
CERIAS Tech Report 2008-11
VNsnap: Taking Snapshots of Virtual Networked Environments with Minimal Downtime

 by Ardalan Kangarlou, Dongyan Xu, Patrick Eugster
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



VNsnap: Taking Snapshots of Virtual Networked Environments
with Minimal Downtime∗

Ardalan Kangarlou, Patrick Eugster, Dongyan Xu
Dept. of Computer Science, Purdue University, West Lafayette, IN 47907, USA

{ardalan,p,dxu}@cs.purdue.edu, 765-494-6182, 765-494-0739(fax)

Abstract

A virtual networked environment (VNE) consists of virtual machines (VMs) connected by a virtual
network. It has been adopted to create “virtual infrastructures” for individual users on a shared cloud
computing infrastructure. The ability to take snapshots of an entire VNE — including images of the
VMs with their execution, communication and storage states — yields a unique approach to reliability
as a snapshot can restore the operation of an entire virtual infrastructure. We present VNsnap, a system
that takes distributed snapshots of VNEs. Unlike existing distributed snapshot/checkpointing solutions,
VNsnap does not require any modifications to the applications, libraries, or (guest) operating systems
running in the VMs. Furthermore, VNsnap incurs only seconds of downtime as much of the snapshot
operation takes place concurrently with the VNE’s normal operation. We have implemented VNsnap on
top of Xen. Our experiments with real-world parallel and distributed applications demonstrate VNsnap’s
effectiveness and efficiency.

1 Introduction

A virtual networked environment (VNE) consists of multiple virtual machines (VMs) connected by a virtual
network. In a shared physical infrastructure, VNEs can be created as private, mutually isolated “virtual
infrastructures” serving individual users or groups. For example, a virtual cluster can be created to execute
parallel jobs with its own root privilege and customized runtime library; a virtual data sharing network can
be set up across organizational firewalls to support seamless file sharing; and a virtual “playground” can be
established to emulate computer virus infection and propagation. With the emergence of cloud computing
[5] and “infrastructure as a service” (IaaS) paradigms, the VNE is expected to receive more attention.

To bring reliability and resume-ability to VNEs, it is highly desirable that the underlying hosting in-
frastructure provide the capability of taking a distributed snapshot of an entire VNE, including images of
the execution, communication, and storage states of all VMs in the VNE. The snapshot can later be used
to restore the entire VNE, thus supporting fault/outage recovery, system pause and resume, as well as trou-
bleshooting and forensics.

In this paper, we present VNsnap, a system capable of taking distributed snapshots of VNEs. Based on
the virtual machine monitor (VMM), VNsnap runs outside of the target VNE. Unlike existing distributed
snapshot (checkpointing) techniques at application, library, and operating system (OS) levels, VNsnap does
not require any modifications to software running inside the VMs and thus works with unmodified appli-
cations and (guest) OSes that do not have built-in snapshot/checkpointing support. VNsnap is especially
useful for virtual infrastructure hosting in cloud computing, where the host is required to provide virtual

∗This report, submitted in March 2009, supersedes an earlier version of the report (with the same title) submitted in April 2008.



eth0

eth0
vif1.0

eth0
vif1.0

eth0
vif2.0

eth0
vif2.0

Domain1 Domain2 Domain1

stack
TCP/IP

stack
TCP/IP

stack
TCP/IP

stack
TCP/IP

Host 1 Host 2
eth0

Domain0Domain0 VIOLIN SwitchVIOLIN Switch

UDP Tunneling

layer−2 frame violin−bridge

violin−tap

Domain2

violin−tap

violin−bridge

Figure 1: A 4-VM VIOLIN based on Xen, hosted by two physical machines.

infrastructure recoverability without knowing the details of guest VM setup. As such, VNsnap fills a void
in the spectrum of checkpointing techniques and complements (instead of replacing) the existing solutions.

There are two main challenges to taking VNE snapshots. First, the snapshot operation may incur sig-
nificant system downtime, during which the VMs freeze all computation and communication while their
memory images are being written to disks. As shown in our previous work [17], such downtime can be
tens of seconds long, which disrupts both human users and applications in the VNE. Second, the snapshots
of individual VMs have to be coordinated to create a globally consistent distributed snapshot of the entire
VNE. Such coordination is essential to preserving the consistency of the VM execution and communication
states when the VNE snapshot is restored in the future.

To address the first challenge, VNsnap introduces an optimized technique for taking individual VM snap-
shots where much of the VM snapshot operation takes place concurrently with the VM’s normal operation
thus effectively “hiding” the snapshot latency from users and applications. To address the second challenge,
we instantiate a classic global snapshot algorithm and show its applicability to taking VNE snapshots.

We have implemented a Xen [6] based VNsnap prototype for VIOLIN [15] – our instantiation of the
VNE concept. To evaluate the VIOLIN downtime incurred by VNsnap and its impact on applications, we use
two real-world parallel/distributed applications – one is a legacy parallel nanotechnology simulation without
built-in checkpointing capability while the other is BitTorrent, a peer-to-peer file sharing application. Our
experiments show that VNsnap is able to generate semantically correct snapshots of VIOLINs running these
applications, incurring about 1 second (or less) of VM downtime in all experiments.

2 VIOLIN Overview

For completeness, we give a brief overview of the VIOLIN virtual networked environment and a previ-
ous VIOLIN snapshot prototype presented in [17]. Based on Xen, a VIOLIN virtual networked envi-
ronment (or “VIOLIN” for short) provides the same “look and feel” of its physical counterpart, with its
own IP address space, administrative privileges, runtime services and libraries, and network configura-
tion. VIOLIN has been deployed in a number of real-world systems: In the nanoHUB cyberinfrastructure
(http://www.nanoHUB.org, with more than 20,000 users worldwide), VIOLINs run as virtual Linux clus-
ters for the execution of a variety of nanotechnology simulation programs; In the vBET/vGround emulation
testbed [14, 16], VIOLINs run as virtual “testing grounds” for the emulation of distributed systems and
malware attacks.

As shown in Figure 1, a VIOLIN consists of multiple VMs connected by a virtual network. In our
implementation, VMs (i.e. guest domains) are connected by VIOLIN switches running in domain 0 (the
driver/management domain of Xen) of their respective physical hosts. Each VIOLIN switch intercepts link-

2



level traffic generated by the VMs – in the form of layer-2 Ethernet frames – and tunnels them to their
destination hosts using the UDP transport protocol. VIOLIN snapshots are taken by VIOLIN switches
from outside the VMs. As such, there is no need for modifying the application, library, or OS (including
the TCP/IP protocol stack) that runs inside the VMs. Another benefit of VIOLIN snapshots is that such
a snapshot can be restored on any physical machine and network without requiring reconfiguration of the
VIOLIN’s IP address space. This is due to the fact that VIOLIN performs layer-2 network virtualization,
and as such its IP address space is totally orthogonal to that of the underlying hosting infrastructure.

