past, e.g., the year of 1920. These different notions
of time can be combined, e.g., a user buys access to 1920 data and is entitled to access
it for two weeks starting from today.

If we let the lifetime of a system be partitioned inton short time intervals, the
existence of time-based access control policies requires the access keys to be changed
during each time interval. In this work, we concentrate on applications where the system
is setup to support a large number of such time intervals. Forexample, access key to
a video stream might change at least once a day (thus, permitting users to subscribe
on any given day). If the system is setup for a few years, this results inn being in
thousands. Likewise, if the application of interest is access to historical data, say, for
the last century, the number of time intervals will tend to beeven higher. Thus, a small
number of keys per user and efficient access with largen’s is the goal of this work.

The notion of security for time-based hierarchical key assignment (KA) schemes
was formalized only recently by Ateniese et al. [5]. Thus, inthe current paper we use
their security definitions and provide a new efficient solution to the problem of key man-
agement in systems with time-based access control policies. The approach we propose
is provably secure and relies only on the security of pseudo-random functions (PRFs).
In addition, our solution does not impose any requirements or constraints on the mech-
anisms used to enforce policies in systems where access control is not time-based (e.g.,
for a hierarchy of user classes). This means that our solution can be built on top of an
existing scheme to make it capable of handling time. In the rest of this paper, we refer
to a scheme without the support for temporal access control as atime-invariantscheme,
and we refer to a scheme that supports temporal access control policies astime-based.

Existing efficient time-invariant key management schemes for user hierarchies are
based on the notion of key derivation: a user receives a single key, and all other access
keys a user might need to possess according to her privilegescan be derived from that
key. In the most general formulation of the problem, inheritance of privileges is modeled
through the use of a directed graph, where a node correspondsto a class and a parent
node can derive the keys of its descendants. In this paper we follow the same model,
but, unlike previous work, apply key derivation techniquesto time.

In a setup withn time intervals, the server is likely to maintain information linear
in n. By building a novel data structure, we only slightly increase the storage space at
the server beyond the necessaryO(n) and at the same time are able to achieve other
attractive characteristics. In more detail, our solution enjoys the following properties:

– To be able to obtain access to an arbitrary contiguous set of time intervals, a user is
required to store at most 3 keys.

– The above-mentioned keys to be given to a user can be computedin constant time
from that user’s authorized set of contiguous time intervals.

– Key derivation within the authorized time intervals involves a small constant num-
ber of cryptographic operations and thus is independent of the number of time
intervals in the systems or the number of time intervals in the user’s access rights.

– If the total number of time intervals in the system isn, then the increase of the
public storage space at the server due to our solution is onlyby a small asymptotic
factor, e.g.,O(log∗ n log log n) with a small constant.

– All operations are very efficient, and no expensive public-key cryptography is used.

We provide several solutions with slightly different characteristics, where the difference
is due to the building blocks used in our construction. Thesesolutions are summarized
in Table 3. An extension of our techniques also allows to support access rights that can
be stated as periodic expressions.

While the results given above correspond to a time-based keyassignment scheme
with a single resource or user class, we can use them to construct a time-based key
assignment scheme for a user hierarchy. We show that our construction favorably com-
pares to existing schemes and provides an efficient solutionto the problem (the compar-
ison is given at the end of the paper in Section 7). Additionally, our scheme is balanced
in the sense that all resource consumption such as the client’s private storage, compu-
tation to derive keys, and the server public storage are minimized with tradeoffs being
possible. This allows the scheme to work even with very weak clients and not to burden
the server with excessive storage. Furthermore, our schemeis provably secure under
standard complexity assumptions.

In the rest of the paper, we first review related literature inSection 2. In Section 3
we define the model and give some preliminaries. Section 4 gives a preliminary data
structure, which we use in Section 5 to build our improved scheme. Thus, the core of
our solution lies in Section 5 along with its analysis. In Section 6 we show how to use
the scheme to build a time-based key assignment scheme for a user hierarchy. Finally,
Section 7 compares our solution with other existing schemesand concludes. Several
extensions of our scheme and security proofs can be found in [4].

2 Related Work

The literature on time-invariant key assignment (KA) schemes in a user hierarchy is
extensive, and its survey is beyond the scope of this paper. For an overview of such
publications, see, e.g., [2] and [11].

While the list of publications on time-invariant KA schemesis very large, the num-
ber of publications that consider time-based policies and provide schemes for them is
rather modest. The time-based setting and the first scheme was introduced by Tzeng [17].
The scheme, however, was later shown to be insecure against collusion of multiple
users [22]. Subsequent work of Huang and Chang [12], Chien [10], and Yeh [20] was
also shown to be insecure against collusion (in [16], [21, 14], and [5], respectively).

Among very recent publications, Wang and Laih [19] present atime-based hierar-
chical KA scheme. While their scheme is shown to be collusion-resilient, the notion of
security, however, is not formalized and no clear adversarial model is given in that work.
Tzeng [18] also describes a time-based hierarchical key assignment scheme, which is
used as a part of an anonymous subscription system. The scheme is proven to resist

collusion attacks; however, no formal model of adversarialbehavior is provided. The
work of Ateniese at el. [5] is the first result that provides a formal framework for time-
based hierarchical KA schemes and gives provably secure solutions, both secure against
key recovery and with pseudo-random keys. Concurrently with and independently from
this work, time-based solutions have been developed by De Santis et al. [15]. Section 7
compares all solutions.

