
CERIAS Tech Report 2009-1
Leakage-Free Integrity Assurance for Tree Data Structures

 by Ashish Kundu, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Leakage-Free Integrity Assurance for Tree Data Structures

Ashish Kundu and Elisa Bertino
Department of Computer Science, Purdue University, USA.

{ashishk, bertino}@cs.purdue.edu.

Abstract

Data sharing with multiple parties over a third-party distribution framework requires that both data integrity
and confidentiality be assured. One of the most widely used data organization structures is the tree structure.
When such structures encode sensitive information (such as in the XML documents), it is crucial that integrity
and confidentiality be assured not only for the content, but also for the structure. Digital signature schemes are
commonly used to authenticate the integrity of the data. The most widely used such technique for tree structures
is the Merkle hash technique, which however is known to be “not hiding”, thus leading to leakage of information.
Most existing techniques for the integrity of hierarchical data structures are based on the Merkle hash technique
and thus suffer from the problem of information leakages. We describe the types of leakages and inference attacks
that can be carried out on the Merkle hash technique, in the context of integrity assurance. Assurance of integrity
and confidentiality (no leakages) of tree-structured data is an important problem in the context of secure data
publishing and content distribution systems.

In this paper, we propose an integrity assurance scheme for tree data structures, which assures both confi-
dentiality and integrity and is also efficient, especially in third-party distribution environments. Our integrity
assurance technique, which we refer to as the “structural integrity assurance scheme”, is based on the structure
of the tree as defined by tree traversals (pre-order, post-order, in-order) and is defined using a randomized notion
of such traversal numbers. Techniques for computing randomized traversal numbers are also described in the
paper. In addition to formally defining the technique, we prove that it protects against violations of content and
structural integrity and information leakages. We also show through complexity and performance analysis that the
structural integrity assurance scheme is efficient; with respect to the Merkle hash technique, it incurs comparable
cost for signing trees and incurs lower cost for user-side integrity verification. Further, we extend the proposed
technique in order to assure integrity of weighted trees and dynamic updates. We also show how the proposed
structural integrity assurance technique can be applied in order to precisely detect integrity violations as well as
to efficiently recover data. Such techniques have applications in digital forensics and efficient data transmission.

1 Introduction

Data sharing among multiple parties with high integrity assurance is an important problem [10, 12, 11, 18,
28, 24, 3]. An integrity assurance technique provides mechanisms using which a user can verify that the
data has not been tampered with. Specific integrity assurance requirements and techniques depend on the
structure according to which the data is organized. Because one of the most widely used data organization
structures is the tree structure (see the XML-based example in Section 4), the development of techniques
specifically suited for data organized according to such tree structures is crucial. When addressing the
problem of integrity for tree structures it is important to notice that each node typically contains some
content and that the structural relationships between the nodes may establish some relationships between
the contents in these nodes. Such relationships may be defined according to properties such as classification,
indexing, temporal-orientation and sensitivity of the contents [14]. Integrity of such relationships is referred
to as structural integrity, whereas the integrity of the contents is referred to as content integrity. An integrity
mechanism for tree structures must thus preserve both content and structural integrity. In many application
domains, such as healthcare and military, an additional requirement is to maintain the confidentiality of
the content and the structural information [35]. By confidentiality we mean that: (i) a user receives only
those nodes and the structural information that the user is allowed to access, according to the stated access
control policies; (ii) a user should not receive nor should be able to infer any information about the content
and presence of nodes and structural information that the user is not authorized to access.

The Merkle hash technique [30] is the most well known integrity assurance technique for tree structures
and has been widely extended for use in content distribution systems and data publishing [3, 10, 15, 18, 23, 28].
A drawback of such technique is that the integrity verification process does not preserve confidentiality. The

1

Merkle hash technique is binding (integrity) but not hiding (confidentiality) [5]; therefore it is vulnerable
to inference attacks1. The Merkle hash of a non-leaf node combines the signatures of its children nodes
in a particular order. Further, in order to allow the user to compute the hash of a node during integrity
verification, the Merkle hashes of a set of nodes/subtrees in the tree has to be provided to the user, even if
the user does not have access to these nodes/subtrees. By the mere fact that such hashes are received, the
user may infer that a given node, to which the user has access, has a sibling/parent/child node, even though
the user does not have access to it. Such an inference may lead to confidentiality breaches, as we will show
through an example in Section 4.

More specifically, the integrity verification of a subtree Tδ, which belongs to a tree T by using the Merkle
hash technique reveals: (1) the Merkle hash of some nodes which are in T but not in Tδ; (2) the structural
relationship between a node x in Tδ and some node y which is in T but not in Tδ; and (3) the relative
(structural) order between a node x which is in Tδ and y, which is in T but not in Tδ. One approach to avoid
such information leakage is to pre-compute and store a separate Merkle signature for every distinct subtree
that may be the result of a query or a request to access the tree. However such an approach is impractical
because the result of a query can be an arbitrary subtree and there can be an exponential number of such
subtrees in a tree.

The problem that the paper addresses is as follows: The trusted owner Alice of a data item organized
as a (rooted) tree T wants to digitally sign T once so that it can be queried or accessed many times. A
user Bob should be able to verify the integrity of the content and structure of a subtree Tδ (of T) that
Bob is authorized to access. Any information about a node which is in T but not in Tδ, its signature, its
structural relationship with any other node in T should not be revealed to Bob. Obviously the Merkle hash
technique cannot be used for this purpose. In this paper, we propose an integrity assurance technique for
tree structures which is secure against the above information leakages and is also efficient.

The distribution of data is often carried out through third parties, which are not completely trusted in
the sense that the trusted owner relies on the third party D for the distribution but does not wish to provide
D the authority to sign on its behalf. This may not be due to a lack of trust in D but merely a recognition of
the fact that typical systems such as D are more vulnerable (to breakdowns, spy wares, insider misbehavior,
or simply accidents) than the trusted owner. This model offers many advantages, but also offers a challenge:
How does the third-party distributor D, which does not have the authority to sign (only Alice does), prove
to a user the integrity of the data provided to the user without leading to leakage of information related to
structure as well as content?

The obvious answer is to sign the data (tree) once and store at D a number of integrity verification
items that D can later on provide to any user who is legitimately requesting a subset of the data (a subtree)
which the user is authorized to access. These integrity verification items are (signed) cryptographic hashes
or signatures that enable the user to verify the integrity of the subtree with respect to both content and
structure that it receives.

In this paper, we propose an integrity assurance scheme for tree structures, which assures both confiden-
tiality and integrity and is also efficient, especially in third-party distribution environments. Our integrity
assurance technique, which we refer to as the “structural integrity assurance scheme”, is based on the struc-
ture of the tree as defined by depth first traversals (pre-order, post-order, in-order) of the tree. The scheme
assigns randomized traversal numbers (post-, pre- and in-order numbers) to each node, which uniquely rep-
resents the relative position of the node in the tree. Techniques on how to compute randomized traversal
numbers are also presented in the paper. We formally prove that the structural integrity assurance scheme
is secure, that is, it not only protects against violations of content and structural integrity, but also against
information leakages. Complexity and performance analysis shows that our scheme is efficient. With respect
to the Merkle hash technique, it incurs comparable cost for signing the trees and incurs lower cost for user-
side integrity verification. Further, we extend the proposed technique in order to assure integrity of weighted
trees and dynamic updates without leaking weights or the updates. As an application to digital forensics,
we show how the proposed structural integrity assurance technique can be used in order to precisely and
efficiently detect integrity violations. Our technique incurs O(n) cost while the state-of-the art technique [16]
incurs O(n3logn). Such a capability further enables efficient recovery of data, which is often a requirement

1The inference problem is a widely investigated problem in computer and information security [31]. An important issue is
to avoid that mechanisms designed to address one security requirement, i.e. integrity, undermine the other relevant security
requirement, i.e. confidentiality

2

in secure and unreliable data transmission channels, such as satelite communication.

Novelties of the structural integrity assurance scheme The structural integrity assurance scheme
possesses several novel features over existing techniques:

• It provides stronger security guarantees in terms of integrity and confidentiality.

• It simplifies the transmission of tree-based data from a distributor to a user and improves the efficiency
of such transmission. It facilitates sending only the nodes of a subtree to a user; no structural infor-
mation about the parent-child and the ordering between the siblings needs to be sent. Note that the
Merkle hash technique and the related techniques require sending the subtree as it is - the nodes and
the structural information, which incurs more cost.

• Like the Merkle hash technique, it facilitates precise detection of integrity violations in the sense that
it precisely identifies the node or the structural relationship that has been compromised.

• While the time it requires to compute integrity verifiers is comparable to that of the Merkle hash
technique, the user-side integrity verification time that it requires is less than the time taken by the
Merkle hash technique.

Outline of the Paper The paper is organized as follows. The security model is described in Section 2. The
notations most commonly used in the paper are reported in Table I. The data distribution and security model
is presented in Section 2. The Merkle hash technique and related inference attacks are briefly summarized in
the Section 3. Section 4 presents a running example. Section 5 introduces the notion of randomized traversal
numbers and two key lemmas. These lemmas are used to define the notion of structural integrity verifiers in
the next section (Section 6). This section also defines the algorithm for signing a tree and verifying the content
and structural integrity of subtrees received by a user. Schemes for distribution of subtrees are described in
Section 7. Section 8 illustrates our scheme using the running example. Security analysis and performance of
the structural integrity verifiers are discussed in Section 9 and 10, respectively. Sections 11 and 12 extend the
structural integrity assurance scheme to dynamic updates and weighted trees. In Section 13, applications
of the proposed technique to digital forensics and efficient data recovery are discussed. Related work is
presented in Section 14. Finally, Section 15 concludes the paper. How to compute randomized traversal
numbers and the security of addition of random numbers are described in Appendix A.

2 Model

The most commonly used notations in the paper are defined in Table I.

Data: A directed (rooted) tree T (V,E). A node represents an atomic unit of the data that can be shared
with a user. A structural relationship is either a relationship represented by an edge between two nodes or
a structural order between the two nodes. In a tree, siblings, that is, nodes with a common parent node, are
structurally ordered.

Trusted Owner: The trusted owner Alice (A) of a data object organized as tree wants to sign it once so that
the data object can be searched/queried/published many times.

Third-party Distributors: After signing T , Alice may delegate the job of publishing T or processing queries
over T to third-party distributors, which do not have signature authority. Each distributor D stores all
the pre-computed integrity verifiers (also referred to as IV s) for the data; D is also responsible for sending
appropriate IV s to users alongwith the subtree sent to the user. D does not have the authority to sign, and
D need only be trusted so much that it acts correctly with respect to query processing.