In the previous work [17], we presented the first prototype for taking VIOLIN snapshots. Unfortunately,
that prototype has serious limitations: By simply leveraging Xen’s live VM checkpointing capability, the
system has to freeze each VM for a non-trivial period of time during which the entire memory image of
the VM is written to the disk. As a result, taking a VIOLIN snapshot causes considerable downtime to the
VIOLIN, in the magnitude of ten or tens of seconds. Moreover, due to TCP backoff incurred by the VM’s
long freeze, it will take extra amount of time for an application to regain its full execution speed, following
a VIOLIN snapshot.

3 VNsnap Design and Implementation

In this section, we present the design and implementation of VNsnap. We first describe our solution to
minimizing VM downtime during the VIOLIN snapshot operation. We then describe our solution to taking
distributed snapshot of a VIOLIN with multiple communicating VMs.

3.1 Optimizing Live VM Snapshots

3.1.1 Overview

VNsnap aims at minimizing the Xen live VM checkpointing downtime thus making the process of taking
a VM snapshot truly live. Interestingly, the solution is inspired by Xen’s VM live migration function [10]:
instead of freezing a VM throughout the snapshot [17], we take a VM snapshot much the same way as Xen
performs a live VM migration. As such we hide most of the snapshot latency in the VM’s normal execution
time leading to a negligible (usually less than a second) VM downtime.

Xen’s live migration operates by incrementally copying pages from the source host to the destination
host in multiple iterations while a VM is running. In every iteration, only the pages that have been modified
since the previous iteration get resent to the destination. Once the last iteration is determined (e.g., when a
small enough number of pages are left to be sent, the maximum number of iterations are completed, or the
maximum number of pages are sent), the VM is paused and only the relatively few remaining dirty pages
are resent to the destination host. Once this “stop-and-copy” phase is completed, the VM on the source host
is terminated and its copy on the destination host is activated. As a result, during live migration a VM is
operational for all but a few tens/hundreds of milliseconds. We adopted the same set of parameters used to
determine the last iteration in Xen migration for VNsnap.

Following the same principle, our optimized live VM checkpointing technique effectively migrates a
running VM’s memory state to a local or remote snapshot file but without a switch of control (namely the
same VM will keep running). To facilitate such migration, we create the snapshot daemon that “imperson-
ates” the destination host during a live snapshot. The snapshot daemon interacts with the source host in
obtaining the VM’s memory pages, which is, to the source host, just like a live migration. However, the
snapshot daemon does not create an active copy of the VM. Instead, the original VM resumes execution
once the snapshot has been taken.

3



3.1.2 Detailed Design and Implementation

We have implemented two versions of the snapshot daemon, each with different advantages. Both versions
can run either locally on the same host where the VM is running or remotely on a different host. For the rest
of the paper we will refer to these two versions as the “VNsnap-disk” and “VNsnap-memory” daemons. We
next describe their implementations and compare their performance and effectiveness.
VMsnap-disk daemon. The VNsnap-disk daemon operates by recording the stream of VMmemory image
data generated by the source host VMM during a live migration. In this simple design, bytes received by the
VNsnap-disk daemon are grouped into chunks (32KB in our implementation) and as soon as a chunk is full
it is immediately written to the disk (Figure 2(a)). As such the daemon is oblivious to the nature of data it
receives and is only concerned with recording the data stream as is. When the snapshot file is restored on a
host in the future, the stream is played back and the host perceives the operation as receiving a VM memory
image during live migration.

The VNsnap-disk daemon has two main advantages. First, it does not require a large amount of memory
as the daemon writes small chunks of VM memory image data directly to the disk (Figure 2(a)). Second, by
the time the (fake) VMmigration is completed, the snapshot file is readily available on the disk. However, the
VNsnap-disk daemon does have a number of weaknesses. First, the snapshot file it generates can potentially
be much larger than the actual VM memory image as multiple copies of the same memory page may have
been received and recorded during migration. The larger snapshot size translates into more writes to the
disk and consequently a lengthier duration of the snapshot operation. Second, during a future snapshot
restoration, a host will have to go through multiple iterations to obtain the final image of a memory page. As
a result, without any offline processing of the snapshot file, the restoration will take longer time compared
with restoring a snapshot file generated by Xen’s original live checkpointing function.

Xen

Domain1

Domain1
Snapshot

Domain0

xend

VNsnap−disk Daemon

Disk

Memory

(a) VNsnap-disk

Domain0

xend

Xen

Memory

Disk

Domain1 Domain1

Domain1
Snapshot

VNsnap−memory
Daemon

Image

(b) VNsnap-memory

Figure 2: Designs of VNsnap-disk and VNsnap-memory for optimized live VM snapshot.

VNsnap-memory daemon. The VNsnap-memory daemon overcomes the weaknesses of the VNsnap-
disk daemon, at the cost of reserving a memory area equal to the size of the memory image of the VM it
checkpoints (Figure 2(b)). The VNsnap-memory daemon is “conscious” of the nature of data it receives from
the source host and keeps only the most recent image of a page – in the reserved memory area. As a result,
the final snapshot it generates is the same size as the VM’s memory image. The snapshot will not be written
to disk until the VM snapshot operation is complete and the VM has resumed normal execution. Compared
with VNsnap-disk, this design further hides the snapshot operation duration by postponing disk writes until
the VM snapshot is completed. It also leads to shorter VM downtime with only memory writes. Moreover,
VNsnap-memory causes much less TCP backoff than VNsnap-disk, as to be explained and demonstrated in

4



Sections 3.2.3 and 4. On the other hand, the postponed snapshot dump in VNsnap-memory does lead to the
disadvantage that the snapshot file is not immediately available in the disk after the snapshot operation.