There is extensive literature on broadcast encryption and multicast security, which
might be considered applicable here. There are, however, crucial differences in the
models, which prevent us from using solutions from those domains. First, broadcast
encryption and multicast security schemes permit access toa single resource instead
of a hierarchy and cannot be composed in an obvious way to solve our problem. More
importantly, they assume that each client obtains key updates for each time interval,
which is impossible in our model: no private channels between the server and a client
after the initial issuance of the user keys is assumed, the client is allowed to remain
off-line, and can access the resources at her own discretion. The only exception from
the above online requirement that we are aware of is the work of Briscoe on multicast
key management [9]. That solution builds a binary tree from the time intervals, thus
achievingO(log n) secret keys andO(log n) key derivation time.

Finally, the access control literature has a large body of work on temporal access
control models (see, e.g., [7, 8]). These models, however, concentrate on policy specifi-
cation and not on key assignment and derivation mechanisms.

3 Problem Description and Preliminaries

3.1 The model

While the motivation for this work comes from the need to support access control poli-
cies with temporal constraints in user hierarchies, the problem does not need to be
limited to this particular setting. That is, an efficient solution to the key management
problem in temporal access control can find use in other domains. Therefore, we provide
a very general formulation of the problem, without any assumptions on the environment
in which it is used. Of course, access control in user hierarchies remains the most im-
mediate and important application of our techniques. Thus,in Section 6 we will show
how our solution can be used to realize temporal access control for user hierarchies.

Now let us assume that we are given a resource, and the owner ofthis resource
would like to control user access to that resource using time-based policies. For that
purpose, the lifetime of the system is partitioned into short time intervals (normally, of
a length of a day or shorter), and the access key for that resource changes every time
interval. Letn denote the number of time intervals in the system,T = {t1, . . ., tn}
denote the intervals, andK = {kt1 , . . ., ktn

} denote the corresponding access keys.
Now assume that a userU is authorized to access that resource during a contiguous

set of time intervalsTU ⊆ T , whereTU = {tstart, . . ., tend}. Following the notation
of [5], we use theinterval-setoverT , denoted byP , which is the set of all non-empty
contiguous subsequences ofT , i.e., TU ∈ P for any TU . With such access rights,U
should receive or should be able to compute the keysKTU

⊆ K, where for eacht ∈

TU the keykt ∈ KTU
. We denote the private information thatU receives bySTU

.
Obviously, storing|TU | keys at the user end is not always practical, and significantly
more efficient solutions are possible. Then atime-based key assignment schemeassigns
keys to the time intervals and users, so that time-based access control is enforced in
a correct and efficient manner. Such key generation is assumed to be performed by a
central authority CA, but once a user is issued the keys, there is no interaction with
other entities. More formally, we define a time-based KA scheme as follows:

Definition 1. LetT be a set of distinct time intervals andP be the interval-set overT .
A time-based key assignment scheme consists of algorithms(Gen, Assign, Derive) s.t.:

Gen is a probabilistic algorithm, which, on input a security parameter1κ and the set
of time intervalsT , outputs (i) a keykt for any t ∈ T ; (ii) secret informationSec

associated with the system; and (iii) public informationPub. Let (K, Sec, Pub)
denote the output of this algorithm, whereK is the set of all keys.

Assign is a deterministic algorithm, which, on input a time sequence TU ∈ P and
secret informationSec, outputs private informationSTU

for TU .
Derive is a deterministic algorithm, which, on input a time sequenceTU , time interval

t ∈ TU , private informationSTU
, and public informationPub, outputs the keykt

for time intervalt. The correctness requirement is such that, for each time sequence
TU ∈ P , each time intervalt ∈ TU , each private informationSTU

, each keykt ∈
K, and each public informationPub that Gen(1κ, T) and Assign(TU , Sec) can
output,Pr[Derive(TU , t, STU

, Pub) = kt] = 1.

Note that in many cases theAssign algorithm can be a part of theGen algorithm, i.e.,
private valuesSTU

for everyTU ∈ P are generated at the system initialization time. We,
however, separate these algorithms to account for cases where retrievingSTU

from Sec

is not straightforward (which is the case in our scheme). In such cases, merging these
two algorithms together will needlessly complicateGen.

Also note that since a user accesses the server’s public storage for key derivation
purposes, there is no need for additional time synchronization mechanisms between
the user and the server: the current time interval can be stored as a part of the public
information the server maintains.

We distinguish between two different notions of security for a time-based KA scheme:
security againstkey recoveryand security with respect tokey indistinguishability(i.e.,
schemes with pseudo-random keys). A time-based KA scheme can also be secure against
static or adaptive adversaries. In [5], however, it was shown that the security of a time-
based hierarchical KA scheme against a static adversary is polynomial-time equivalent
to the security of that scheme against an adaptive adversaryfor both security goals (key
recovery and key indistinguishability). While in the current discussion we are not con-
cerned with hierarchical schemes, our setting can be considered to be a special case
of a hierarchy with a single class. Thus, in this work we only provide definitions of a
time-based KA scheme secure against a static adversary; anda proof of security under
such definitions will imply security against an adaptive adversary.

In our definition of a scheme secure against static adversary, let adversaryAst attack
the security of the scheme at timet ∈ T . Ast is allowed to corrupt all users with no
access tokt and, when finished, is asked to guesskt. We consider a scheme to be secure
only if Ast has at most negligible probability in outputting the correct key.