Users: A user Bob (B) receives a subtree of a tree as a result of publication of the data, or a search/query
initiated by B. Any non-empty subtree of a tree can be a valid data object returned to B by a distributor.
Each user runs a software process, called (integrity) prover, that is capable of integrity verification of received

3

Table 1: Commonly used acronyms and notations.
Notation Meaning

PON, RON, ION Post-order number, Pre-order number
In-order number, respectively.

RPON, RRON, RION Randomized PON, Randomized RON
Randomized ION, respectively.

IV Integrity Verifier (e.g. a signed hash).

ψx structural integrity verifier (IV) of node/tree x.

ρx structural position of node x.

H Cryptographically secure one-way hash function:

H : {0, 1}∗ → {0, 1}|H|.

T (V,E) A directed rooted tree with a set of vertices V
and set of edges E.

Tδ(Vδ, Eδ) A subtree with a set of vertices V
and set of edges E.

e(x, y) A directed edge from node x to y.

cv Content of node v.

Figure 1: An example tree with each node having some content. The leakages are with respect to Merkle
hash technique (Section 3).

subtrees.

Integrity requirements: A user Bob (B) (its integrity prover) can verify the integrity of the subtree that it
receives. Definition 2.1 defines the semantics of integrity of a subtree.

Definition 2.1 (Integrity of Trees). Integrity of a subtree of a tree has not been compromised if and
only if none of the following entities in the subtree has been modified:

• the content of each node;

• each (directed) edge;

• each structural order existing between nodes.

An attack that modifies the contents of nodes or the structural information is called a data tampering
attack. The above integrity requirements are to detect any such attacks carried out on data.

Confidentiality requirements: User B must not be able to infer any extraneous information in a tree with
respect to the received subtree Tδ of tree T of (defined by Definition 2.2 below) as part of the integrity
verification process.

Definition 2.2 (Extraneous Information). Extraneous information in a tree T (V,E) with respect to a
subtree Tδ(Vδ, Eδ) comprises: (1) each node y (referred to as extraneous node) such that y ∈ V and y 6∈V ;
and (2) each edge e (referred to as extraneous edge) such that e ∈ E and e 6∈ E.

The auxiliary information in the context of Merkle hash technique is also extraneous information. For
example, consider Figure 1 and suppose that the user receives subtree Tδ. The extraneous information in
T with respect to the Tδ comprises of the nodes a, b, c and f , and edges e(a, b), e(b, d), and e(d, f), and the
structural order between a pair of nodes such as (b, c) and (e, f).

4

3 Merkle Hash Technique

The Merkle hash technique [30] works bottom-up. For a node x in tree T (V,E), it computes a Merkle hash
(MH)mh(x) as follows: if x is a leaf node, thenmh(x) =H(cx); elsemh(x) =H(mh(y1)‖mh(y2)‖. . . ‖mh(ym)),
where y1, y2, . . . ,ym are the m children of x in T in that order from left to right. For example, consider
the tree in Figure 1. The Merkle hash for this tree is computed as follows. The MH of e and f are
computed as H(ce) and H(cf), respectively, which are then used to compute the MH of d as mh(d) =
H(mh(e) ‖ mh(f)). The MH of b is computed as H(mh(d)). Similarly the MH of c and a are computed as
H(cc) and H(mh(b) ‖ mh(c)), respectively.

By using such technique, only the contents of the leaf nodes can be authenticated. In order to account for
the contents in non-leaf nodes, two simple variants of the Merkle hash technique can be used to compute the
MH of a non-leaf node from the MH of its children and the contents (or hash of the content) of the non-leaf
node itself. Suppose x to be a non-leaf (thus a root/intermediate) node in T . The MH of x is defined as
follows: mh(x) = H(H(cx)‖mh(y1)‖mh(y2)‖. . . ‖mh(ym)).

Consider again the tree in Figure 1. MH of d, b and a are computed respectively asH(H(cd)‖mh(e)‖mh(f)),
H(H(cb)‖mh(d)), and H(H(ca)‖mh(b)‖mh(c)).

3.1 Integrity Verification

Let Tδ be a subtree of tree T to be shared with a user. The following auxiliary information is also sent to
the user, for integrity verification of Tδ (Consider the subtree Tδ in Figure 1:

1. With respect to each node in Tδ, MH of its siblings2 that are in T but not in Tδ. For example, in
Figure 1, mh(f) (with respect to e) is sent.

2. With respect to each node x in Tδ, the MH of each sibling of each ancestor of x, if that sibling is not
in Tδ. In our example, mh(a) and mh(b) are also sent.

3. With respect to each node in Tδ, the hash of the content of each of its ancestor. In our example, H(ca)
and H(cb) are sent to the user.

4. The structural order between a node in Tδ and its sibling(s) that are not in Tδ, and the structural
order between the sibling nodes that are not in Tδ. In our example, the order between e and f , and
the order between b and c are sent to the user.

5. Parent-child/ancestor-descendant relationship(s) between a node in Tδ and another node not in Tδ

(such as the relationship between b and d), and those between the nodes that are not in Tδ (such as
between a and b, and between a and c).

6. The fact that a given node is the root of T (even if it is the root of Tδ). In our example, a is the root
of the tree and this fact is conveyed to the user.

The user then computes the MH of the whole tree using such information (the subtree and auxiliary
information) and compares it with the received signed MH of the root. If they are equal, the integrity of the
subtree is validated. Moreover, this process authenticates the subtree against the original tree.

3.2 Inference Attacks

The attacks on the Merkle hash technique are based on the set of auxiliary information sent to the user. By
exploiting the knowledge of these information, inference attacks described below can be carried out on the
MHT.

• (plaintext, ciphertext)-inference attack: It exploits the information (1), (2), (3), and (6). By comparing
the Merkle hash of a node e in the shared subtree with the MH of another node f received as part
of the auxiliary information, the user can infer whether contents of e is same as that of f and if the
subtree with root e is identical to the subtree with root f . With the auxiliary information (6), the user

2Nodes that are siblings in a tree have a common parent.

5

can also infer (a) whether the received subtree is in fact the original tree, and (b) whether the root of
received subtree is in fact the root of the tree.

• (ciphertext, ciphertext)-inference attack: It exploits the information (1), (2), (3), and (6). By comparing
the Merkle hashes of two nodes (c and f) that are received as part of the auxiliary information, the
user can infer whether the contents of c is same as that of f and whether the subtree with root c is
identical to the subtree with root f . With the auxiliary information (6), the user can also infer whether
the received subtree is in fact the original tree.

• Structural inference attack: It exploits the information (1), (2), (3), and (5). The user infers the
number of nodes that are not in the received subtree, and the structure of the original tree from the
auxiliary information and shared subtree. If the user receives non-empty auxiliary information, then
it infers that the shared subtree is a proper subtree of the original tree and there are nodes it has not
received. In some cases, the user can also learn about the exact size of the original tree (such as in the
case of our example in Figure 1).

• Missing-siblings inference attack: It exploits the information (1) and (2). From the auxiliary informa-
tion, the user infers the number of siblings of a received node e that are not in the shared subtree. If
the shared subtree has x and y as siblings, the user also infers the number of siblings that are not in
the shared subtree but are to the right of x and to the left of y in the original tree.

• Structural-order inference attack: It exploits the information (4) and (5). The user infers structural
order between siblings involving one or more nodes that the user does not have access to. In our
example, the user learns that b and e are left siblings of c and f , respectively.

• Parent-child inference attack: It exploits the information (4) and (5). The user infers the parent-child
relationships involving one or more nodes that the user does not have access to. In our example, the
user learns that b and d are the parents of e and f , respectively. The user also learns that b is an
ancestor of e and f .

3.3 Variants of Merkle Hash Technique

By using one-way accumulators instead of one-way hashes in order to compute the Merkle hash of an
intermediate node, the order between either siblings or ancestor-descendants can be factored out of the
construction of the digital signature. However, such a technique when applied to siblings of a node cannot
prevent leakage of ancestor-descendant information and vice versa.

By salting [21] or by MD-strengthening [29, 8] the Merkle hash of each node one is secured against
the known-plaintext and known-ciphertext inference attacks. However, salting or MD-strengthening cannot
prevent structural inference attacks completely even when coupled with one-way accumulators. Another
consideration would be to concatenate the depth of a node to its contents when computing its Merkle hash.
However, the knowledge of depth of a node is a leakage of structural properties and makes the technique
vulnerable to structural inference attacks.

By its inherent nature, the Merkle hash technique, leaks certain information about the contents and/or
the structure of the signed tree. It is thus necessary to develop a new integrity assurance mechanism that
can prevent such leakages and attacks. In the next section, we give an example in order to illustrate the
significance of such leakages and inference attacks.

4 Running Example

Our running example is in the area of XML data management. XML organizes data according to the tree
structure; integrity and confidentiality of XML data is an important requirement, given the widespread
adoption of XML for distributed web-based applications. As such, XML is an important application domain
for the techniques presented in the paper.

The XML document in Figure 2 is a fictitious health-care record of a patient and thus contains sensitive
information. Assume that such record is stored in a hospital database and that its schema, referred to as

6

<HealthRecord>
. . .
<PatientID id=2345S>
. . .
</PatientID>
<Contact>

. . .
</Contact>
<CriticalDiseases>

<Disease name=Cancer>
<Surgery>
. . .
</Surgery>
<Chemotherapy>

<Treatment instance=1>
<Doctor name=Dr. S. Stevens/>
<DateTime date=. . . time=. . . />

</Treatment>
<Treatment instance=2>

<Doctor name=Dr. M. Paul/>
<DateTime date=. . . time=. . . />

</Treatment>
</Chemotherapy>
<Medication>
. . .
</Medication>

</Disease>
<Disease name=KidneyFailure>

. . .
</Disease>

</CriticalDiseases>
. . .

</HealthRecord>

(a)

(b)

Figure 2: (a) XML-based Health-care record of a patient. (b) The tree representation of the HealthRecord.

HealthRecord, is defined as follows. The HealthRecord element, that is, the root of the tree has a child for
each of the following elements: CriticalDiseases, PatientID, and Contact. The CriticalDiseases element is
used to list all the critical diseases a patient suffers from; information about a specific critical disease is
specified as its child by the element Disease. Inside each Disease element, the types of treatment that the
patient has gone through for that same disease are listed. For Cancer, the types of treatment are specified
by the following elements: Surgery, Chemotherapy, and Medication. Each type of administered treatment is
specified as a child node of the node specific to the treatment type and is an instance of Treatment element.
It contains an attribute instance, which refers to the specific instance of the treatment, and child elements
to specify the date and time of administering (DateTime), and the name of the doctor who administered
the treatment (Doctor). A patient may have received treatments from different doctors, each related to a
different instance of the same type of treatment or instance of a different type of treatment. For expository
purposes, we associate a label with each node in the health record in Figure 2(b); for example, the node
Chemotherapy is labeled by a8.