Although the operation of the VNsnap-memory daemon resembles that of a live VM migration, the
implementation of the VNsnap-memory daemon is not done by simply reusing some existing features of
Xen. It might seem that a VM snapshot can be done by performing a live migration followed by (1) the
restart of the original VM and (2) the freeze and dump of the new copy on the destination host using
Xen’s live VM checkpointing function. However, our experience indicates that this is not as simple as it
sounds. First, Xen by design does not allow checkpointing a VM that has not started or resumed execution
(which is the case for the new VM). Second, live migration in Xen involves translating the VM’s memory
page addresses that are specific to the source host (i.e. page tables that reference machine frame numbers)
into some host-independent representation (i.e. pseudo-physical frame numbers) through what is known as
canonicalization. Upon receipt of such pages on the destination host, these pages have to be mapped to
the machine frame numbers specific to the destination host (or get un-canonicalized). However, for VM
snapshots we need the canonicalized pages so that the snapshot can be restored on any host in the future.
In our implementation, the VNsnap-memory daemon intercepts and maintains the most recent image of any
canonicalized page. Once the VMmemory image transfer is complete, the daemon writes all memory pages
in batches to a snapshot file as if the snapshot file were generated by Xen’s live checkpointing function.
Third, a VM migration allocates and locks portions of the memory on the destination host to be used by the
migrated VM. Such allocation can reduce memory available to domain 0 and potentially other domains in
the future. VNsnap-memory avoids such fixed allocation of memory by allocating memory from the heap
that can be swapped to disk.

The implementation of VNsnap-disk and VNsnap-memory daemons involved making modifications to
the xend component of Xen that handles VM live migration. Our implementation is based on a recent
unstable release of Xen (equivalent to Xen 3.1), but it can be easily ported to other VMMs that support
live migration (e.g., VMware). We point out that both daemons can run locally or remotely. For the local
run it would be helpful to reserve a certain amount of CPU capacity for the daemon in order to prevent a
snapshot from affecting the VMs’ execution. In a uni-core machine this can be done by enforcing CPU
capacity allocations to different domains, while in a multi-core machine this can be done by assigning the
daemon and the VMs to different cores. For a remote run, the daemons consume much less resources of
the source host but will depend on a high speed network between the source and destination hosts for VM
image transport.

3.2 Taking Distributed VIOLIN Snapshot

3.2.1 Overview

With the individual VM snapshots achieving minimal downtime, we now present how to coordinate these
VM snapshots in creating a consistent, distributed snapshot of a VIOLIN. We adopt a simplified version of
Mattern’s distributed snapshot algorithm which is based onmessage coloring [19]. In VNsnap, the algorithm
is executed by the VIOLIN switches on the layer-2 Ethernet frames generated by the VMs.

We point out that distributed snapshot algorithms have long been proposed and applied [24, 13, 11,
18, 25, 23] and thus are not our contribution. The contribution of VNsnap is the application of a classic
snapshot algorithm to the emerging virtualized environments, as well as the proof of its applicability. The
applicability is not straightforward for the following reasons: First, in previous application scenarios, the
message-passing layer is responsible for executing the snapshot algorithm. However, in VNsnap the al-
gorithm is executed by VIOLIN switches outside the VMs yet the goal is to guarantee causal consistency
for transport state inside the VMs in VIOLIN. Second, Mattern’s original algorithm assumes reliable com-
munication channels, whereas in VNsnap, the VIOLIN switches forward layer-2 frames (encapsulating the

5



TCP/UDP packages from the VMs) between each other through non-reliable (fair-lossy by assumption)
UDP tunneling (recall Figure 1). Third, unlike some previous scenarios that require extra logging functions
to ensure correct message delivery (e.g., [23]), the VIOLIN switches do not maintain any VM’s internal
transport protocol state. Finally, previous works require modification to application, library, and/or OS
when applying the algorithm; whereas VNsnap does not require any modification to the VMs’ application
and system software (including the network protocol stack).

1 1

1
3

12
3

4

VM1

VM

VM

2VM

Consistent Cut

Time

1T

T3

T2

T4S4

3S

2S

S1

Figure 3: Illustration of VNsnap’s snapshot algorithm: The snapshot of V Mi begins at time Si and ends at
Ti.

In VNsnap, the snapshot algorithm works as follows: One VIOLIN switch (or “switch”) initiates a run
of the algorithm by sending a TAKE SNAPSHOT control message to all switches running for the same VIOLIN.
This represents the initialization of an agreement protocol (e.g., 2PC). Upon receiving the TAKE SNAPSHOT

message or a frame from a post-snapshot VM, a VIOLIN switch starts the snapshot operations on the VMs
in the same physical host. While a VM snapshot is in progress, its underlying VIOLIN switch colors that
VM with a pre-snapshot color and prevents the delivery of frames from any post-snapshot colored VM.
Once the VM’s snapshot is completed, the switch will color the VM with post-snapshot color. When all
VM snapshots in the same host are completed, the switch notifies the initiator via a SUCCESS message. If the
initiator receives SUCCESS messages from all switches of the VIOLIN, the agreement protocol terminates by
informing the switches to commit the snapshots (otherwise to discard them).

At the heart of the algorithm lie the different treatments of layer-2 frames transmitted between VIOLIN
switches. Before describing the details, we first define the term “epoch”: For a VM, an epoch is the contin-
uous interval between the completion times of two consecutive snapshot operations. In Figure 3, time Ti is
when the snapshot of V Mi completes and thus it marks the end of one epoch and the beginning of the next
epoch for V Mi (1 ≤ i ≤ 4). A frame falls into one of the following three categories:

1. A frame whose source and destination VMs are in the same epoch (e.g., the frames labeled 1 in Figure
3). Category 1 frames will be delivered to the destination VMs.

2. A frame whose source VM is one epoch behind the destination VM (e.g. the frame labeled 2 in Figure
3). Category 2 frames will be delivered to the destination VMs.

3. A frame whose source VM is one epoch ahead of the destination VM (e.g., the frame labeled 3 in
Figure 3). Category 3 frames are dropped by the destination VIOLIN switches.