In addition to the security requirements, an efficient KA scheme is evaluated by
the following criteria: (i) The size of the private data a user must store; (ii) The time it
takes the system to assign a user its keys; (iii) The amount ofcomputation necessary
for a user to generate an access key for the target time interval; and (iv) The amount of
information the service provider must maintain for public access.

3.2 Key derivation

Our approach relies heavily on the notion of key derivation.In our solution, we use the
same key derivation techniques that were used in [1]. The crucial difference, however,
is that in [1] key derivation was used between user classes (to provide a time-invariant
scheme for a user hierarchy), while in this work we use key derivation for the data
structures that we build. This is possible because the techniques of [1] work for an
arbitrary directed acyclic graph (DAG), and we review them next.

Assume that we are given a DAG denoted byG = (V, E), whereV is the set of
nodes andE is the set of edges. LetAnc(v, G) denote the set of ancestors of node
v in G includingv itself, and letDesc(v, G) denote the set of descendants ofv in G

includingv itself. LetFκ : {0, 1}κ ×{0, 1}∗ → {0, 1}κ, for a security parameterκ, be
a family of pseudo-random functions (PRFs) that, on input ofa κ-bit key and a string,
outputs aκ-bit string that is indistinguishable from a random string (note that a PRF
can be implemented very efficiently as HMAC [6] or CBC MAC). For brevity, instead
of Fκ(k, x), we may writeFk(x). Also, when the graphG is clear from the context, we
may omit it in the ancestry functions and useAnc(v) andDesc(v).

To be able to derive keys, we need two algorithms:

– Set is an algorithm for assigning keys to the graph which takes asinput a security
parameter1κ and a DAGG = (V, E) and outputs (i) an access keykv for each
v ∈ V , (ii) secret informationSv for eachv ∈ V , and (iii) public informationPub.

– Derive is an algorithm for deriving keys which takes as input nodesv, w ∈ V ,
secret informationSv for v, and public informationPub. It outputs the access key
kw for w, if w ∈ Desc(v, G).

The derivation method we use is from [1], and is sufficient to achieve security against
key recovery:

– Set(1κ, G): For each nodev ∈ V , select a random secret keykv ∈ {0, 1}κ and
setSv = kv. For each nodev ∈ V , select a unique public label`v ∈ {0, 1}κ and
store it inPub. For each edge(v, w) ∈ E, compute public informationyv,w =
kw ⊕ Fkv

(`w), where⊕ denotes bitwise XOR, and store it inPub.
– Derive(v, w, Sv , Pub): Let (v, w) ∈ E. Given Sv = kv andPub, derivation of

kw can be performed askw = Fkv
(`w) ⊕ yv,w, where`w andyv,w are publicly

available inPub. More generally, if there is a directed path between nodesv andu

in G, u’s key can be derived fromv’s key by considering each edge on the path.

3.3 Shortcut techniques

Our constructions use the so-called shortcut edges: ashortcut edgeis an edge that is
not in the original graphG but is in the transitive closure ofG. Such edges are added to

Private Key Public
Scheme storage derivation storage
2HS [2] 1 2 op. O(n log n)

3HS [1] 1 3 op. O(n log log n)

4HS [2] 1 4 op. O(n log∗ n)

log∗HS [2] 1 O(log∗n) op. O(n)
Table 1.Performance of shortcut schemes for one-dimensional graphs.

G for performance reasons. Note that addition of shortcut edges does not affect partial
order relationship between the nodes, i.e., we may add a shortcut edge(v, w) to the
graph only if there is already a directed path from nodev to w in the original graph.

In this work we rely on efficient shortcut techniques from prior literature for a graph
of dimension 1 (i.e., a total order), reviewed in [4]. Here weonly summarize the per-
formance of existing schemes, any of which can be used as a building block in our
constructions. Consider a directed graph of dimension 1 consisting ofn vertices. The
performance of known solutions for such graphs is given in Table 1. In the table, we
denote bysHS a solution where the distance between any two nodes (i.e.,the diameter
of the graph) is at mosts, i.e., a so-calleds-Hop Scheme.

Throughout this work we may useS1(n) to denote any shortcut scheme for graphs
of dimension 1 applied to a total order of sizen. We also usespace(S1(n)) and
time(S1(n)) to denote its public storage and key derivation complexity,respectively.

4 Building Basic Data Structure

As was mentioned above, all of our constructions are based onthe notion of key deriva-
tion in a graph. Throughout the rest of the paper, when we say that there is a directed
edge fromv to w in G, it implies thatv is capable of derivingw’s key using its own key.
This means that, for the data structures that we build (all ofwhich are DAGs), there will
be a public and secret information associated with each node, and there will be public
information corresponding to each edge.

Our preliminary data structure is rather simple and consists of two main steps: build-
ing a grid of sizen × n (wheren is the number of time intervals in the system) and
applying one-dimensional shortcut techniques to parts of the grid. A more detailed de-
scription follows.

1. Build half of a grid of dimensionn × n with the time intervalst1, . . ., tn being on
its diagonal (see Figure 1). In the grid, we denote byv1,1 the root node; nodevi,j

is located at the rowi and columnj (i.e., v2,1 is “below” v1,1 andv1,2 is “on the
left” of v1,1). There is a directed edge from eachvi,j to vi+1,j , and from eachvi,j

to vi,j+1. The time intervalti corresponds to the nodevi,n−i.
From this data structure it should be clear that, given a key for vi,j , all keys for time
intervalsti, . . ., tn−j+1 can be derived from it (in the worst-caseO(n) time).