The hospital database, which can be accessed remotely, stores all such patient health records. The Merkle
hash technique is used to sign the tree and support integrity verification by the data consumer. Table II
lists the details about how to compute and verify the Merkle hash for each node in the tree in Figure 2(b).
The third column of such table also lists the information which is leaked when the integrity of a node is
verified. Table III lists the inference attacks that can be carried out due to the leakages.

Consider the following scenario. A cashier has access to the subtree Tδ1, shown in Figure 2, including
the root a1, that is essential for financial and administrative purposes. She does not have access to a4

and its content that refers to CriticalDiseases. An access to the health-record in Figure 2(a) leads to the
integrity verification of this portion of the health record at the side of the cashier. During this process, the
cashier receives the Merkle hash of a node a4 and she also receives the following information: a4 is a child
of a1 and is on the left side of a2 and a3. By knowledge of the schema, the cashier determines that a node
at such position must be the CriticalDiseases node. Thus the cashier infers that the patient is definitely
suffering from some critical disease. If the hospital specializes in some specific critical disease(s), the cashier
can further infer which (possible) disease the patient is suffering from. Each of these inferences leads to
disclosure of information that is sensitive for the patient.

We now consider another scenario, which leads to leakage of more detailed sensitive information. A nurse

7

has access to Tδ2 and a1 from the record in Figure 2. He has access to Tδ2, because he works with the doctor
S. Stevenson, who prescribed the administering of this treatment. The nurse receives Tδ2 and a1, and the
corresponding signature information from the remote database. In order to be able to verify the integrity of
Tδ2, he also receives the signature of a6, a7, a9 and a11.

The schema of HealthRecord specifies that a child of CriticalDiseases refers to a critical disease from
which a patient suffers from. By receiving the signature for a6, which is a child of the node a4 (element
CriticalDiseases), the nurse infers that the patient is suffering from another critical disease different from
cancer. This is a disclosure of private information, to which the nurse does not have access to. Assume
that the hospital of our example specializes on the treatment of only a limited number of critical diseases.
It is thus easy to infer what the other disease is. Furthermore, by inferring that a8 has two siblings, that
is, a7 and a9, the nurse is able to infer that the patient has gone through two other treatments other than
chemotherapy. Such inference may easily lead to determine the seriousness of the illness. In addition, from
the schema, the nurse can infer that these nodes refer to Surgery and Medication, which reveals that the
patient has been received either or both of these treatments. If the hospital has two doctors who specialize
in Surgery or Medication, then the knowledge that the patient has been treated with Surgery or Medication
leads to more information, such as that he has been treated by more than one doctors and who (possibly)
has been his doctor.

Furthermore, by the disclosure of the signature of node a11 and its structural relationship with a8 as its
child, and by knowing that children of a Chemotherapy element refer to the treatment instances, the nurse
is sure that the patient went through another Chemotherapy treatment and possibly with another doctor.
Additional knowledge about doctors and the hospital could lead to more leakage.

Table 2: Computation/verification of Merkle hash signature of Tδ in the health record in Figure 2(b)
Node a Nodes whose Merkle hash Distinct information leakages

used in this particular order during verification of a
to compute/verify Merkle hash of a

a13 a13 none

a12 a12 none

a10 a12, a13, a10 none

a8 a10, a11, a8 signature of a11 ,
a11 as sibling of a10,
a11 as child of a8 ,
a11 as to the right of a10

a5 a7, a8, a9, a5 a7-specific leakage: signature of a7 ,
a7 is sibling of a8 ,
a7 is child of a5),
a7 is to the left of a8);
a9-specific leakage: signature of a9 ,
a9 is sibling of a8 ,
a9 is child of a5 ,
a9 is to the right of a8

a4 a5, a6, a4 signature of a6 ,
a6 is sibling of a5 ,
a6 is child of a4 ,
a6 is to the right of a5

5 Randomized Traversal Numbers

In this section, we review tree traversals and define the notion of randomized traversal numbers.

8

Table 3: Inference of sensitive information from the leakage during the integrity verification of Tδ in Fig-
ure 2(b)

Leaked information Inference from the leakage
during verification of a node in the health-care context

signature of a11 AND Patient has gone through another Chemotherapy.
(a11 as sibling of a10 OR

a11 as child of a8)

a11 as to the right of a10 If sibling order represents more information
such as temporal order, then more sensitive information
can be derived such as it can be inferred if the chemotherapy
referred to by node a11 was administered
earlier or later than the one referred to by a10.

signature of a7 AND Patient has gone through another type of treatment;
(a7 is sibling of a8 OR also inferred is - it to be either Surgery or Medication
a7 is child of a5)

a7 is to the left of a8 More leakage related to the order such as temporal order

signature of a9 AND Patient has gone through another type of treatment;
(a9 is sibling of a8 OR also inferred is - it to be either Surgery or Medication
a9 is child of a5)

a9 is to the right of a8 More leakage related to the order such as temporal order

signature of a6 AND Patient suffers from another critical disease;
(a6 is sibling of a5 OR can be determined which disease it is
a6 is child of a4) from the specialty of the hospital

a6 is to the right of a5 More leakage related to the order such as temporal order:
time of treatment of this disease in this hospital relative
to the time of treatment of Cancer

5.1 Review of Tree Traversals

Post-order, pre-order, and in-order tree traversals are defined in [22]. While post-order and pre-order
traversals are defined for all types of trees, in-order traversal is defined only for binary trees. In each of these
traversals, the first node visited is assigned 1 as its visit count. For every subsequent vertex visited, the visit
count is incremented by 1 and is assigned to the vertex. This sequence of numbers is called the sequence of
post-order (PON), pre-order (RON), or in-order (ION) numbers for the tree T , depending on the particular
type of traversal.

Properties of traversal numbers: The post-order number of a node is smaller than that of its parent. The
pre-order number of a node is greater than that of its parent. The in-order number of a node in a binary tree
is greater than that of its left child and smaller than that of its right child. A specific traversal number of a
node l is always smaller than that of its right sibling r. The distribution and range of the traversal numbers
are uniform and deterministic ([1, 2, . . . , |V |]). The determinism of the distribution and range of the traversal
numbers make them unsuitable for our purposes as they reveal information about the approximate size of
the data and the position of the subset of data in the data set. It is possible for an adversary to exploit this
information and replace a signed node with a compromised or a different node altogether by assigning to it
the original pre-order number. Siblings can be interchanged and the corresponding visit counts could also
be interchanged while satisfying the specific properties.

In order to overcome the above limitations of the traversal numbers, we propose the notion of randomized
traversal numbers.

5.2 Randomized Traversal Numbers

We transform a traversal number into a unique random number such that the order between the traversal
numbers (of a specific traversal) is preserved. By preserving the order of their original counterparts, the
randomized traversal numbers preserve their properties. For an unordered tree, we transform a traversal

9

number into a unique random number such that the order between the traversal numbers (of a specific
traversal) for ancestors and descendants is preserved, whereas the order between such numbers among siblings
does not need to be preserved. The distribution and range of randomized traversal numbers is non-uniform
and non-deterministic.

Definition 5.1. The set of randomized traversal numbers of a tree T is defined as the set of distinct real
numbers chosen randomly through a transformation of the set of traversal numbers, that is, T e = ζ(T),
where: T and T e refer to the set of traversal numbers and their randomized counterparts, respectively; ζ
is a random transformation function such that for ordered trees, the order among all traversal numbers is
preserved, and for unordered trees, the order among such numbers assigned to ancestors and descendants is
preserved, while the order among those assigned to siblings does not need to be preserved.

Techniques to compute randomized traversal numbers are described in Section 6.3. The randomized
transformations of post-order, pre-order and in-order numbers are called as randomized post-order (RPON),
randomized pre-order (RRON), and randomized in-order (RION) numbers. RPON, RRON, and RION for
a node x are denoted by px, rx and ix, respectively.

The following lemmas provide the basis for defining the notion of structural integrity verifiers for trees
using randomized traversal numbers in the next section.

Lemma 5.2. The pair of randomized in-order number and either post-order or pre-order number for a node
in a binary tree correctly and uniquely determines the position of the node in the structure of the tree, where
the position of a node is defined by its parent and its status as the left or right child of that parent.

Proof. From the in-order and either post-order or pre-order traversal sequences of the vertices, it is possible
to uniquely re-construct a binary tree [20]. Thus from these sequences or from their randomized counterparts,
for a node, it is possible to correctly identify its parent and its status as left or right child of that parent in
the tree. Thus the lemma is proved.

Lemma 5.3. The pair of randomized post-order number and pre-order number for a node in a (non-binary)
tree uniquely determines its position in the structure of the tree, where the position of a node is defined by
its parent and its siblings to its immediate left and right in the tree.

Proof. It follows from [9].

6 Integrity Verification of Trees

In this section, we develop structural integrity verifiers (IV s) for trees based on Lemma 5.3. Structural IV s
for binary trees are defined identically except that in-order traversals are used as one of the components in
place of either the post-order and pre-order traversals (Lemma 5.2). For simplicity of exposition, we focus
primarily on non-binary trees.

6.1 Structural Integrity Verifiers

A structural position uniquely identifies a node in a tree structure. It is defined as a pair of the RPON and
the RRON of a node and for binary trees it is defined as a pair of the RION and RPON (or RRON) of the
node (Definition 6.1). Because the nodes should be bound to a given tree, a unique identifier referred to as
ψT is assigned to the tree. ψT is a random value and can be computed as the hash of the structural position
and content of all the nodes in the tree, taken in a particular sequence of the vertices, such as a post-order
sequence(Definition 6.2). The hash is further signed by a trusted entity (the owner or a certifying authority).
The hash can be salted using a random value if the fact that “the received subtree (sent to the user) is the
same as the original tree” is a sensitive information. The (salted) tree IV is publicly available or passed to
the user alongwith the subtree the user has access to. The structural IV of a node x in tree T is defined as
a hash of the structural position and content of x and the (salted) IV of the tree ψT . The hash is further
certified by a trusted entity (the owner or a certifying authority). The use of the structural position in the
computation of the hash binds the content and the tree IV to the node x, because the structural position
(pair of RPON and RRON) of a node is unique in a given tree. The formal definitions of these notions are
as follows. ‖ denotes to the string concatenation operation.

