
CERIAS Tech Report 2009-12
Database Support for Uncertain Data

 by Sarvjeet Singh
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Sarvjeet Singh

Database Support for Uncertain Data

Doctor of Philosophy

Dr. Sunil Prabhakar Dr. Rahul Shah

Dr. Susanne Hambrusch

Dr. Jennifer Neville

Dr. Ahmen Elmagarmid

Dr. Sunil Prabhakar

Dr. Aditya Mathur 01-26-2009

Graduate School Form 20
(Revised 10/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Signature of Candidate

Date

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

Database Support for Uncertain Data

Doctor of Philosophy

01-26-2009

Sarvjeet Singh

DATABASE SUPPORT FOR UNCERTAIN DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Sarvjeet Singh

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2009

Purdue University

West Lafayette, Indiana

ii

Dedicated to my parents who offered me unconditional love and support throughout

the course of my Ph.D.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Sunil Prabhakar, without whom this thesis

would have been an exercise in futility. His kind words and constant support always

inspired me to achieve the very best of me.

I would also like to acknowledge and thank my wife, Niharika, who was always

by my side during the long nights before deadlines. She was always there to help me

with writing and technical figures. Her support was indispensable for my research

and this dissertation.

A special thanks goes to my parents and family who showed their constant support

throughout my Ph.D. and encouraged me in times when my resolve began to waiver.

I would also like to thank Dr. Rahul Shah and Dr. Susanne Hambrusch. The

hours of discussion with them helped me clear and absorb the technicalities of my

field. Finally, I would like to thank my colleagues Chris Mayfield, Sagar Mittal and

Reynold Cheng for their significant contribution through discussions, comments and

technical papers.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xi

1 Introduction . 1
1.1 Types of Uncertain data . 3
1.2 Correlations . 3
1.3 Query Semantics . 4
1.4 Goals . 5

2 Literature Review . 7
2.1 Models for Uncertain Data . 7
2.2 Probabilistic Queries . 8
2.3 Probabilistic Join Queries . 9
2.4 Indexing Uncertain Categorical Data 9
2.5 Query Selectivity Estimation . 10
2.6 Uncertainty Management Systems 10

3 Modeling Background . 12
3.1 Attribute Uncertainty Model . 12
3.2 Tuple Uncertainty Model . 14
3.3 Probabilistic Queries . 15
3.4 Chapter Summary . 16

4 Contributions . 17

5 Join Processing for Attribute Uncertainty 19
5.1 Introduction . 19
5.2 Comparing Uncertain Values . 24

5.2.1 Uncertainty Comparison Operators 24
5.2.2 Comparing Uncertainty with Certainty 28
5.2.3 Probabilistic Join Queries 28

5.3 Evaluating PTJQ with Interval Join 30
5.3.1 Item-Level Pruning . 30

5.4 Uncertainty-based Joins . 34
5.4.1 The Uncertainty Bounds . 35
5.4.2 Page-Level Equality Join . 38

v

Page
5.4.3 Page-Level Join for “Greater than” 43
5.4.4 Uncertainty-Enhanced Joins 45
5.4.5 Index-Level Join . 47

5.5 Experimental results . 48
5.5.1 Simulation Model . 48
5.5.2 Page-Level Pruning . 48
5.5.3 Index-Level Pruning . 49
5.5.4 Item-Level Pruning . 49
5.5.5 Selectivity . 51
5.5.6 Greater Than . 51

5.6 Chapter Summary . 51

6 Indexing Uncertain Categorical Data . 53
6.1 Introduction . 53
6.2 Data Model and Problem Definitions 54
6.3 Index Structures . 60

6.3.1 Probabilistic Inverted Index 60
6.3.2 Probabilistic Distribution R-Tree (PDR-Tree) 64
6.3.3 Compression Techniques . 67

6.4 Experimental Evaluation . 68
6.4.1 Results . 69

6.5 Chapter Summary . 74

7 Query Selectivity Estimation for Uncertain Data 76
7.1 Introduction . 76
7.2 Uncertainty Model . 78

7.2.1 Operators and Threshold Queries 78
7.2.2 Probabilistic Threshold Index 79

7.3 Selectivity Estimation . 81
7.3.1 Selectivity Estimation using PTI 81
7.3.2 Unbounded Range Queries 82
7.3.3 General Range Queries . 87
7.3.4 General Range Queries using Slabs 90

7.4 Nearest Neighbor Queries . 96
7.5 Experimental Evaluation . 98

7.5.1 Implementation . 98
7.5.2 Methodology . 98
7.5.3 Results . 101

7.6 Chapter Summary . 104

8 Unified Model for Probabilistic Attributes and Tuples 105
8.1 Introduction . 105

8.1.1 Possible Worlds Semantics 108
8.2 Model . 110

vi

Page

8.2.1 Uncertain Datatypes and Correlations 111
8.2.2 Partial PDFs . 113
8.2.3 History . 114

8.3 Probabilistic Operations . 115
8.3.1 Preliminaries . 116
8.3.2 Tuple Distribution . 119
8.3.3 Projections . 119
8.3.4 Selections . 120
8.3.5 Joins . 122
8.3.6 Operations on Probability Values 124

8.4 Chapter Summary . 125

9 Orion Implementation . 126
9.1 Orion 1.0 . 127

9.1.1 System Architecture . 127
9.1.2 Supporting Uncertain Data 128
9.1.3 Probabilistic Queries . 129

9.2 Orion 2.0 . 131
9.2.1 System Implementation . 132

9.3 Comparison with other Systems . 137
9.4 Experimental Evaluation of Orion 2.0 Model 138

9.4.1 Accuracy vs Sample Size . 140
9.4.2 Performance of Discretized PDFs 141
9.4.3 Overhead of Histories . 142

9.5 Chapter Summary . 143

10 Future Work . 144
10.1 Modeling and Approximations . 144
10.2 Nearest Neighbor Queries . 145
10.3 Query Optimization . 146
10.4 Data Mining and Information Retrieval 147
10.5 Privacy and Anonymity . 147
10.6 Reliability . 147

11 Conclusion . 149

LIST OF REFERENCES . 151

VITA . 156

vii

LIST OF TABLES

Table Page

5.1 Pruning Methods for Uncertainty Joins. 52

6.1 Example Uncertain Relation: CRM Application. 55

6.2 Example Uncertain Relation: Personnel Planning Database. 56

7.1 Notations. 84

7.2 Summary of Control Variables. 99

8.1 Example: Sensor Database. 107

8.2 Example of Probabilistic Table. 110

8.3 Possible Worlds. 110

8.4 Example: Missing Attributes Values vs Missing Tuples. 113

9.1 Comparison of Orion 2.0 with other Uncertainty Management Systems. 139

viii

LIST OF FIGURES

Figure Page

3.1 Example of a continuous (a) and discrete (b) uncertain attribute. The
top graphs show the probability distribution function for the two example
distributions. The bottom graphs shows the cummlulative distribution
function for the two uncertain values. 13

5.1 Illustrating join over uncertain data. 21

5.2 Illustrating Comparison Operations for uncertain values a and b. 26

5.3 Evaluating a PTJQ with an interval join. 31

5.4 0-bound, 0.1-bound and 0.3-bound. A range query [l, u] with p = 0.4 is
also shown. 36

5.5 Implementing x-bounds in a page. 37

5.6 Algorithms for deciding whether a page B can be pruned for a range query.
(a) CheckLeft uses left-x-bounds for pruning. (b) CheckRight uses right-
x-bounds for pruning. 39

5.7 Page Level Join for Equality. 40

5.8 Illustrating the correctness of EquiJoin. 42

5.9 Page Level Join for Ri > Sj. 45

5.10 Pruning pages for >, using (a) right-x-bounds of BR, and (b) left-x-bounds
of BS. 46

5.11 BNLJ and U-BNLJ. 49

5.12 INLJ and U-INLJ. 49

5.13 Nprob vs p. 50

5.14 Nprob vs c. 50

5.15 No. of results vs c. 50

5.16 Selectivity on U-INLJ. 50

5.17 INLJ and U-INLJ (for >). 51

6.1 Probabilistic Inverted Index. 61

ix

Figure Page

6.2 Highest-prob-first Search for q = 〈(d3, 0.4), (d8, 0.2), (d6, 0.1)〉. 62

6.3 Probabilistic Distribution R-tree. 65

6.4 L1 vs L2 vs KL (PDR-tree). 69

6.5 Inverted Index vs PDR-tree (synth). 71

6.6 Inverted Index vs PDR-tree (CRM1). 71

6.7 Inverted Index vs PDR-tree (CRM2). 72

6.8 Scalability with Size of Data. 73

6.9 Scalability with Domain Size. 74

6.10 Top-down vs Bottom-up Approach. 75

7.1 Structure of Probabilistic Threshold Index. 80

7.2 Example plot for query Q(x0, τ). 83

7.3 Plot showing the case when an item’s cdf crosses more than one histogram
bar in a vertical window due to its large slope. 85

7.4 Algorithm for generating the histogram for unbounded range queries. . 87

7.5 Algorithm for estimating query selectivity for unbounded range queries. 88

7.6 Algorithm for generating the histogram for general range queries. . . . 91

7.7 Algorithm for estimating query selectivity for general range queries. . . 92

7.8 Algorithm for generating slabs. 94

7.9 Algorithm for estimating query selectivity using slabs. 96

7.10 Selectivities (2D). 101

7.11 Selectivities (3D). 101

7.12 Cardinalities (2D). 101

7.13 Cardinalities (3D). 101

7.14 Thresholds (2D). 101

7.15 Thresholds (3D). 101

7.16 Precision (2D). 103

7.17 Precision (3D). 103

8.1 Possible Worlds Semantics. 109

x

Figure Page

8.2 Example of product operation. 118

8.3 Example illustrating histories. 123

9.1 Architecture of Orion 1.0. 127

9.2 Architecture of Orion 2.0. 133

9.3 Accuracy vs Sample Size. 141

9.4 Performance of Discretized PDFs. 142

9.5 Overhead of Histories. 143

xi

ABSTRACT

Singh, Sarvjeet Ph.D., Purdue University, May 2009. Database Support for Uncertain
Data. Major Professor: Sunil Prabhakar.

In recent years, the field of uncertainty management in databases has received

considerable interest due to the presence of numerous applications that handle prob-

abilistic data. In this dissertation, we identify and solve important issues for man-

aging uncertain data natively at the database level. We propose the semantics of

join operation in the presence of attribute uncertainty and present various pruning

techniques to significantly improve the join performance. Two index structures for in-

dexing categorical uncertain data are also presented. For optimization of probabilistic

queries, we discuss novel selectivity estimation techniques. We also introduce a new

model for handling arbitrary pdf (both discrete and continuous) attributes natively

at the database level. This model is consistent with Possible Worlds Semantics and

is closed under the fundamental relation operations of selection, projection and join.

We also present and discuss the implementation of Orion – a relational database with

native support for uncertain data. Orion is developed as an extension of the open

source relational database, PostgreSQL. The experiments performed in Orion show

the effectiveness and efficiency of our approach.

1

1 INTRODUCTION

Traditionally, databases have required data to be modeled in terms of precise

values. However there are many applications where uncertainty, or imprecision in

values is inherent or desirable [1–3].

Consider, for example, scientific applications that record measurements taken from

sensors or other devices. These measurements are usually inexact, with known de-

grees of errors. Sometimes, errors are also introduced in order to achieve scalability.

Consider the case of sensor databases. It is infeasible (due to resource constraints such

as batteries and bandwidth) to continuously monitor every single change in value for

every sensor. One solution to this problem, while limiting the degree of error, is

to allow each sensor to not send updates unless the value has changed significantly,

or a specified amount of time has elapsed. In this model, called the dead-reckoning

approach [4], the value of the sensor is correctly modeled as a range around the last re-

ported value. As another example, in a Location-based service application, users may

wish to provide approximate, imprecise locations in order to preserve their privacy.

Data cleansing applications often result in uncertainty in the “cleaned” value of

an attribute. Many cleansing tools provide alternative corrections with associated

likelihood. For example, as part of an ongoing project at Purdue University, the

movement of nurses is being tracked in order to study their behavior and effectiveness

of current practices [5]. Nurses carry RFID tags as they move about a hospital.

Numerous readers located around the building report the presence of tags in their

vicinity. The collected data is stored centrally in the form “Nurse 10 in Room 5 at

10:05 am.” Each nurse carries multiple tags. The variability in the detection range

of readers and the presence of interfering objects makes it impossible to position

nurses accurately. Often, numerous readers detect the same tag, or a tag is detected

repeatedly between two readers (e.g. between room5 and the hallway – is the nurse

2

in room5 during these times, and just that the hallway sensor is detecting her tag,

or is she actually going in and out?). Sometimes the consecutive reports are that

a nurse moves from one room to another, with no intermediate report even though

all possible routes between these rooms must go through the range of other readers.

Thus the application may not be able to identify with certainty a single location for

the nurse at all times. A similar application is discussed in [6]. Relational database

systems, however, do not allow the modeling or storage of these kinds of uncertain

data directly.

In the context of automatic data integration, deep web data in the form of dynamic

HTML pages can be used to generate relational data [7]. This is a challenging problem

and often the mapping from data in the web page to an attribute in the corresponding

tuple is unclear. For example, it may be known that a web page contains prices for

data items, and another web page contains a set of numeric values. It is challenging

for a program to accurately determine which value maps to the price for a given

item. Instead, existing algorithms generate multiple candidates for the value of an

attribute, each with a likelihood or probability of being the correct value. Again, due

to the lack of support for storing such uncertainty, current applications have to build

their own complex models for managing the uncertainty, or just choose the most likely

value. Similar issues arise in the domain of integrating unstructured text information

with structured databases, such as automatic annotation of customer relationship

management (CRM) databases [8], and email search databases. A typical example

for text annotation is to determine the topic or product that a particular customer

complaint is about. Support for uncertain attribute values would enable the system

to retain the uncertainty and thereby produce more reliable answers to queries.

Since conventional database systems have limited support for uncertain data, ap-

plications that need uncertain data support are either forced to model uncertain data

themselves or simply pick one of the alternative values to store in the underlying

database. This leads to a no-win situation: The first option unnecessarily shifts the

3

burden of handling uncertainty to the application and significantly complicates the

queries, while the second technique results in a substantial loss of information.

1.1 Types of Uncertain data

The uncertain data in most applications falls in two major categories: Discrete

and Continuous uncertainty.

In case of continuous uncertain data, the uncertainty is specified by a continuous

range of values. Applications where continuous uncertain data is natural include

sensors, location-based services, spatio-temporal databases, flight tracking, health-

care monitoring and financial analysis. In many of these applications, either an

interval (with the assumption of uniform distribution) or a probability density function

(pdf) is specified. For example, GPS devices that give location information are known

to have a Gaussian distribution of error around the reported value. Similarly, micro-

array data in biological experiments are known to have a Lorentzian distribution

of error. The continuous uncertain data is represented and stored in terms of the

corresponding distribution’s parameters. The Attribute uncertainty model described

in Chapter 3 discusses a model which can represent continuous uncertain data. Thus,

in case of continuous uncertain data, there exist infinite number of possible values for

a given attribute.

On the other hand, in case of discrete uncertain data, we have a fixed number

of possible values for an attribute. Example of application domains where discrete

uncertain data is common are text annotation and information retrieval. In these

domains, the uncertain data is expressed as pairs of possible values along with their

probabilities.

1.2 Correlations

A major challenge in handling of uncertain data is the correlations between values.

The correlations add a great deal of complexity in query processing and storage of

4

uncertain data. In some cases, the correlations are present in the input data. For

example, it is observed that the voltage in sensors and the measured temperature are

correlated [2]. Similarly, in case of a location-based service, the uncertainty in the

longitude and latitude will be dependent or correlated. In these applications, ignoring

the input correlations will lead to a substantial loss of information. Even when

the input data is independent, after query execution, the resulting tables may have

correlations. If the correlations are not properly tracked, the results of subsequent

queries over these correlated uncertain data will be incorrect.

There are two major types of correlations that are present in uncertain data.

These are intra-tuple and inter-tuple correlations. As the name suggests, intra-tuple

correlations refers to the correlations between two attributes of the same tuple. In the

location example, the attribute latitude and longitude will be correlated. On the other

hand, inter-tuple correlations are correlations across tuples. As an example, consider

a table whose primary key is uncertain. Assume that particular value k0 occurs in

the primary key attribute of multiple tuples. All these tuples will be correlated, as

presence of k0 in any tuple will imply the absence of k0 in all other tuples.

1.3 Query Semantics

Query semantics for precise data are well defined. The operations of selection,

projection and joins are widely used for querying traditional databases. Unfortu-

nately, the semantics of these operations are not clear for uncertain data. Consider,

for example, a selection query σx>5(T) over a precise database table T . This query

will return all the tuples in which the attribute x is greater than 5. If the attribute x

is uncertain, this selection condition can be partially true for many tuples. For each

tuple, instead of a precise true or false answer, now we will have a real value giving

the probability that the tuple passes the selection condition.

Given this problem, alternative semantics for uncertain data have been proposed.

Chapter 3 discusses a query semantics where a probabilistic threshold is used to

5

convert a real probability value into a boolean. In Chapter 8, we discuss the Possible

Worlds Semantics that is used to define probabilistic operations over uncertain data.

1.4 Goals

There are numerous applications that will immediately benefit from advancements

in probabilistic data management. Given the need for managing uncertain data, it

is important to develop probabilistic models that can express and manage uncertain

data at the database level. One of the contributions of this dissertation is the devel-

opment of uncertainty management model that is expressive enough to handle the

different types of uncertain data presented in Section 1.1. A challenge in developing

such a model is the issue of correlations discussed in Section 1.2. Implementation

of probabilistic models in the database will greatly simplify the existing applications

by abstracting away the complexities of uncertain data management. Introducing

uncertainty into databases brings about many challenges including issues of query

semantics, evaluation, and efficiency. A major focus of this dissertation is efficient ex-

ecution of queries with the help of database techniques such as indexing. Research and

development of a database system that supports uncertain data will advance scientific

understanding and enable future work in a variety of fields. But whether emerging

applications use databases simply as an information storage technology rather than

an effective data management solution depends on to what extent they can reason

about and make use of the uncertainty of data directly.

The rest of the thesis is organized as follows. Chapter 2 presents the related work

done in this area. The remainder of the thesis is composed of two parts. The first

part deals with efficient execution of queries over uncertain data under the attribute

uncertainty model discussed in Chapter 3. Chapter 4 summarizes the important con-

tributions of our work. Chapter 5 develops algorithms for join queries. Chapter 6

presents two indexing structures for categorical uncertain data. Query selectivity

estimation for uncertain data is discussed in Chapter 7. In the second part of the

6

thesis, we present a new unified model for uncertain data (Chapter 8) and its imple-

mentation and related issues (Chapter 9). Future work is presented in Chapter 10

and Chapter 11 concludes this thesis.

7

2 LITERATURE REVIEW

In this chapter, we review the related work done in the field of uncertainty manage-

ment in databases. The work done in the field of modeling and querying of uncertain

data is summarized. Related work done in the area of traditional (precise) data

management systems is also presented.

2.1 Models for Uncertain Data

There has been a great deal of work on the development of models for representing

uncertainty in databases [9]. Two main approaches for modeling uncertain data have

emerged in this field: tuple uncertainty [1, 10] and attribute uncertainty [11]. In tu-

ple uncertainty model, a probability value is attached to each tuple which represents

the probability of that tuple being present in the database. In attribute uncertainty

model, uncertainty is associated with individual attributes, as opposed to the com-

plete tuple.

Barbará et al. [12] and Dey et al. [13] proposed one of the first probabilistic mod-

els. Building on their work, many robust models for managing tuple uncertainty

have been proposed recently. A significant challenge when modeling uncertain data is

tracking arbitrary correlations both within and between tuples. These dependencies

are not only present in real-world data, they are more commonly introduced by ap-

plying operations to independent base data. Benjelloun et al. have proposed a novel

technique that combines uncertainty with data lineage to solve this problem [10]. The

ProbView system [14] took a similar approach by propagating the formulae necessary

for evaluating the resulting probabilities. Sen et al. have more recently proposed

an alternative approach to represent tuple correlations using probabilistic graphical

8

models [15]. They use factored representations of the relations to represent their

dependencies. Antova et al. developed a compact representation called world-set

decompositions which captures the correlations in the database by representing the

finite sets of worlds [16]. Dalvi et al. introduced safe plans [1, 17] in an attempt to

avoid probabilistic dependencies in queries.

Many of the currently active research efforts in uncertain data management fa-

vor tuple uncertainty models. This is partly because their simplicity more closely

resembles the standard relational model. Because each attribute is a single value,

relations in tuple uncertainty models also abide the first normal form (1NF). This

greatly reduces the complexity of defining query operations over such models. Indeed,

one problem with modeling uncertain data is burdening the user with its underlying

complexity [18, 19].

Most of the work in this dissertation is based on the attribute uncertainty model

proposed in [11]. This model is further discussed in Chapter 3. Similar probabilis-

tic models were also proposed in moving-object environments [4, 20] and in sensor

networks [2]. Discussion of uncertainty in other data types can be found in [21].

Probabilistic databases have also been recently extended to semi-structured data [22]

and XML [23].