2. Next, we apply a one-dimensional shortcut schemeS1 to each row and column of
the grid (see Figure 2). More precisely, we add shortcuts to the data structure to be
able to derivevi,x’s key from vi,y ’s key for anyx > y (and similarlyvx,j ’s key
from vy,j ’s key for anyx > y) in a small number of steps instead of previousO(n)

tm

...

v2,1

...

...

v1,1v1,2

t1

t2

tm−1

Fig. 1. Building a grid for the ba-
sic scheme.

v1,2

...

v1,1...

...

v2,1
t2

tm−1

tm

t1

Fig. 2.Adding shortcuts to the grid.

Underlying Private Key Public
scheme storage derivation storage

2HS 1 ≤ 4 op. O(n2 log n)

3HS 1 ≤ 6 op. O(n2 log log n)

4HS 1 ≤ 8 op. O(n2 log∗ n)

log∗HS 1 O(log∗n) op. O(n2)
Table 2.Performance of the basic (and preliminary) scheme.

time. This is done at the expense ofO(space(S1(n))) additional shortcuts per row
or column and thereforeO(n · space(S1(n))) total shortcuts.
Having this, now a user entitled to have access during time intervals
TU = {tx, . . ., ty} ∈ P can receive a single key corresponding to nodevx,n−y+1.
Key derivation of the key corresponding to the current time intervalti ∈ TU now
consists of at most2 · time(S1(n)) steps: at mosttime(S1(n)) steps are needed to
derivevi,n−y+1’s key from that ofvx,n−y+1, and then at mosttime(S1(n)) steps
are needed to derivevi,n−i+1’s key (which corresponds toti) from that ofvi,n−y+1.

Table 2 summarizes the performance of the basic scheme, whenused with various one-
dimensional schemes.

5 An Improved Scheme

This section describes a solution that achieves significantly better performance than the
previous scheme. We first present a new data structure and then fill other parts in to
provide a full-fledged time-based KA scheme.

At a high level, to build a new data structure, we partition all time intervals in the
system into coarse “chunks” (

√
n chunks of

√
n time intervals each) and apply the basic

scheme to the chunks. If access is to be granted to a large timeinterval that spans across
boundaries of these chunks, we can use this level of granularity to assign keys. If, on
the other hand, the interval to which the user should obtain access is contained within
a chunk, we recursively apply this procedure to the time intervals within each chunk
to support time-based access control of finer granularity. If a time interval spans across
different chunks, but contains partial chunks at the beginning and at the end of the user’s
sequence of time intervals, then we utilize the coarse chunk’s keys along with two new
types of keys that are introduced later.

5.1 Reducing storage space

This section describes the tree data structure we build; howit is used is covered in
the next sections. For the purposes of presentation of this work, we letn = 22

q

for
some integerq. This allows us to avoid using rounding notationbxc anddxe through-
out the algorithms and results in a cleaner presentation (note that this assumption is
purely to make the presentation cleaner, and the solution will work without this as-
sumption). Our procedure for building the data structure takes as inputs a nodev and
the setT = {t1, . . . , tn}, and then recursively builds a tree for the set rooted atv.
Due to the recursive nature of this function, we useT̂ to denote the working set of the
current function invocation and|T̂ | to denote the size of̂T . Then the data structure is
constructed as described below:
Algorithm DataStructBuild(v, T̂):
1. If |T̂ | = 2 (i.e.,q = 0), then return. Otherwise, continue with the steps below.

2. Partition T̂ into
√

|T̂ | sets of
√

|T̂ | contiguous time intervals each, call these

T̂1, . . . , T̂√|T̂ |
. That is, ifT̂ = {t1, . . ., t|T̂ |}, thenT̂i = {t

i
√

|T̂ |+1
, . . . , t

i
√

|T̂ |+
√

|T̂ |
}.

Create a nodevi for eachT̂i, and makevi a child ofv.
3. Generate a problemCoarse(T̂), derived fromT̂ by treating eacĥTi as a black box

(i.e., “merging” the constituents of̂Ti into a single item). Note that the size of set

Coarse(T̂) is
√

|T̂ |.
4. Store at nodev an instance of the basic scheme forCoarse(T̂), denotedD(v).

D(v) supports performance of: 1 key,O(time(S1(|T̂ |))) key derivation, and
O(space(S1(|T̂ |))) space; butD(v) can only process an interval if it is the union of
a contiguous subset ofCoarse(T̂) (i.e., it cannot handle intervals whose endpoints
are inside thêTi’s, as it cannot “see” inside âTi).

5. Also store at nodev two solutions of one-dimensional problems onT̂ : One is for
intervals all of which start at the right boundary ofT̂ and end insidêT (we call
this theright-anchoredproblem and denote the one-dimensional structure for it by
R(v)); another is for intervals all of which start at the left boundary of T̂ and end
inside T̂ (we call this theleft-anchoredproblem and denote the one-dimensional
structure for it byL(v)). Note that havingR(v) andL(v) enables the handling of
an interval that lies within̂T and also has its left or right endpoint at a boundary
of T̂ , with performance of: 1 key,O(time(S1(|T̂ |))) steps per key derivation, and
O(space(S1(|T̂ |))) space.