6



3.2.2 Applicability of Algorithm

Our proof of applicability needs to show that the snapshot algorithm, executed outside a VIOLIN, will
preserve the semantics of application-level message passing communication via (unmodified) TCP or UDP
inside the VIOLIN. For space constraint, we will focus on the case of TCP while the proof for the UDP case
is much simpler and thus omitted. Inside the VMs, the TCP transport protocol achieves reliable message
delivery via acknowledgement, time-out and re-transmission semantics. Interestingly, we will show that
it is TCP’s semantics that preserve the correctness of application-level communications in the face of the
snapshot algorithm.
Proof sketch. The proof sketch has two parts. In the first part, we will show that, when restoring a VIOLIN
snapshot, the semantics of application-level message transport using TCP will be preserved as in the original
execution during which the snapshot is taken1. Suppose, in the original execution, V M1 sends a messagem

to V M2 via TCP. Let P be the set of TCP packets that carry the content of messagem. Let V S(V Mi) be
the VIOLIN switch running in the host of V Mi(i = 1, 2). Let Ti(i = 1, 2) be the time when the snapshot
operation of V Mi completes and let the epoch before Ti be epoch e and the one after Ti be epoch e + 1. To
show that message m will be successfully delivered in the execution restored from the VIOLIN snapshot,
we will show that for each packet p ∈ P , following VIOLIN snapshot restoration, V M2 will eventually
see the receipt of p and V M1 will eventually see the acknowledgment of p – denoted as ACKp. Packet p
is encapsulated in a layer-2 frame, which is then tunneled from V S(V M1) to V S(V M2). Let f(p) be the
frame that successfully arrives at V S(V M2) (recall the unreliable UDP tunneling). f(p) falls into one of
the following cases:

Case 1: f(p) is a category 3 frame. This means that f(p) is sent by V S(V M1) in epoch e + 1 and
received by V S(V M2) in epoch e. According to the snapshot algorithm, category 3 frame f(p) will be
dropped by V S(V M2) and will not be delivered to V M2. As a result, the snapshot of V M2 does not record
the receipt of p and the snapshot of V M1 does not record the receipt of ACKp. Upon VIOLIN snapshot
restoration, V M1 will, by TCP semantics, re-transmit p to V M2.

Case 2: f(p) is a category 2 frame. This means that f(p) is sent by V S(V M1) in epoch e and received
by V S(V M2) in epoch e+1. As such, the snapshot of V M2 does not record the receipt of p but the snapshot
of V M1 does record the sending of p. We can further infer that the snapshot of V M1 does not record the
receipt of ACKp – If it did, the layer-2 frame that encapsulates ACKp would have been sent by V S(V M2)
in epoch e + 1 and received by V S(V M1) in epoch e. This contradicts the snapshot algorithm which drops
category 3 frames. Upon snapshot restoration, V M1 will, by TCP semantics, re-transmit p to V M2.

Case 3: f(p) is a category 1 frame. Here we have two sub-cases:
Case 3.1: V M1 transmits p and receives ACKp in the same epoch. (Case 3.1.1:) If both happen in

epoch e, the snapshot of V M1 will record the transmission and acknowledgment of p. We further infer
that the snapshot of V M2 records the receipt of p: if not, ACKp would have been carried by a category 3
frame, contradicting the algorithm. Right upon snapshot restoration, both V M1 and V M2 will consider p

successfully delivered. (Case 3.1.2:) If both happen in epoch e + 1, the snapshots of V M1 and V M2 do not
record p’s transmission and p will be re-transmitted after snapshot restoration.

Case 3.2: V M1 transmits p in epoch e and receivesACKp in epoch e+1. As such the snapshot of V M1

does not record the receipt of ACKp. Upon snapshot restoration, V M1 will, according to TCP semantics,
re-transmit p to V M2. Note that V M2 may or may not have received p in epoch e. But in either case V M2

will send ACKp to V M1 upon receiving the re-transmitted p, according to TCP semantics.
In the second part of the proof sketch, we show that, when restoring a VIOLIN snapshot, the semantics of

TCP connection establishment and tear-down will be preserved as in the original execution. These semantics
are specified by the well-known TCP state transition diagram [26]. The TCP state transitions are triggered

1We assume that there is no host, VM, or network failure during VIOLIN snapshot taking and restoration. The handling of
failures is done outside of the snapshot algorithm.

7



by the receipt and/or transmission of a packet with its SYN or FIN control bit set and the receipt of its
corresponding ACK. Conveniently, the transmission, acknowledgment, and possibly re-transmission of these
control packets follow the same semantics as that of the TCP packet p in the first part of the proof sketch. As
a result, we can basically follow the same logic in the first part to show that, following snapshot restoration,
a control packet will eventually be transmitted and acknowledged, which will trigger the proper TCP state
transitions on both sides of the TCP connection.

As an example, suppose in the original execution, V M2 (client) is trying to establish a TCP connection
with V M1 (server). During TCP’s three-way handshake, V M1 completes its snapshot while its TCP state
is SYN RCVD. At that moment, V M1 has sent control packet SYN,ACK to V M2 but has not received the
corresponding ACK. On the other side, V M2 receives SYN,ACK, sends an ACK to the now post-snapshot
V M1, enters the ESTABLISHED state, and then completes its snapshot. Upon VIOLIN snapshot restoration,
it may appear that the two VMs were in inconsistent states, with V M1 stuck in SYN RCVD state waiting for
the ACK already sent by V M2. However, such inconsistency won’t last thanks to the TCP semantics: V M1

will time-out and re-transmit SYN,ACK to V M2, which will in turn re-send ACK to V M1. After that both
VMs are in ESTABLISHED state and the TCP connection is established.

The proof sketch above covers the entire life cycle of a TCP connection inside the VIOLIN. One can see
that the TCP semantics play a critical role in showing the applicability of the snapshot algorithm, despite the
differences between VIOLIN and previous application scenarios (Section 3.2.1). Using a similar proof logic,
we can check the algorithm’s applicability under other connection-oriented, reliable transport protocols. Our
work builds a “bridge” between the classic algorithm and practice – with particular relevance to the emerging
virtualized infrastructures.

3.2.3 Implementation

In our implementation, a VIOLIN switch enters the SNAPSHOT state when it starts the snapshot-taking op-
erations for the local VMs connected to it. It exits the SNAPSHOT state when all the VM snapshots have
completed. To handle the asynchronous completion of VM snapshots on the same host, VNsnap imple-
ments two pairs of bridges and tap devices: one pair for the pre-snapshot VMs and the other pair for the
post-snapshot VMs. As a result, it is guaranteed that no frame from a post-snapshot VM can reach a pre-
snapshot VM on the same host. We modify Xen’s xend to transition a VM from the pre-snapshot bridge to
the post-snapshot bridge at the end of the stop-and-copy phase. We also extend xend such that it will notify
the VIOLIN switch whenever a VM finishes its snapshot operation. Specifically, we define a signal handler
inside the VIOLIN switch which will receive a user-defined POSIX signal from xend when a VM completes
its stop-and-copy phase. Once the VIOLIN switch has received the signals for all local VMs belonging to
the same VIOLIN, the switch will exit SNAPSHOT state.