An important area of uncertain reasoning and modeling deals with fuzzy sets

[24, 25]. Fuzzy databases is a well studied area and a lot of work has been done

on query evaluation and indexing [26–29]. In this dissertation, we do not assume

a fuzzy model for the data. Instead, the focus is on probabilistic modeling of data

uncertainty. Due to the underlying difference in the nature of the uncertainty in the

probabilistic model, the existing work on fuzzy databases is not applicable.

2.2 Probabilistic Queries

Probabilistic queries are classified as value-based (return a single-value) and entity-

based (return a set of objects) in [11]. Evaluation of probabilistic range queries

9

is discussed in [1, 4, 11, 20]. Nearest-neighbor queries are discussed in [11]. In [1,

11], aggregate value-queries evaluation algorithms are presented. An index called

Probabilistic Threshold Index was proposed in [30] that can be used to efficiently

execute some classes of probabilistic queries. Ljosa et al [31] discussed k-nearest

neighbor queries for uncertain data. Apart from this work, there has been other work

by [32, 33] on indexing pdfs.

2.3 Probabilistic Join Queries

Chapter 5 discusses the probabilistic join queries over uncertain data. These

queries are not addressed before in the context of attribute uncertainty. Although, [30]

did examine the issues of query efficiency, the discussion was limited to range queries.

There is a rich vein of work on interval joins, which are usually used to han-

dle temporal and one-dimensional spatial data. Different efficient algorithms have

been proposed, such as nested-loop join [34], sort-merge join [34,35], partition-based

join [36], and index-based join [37]. Recently the idea of implementing interval join

on top of a relational database is proposed in [38]. All these algorithms are devel-

oped for precise data and thus do not utilize any probabilistic information during the

pruning process, and thus potentially retrieve many false candidates. Hence, they are

not useful for join processing over uncertain data.

2.4 Indexing Uncertain Categorical Data

Indexing techniques for categorical uncertain data are discussed in Chapter 6.

Most of the earlier work [30] is only applicable for continuous numeric domains.

Burdick et al. consider the problem of OLAP over uncertain data [8]. They model

the uncertainty from text annotators as tuple uncertainty and support aggregation

queries over this data. Our model differs from theirs in the sense that they limit the

classification of the text to one class at a time, whereas we capture multiple classes.

Hence we represent the uncertainty as attribute uncertainty whereas they model it

10

using tuple uncertainty. In their work, the value of interest within the domain is

predetermined, while we make no assumptions about the value of interest.

Indexing for set valued attributes has been extensively considered in the literature.

Faloutsos developed the notion of signature files to index sets [39]. Indexing set-valued

attributes in databases has been considered by Mamoulis [40]. Mamoulis et al. also

applied indexing for computing join queries over set-valued indexes [41]. The indexing

problem presented in Chapter 6 is a generalization of the set model where we have

probability values in addition to the sets, and is the first work to address the problem

of indexing uncertain categorical data.

2.5 Query Selectivity Estimation

Databases rely on automatic optimization of queries. One of the key ingredients

for optimization is estimation query result set size (selectivity estimation). There

is a rich body of work on selectivity estimation for traditional relational database

management systems. Most approaches for selectivity estimation on precise data

use histograms. Poosala et al [42] proposed a taxonomy to capture all previously

proposed histogram approaches. These approaches are not applicable for uncertain

data because both the queries and the underlying data types for uncertain data differ

greatly from traditional data and queries. Chapter 7 presents our techniques for query

selectivity estimation over uncertain data.

2.6 Uncertainty Management Systems

Several systems that handle uncertainty in data have been recently proposed.

Trio [3] is uncertainty management system based on tuple uncertainty model. In

Trio, uncertainty of the data and data lineage are first-class citizens. Trio is based

on an extended relational model called ULDBs, and it supports a SQL-based query

language called TriQL.

11

MayBMS [43] is a probabilistic database management system developed as an ex-

tension of the PostgreSQL [44]. Although MayBMS can handle attribute uncertainty

and correlations between attributes, it is limited to discrete uncertain data. Other

systems for managing discrete uncertain data include MystiQ [17] and [15].

We have developed Orion [45], which is a state-of-the-art uncertain database man-

agement system with built-in support for probabilistic data as first class data types.

Orion supports both attribute and tuple uncertainty and can handle both discrete

and continuous uncertain data. Chapter 9 further discusses the implementation of

Orion.

In the next chapter, we present the uncertainty model that is assumed in the first

part of the dissertation.

12

3 MODELING BACKGROUND

This chapter describes the two major models for managing uncertain data: at-

tribute and tuple uncertainty models. The first part of this thesis is based on the

attribute uncertainty model proposed in [11]. In the second part of this thesis, we

present our new model (Chapter 8), which is the extension of the basic attribute

uncertainty model presented in this chapter to include Possible World Semantics.

3.1 Attribute Uncertainty Model

To model the uncertainty present in a data item, a data scheme known as the

Attribute uncertainty model was proposed in [11]. This model assumes that individual

attributes, as opposed to complete tuples, are uncertain.

The attribute uncertainty model assumes that each data item can be represented

by a range of possible values along with the distribution of values over this range.

Formally, assume that each tuple of interest consists of an uncertain attribute a.

If there are more than one uncertain attributes within the same tuple, they are

assumed to be independent of each other. The domain of the uncertain attribute can

be continuous (e.g. real-valued) or discrete (e.g. integer). as shown in Figure 3.1.

The probabilistic uncertainty of a consists of two components:

Definition 3.1.1 The uncertainty interval of an item a, denoted by Ua, is an interval

[la, ra] where la, ra ∈ ℜ, ra ≥ la and a ∈ Ua. The range of Ra of a is defined as

Ra = ra − la.

Definition 3.1.2 The uncertainty pdf of a, denoted by fa(x), is a probability dis-

tribution function (pdf) of a where fa(x) = 0 if x /∈ Ua. Additionally, we have

13

Continuous

Value

p
d
f

c
d
f

p
d
f

Value

Value

Value

Discrete

0.5

0.1

1.0

1.0

0.4

0.6

0.1

c
d
f

(a) (b)

Figure 3.1. Example of a continuous (a) and discrete (b) uncertain
attribute. The top graphs show the probability distribution function
for the two example distributions. The bottom graphs shows the
cummlulative distribution function for the two uncertain values.

∫ ra

la
fa(x)dx = 1 for continuous variable a and

∑

Ua
fa(x) = 1 in the case when a is

discrete.

Definition 3.1.3 In addition to the pdf fa(x), we can also define a cumulative dis-

tribution function (cdf) Fa(x), which is defined as Fa(x) =
∫ x

−∞
fa(x)dx.

Notice that Fa(x) = 0 if x < la and Fa(x) = 1 if x > ra. Note that, similar to the

continuous case, we can also define the pdf and cdf functions in case of a discrete

attribute by replacing the integral with a sum in the above definitions.

14

Figure 3.1(b) shows the pdf and cdf functions for an example discrete distribution.

The exact realization of this model is application-dependent. For example, in

modeling sensor measurement uncertainty, Ua is an error bound and fa(x) is a Gaus-

sian distribution. In modeling moving objects, Wolfson et al. [4] suggested a bounded

uncertainty model where each moving object only reports its location if its current

location deviates from its reported location by more than d, so that at any point of

time the uncertainty of the location value stored in the system has uncertainty of not

more than d.

The specification of uncertain pdf is also application-specific. For convenience, one

may assume that the uncertainty pdf f(x) is a uniform distribution i.e., f(x) = 1
ra−la

for a ∈ [la, ra]; essentially, this implies a “worst-case” scenario where we have no

knowledge of which point in the uncertainty interval possesses a higher probability.

In sensor networks, Deshpande et al. [2] assumed the reading of each sensor node

is a Gaussian distribution parameterized with a mean and variance value. They

also suggested that these Gaussian distributions can be constructed through machine

learning algorithms, such as [46]. Another example is a triangular distribution.

Note that although the uncertainty model described here is presented for one-

dimensional data, its concept can be extended to multiple dimensions.

3.2 Tuple Uncertainty Model

The tuple uncertainty model [1, 10, 14] assumes that the complete tuple is uncer-

tain. In a sense this model assumes that a joint probability distribution exists for

all the attributes in a tuple (and hence all attributes are correlated). A probability

value is attached to each tuple which represents the probability of that tuple being

present in the database. In addition, multiple tuples can be grouped together to form

an x-tuple [10]. The tuples present inside a x-tuple are called alternatives and they

represent mutually exclusive values for the tuple. In addition to x-tuples, a lineage is

also stored for each tuple.

15

For discrete domains, the tuple uncertainty model is more powerful than attribute

uncertainty model, as it can express correlations between uncertain attributes and

tuples. The major disadvantage is that tuple uncertainty model is unable to handle

continuous uncertain data. The model presented in Chapter 8 bridges the gap between

the two models and does not suffer from their limitations.

3.3 Probabilistic Queries

Once we define the data representation for uncertain data, we need to define the

query semantics over this data. The standard database operations, such as selections,

projections and joins are not directly applicable over uncertain data.

Consider a simple selection query with condition x > 1. If x is precise or certain,

this condition evaluates to a boolean and hence each tuple in the input relation is

either present in the output relation or not. On the other hand, if x is uncertain, this

condition can not be evaluated to a simple true or false. At best, we can evaluate

the probability that this condition holds i.e. Pr(x > 1). Because of this, it is not

possible to simply extend the usual definitions of selection, projection, join operations

for uncertain data.

To overcome this problem, in attribute uncertainty model, we define a probabilis-

tic threshold for each query. This threshold is used to transform the probabilistic

conditions to boolean conditions which can then be used for query processing. In the

above example, if the query threshold is 0.5, x > 1 is transformed into the boolean

condition Pr(x > 1) > 0.5. This boolean condition is evaluated for each tuple to de-

cide whether or not to include that tuple in the output relation. These queries are also

refered to as Probabilistic Threshold Queries. The query semantics for probabilistic

queries in the tuple uncertainty model are discussed in [10].

16

3.4 Chapter Summary

In this chapter, we introduced the two major models for uncertain data. The first

part of this dissertation is based on the attribute uncertainty model, but in most

cases, the techniques for attribute uncertainty model can also be extended to tuple

uncertainty model. In the next chapter, we summarize the major contributions of

this thesis.

17

4 CONTRIBUTIONS

As discussed in Chapter 3, there are two major models for managing uncertain

data: tuple and attribute uncertainty models. Most of the earlier work done on these

two models was disjoint and used different query semantics. The work presented

in this thesis can be considered as a bridge between attribute and tuple uncertainty

models. The model assumed in first part of this thesis is that of attribute uncertainty,

but the results are equally applicable to the tuple uncertainty model as well.

• The join operation in the tuple uncertainty model is straight forward and follows

from the basic relational model. However, for attribute uncertainty in general

and continuous data in particular, the semantics of join is not obvious. In Chap-

ter 5, we extend the semantics of the join processing for the attribute uncertainty

model by presenting the concept of probabilistic threshold join queries. We dis-

cuss how performance of probabilistic threshold join queries can be improved

considerably by using various pruning techniques.

• Previous work on indexing for uncertain data was focused solely on continuous

(numeric) uncertain data. In Chapter 6, we propose two index structures for

categorical (discrete) uncertain data. The techniques discussed are applicable

to both attribute and tuple uncertainty models.

• We discuss efficient techniques for selectivity estimation (an important ingre-

dient for query optimization) of probabilistic threshold queries over uncertain

data in Chapter 7. We also show that our techniques are not only applicable to

selectivity estimation, but also to query processing, by showing how they can be

used for efficiently processing probabilistic k-nearest neighbor queries. Again,

18

the algorithms presented are applicable to both attribute and tuple uncertainty

models.

• A unified model that can handle both attribute and tuple uncertainty is pre-

sented in Chapter 8. This is the first model that can represent both continuous

and discrete uncertain data with arbitrary correlations natively at the database

level. This model is consistent and closed under the possible worlds semantics.

Most of the work presented in earlier chapters is applicable to this new model

with little or no changes.

• We present Orion, a general purpose uncertainty management system in Chap-

ter 9. Orion is implemented inside PostgreSQL and supports our new model

presented in Chapter 8. Orion has efficient access methods, improved query op-

timization and is integrated with PL/R for graphical visualization of uncertain

data.

In the next chapter, we discuss the semantics of join processing for the attribute

uncertainty model and various pruning techniques that can be used to significantly

improve the performance of threshold join queries.

19

5 JOIN PROCESSING FOR ATTRIBUTE UNCERTAINTY

In this chapter we address join queries over uncertain data. Earlier work on han-

dling joins is mainly done under the tuple uncertainty model (See Chapter 3). The

tuple uncertainty model cannot handle continuous uncertain data which is the focus

of this chapter. We propose semantics for the join operation, define probabilistic

operators over uncertain data, and propose join algorithms that provide efficient ex-

ecution of probabilistic joins. The chapter focuses on an important class of joins

termed probabilistic threshold joins that avoid some of the semantic complexities of

dealing with uncertain data. For this class of joins we develop three sets of optimiza-

tion techniques: item-level, page-level, and index-level pruning. These techniques

facilitate pruning with little space and time overhead, and are easily adapted to most

join algorithms. We verify the performance of these techniques experimentally.

5.1 Introduction

Incorporating uncertainty into databases brings about many challenges including

issues of query semantics, evaluation, and efficiency. The problem of the semantics of

query processing and efficient evaluation of queries for tuple uncertainty have been

discussed in earlier work [1]. There has also been some work on simple types of queries

(range and nearest-neighbors only) for databases with attribute uncertainty [11, 30].

There is, however, no prior work on more complex queries in the specific area of

uncertain attribute data.

There is ongoing research interest in systems that acquire information from the

external world. Sensor nets, for example, allow physical entities such as temperature,

pressure and voltage to be collected through large numbers of inexpensive sensors [2].

20

Location devices like cell phones and GPS-equipped devices also allow phone users’

and vehicles’ locations to be obtained easily. The massive amounts of information

collected about the physical world enables the development of novel applications that

base their decisions on these physical data.

Unfortunately, joining “natural data” from the sensing instruments is not straight-

forward, due to the uncertainty inherent with the data obtained in the external dy-

namic environment. In particular, while current technologies only allow data to be

acquired in a discrete manner, entities like temperature and location values are contin-

uously evolving. Since the information during the inter-arrival time of data samples is

not provided to the system, there is uncertainty between the database value and the

actual value. This problem can be aggravated by network issues, where data packets

can be delayed or even lost, especially in a wireless network [2, 11]. As a result, the

database values may have a large discrepancy compared with the actual values.

As a more concrete example, consider a scientific application where an equality

join query is issued over two sets of temperature values (obtained from two sensor

networks in separate geographical regions) to discover the pairs of sensors that report

the same temperature value. Figure 5.1(a) shows two tables, A and B, storing two

attributes (ID, T emp), which represent the temperature values Temp recorded by

sensors with names given by ID. Suppose we would like to perform an equality join

over the temperature attributes to determine which pairs of entities in A and B record

the same temperatures. Joining pairs are shown connected by a line in (a). This result

is incorrect if we consider the true values of the sensors given by Figure 5.1(b): since

the actual value for A1 is different from that of B1, A1 should not be paired with B1.

Instead, A1 matches B2, where both temperature values equal to 11oF . Thus there is

a false positive in the result – (A1, B1) is wrongly returned to the user. Figure 5.1(b)

also shows that A2 should be matched with B3. Consequently, (A1, B2) and (A2, B3)

are not returned to the user, resulting in two false negatives. As we can see, the join

result returned by the database is significantly different from the actual result. If this

21

result is further processed by the application, the error may propagate in the analysis

and invalid conclusions/decisions may be made.

(a) Database

 Values

Table A Table B Join Result

(A1, B1)

ID Temp

A1

A2

A3

10

6

5

ID Temp

B1

B2

B3

10

9

7

(b) Actual

 Values

(A1, B2);

(A2, B3)

ID Temp

A1

A2

A3

11

7

5

ID Temp

B1

B2

B3

9

11

7

(c) Uncertain

 Values

 (PJQ)

(A1, B1), 0.1;

(A1, B2), 0.7;

(A2, B3), 0.8;

(A3, B3), 0.2

ID Temp

A1

A2

A3

[9,13]

[5,9]

[4,6]

ID Temp

B1

B2

B3

[8.5,9.5]

[10,12]

[5.5,8.5]
0.8

0.7

0.1

0.2

(d) Uncertain

 Values

 (PTJQ,

p = 0.7)

(A1, B2);

(A2, B3)

ID Temp

A1

A2

A3

[9,13]

[5,9]

[4,6]

ID Temp

B1

B2

B3

[8.5,9.5]

[10,12]

[5.5,8.5]
0.8

0.7

Figure 5.1. Illustrating join over uncertain data.

To avoid incorrectness in query answers, the idea of using an uncertainty model

rather than a single numerical value to describe an item was proposed in [11]: each

item is associated with a range of possible values and a probability density function

(pdf) that describes the probability distribution of the value within the range. To

22

address the above uncertainty problem, an uncertainty interval can be a fixed bound

d, which is a result of negotiation between the database system and the sensor; if the

system does not receive any update from the sensor, it can assume that the sensor’s

current value must be between [v − d, v + d], where v is the value of the sensor last

reported to the server [4]. The pdf of the sensor value within the range may be

obtained through machine learning techniques [2]. By incorporating the notion of

uncertainty into data values, imprecise, rather than exact, answers are generated.

Each join-pair is associated with a probability to indicate the likelihood that the two

tuples are matched. We use the term Probabilistic Join Queries (PJQ) to describe

these types of joins over uncertain data.

Figure 5.1(c) illustrates the idea of PJQ. Each temperature attribute stores a

range that encloses the data value, together with a pdf that describes the distribution

(not shown here). Each tuple-pair is associated with a probability that indicates the

likelihood of the join. Notice that both (A1, B2) and (A2, B3) are now included in

the result. In this example, the false negative problem vanishes. Also, we have a 0.7

and 0.8 confidence for these pairs. On the other hand, the false positive, (A1, B1),

remains in the result, and a new false positive, (A3, B3), is introduced. However, both

false positives have a relatively low probability (0.1 and 0.2 respectively), suggesting

to the user that these two matches are less likely to occur.

How are these probability values computed? To answer this, we must understand

the semantics of join operators for uncertainty. The notions of equality and inequality

have to be extended to support uncertain data. We will address the new definitions

of comparison operators for the uncertain data model. Furthermore, we demonstrate

how it is possible to relax the requirements for comparison operators, in order to

allow more flexibility in specifying accuracy requirements of joins over uncertainty.

Another dimension of our study deals with the performance issues of joins over

uncertainty. We observe that although the answer probabilities are useful, it is not

always necessary to know their exact values. Often the user is only concerned about

whether the probability value exceeds a given threshold. If the probability that the

23

join pair meets the join condition exceeds the threshold, it is included in the result,

otherwise the pair is not included. This threshold can either be user-specified or a

system parameter.

We term this variant of probabilistic join queries, which only returns tuple pairs

when their probabilities exceed a certain threshold as Probabilistic Threshold Join

Queries (PTJQ). An example of PTJQ is shown in Figure 5.1(d), where we assume

the user is only interested in tuple pairs whose probabilities exceed threshold p = 0.7.

As a result, the two pairs with low probability values (0.1 and 0.01) are not included

in the answer. Compared with Figure 5.1(c), PTJQ returns fewer false negatives.

We focus on threshold joins and develop various techniques for the efficient (in

terms of I/O and CPU cost) algorithms for PTJQ. In particular, we develop three

pruning techniques: (1) item-level pruning, where two uncertain values are pruned

without evaluating the probability; (2) page-level pruning, where two pages are pruned

without probing into the data stored in each page; and (3) index-level pruning, where

all the data stored under a subtree is pruned. These techniques incur a small space

and time overhead, and can be augmented to existing join algorithms easily.

This can be achieved by employing an indexed nested loop join algorithm which

requires an index over uncertain data. Previously, Cheng et al. [30] proposed “un-

certainty indexes” designed for answering probabilistic range queries. The indexes

built on the uncertain attribute values are non-traditional and were designed for an-

swering probabilistic range queries. We illustrate how uncertainty indexes can be

used to support various uncertainty join operators. We consider two scenarios: (1)

an uncertainty index is available only on one relation, and (2) uncertainty indexes

are available on both relations. We analyze the cost of indexed nested loop join for

PTJQ. Extensive experiments are conducted to evaluate the effectiveness of using

uncertainty indexes over traditional indexes for supporting joins.

The contributions of this chapter are:

• We extend the semantics of join operators over exact, single-valued data to

uncertain data.

24

• We present the concept of probabilistic join queries (PJQ) and illustrate how

they can be evaluated.

• We illustrate how probabilistic threshold join queries (PTJQ), a variant of PJQ

that constrains on the answers based on their probability values, can improve

the join performance significantly based on various pruning techniques.

• Finally, we present experiments validating the efficiency of our approach.

In Section 5.2, we define the notion of join operators over uncertainty. Section 5.3

presents item-level pruning techniques for each join operator. In Section 5.4, we

study how the performance of join can be further improved through page-level and

index-level pruning techniques. Experimental results are presented in Section 5.5,

and Section 5.6 concludes the chapter.