10

Definition 6.1. Let x be a node in tree T (V,E). Its structural position, denoted by ρx, is defined as a pair
of its RPON px and RRON rx, that is, ρx = (px, rx).

Definition 6.2. Let the nodes in tree T (V,E) be referred to as 1, 2, . . ., n, where n = |V |. Let ω be
a cryptographically secure random. Let H denote a one-way cryptographic hash function. The structural
integrity verifier of T , denoted by ψT , is defined as ψT = H(ω‖ρ1‖c1‖ρ2 ‖c2‖. . . ‖ρi‖ci‖. . . ‖ρn‖cn).

Definition 6.3. Let x be a node in tree T (V,E). The structural integrity verifier of x, denoted by ψx, is
defined as ψx = H(ψT ‖ρx ‖cx).

6.2 Computation of Integrity Verifiers

The algorithm that the trusted owner Alice follows in order to compute the IV s for a tree T (V,E) is given
below.

Algorithm

1. Compute the post-order and pre-order numbers for each node in T .

2. For each node x in T : transform the post-order and pre-numbers into randomized post-order and
pre-order numbers denoted, respectively, as px and rx, such that

(a) for unordered trees, RPON’s and RRON’s among the siblings do not need to preserve any order,
while for ancestors and descendants, they need to preserve the order;

(b) for ordered trees, RPON’s and RRON’s for all nodes, need to preserve the order.

3. Assign (px, rx) to x as its structural position ρx.

4. Compute the structural IV of the tree T , ψT from a specific sequence of vertices (such as the post-order
sequence which can be available from steps 1 and 2).

5. For each node x in V , compute the IV ψx.

After the IV s are generated, Alice signs3 ψT and ψx of each node x. Let signed(ψT) and signed(ψx)
refer to the signed IV s of T and x, respectively.

6.3 Computation of Randomized Traversal Numbers

Computation of randomized post-order and pre-order numbers (Steps 1 and 2 in the algorithm in Section 6.2)
can be carried out in one traversal (instead of two) by processing a node x for its pre-order number, then
recursively processing all its children; after all the children of x are processed, x is processed for its post-order
number.

Randomized traversal numbers can be computed using one of the following three techniques.

6.3.1 Sorted random numbers

For a tree T (V,E), compute n (=|V |) number of secure random numbers, and sort them in a working list
according to increasing order. Assign the lowest number in the working list to the node being visited in
pre-order or post-order and remove it from the list. The cost of such a technique is O(nlogn).

6.3.2 Order-preserving encryption

Assign real numbers to each node as traversal numbers; thus the PON and RON are real numbers such that
the order between PONs and RONs are preserved. Apply an order-preserving encryption scheme [1] to the
set of PONs/RONs with a unique key for every tree (so that encryption of a given number is unique across
trees).

3Structural IV s facilitate verification of both structural and content integrity, while certification of a digest of the content
of a node can be used to verify only the integrity of content, not the structural integrity.

11

6.3.3 Addition of random numbers

A randomized traversal number t2 larger than another randomized traversal number t1 is computed by
adding a random η to t1. Each random is treated as a non-negative value.

1. Choose a cryptographically secure random η.

2. t1 ← η.

3. For i = 2 to n

(a) Choose a cryptographically secure random η.

(b) ti ← ti−1 + η.

In order to accommodate insertions and maintain appropriate randomness, the randomized traversal numbers
should be generated using η as the summation: η ←

∑
1≤ j≤ mi

ηj , where mi is chosen randomly.
The following lemma proves the security of such a technique to compute random numbers. The proof is

in Appendix A.

Lemma 6.4. The addition of two cryptographically secure random numbers is a cryptographically secure
random number.

7 Distribution of a Subtree

After the IV s are computed and signed, the tree is ready to be shared with Bob. Suppose that Bob wishes
to access T and thus sends such a request to a distributor. Bob has the authorization to access the subtree
Tδ(Vδ, Eδ). Tδ(Vδ, Eδ) can be shared with Bob according to two different strategies: (1) by sharing the
signed subtree - its nodes and the structure; (2) by sharing the signed nodes in the subtree and letting
Bob reconstruct the subtree using the RPON’s and RRON’s of the nodes. We describe both options in the
following sections. Later we show how to use aggregate signatures in conjunction with either of these two
strategies to share the subtree. By use of aggregate signatures, the distributor D needs to only send O(1)
integrity verifiers to the user.

7.1 Sharing the Subtree along with its Structure

The distributor D sends to Bob, who has access to the tree Tδ(Vδ, Eδ):

• each node x in Vδ;

• 〈ρx, signed(ψx)〉 of each node x in Vδ;

• information about the parent-child and ordering between nodes (e.g. in the form of an adjacency
matrix);

• the structural IV of the tree if it is not publicly available.

Bob receives the subtree and it refers to it as T ′
δ(V

′
δ , E

′
δ) (with a different name in order avoid any

ambiguity). Bob is aware of the H function used. He verifies the integrity of each node. Next, he verifies the
integrity of structural relationships among all those nodes in T ′

δ(V
′
δ , E

′
δ), whose integrity and authenticity

have been correctly verified.

7.1.1 Validation of Integrity Verifiers

Bob verifies the signature of the IV s of T and the IV of each node in Tδ. If the signature is valid, then the
IV of the node is valid. A spurious node would not be signed by a trusted entity; so such a node would be
detected during this process.

12

7.1.2 Integrity Verification for Contents and Integrity Verifiers

1. For each node y in the set of received nodes V ′
δ , Bob computes the structural IV of y from its position,

that is, it computes H(ψT ‖ρy‖cy). Then it compares this value with the IV ψy with which y has been
signed. The verification proceeds if the values are equal.

7.1.3 Integrity Verification for Structural Relations

The integrity verification of structural relations in a tree involves traversing the tree and comparing the
RPON (RRON) of each node with the RPON (RRON) of its parent or its sibling. The steps are as follows:

1. Carry out a pre-order traversal on T ′
δ.

2. Let x be the parent of z; if ((px≤ pz) or (rx≥ rz)), then parent-child relationship between x and z is
incorrect.

3. For ordered trees, let y be the right sibling of z; if ((pz ≥ py) or (rz ≥ ry)), then the left-right order
among the siblings y and z is incorrect.

7.2 Sharing a Subtree - only the Nodes

An advantage of the use of structural IV s is that there is no need to supply the user with the structure
of the subtree it is receiving. Our scheme reduces the amount of data that needs to be transmitted from
the distributor to the users and thus improves the efficiency of the data distribution. The structure can be
reconstructed from the pre-order and post-order traversals (for non-binary trees [9]) (in-order and pre/post-
traversals for binary trees [20]).

The distributor D sends to Bob, who has access to the tree Tδ(Vδ, Eδ):

• each node x in Vδ;

• 〈ρx, signed(ψx)〉 of each node x in Vδ;

• the structural IV of the tree if it is not publicly available.

D does not send any parent-child relationship or ordering between nodes to Bob.
The following section describes how to verify the integrity and re-construct the structure of the received

subtree.

7.2.1 Integrity Verification and Reconstruction of a Subtree

The structural position of a node includes the RPONs and RRONs, which possess the same properties as
that of the post-order and pre-order numbers. The subtree reconstruction algorithm [9] can thus use RPONs
and RRONs. There is no need to carry out the verification of the structural integrity, as it is automatically
taken care of during the subtree re-construction process. For binary trees, the algorithm given in [20] can
be used, where RIONs would be used.

1. Validate the signatures of the tree and the nodes by verifying their certificates.

2. Verify the integrity of content and structural positions of the nodes as per the procedure in Section 7.1.2.

3. Apply the algorithm by Das et al. [9] (Section 3.3) for reconstruction of the sub-tree with the following
changes:

(a) use the RRONs and RPONs of the nodes as post-order and pre-order numbers;

(b) if an edge thus constructed involves a node (or nodes) whose integrity is found to be invalid in
the previous step, then this edge is treated as invalid.

In the algorithm by Das et al. [9], the consecutive nodes in post-order (pre-order) all the nodes with RPONs
(RRONs) that are next to the other.

13

7.3 Using Aggregate Signatures

In the previous distribution schemes (Section 7.1 and 7.2), the distributor sends O(n′) units of IV s (one
for each node) to the user, where n′ is the number of the nodes in the subtree T ′(V ’,E’). In this section,
we show how to use aggregate signatures to provide an optimal distribution technique that sends only O(1)
units of IV units to the user. The following section gives a brief summary of aggregate signatures adapted
from [2].

7.3.1 Review of aggregate signatures

Let G1 =< P > be an additively-written group of prime order p, and let G2 be a multiplicatively written
group of the same prime order p. A mapping e : G1×G1 → G2 is a bilinear map if (i) e(aX, bY) = e(X,Y)ab

for allX,Y ∈ G1 and a, b ∈ Z∗
p ; and (ii)G2 =< e(P, P) >. The mapping e is efficiently computable, but given

only P , aP , and X (but not a) it is computationally infeasible to compute aX (i.e., the Computational Diffie-
Hellman problem is difficult in G1). This difficulty is what enables the signature and aggregate signature
schemes based on bilinear pairings.

In this paper, we use the aggregate signature scheme by Boneh at al. [4]. In such scheme, the signer’s secret
key is s ∈ Z∗

p , Q = sP ∈ G1 is public, and the signature for a message m is sM with M = H(Q,m) ∈ G1,
where H is a cryptographic one-way hash function; for convenience, we henceforth omit mention of the
M = H(Q,m) and simply say “message M”. In the aggregate signatures, given the public P and Q, and
given k message-signature pairs Mi, Si = sMi, 1 ≤ i ≤ k, the signature is verified by checking that the
following equality holds: e(Q,

∑k
i=1Mi) = e(P,

∑k
i=1 Si).

7.3.2 Sharing

Distributor D sends the following to the user4:

• each node x in V ′ and ρx

• if structure needs to be sent (i.e. strategy (2)), information about the parent-child and ordering between
nodes (e.g. in the form of an adjacency matrix)

• the structural IV of the tree if it is not publicly available, D computes ψT ′(V ′,E′) from the aggregate
signatures of the tuples associated with each node in T ′ as follows:

ψT ′(V ′,E′) =
∑

x ∈ V ′

Mx = s
∑
x∈V ′

H(Q ‖ ψT ‖ ρx ‖ cx).