We point out that, although the snapshot algorithm preserves functional semantics in a VIOLIN, it does
affect network performance in the VIOLIN. One direct impact of running the algorithm is the TCP backoff
inside the VIOLIN. More specifically, since not all VMs finish their snapshot operations at the same time,
the algorithm has to drop category 3 frames to enforce causal consistency between the VM snapshots. Such
frame drop results in temporary backoff of active TCP connections inside the VIOLIN. The duration of the
TCP backoff is directly related to the degree of discrepancy among the VMs’ snapshot completion times.
In fact, one of the motivations behind the design of VNsnap-memory daemon (Section 3.1.2) is to reduce
such discrepancy by eliminating the impact of disk bandwidth on VM snapshot completion times. For
UDP connections, Loss of UDP packets is “expected” from an application’s perspective. If application
semantics require recovery of lost UDP packets due to snapshot, it is the application’s responsibility (e.g.,
through retransmission or erasure coding), while our system only preserves UDP’s property (unreliable, non-
FIFO). Similar argument can be made for other non-reliable protocols. Section 4 will present performance
evaluation results for TCP connections.

8



So far we have discussed the different ways VNsnap captures the VM state and maintains causal con-
sistency. For a VIOLIN snapshot to be useful, it should also include the file system state. To meet this
goal, we store a VM’s file system on an LVM [1] logical volume and use the LVM snapshot capability to
capture the state of the file system at the time of snapshot. The main advantages behind LVM snapshots
are availability and speed. LVM snapshots do not require a system using the logical volume to be halted
during the snapshot. It also does not work by mirroring a logical volume to some other partition. Instead,
it records only changes made to a logical volume after the snapshot and as a result is very fast. A more
efficient way to use LVM snapshots can be found in [8]. In VNsnap, LVM snapshots are taken during the
(very short) stop-and-copy phase when a VM is suspended. The snapshot partitions can be processed after
the VM resumes normal execution.

4 Evaluation

In this section, we evaluate the effectiveness and efficiency of VNsnap. First, we focus on testing the
optimized live VM snapshot technique. Then, we evaluate the impact of VNsnap on VIOLINs running
real-world parallel/distributed applications – NEMO3D [2] and BitTorrent [3]. Throughout this section, we
compare VNsnap with our previous work [17]. All physical hosts involved in our experiments are Sunfire
V20Z servers with two 2.6GHz AMD Opteron processors and 4GB of RAM. In our setup, both domain-0
and guest domains run on the 2.6.18 Linux kernel.

4.1 Downtime Minimization for Live VM Snapshots

Xen Live Checkpointing
Application Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Idle 9 1 8583 153600 1.00
NEMO3D 12 1 8626 153600 1.00

VNsnap-disk Daemon
Application Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Idle 12 4 65 104 1.00
NEMO3D 72 30 1025 11102 1.55

VNsnap-memory Daemon
Application Duration(s) Iterations Downtime(ms) Pages in Last Iteration Size

Idle 8 4 68 104 1.00
NEMO3D 18 30 258 11094 1.00

Table 1: Measurement results comparing three VM snapshot implementations for VNsnap.

We first evaluate the optimized live VM snapshot technique (Section 3.1) for individual VMs in a VI-
OLIN. The evaluation metrics include the total duration and VM downtime of an individual VM snapshot
operation as well as the size of the VM snapshot generated. For comparison, we experiment with all of the
following VM snapshot implementations: (1) Xen’s live VM checkpointing function (used in [17]), (2) the
VNsnap-disk daemon, and (3) the VNsnap-memory daemon. For each of the implementations we measure
the metrics with the same VM with 600MB of RAM. The tests are run both when the VM is idle and when
it is executing the parallel application NEMO3D.

Table 1 shows the results. Since both VNsnap-disk and VNsnap-memory daemons are based on Xen’s
live migration function, they both involve multiple iterations of memory page transfer during the snapshot
(the “iteration” column) while the VM is running. It is during the very last iteration that the VM freezes and
causes the downtime (the “pages in last iteration” column). The number of iterations is proportional to the

9



application’s Writable Working Set (WWS) [10] or the rate at which the application is dirtying its memory
pages. For instance, we observe that, during the NEMO3D execution, memory pages get dirtied at a rate
about 125MB/s.

The most important metric in Table 1 is the VM downtime. We have three main observations. First, both
VNsnap-disk and VNsnap-memory incur significantly shorter downtime (ranging from tens of milliseconds
to just above one second) than Xen’s checkpointing function (around 8.6 seconds). Second, for Xen’s live
checkpointing function, the downtime remains almost the same for both the “idle” and “NEMO3D” runs.
VNsnap-disk and VNsnap-memory, on the other hand, exhibit shorter downtime for the “idle” runs than the
“NEMO3D” runs. This is because for VNsnap-disk and VNsnap-memory, the downtime is determined by
the number of dirty pages transferred in the last iteration – about 100 pages in the “idle” run and 11,000
pages in the “NEMO3D” run – out of the total 153,600 pages of the VM. This differs from Xen’s VM
checkpointing, where there is only one iteration during which the VM freezes and all 153,600 pages are
written to disk. Third, VNsnap-memory achieves a much lower downtime for the “NEMO3D” run than
VNsnap-disk. This is because the VNsnap-disk daemon directly writes the page images to the disk (which
is slow) while the VNsnap-memory daemon keeps them in the RAM during the snapshot operation (which
is fast).

(a) No snapshot (b) Xen live checkpointing

(c) VNsnap-disk (d) VNsnap-memory

Figure 4: The impact of different VM snapshot techniques on TCP throughput in a VIOLIN running
NEMO3D. Traces are obtained from tcpdump.

Another important metric from Table 1 is the total snapshot duration. For both Xen checkpointing
and VNsnap-disk, the duration represents the amount of time it takes for the snapshot image to be fully
committed to disk. For VNsnap-memory, the duration represents the amount of time it takes for the daemon
to construct a VM’s full image in memory and does not include the hidden disk write latency after the
snapshot. We observe that for the “NEMO3D” run, both VNsnap-disk and VNsnap-memory incur longer

10



duration than Xen checkpointing because of their multi-iteration memory page transfer. The duration for
VNsnap-disk is particularly long (72 seconds vs. 12 seconds for Xen checkpointing and 18 seconds for
VNsnap-memory) as the daemon competes with the local VM for both disk bandwidth and CPU cycles.
Such a contention can be mitigated by running the VNsnap-disk daemon on a remote host, which will
reduce the snapshot duration to 33 seconds as our experiment shows.