5.2 Comparing Uncertain Values

We assume the attribute uncertainty model discussed in Chapter 3. This model

assumes that each data item can be represented by a range of possible values and

their distributions. Formally, assume each tuple of interest consists of a real-valued

attribute a. Note that a is treated as a continuous random variable, and it is assumed

that each uncertain attribute value is mutually independent. In this chapter, we refer

to the uncertainty interval, pdf and cdf of an uncertain attribute a as a.U (i.e [a.l, a.r]),

a.f(x) and a.F (x) respectively.

We next present the definitions of comparison operators over uncertainty, based

on which probabilistic join queries are defined.

5.2.1 Uncertainty Comparison Operators

In order to evaluation join conditions over uncertain attributes, it is first necessary

to define operators for this data type. Consider the equality of two uncertain-values a

and b, which are modeled with probabilistic uncertainty. Since a and b are not single

25

values, traditional notions of comparison operators (such as equality and inequality)

cannot be used. Due to the range of possible values for each data item it is not

immediately obvious whether the two are equal in value or not. If there is no overlap

in their range, clearly they cannot be equal. However, if there is an overlap, there is

the possibility that the two could be equal. We would like to determine the likelihood

of them being equal. In this section, we extend the definitions of common comparison

operators to support uncertain values. In particular, we express “imprecision” in these

operators in terms of probability values.

To understand “equality” for uncertain data, consider Figure 5.2 where the overlap

between a.U and b.U is [a.l, b.r]. A first thought is that at any point x0 inside [a.l, b.r],

a is equal to b with probability a.f(x0) · b.f(x0)δx (where δx is infinitesimal), and so

the probability a equals to b is simply
∫ b.r

a.l
a.f(x)b.f(x)dx. However, this is incorrect:

both a.f(x) and b.f(x) are continuous functions, thus the probability that a and b

are equal to x0 is zero. Consequently, the probability of equality is always zero, and

a and b can never be equal.

Given that the exact values for these data items are not known, the user is more

likely to be interested in them being very close in value rather than exactly equal.

Naturally, how close they are should be determined by the user. Based upon this

observation, we define equality using a parameter, called resolution (c), as: a is equal

to b if they are within c of each other i.e., b− c ≤ a ≤ b + c or a− c ≤ b ≤ a + c:

Definition 5.2.1 Equality (=c): Given a resolution c, a is equal to b with proba-

bility

P (a =c b) =

∫ ∞

−∞

a.f(x) · (b.F (x + c)− b.F (x− c))dx

Essentially, a is equal to b when a = x0 if b is in the range [x0 − c, x0 + c], with a

probability of b.F (x0 + c)− b.F (x0 − c), or
∫ x0+c

x0−c
b.f(x)dx. Figure 5.2 illustrates this

definition of equality, where we can see a and b only join in [a.l− c, b.r + c]. Let la,b,c

be max(a.l − c, b.l − c) and ua,b,c be min(a.u + c, b.u + c). For the case that the two

intervals are within distance c of each other, Definition 5.2.1 can be rewritten as:

26

P (a =c b) =

∫ ua,b,c

la,b,c

a.f(x)(b.F (x + c)− b.F (x− c))dx (5.1)

where the overlap of a.U and b.U is given by [la,b,c, ua,b,c]. We assert without proof

that our definition of equality is symmetric i.e., P (a =c b) yields the same value as

P (b =c a).

Notice that P (a =c b) is zero for the case that we are fully confident that a and

b cannot be joined. This happens when b.r + c < a.l or a.r + c < b.l. This indicates

that a and b have no chance of being equal. Based upon the definition of equality, we

can define Inequality as follows:

Definition 5.2.2 Inequality (6=c): Given a resolution c, a is not equal to b with

probability

P (a 6=c b) = 1− P (a =c b)

= 1−

∫ ∞

−∞

a.f(x) · (b.F (x + c)− b.F (x− c))dx

b

b.l b.r

a

a.ra.l
a.f(x0)

b.f(x0)

c

c

Figure 5.2. Illustrating Comparison Operations for uncertain values a and b.

To address the question “Is a greater than’ b?”, let us look at Figure 5.2. In

[b.r, a.r], b cannot be larger than a, since b.f(x) is 0 when b > b.r. Thus if a is within

[b.r, a.r], it is larger than b with probability
∫ a.r

b.r
a.f(x)dx, or 1 − a.F (b.r). At any

point x0 inside [a.l, b.r], a is larger than b with a probability a.f(x0)b.F (x0), where

b.F (x0) is the probability that b is less than x0. Therefore, in [a.l, b.r], the probability

27

that a is larger than b is given by
∫ b.r

a.l
a.f(x)b.F (x)dx. There is no need to consider

[b.l, a.l], because b is always less than a when b is in this region. To sum up, the

probability that a is larger than b in Figure 5.2 is:

∫ b.r

a.l

a.f(x)b.F (x)dx + 1− a.F (b.r)

Upon considering all possible scenarios of overlap between a.U and b.U , we obtain

the definition of “>”:

Definition 5.2.3 Greater than (>): a > b with probability P (a > b)

=







∫ b.r

max(a.l,b.l)
a.f(x)b.F (x)dx + 1− a.F (b.r) a.l≤ b.r<a.r

∫ a.r

max(a.l,b.l)
a.f(x)b.F (x)dx b.l≤a.r≤b.r

For the case that a lies entirely to the left of b, i.e. a.r<b.l, P (a > b) = 0. Also,

for the case that a lies entirely to the right of b, i.e. a.l≥b.r, P (a > b) = 1.

Note that in a continuous-valued domain, P (a > b) is the same as P (a ≥ b)

because a can never be exactly equal to b. In the sequel we will not discuss a ≥ b.

In a similar manner, we can redefine < as follows.

Definition 5.2.4 Less than (<): a < b with probability P (a < b)

=







∫ b.r

a.l
a.f(x)(1− b.F (x))dx b.l< a.l≤b.r

a.F (b.l)+
∫ min(a.r,b.r)

b.l
a.f(x)(1−b.F (x))dx a.l≤b.l≤a.r

Again, for the case that a lies entirely to the left of b, i.e. a.r<b.l, P (a < b) = 1.

Also, for the case that a lies entirely to the right of b, i.e. a.l≥ b.r, P (a < b) = 0.

Also, since P (a < b) is the same as P (a ≤ b), and so we will not discuss a ≤ b.

We can see from that comparison over uncertainty is imprecise. The degree of

imprecision, represented by probability values, indicates the confidence of the com-

parison result. For example, if P (a > b) = 0.01, then a is unlikely to be greater than

b.

It is worth mentioning that the definitions of comparisons for uncertainty with

continuous uncertainty pdfs can be extended to support discrete pdfs.

28

5.2.2 Comparing Uncertainty with Certainty

Some situations may require the join of uncertain values with “certain” values. For

example, a user can join the current locations of people with locations of buildings

(where the locations are fixed), in order to find out which persons are in which

buildings. In general, operators between an uncertain value a and a certain value

v ∈ ℜ can be defined as:

P (a =c v) =

∫ v+c

v−c

a.f(x)dx = a.F (v + c)− a.F (v − c)

P (a 6=c v) = 1− P (a =c v) = 1− a.F (v + c) + a.F (v − c)

P (a > v) = 1− a.F (v)

P (a < v) = a.F (v)

which can be treated as special cases for the definitions of uncertainty operators.

5.2.3 Probabilistic Join Queries

Once the comparison operators for uncertainty are defined, We can now formulate

the join problem. Suppose we have two tables R and S containing m and n tuples

respectively. Both tables contain an uncertain attribute on which the join will be

performed. We name the uncertain attribute of the ith row as Ri for table R, and as

Si for table S. Then the Probabilistic Join Query (PJQ) is defined as follows.

Definition 5.2.5 Given an uncertainty comparator θu (where θu is any one of =c, 6=c

, >, <), a Probabilistic Join Query (PJQ) returns all tuples (Ri, Sj , P (RiθuSj))

where i = 1, . . . , m, j = 1, . . . , n and P (RiθuSj) > 0.

Essentially, a PJQ returns join pairs with a non-zero probability of meeting the

join condition along-with the associated probability. It is more informative than

traditional join in which the confidence of the join, expressed in terms of probabilities.

Unfortunately, it involves expensive operations – especially in the process of finding

29

the probabilities of the join-pairs using our definitions of uncertainty comparators.

In the next section, we will examine how a PJQ can be implemented efficiently.

Notice that the probability returned by the join is in effect the probability of the

corresponding tuple being part of the join result table. Thus the result of a PJQ

over a table with uncertain attribute data is a table with tuple uncertainty. Since

the model we have considered for uncertainty does not incorporate tuple uncertainty,

this result falls outside the model. This is not desirable since we would like to have

a closed model in order to enable query composibility.

There are two alternatives for addressing this problem. The first is to treat the

probability simply as another attribute of the query result. The new attribute is

intrinsically defined with the domain of probability values. This requires users to

either be aware that a new attribute will be added, or to explicitly add the proba-

bility attribute in their SELECT clauses. The second alternative is to not generate

tuples with probabilistic values. Instead, each tuple is either part of the result or

not. In this case, we have to convert each probabilistic comparison operator into a

boolean comparison operator. This is achieved through the specification of a cut-off

threshold probability. With this minor change, we define a join to be Probabilistic

Threshold Join Query (PTJQ). It has an additional constraint that only join pairs

whose probabilities exceed a user-defined threshold are returned.

Definition 5.2.6 Given an uncertainty comparator θu (where θu is any one of =c

, 6=c, >, <), a Probabilistic Threshold Join Query (PTJQ) returns all tuples

(Ri, Sj) such that i = 1, . . . , m, j = 1, . . . , n, and P (RiθuSj) > p, where p ∈ [0, 1] is

called the probability threshold.

A PTJQ only returns join pairs that have probabilities higher than p. Another

difference from PJQ is that PTJQ only returns the pairs, (Ri, Sj), but not the ac-

tual probability values. In the sequel, we will explain how these two differences are

exploited for performance improvement.

30

5.3 Evaluating PTJQ with Interval Join

To evaluate a PTJQ, common methods like block-nested-loop join and indexed-

loop can be used. The advantage of these algorithms is that they have been im-

plemented in typical database systems, hence the system requires little modification

to support joins over uncertain data. However, we will demonstrate that these join

techniques can be improved by a number of novel techniques.

Figure 5.3 illustrates a possible approach of using traditional join algorithms for

processing uncertainty. As shown in Step 2, the main idea is to join the uncertainty

intervals with an interval-join algorithm, and store the possible candidates are stored

in a set, C. Subsequently, the pdf/cdf information is used to calculate the probability

of each candidate pair, and those that have probability greater than p are retained

in the result (Step 3). In the rest of this section, we examine these two steps in more

details.

The exact method used in Step 2 depends on the type of the comparison operator.

For equality over two uncertain intervals Ri.U and Sj .U , we can eliminate intervals

that do not overlap after considering the resolution c (i.e., pairs that satisfy Ri.r+c <

Sj .l or Sj.r + c < Ri.l). According to Definition 5.2.1, these tuples have zero chance

of being paired up. Thus, any I/O-efficient overlap join algorithms over intervals

(e.g., [38]) can be used. For >, we can immediately eliminate (Ri, Sj) if Ri.r < Sj .l,

and we can derive similar conditions for <. In general, based on the uncertainty

operator and uncertainty intervals, we may derive pruning conditions and choose an

efficient I/O join algorithm to facilitate pruning.

5.3.1 Item-Level Pruning

The set C of candidate pairs (Ri, Sj), produced in Step 2, is further refined in Step

3. The refinement process can be done by directly computing the join probability,

P (RiθuSj) for every pair of (Ri, Sj); only those larger than p are retained. The exact

way of computing the this probability depends on the type of uncertainty pdf. For

31

Input

R, S /* tables containing common uncertainty attributes */

θu /* uncertainty join operator */

p /* probability threshold of PTJQ */

Output

(Ri, Sj) that satisfies P (RiθuSj) > p

Begin

1. Let A← φ /* A is the answer of PTJQ */

2. Let C ← {(Ri, Sj)| where (Ri, Sj) are results returned by an interval join

algorithm over Ri.U and Sj .U } (For =c and 6=c, join over

[Ri.l−c, Ri.r+c], [Sj .l−c, Sj.r+c])

3. ∀(Ri, Sj) in C

i. if P (RiθuSj) > p then A← A
⋃

(Ri, Sj)

End

Figure 5.3. Evaluating a PTJQ with an interval join.

uniform pdf, a closed-form formula can be derived. For Gaussian distribution, the join

probability may be implemented by a table lookup. For an arbitrary pdf, P (RiθuSj)

may not be in closed-form; the join probability can be computed with (relatively

expensive) numerical integration methods.

We develop a set of techniques to facilitate the evaluation of Step 3. These methods

do not compute P (RiθuSj) directly. Instead, they establish pruning conditions that

can be checked easily to decide whether (Ri, Sj) satisfy the query. They are applicable

to any kind of uncertainty pdf, and do not require the knowledge of the specific form

32

of P (RiθuSj). They are thus convenient for developing an uncertain database system

that supports a wide range of uncertainty pdfs. Moreover, they form the basis of

discussions of other pruning techniques in later sections. We term these techniques

“item-level-pruning”, since pruning is performed based on testing a pair of data items.

Let us now discuss the pruning criteria for each operator.

For Equality and Inequality, we establish the following lemma:

Lemma 1 Suppose a and b are uncertain-valued variables and a.U ∩ b.U 6= φ. Let

la,b,c be max(a.l − c, b.l − c) and ua,b,c be min(a.r + c, b.r + c). Then,

• P (a =c b) is at most

min(a.F (ua,b,c)− a.F (la,b,c), b.F (ua,b,c)− b.F (la,b,c)) (5.2)

• P (a 6=c b) is at least

1−min(a.F (ua,b,c)− a.F (la,b,c), b.F (ua,b,c)− b.F (la,b,c)) (5.3)

Proof Since a and b overlap at interval [la,b,c, ua,b,c], from Equation 5.1 we have

P (a =c b) =

∫ ua,b,c

la,b,c

a.f(x)(b.F (x + c)− b.F (x− c))dx

≤

∫ ua,b,c

la,b,c

a.f(x)dx

= a.F (ua,b,c)− a.F (la,b,c)

Similarly, we have P (b =c a) ≤ b.F (ua,b,c) − b.F (la,b,c). Since P (a =c b) is equal to

P (b =c a), P (a =c b) cannot be larger than the minimum of a.F (ua,b,c) − a.F (la,b,c)

and b.F (ua,b,c) − b.F (la,b,c). Thus the lemma holds. The bound on the inequality

probability can be similarly established. 2

Lemma 1 enables us to quickly decide whether a candidate pair (Ri, Sj) ∈ C

should be included into or excluded from the answer, since uncertainty cdfs are known

and Equations 5.2 and 5.3 can be computed easily. For equality, the lemma allows

33

us to prune away (Ri, Sj) when Equation 5.2 is less than p; for inequality, we can

immediately claim that (Ri, Sj) is the answer when Equation 5.3 is larger than p.

For Greater than and Less than, we have the following Lemma 2.

Lemma 2 Suppose a and b are uncertain-valued variables. Then,

• For a > b,

1. If a.l ≤ b.r < a.r, P (a > b) ≥ 1− a.F (b.r).

2. If a.l ≤ b.l ≤ a.r, P (a > b) ≤ 1− a.F (b.l).

• For a < b,

1. If a.l ≤ b.l ≤ a.r, P (a < b) ≥ a.F (b.l).

2. If b.l < a.l ≤ b.r, P (a < b) ≤ a.F (b.r).

Proof Lemma 2.1 is a direct result from Definition 5.2.3. For Lemma 2.2, when

a.l ≤ b.l ≤ a.r, P (a < b) is equal to a.F (b.l)+
∫ min(a.r,b.r)

b.l
a.f(x)(1− b.F (x))dx (Defini-

tion 5.2.4) , which is larger than or equal to a.F (b.l). Since P (a > b) = 1−P (a < b),

P (a > b) must be smaller than or equal to 1− a.F (b.l). 2

To understand how this lemma facilitates pruning for >, notice that we can im-

mediately include (Ri, Sj) in the answer if Ri.l ≤ Sj .r < Ri.r and 1−Ri.F (Sj.r) ≥ p,

since by the first rule of the lemma P (Ri > Sj) has to be larger than p. Observe that

(Ri, Sj) can also be included in the answer if Ri.l > Sj.r. On the other hand, the

second rule of the lemma allows (Ri, Sj) to be excluded from the answer, if the right

side expression of P (a > b) has probability value less than p. Notice that (Ri, Sj) can

also be excluded from the answer if Ri.r < Sj .l. The rules for < in Lemma 2 can be

used for pruning in a similar manner.

Given that the pdfs of the uncertain values are known, the above lemmata allow

us to perform a constant-time check to decide whether P (RiθuSj) has to be evaluated.

Thus, for the price of a small overhead, we may be able to avoid the evaluation of

34

actual probabilities in Step 3, which can be expensive. From now on, we assume

that checks based on the above lemmata are performed to process the predicate

P (RiθuSj) in Step 3. In Section 5.5, we experimentally examine the effectiveness of

the framework presented in Figure 5.3, where we study two common interval join

algorithms: block nested loop join (BNLJ) and indexed nested loop join (INLJ).

Notice that the interval-join operation, performed in Step 2, can generate a lot

of candidate pairs that are actually not part of the answer (i.e., their probabilities

are less than p) The key problem with Step 2 is that it uses uncertainty intervals as

the only pruning criterion. In the next section, we examine algorithms that use both

uncertainty intervals and uncertainty pdfs for pruning, so that a smaller candidate

set is produced. In some of these methods, the I/O performance is improved too.

This interval join not only affects the performance of Step 3, but itself can also

generate unnecessary I/Os. In fact, the key problem with the algorithm of Figure 5.3

is that it uses uncertainty intervals as the only pruning criterion. In the next section,

we examine join algorithms which use both uncertainty intervals and uncertainty pdfs

for pruning, improving I/O performance significantly. It also generates a smaller

candidate set for Step 3 and thus computation time is saved too.

5.4 Uncertainty-based Joins

The performance of Step 2 in Figure 5.3 is essential to the overall performance

since it eliminates some I/O operations. of the join because it performs I/O-level

pruning. As explained above,, interval joins may not be the best solution because

they do not utilize uncertainty pdfs. We now present join algorithms that are tailored

for uncertainty. We discuss how to prune at the page level for different uncertainty

operators, and how this page-level pruning can be realized in join algorithms.

The discussion focuses on the equality (=c) and greater than (>) operators.

The other operators are similar to these and are thus not discussed in detail.

35

5.4.1 The Uncertainty Bounds

For database joins like the block-nested-loop join and the indexed-loop-join, the

unit of retrieval is a page. Suppose we are given two pages, one from R and the

other from S. To perform a join between the uncertain values contained in these two

pages, a simple approach is to consider all pairs of values in the two pages. This

can be time-consuming, because a page of a modest size can contain many uncertain

values1. Our goal is “page-level” pruning: with an additional small storage overhead,

it can avoid examining the page contents.

The idea of using a small overhead to facilitate the pruning of uncertain values

was first proposed in [30] to answer probabilistic threshold range queries – essentially

a range query where only uncertain data items that satisfy it with a probability

higher than a user-defined threshold are reported. The main idea is to augment some

tighter bounds (x-bound) in each node in an interval R-tree. Each x-bound is a pair of

bounds that are calculated based on the properties of the uncertainty pdfs associated

with the entries stored in that node. Since an x-bound is potentially tighter than the

Minimum Bounding Rectangle (MBR), the pruning power can be increased. In this

chapter, we borrow the idea of x-bound to facilitate page-level joins. Based on the

definition of x-bounds for a tree node in [30], we generalize the definition of x-bound

for a page:

Definition 5.4.1 Given 0 ≤ x < 1, an x-bound of a page B consists of two values,

called left-x-bound (B.l(x)), and right-x-bound (B.r(x)). For every uncertain value a

stored in B, two conditions must hold:

• If a.l < B.l(x), then
∫ B.l(x)

a.l
a.f(y)dy ≤ x.

• If a.r > B.r(x), then
∫ a.r

B.r(x)
a.f(y)dy ≤ x.

1For example, if an uncertain attribute uses 8 bytes to store its uncertainty interval, 8 bytes to
specify the uniform uncertainty pdf and cdf, a 4K page can store 256 items. Joining values in two
pages then requires examining 2562 = 65536 pairs.

36

Essentially, we require that every uncertain attribute stored in a page must have

no more than a probability of x of being outside either the left-x-bound or the right-

x-bound. We also assume that x-bounds are “tight”, i.e., the left-x-bounds (right-x-

bounds) are pushed to the right (left) as much as possible. To illustrate, Figure 5.4

shows a page storing two uncertain attributes, a and b. As we can see, a has a

probability less than 0.1 and 0.3 of lying to the left of the left-0.1-bound and left-0.3-

bound respectively, i.e.,
∫ B.l(0.1)

a.l
a.f(y)dy ≤ 0.1 and

∫ B.l(0.3)

a.l
a.f(y)dy ≤ x. Similarly,

a cannot have a probability of over 0.3 of being outside the right-0.3-bound. Similarly,

b has a probability of at least 0.7 on the right of the left-0.3-bound. Finally, all the

uncertainty intervals must be fully enclosed by the 0-bound, which is akin to the

MBR of an index node.

left-0.3-bound right-0.3-bound
left-0.1-bound right-0.1-bound

a

b

left-0-bound right-0-bound

≤ 0.3
≤ 0.3

≤ 0.3

≤ 0.1

l u

Figure 5.4. 0-bound, 0.1-bound and 0.3-bound. A range query [l, u]
with p = 0.4 is also shown.