7.3.3 Integrity Verification of a Subtree

When a user receives an n′′-node subtree T ′′(V ′′, E′′) (along with the ρx’ for each node x) from the distributor
D, it needs to receive only O(1) items of information, which is the IV ψ(T ′(V ′, E′)) that D computes in
O(n′′) time.

In order to verify the integrity of the contents (as well as the structural position) of the nodes in T ′′, the
user computes

ψT ′′(V ′′,E′′) =
∑

y∈V ′′

(H(Q ‖ ψ′T ‖ ρ′y ‖ c′y))

and then checks that the following equality holds:

e(Q,ψT ′′(V ′′,E′′))
?= e(P,ψT ′(V ′,E′))

where e, P,H and Q are public in an aggregate signature framework.

14

(a) (b)

Figure 3: (a) Post-order and pre-order numbers assigned to the Health-care record as (PON, RON). (b)
Randomized post-order and pre-order numbers assigned to the Health-care record as (RPON, RRON).

8 Illustration

Consider the tree in our running example (Figure 2) and suppose that the tree has been assigned post and
pre-order numbers (Figure 3(a)) and their randomized counterparts (Figure 3(b)). The structural position
of each node is represented as (RPON, RRON) in Figure 3(b). Each node has a content that consists of the
name of its corresponding element and attribute-value pairs. Since the IV s and the hash values are large
bit strings (e.g., 160 bits for SHA1), we do not show their values.

The cashier has access to subtree Tδ1. The database D sends two nodes - a2 and a3, their structural IV s
alongwith the (salted) tree-signature ψT . The cashier receives two nodes a2 and a3. She applies the integrity
verification procedure on each of these nodes. She applies the hash function to the concatenation of the ψT ,
66.2, 69.1 and c2). Then she verifies whether the resulting value is equal to the received integrity verifier of
node a2; if this is the case, then the integrity of the node is verified. The same procedure is followed for a3.
Then because a2 and a3 were sent as siblings, the cashier verifies whether p2 (=66.2), the RRON of a2 is
smaller than p3(=69.5), the RRON of a3; if so, then a3 is an ancestor or a right sibling of a2. However since
p2 (=69.1) < p3 (=78.2), a3 is not an ancestor of a2. Thus their relationship is correctly verified.

The nurse is authorized to access Tδ2; however suppose he receives a Tδ2 that is tampered, such that in
the tampered tree, a10 is the child of the node a5 and a left sibling of a8. Such a violation of structural
integrity can be detected by comparing the structural positions of the nodes as discussed in Section 7.1.3.
The RRON of node a10 is greater than that of a8, which means that a10 cannot be a left sibling of a8. If a10

is received as the right sibling of a8, the structural integrity is violated. Such violation is detected, because
the RPON of a10 is smaller than that of a8, which means that a10 cannot be a right sibling of a8.

9 Security Analysis

This section analyzes the soundness of the structural integrity assurance scheme in terms of its integrity and
confidentiality guarantees with respect to information leakage defined earlier.

4In this section, we have used a slightly different notation T ′(V ′, E′) to represent a subtree than the one used in previous
section - Tδ(Vδ , Eδ) in order to avoid complicated notation involving double subscripting.

15

9.1 Integrity

Lemma 9.1. Given that the hash function H is cryptographically secure, any integrity violation of the
content and/or structural position of a node in a tree can be detected by using structural integrity verifiers.

Proof. Let x be a node in tree T . Any compromise of the content cx or the structural position ρx of a
node x in T would invalidate the structural IV ψx, which is a hash of a message that contains cx and ρx,
unless the hash function H encounters a collision, which contradicts our assumption. Any unauthorized
re-ordering of two or more nodes (violation of structural integrity) can be detected using the RPON’s and
RRON’s (Lemma 5.3). Suppose x belongs to tree T ′, different from T , but claimed to belong to T . Such
a forgery is possible when the IV of T , ψT , is identical to that of T ′, ψT ′ . ψT and ψT ′ are identical only
when the one-way hash H has encountered a collision, which contradicts our assumption (and the Random
Oracle Hypothesis [34]). Can such a tree T ′ be found such that a collision be deliberately generated? By
the property of H, it is “hard” to do so (under the Random Oracle Hypothesis).

Countering Integrity Attacks

In order to allow the user to detect whether one or more nodes have been dropped in an unauthorized
manner from the subtree, the distributors can employ the distribution scheme using the aggregate signatures
(Section 7.3). When the distribution scheme does not use that distribution scheme, the distributor creates
a hash of the structural position (or the IV) of all the nodes in an order (such as BFS-order) known to the
user and send it alongwith the data. The user then re-computes this hash from the nodes it has received. If
the hashes match, then no node has been dropped.

The distributor can also create an aggregate signature as described in Section 7.3.
A spurious node would not be signed by the owner; so such a node would be detected during this process

(Section 7.1.1).

9.2 Leakage

Suppose that Bob has access to a subtree Tδ(Vδ, Eδ) in T . Let x and y be two immediate siblings in Tδ, left
and right respectively. Can Bob determine the existence of any other node u which he does not have access
to, between two siblings x and y, by knowing the RPON’s and RRON’s of x and y?

In an unordered tree, there is no such leakage of information, as RPONs and RRONs among siblings do
not have any order. In an ordered tree, there is no leakage (as proved by the following lemma).

Lemma 9.2. Given that the hash function H is cryptographically secure, the structural integrity verifiers do
not lead to any leakage of extraneous information.

Proof. Suppose that a user Bob has access to Tδ(Vδ, Eδ), a subtree in T . Bob has access to the subtree,
the structural IV of T , the IV of each node in Tδ, and the structural position of each node. Any leakage
would be a direct leakage through such information or an inference from it. By Definition 2.2, extraneous
information can be categorized as follows: (1) node IV s, and information about the (2) existence of nodes,
(3) structural relations or (4) structural order among nodes.

Direct leakage: Clearly (as per Definitions 6.2 and 6.3, and the protocols specified in Section 6) Bob
does not need to know the IV of any node (u) that is in T but not in Tδ. He therefore does not need to
know any of the structural relationships and structural ordering that exist in T , but not in Tδ. Therefore
none of (1), (2), (3), and (4) is directly leaked to Bob; he does not learn any extra information from the
integrity verification process.

Indirect leakage through the IV of the tree and IV s of the nodes in Tδ: Under the Random Oracle
Hypothesis, the structural IV of the tree reveals neither (1) the existence of u nor (2) the IV of u. Similarly,
the structural IV of a node leaks neither (1) and (2). Therefore (3) the structural relations (edges or paths)
and (4) the structural order among nodes in Tδ and u are not revealed by the IV s.

The structural positions (RPON’s and RRON’s) of the nodes in Tδ: By Lemma 6.4, RPON’s and RRON’s
are cryptographically secure random numbers; therefore the attacker cannot learn anything about (2) - the
existence of node u between two immediate siblings.

16

Therefore the structural positions of nodes, that is, the RPON’s and RRON’s, cannot be used to determine
the structural IV of u. Since (1) and (2) cannot be inferred from the RPON’s and RRON’s, (3) and (4) also
cannot be inferred from the structural position of a node. Thus the lemma is proven.

Comparison with Merkle hash In the Merkle hash technique and its derivatives, there is a release of
log(n) information, both in terms of content and structure. So the probability information leakage is 1. For
structural IV s, there is no direct leakage of IV s of nodes and relationship between nodes that the user do
not have access to. Moreover, as we quantified above, in our technique, inference attacks cannot determine
the existence of any sibling among the two other siblings. The structural integrity assurance scheme is not
vulnerable to any of the inference attacks that Merkle hash technique is vulnerable to (listed in Section 3.2).

10 Performance

In this section, we analyze the performance of the structural integrity assurance scheme with respect to the
Merkle hash technique through complexity analysis and experiments.

10.1 Complexity Analysis

Cost of Integrity Verifier Computation The pre-order and post-order numbers can be generated by
a single traversal of the tree. The traversal complexity is thus O(|V |). However if a “sorting of randoms”
approach is used to compute randomized traversal numbers, the cost of computing IV s for a tree T (V,E)
is O(|V |log(|V |)). The use of “order-preserving encryption” for this purpose may result in nonlinear cost;
however this is not clear from [1]. The cost in case of “addition of randoms” is O(|V |).

The storage complexity of structural integrity verifiers is: |ρx|+|ψT |+|ψx|, which turns out to be (2*k+|H|+|H|),
where k and |H| are the number of bits used to represent a random number (RPON/RRON/RION) and the
output of the hash respectively, thus a constant factor O(1).

Cost of Distribution If the distribution strategy is to share the signed subtree Tδ(Vδ, Eδ) including its
structure, the distributor has to send |Vδ| nodes and information about |Vδ|-1 edges. If the distribution
strategy is to share only the signed nodes in the (signed) subtree and the user reconstructs the subtree using
the RPON’s and RRON’s of the nodes, then the distributor has to send |Vδ| nodes only. The latter reduces
the communication (sending) cost on the side of the distributor by about 50% than the former strategy.

Cost of Integrity Verification If the distribution strategy is to share the signed subtree including its
structure, the procedure for verification of content integrity incurs a cost linear in the size of the received
subtree Tδ(Vδ, Eδ), that is, O(|Vδ|). It accounts for one hashing for each node. The verification cost for
structural integrity is also linear in terms of the size of the received subtree, that is, O(|Vδ|); the cost of
comparison of RPON’s and RRON’s (and RIONs for binary trees) is constant. If the distribution strategy is
to share only the signed nodes in the subtree, the integrity verification cost comprises the cost of the integrity
verification for the content and the IV , that is, O(|Vδ|), and the cost of reconstructing the subtree using the
algorithm proposed in [9, 20], which is of linear order, that is, O(|Vδ|). The reconstruction process verifies
the structural integrity as well. Such a distribution mode reduces the communication (receiving) cost on the
side of the distributor by about 50% than the former strategy.

10.2 Comparison with the Merkle hash technique

Cost of Integrity Verifier Computation The complexity of generating the Merkle signature for a tree
T (V,E) is O(|V |), which is identical to that of the structural IV s. Our experiments show that structural
integrity assurance scheme has almost the same performance as that of the Merkle hash technique; the
difference is only marginal. The latter takes 0.13 seconds less for 65535 nodes than the former.

The storage complexity of the Merkle signature per node is |ψT |, which is |H| bits, which is of O(1)
cost. The storage requirement of the structural IV scheme is higher in terms of a constant factor, which

17

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14 16

T
im

e
fo

r
si

gn
in

g
in

 n
an

os
ec

on
ds

Height of the complete 2-ary tree being signed

Runtime of signing a tree

Structural signature
Merkle hash

Figure 4: Time taken for generation of integrity verifiers for a complete 2-ary tree with respect to its height
while using the Structural integrity verification scheme and the Merkle hash technique.

is (2*k+|H|). However this constant factor difference in the storage requirement helps in improving other
costs.