6. Recursively apply the scheme to each child ofT̂ ; that is, callDataStructBuild(vi, T̂i)

in turn for eachi = 1, 2, . . . ,

√

|T̂ |.
Figure 3 gives an illustration of how the data structure is built. The total space of the data
structure satisfies the recurrenceS(n) ≤ √

nS(
√

n) + c1 · space(S1(n)) if n > 2 and
S(2) = c2, wherec1 andc2 are constants. Thus,S(n) = O(space(S1(n)) log log n).

5.2 Key assignment

We now turn our attention to which keys are given to a user withaccess to an arbitrary
TU ∈ P . In what follows,v is a node of the above tree data structure,T̂ is the set of

(c) State after Step 3.

vv

v1 v√m

T√
m

Coarse(T)
D(v)

R(v)

L(v)

(d) State after Step 5.(b) State after Step 2.(a) Initial state.

t1 tm T1tm

T1 T√
m

t1

Fig. 3.Construction of the data structure for the improved scheme (first level of recursion).

time intervals associated withv, andI is a sequence of time intervals for which the keys
must be given. The recursive procedure below, when invoked on anyTU and our data
structure, returns a set of (at most 3) keys associated withTU .

Algorithm AssignKeys(I, v, T̂):
1. If v is a leaf, then return a key for each of the (at most two) time intervals inI.

Otherwise, continue with the next step.
2. Letv1, . . . , v√|T̂ |

be the children ofv, and letT̂1, . . . , T̂√|T̂ |
be the respective sets

of times associated with these children. We distinguish twocases:
(a) I overlaps with only one set̂Ti. Then we return the keys from the recursive call

AssignKeys(I, vi, T̂i).
(b) I overlaps with all ofT̂k, T̂k+1, . . . , T̂k+`, where` ≥ 1. Thesè + 1 intervals

are handled in 3 different ways: Those completely containedin I are collec-
tively processed using theD(v) structure, resulting in one key. If̂Tk overlaps
with I, but is not contained inI, then it is right-anchored and is processed us-
ing R(vk), resulting in one key. If̂Tk+` overlaps withI, but is not contained in
I, then it is left-anchored and is processed usingL(vk+`), resulting in one key.
Those (at most) 3 keys are returned.

One can also lower the time complexity of the above algorithmto O(time(S1(n)))
(e.g., it can be constant). We show how to achieve this in [4].

All keys given to users must be labeled with the level at whichthey were retrieved in
the data structure, i.e., the distance from the root node. This is necessary for achieving
constant-time computation of access keys, which will be explained in the next section.
To make key derivation simpler, we also label user keys with their type; namely:D, R,
or L. In addition, if a user receives more than a single key for hertime sequenceTU ,
each key is labeled with a range of time intervals to which it permits access.

To summarize, we assume that a key given to a user will be labeled with four values
(lev, type, ta, tb), where0 ≤ lev ≤ log log n, type ∈ {R, L, D}, andta, tb ∈ T such
that ta < tb. For example, if a user with access rights toTU = {tstart, . . ., tend} is
given private information consisting of three keysSTU

= {k1, k2, k3}, thenk1 could be
labeled with(l, R, tstart, ta), k2 with (l−1, D, ta+1, tb), andk3 with (l, L, tb+1, tend).

5.3 Content distribution

At time t ∈ T , the service provider wants to make certain content (possibly very volu-
minous) available to the users with access rights at time intervalt. To do so, the content

is encrypted with the access keykt using a symmetric encryption scheme and is made
available to all users in the encrypted form (by placing it ina public location, broad-
casting it to the users, or by other means). In our scheme the server also needs to ensure
that the keys that users derive fort allow them to derivekt. There areO(log log n) such
keys fort in the data structure access to which should allow access tokt. Since the data
structure has(log log n + 1) levels, such keys are:

– Keys fromR(v), for somev in the data structure, one from each level.
– Keys fromL(v), similarly, for a singlev per level.
– Keys corresponding toD(v), one from each levell, 0 ≤ l ≤ log log n − 1.

We refer to these keys asenabling keys. The server places in the public domain infor-
mation that permits derivation ofkt from any of the enabling keys above. Additionally,
the server labels the public derivation information associated with each of the enabling
keys with the level and the type (i.e.,R, L, or D) of the corresponding enabling key.
This is needed to permit fast constant-time derivation of the access key.

5.4 Key derivation

A userU with access to the sequence of time intervalsTU = {tstart, . . ., tend} ∈ P
receives private informationSTU

consisting of 1, 2, or 3 keys that permit her to derive
enabling keys for eacht ∈ TU . In the most general (and common) case, such private
information consists of 3 keys – denoted byk1, k2, andk3 – labeled as(l, R, tstart, ta),
(l − 1, D, ta+1, tb), and (l, L, tb+1, tend), respectively, for somel, a, and b. Let us
assume, without loss of generality, that if the number of keys is less than 3, then the
missing keys are set to empty strings withk1 remaining of typeR, key k2 of typeD,
and keyk3 of typeL. Then to obtain the enabling key for a time intervalti ∈ TU , U
executes a derivation algorithm which we sketch here:

Algorithm DeriveKey(TU , ti, STU
, Pub):

1. ParseSTU
ask1(l, R, tstart, ta), k2(l − 1, D, ta+1, tb), k3(l, L, tb+1, tend).

2. If ti ∈ {tstart, . . ., ta}, find the nodev at levell such thatR(v) permits access toti
(note that such nodev can be computed in constant time using indexi of the time
intervalti). Usek1 and the public information about the edges inPub to derive the
key corresponding toti and return that enabling key.