The major purpose of the x-bound is to facilitate pruning for probabilistic thresh-

old range queries. Suppose a range query has a lower bound l, upper bound u and

probability threshold p. As shown in Figure 5.4, if p is larger than 0.4, we are im-

mediately guaranteed that none of the uncertain attributes can satisfy the query:

37

each attribute has a probability of less than 0.3 of being located inside [l, u]. We will

explain how x-bounds are used to prune in order to process joins effectively.

The implementation of uncertain items and x-bounds in a page is shown in Fig-

ure 5.5. For pdf and cdf, we store the symbol of the type of the distribution, and the

parameters relevant to that distribution. For example, if the pdf is Gaussian, then

the pdf can be a pair of values (mean, variance), and the cdf may be approximated by

a histogram. To implement the x-bounds, we store a table V on the same page, where

Vi is a tuple of the form (l, r) for storing the left-Wi-bound and right-Wi-bound. The

values of Wi’s (i = 1, . . . , |Wi|) are stored in an external table W , sorted in ascending

order of Wi’s. Our join algorithms require 0-bounds to be stored, with W1 equal

to 0, and [V1.l, V1.r] representing the position of the 0-bound. Figure 5.5 shows the

implementation of x-bounds for the example in Figure 5.4. The total space cost of V

and W is O(|W |), which is usually small since only a few x-bounds are stored.

To insert an item to the page, we first compute the x-bound of the item. This

is usually an inexpensive one-time cost. If the uncertainty pdf is a standard distri-

bution (e.g., uniform), the x-bounds are readily obtained. For an arbitrary pdf (e.g.,

represented by a histogram), its x-bounds can be derived by scanning the histogram

once. The x-bound of the page is then expanded to accommodate the new item.

0

0.1

0.3

W

1

3

5.6

10

8.7

7

V
Interval:

[2,8]
pdf cdfA

Interval:

[4,5.5]
pdf cdfB

Page

Figure 5.5. Implementing x-bounds in a page.

Given a page B with uncertainty tables, we now present two algorithms (Fig-

ure 5.6) to decide if any uncertain attributes have a probability higher than p of

38

satisfying a range query. Algorithm CheckLeft checks the range query against left-x-

bounds while Algorithm CheckRight employs right-x-bounds for checking. They use

the idea illustrated in Figure 5.4 for pruning, and we state without proof the following

lemma.

Lemma 3 Given a range query Q with interval [l, u] and probability threshold p, if

CheckLeft or CheckRight returns FALSE, no uncertain attribute in B can satisfy Q

with probability higher than p.

These two checking routines form the fundamental building blocks for the page-

level join operators. They are usually very efficient since only a few x-bounds need

to be stored and W is small.

5.4.2 Page-Level Equality Join

Using CheckLeft and CheckRight, a page-level equality join can be constructed

as follows. Figure 5.7 illustrates EquiJoin, which returns PRUNE to indicate that two

given pages from R and S do not contain any join pairs with probability over p of

being equal, in which case the two pages can be pruned without further investiga-

tion. EquiJoin returns CHECK to indicate that there is a possibility that some pairs

satisfying the conditions exist which results in a pairwise evaluation of the values in

the pages R and S.

EquiJoin applies two sets of criteria. The first test (Step 1) uses CheckLeft

and CheckRight on page BS (of table S), using the 0-bound of page BR (extended

with resolution c) to form a range query. In other words, the range query with the

interval [BR.V1.l−c, BR.V1.r+c] is checked against BS using left- and right-x-bounds.

If CheckLeft or CheckRight returns FALSE, by Lemma 3 no uncertain attribute in

BS is in [BR.V1.l − c, BR.V1.r + c] with a probability higher than p. EquiJoin then

returns PRUNE to indicate that these pages cannot be joined.

If Step 1 does not return PRUNE, EquiJoin uses another set of tests in Step 2,

which exchanges the role of BR and BS: the range query is now constructed by

39

Input

[l, u] /* Lower and upper bound of range query Q */

p /* probability threshold of range query */

B /* Page with table B.V */

W /* Global table storing values of x for x-bounds */

Output

FALSE: All intervals in B are guaranteed to fail Q,

TRUE otherwise.

(a) CheckLeft(l, u, p, B, W) /* prune using left-x-bounds */

1. for i = 1, . . . , |W | do

(i) if u < B.Vi.l and Wi < p then

(a) return FALSE

2. return TRUE

(b) CheckRight(l, u, p, B, W) /* prune using right-x-bounds */

1. for i = 1, . . . , |W | do

(i) if l > B.Vi.r and Wi < p then

(a) return FALSE

2. return TRUE

Figure 5.6. Algorithms for deciding whether a page B can be pruned
for a range query. (a) CheckLeft uses left-x-bounds for pruning. (b)
CheckRight uses right-x-bounds for pruning.

using the 0-bound of BS, and tested against the uncertainty bounds in BR. Again,

EquiJoin returns PRUNE if either CheckLeft or CheckRight is FALSE. If none of these

tests work, EquiJoin concludes that it cannot prune the pages (Step 3).

40

Input

BR /* Page (with uncertainty bounds) from table R */

BS /* Page (with uncertainty bounds) from table S */

W /* Global table storing values of x for x-bounds */

c /* Resolution of equality */

p /* probability threshold of equality join */

Output

(i) PRUNE: for every Ri in BR, Sj in BS, ,it is certain that P (Ri =c Sj) < p,

(ii) CHECK otherwise.

EquiJoin(BR, BS, W, c, p)

1. if (NOT(CheckLeft(BR.V1.l − c, BR.V1.r + c, p, BS, W))) or

(NOT(CheckRight(BR.V1.l − c, BR.V1.r + c, p, BS, W)))

then return PRUNE

2. if (NOT(CheckLeft(BS .V1.l − c, BS.V1.r + c, p, BR, W))) or

(NOT(CheckRight(BS .V1.l − c, BS.V1.r + c, p, BR, W)))

then return PRUNE

3. return CHECK

Figure 5.7. Page Level Join for Equality.

The correctness of EquiJoin hinges on the four test conditions. In the rest of

this section, we establish the correctness when the first testing procedure in Step 1,

namely CheckLeft, returns FALSE on pages BR and BS. The other three conditions

use the same principles and their proofs are skipped. We begin with the following

lemma.

41

Lemma 4 1. If CheckLeft of Step 1 in EquiJoin returns FALSE, then for every

uncertain value Sj in BS, its probability of satisfying the range query formed by

any uncertainty interval of Ri stored in BR extended with c, i.e., [Ri.l−c, Ri.u+

c], must be less than p.

2. If CheckRight(BS .V1.l−c, BS .V1.r+c, p, BR, W)) returns FALSE, then for every

uncertain value in BR, its probability of satisfying the range query formed by

any uncertainty interval [Sj.l − c, Sj .u] (where Sj is an uncertain value in BS)

must be less than p.

Proof From Lemma 3, we know that no attributes in BS satisfies the range query

formed by [BR.V1.l − c, BR.V1.r + c] with probability higher than p. Further, any

uncertainty interval Ri.U in BR must be enclosed by [BR.V1.l, BR.V1.r], and therefore

Ri.r + c ≤ BR.V1.r + c. According to Step 1(i) of CheckLeft there must be some q

such that BR.V1.r + c < BS.Vq.l and Wq < p. Therefore,

Ri.r + c < BS.Vq.l (5.4)

As shown in Figure 5.8, none of the uncertainty intervals in BS crosses the line

BS.Vq.l with a fraction of more than Wq. This implies no values in BS can satisfy

[Ri.l− c, Ri.r + c] with probability higher than p. Symmetric arguments can be made

for CheckRight.

2

For any Ri and Sj stored in pages BR and BS, the intersection between [Ri.l −

c, Ri.r+c] and [Sj .l−c, Sj .r+c] is given by [lRi,Sj ,c, uRi,Sj ,c], where lRi,Sj ,c is max(Ri.l−

c, Sj.l− c) and uRi,Sj ,c is min(Ri.r + c, Sj.r + c). The following lemma can be derived.

Lemma 5 If CheckLeft of Step 1 in EquiJoin returns FALSE, then

Sj.F (uRi,Sj ,c)− Sj .F (lRi,Sj ,c) < p (5.5)

Proof Recall from Lemma 4 that Sj with uncertainty interval [Sj .l, Sj.r] satisfies

range query [Ri.l − c, Ri.r + c] with a probability less than p. This implies the

42

Ri.r+c

BS.Vq.l

Sj.l Sj.r Sj.r+cSj.l-c

Ri.l Ri.rRi.l-c

BS.V1.l BS.V1.r

≤Wq

Figure 5.8. Illustrating the correctness of EquiJoin.

cumulative probability in the overlap region of Sj .U and [Ri.l−c, Ri.r+c] is less than

p, i.e.,

Sj .F (min(Ri.r + c, Sj .r))− Sj.F (max(Ri.l − c, Sj.l)) < p (5.6)

We now make the following claims.

Claim 1:

Sj .F (max(Ri.l − c, Sj.l)) = Sj.F (lRi,Sj ,c) (5.7)

Proof There are two cases:

1. Ri.l− c ≥ Sj .l. Then Ri.l− c ≥ Sj.l− c, and hence max(Ri.l − c, Sj .l) is equal

to max(Ri.l − c, Sj.l − c), and thus Equation 5.7 is correct.

2. Ri.l − c < Sj.l. Then Sj .F (max(Ri.l − c, Sj .l)) = Sj.F (Sj.l) = 0. Moreover,

max(Ri.l − c, Sj.l − c) is either Ri.l − c or Sj .l − c; the latter is illustrated in

Figure 5.8. Since Ri.l − c and Sj.l − c are less than Sj.l, by Definition 3.1.2,

both Sj .F (Ri.l − c) and Sj.F (Sj .l − c) are equal to 0. Therefore, Equation 5.7

is correct.

43

2

Claim 2:

Sj.F (min(Ri.r + c, Sj.r)) = Sj.F (uRi,Sj ,c) (5.8)

Proof Recall from Equation 5.4 that Ri.r+c must be to the left of the left-Wq-bound,

as illustrated in Figure 5.8. Moreover, as Wq < 1, Sj .r must be to the right of BS.Vq.l;

otherwise the entire interval Sj .U is on the left of the left-Wq-bound, implying that
∫ BS .Vq.l

Sj .l
Sj .f(y)dy is 1, which is larger than Wq and violates Definition 5.4.1. Hence,

Ri.r + c is less than Sj.r, which in turn cannot be larger than Sj .r + c. This means

min(Ri.r + c, Sj.r) is the same as min(Ri.r + c, Sj.r + c), and thus Equation 5.8 is

correct.

2

Based on Equations 5.7 and 5.8, the left hand side of Equation 5.6 is the same as

Sj .F (min(Ri.r + c, Sj .r + c))− Sj .F (max(Ri.l − c, Sj .l − c))

Thus Lemma 5 holds.

2

We now prove the correctness of EquiJoin. Suppose Step 1’s CheckLeft returns

FALSE. From Lemma 1, we know that P (Sj =c Ri) ≤ Sj .F (uRi,Sj ,c) − Sj.F (lRi,Sj ,c),

which is less than p according to Lemma 5. Thus Step 1’s CheckLeft prunes pages

correctly.

For the remaining criteria, the proofs are skipped due to lack of space. By calling

four small testing routines, EquiJoin can efficiently identify pruning opportunities

by using x-bounds of the pages.

5.4.3 Page-Level Join for “Greater than”

We have developed a page-level pruning algorithm for “>” called GTJoin. As

illustrated in Figure 5.9, GTJoin returns three possible answers. The first type of

44

answer, called PRUNE, signals to the caller of GTJoin that no interval pairs in the

pages concerned have a probability of p or more of being joined (Step 1). The second

type of answer, called INCLUDE, does the opposite: it informs the user that every

pair of intervals from BR and BS join with probability higher than p, and these pairs

can be inserted to the answer without hesitation (Step 2). The final kind of answer,

CHECK, is returned when neither the conditions in Step 1 nor those in Step 2 are

satisfied. This implies that all pairs must be checked for possible inclusion in the

result.

Intuitively, Step 1 first forms a range query by using the 0-bounds of BS and

query it against the right x-bounds of page BR, by using CheckRight. Figure 5.10(a)

illustrates this. If there exists some q such that BS.V1.l ≥ BR.Vq.r and Wq < p, the

page pairs can be pruned. If this test fails to prune, another test based on CheckLeft

is performed, where the range query is formed by the 0-bounds of BR, querying against

the left x-bounds of BS. The scenario is shown in Figure 5.10(b).

The function of CheckRight and CheckLeft of Step 1 is to test whether P (Ri >

Sj) < p, and if so, “throw away” BR and BS. Step 2 performs the opposite: it

establishes the conditions in which every pair of items in BR and BS can be placed

in the answer. Specifically Step 2 verifies the condition P (Sj > Ri) < 1 − p, which

can be easily achieved by modifying the parameters in Step 1. Since P (Ri > Sj) =

1− P (Sj > Ri), if any of the two conditions in Step 2 are satisfied, we can conclude

that P (Ri > Sj) ≥ p. GTJoin then returns INCLUDE to indicate that all combinations

of (Ri, Sj) can be inserted to the answer without probing.

Similar to EquiJoin, GTJoin requires little time as it only calls four small check-

ing subroutines. With this little overhead, the savings can be significant as illustrated

in our experiments.

45

Input

BR /* Page (with uncertainty bounds) from table R */

BS /* Page (with uncertainty bounds) from table S */

W /* Global table storing values of x for x-bounds */

p /* probability threshold of > join */

Output

(i) PRUNE: ∀Ri ∈ BR, Sj ∈ BS, it is

certain that P (Ri > Sj) < p;

(ii) INCLUDE: ∀Ri ∈ BR, Sj ∈ BS, it is

certain that P (Ri > Sj) ≥ p;

(iii) CHECK otherwise.

GTJoin(BR, BS, W, p)

1. if NOT(CheckRight(BS .V1.l, BS.V1.r, p, BR, W))

or NOT(CheckLeft(BR.V1.l, BR.V1.r, p, BS, W))

then return PRUNE

2. if NOT(CheckRight(BR.V1.l, BR.V1.r, 1− p, BS, W))

or NOT(CheckLeft(BS .V1.l, BS.V1.r, 1− p, BR, W))

then return INCLUDE

3. return CHECK

Figure 5.9. Page Level Join for Ri > Sj.

5.4.4 Uncertainty-Enhanced Joins

The page-level pruning techniques can be used to improve the performance of

interval or spatial join algorithms that retrieve data in units of pages. Whenever

two data pages are compared in the join algorithms, uncertainty tables can be read

46

BS.Vt.lBS.V1.l BS.V1.r

(a)

Ri.l Ri.r

Sj.l Sj.r

≤Wt

(b)

BR.Vq.r

Ri.l Ri.r

Sj.l Sj.r

BR.V1.l BR.V1.r

≤Wq

Figure 5.10. Pruning pages for >, using (a) right-x-bounds of BR,
and (b) left-x-bounds of BS.

first, and with our pruning techniques, probing into actual values in the pages can

be avoided. Of course, GTJoin may not prevent the retrieval of intervals when

INCLUDE is returned – however, it still improves performance because we can simply

add the Cartesian product of the intervals from the two pages to the answer without

computing the actual probabilities.

We further illustrate our techniques by studying the example of the Block-Nested-

Loop Join (BNLJ). In this algorithm, the two relations to be joined are organized

as lists of unordered pages. Each page read from the outer relation is matched with

each page from the inner relation iteratively, which can be slow because we have

to check each pair of intervals from both relations. However, by augmenting each

page with an uncertainty table, we can speed up this matching process by using

EquiJoin or GTJoin. We denote the version of BNLJ where uncertainty tables

are augmented as Uncertainty-based Block-Nested-Loop Join (U-BNLJ for

short). We will compare the performance differences experimentally between these

two join algorithms in Section 5.5. Other page-based join algorithms, such as interval

47

hash join and sort-merge-join, can be enhanced in a similar manner and the details

are skipped here.

5.4.5 Index-Level Join

Although uncertainty tables can be used to improve the performance of page-based

joins, they do not improve I/O performance, simply because the pages still have to

be loaded in order to read the uncertainty tables. However, we can extend the idea

of page-level pruning to improve I/O performance, by organizing the pages in a tree

structure. Conceptually, each tree node still has an uncertainty table, but now each

uncertainty interval in a tree node becomes a Minimum Bounding Rectangle (MBR)

that encloses all the uncertainty intervals stored in that MBR. Page-level pruning

now operates on MBRs instead of uncertainty intervals. The correctness of these

algorithms can be shown easily, by using the fact that each MBR tightly encloses the

intervals within the subtree, and arguments similar to Lemma 4.

An implementation of uncertainty tables in the index level is the the Probabil-

ity Threshold Index (PTI) [30], originally designed to answer probability threshold

range queries. It is essentially an interval R-Tree, where each intermediate node is

augmented with uncertainty tables. Specifically, for each child branch in a node,

PTI stores both the MBR and the uncertainty table V of each child. We can use

PTI to improve join performance in the framework of the Indexed-Nested-Loop-Join

(INLJ), by constructing a PTI for the inner relation. The 0-bound of each page from

the outer relation is then treated as a range query and tested against the PTI in the

inner relation. All pages that are retrieved from the PTI are then individually com-

pared with the page from where the range query is constructed, and our page-level

pruning techniques can then be used again to reduce computation efforts.

We denote the version of INLJ where PTI is used in place of an interval index

as Uncertainty-based Indexed-Loop Join, or U-INLJ for short. We present the

performance results of INLJ and U-INLJ in the next section.

48

5.5 Experimental results

We have evaluated the performance of our pruning methods for the equality op-

erator. We will present the simulation model followed by the results.

5.5.1 Simulation Model

Two tables of uncertain data are generated, where the uncertainty pdf is uniform

for both datasets. For the first table, uncertainty intervals are uniformly distributed

in [0, 10000]. The length of each interval is normally distributed with a mean µ of

5 and deviation σ of 1. For the other table, intervals are uniformly distributed in

[5000, 15000], and the length is normal with µ = 10 and σ = 2. Each disk page

stores up to 50 tuples. We study the performance of joins over these two tables by

evaluating the number of tuple-pair candidates output from the join algorithms (Npair)

for item-level pruning, and the number of pairs where probability evaluation has to

be performed (Nprob). Notice that each “probability evaluation” can be expensive

because of the costly integration operation involved in finding the probability – which

is done when pruning techniques fail. Ideally Nprob should be small.

5.5.2 Page-Level Pruning

Figure 5.11 shows that U-BNLJ performs substantially better than BNLJ in

Npair. This is because U-BNLJ performs page-level pruning while BNLJ does not.

However, U-BNLJ does not benefit much from large values of p. Since intervals

are stored randomly, intervals in each disk page can be widely spread. Consequently

all the x-bounds are close to the 0-bound, and the page-level join cannot exploit p

effectively.

49

 200000

 250000

 300000

 350000

 400000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

er
 o

f
C

an
d

id
at

es
(K

)

Probability Threshold

BNLJ
U-BNLJ

Figure 5.11. BNLJ and U-BNLJ.

 800

 900

 1000

 1100

 1200

 1300

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

er
 o

f
C

an
d

id
at

es
(K

)

Probability Threshold

INLJ
U-INLJ

Figure 5.12. INLJ and U-INLJ.

5.5.3 Index-Level Pruning

The above problem can be alleviated by organizing intervals in a better way, for

example, with an index. Figure 5.12 shows that both INLJ and U-INLJ address

a much better performance in Npair than BNLJ and U-BNLJ. Further, U-INLJ

exploits p much better than INLJ as uncertainty bounds are used effectively.

5.5.4 Item-Level Pruning

Figure 5.13 shows the number of pairs that we have to compute probability (Nprob)

for the four joins. We see that the four graphs almost coincide. This means regardless

of how many tuple-pairs are produced, the final number of intervals that have to be

evaluated is almost the same. This implies our item-level pruning techniques can

eliminate a large portion of false positives regardless of the join algorithm. The

computational effort due to probability evaluation is reduced significantly.

The effect of Resolution for the equality operator is illustrated in Figure 5.14.

We observe that Nprob increases with c. With a larger value of c, the uncertainty

interval of each tuple is expanded significantly and thus the chance for pruning is

reduced. However, increase in c implies more relaxation of “equality”, potentially

50

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

er
 o

f
C

o
m

p
u

ta
ti

o
n

s(
K

)

Probability Threshold

BNLJ
U-BNLJ

INLJ
U-INLJ

Figure 5.13. Nprob vs p.

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u

m
b

er
 o

f
C

o
m

p
u

ta
ti

o
n

s(
K

)

Resolution

BNLJ
U-BNLJ

INLJ
U-INLJ

Figure 5.14. Nprob vs c.

returns more answers. This is illustrated in Figure 5.15. Interestingly, the growth of

number of answers saturates as c > 3. This indicates that c does not need to be large

in order to obtain all possible matches.