Cost of Distribution Integrity verification of a subtree Tδ(Vδ, Eδ) in the Merkle hash technique involves
computing the hashes of: (1) the nodes that are connected (adjacent) to a node in Tδ(Vδ, Eδ), but not part
of Tδ(Vδ, Eδ), and (2) the ancestors of R, which is the root of Tδ(Vδ, Eδ). Such values are not necessary for
integrity verification in case of structural IV s. Let µ refer to the set of the hashes as specified by (1) and
(2). The distributor has to send all the nodes in the subtree Vδ, the hashes in µ, all structural and ordering
among the nodes. Thus the communication cost on the side of the distributor is higher than what it would
be if one were to send only Tδ: it is in the order of 2 ∗ (|µ| + |Vδ|) − 1. Moreover (if structural order is
necessary), the distributor also incurs the cost of sending information about the structural order among all
these nodes. In the case of structural IV s, the communication cost is either 2∗ (Vδ)−1 (when the nodes and
edges are shared) or Vδ (when only the nodes are shared). The structural position of a node takes care of
the structural order among nodes. Obviously, the communication cost for the structural IV is almost 50%
of the cost incurred by Merkle hash technique.

Cost of Integrity Verification In the case of the Merkle hash technique, the user has to verify integrity
by using a higher number of entities, that is, 2 ∗ (|µ|+ |Vδ|)− 1, and a proportional amount of information
about the structural order among all these nodes (if structural order is important). The best case of Merkle
hash technique is when the integrity of the whole tree T (V,E) is to be verified; in such case, obviously,
no hash of any node is required and integrity verification using the Merkle hash technique has complexity
O(|V |), which is same as the integrity verification complexity when using the structural IV s, O(|V |). Thus
for integrity verification in comparison to the Merkle hash technique, the structural integrity assurance
scheme incurs less cost, except in the infrequent case in which the user has access to the whole tree (in such
a case, the costs for both the schemes is identical - equivalent to the cost of integrity verifier cmputation).
Our experimental results corroborate the fact that integrity verification at the user side using structural IV s
is more efficient than using the Merkle hash technique.

10.3 Experimental Results

We implemented our structural integrity assurance scheme and Merkle hash technique. Our implementation
uses Java (J2SE5.0) on a IBM T42 Thinkpad with Windows XP, Intel Pentium M 1.60GHz and 512MB
RAM. With no loss of generality, we carry out our experiments on complete trees; the trees are 2-ary with
2 to 65535 nodes (in other words, the height is from 2 to 16).

18

 0

 100

 200

 300

 400

 500

 600

 700

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e
fo

r
si

gn
in

g
in

 n
an

os
ec

on
ds

Number of nodes in the complete 2-ary tree being signed

Runtime of signing a tree

Structural signature
Merkle hash

Figure 5: Time taken for generation of integrity verifiers for a complete 2-ary tree with respect to its number
of nodes.

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e
fo

r
in

te
gr

ity
 v

er
ifi

ca
tio

n
of

 th
e

su
bt

re
e

in
 m

ic
ro

se
co

nd
s

Number of nodes in the subtree

Runtime of integrity verification

Structural signature
Merkle hash

Figure 6: Time taken for integrity verification of a subtree with respect to its number of nodes.

Our experimental results show that the amount of time taken to generate the structural IV s for a tree is
practically the same as the time required by the Merkle hash technique (Figures 4 and 5). The structural
integrity assurance technique takes about 0.10 seconds more for a tree with 65535 nodes; it is quite negligible
especially when IV s are generated once and re-used many times.

The time taken for user-side integrity verification is a significant factor because it affects the end-to-end
response time at the user side and since integrity verification would be carried out by many users, the col-
lective overhead would be very high. Our experimental results also show that the amount of time taken for
integrity verification using our structural integrity assurance scheme is less than the time required by the
Merkle hash technique (Figures 6 and 7). The subtree whose integrity verification has been carried out is a
complete left-most subtree in a complete 2-ary tree of height 16. Our technique also behaves more efficiently
as the size of the tree increases.

19

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

T
im

e
fo

r
in

te
gr

ity
 v

er
ifi

ca
tio

n
of

 th
e

su
bt

re
e

in
 m

ic
ro

se
co

nd
s

Height of the subtree

Runtime of user-side integrity verification

Structural signature
Merkle hash

Figure 7: Time taken for integrity verification of a subtree with respect to its height.

11 Dynamic Updates

In the structural integrity assurance scheme, the IV of the tree is used for verifying the structural IV s of
the nodes that are inserted or updated. The use of the IV of the old tree prevents leakage of the fact that
the tree has been updated outside the subtree that a user has access to. Such a leakage would occur, if a
new IV of the tree is computed such as in the Merkle hash technique.

11.1 Insertion

Upon insertion of a node, its structural position is computed such that the RPON and RRON preserve
correct relationships with the parent and siblings of the node. Then the content, the structural position of
the node, and the IV of the (original) tree are used to compute the IV of the node, which is signed by the
owner. Insertion of a subtree is carried out as a sequence of insertions.

1. Downward (Leaf-level) updates: Let x be a leaf node and z be the new (leaf) node added as the child
of x. A new RPON pz is computed according to the following strategies.

• (insertion sort) repetitively select a secure random η until η < px; η is assigned to pz;
• (order-preserving encryption) let z be the (n + m)-th node in the updated tree; then order-

preserving encryption is applied to (n+m) or a real number that is larger than the real number
assigned to the (n+m− 1)-th real number; such encrypted number is assigned to pz;
• (subtraction) draw a secure random number η; if η < px, then η is assigned to pz; else (px − η)

is assigned to pz. If such a technique is used, the randomized traversal numbers are treated as
nonnegative numbers.

RRON rz should be larger than rx and can be computed according to the following strategies:

• (insertion sort) repetitively select a secure random η until η > rx; η is assigned to pz;
• (order-preserving encryption) let z be the (n + m)-th node in the updated tree; then order-

preserving encryption is applied to (n+m) or a real number that is larger than the real number
assigned to the (n+m+ 1)-th real number; such encrypted number is assigned to rz;
• (addition) draw a secure random number η; if η > rx, then η is assigned to rz; else (rx + η) is

assigned to rz.

2. Upward (Root-level) updates: Let x be the root node and z be the new root node added as the parent
of x. RPON pz (RRON rz) is computed in the same way as RRON (RPON, respectively) is computed
in the case of (a) downward updates.

20

3. Let node z be inserted as a sibling of x and y in the order x, z, and y: The process of insertion also
computes the structural position pz, rz, ρz, and ψz. Randomized traversal numbers pz and rz for z are
computed such that px < pz < py, and rx < rz < ry. RPON pz is computed according to the following
strategies.

• repetitively select a secure random η until px < η < py and η is assigned to rz;

• (order-preserving encryption) let z be the (n + m)th node in the updated tree; then order-
preserving encryption is applied to (n+m) or a real number that is larger than the real number
assigned to the (n+m+ 1)-th real number (for y) and smaller than the real number (n+m− 1)
or another real number; such encrypted number is assigned to pz;

• (addition) Let ω be a uniformly chosen random number from (0, 1); (px + ω*(py - px)) is assigned
to pz.

RRON rz is computed in the same way as RPON pz.

This technique is also used to handle insertions between a parent and a child. The nodes involved in the
insertion of an edge from x to y (followed by deletion of z to y) require re-computation of the IV of y with
respect to x.

However, after a certain number of insertions within an interval (i.e. within two nodes), the RPONs,
RRONs or RIONs should be re-computed for the whole tree or subtree containing that interval. The reason
is to avoid that the numbers too dense. The threshold number of insertions depends on the size of the
randomized traversal number, such as 512-bit (for randoms generated by SHA2-512), and the size of the
tree. In order to accommodate insertions and maintain appropriate randomness, the randomized traversal
numbers should be generated using η (Section 6.2) as the summation

∑
1≤ j≤ mi

ηj , where mi is chosen
randomly.

11.2 Deletion

Upon the deletion of a node or a subtree, the IV s of the nodes need not be re-computed. Insertion of an
edge is generally followed by a deletion of an old edge and vice versa, in order to maintain the structural
properties typical of trees to remain connected and to have n− 1 edges for n nodes. Update of a node/edge
and a subtree can be carried out as insertion and deletion of a node/edge and a subtree. Insertion, deletion
or update of a node/edge and a subtree of m nodes incurs O(1) and O(m) cost, respectively.

12 Weighted Trees

Weighted trees have a weight w(x, y) associated with an edge e(x, y) between two nodes x and y [7]. In
this section, we show how to assure integrity of weighted trees without leakage by extending the structural
integrity verification technique. Assume that every edge has an assigned weight; such a requirement can be
easily fulfilled by assigning a weight of zero to edges that do not have any assigned weight. A naive solution
is to split the edges into two with a node inserted in the edge. The content of the new node is the weight
of the edge. However, such a solution almost doubles the size of the tree as well as doubles the cost of
distribution and user-side integrity verification. We propose to split the weight of an edge e(x, y) between
the two nodes x and y such that a user can only learn about the weight if and only if it has access to the
e(x, y).

Weight Splitting

Algorithm to securely split weights in a tree T (V,E):

1. Choose a secure random number η.

2. If x ∈V is the root of T , then inw(x) ← η.

3. If x ∈V is a leaf node, then outw(x) ← η.

21

4. For each edge e(x, y) ∈E:

(a) If outw(x) has not been assigned any random, then outw(x) ← η.

(b) inw(y) ← η ⊕ w(x, y).

Items inw(x) and outw(x) for each node x are treated as part of its contents. Computation of the
structural integrity verifier of each node - ψx and of the tree - ψx includes these items according to the
algorithm in Section 6.2.

Distribution

During sharing of a subtree Tδ with Bob, D sends 〈ρx, inw(x), outw(x)〉 alongwith the signed ψx and the
node x itself.

Integrity verification

For each edge e(x, y) received by the user Bob, he computes the following: w′(x, y) ← outw(x) ⊕ inw(y).
By the definition of bit-wise XOR, if x and y are valid nodes received by Bob, w′(x, y) is in fact same as the
correct weight w(x, y) between x and y. The fact Bob has received correct outw(x) and inw(y) is verified
from verifying the ψx and ψy, respectively (Section 7). The cost of such an operation is O(1).