3. Similarly, if ti ∈ {tb+1, . . ., tend}, locate the nodev at level l s.t. L(v) permits
access toti. Usek3 andPub to derive an enabling key forti and return that key.

4. Finally, if ti ∈ {ta+1, tb}, locatev at levell − 1 such thatD(v) permits access to
ti; usek2 andPub to derive an enabling key forti and return it.

Key derivation complexity in all of the above cases isO(time(S1(n))).

5.5 Putting everything together

In this section we summarize our construction and show its performance. All proofs
corresponding to our security theorems can be found in [4]. Figure 4 gives a complete
description of our time-based KA scheme. In addition to the algorithms given in pre-
vious sections, we specify how they are used. Table 3 summarizes performance of our

Algorithm Gen(1κ, T):
1. Create a root noderoot for the data structure and runDataStuctBuild(root, T). LetG =

(V, E) denote the tree structure returned.
2. For eachv ∈ V , randomly choose a secret keykw ∈ {0, 1}κ and a unique public label

`w ∈ {0, 1}κ associated with each nodew in D(v), R(v), andL(v).
3. For eachv ∈ V , construct public information for each edge inD(v), R(v), andL(v) using

the key derivation method, e.g., for an edge(w, u), its public value isyw,u ∈ {0, 1}κ.
4. For eacht ∈ T , randomly choose a secret keykt ∈ {0, 1}κ and a unique public label

`t ∈ {0, 1}κ.
5. For eacht ∈ T , let Vt ⊂ V denote the set of nodes inG access to which implies access to

t. Then for eachVt, for eachv ∈ Vt:
(a) find inD(v) the node corresponding to the time intervalt; call it w.
(b) create an edge fromw to t by computing public information using enabling keykw,

t’s secret keykt, public label`t, and the key derivation method. Mark such an edge
with the level ofv and typeD.

(c) repeat (a) and (b) forR(v) andL(v), using typesR andL, respectively.
6. LetK consist of the secret keyskt for eacht ∈ T andSec consist of the remaining secret

keyskw. Also let Pub consist ofG, all public labels (of the form̀w and`t), and public
information about all edges generated above.

Algorithm Assign(TU , Sec):
1. ExecuteAssignKeys(TU , root, T), whereroot is the root node ofG.
2. SetSTU

to the keys computed and returnSTU
.

Algorithm Derive(TU , t, STU
, Pub):

1. If t 6∈ TU , return a special rejection symbol⊥.
2. ExecuteDeriveKey(TU , t, STU

, Pub) to compute an enabling key fort; call it k′

t.
3. Usek′

t along with its (level-type) label andPub to derive keykt.

Fig. 4.Proposed time-based key assignment scheme.

solution. The security of our solution comes from the way keyderivation is performed
in a DAG and is not due to the details of the data structures built.

Theorem 1. Assuming the security of the family of PRFsFκ, the time-based key as-
signment scheme given in Figure 4 is both complete and sound with respect to key
recovery in the presence of a static adversary.

To achieve a stronger notion of key indistinguishability, our solution will require a
slightly different key derivation method. Intuitively, wedecouple the keys used in the
public information from the actual access keys, so that now it is not feasible to test ac-
cess keys using the public information. The separation is performed using an additional
invocation of a PRF, where the keys to be used inPub are computed asF (0||k) and the
access keys are computed asF (1||k). This key derivation method is described in [1]
(full version only).

Then in our scheme of Figure 4, we use this enhanced key derivation method in
Step 3 of theGen algorithm (i.e., in data structuresD(v), R(v), andL(v)). This means
that now someone with access to a certain key in, for instance, R(v) and who guesses
an unauthorized key correctly, cannot use the public information for that data structure
to test the key. This change implies the corresponding change in theDerive algorithm.

Underlying Private Key Public
scheme storage derivation storage

2HS ≤ 3 ≤ 5 op. O(n log n log log n)

3HS ≤ 3 ≤ 7 op. O(n(log log n)2)

4HS ≤ 3 ≤ 9 op. O(n log∗ n log log n)

log∗HS ≤ 3 O(log∗ n) op. O(n log log n)
Table 3.Performance of the improved scheme.

So far we devised a solution to support access rights that span across a contigu-
ous sequence of intervals. It is also possible to support periodic access rights that span
across a contiguous set of time periods but the time intervals themselves might be dis-
continuous within a period. If we treat time as a single dimension and the solution
presented in this work as a solution to one-dimensional problem, it is possible to extend
our approach to higher dimensions. An extension to dimension 2, which is useful in the
geo-spatial context, is presented in [3]. This two-dimensional solution can be used to
conveniently address the problem of periodic access rightswith a small number of keys
per user: we use one dimension to specify periods in user access rights and the other
dimension to specify individual time slots within a period.We omit further details here.

Full version [4] gives extensions to this solution. In particular, we show how to
extend the lifetime of the system beyond the originaln time intervals and how to gen-
eralize the scheme to further decrease the public space using a key-space tradeoff.