 0

 20

 40

 60

 80

 100

 120

 1 1.5 2 2.5 3 3.5 4 4.5 5

N
u

m
b

er
 o

f
R

es
u

lt
s(

K
)

Resolution

Number of Results

Figure 5.15. No. of results vs c.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4000 6000 8000 10000 12000

N
u

m
b

er
 o

f
I/

O
s(

K
)

Selectivity

U-INLJ

Figure 5.16. Selectivity on U-INLJ.

51

5.5.5 Selectivity

We also test the effect of join selectivity on U-INLJ. Figure 5.16 shows that

U-INLJ benefits from high selectivity. When a join is highly selective, U-INLJ

requires less traversal over the tree, and thus fewer pages need to be retrieved.

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
u

m
b

er
 o

f
C

o
m

p
ar

is
o

n
s(

K
)

Probability Threshold

INLJ
U-INLJ

Figure 5.17. INLJ and U-INLJ (for >).

5.5.6 Greater Than

We present an interesting result for > in Figure 5.17. We observe that U-INLJ

does not have the same behavior as in Figure 5.12. Here Npair does not show a sharp

drop as p increases. Recall that in the page-level join for >, INCLUDE may be returned.

When p is very low, there is a high chance for objects to be directly included in the

answer. Hence Npair is low when p is low.

5.6 Chapter Summary

We identified an important issue in managing data imprecision: the extension of

comparison operators for uncertainty and the joining of uncertain-valued attributes.

Joining uncertainty can be costly, and we discussed numerous techniques to reduce

the cost. We illustrate how pruning can be achieved at different granularity: item

52

Table 5.1
Pruning Methods for Uncertainty Joins.

Level Savings Applicability Algorithms

Item Computation =c, 6=c, >, < BNLJ, INLJ

Page Computation =c, >, < U-BNLJ

Index I/O & computation =c, >, < U-INLJ

level, page level, and index level. Their properties are summarized in Table 5.1. With

only a small overhead, these techniques can improve join performance significantly.

The results of this chapter are presented in [47]. In the next chapter, we shift our

focus to indexing techniques for uncertain categorical data.

53

6 INDEXING UNCERTAIN CATEGORICAL DATA

Uncertainty in categorical data is commonplace in many applications, including

data cleaning, database integration, and biological annotation. In such domains, the

correct value of an attribute is often unknown, but may be selected from a reasonable

number of alternatives. In this chapter we extend traditional systems to explicitly

handle categorical uncertainty in data values. We propose two index structures for

efficiently searching uncertain categorical data, one based on the R-tree and another

based on an inverted index structure. Using these structures, we provide a detailed

description of the probabilistic equality queries they support. Experimental results

using real and synthetic datasets demonstrate how these index structures can effec-

tively improve the performance of queries through the use of internal probabilistic

information.

6.1 Introduction

As discussed in previous chapters, there are many applications for which the data

exhibits uncertainty in attribute values. As with traditional data, these is a need for

efficient execution of queries over uncertain data. Existing database index structures

that are developed for precise data are not directly applicable for uncertain data. For

uncertain data, indexing support has only been developed for real-valued attributes

[30]. These index structures are inapplicable for categorical uncertain data.

This chapter addresses the problem of indexing uncertain categorical data rep-

resented as a set of values with associated probabilities. We propose two different

index structures. We show that these structures support a broad range of probabilis-

tic queries over uncertain data, including the typical equality, probability threshold,

54

and top-K queries. Our index structures can also be used for queries that are only

meaningful for uncertain data such as distribution similarity queries. The new indexes

are shown to provide efficient execution of these queries with good scalability through

experimental validation using real and synthetic data. To sum up, the contributions

of this chapter are:

• The development of two index structures for uncertain categorical data; and

• The experimental evaluation of these structures with real and synthetic data.

The rest of this chapter is organized as follows. Section 6.2 describes the model

for uncertain data and definitions for queries over this data. Section 6.3 presents the

new index structures and experimental results are discussed in Section 6.4. Section

6.5 concludes the chapter.

6.2 Data Model and Problem Definitions

The data model used in this chapter is an extension of the attribute uncertainty

model (presented in Chapter 3) for categorical uncertain data. Under the categorical

uncertainty model [12], a relation can have attributes that are allowed to take on

uncertain values. For the sake of simplicity, we limit the discussion to relations with

a single uncertain attribute, although the model makes no such restriction. The focus

of this chapter is on uncertain attributes that are drawn from categorical domains.

We shall call such an attribute an uncertain discrete attribute (UDA)1. Let R.a be

a particular attribute in relation R which is uncertain. R.a takes values from the

categorical domain D with cardinality |D| = N . For a regular (certain) relation,

the value of an attribute a for each tuple, t.a, would be a single value in D, i.e.,

t.a ∈ D. In the case of an uncertain relation, t.a is a probability distribution over D

instead of a single value. Let D = {d1, d2, ..., dN}, then t.a is given by the probability

1In this chapter, we use the term discrete to mean discrete categorical data. The alternative to
this is discrete numeric data, on which some more operations can be defined, is not the focus of the
chapter.

55

distribution Pr(t.a = di) for all values of i ∈ {1, ..., N}. Thus, t.a can be represented

by a probability vector t.a = 〈p1, p2, ..., pN〉 such that2
∑N

i=1 pi = 1. In many cases,

the probability vector is sparse and most pis are zeros. In such cases, we may represent

t.a by a set of pairs {(d, p)|(Pr(t.a = d) = p)∧ (p 6= 0)}. Hereafter we denote a UDA

by u instead of t.a unless noted otherwise. Also, we denote Pr(u = di) by u.pi.

Table 6.1 shows an example of a CRM application with UDA attribute Problem.

The Problem field is derived from the Text field in the given tuple using a text

classifier. A typical query on this data would be to report all the tuples which are

highly likely to have a brake problem (i.e., Problem = Brake). Table 6.2 shows a table

from a personnel planning database where Department is uncertain field. Again, one

might be interested in finding employees which are highly likely to be placed in the

Shoes or Clothes department. Formally we define UDA as follows.

Table 6.1
Example Uncertain Relation: CRM Application.

Make Location Date Text Problem

Explorer WA 2/3/06 · · · {(Brake, 0.5), (Tires, 0.5)}

Camry CA 3/5/05 · · · {(Trans, 0.2, (Suspension, 0.8)}

Civic TX 10/2/06 · · · {(Exhaust, 0.4), (Brake, 0.6)}

Caravan IN 7/2/06 · · · {(Trans, 1.0)}

Definition 6.2.1 Given a discrete categorical domain D = {d1, .., dN}, an uncertain

discrete attribute (UDA) u is a probability distribution over D. It can be represented

by the probability vector u.P = 〈p1, ..., pN〉 such that Pr(u = di) = u.pi.

2We wish to note that the sum can be < 1 in the case of missing values, and our model can also
handle this case without any changes. In this chapter, we do not concern ourselves with this issue
and assume that the sum is 1.

56

Table 6.2
Example Uncertain Relation: Personnel Planning Database.

Employee Department

Jim {(Shoes, 0.5),(Sales, 0.5)}

Tom {(Sales, 0.4), (Clothes, 0.6)}

Lin {(Hardware, 0.6), (Sales, 0.4) }

Nancy {(HR, 1.0)}

Semantically, we assume that the uncertainty is due to lack of knowledge of the

exact value. However, the actual value of attribute is just one of the given possibilities.

With this interpretation, we define the semantics of operators on UDAs. Given an

element di ∈ D, the equality of u = di is a probabilistic event. The probability of

this equality is given by Pr(u = di) = pi. The definition can be extended to equality

between two UDAs u and v under the independence assumption as follows:

Definition 6.2.2 Given two UDAs u and v, the probability that they are equal is

given by Pr(u = v) =
∑N

i=1 u.pi × v.pi.

This definition of equality is a natural extension of the usual equality operator for

certain data. As with the regular equality operator, this uncertain version can be used

to define operations such as joins over uncertain attributes. The notion of equality is

a very important concept in modeling uncertainty of attributes. This enables further

operations like joins in uncertain databases. It is semantically consistent and is also

important for propagating join results in a hierarchy. Example uses of this operator

are to compute the probability of pairs of cars having the same problem, or of two

employees working for the same department. Analogous to the notion of equality of

value is that of distributional similarity.

57

Distribution similarity is the inverse of distributional divergence, which can be

seen as a distance between two probability distributions. We consider the following

distance functions between two distributions:

L1: L1(u, v) =
∑N

i=1 |u.pi − v.pi|. This is the Manhattan distance between two dis-

tributions.

L2: L2(u, v) =
√

∑N
i=1(u.pi − v.pi)2. This is the Euclidean distance between two

distributions.

KL(u, v): KL(u, v) =
∑N

i=1 u.pi log(u.pi/v.pi). This is Kullback-Leibler (KL) diver-

gence based on cross entropy measure. This measure comes from information

theory. Unlike the above two, this is not a metric. Hence it is not directly

usable for pruning search paths but can be used for clustering in an index [48].

Divergence functions such as KL which tend to compare the probability values

by their ratios are also important in equality based indexing. Since each probability

value in the computation of equality probability is multiplied by a scaling factor, it

is meaningful to consider ratios. If UDA u has a high equality probability with UDA

q, and KL(u, v) is small, then v is also likely to have a high equality probability with

q. This principle is used to cluster UDAs for efficiently answering queries.

There is one major distinction between the notions of distributional similarity and

equality between two UDAs. Two distributions may be exactly similar but can have

less probability of being equal than two unequal distributions. For example, consider

the case where two UDAs u and v have the same vector: 〈0.2, 0.2, 0.2, 0.2, 0.2〉. In

this case, Pr(u = v) = 0.2. However, if u = 〈0.6, 0.4, 0, 0, 0〉 and v = 〈0.4, 0.6, 0, 0, 0〉,

the probability of equality, Pr(u = v) = 0.48, is higher even though they are very

different in terms of distributional distance.

Having defined the model and primitives, we next define the basic query and

join operators. We define equality queries, queries with probabilistic thresholds and

queries which give top-k most probable answers. For each of these queries we can

define a corresponding join operator.

58

Definition 6.2.3 Probabilistic equality query (PEQ): Given a UDA q, and a relation

R with a UDA a, the query returns all tuples t from R, along with probability values,

such that the probability value Pr(q = t.a) ≥ 0.

Often with PEQ there are many tuples qualifying with very low probabilities. In

practice, only those tuples which qualify with sufficiently high probability are likely to

be of interest. Hence the following queries are more meaningful: (1) equality queries

which use probabilistic thresholds [12], and (2) equality queries which select k tuples

with the highest probability values.

Definition 6.2.4 Probabilistic equality threshold query (PETQ): Given a UDA q, a

relation R with UDA a, and a threshold τ , τ ≥ 0. The answer to the query is all

tuples t from R such that Pr(q = t.a) ≥ τ .

An example PETQ for the data in Table 6.2 determines which pairs of employees

have a given minimum probability of potentially working for the same department.

In a medical database with an uncertain attribute for possible diagnoses, a PETQ

query can be used to identify patients that have similar problems. Analogous to

PETQ, we define the top-k query PEQ-top-k, which returns the k tuples with the

highest equality probability to the query UDA. Such a query can determine the k

patients that are most similar to a given patient in terms of their likely diseases. In

our indexing framework, the top-k queries are executed essentially using threshold

queries. This is achieved by dynamically adjusting the threshold τ to the kth highest

probability in the current result set, as the index processes candidates.

Similar to probabilistic equality-based queries, we can define all of the above

queries with distributional similarity. Instead of equality probability, the measure

here is distributional similarity. Given a divergence threshold, τd, the tuples which

qualify for query with UDA q are those whose distributional distance with q is at

most τd. These are called distributional similarity threshold queries (DSTQ).

59

Definition 6.2.5 DSTQ: Given a UDA q, a relation R with UDA a, a threshold τd,

and a divergence function F , DSTQ returns all tuples t from R such that F (q, t.a) ≤

τd.

There is again a similar notion for DSQ-top-k. The distributional distance can be

any of the divergence functions (L1, L2, KL) defined above. An example application

of a DSTQ is to find similar documents (e.g. web pages) in collections of documents.

Although the focus of this chapter is on probabilistic equality queries, it is straight-

forward to adapt our framework of indexing to distributional similarity queries. In

addition, distributional distance is a key concept used for clustering in one of our

indexes.

We can extend the select query operators above to join operators. Given two UDAs

u and v, and a probability threshold τ , u joins with v if and only if Pr(u, v) ≥ τ .

Thus, given two relations R and S both having UDA a, we can define threshold

equality join:

Definition 6.2.6 Given two uncertain relations R, S both with UDAs a, b, respec-

tively, relation R ⊲⊳Ra=Sb,τ S consists of all pairs of tuples r, s from R, S respec-

tively such that Pr(r.a = s.b) ≥ τ . This is called probabilistic equality threshold join

(PETJ).

This definition may also be extended to define PEJ-top-k, DSTJ, and DSJ-top-k

joins. We wish to note here that joining does introduce new correlations between the

resultant tuples and they are no longer independent of each other. Our model only

includes the selection based on thresholds. Tracking dependencies requires keeping

track of lineage and is not considered in this chapter.

Although this chapter addresses the general case of categorical uncertainty, it

should be noted that for the special case of totally ordered categorical domains, e.g.,

D = {1, .., N}, additional inequality probabilistic relations and operators can be

defined between two UDAs. For example, we can define Pr(u ≥ v), and Pr(|u− v| <

c). The notion of probabilistic equality can be slightly relaxed to allow a window

60

within which the values are considered equal. The techniques require to index these

queries are discretized versions of those in [30].

6.3 Index Structures

In this section, we describe our index structures to efficiently evaluate queries

and joins defined in the previous section. We develop two types of index structures:

(1) Inverted index based structures, and (2) R-tree based structures. Although both

structures have been explored for indexing set attributes [40, 41], the extension to

the case of uncertain data with probabilities attached to members is not straight-

forward. Experimental results show there is no clear winner between these two index

structures. Section 6.4 discusses the advantages and disadvantages of each structure

with respect to performance, depending on the nature of data and queries.

6.3.1 Probabilistic Inverted Index

Inverted indexes are popular structures in information retrieval [49]. The basic

technique is to maintain a list of lists, where each element in the outer list corresponds

to a domain element (i.e. the words). Each inner list stores the ids of documents in

which the given word occurs, and for each document, the frequencies at which the

word occurs. Traditional applications assume these inner lists are sorted by document

ID. We introduce a probabilistic version of this structure, in which we store for each

value in a categorical domain D a list of tuple-ids potentially belonging to D. Along

with each tuple-id, we store the probability value that the tuple may belong to the

given category. In contrast to the traditional structure, these inner lists are sorted by

descending probabilities. Depending on the type of data, the inner lists can be long.

In practice, these lists (both inner or outer) are organized as dynamic structures such

as B-trees, allowing efficient searches, insertions, and deletions.

Figure 6.1 shows an example of a probabilistic inverted index. At the base of the

structure is a list of categories storing pointers to lists, corresponding to each item

61

(t19 , 0.78) (t81 , 0.75) (t50 , 0.74) …d1

d2

dn

(t3 , 0.05) (t104 , 0.05) (t57 , 0.04) (t25 , 0.01) …

(t57 , 0.91) (t12 , 0.88) …

…

Figure 6.1. Probabilistic Inverted Index.

in D that occurs in the dataset. This is an inverted array storing, for each value in

D, a pointer to a list of pairs. In the list di.list corresponding to di ∈ D, the pairs

(tid, p) store tuple-ids along with probabilities, indicating that tuple tid contains item

di with probability p. That is, di.list = {(tid, p)|Pr(tid = di) = p > 0}. Again, we

sort these lists in order of descending probabilities.

We first describe the insert and delete operations which are relatively more straight

forward than search. To insert (delete) a tuple (UDA) tid in the index, we add

(remove) the tuple’s information in tuple-list. To insert it in the inverted list, we

dissect the tuple into the list of pairs. For each pair (d, p), we access the list of d and

insert pair (tid, p) in the B-tree of this list. To delete, we search for tid in the list of

d and remove tid from the list.

Next we describe search algorithms to answer the PETQ query given a UDA q and

threshold τ . Let q = 〈(di1, pi1), (di2, pi2), ..., (dil, pil)〉 such that pi1 ≥ pi2 ≥ ... ≥ pil.

We first describe the brute force inverted index search which does not use probabilistic

information to prune the search. Next we shall describe three heuristics by which

the search can be concluded early. These methods search the tuples in decreasing

probability order, stopping when no more tuples are likely to satisfy the threshold τ .

These optimizations are especially useful when the data or query is likely to contain

many insignificantly low probability values. The three methods differ mainly in their

stopping criteria and searching directions. Depending on the nature of queries and

data, one may be preferable over others.

Inv-index-search: This follows the brute-force inverted index based lookup. For all

pairs (dij , pij) in q, we retrieve all the tuples in the list corresponding to each d.

62

d3

d6

..
.

d8

p3 = 0.4

p6 = 0.1

p8 = 0.2

p'3 = 0.22

p'6 = 0.92

p'8 = 0.45

..
.

Figure 6.2. Highest-prob-first Search for q = 〈(d3, 0.4), (d8, 0.2), (d6, 0.1)〉.

Now, from these candidate tuples we match with q to find out which of these

qualify more than the threshold. This is a very simple method, and in many

cases when these lists are not too big and the query involves fewer dij , this could

be as good as any other method. However, the drawback of this method is that

it reads the entire list for every query.

Highest-prob-first: Here, we simultaneously search the lists for each dij , maintain-

ing in each dij .list a current pointer of the next item to process (see Figure

6.2). Let p′ij be the probability value of the pair pointed by the current pointer

in this list. At each step, we consider the most promising tuple-id. That is,

among all the tuples pointed by current pointers, move forward in that list of

dj where the next pair (tid, p′ij) maximizes the value p′ijpij . The process stops

when there are no more promising tuples. This happens when the sum of all

current pointer probabilities scaled by their probability in query q falls below

the threshold, i.e. when
∑l

j=1 p′ijpij < τ . This works very well for top-k queries

when k is small.

Row Pruning: In this approach, we employ the naive inverted index search but only

consider lists of those items in D whose probability in query q is higher than

threshold τ . It is easy to check that a tuple, all of whose items have probability

less than τ in q, can never meet the threshold criteria. For processing top-k

using this approach, we can start examining candidate tuples as we get them

and update the threshold dynamically.

63

Column Pruning: This approach is orthogonal to the row pruning. We retrieve all

the lists which occur in the query. Each of these lists is pruned by probability

τ . Thus, we ignore the part of the lists which have probability less than the

threshold τ . This approach is more conducive to top-k queries.

Note that the above methods require a random access for each candidate tuple. If

the candidate set is significantly larger than the actual query answer, then this may

result in too many I/Os. We also use no-random-access versions of these algorithms.

Nevertheless, we first argue the correctness of our stopping criteria. This applies to

all three of the above cases.

Lemma 6 Let the query q = {(dij , pij)|1 ≤ j ≤ l} and threshold τ . Let p′ij be

probability values such that
∑l

j=1 pijp
′
ij

< τ . Then, any tuple tid which does not

occur in any of the dij .list with probability at least p′ij , cannot satisfy the threshold

query (q, τ).

Proof For any such tuple tid, tid.pij ≤ p′ij . Hence,
∑l

j=1 pijtid.pij < τ . Since q only

has positive probability values for indices ij ’s, Pr(q = tid) < τ . 2

In many cases, the random access to check whether the tuple qualifies performs

poorly as against simply joining the relevant parts of inverted lists. Here, we use rank-

join algorithms with early-out stopping [50,51]. For each tuple so far encountered in

our search, we maintain its lack parameter – the amount of probability value required

for the tuple, and which lists it could come from. As soon as the probability values

of required lists drop below a certain boundary such that a tuple can never qualify,

we discard the tuple. If at any point the tuple’s current probability value exceeds the

threshold, we include it in the result set. The other tuples remain in the candidate set.

A list can be discarded when no tuples in the candidate set reference it. Finally, once

the size of this candidate set falls below some number (predetermined or determined

by ratio to already selected result) we perform random accesses for these tuples.

64

6.3.2 Probabilistic Distribution R-Tree (PDR-Tree)

In this subsection, we describe an alternative indexing method based on the R-

tree [52]. In this index, each UDA u is stored in a page with other similar UDAs

which are organized as a tree. The tree-based approach is orthogonal to the inverted

index approach where each UDA is shredded and indexed by its components. Here,

the entire UDA is stored together in one of the leaf pages of the tree.

Conceptually, we can consider each UDA u as a point in high-dimensional space

RN . These points are clustered to form an index. A major distinction with the regular

R-tree is that the queries for uncertain data have very different semantics. They are

equivalent to hyperplane queries on the N -dimensional cube. Thus a straight-forward

extension of the R-tree or related structures is inefficient due to the nature of queries

and the curse of dimensionality (as the number of dimensions – the domain size – can

be very large).

We now describe our structure and operations by analogy to the R-tree. We

design new definitions and methods for Minimum Bounding Rectangles (MBR), the

area of an MBR, the MBR boundary, splitting criteria and insertion criteria. The

concept of distributional clustering is central to this index. At the leaf level, each

page contains several UDAs (as many as fit in one block) using the aforementioned

pairs representation. Each list of pairs also stores the number of pairs in the list. The

page stores the number of UDAs contained in it. Figure 6.3 shows an example of a

PDR-tree index.