Table 1 also shows the size of the VM snapshot relative to the amount of memory allocated to the VM.
As discussed in Section 3.1.2, the VM snapshot generated by the VNsnap-disk daemon can be larger than
the VM’s memory size. In fact, the VM snapshot file is 1.55 times the size of the VM’s memory image
for the “NEMO3D” run. Both Xen checkpointing and VNsnap-memory, by design, generate VM snapshots
of the same size as the VM’s memory image. A larger VM snapshot consequently results in longer time
in restoring the VM. Our experiments confirm that it takes 20 seconds to restore a snapshot generated by
VNsnap-disk whereas it takes 8 seconds to restore a VM snapshot generated by VNsnap-memory or Xen
checkpointing.
Impact of VM snapshot on TCP throughput. As discussed in Section 3.2.3, individual VMs in a VIOLIN
may complete their snapshots at different times and thus result in TCP backoff. Figure 4 shows such impact
on a 2-VM VIOLIN executing NEMO3D, under no snapshot (Figure 4(a)), Xen live checkpointing (Figure
4(b)), VNsnap-disk (Figure 4(c)), and VNsnap-memory (Figure 4(d)). We focus on one TCP connection
between the two VMs. The flat, “no progress” periods shown in Figures 4(b) and 4(c) each consist of
two parts: (1) the downtime of the sender VM during snapshot and (2) the TCP backoff period due to the
different snapshot completion times of the two VMs. We observe that both Xen live checkpointing (Figure
4(b)) and VNsnap-disk (Figure 4(c)) incur 2-3 seconds of TCP backoff, whereas VNsnap-memory (Figure
4(d)) does not incur noticeable TCP backoff. More results and analysis will be presented in the next two
subsections.

4.2 Taking Snapshot of VIOLIN Running NEMO3D

NEMO3D is a long-running (tens of minutes to hours), legacy parallel simulation program without any built-
in checkpointing support. It is widely used by the nanotechnology community for nano-electric modeling of
quantum dots. To execute NEMO3D, we create VIOLINs as virtual Linux clusters of varying size (with 2, 4,
8, and 16 VMs). The underlying physical infrastructure is a cluster of 8 Sunfire V20Z servers connected by
Gigabit Ethernet. For the 2, 4, or 8-VM VIOLIN, each VM runs in a distinct physical host and is allocated
650MB of memory. For the 16-VM VIOLIN, there are two VMs per host each with 650MB of memory.
For each VIOLIN, we run NEMO3D with the same input parameters and trigger the snapshot algorithm
at exactly the same stage of NEMO3D execution for the Xen checkpointing, VNsnap-disk, and VNsnap-
memory implementations. For each implementation, we measure, on a per VM basis, the VM uptime and
VM downtime during the snapshot operation as well as the TCP backoff experienced by the VM due to
snapshot completion time discrepancy. We note that the VM downtime plus the TCP backoff constitute the
actual period of disruption to application execution inside the VIOLIN.

Figure 5 shows the results 2. The times shown are averages of all VMs in a given VIOLIN from a
given experiment. We observe that VNsnap-memory always incurs the least disruption (VM downtime+TCP
backoff) – more specifically 0.0, 0.8, 1.4, and 3.8 seconds for the 2, 4, 8, and 16-node VIOLINs, respectively.
VNsnap-disk also incurs minimal VM downtime but incurs higher TCP backoff than VNsnap-memory (to be
explained shortly). Still, it performs much better than Xen checkpointing, which incurs significantly higher
VM downtime as well as overall disruption period (from 10 to 35 seconds). The 16-node experiment further
indicates that Xen live checkpointing not only suffers from longer downtime (about 20 seconds vs. less than
1 second in VNsnap-disk), but the downtime also scales with the number of VMs that are simultaneously

2We would like to suggest color printing for viewing Figures 5, 6, and 8. We apologize for any inconvenience.

11



Figure 5: The breakdown of snapshot timing under different VM snapshot implementations for 2, 4, 8 and
16-node VIOLINs running NEMO3D.

performing snapshot on the same host (about 20 seconds with two VMs per host vs. about 10 seconds with
one VM per host as in the 2, 4, and 8-node cases).

To explain why VNsnap-memory leads to a smaller TCP backoff than VNsnap-disk, we present the
detailed results from the 8-VM VIOLIN experiment. Figure 6 shows the individual result for each of the
8 VMs in the VIOLIN. As discussed in Section 4.1, differences in VM snapshot completion times (shown
by the upper edges of the “VM downtime” bars) lead to TCP backoff. As can be seen in Figure 6, the
discrepancy among the 8 VMs is more significant for VNsnap-disk (up to 4 seconds – Figure 6(b)) than for
VNsnap-memory (less than 1 second – Figure 6(c)). Our investigation reveals that some of the hosts (e.g.
the ones hosting VMs 3, 6, and 7) have longer disk write latency than the others, leading to a noticeable
difference in VM snapshot completion times for VNsnap-disk. On the other hand, VNsnap-memory does
not involve disk writes (only memory writes) during snapshot and thus results in much less discrepancy and
TCP backoff.

In all experiments, we validate the semantic correctness of NEMO3D execution by comparing the out-
puts of the following: (1) an uninterrupted NEMO3D execution, (2) a NEMO3D execution during which a
VIOLIN snapshot is taken, and (3) a NEMO3D execution restored from the VIOLIN snapshot. We confirm
that all executions generate the same program output.

4.3 Taking Snapshot of VIOLIN Running BitTorrent

In this section we study the impact of VNsnap on a VIOLIN running the peer-to-peer BitTorrent application
[3]. The reason for choosing this application is to demonstrate the effectiveness of VNsnap for a VIOLIN
running a communication and disk I/O-intensive application that spans multiple network domains. Figure
7 shows the experiment setup, where the VIOLIN spans two different subnets at Purdue University. Our
testbed consists of 3 Sunfire servers in our lab at the Computer Science (CS) Department and 8 servers at
the Center for Education and Research in Information Assurance and Security (CERIAS). In the CS subnet,
we dedicate one host to run a remote VNsnap-memory daemon. Of the remaining two hosts, we use one to
run a VIOLIN relay daemon (explained shortly) and the other one to host two VMs: VM 1 (with 700MB of
memory) runs as a BitTorrent seed while VM 2 (with 350 MB of memory) runs an Apache webserver and a
BitTorrent tracker. In the CERIAS subnet, we use four hosts each hosting a VM with 1GB of memory that
runs as a BitTorrent client or seed. The remaining four hosts each run a VNsnap-memory daemon. The 6
VMs – two in CS and four in CERIAS – form the BitTorrent network. To overcome the NAT barrier between

12



(a) Xen Live Checkpointing (b) VNsnap-disk

(c) VNsnap-memory

Figure 6: Per-VM breakdowns of snapshot timing for the 8-node VIOLIN running NEMO3D.

the two subnets, we deploy two software-based VIOLIN relays operating at the same level as the VIOLIN
switches. The VIOLIN relays run in hosts with both public and private network interfaces so that they can
tunnel VIOLIN traffic across the NAT.