6 Temporal Access Control for a User Hierarchy

In systems with hierarchically organized access classes, such a hierarchy is normally
modeled as a directed acyclic access graph which we denote byGU . In such a graph,
each node corresponds to an access class and the edges form a partial order relationship
between the classes. An edge from nodev to nodew means that the parent nodev

inherits privileges of the nodew (while the converse is not true). This implies that a
user with access to a specific class obtains access to the resources at that class and the
resources at all of the descendant classes in the hierarchy.With this setup, it is possible
to assign each class a single secret key and let users obtain keys of their descendant
classes through a key derivation process. Similar to a general graph, in an access graph
GU a directed path from nodev to w means thatw’s keys are derivable fromv’s key.

Now if we equip the model with time-based policies, in addition to computing keys
of descendant classes, a user should be able to compute keys based on time. That is,
a userU entitled to access classv ∈ VU during a sequence of time intervalsTU ∈ P
obtains private information that permits her to compute keyskv,t for her access classv
and eacht ∈ TU (time-based key derivation). In addition, the private information allows
U to compute, for eacht ∈ TU , keyskw,t for each descendant access classw in the
user hierarchy (class-based key derivation). Thus, key derivation now consists of two
dimensions, which can potentially be performed using drastically different techniques.
We give details on how to extend out current scheme to this hierarchically-temporal
based model in the full version [4].

Public Private in- Key Operation Complexity
Scheme information formation derivation type assumption

Encryption-based O(|VU |2|T |3) 1 1 decryp- one-way
[5] tion functions

Pairing-based [5] O(|VU |2) O(|T |) 1 pairing Bilinear Diffie-
evaluation Hellman

Binary tree O(|EU ||T |) O(log |T |) O(log |T |+ PRF one-way
diam(GU)) functions

ISPIT+(3,1)-CSBTO(|EU ||T | + |VU ||T |· ≤ 3 O(diam(GU)) decryp- IND-P1-CO
+EBC [15] log |T |(log log |T |)2) tion encryption [13]

Our 4HS-based O(|EU ||T | + |VU ||T |· ≤ 3 O(diam(GU)) PRF one-way
log∗ n log log |T |) functions

ISPIT+(3,1)-CSBTO(|EU ||T | + |VU ||T |· ≤ 3 O(log∗ |T |+ decryp- IND-P1-CO
+EBC [15] log |T | log log |T |) diam(GU)) tion encryption [13]

Our log∗HS-basedO(|EU ||T | + |VU ||T |· ≤ 3 O(log∗ |T |+ PRF one-way
log log |T |) diam(GU)) functions

Table 4.Comparison of time-based hierarchical KA schemes.

7 Comparison with Existing Solutions

Table 4 compares performance of our scheme with other existing solutions; only se-
curity against recovery was considered. In the table,diam(GU) denotes the diameter
of the graph (i.e., maximum distance between nodes) that bounds the number of op-
erations necessary to derive a descendant class’s key in theuser hierarchyGU . Also,
|EU | denotes the number of edges inGU . The table does not list private storage at the
server since it is equivalent for all solutions. Before proceeding with comparing existing
results, we briefly explain what these parameters mean.

In the great majority of cases, the depth of user hierarchiesis a small constant, re-
sulting in small constantdiam(GU). In cases where the depth of the original graphGU

is fairly large and it is unacceptable to have the user perform diam(GU) operations,
the graph can be modified to significantly reducediam(GU). This is done by insert-
ing shortcut edges at random (ifdiam(GU) = O(VU)) or using the techniques of [1]
and [2] that reducediam(GU) to a small constant at the expense of small increase in
the public storage associated with the hierarchy4. Thus, in this casediam(GU) is also a
small constant, and parameter|EU | will need to be replaced with a slightly larger value.

We also would like to mention that the schemes [19, 18] are notlisted in the table
due to the difference in the expressive power. These solutions allow a user to obtain
access to an arbitrary subsequence of time intervals, but require significantly slower
key derivation ofO(|VU | · |T |) modular exponentiations.

Considering that small private user storage and fast key derivation, followed by rea-
sonable server storage are the main evaluation criteria, wecan analyze the solutions
as follows. The Pairing-based scheme of [5] will have the slowest key derivation time
among all of the schemes listed, as it uses pairing evaluation rather than fast encryp-
tion or PRF operations. Additionally, the number of secret keys a user has to maintain

4 The techniques of [1] and [2] may fail on hierarchies of high dimensions, but we believe that
such cases are very rare for the applications we consider in this work.

is large. Compared to the Encryption-based scheme of [5], our key derivation time is
higher by a constant factor, private storage is similar (i.e., three keys instead of one),
but the amount of public information the server must maintain in our scheme is much
lower than in that scheme.

While the simple binary-tree approach has asymptotically higher performance, for
small values of|T | it will be preferred due to its simplicity. However, for the applica-
tions we envision, other solutions exhibit better performance. Thus, our recommenda-
tion is to use the simplest approach suitable for a particular setup.

The work of De Santis et al. [15] lists solutions with different performance parame-
ters, and we include only selected two here. We chose two schemes that require a user to
store 3 private keys (like in our solutions) and where time-based key derivation involves
O(1) andO(log∗ n) decryptions, respectively. This allows us to directly compare the
schemes of [15] with our schemes. As can be seen from the table, the solutions exhibit
very similar performance with CSBT-based constructions having an additional factor
of log |T | in the public storage space. Moreover, they do not discuss key assignment,
but it does not look like their key assignment can be done in constant time, whereas our
scheme allows constant time key assignment.