Each page can be described by its MBR boundaries. The MBR boundary for a

page is a vector v = 〈v1, v2, ..., vN〉 in RN such that vi is the maximum probability of

item di in any of the UDA indexed in the subtree of the current page. We maintain

the essential pruning property of R-trees; if the MBR boundary does not qualify for

the query, then we can be sure that none of the UDAs in the subtree of that page will

qualify for the query. In this case, for good performance it is essential that we only

insert a UDA in a given MBR if it is sufficiently tight with respect to its boundaries.

65

009 201

(0,0.4,0.7) (0,0.2,0.9)

(0,0.3,0.7) (0,0.4,0.6) (0,0.1,0.9) (0,0.2,0.8)

Free Space: ... Count: 2

Bound. Vec:

Children:

Free Space: ... Count: 2

Bound. Vec:

Tuple_ids:

Count: 2Free Space: ...

Bound. Vec:

Tuple_ids:765 418

Figure 6.3. Probabilistic Distribution R-tree.

This will be further explained when we discuss insertion. There are several measures

for the “area” of an MBR, the simplest one being the L1 measure of the boundaries,

which is
∑N

i=1 vi. Our methods are designed to minimize the area of any MBR. Next,

we describe how insert, split and PETQ are performed.

Insert(u): To insert a UDA into a page, we first update its MBR information ac-

cording to u. Next, from the children of the current page we pick the best

page to accommodate this new UDA. The following criteria (or combination of

these) are used to pick the best page: (1) Minimum area increase: we pick a

page whose area increase is minimized after insertion of this new UDA; (2) Most

similar MBR: we use distributional similarity measure of u with MBR boundary.

This makes sure that even if a probability distribution fits in an MBR without

causing an area increase, we may not end up having too many UDAs which are

much smaller in probability values. Minimizing this will ensure that we do not

hit too many non qualifying UDAs when a query accepts (does not prune) an

MBR. Even though an MBR boundary is not a probability distribution in the

strict sense, we can still apply most divergence measures described in Section

6.2.

66

Split(): There are two alternative strategies to split an overfull page: top-down and

bottom-up. In the top-down strategy, we pick two children MBRs whose bound-

aries are distributionally farthest from each other according to the divergence

measures. With these two serving as the seeds for two clusters, all other UDAs

are inserted into the closer cluster. An additional consideration is to create a

balanced split, so that two new nodes have a comparable number of objects. No

cluster is allowed to contain more that 3
4

of the total elements. In the bottom-

up strategy, we begin with each element forming an independent cluster. In

each step the closest pair of clusters (in terms of their distributional distance)

are merged. This process stops when only two clusters remain. As with the

top-down approach, no cluster is allowed to contain more than 3
4

of the total

elements.

PETQ(q, τ): Given the structure, the query algorithm is straightforward. We do a

depth-first search in the tree, pruning by MBRs. Let 〈〈·, ·〉〉 denote the dot-

product of two vectors. For a node c, let c.v denote its MBR boundary vector.

If an MBR qualifies for the query, i.e., if 〈〈c.v, q〉〉 ≥ τ , our search enters the

MBR, else that branch is pruned. At the leaf level, we evaluate each UDA in

the page against the query and output the qualifying ones. For top-k queries,

we need to upgrade the threshold probability dynamically during the search.

An efficiency improvement over the raw depth-first search is to greedily select

that child node c first for which 〈〈c.v, q〉〉 is the maximum. This way we can

upgrade our threshold quickly by finding better candidates at the beginning of

the search which in turn results in better pruning.

The following lemma proves the correctness of the pruning criteria.

Lemma 7 Consider a node c in the tree. If 〈〈c.v, q〉〉 < τ then no UDA stored under

the subtree of c qualifies for the threshold query (q, τ).

Proof Consider any UDA u stored in the subtree of c. Since an MBR boundary is

formed by taking the point-wise maximum of its children MBR boundaries, we can

67

show by induction that u.pi ≥ c.v.pi and qi ≥ 0 for any i, 〈〈u, q〉〉 < 〈〈c.v, q〉〉 < τ .

Thus, u cannot qualify. 2

6.3.3 Compression Techniques

An issue that was overlooked earlier is the description of MBR boundaries. Note

that an MBR boundary may be described in terms of |D| floating-point values. This

may be space inefficient if the data domain is large. Consider the case when |D| =

1000 and page size is 8K. The description of an MBR boundary may not just fit

in a page. This results in a small constant fan-out for the index structure. The

MBR description does not need to be precise and can be stored in approximate form.

Thus, we can apply some lossy compression techniques. With this, the length of

the representation of an MBR becomes variable. These variable length objects are

packed appropriately. The compression technique needs to make sure that pruning

correctness is not compromised. Hence the lossy representation of an MBR boundary

vector must be an over-estimation of the actual values. There are two orthogonal

approaches to this compression:

Set-Signature based approach: In this case, we define a function f : D → C

where |C| < |D|. Thus C is the compressed domain. In a given compressed dis-

tribution Pr(ci) = max{Pr(dj)|f(dj) = ci}. This approach is akin to that taken

by signature trees for set-values attributes [41]. Good correlation detection and

clustering methods ensure meaningful f and |C|.

Discretized-overestimation: This reduces the number of bits required to represent

each pi in a UDA. Say we allow 2 bits (instead of 4 bytes) to represent each pi.

Then, we essentially approximate pi by multiple of 0.25 which is greater than

pi. For example, a value of 0.62 will be mapped to 0.75 and can be represented

in 2 bits by representing the multiplier 3. When considering more slabs, we

may be able to code each multiplier using an optimal number of bits as per its

68

frequency and achieve entropy coding. This also substantially reduces the size

of the MBR boundary description.

6.4 Experimental Evaluation

In this section we present the experimental evaluation of the proposed index struc-

tures using real and synthetic datasets. The real dataset is generated by text clus-

tering/categorization of customer service constraints for a major cell phone service

provider in the context of CRM databases. The base data consists of 100,000 text

documents consisting of complaints, responses, and ensuing communications between

customers and service representatives. The dataset CRM1 consists of probability

values generated by automatic categorization of the text into 50 categories. Dataset

CRM2 is generated by unsupervised fuzzy clustering of the text [53, 54]. Each tuple

has a fuzzy membership among 50 clusters.

The synthetic datasets are generated to simulate varying degrees of correlation and

sparsity. The Uniform dataset has 5 items and the probability of each item is chosen

randomly for all tuples. The Pairwise dataset also has 5 elements but the individual

tuples have only 2 non-zero items with roughly equal probabilities. In addition, the

total number of item combinations is restricted to 5. Both these datasets have 10k

tuples. These two datasets represent the two extreme possible scenarios that our

algorithms can face.

The dataset Gen3 used for studying scalability with domain size is also generated

synthetically. Initially, a number of item groups are picked at random from the

domain. The size of the item groups, which determines the fill factor (expected

number of non-zero items in a tuple), is distributed geometrically. The expected

group size was varied from 3 (in domain size 10) to 10 (in domain size 500). The item

probabilities inside a group are chosen randomly.

All experiments are conducted with page size of 8 KB. We measure the number

of I/O operations performed for processing queries. We test both equality threshold

69

(PETQ) and PETQ-top-k queries. Multiple thresholds and values for k are considered

in order to produce queries with varying selectivities. All graphs shown below report

the number of I/O operations for executing queries. In order to simulate the effect

of buffering, all experiments are conducted with a buffer manager that allocates 100

blocks to each query. A clock replacement algorithm is used to manage the buffer

pool.

6.4.1 Results

Most of the graphs below show how performance (measured in disk I/Os on the

y-axis) is affected by the selectivity of the queries (shown as a percentage on the

x-axis).

Divergence Measures

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

D
is

k
 I

/O

Selectivity

CRM1-L1-TopK
CRM1-L1-Thres
CRM1-L2-TopK
CRM1-L2-Thres

CRM1-KL-TopK
CRM1-KL-Thres

Figure 6.4. L1 vs L2 vs KL (PDR-tree).

70

The first experiment studies the relative performance of the three distribution

similarity measures, L1, L2, and KL. The results for the CRM1 dataset are shown in

Figure 6.4. The x-axis shows the query selectivity and the y-axis shows the number

of disk I/O per query. For low selectivities, the KL measure clearly outperforms L1

which in turn outperforms L2. For high selectivities, all three perform similarly for

top-K queries while the trend for threshold queries remains the same. The superior

performance of KL was observed consistently in all our experiments. Consequently,

we do not present the performance of L1 and L2 in the remainder of this section.

We can also observe that for a given selectivity, the performance of top-k queries is

poorer than that of threshold queries by roughly a constant factor. This is because

a top-k query needs to explore more tuples in order to guarantee that the selected

top-k tuples do indeed give the largest probabilities. This relative behavior of top-k

queries versus threshold queries was observed in all our experiments.

Synthetic Data

In this experiment we compare the performance of the two index structures for

synthetic datasets: Uniform and Pairwise. The results are shown in Figure 6.5. The

x-axis shows the query selectivity (as a percentage), and the y-axis shows the number

of disk I/O per query. For the Uniform dataset, the performance of the inverted

index is clearly inferior to that of the PDR-tree. Because each data item included

nonzero probabilities in many categories, evaluating the query results in accessing

large numbers of lists in the inverted index structure. For the Pairwise dataset, the

inverted index yields a much better performance than for the Uniform data. However,

the PDR-tree continues to outperform the inverted index even in this case.

Real Datasets

This experiment compares the performance of the two index structures for the

two real datasets, CRM1 and CRM2. The results for CRM1 are shown in Figure 6.6

71

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.01 0.1 1 10

D
is

k
 I

/O

Selectivity

Uniform-Inv-Thres
Uniform-Inv-TopK

Uniform-PDR-TopK
Uniform-PDR-Thres

Pairwise-Inv-TopK
Pairwise-PDR-TopK

Figure 6.5. Inverted Index vs PDR-tree (synth).

 0

 20

 40

 60

 80

 100

 120

 0.01 0.1 1 10

D
is

k
 I

/O

Selectivity

CRM1-Inv-Thres
CRM1-Inv-TopK

CRM1-PDR-Thres
CRM1-PDR-TopK

Figure 6.6. Inverted Index vs PDR-tree (CRM1).

72

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.01 0.1 1 10

D
is

k
 I

/O

Selectivity

CRM2-Inv-Thres
CRM2-Inv-TopK

CRM2-PDR-Thres
CRM2-PDR-TopK

Figure 6.7. Inverted Index vs PDR-tree (CRM2).

and those for CRM2 are shown in Figure 6.7. The overall relative performance of

is the same as that for the synthetic datasets. That is, the PDR-tree significantly

outperforms the inverted index. Since CRM1 is classification-based data using a

training set, it exhibits less uncertainty that CRM2 which is based on unsupervised

clustering. Consequently, CRM1 is a sparse dataset while CRM2 is more dense. As

a result, the performance for CRM1 is about 10 times better than that for CRM2.

Dataset Size

This experiment studies the scalability of the index structures as the size of the

dataset is increased. The test is run using the CRM2 data by indexing differing

numbers of tuples. Figure 6.8 shows the results. The x-axis plots the number of

tuples in thousands, and the y-axis plots the number of disk I/O per query. As

expected, the inverted index scales linearly with dataset size, while the PDR-tree

scales sub-linearly.

73

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 10 20 30 40 50 60 70 80 90 100

D
is

k
 I

/O

Number of Tuples (x1000)

CRM2-Inv-Thres
CRM2-Inv-TopK

CRM2-PDR-Thres
CRM2-PDR-TopK

Figure 6.8. Scalability with Size of Data.

Domain Size

We now explore the impact of the domain size on index performance. In order to

test this behavior, we generate another dataset, Gen3, for which we vary the number

of items in the domain from 5 to 500. The number of non-zero entries is in the range

of 3 to 10. The results are shown in Figure 6.9. As the domain size increases, the

inverted index improves in performance. This can be attributed to the reduction in

the average length of each list as the number of lists increases with domain size (since

there is one list for each value in the domain). The charts for the PDR-tree show an

initial increase followed by a decrease as the domain size increases. We believe this

behavior is related to the data generation process. In particular, the relative number

of non-zero entries at both ends of our experimental space are smaller than in the

middle. This increase in the relative number of non-zero entries in the middle of the

range results in poorer clustering for the PDR-tree.

74

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300 350 400 450 500

D
is

k
 I

/O

Domain Size

Gen3-Inv-Thres
Gen3-Inv-TopK

Gen3-PDR-Thres
Gen3-PDR-TopK

Figure 6.9. Scalability with Domain Size.

PDR Split Algorithm

The final experiment studies the relative performance of the top-down and bottom-

up strategies for the split algorithm of the PDR-tree. Figure 6.10 shows the results

with the Uniform dataset. We find that the top-down alternative gives worse perfor-

mance than the bottom-up alternative. The performance of top-down is caused by

outliers in the data that result in poor choices for the initial cluster seeds. A similar

relative behavior was observed for the other datasets including the real data.

6.5 Chapter Summary

This chapter focused on indexing techniques for categorical uncertain data. Since

such uncertainty can be considered an extension of set-values attributes, we proposed

the extensions of signature trees and inverted indexes for this problem. Both index

structures were shown to have good scalability with respect to dataset and domain

75

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10

D
is

k
 I

/O

Selectivity

Uniform-TopDown-Thres
Uniform-BottomUp-Thres

Figure 6.10. Top-down vs Bottom-up Approach.

size. Experimental results showed that each of these structures performed efficiently,

but the nature of the data and query parameters appeared to determine their relative

performance.

The results of this chapter can be found in [55]. In the next chapter, we discuss

query selectivity estimation techniques, which are vital for query optimization in

probabilistic databases.

76

7 QUERY SELECTIVITY ESTIMATION FOR UNCERTAIN DATA

As discussed in the previous chapters, applications requiring the handling of un-

certain data have led to the development of database management systems extending

the scope of relational databases to include uncertain (probabilistic) data as a native

data type. New automatic query optimizations having the ability to estimate the

cost of execution of a given query plan, as available in existing databases, need to be

developed. For probabilistic data this involves providing selectivity estimations that

can handle multiple values for each attribute and also new query types with threshold

values. This chapter presents novel selectivity estimation functions for uncertain data

and shows how these functions can be integrated into PostgreSQL to achieve query

optimization for probabilistic queries over uncertain data. The proposed methods

are able to handle both attribute- and tuple-uncertainty. Our experimental results

show that our algorithms are efficient and give good selectivity estimates with low

space-time overhead.

7.1 Introduction

An important step towards the development of practical uncertain data manage-

ment systems, is the development of automatic query optimization as is available in

existing databases. Toward this end, an essential ingredient is the ability to esti-

mate the cost of execution of a given query plan. For probabilistic data this would

involve providing selectivity estimates for probabilistic operators. Currently, there

is no work on providing such selectivity estimation functions for probabilistic data.

With the availability of these estimation functions it is possible to use existing query

77

optimization techniques that are already built into databases to handle the case of

probabilistic data.

In this chapter we address this problem and develop novel selectivity estimation

functions for uncertain data. We also show how these functions can be integrated

into PostgreSQL to achieve query optimization for probabilistic queries over uncertain

data. Selectivity estimation for uncertain data needs to handle multiple values for

each attribute and also novel query types with threshold values. Furthermore, an

important type of uncertainty transforms a single attribute value to a continuous

distribution – this is especially common in sensor databases [2]. The existing cost

estimation methods are therefore not applicable for this domain.

The goal of this chapter is to handle selectivity estimation for the two main types

of uncertainty that have been proposed in recent work: tuple uncertainty [1, 10] and

attribute uncertainty [11]. In general, selectivity estimation can be used for query

processing in addition to its traditional role in query optimization. In this chapter we

show how the selectivity estimation algorithms can be used for efficiently processing

probabilistic k-nearest neighbor queries. To demonstrate the effectiveness of our se-

lectivity estimation techniques, we conduct experiments with Orion [45]. Although,

Orion is tailored towards the attribute uncertainty model, as we will show in Sec-

tion 7.2, our selectivity estimation techniques are equally applicable to both tuple

and attribute uncertainty models.

To sum up, the major contributions of this chapter are as follows:

• We develop efficient algorithms for selectivity estimation of probabilistic thresh-

old queries over uncertain data.

• Based upon an implementation in Orion, we experimentally show that the al-

gorithms are efficient and provide good estimates for query selectivities.

The rest of this chapter is organized as follows. We formally describe the uncer-

tainty model and probabilistic queries in Section 7.2. Our algorithms for selectivity

estimation are presented in Section 7.3. Section 7.4 presents an application of selec-

78

tivity estimation for nearest-neighbor queries. We present the experimental results

in Section 7.5, and Section 7.6 concludes this chapter.

7.2 Uncertainty Model

The uncertainty model used in this chapter is presented in Chapter 3. The goal

of this chapter is to propose estimation solutions that are applicable to both models

of uncertainty: attribute and tuple. For our purposes, we are interested in a sin-

gle attribute at a time, a (real-valued or integer), for which we are estimating the

selectivity. Thus, we can ignore the intra-tuple dependencies. We assume that the

uncertainty in the data can be captured in terms of attribute uncertainty. In other

words, for the attribute in question, we are able to generate a pdf (fa) and cdf (Fa)

for each tuple of the relation. This is directly available from the attribute uncertainty

model. For the case of tuple uncertainty, there are two cases to consider. The first is if

there are no x-tuples. In this case, each tuple has a probability value associated with

it and is independent of any other tuple. For this case, the pdf for each tuple is simply

the single attribute value along with the associated tuple probability. In the second

case, the x-tuple itself provides multiple alternatives for the given attribute along

with associated probabilities. These are collapsed into a single attribute uncertainty

(discrete) pdf.

7.2.1 Operators and Threshold Queries

A number of operators are defined in [47] for comparing uncertain values with

both uncertain and certain (precise) values. This chapter focuses on selection queries

that compare an uncertain value with precise values. For these queries, we present

79

the definitions for comparing uncertain with certain data. Operators between an

uncertain value a and a certain value v ∈ ℜ can be defined as:

Pr(a < v) =

∫ v

−∞

fa(x)dx = Fa(v)

Pr(a > v) = 1− Fa(v)

Pr(a =c v) =

∫ v+c

v−c

fa(x)dx = Fa(v + c)− Fa(v − c)

Pr(a 6=c v) = 1− P (a =c v)

The probability that a continuous random variable is exactly equal to a precise

value is 0. In order to circumvent this problem a parameter called resolution is used to

relax the definition of equality [47]. Note that we can use the exact definition (without

c) for defining equality for a discrete distribution, but in order to make things simpler

we use the same definition for both cases. This enables us to treat both discrete and

continuous data in a similar fashion. In case an exact equality is required the user

can always select a small enough c to make sure that the approximate equality (=c)

becomes exact equality for discrete distributions.

The set of queries that we consider in the chapter are called Probabilistic Threshold

Range Queries and were proposed in [30]. These queries are a variant of probabilistic

queries where only answers with probability values over a certain threshold τ are

returned. With this concept, all the operators discussed above can be changed into

boolean predicates by adding a probability threshold to them.

7.2.2 Probabilistic Threshold Index

To efficiently evaluate the PTQ mentioned above, an indexing scheme known as

probabilistic threshold index (PTI) was introduced in [30]. The PTI index is very

similar to R-Trees but with extra information stored with each node. This information

enables improved pruning for threshold queries on probabilistic data. The extra

information stored is called x-bounds, which are tighter bounds calculated based on

80

the properties of uncertainty pdfs stored within each node. An x-bound for a tree

node N is defined as:

Definition 7.2.1 Given 0 ≤ x < 1, an x-bound of a node N consists of two values,

called left-x-bound (LN (x)), and right-x-bound (RN(x)). For every uncertain value a

contained in N , two conditions must hold:

• If la < LN (x), then
∫ LN (x)

la
fa(y)dy ≤ x.

• If ra > RN(x), then
∫ ra

RN (x)
fa(y)dy ≤ x.

MBR1MBR2 MBR3MBR1
Internal

Node

Level

Leaf

Level

pdf pdf

x-bounds

Figure 7.1. Structure of Probabilistic Threshold Index.

The x-bounds for different values of x (e.q. 0, 0.1,. . .,0.9) are calculated and stored

inside the node N as shown in Figure 7.1. For a given threshold range query [a, b]

81

with threshold τ , if we know the x-bounds of a node N , we can eliminate N from

further examination if the following two conditions hold:

1. [a, b] does not intersect left-x-bound or right-x-bound of N i.e. b < LN(x) or

a > RN (x) is true, and

2. τ ≥ x

Thus, the presence of x-bounds allows us to decide with ease whether an internal

node contains any qualifying MBRs, without further probing into the subtrees of the

node. We have used PTI index in our experiments to evaluate PTQ queries, but as

discussed in Section 7.3 this index is not well suited for query selectivity estimation.

7.3 Selectivity Estimation

In this section we describe various techniques that can be used for estimating the

selectivity for a given probabilistic threshold operator.

7.3.1 Selectivity Estimation using PTI

This is a näıve approach for getting an upper bound on result size. As discussed

in Section 7.2, a PTI index can be used to evaluate a threshold range query over

uncertain data. To get an estimate of result size, we can use the same index structure

but we need to maintain extra information about the descendants of each node. For

a node n, we represent the total number of descendants of n by Dn. Intuitively, Dn is

the total number of uncertain items that are stored inside node n. For internal nodes,

we can calculate Dn by summing up the number of descendants of all its children.