Security

Let x and y be two nodes in T , with an edge between them in the tree with weight w(x, y). The knowledge of
inw(x) outw(x) does not reveal the value of w(x, y) because Bob does not know inw(y). A similar argument
applies to the case in which the user has access only to y and not to x. This is due to Shannon’s Theorem
of Perfect Secrecy and Vernam cipher [21]. Having access to the edge e(x, y) implies access to both x and y;
thus Bob can compute the correct weight whenever it has access to e(x, y).

13 Applications

The structural integrity verification scheme facilitates precise verification of integrity, i.e., pinpointing the
nodes or the structural relationships/orderings that have been compromised. Precise detection of compro-
mised nodes or structural information has many applications such as in (1) digital forensics, and (2) content
and structural recovery.

Digital Forensics: Determining which nodes/units have been tampered with and whether their structural
relationships have also been tampered is an important problem in digital forensics [16]. The technique pro-
posed in [16] requires O(d3log(n)) hashes be computed for a set of n nodes, such that at most d compromised
nodes can be deteted. By using our scheme, all compromised nodes can be detected and there is no upper
bound on the number of compromises that can be detected. The IV of each node x is signed individually
by a non-aggregate signature scheme and the signed value is regarded as the IV for that node. If the set of
items is an ordered set, then any compromise of the ordering can also be detected from the structural IV s
of nodes.

The cost incurred to provide such stronger security guarantee for an n-node ordered-data item is O(n).
Only O(n) IV s are required, which is much less than O(n3log(n)), if the compromise of some or all of the
n nodes need to be detected.

Content and Structural Recovery: The proposed scheme facilitates content-recovery by requesting re-transmission
of only those nodes that are compromised. Such a capability helps data recovery with a minimum amount
of data re-transmission. The technique used for digital forensics can be used in this case also to detect the
data items that have been compromised. If the nodes in a structural ordering are not compromised, but the
structural ordering is compromised, then from the IV s, the correct order can be easily computed. Such a
capability helps automatic correction of data without any interaction with the distributor.

22

For example, suppose that two nodes x and y are received and verified to be uncompromised. Suppose
that the ordering that y is left of x is the received order for these nodes in a subtree or a subsequence and
suppose that it is incorrect. The user can then test if x is left of y. If the test succeeds, the correct order is
recovered. If such test also fails, then there is no ordering (that is explicitly) imposed on these two nodes in
the tree. For a graph, if a user receives an uncompromised IV for the order between x and y, the user can
definitely determine the correct order between them by testing both alternatives. Thus our approach also
works as an error correcting technique for recovering the correct orderings among nodes.

Secure publish/subscribe of XML: The structural integrity verification scheme can be used for secure dissem-
ination of XML documents (and of tree-based data objects, in general) in a publish-subscribe model using
structure-based routing [26, 25]. An alternative to the encoding scheme proposed in, structural integrity
positions and verifiers can be computed for the XML document to be disseminated. Either of the RPON or
RRON in the structural position can be used as the routing parameter, using which sub-documents (subtrees)
can be routed to subscribers and subscribing routers. The integrity verification of a subdocument received
by a user can be carried out as specified earlier in Section 7. Moreover, use of structural IV s prevents leakage
of the lowest randomized post-order number in a subtree, which occurs in the previous scheme due to its
process of encoding.

14 Related Work

Information leakage is an important problem in data sharing and analysis. Some of the contexts in which
information leakage is currently being addressed are privacy-preserving databases [6, 33, 36, 38], automated
trust negotiation [19], and error correction [13]. However, there is little work on information leakage through
integrity verification and signature of data, especially trees.

Merkle [30] proposed a digital signature scheme based on a secure conventional encryption function over
a hierarchy (tree) of document fragments. Since then, this technique has been used widely, but always with
an authentication path of logarithmic size to verify even a single document fragment. It also leads to leakage
of information (discussed in Section 4). Buldas and Laur [5] have also found that Merkle trees are binding
(integrity-preserving) but not hiding (confidentiality-preserving).

The use of commutative hash operations (one-way accumulators [17]) to compute the Merkle hash sig-
nature prevents leakage related to the ordering among the siblings. However it cannot prevent the leakage
of signatures of a node and the structural relationships with its descendants or ancestors. Moreover, one-
way accumulation is very expensive (due to modular exponentiation) in comparison to the one-way hash
operation.

The Merkle hash technique has been widely used in data authentication. Devanbu et al. used the
Merkle hash technique for authenticating XML data [10]. Bertino et al. [3] proposed a technique based
on the Merkle hash technique for selective dissemination of XML data in a third party distribution frame-
work . Kocher [23] proposed to use Merkle hash trees for distribution to third parties. Goodrich and
Tamassia [15] proposed authenticated dictionaries using skip lists and commutative hashing (one-way accu-
mulators). Goodrich et al. [18] proposed techniques to authenticate graphs with specific path queries and
geometric searching. Martel et al. [28] proposed a general model for authenticated data structures. For
secure multicast, Perrig uses static data ordering over symmetric encryption [32].

Chatvichienchai and Iwaihara [6] proposed mechanisms for secure updates, without leading to infor-
mation leakages. However such mechanism does not address the problem of information leakages during
verification of integrity of partial XML documents. Wang et al. [35] treat structure and content as first-class
protection units. However they focus on a sharing model, in which the receiver of the data has access to only
the content (nodes) and not to the structural relationship between them. The paper proposed a scheme for
securing structural information in XML databases: how to process queries on an encrypted XML database
such that individual element content and structural relations are kept confidential if the security constraint
specified requires so. In our case, we allow the receiver to have access to both nodes and the structural
relationships between them.

Traversal numbers have been used for querying and navigation of XML data by Zezula et al. [37].
However they do not address any security issues. They use the non-randomized version of traversal numbers,

23

which is unsuitable for security purposes. Traversal numbers have also been used for secure querying of data
[35]. However they have not been used to define signatures for trees and graphs. Wang et al. [35] have
used a notion similar to traversal numbers in defining the structural index in XML databases in order to
be able to locate encryption blocks as well as their unencrypted data nodes that satisfy user query. They
use real intervals [0, 1] for root and every child of the root is assigned a sub-interval such as [0.5, 0.6]. The
first entry in the interval can be assumed to be referring to the pre-order number and the second one to
the post-order number. However they do not derive such an interval from traversal numbers nor do they
use traversal numbers for signing trees. None of the previous approaches propose the use of randomized
traversal numbers for the signature of trees. As such, the previous approaches do not include security
analysis, performance evaluations nor detailed comparison with the Merkle hash technique and other secure
data publishing techniques derived from the Merkle hash technique.

This paper is an extension of [27]. The extensions are as follows. We describe in detail how to compute
randomized traversal numbers including the proof that randomized traversal numbers computed as addition
of two randoms is a random. A distribution scheme of trees based on aggregate signatures is also proposed.
Such a scheme requires sending only a constant (O(1)) number of integrity verifiers to a user in order to
verify the integrity of the node. We discuss how to handle updates such as insertion and deletion of nodes
and edges in our scheme. We extend the structural integrity assurance technique for integrity assurance of
weighted trees.

15 Conclusions and Future Work

In this paper, we proposed the notion of structural integrity verifiers for signing trees in order to assure
integrity and maintain confidentiality, thereby providing stronger security guarantees than those provided
by the Merkle hash trees and related techniques, which are widely used to assure data integrity. The notion
of structural integrity verifiers is based on the simple notion of tree traversals and the fact that a combination
of two tree traversals - post-order and pre-order can be used to uniquely reconstruct a tree (and any of its
subtree). We also showed that the performance of our approach is as good as that of the Merkle hash
technique both for the generation of integrity verifiers and integrity verification. Thus with the equivalent
cost, our technique supports stronger security guarantees than the Merkle hash technique. Moreover, our
approach reduces the amount of data that need to be sent from a distributor to a user, by at the same time
allowing the user to reconstruct the subtree from the nodes and to easily verify the integrity of the data.
Like Merkle hashes, structural integrity verifiers facilitate the precise detection of integrity violations, i.e.
the compromised nodes.

As future work, we plan to extend the structural integrity verifier scheme to pervasive devices so that the
integrity of a tree can be verified efficiently at the device-side with less energy consumption. Further, given
the growing need of graph-structured data, we plan to explore leakage-free integrity assurance schemes for
graphs.

Acknowledgement We thank Prof. Mikhail J. Atallah for his valuable comments on the paper. We thank
Prof. Samuel S. Wagstaff, Jr. for the discussions and his insights on the security of addition of randoms. We
thank the anonymous reviewers of this work for their valuable feedbacks. The authors have been partially
supported by AFOSR grant FA9550-07-1-0041 - Systematic Control and Management of Data Integrity,
Quality and Provenance for Command and Control Applications.

References

[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order preserving encryption
for numeric data. In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international conference
on Management of data, pages 563–574, New York, NY, USA, 2004. ACM.

[2] M.J. Atallah, YounSun Cho, and A. Kundu. Efficient data authentication in an environment of untrusted
third-party distributors. ICDE’08, Proceedings of the IEEE 24th International Conference on Data
Engineering, pages 696–704, April 2008.

24

[3] E. Bertino, B. Carminati, E. Ferrari, B. Thuraisingham, and A. Gupta. Selective and authentic third-
party distribution of XML documents. IEEE TKDE, 16(10):1263–1278, 2004.

[4] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably encrypted signatures from
bilinear maps. In Proceedings of Advances is Cryptology – Eurocrypt’03, LNCS. Springer-Verlag, 2003.

[5] A. Buldas and S. Laur. Knowledge-binding commitments with applications in time-stamping. In Public
Key Cryptography, pages 150–165, 2007.

[6] S. Chatvichienchai and M. Iwaihara. Detecting information leakage in updating XML documents of
fine-grained access control. In Database and Expert Systems Applications, 2006.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
2001.

[8] Ivan Damg̊ard. A design principle for hash functions. In CRYPTO ’89: Proceedings of the 9th Annual
International Cryptology Conference on Advances in Cryptology, pages 416–427, London, UK, 1990.
Springer-Verlag.

[9] S. K. Das, K. B. Min, and R. H. Halverson. Efficient parallel algorithms for tree-related problems
using the parentheses matching strategy. In Proceedings of the 8th International Symposium on Parallel
Processing, pages 362–367, Washington, DC, USA, 1994. IEEE Computer Society.

[10] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine. Flexible authentication
of XML documents. In CCS ’01, pages 136–145, New York, NY, USA, 2001. ACM.