The goal of the BitTorrent network is to distribute a 650MB file from two seeds (VMs 1 and 6) to all
participating clients (VMs 3, 4, and 5). The experiment starts with the two seeds, one in CS and one in
CERIAS.We trigger the VIOLIN snapshot when all clients have downloaded almost 50% of the file. At that
time, the average upload and download rates for each client are about 1350KB/s and 3200KB/s, respectively.

Figure 8 compares the per-VM snapshot timing breakdown under Xen’s live checkpointing and under
VNsnap-memory. We observe that the total disruption caused by the snapshot operation (i.e. VM down-
time+TCP backoff) is considerably less – and at times negligible – for VNsnap-memory (all below 2 seconds
except VM 3 – Figure 8(b)). The disruption periods under Xen live checkpointing range from 15 seconds
to 25 seconds. Moreover, the slower disk bandwidth on some hosts (i.e. those hosting VMs 3 and 6) causes
large discrepancy (up to 10 seconds) among the VMs’ snapshot completion times, leading to non-trivial
TCP backoff (Figure 8(a)).

When looking at the result for VNsnap-memory (Figure 8(b)), one notices that the VM snapshot com-
pletion times are less uniform than those in the NEMO3D experiments. There are three reasons behind this
observation: First, as described in the experiment setup, not all VMs are configured with the same amount
of memory. For instance, given that VM 2 has only 350MB of memory, it completes snapshot before other
VMs. Second, unlike the NEMO3D experiment where all VMs are equally active, some VMs in the Bit-
Torrent experiment are more active than others (i.e. they have larger WWS). For example, at the time of the
snapshot, the three client VMs (VMs 3, 4, and 5) are mostly communicating with VM 1, leaving the other

13



Figure 7: Setup of BitTorrent experiment

(a) Xen Live Checkpointing (b) VNsnap-memory Remote

Figure 8: Per-VM breakdowns of snapshot timing for the VIOLIN running BitTorrent.

seed (VM 6) mostly idle and thus a shorter snapshot duration for VM 6. Third, the workloads of the hosts are
not uniform, which can have an impact on the VM snapshot times. For example, due to resource constraints
of our testbed, we have to run the CERIAS VIOLIN relay in the same server that runs a VNsnap-memory
daemon. As a result, it takes VM 3, which is served by that daemon, longer time to finish its snapshot despite
the fact that VM 3 is just as busy as other clients (VMs 4 and 5). The longer duration of VM 3 snapshot
manifests itself as the TCP backoff during which VM 3 becomes the only pre-snapshot VM in the VIOLIN.
Overall, the BitTorrent results demonstrate the effectiveness of VNsnap even under non-uniform host/VM
conditions. Finally, we validate the correctness of VNsnap by comparing the checksum of the original file
with the checksums of the files downloaded during the run when the snapshot is taken and during a run
restored from the snapshot.

5 Discussion

In this section, we discuss some issues with VNsnap and propose future improvement. The first issue
is the negative impact of VM snapshot completion time discrepancy on TCP throughput – especially for
VNsnap-disk. This problem can be substantially alleviated if we further modify the VM live migration
implementation in xend. As part of our future work, we plan to have xend spend a uniform or bounded

14



amount of time transferring VM memory pages to the VNsnap daemons. As such, all VMs in a VIOLIN
will start their “stop and copy” phase at about the same time. Considering the very short duration of this
phase (i.e. the VM downtime), their completion times for the VMs will be of low discrepancy.

The second issue is the size of VIOLIN snapshots. We note that similarities between different yet
similar VM snapshots can be exploited through efficient hash-based mass storage techniques (e.g. [27,
7]) and compression. For instance, in a VIOLIN running NEMO3D, the VMs share many pages for the
OS, library, and application code. Meanwhile, the similarity between consecutive snapshot images of the
same VM can also be exploited for improved storage efficiency. Such similarity can also be exploited
during snapshot generation in order to reduce memory and network bandwidth utilization by VNsnap. A
preliminary investigation using the rsync utility [4] shows that, for the 2-node NEMO3D experiment in
Section 4.1, if two snapshots are taken 5 minutes apart, the difference between the two snapshots can be
accounted for by 25MB of data (or 4% of the snapshot file).

Finally, for a VIOLIN snapshot to be restorable, the VIOLIN has to be self-contained. This means that
any application inside the VIOLIN should not depend on any connections to outside the VIOLIN. In ad-
dition, VNsnap requires that applications running inside a VIOLIN be able to tolerate the short period of
disruption incurred by VNsnap. We believe that many – though not all – applications meet such require-
ments.

6 Related Work

Many techniques have been proposed to checkpoint distributed applications, but few have addressed the need
for checkpointing an entire execution environment, including the applications, OS and file system. These
techniques can be loosely categorized into application-level, library-level (e.g. [24, 13, 11, 9]), and OS-level
(e.g. [21, 29]) checkpointing. Although these techniques are beneficial in their own rights and work best in
specific scenarios, each comes with limitations: Application-level checkpointing requires access to applica-
tion source code and is highly semantics-specific. Similarly, only a certain type of applications can benefit
from linking to a specific checkpointing library. This is because the checkpointing library is usually imple-
mented as part of the message passing library (such as MPI) that not all applications use. OS-level check-
pointing techniques often require modifications to the OS kernel or require new kernel modules. Moreover,
many of these techniques fail to maintain open connections and accommodate application dependencies on
local resources such as IP addresses, process identifiers (PIDs), and file descriptors. Such dependencies
may prevent a checkpoint from being restorable on a new set of physical hosts. VNsnap complements the
existing techniques yet is not without its own limitations (Section 5).

Virtualization has emerged as a solution to decouple application execution, checkpointing and restora-
tion from the underlying physical infrastructure. ZapC [18] is a thin virtualization layer that provides check-
point/restart functionality for a self-contained virtual machine abstraction, namely a pod (PrOcess Domain),
that contains a group of processes. Due to the smaller checkpointing granularity (a pod vs. a VM), ZapC
is more efficient than VNsnap in checkpointing a group of processes. However, ZapC does not capture the
entire execution environment which includes the OS itself. Xen on InfiniBand [25] is a Xen-based solution
with a goal similar to VNsnap. But it is designed exclusively for the Partitioned Global Address Space
programming models and the InfiniBand network. Hence, unlike VNsnap, it does not work with legacy
applications running on generic IP networks.