To obtain an estimate of result size, we can reuse the index-based range query

processing algorithm with early termination: i.e. we do not evaluate the query beyond

some depth d less than the height of the tree. The value of d determines the degree

of overestimation of the result set size. If the algorithm returns nm1
, nm2

, . . . nmk
as

82

the nodes at depth d that are candidates satisfying the range query, an upper bound

on actual number of items R is given by:

R ≤
n
∑

i=0

Dnmi

To get a good estimate it may be desirable to proceed till the penultimate nodes (d

= height of tree - 1). In that case, this näıve approach is not very different (in terms of

I/O cost) from actually executing the query. This is because the PTI indexing scheme

was originally developed for answering range queries and not for finding estimates.

In the next section, we present another kind of structure based on histograms which

is tailored for finding estimates for range queries.

7.3.2 Unbounded Range Queries

This approach is based on mapping the uncertain attribute values to a 2-D his-

togram and estimating the query result size by executing a 2-D box query on the

histogram.

To understand the approach, let us consider an unbounded range query Q given

by a <τ x0, where τ is the probability threshold for the > predicate. This query

returns all uncertain items a such that Pr(a < x0) > τ . In terms of the cumulative

distribution function Fa(x), we get the following condition:

Pr(a < x0) > τ ⇔

∫ x0

−∞

fa(x)dx > τ ⇔ Fa(x0) > τ (7.1)

This follows from the definition of pdf and cdf functions.

Let us consider a 2D graph where we plot the cdf function F of all uncertain

items. Figure 7.2 shows an example of this graph. The cdfs for three data items a,

b, and c are shown. The range query Q given by Equation 7.1 can be translated into

a (unbounded) box query x < x0 and y > τ over this 2D plot (the shaded region in

Figure 7.2). Items a and b satisfy the query as they intersect the shaded region.

83

Probability

x0

p = 1

Q

Fa(x)

Fb(x)

Fc(x)

Attribute Value

Figure 7.2. Example plot for query Q(x0, τ).

Theorem 7.3.1 All the items whose cdf function Fa(x) lies in the box defined by

query Q are part of the result of query Q. That is, ∀a, where the cdf function Fa lies

in the box defined by query Q, we have Pr(a < x0) > τ .

Proof We observe that for any cdf Fa that lies in the box of query Q, we have

Fa(x) > τ for some x < x0. As Fa is a monotonically increasing function, we can

deduce that Fa(x0) > Fa(x) > τ . Using 7.1, P (a < x0) > τ . 2

Now we state the following theorem without proof:

Theorem 7.3.2 The total number of cdf lines that lie in the query box Q is equal to

the number of lines crossing (intersecting) the vertical line-segment given by ℓ : x =

x0, τ < y ≤ 1, which furthermore is equal to the number of lines crossing (intersecting)

the horizontal ray y = τ, x < x0.

The proof of this theorem follows from basic geometry and the monotonically increas-

ing nature of cdf F .

Now finding all the items whose cdf function lies in the box defined by a query

Q is equivalent to finding the total number of intersections of cdf lines with the

84

vertical line-segment ℓ. To efficiently calculate this number we need to develop an

approximation of the above technique. For this purpose, we define a 2-D grid of

histogram over the plot region. Given ui, 0 ≤ i < m as all the uncertain data items,

we define

l = min
i

(lui
) , r = max

i
(rui

)

where [lui
, rui

] is the uncertainty interval of ui. The plot region is bounded by 0

and 1 in the y (probability) direction and l, r in the x direction. The range R

of the histogram is defined as R = r − l. The width of the histogram is given

by the parameters δx and δp which represent the size of histogram along x and y

(probability) axes respectively. A histogram bucket H(x, y) covers the area given by

the box (x, y, x + δx, y + δp). The notations used are summarized in Table 7.1.

Table 7.1
Notations.

Symbol Meaning

fa Probability distribution function (pdf) of uncertain item a

Fa Cumulative distribution function (cdf) of a

la, ra Left and right bounds of a’s interval.

Ra Range of a, Ra = ra − la

ui All the uncertain data items (0 ≤ i ≤ m)

l, r Leftmost and rightmost limits of all the uncertain intervals

R Range of input data, R = r − l

δx, δp Width of histogram bucket along x and y (probability) axis

H Histogram structure for cost estimation

Definition 7.3.1 The height of a histogram bucket H(x, y) is the total number of cdf

lines of uncertain items intersecting the box (x, y, x + δx, y + δp).

With this definition, we can now informally describe the algorithm for calculating

an approximation (upper-bound) of operator selectivity. Using Theorem 7.3.2 we see

85

that the sum of individual histograms that cover the vertical line-segment ℓ gives

a good approximation of the upper-bound of the result set size. The error in this

approximation can be reduced by reducing the size of the histogram buckets. This

extra accuracy comes at the cost of increased space overhead for storing the histogram

structure.

Probability

p = 1

x x + δx

Fa(x)

Attribute Value

Figure 7.3. Plot showing the case when an item’s cdf crosses more
than one histogram bar in a vertical window due to its large slope.

As seen in Figure 7.3, if a cdf line has a large slope, it can contribute to more than

one histogram in a given vertical window. This will result in over-estimation of the

result size because the same cdf line will be counted multiple times. To prevent this,

we propose a simple fix: If a cdf line intersects multiple (contiguous) histograms in a

given vertical window, we only count its contribution in the topmost histogram. With

this slight change, we will avoid counting the same line multiple times and obtain a

tighter upper bound. Note that by adding the contribution of a given cdf line to

the topmost histogram, we are guaranteed that there will be no false negatives. The

algorithm for constructing this 2-D histogram is presented in Figure 7.4.

The algorithm presented in Figure 7.4 takes as input the uncertain data items

from an attribute and the parameters δx and δp defining the width of each histogram

86

inside the structure H . In addition to these values, it also takes the l and r values

(defined earlier) which represent the spread of input data values. Depending on the

attribute domain, these parameters can be provided by the user or the system can

select them by random sampling. For a given uncertain item a, we start counting its

contribution from its lower bound la and stop when we hit the upper-most bucket

in the y-direction (Step 1(ii)). This small optimization saves a lot of computations

as this step is repeated for all the input uncertain data items. Note that, for the

correctness of our algorithm we do need to add the contributions to all the successive

top buckets for item a. We take care of this correction in step 2 with just one pass

over the entire histogram.

Given this histogram structure H , we can easily give an approximation for query

result size. Figure 7.5 shows the algorithm for finding the selectivity estimate for

query Q(x, τ) = a <τ x.

Note that the above discussion applies to a <τ x queries only. For unbounded

range queries of the form Q : a >τ x, we have the following result:

a >τ x⇔ Pr(a > x) > τ ⇔ Fa(x) < 1− τ (7.2)

Using Equation 7.2 we can see that if an uncertain item a does not satisfy the

query a <1−τ x (i.e. Fa(x) 6> 1 − τ) then it will satisfy the query a >τ x. The

algorithms presented in Figures 7.4 and 7.5 can therefore be used for >τ queries

with slight modifications. The selectivity of > can be calculated by computing the

selectivity of < and using the fact that selectivity for >τ is 1 - selectivity for <1−τ .

Theorem 7.3.3 The time complexity of algorithm presented in Figure 7.4 is:

m−1
∑

i=0

(

Rui

δx

)

+ O

(

R

δx

)

Proof The first terms comes from Step (1) in which we go through each item once

for each uncertain item. Finally we add up all the contributions in the top histogram

buckets in Step (2) which gives us the second term in the above expression. 2

87

Input

ui, 0 ≤ i < m : All the uncertain data items

δx, δp : Width of histogram along x and y axis

l, r : The left and right bounds for the histogram

Output

H : The histogram structure for the input data

0. Initialize H (⌊R/δx⌋+ 1, ⌊1/δp⌋+ 1) with all histogram bucket heights = 0

1. for a = u0, u1 . . . , um−1 do

(i) let x = ⌊(la − l)/δx⌋; p = 0

(ii) while p < (1− δp)

(a) p = Fa(l + (x + 1)δx)

(b) H (x, ⌊p/δp⌋)++

(c) x++

2. for x = 0, 1, . . . , ⌊R/δx⌋

(i) H(x, ⌊1/δp⌋) += H(x− 1, ⌊1/δp⌋)

3. return H

Figure 7.4. Algorithm for generating the histogram for unbounded range queries.

7.3.3 General Range Queries

As discussed earlier, a general range query Q is expressed as Pr(x1 < a < x2) > τ .

This query returns all tuples such that:

Pr(x1 < a < x2) > τ ⇔

∫ x2

x1

fa(x)dx > τ

⇔ Fa(x2)− Fa(x1) > τ

The previous section on unbounded range queries is a special case of the general

range query where x1 = −∞ (or l) or x2 =∞ (or r).

88

Input

x0, τ : Parameters of a query Q

H : Histogram structure

m : Total number of uncertain items

δx, δp : Width of histogram along x and y axis

l, r : The left and right bounds for the histogram

Output

An estimate (upper-bound) of query selectivity

1. if x0 < l return 0

2. if x0 > r return 1

3. x = ⌊(x0 − l)/δx⌋

4. let S = 0

5. for p = ⌊τ/δp⌋ , . . . , ⌊1/δp⌋

(i) S = S + H(x, p)

6. return (S/m)

Figure 7.5. Algorithm for estimating query selectivity for unbounded range queries.

We can extend the earlier solution to general range queries by adding another

dimension to the histogram. In addition to the x-axis and y-axis representing x2

(end-point of the range query) and the probability threshold τ respectively, we will

now have a z-axis representing x1 (or the beginning of range query).

The theoretical discussion of this selectivity estimation solution is similar to the

unbounded case. In place of a 2-D curve, we will now have a 3-D curve for each

uncertain item which is given by the function:

Ga(x1, x2) =

∫ x2

x1

fa(x)dx = Fa(x2)− Fa(x1) (7.3)

89

The range query Q will now translate to a box query given by x < x2, y > τ and

z = x1. We can now state the following theorem for the 3-D curve:

Theorem 7.3.4 Each item for which Ga(x1, x2) intersects the box defined by query

Q is part of the result of query Q. That is, ∀a, where the function Ga intersects the

box defined by query Q, we have Pr(x1 < a < x2) > τ .

Proof We observe that for any cdf Fa that lies in the box of query Q, we know that

Ga(x1, x) > τ for some x < x2. This gives us that Ga(x1, x2) > Ga(x1, x) > τ . Using

7.3, we have P (x1 < a < x2) > τ . 2

Similar to Theorem 7.3.2, we can prove that we can count the total number of

items in the result set by counting the total number of intersections of function Ga

with the line-segment x = x2, τ < y ≤ 1 in the z = x1 plane. The definition and

construction of 3-D histogram is similar to the 2-D counterpart and is presented in

Figure 7.6. The algorithm for estimating the answer size for a given query Q(x1, x2, τ)

is presented in Figure 7.7.

We can apply an optimization similar to the algorithm in Figure 7.4 by modifying

only the local histogram area which is affected by an uncertain item and then propa-

gating the effects globally by adding a post-processing step. This optimization helps

in bringing down the running time of the algorithm significantly. To achieve this

goal we keep three temporary histogram tables Hx, Hz and Hxz along with the main

histogram structure H . For an uncertain item a, Step 1 adds the contribution of the

item to the main histogram H , along with adding the contributions that are to be

propagated globally to the temporary histograms. Hz and Hx store the contribution

to the bins corresponding to z = la and x = ra respectively, while Hxz stores the

contribution to the bin corresponding to z = la and x = ra. It is easy to see that the

local contribution of the item a to Hz needs to be propagated to the plane given by

la ≤ x < ra and z < la as for these values Pr(z < a < x) = Pr(la < a < x) (Step 3a).

Similarly, Hz needs to be propagated globally to the plane la < z ≤ ra and x > ra as

for this plane Pr(z < a < x) = Pr(z < a < ra) (Step 3b). In a similar fashion, Hxz

90

is propagated to z < la and x > ra (Step 4 and 5). Finally, we add all the temporary

histograms to the main histogram to get the final histogram structure (Step 6).

Theorem 7.3.5 The time complexity of algorithm presented in Figure 7.6 is:

m−1
∑

i=0

(

R2
ui

2δ2
x

)

+ O

(

R2

δ2
xδp

)

Proof By counting the number of loops. All the steps in Figure 7.6, except for Step

1, touch the cells only constant number of times. The number of loops in Step 1 gives

the first summation. 2

Equality and Inequality Operators

We now discuss the selectivity estimation for =c and 6=c operators. Recall that:

a =c,τ v ⇔ P (a =c v) > τ

⇔ Fa(v + c)− Fa(v − c) > τ

⇔ P (v − c < a < v + c) > τ

Therefore, an equality query boils down to a simple range query. The selectivity

estimate of 6=c is 1 − the selectivity estimate for =c operator. Hence, we can use the

techniques discussed in the previous section for estimating selectivity for =c and 6=c

operators also.

7.3.4 General Range Queries using Slabs

In Section 7.3.3 we discussed how the histogram construction technique can be

extended to general range queries. While the accuracy of such an estimate is very

good, the initial construction time and space trade-off is quadratic in terms of the

range of the input data (R). In this section, we present another technique which

has, in general, a lower accuracy than the previous technique but better space-time

complexity.

91

Input

ui, 0 ≤ i < m : All the uncertain items

δx, δp : Width of histogram along x,z and y axis

l, r : The left and right bounds for the histogram

Output

H: The histogram structure for the input data

0. Initialize H,Hx,Hz,Hxz with all bucket heights = 0

1. for a = u0, u1 . . . , um−1 do

(i) let xmin = ⌊(la − l)/δx⌋, xmax = ⌊(ra − l)/δx⌋

(ii) for z = xmin, . . . , xmax and x = z, . . . , xmax do

(a) p = Ga(l + zδx, l + (x + 1)δx)

(b) if (z = xmin) ∧ (x = xmax) Hxz(x, ⌊p/δp⌋ , z)++

(c) else if (z = xmin) Hz(x, ⌊p/δp⌋ , z)++

(d) else if (x = xmax) Hx(x, ⌊p/δp⌋ , z)++

(e) else H(x, ⌊p/δp⌋ , z)++

2. let xmax = ⌊R/δx⌋

3. for p = 0, . . . , ⌊1/δp⌋

(a) for x = 0, . . . , xmax and z = xmax − 1, xmax − 2, . . . , 0 do

Hz(x, p, z) += Hz(x, p, z + 1)

(b) for z = 0, . . . , xmax and x = 1, 2, . . . , xmax do

Hx(x, p, z)+ = Hx(x− 1, p, z)

4. for x = 0, . . . , xmax and z = xmax − 1, xmax − 2, . . . , 0 do

Hxz(x, ⌊1/δp⌋, z) += Hxz(x, ⌊1/δp⌋, z + 1)

5. for z = 0, . . . , xmax and x = 1, 2, . . . , xmax do

Hxz(x, ⌊1/δp⌋, z) += Hxz(x− 1, ⌊1/δp⌋, z)

6. for all x, z, p H(x, z, p) += Hz(x, p, z) + Hx(x, p, z) + Hxz(x, p, z)

7. return H

Figure 7.6. Algorithm for generating the histogram for general range queries.

92

Input

x1, x2, τ : Parameters of a query Q

H : Histogram structure

m : Total number of uncertain items

δx, δp : Width of histogram bucket along x,z and y axis

l, r : The left and right bounds for the histogram

Output

An estimate (upper-bound) of query selectivity

1. if x1 < l x1 = l

2. if x2 > r x2 = r

3. let x = ⌊(x2 − l)/δx⌋, z = ⌊(x1 − l)/δx⌋

4. let S = 0

5. for p = ⌊τ/δp⌋, . . . , ⌊1/δp⌋

(i) S = S + H(x, p, z)

6. return (S/m)

Figure 7.7. Algorithm for estimating query selectivity for general range queries.

In this algorithm, we partition the entire range of input data into slabs. Similar

to histograms, the length of a slab is controlled by the input parameter δx. Each slab

stores estimates of query selectivity for different values of p. A slab with end-points

at x = x1, x2 stores the selectivity of a bounded range query Q(x1, x2, τ) for different

values of τ . Once again, the number of divisions (estimates) along the probability axis

is controlled by δp. Note that, for a query that spans multiple slabs, we cannot just

add the contributions of individual slabs. To solve this problem, we have a hierarchy

of slabs. The size of slab at the bottom-most level of this hierarchy is exactly δx but

as we go up the hierarchy the size increases exponentially until we reach the top-most

slab, which encompasses the entire input region. At each level of the hierarchy there

93

are two1 sets of slabs, one starting at the midpoint of the other, so that we can get

better estimates. We call these slabs A and B, respectively.

Formally, we have log(R/δx) hierarchical levels, with each hierarchical level having

two sets of slabs A(i, j, p) and B(i, j, p) where j ≤ ⌈log2(R/δx)⌉.

Definition 7.3.2 The slabs A(i, j, p) and B(i, j, p) cover the regions R1 = [l +

2jiδx, l + 2j(i + 1)δx] and R2 = [l + 2j(i + 1/2)δx, l + 2j(i + 3/2)δx] respectively. The

height of the slab A(i, j, p) (or B(i, j, p)) is given by the number of uncertain items

satisfying the bounded query R1 (or R2) with probability between pδp and (p + 1)δp.

As mentioned earlier, each of these slabs stores the query answers for different

values of query threshold τ . Thus, every A(i, j) or B(i, j) is an array of ⌊1/δp⌋

values. The construction algorithm is presented in Figure 7.8. In Step 1, for each

item, we find the slabs that are affected by the item and add the contribution of the

item to the corresponding slabs.

Once we have this slab structure, we can get estimates by finding a pair of slabs

that contains (over-estimate) and is contained (under-estimate) by the query region.

With these estimates, we interpolate the estimates based on the the interval size to get

the final estimate. The algorithm for finding the estimate is presented in Figure 7.9.

In the algorithm, Step 1 picks j which corresponds to the slab size just smaller than

the query. We have two additional functions pickLB and pickUB, which given the

query limits and a level j, returns the slab that is contained inside and contains the

query respectively. If these functions can not find any such slab at level j they return

null. For j < 0, these functions simply return a slab with size 0 and all estimates

are set to 0. In the case, these functions find more than one slab which satisfy the

conditions of UB (LB) they return the one with minimum (maximum) estimate. This

is done in order to get a tighter bound on the final estimate. The details of these

functions are omitted due to space considerations. Steps 2 and 3 find the slabs and

return them. Once we have a slab TLB that bounds the answer from below and a slab

1In general, we can have more than two sets of slabs for each level of hierarchy which will further
increase the accuracy of this technique.

94

Input

ui, 0 ≤ i < m : All the uncertain items

δx, δp : Parameters controlling width of divisions

l, r : The left and right bounds for the input region

Output

The slab structure for the input data

0. Initialize A and B with all buckets heights = 0

1. for a = u0, u1, . . . , um−1 do

(i) for j = 0, 1 . . . , ⌈log2(R/δx)⌉ do

(a) let xmin = ⌊(la − l)/(2jδx)⌋,

xmax = ⌊(ra − l)/(2jδx)⌋

(b) for x = xmin . . . xmax do

(A) let p = Ga(l + x2jδx, l + (x + 1)2jδx),

(B) A(x, j, ⌊p/δp⌋)++

(c) let xmin = ⌊(la − (l + 2j−1δx))/(2jδx)⌋,

xmax = ⌊(ra − (l + 2j−1δx))/(2jδx)⌋

(d) for x = xmin . . . xmax do

(A) p = Ga(l + 2j(x + 1/2)δx, l + 2j(x + 3/2)δx)

(B) B(x, j, ⌊p/δp⌋)++

2. return A,B

Figure 7.8. Algorithm for generating slabs.

TUB that bounds the answer from above, we find the selectivity estimates of TLB and

TUB in Step 6 and then finally in Step 7 we linearly interpolate the estimates based

on the size of query and size of the two intervals returned. This gives us an estimate

of the query result size.

95

Lemma 8 For any query Q, the difference between the levels, from which TLB and

TUB are picked up, is at most 2. Thus, the space covered by TUB is at most 4 times

that of TLB.

Proof It follows from the cases of Figure 7.9. It remains to show that the else cases

in Step 2(b) and Step 3(a),(b) are always successful in finding a slab. Note that the

size of the slab at level j is less than the query interval. So a slab at level j could fit

in the query. If this happens with the A slab being contained, then there is a slab at

level j + 2 that surely contains the query. This is because, an A slab at level j + 1

contains at least one end-point of the query, and hence at level j + 2, since an A slab

and a B slab extend this A slab at level j + 1 in different directions, at least one of

the A slabs at level j + 2 or B slabs at level j + 2 will cover the entire interval. If at

level j, the query covers a B slab, then it cuts two consecutive A slabs at level j and

hence it is covered in either an A slab or a B slab at level j + 1. If the query does

not cover any slab at level j, then it again cuts two consecutive A slabs at level j.

This means it is covered by a slab at level j + 1. Also, it cuts at least one of these A

slabs by more than half at the level j. Thus, there is an A slab at level j − 1 which

is contained in the query. 2

Theorem 7.3.6 The time complexity of algorithm presented in Figure 7.8 is:

O

(

m−1
∑

i=0

(

Rui

δx

)

+ m log

(

R

δx

)

)

Proof The above result directly follows from the following expression which is the

total cost of Step 1.
m−1
∑

i=0

log(R/δx)
∑

j=0

⌈

Rui

2jδx

⌉

2

Similarly, we can also show that the total space overhead is O (R/δx). Both these

results are intuitive if we observe that the total cost/space is asymptotically bounded

by number of slabs at the bottom-most level as the number of slabs at higher levels

decrease exponentially.