[11] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publication over the internet.
Journal of Computer Security, 11:2003, 2003.

[12] P. Devanbu, M. Gertz, Ch. U. Martel, and S. G. Stubblebine. Authentic third-party data publication. In
Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual Working Conference on Database Security,
pages 101–112, Deventer, The Netherlands, The Netherlands, 2001. Kluwer, B.V.

[13] Y. Dodis and A. Smith. Correcting errors without leaking partial information. In STOC ’05, pages
654–663, New York, NY, USA, 2005. ACM.

[14] S. K. Goel, C. Clifton, and A. Rosenthal. Derived access control specification for XML. In XMLSEC
’03: Proceedings of the 2003 ACM workshop on XML security, pages 1–14, New York, NY, USA, 2003.
ACM Press.

[15] M. Goodrich and R. Tamassia. Efficient authenticated dictionaries with skip lists and commutative
hashing, 2000.

[16] M. T. Goodrich, M. J. Atallah, and R. Tamassia. Indexing information for data forensics. In ACNS,
pages 206–221, 2005.

[17] M. T. Goodrich, R. Tamassia, and J. Hasic. An efficient dynamic and distributed cryptographic accu-
mulator. In ISC ’02: Proceedings of the 5th International Conference on Information Security, pages
372–388, London, UK, 2002. Springer-Verlag.

[18] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen. Authenticated data structures for graph
and geometric searching. In Lecture Notes in Computer Science, pages 295–313, Berlin / Heidelberg,
2003. Springer.

[19] K. Irwin and T. Yu. Preventing attribute information leakage in automated trust negotiation. In CCS
’05, pages 36–45, New York, NY, USA, 2005. ACM.

[20] V. Kamakoti and C. Pandu Rangan. An optimal algorithm for reconstructing a binary tree. Inf. Process.
Lett., 42(2):113–115, 1992.

25

[21] J. Katz and Y. Lindell. Introduction to Modern Cryptography: Principles and Protocols. Chapman &
Hall/CRC, 1 edition, 2007.

[22] D. E. Knuth. The Art of Computer Programming, volume 1. Pearson Education Asia, third edition,
2002.

[23] P. C. Kocher. On certificate revocation and validation. In FC ’98: Proceedings of the Second Interna-
tional Conference on Financial Cryptography, pages 172–177, London, UK, 1998. Springer-Verlag.

[24] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. Stoica. A data-
oriented (and beyond) network architecture. In SIGCOMM ’07: Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for computer communications, pages 181–192,
New York, NY, USA, 2007. ACM.

[25] A. Kundu and E. Bertino. Secure dissemination of XML content using structure-based routing. In EDOC
’06: Proceedings of the 10th IEEE International Enterprise Distributed Object Computing Conference
(EDOC’06), pages 153–164, Washington, DC, USA, 2006. IEEE Computer Society.

[26] A. Kundu and E. Bertino. A new model for secure dissemination of xml content. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 38(3):292–301, May 2008.

[27] A. Kundu and E. Bertino. Structural signatures for tree data structures. Proc. VLDB Endow., 1(1):138–
150, 2008.

[28] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures. Algorithmica, 39(1):21–41, 2004.

[29] R. Merkle. Secrecy, Authentication, and Public Key Systems. Ph.D. Dissertation, 1979.

[30] R. C. Merkle. A certified digital signature. In CRYPTO ’89, pages 218–238, New York, NY, USA, 1989.
Springer-Verlag New York, Inc.

[31] Matthew Morgenstern. Security and inference in multilevel database and knowledge-base systems. In
SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD international conference on Management of
data, pages 357–373, New York, NY, USA, 1987. ACM.

[32] A. Perrig. The BiBa one-time signature and broadcast authentication protocol. In CCS ’01, pages
28–37, New York, NY, USA, 2001. ACM.

[33] V. Rastogi, D. Suciu, and S. Hong. The boundary between privacy and utility in data publishing. In
VLDB ’07: Proceedings of the 33rd international conference on Very large data bases, pages 531–542.
VLDB Endowment, 2007.

[34] D. R. Stinson. Cryptography: Theory and Practice. CRC Press, third edition, 2005.

[35] H. Wang and L. V. S. Lakshmanan. Efficient secure query evaluation over encrypted XML databases.
In VLDB’06: Proceedings of the 32nd international conference on Very large data bases, pages 127–138.
VLDB Endowment, 2006.

[36] R. C. Wong, A. W. Fu, K. Wang, and J. Pei. Minimality attack in privacy preserving data publishing.
In VLDB ’07: Proceedings of the 33rd international conference on Very large data bases, pages 543–554.
VLDB Endowment, 2007.

[37] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree signatures for XML querying and navigation. In
Database and XML Technologies, pages 149–163, 2003.

[38] N. Zhang and W. Zhao. Distributed privacy preserving information sharing. In VLDB ’05: Proceedings
of the 31st international conference on Very large data bases, pages 889–900. VLDB Endowment, 2005.

26

A Proof of Lemma 6.4

Proof. Let a and b be two n-bit cryptographically secure random numbers i.e. any bit in either of these
numbers is 1 (or 0) with a probability of 1

2 . Let d be the result of the binary addition a + b, and cn+1 be
the final carry of this addition. di denotes the addition of i-th bits of a and b with carry-in ci, which is the
carry-out of the addition of of ai−1, bi−1 and ci−1 for i > 0. c0 is 0.

We prove the lemma by claiming the following:

1. Bit-wise Exclusive-OR (XOR denoted by ⊕) of a random bit with another bit results in a random bit
(Shannon’s Theorem on perfect secrecy and Vernam cipher [21, 34]).

2. An addition of two binary numbers involves two XOR’s: one is XOR of ai and bi (i-th bit); the other
is is XOR of the result of the first XOR with the carry ci from the addition of the (i− 1)th bits.

3. The probability that the result of the XOR’s di is 1 (or 0) is 1
2 , which implies that di is secure - it does

not leak any information [21]; and the final carry of the binary addition a+ b is 1 or 0 with a uniform
probability 1

2 . The probability that the carry is 1 is 2n−1
2n+1 (= 1

2−ε(n)), which is same as 1
2 because

ε(n)= 1
2n+1 is a negligible probability for a large n, which is the number of bits in a cryptographically

secure random number.

(1) is straightforward.

(2) is proved as follows. Binary addition5 of a and b: The addition of the i-th bits ai and bi are carried out
as follows. ci+1 is the carry-out from the addition of ai and bi.

di = (ai ⊕ bi)⊕ ci

ci+1 = ((ai ⊕ bi) ∧ ci) ∨ (ai ∧ bi)

.
Claim (3) is proved by induction.

Basis i = 0: The carry-in c0 for the addition of least-significant bits (0-th) a0 and b0 is 0 (as there is
no carry-forward). The probability that the sum d0 = 1 is 1

2 , because for d0 to be equal to 1, (a0, b0) should
be (1,0) or (0,1), which has a probability |{(0,1),(1,0)}|

|{(0,0),(0,1),(1,0),(1,1)}| = 1
2 . Consequently the probability that d0 =

0 is also 1
2 .

Carry c1 is is equal to 1, only when a0 = b0 = 1; therefore the probability of c1 = 1 is 1
4 .

i = 1: The probability that d1 = 1 is 1
2 .

• d1 = 1 when c1 = 0, if a1 ⊕ b1 = 0, that is, both a1 and b1 are either 1 or 0; The probability that
a1 ⊕ b1 = 0 is 1

2 (= |{(1,1),(0,0)}|
|{(0,0),(0,1),(1,0),(1,1)}|). Thus the probability that d1 = 1 when carry c1 = 1 is (the

probability that c1 is 1) times (the probability that both a1 and b1 are either 1 or 0) = 1
4 * 1

2 = 1
8 .

• d1 = 1 when c1 = 0, if a1 ⊕ b1 = 1, which has a probability of 1
2 . Thus the probability of d1 = 1 when

c1 = 0 is 3
4* 1

2 = 3
8 , since the probability that c1 = 0 is 3

4 (=1− 1
4).

Thus the probability that d1 = 1 (irrespective the value of carry in c1) is 1
8 + 3

8 = 1
2 . The probability that

d1 = 0 is 1
2 .

The probability that c2 = 1: c2 = 1 if at least two of a1, b1 and c1 are 1’s. That is if either: (a) c1 = 1
and at least one of a1 and b1 is 1: 1

4 * 3
4 = 3

16 ; or (b) c1 = 0 and both a1 and b1 are equal to 1: 3
4* 1

4 = 3
16 .

Thus the probability that c2 = 1 is 3
16 + 3

16 = 3
8= 22−1

22+1 .

5For a detailed discussion on the full adder of binary system, we refer the reader to http://en.wikipedia.org/wiki/Half adder
and the figure of full adder at http://en.wikipedia.org/wiki/File:Full-adder.svg.

27

Inductive Hypothesis: Suppose that the probability that di = 1 is 1
2 and the probability that ci+1 = 1

is 2i+1−1
2i+2 . We have to prove that the probability that di+1 = 1 is 1

2 and the probability that ci+2 = 1 is
2i+2−1
2i+3 .

1. di+1 = 1 if

• ci+1 = 1 and ai+1⊕ bi+1 = 0, that is ai+1 and bi+1 both are either 1 or 0, which has a probability
of 1

2 . Thus the probability of ci+1 = 1 and ai+1 ⊕ bi+1 = 0 is 2i+1−1
2i+2 * 1

2 = 2i+1−1
2i+3 .

• ci+1 = 0 and ai+1⊕ bi+1 = 1, which has a probability of 1
2 . Thus the probability of ci+1 = 0 and

ai+1 ⊕ bi+1 = 1 is (1 - 2i+1−1
2i+2)* 1

2 = (1
2 −

2i+1−1
2i+3).

Thus the probability of di+1 = 1 is 2i+1−1
2i+3 + (1

2 −
2i+1−1
2i+3) = 1

2 .

2. ci+2 = 1 if

• ci+1 = 1 and at least one of ai+1 and bi+1 is 1: 2i+1−1
2i+2 * 3

4 .

• ci+1 = 0 and both ai+1 and bi+1 are 1’s: (1− 2i+1−1
2i+2) * 1

4 .

Thus the probability of ci+2 = 1 is
2i+1−1
2i+2 * 3

4 + (1− 2i+1−1
2i+2) * 1

4 = 3∗(2i+1−1)
4∗2i+2 − 2i+1−1

4∗2i+2 + 1
22 = 2i+1−1+2i+1

2i+3

= 2i+2−1
2i+3 .
Thus the lemma is proven.

28