Recently, two solutions have been proposed based on Xen migration. [20] advocates using migration as
a proactive method to move processes from “unhealthy” nodes to healthy ones in a high performance com-
puting environment. Though this method can be used for planned outages or predictable failure scenarios,
it does not provide protection against unexpected failures, nor does it restore distributed execution states in
the event of such failures. Remus [12] is a practical, guest transparent high-availability service that protects

15



unmodified software against physical host failures. The focus of Remus is individual VMs whereas VNsnap
focuses on distributed VNEs. Remus leverages an enhanced version of Xen migration to efficiently transfer
a VM state to a backup site at high frequency (i.e. 40 times per second), whereas VNsnap is triggered at
a much lower frequency (e.g., every tens of minutes), which can be determined by existing solutions (e.g.
[22]) based on mean-time to failure prediction. The most related work is an advanced system [8] that real-
izes a more powerful capability of highly transparent checkpointing of closed distributed systems in Emulab
[28]. Being parallel efforts, VNsnap and [8] share similar goals with different system requirements: [8]
requires high-accuracy clock synchronization and modifications to the guest OS, whereas VNsnap assumes
VMs with unmodified software and no fine-grain clock synchronization.

7 Conclusion

We have presented the VNsnap system to take snapshots of an entire VNE, which include images of the
VMs with their execution, communication, and storage states. To minimize system downtime incurred by
VNsnap, we develop optimized live VM snapshot techniques inspired by Xen’s live VMmigration function.
We instantiate a distributed snapshot algorithm to enforce causal consistency across the VM snapshots and
verify the algorithm’s applicability. Our experiments with VIOLINs running unmodified OS and real-world
parallel/distributed applications demonstrate the unique capability of VNsnap in supporting reliability for
the emerging virtual infrastructures.

References

[1] http://sources.redhat.com/lvm2.

[2] http://cobweb.ecn.purdue.edu/˜gekco/nemo3D.

[3] http://www.bittorrent.com.

[4] http://samba.anu.edu.au/rsync.

[5] M Armbrust et al. Above the clouds: A Berkeley view of cloud computing. Technical Report No.
UCB/EECS-2009-28, UC Berkeley, 2009.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. ACM SOSP, 2003.

[7] D. R. Bobbarjung, Jagannathan, and C. S., Dubnicki. Improving duplicate elimination in storage
systems. ACM Transactions on Storage (TOS), 2, 2006.

[8] A. Burtsev, P. Radhakrishnan, M. Hibler, and J. Lepreau. Transparent checkpoints of closed distributed
systems in Emulab. ACM EuroSys 2009.

[9] Y. Chen, J. S. Plank, and K. Li. CLIP: A checkpointing tool for message-passing parallel programs.
SC97, 1997.

[10] C. Clark, K. Fraser, S. Hand, and J. G. Hansen. Live migration of virtual machines. USENIX NSDI,
2005.

[11] A. Clematis and V. Ginuzzi. CPVM - extending PVM for consistent checkpointing. IEEE PDP, 1996.

16



[12] B. Cully, G. Lefebvre, D.Meyer, M. Freeley, N. Hutchinson, and A.Warfield. Remus: High availability
via asynchronous virtual machine replication. USENIX NSDI, 2008.

[13] Graham E. Fagg and Jack J. Dongarra. Lecture notes in computer science 1 FT-MPI: Fault tolerant
MPI, supporting dynamic applications in a dynamic world, 2000.

[14] X. Jiang and D. Xu. vBET: a VM-based emulation testbed. ACM Workshop on Models, Methods and
Tools for Reproducible Network Research, 2003.

[15] X. Jiang and D. Xu. VIOLIN: Virtual Internetworking on Overlay INfrastructure. Technical Report
CSD TR 03-027, Purdue University, 2003.

[16] X. Jiang, D. Xu, H. J. Wang, and E. H. Spafford. Virtual playgrounds for worm behavior investigation.
RAID 2005.

[17] A. Kangarlou, D. Xu, P. Ruth, and P. Eugster. Taking snapshots of virtual networked environments.
2nd International Workshop on Virtualization Technology in Distributed Computing, November 2007.

[18] O. Laadan, D. Phung, and J. Nieh. Transparent checkpoint-restart of distributed applications on com-
modity clusters. IEEE International Conference on Cluster Computing, 2005.

[19] F. Mattern. Efficient algorithms for distributed snapshots and global virtual time approximation. Jour-
nal of Parallel and Distributed Computing, 18:423–434, 1993.

[20] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L. Scott. Proactive fault tolerance for HPC with
Xen virtualization. ACM International Conference on Supercomputing (ICS), 2007.

[21] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and implementation of Zap: A system for
migrating computing environments. USENIX OSDI, 2002.

[22] X. Ren, R. Eigenmann, and S. Bagchi. Failure-aware checkpointing in fine-grained cycle sharing
systems. HPDC 2007.

[23] J. F. Ruscio, M. A. Heffner, and S. Varadarajan. DejaVu: Transparent user-level checkpointing, mi-
gration, and recovery for distributed systems. IEEE Parallel and Distributed Processing Symposium
(IPDPS), 2007.

[24] Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, and Andrew Lumsdaine. The LAM/MPI check-
point/restart framework: System-initiated checkpointing. In in Proceedings, LACSI Symposium, Sante
Fe, pages 479–493, 2003.

[25] D. P. Scarpazza, P. Mullaney, O. Villa, F. Petrini, Tipparaju V., and J. Nieplocha. Transparent system-
level migration of PGAS applications using Xen on Infiniband. IEEE International Conference on
Cluster Computing, 2007.

[26] Richard W. Stevens. TCP/IP Illustrated Volume 1. Addison-Wesley, Reading, MA, 1996.

[27] A. Warfield, R. Ross, K. Fraser, C. Limpach, and S. Hand. Parallax: Managing storage for a million
machines. USENIX Workshop on Hot Topics in Operating Systems, 2005.

[28] BrianWhite, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler,
Chad Barb, and Abhijeet Joglekar. An integrated experimental environment for distributed systems and
networks. In OSDI 2002, pages 255–270.

17



[29] H. Zhong and J. Nieh. Linux checkpoint/restart as a kernel module. Technical Report CUCS-014-01,
Department of Computer Science, Columbia University, 2001.

18