To summarize, our solution offers very attractive characteristics and superior per-
formance compared to other existing solutions: each user inthe system receives a small
(≤ 3) number of keys, constant-time key assignment to a user, (off-line) computation
of any access key involves a small number of very efficient operations, and the public
storage required by our solution is only slightly higher than the number of access keys
that the system must maintain.

Acknowledgments

The authors would like to thank Michael Rabinovich for his excellent suggestion of
using the geo-spatial key assignment scheme to address temporal key assignment for
periodic expressions. Mikhail Atallah is supported in partby Grants IIS-0325345 and
CNS-0627488 from the National Science Foundation, and by sponsors of the Center for
Education and Research in Information Assurance and Security. Marina Blanton was
supported by Intel Ph.D. fellowship, work was performed while at Purdue University.

References

1. M. Atallah, M. Blanton, N. Fazio, and K. Frikken. Dynamic and efficient key management
for access hierarchies. Preliminary version appeared inACM Conference on Computer and
Communications Security (CCS’05). Full version is available asTechnical Report TR 2006-
09, CERIAS, Purdue University, 2006.

2. M. Atallah, M. Blanton, and K. Frikken. Key management fornon-tree access hierarchies. In
ACM Symposium on Access Control Models and Technologies (SACMAT’06), pages 11–18,
2006. Full version is available asTechnical Report TR 2007-30, CERIAS, Purdue University.

3. M. Atallah, M. Blanton, and K. Frikken. Efficient techniques for realizing geo-spatial ac-
cess control. InACM Symposium on Information, Computer and CommunicationsSecurity
(ASIACCS’07), pages 82–92, 2007.

4. M. Atallah, M. Blanton, and K. Frikken. Incorporating temporal capabilities in existing key
management schemes. Full version, available asCryptology ePrint Archive Report 2007/245,
http://eprint.iacr.org/2007/245, 2007.

5. G. Ateniese, A. De Santis, A. Ferrara, and B. Masucci. Provably-secure time-bound hier-
archical key assignment schemes. InACM Conference on Computer and Communications
Security (CCS’06), 2006.

6. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication.
In Advances in Cryptology – CRYPTO’96, volume 1109, 1996.

7. E. Bertino, C. Bettini, E. Ferrari, and P. Samarati. An access control model supporting
periodicity constraints and temporal reasoning.ACM Transactions on Database Systems
(TODS), 23(3):231–285, 1998.

8. E. Bertino, P. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access control model.
In ACM Symposium on Access Control Models and Technologies (SACMAT’00), pages 21–
30, 2000.

9. B. Briscoe. MARKS: Zero side effect multicast key management using arbitrarily re-
vealed key sequences. InFirst International Workshop on Networked Group Communication
(NGC’99), volume 1736 ofLNCS, pages 301–320, 1999.

10. H. Chien. Efficient time-bound hierarchical key assignment scheme.IEEE Transactions of
Knowledge and Data Engineering (TKDE), 16(10):1301–1304, 2004.

11. J. Crampton, K. Martin, and P. Wild. On key assignment forhierarchical access control. In
IEEE Computer Security Foundations Workshop (CSFW’06), 2006.

12. H. Huang and C. Chang. A new cryptographic key assignmentscheme with time-constraint
access control in a hierarchy.Computer Standards & Interfaces, 26:159–166, 2004.

13. J. Katz and M. Yung. Characterization of security notions for probabilistic private-key en-
cryption. Journal of Cryptology, 19:67–95, 2006.

14. A. De Santis, A. Ferrara, and B. Masucci. Enforcing the security of a time-bound hierarchical
key assignment scheme.Information Sciences, 176(12):1684–1694, 2006.

15. A. De Santis, A. Ferrara, and B. Masucci. New constructions for provably-secure time-bound
hierarchical key assignment schemes. InACM Symposium on Access Control Models and
Technologies (SACMAT’07), 2007.

16. Q. Tang and C. Mitchell. Comments on a cryptographic key assignment scheme for access
control in a hierarchy.Computer Standards & Interfaces, 27:323–326, 2005.

17. W. Tzeng. A time-bound cryptographic key assignment scheme for access control in a hi-
erarchy. IEEE Transactions on Knowledge and Data Engineering (TKDE), 14(1):182–188,
2002.

18. W. Tzeng. A secure system for data access based on anonymous authentication and time-
dependent hierarchical keys. InACM Symposium on Information, Computer and Communi-
cations Security (ASIACCS’06), pages 223–230, 2006.

19. Shyh-Yih Wang and Chi-Sung Laih. Merging: an efficient solution for a time-bound hierar-
chical key assignment scheme.IEEE Transactions on Dependable and Secure Computing,
3(1):91–100, 2006.

20. J. Yeh. An RSA-based time-bound hierarchical key assignment scheme for electronic article
subscription. InACM International Conference on Information and KnowledgeManagement
(CIKM’05), pages 285–286, 2005.

21. X. Yi. Security of Chien’s efficient time-bound hierarchical key assignment scheme.IEEE
Transactions of Knowledge and Data Engineering (TKDE), 17(9):1298–1299, 2005.

22. X. Yi and Y. Ye. Security of Tzeng’s time-bound key assignment scheme for access control in
a hierarchy.IEEE Transactions on Knowledge and Data Engineering (TKDE), 15(4):1054–
1055, 2003.