96

Input

x1, x2, τ : Parameters of a query Q

A, B : Slab structure

m : Total number of uncertain items

δx, δp : Parameters controlling width of divisions

l, r : The left and right bounds for the histogram

Output

An estimate of the query selectivity

1. let j = ⌊log2((x2 − x1)/δx)⌋

2. if (T = pickLB(x1, x2, j)) exists

(a) TLB = T

(b) if (T = pickUB(x1, x2, j + 1)) exists

TUB = T

else TUB = pickUB(x1, x2, j + 2)

3. else

(a) TLB = pickLB(x1, x2, j − 1)

(b) TUB = pickUB(x1, x2, j + 1)

4. let Smin = Smax = 0, t1 = length of TLB,

t2 = length of TUB

5. for p = ⌊τ/δp⌋, . . . , ⌊1/δp⌋

(a) Smin += TLB(p), Smax += TUB(p)

6. S = Smin + (Smax − Smin)× (x2 − x1 − t1)/(t2 − t1)

7. return (S/m)

Figure 7.9. Algorithm for estimating query selectivity using slabs.

7.4 Nearest Neighbor Queries

Traditionally, selectivity estimation techniques have been useful for query opti-

mization purpose. Here, we show an example where selectivity estimation can also

97

benefit in indexing and retrieval problems. We consider the k-nearest neighbor (kNN)

problem for uncertain data, which has received a lot of interest in recent years [31,56].

There are many different definitions and formulations of nearest neighbors when it

comes to uncertain data. We consider here a slightly different variant than the one

considered in [31, 56] and show how our selectivity estimation technique can help us

design an efficient index for this variant of kNN query.

Let S be the set of tuples with uncertain attribute u. Let query Q consist of a

point x, a threshold t, and a number k. Then, for an attribute u, its t-distance from

x is the value ru such that Pr(x− ru ≤ u ≤ x + ru) = t. Then, the nearest neighbor

of x in S, is the tuple for which ru is minimum over all values in S. The k-th nearest

neighbor of x is the tuple with k-th minimum ru. The value ru of the k-th nearest

neighbor is also called kNN radius r(x, t, k) for the point x with threshold t. The

query Q = (x, t, k) when applied over S returns the set Q(S) of k tuples which are

nearest neighbors.

Note that if we know the value r = r(x, t, k) before-hand then such a set Q(S)

can be obtained by probabilistic threshold range query (PTRQ) ([x− r, x + r], t). If

we do not we could end-up in the case where we would need to examine a lot more

candidates in order to make sure of which are the nearest k candidates. Note that

the brute-force approach could possibly examine all the tuples. Thus, finding such

an r is critical.

With our estimation techniques, we can quickly estimate such a radius r. Note

that for two values r1 < r2, the count(PTRQ([x−r1, x+r1], t)) < count(PTRQ([x−

r2, x + r2], t)). This monotonic behavior of count with respect to the radius r allows

us to do a binary search to find the value of suitable r. We search for the value of r

such that the estimate of count(PTRQ([x − r, x + r], t)) is equal to k. Notice that

since these are estimates they may not be strictly monotonic and binary search can

be affected by such an inversion. If we find such inversion for some range in our

procedure, we stop the process and estimate the higher value of the range as r.

98

7.5 Experimental Evaluation

We have implemented our statistics collection and selectivity estimation algo-

rithms in Orion. To efficiently evaluate the queries discussed in this chapter, Orion

uses the probabilistic threshold index (PTI). This system not only allows us to val-

idate the accuracy of our methods in a realistic runtime environment, it also gives

additional insight into the overall effect our techniques have on query optimization in

an industrial-strength DBMS.

7.5.1 Implementation

PostgreSQL measures the cost of query plans in disk page fetches (for simplicity,

all CPU efforts are converted into disk I/Os). The optimizer generally estimates the

cost of query plans by calculating the overall selectivity and multiplying it against

the estimated cardinality. In the common case of multiple predicates, individual

selectivities are multiplied together, except for range queries where the dependence

between the lower and upper bounds is simple to evaluate.

Virtually every numeric data type in PostgreSQL shares the same source code

for cost estimation. Using this code base, we have built our implementation of the

algorithms in Figures 7.4, 7.6, 7.5, and 7.7. Using the elegant framework PostgreSQL

provides for new data management techniques, our implementation extends the func-

tionality of Orion’s UNCERTAIN data type by registering the optional callbacks for

collecting statistics and estimating selectivity.

7.5.2 Methodology

To ensure correctness, we ran each experiment on a variety of queries and datasets,

and then averaged the results. After populating the database with each test dataset,

we first used VACUUM ANALYZE to generate the statistics in advance. The following

experiments were conducted on a 1.6 GHz Pentium CPU with 512 MB RAM, running

99

Linux 2.6.17, PostgreSQL 8.1.5, and Orion 0.1. Note that most of the resulting plots

show the relative error of the selectivity estimates, i.e. the goal is to be as close to

0% as possible.

Synthetic Datasets

Each dataset consists of random “sensor readings,” using a schema Readings

(rid, value). Without loss of generality, the uncertain values (i.e. reported from

the sensors) are floating point numbers ranging from 0 to 1000, and the pdf for

each uncertain value is a uniform distribution. The interval sizes are distributed

normally, with midpoints distributed uniformly. We refer to our three main datasets

as Data-5, Data-50, and Data-100; the numbers correspond to the average width of

the uncertain value intervals.

Table 7.2 summarizes the control variables for the subsequent experiments. In

particular, we show that our algorithms perform well without regard to dataset car-

dinality, and are reasonably robust to query selectivity and probabilistic threshold.

In addition, we demonstrate the effect of increased precision as a trade-off between

construction time and space versus the resulting accuracy of the selectivity estimates.

Table 7.2
Summary of Control Variables.

Variable Default Value

Cardinality 250,000

Selectivity 2.5 %

Threshold 50 %

Precision 70 bins

100

Example Query Plan

To illustrate the impact that correct estimates have on query optimization, we

present the following example output from PostgreSQL. When no selectivity esti-

mation function is available for a given predicate, PostgreSQL simply returns the

default value of 1/3 for estimating unbounded range queries, and 0.005 for general

range queries. In practice this estimate favors the use of unclustered indexes, such as

PTI [30], to improve I/O performance:

SELECT * FROM Readings WHERE value < 750;

Bitmap Heap Scan on Readings

(cost=742.33..4075.67 rows=66667 width=36)

(actual=20379.348..20824.652 rows=153037)

Recheck Cond: (value < 750::real)

-> Bitmap Index Scan on pti_value

(cost=0.00..742.33 rows=66667 width=0)

(actual=20378.677..20378.677 rows=153K)

Index Cond: (value < 750::real)

With accurate estimates, the optimizer makes the correct decision, namely not to use

the available PTI index:

(same query as before, but using our algorithms)

--

Seq Scan on Readings

(cost=0.00..5000.00 rows=164333 width=35)

(actual=83.841..15545.401 rows=153037)

Filter: (value < 750::real)

As shown in this example, accurate selectivity estimation saves the system thou-

sands of disk fetches (i.e. 15545 total cost instead of 20825). In general, incorrect

estimates may result in much higher losses of efficiency.

101

0%

25%

50%

75%

100%

125%

150%

0% 20% 40% 60% 80% 100%

Query Selectivity

R
el

a
ti

v
e

E
rr

o
r

Orion Default

Figure 7.10. Selectivities (2D).

0%

25%

50%

75%

100%

125%

150%

0% 20% 40% 60% 80% 100%

Query Selectivity

R
el

a
ti

v
e

E
rr

o
r

Orion Default

Figure 7.11. Selectivities (3D).

0%

5%

10%

15%

20%

25%

0 200 400 600 800

Data Cardinality (K)

R
el

a
ti

v
e

E
rr

o
r

Query-1 Query-2 Query-3

Figure 7.12. Cardinalities (2D).

0%

10%

20%

30%

40%

50%

0 200 400 600 800

Data Cardinality (K)

R
el

a
ti

v
e

E
rr

o
r

Query-1 Query-2 Query-3

Figure 7.13. Cardinalities (3D).

0%

10%

20%

30%

40%

50%

0 0.2 0.4 0.6 0.8 1

Query Threshold

R
el

a
ti

v
e

E
rr

o
r

Data-5 Data-50 Data-100

Figure 7.14. Thresholds (2D).

0%

30%

60%

90%

120%

0 0.2 0.4 0.6 0.8 1

Query Threshold

R
el

a
ti

v
e

E
rr

o
r

Data-5 Data-50 Data-100

Figure 7.15. Thresholds (3D).

7.5.3 Results

We now evaluate the accuracy and performance of our cost estimation techniques

for unbounded range queries using the 2D histogram structure introduced in Section

102

7.3.2 (see Figure 7.5), and general range queries using the 3D histogram discussed in

Section 7.3.3 (see Figure 7.7).

Accuracy at Varying Selectivities

The first experiment verifies the accuracy of our algorithms, regardless of query

selectivity. Figures 7.10 and 7.11 summarize the results using all three synthetic

datasets. For clarity, we have only plotted one of them. The x-axis shows the se-

lectivity of the query which was varied from high (1%) to low (100%). The y-axis

shows the accuracy of the estimation as a percentage relative to the size of the exact

result. Our algorithm significantly outperforms the baseline PostgreSQL estimate.

As expected, high selectivity has a slight effect on the accuracy of our methods.

Accuracy at Varying Cardinalities

The next experiment studies the overall scalability of our algorithms, namely the

impact of the size of the relation on the accuracy of the estimations. Figures 7.12 and

7.13 show the results for three representative queries. The x-axis shows the size of the

table in number of tuples which was varied from 50,000 to 800,000. The results show

that our approach is unaffected by the size of the dataset. This is in sharp contrast

to the baseline PostgreSQL estimator (not shown) which is much more sensitive to

the dataset size, particularly for smaller datasets.

Accuracy at Varying Thresholds

Figures 7.14 and 7.15 show the impact of query threshold on the accuracy of

the estimates. The x-axis shows the threshold probability and the y-axis shows the

relative accuracy with respect to the correct answer size. Once again, we observe

that our algorithm is much more robust than the baseline PostgreSQL estimator (not

shown) that simply returns a constant selectivity. Our implementation shows slightly

103

0%

100%

200%

300%

0 20 40 60 80 100

Histogram Size (range/delta)

R
el

a
ti

v
e

E
rr

o
r

Data-5 Data-50 Data-100

Figure 7.16. Precision (2D).

0%

200%

400%

600%

800%

0 20 40 60 80 100

Histogram Size (range/delta)

R
el

a
ti

v
e

E
rr

o
r

Data-5 Data-50 Data-100

Figure 7.17. Precision (3D).

better accuracy for smaller thresholds, in part because larger thresholds result in

additional tuples becoming part of the query answer, leading to overestimates. We

can see that for highly selective queries, our algorithm is significantly better that the

baseline and thus it is more likely to lead the optimizer into choosing a much more

efficient plan.

Accuracy at Varying Precisions

Next we show the relationship between the size of the histograms and the resulting

accuracy. Figures 7.16 and 7.17 summarize the results for each dataset. The x-axis

shows the number of histogram buckets in each dimension, which was varied from 10

to 100. Clearly, both algorithms perform better with a more detailed histogram. Our

algorithm outperforms the baseline for smaller histograms. As expected, we see that

after a certain amount (i.e. 70, for these datasets and queries), larger histograms do

not provide significant increase in accuracy.

Runtime Performance Overhead

The final set of experiments study the runtime performance of constructing the

statistics and estimating the selectivity of a query. As expected, the estimation

104

times are constant and almost negligible (on the order of 15 ms). The histogram

construction times scale linearly with respect to data cardinality, and grow a little

more than linear as the requested number of buckets increases. For the bulk of our

experiments, histogram construction only amounted to several hundred milliseconds.

7.6 Chapter Summary

In this chapter, we developed algorithms for computing selectivity estimates of

probabilistic queries over uncertain data. The estimation techniques can be applied

both to tuple uncertainty and attribute uncertainty models. These techniques were

implemented in Orion and found to provide accurate estimates for uncertain data.

The algorithms presented can be further improved by combining them with standard

cost estimation techniques such as equi-depth binning and sampling. We identified

necessary and sufficient conditions and based on these conditions developed efficient

method to process the tuples. We showed both theoretically and empirically that our

histogram construction algorithms are fast. The experiments show that they give very

accurate estimation especially for less selective queries. For more selective queries,

the accuracy is not quite as good, but is still much better than the baseline estimator.

Our estimation techniques are applicable not only in query optimization – they can

also be used for other applications such as k-nearest neighbor queries. To the best

of our knowledge, there is no prior work that deals with selectivity estimation over

uncertain probabilistic data.

The results of this chapter are presented in [57]. In the next part of this thesis,

we discuss a model for uncertainty management in databases which generalizes both

tuple- and attribute-uncertainty models.

105

8 UNIFIED MODEL FOR PROBABILISTIC ATTRIBUTES AND TUPLES

This chapter presents a model for handling arbitrary probabilistic uncertain data

(both discrete and continuous) natively at the database level. The presented approach

leads to a natural and efficient representation for probabilistic data. We develop

a model that is consistent with possible worlds semantics and closed under basic

relational operators. This is the first model that accurately and efficiently handles

both continuous and discrete uncertainty.

8.1 Introduction

In this chapter, we focus on probabilistic modeling. Recent work on the problem

of handling uncertain data using probabilistic relational modeling can be divided into

two main groups. One deals with modeling and the other with efficient execution

of queries. Work on query processing over probabilistic data has assumed a simple

model – a single (continuous or discrete) attribute that takes on probabilistic val-

ues [30–33, 55, 58]. Most of this work is focused on developing index structures for

efficient query evaluation over probability distribution (or density) functions (pdf).

While this work addresses specific queries (e.g. Range [45], nearest-neighbors [31]), it

lacks a comprehensive model to handle complex database queries consisting of selects,

projects and joins in a consistent manner. Most of the work is also focused on single

table queries.

Recently proposed models for probabilistic relational data deal with the repre-

sentation and management of tuple uncertainty (with the exception of [30]). These

models are naturally well-suited for applications with categorical uncertainty. Under

tuple uncertainty, the presence of a tuple in a relation is probabilistic, and multi-

106

ple tuples can have constraints such as mutual exclusion among them. The recently

proposed models [10, 17, 19] generalize most of the earlier models for probabilistic

relational data. In contrast, attribute uncertainty models [12, 30] consider that a tu-

ple is definitely part of the database, but one or more of its attributes is (are) not

known with certainty. The model in [30] allows an uncertain value to take on a con-

tinuous ranges of values, but all other work has been focused on the case of discrete

uncertainty (i.e. an enumerated list of alternative values with associated probabili-

ties). Continuous uncertainty models easily capture the case of discrete uncertainty.

Discrete uncertainty models can handle continuous uncertainty by sampling the con-

tinuous pdf, but are forced to trade-off accuracy (lots of samples) or efficiency (fewer

samples).

This chapter presents a new model for representing probabilistic data that han-

dles both continuous and discrete domains and allows uncertainty at the attribute

and tuple level. To the best of our knowledge, this is the first model that handles

continuous pdfs and is closed under possible worlds semantics (Section 8.1.1). The

model can handle arbitrary correlations among attributes of a given tuple, and across

tuples. Although this model is motivated by attribute uncertainty, it can directly

handle tuple uncertainty, and thus is more general. The underlying representation

for arbitrarily correlated uncertain data in our model is based upon multi-dimensional

pdf attributes. Our approach results in a more natural representation for uncertain

data primarily due to the fact that our chosen data representation better matches

how uncertainty is modeled in applications. A second advantage of our model is its

space efficient representation of uncertain data. This efficiency results in improved

query result accuracy and lower processing time.

As discussed in Chapter 1, there are many real-world examples with continuous

data where the uncertainty is naturally represented by continuous pdfs. (e.g., sensors,

spatio-temporal databases, flight tracking, healthcare monitoring, financial analysis).

Table 8.1 shows an example of values returned by the sensors. (Gaus represents

107

Table 8.1
Example: Sensor Database.

Sensor ID Location

1 Gaus(20,5)

2 Gaus(25,4)

3 Gaus(13,1)

a Gaussian distribution followed by the parameters of the distribution – mean and

variance).

Now consider the case where we use tuple uncertainty (i.e., discrete uncertainty)

to model the sensor database in Table 8.1. Current tuple uncertainty models will

be forced to make a discrete approximation of the pdf as they only support discrete

uncertain data. This approach has a number of weaknesses. Firstly, such a represen-

tation is not efficient as we have to repeat certain attribute(s) (e.g., sensor id) along

with each value instance of uncertain attribute(s). Secondly, either we have to sample

many points (not practical) or sacrifice a great deal of accuracy (not desirable). On

the other hand, if we use the symbolic form of a Gaussian distribution, obviously the

answers will be more accurate as we are avoiding approximations. Furthermore, as

we will see later, the usual database operations can be evaluated on symbolic pdfs

in a more efficient manner. Note that this requires built-in support for symbolic

pdfs (e.g., Gaussian) in the database. Our model provides this support, and for non-

standard distributions, we support a generic pdf represented by histograms (Hist).

Histograms give us an approximation for continuous pdfs, but this approximation is

still more accurate than a discrete approximation. This issue is further explored in

the experimental section.

In the previous example, a discrete sampling leads to loss in accuracy, but in

many applications using discrete pdfs in place of continuous pdfs may be downright

incorrect. Consider the example of location privacy where uncertainty can be used to

108

“blur” the exact location of points to enhance their privacy. For these applications, a

continuous uncertainty model will be better suited than a discrete uncertainty model.

Joins over uncertain data would be another example – if we use discrete sampling

to approximate a continuous distribution, we would miss many potential results.

Another issue to consider is efficient query evaluation – using previous discrete models

to model continuous uncertainty would be very inefficient (or infeasible) as the number

of possible worlds are infinite in this case.

In addition, even in situations where the base uncertain data is discrete, some

queries (e.g. aggregates) can produce results that are very expensive to represent

using discrete pdfs. The main reason is that the resulting uncertain attribute can

have an exponential number of possible values. In such cases, one can save space as

well as time by approximating with a continuous pdf. This is exactly what our model

proposes.

While our model is tailored towards representing continuous distributions, it is

general enough to be used for modeling discrete uncertainty as well.

In summary, the salient features of our model are:

1. It handle both continuous and discrete uncertainty (with arbitrary correlations)

natively at the database level, and is consistent and closed under possible worlds

semantics.

2. The first model for uncertain data that can accurately handle continuous pdfs.

3. The pdf approach leads to a more natural and efficient representation and im-

plementation than a tuple uncertainty based approach.

8.1.1 Possible Worlds Semantics

The definition of relational operators for this model is based upon the Possible

Worlds Semantics (PWS) [59] that has been commonly used for other work on un-

certain databases. Under these semantics, a probabilistic relation is defined over a

109

set of probabilistic events. Depending upon the outcome of each of these events, a

possible world is defined. Thus given a probabilistic relation, we get a set of possible

worlds corresponding to all possible combinations of the outcomes of the events in the

relation. Figure 8.1 shows a graphical view of the possible worlds semantics. Given a

probabilistic database and query θ to be evaluated over this database, conceptually

we first expand the database to produce the set of all possible worlds. The query

is then executed on each possible world. The resulting probabilistic database is de-

fined as the database obtained by collapsing the possible worlds in which the query

is satisfied.

θ

θ

Expand Collapse

Probabilistic

Database

Resulting

Prob. Database

Figure 8.1. Possible Worlds Semantics.

Consider a database table with uncertain attributes a and b, as shown in Ta-

ble 8.2. It consists of two probabilistic tuples. The first tuple represents a total of

4 possibilities: (i.e. {0, 1}, {0, 2}, {1, 1}, {1, 2}) and a single (certain) value for the

second tuple. The corresponding set of possible worlds are shown in Table 8.3 along

with the associated probabilities for each world. The semantics of a query over this

uncertain relation are defined as follows. The query is executed over each possible

world (which has no uncertainty) to yield a set of possible results along with the

110

probability of each result. The probability values of worlds that yield the same result

are aggregated to yield the probability of that result for the overall query over the un-

certain relation. Consider a selection query with predicate a < b, over the relation in

Table 8.2. Conceptually, this query is evaluated over each possible world. The proba-

bility that a tuple satisfies the query criterion is equal to the sum of the probabilities

of the possible worlds in which the tuple satisfies the query. In practice, the number

of possible worlds can be very large (even infinite for continuous uncertainty). The

goal of a practical model is to avoid enumerating all possible worlds while ensuring

that the results are consistent with PWS. Section 8.3.4 shows how our model handles

this particular example.

Table 8.2
Example of Probabilistic Table.

a Pr(a) b Pr(b)

0 0.1 1 0.6

1 0.9 2 0.4

7 1.0 3 1.0

Table 8.3
Possible Worlds.

Possible Worlds Probability

0 1
0.06

7 3

0 2
0.04

7 3

1 1
0.54

7 3

1 2
0.36

7 3

8.2 Model

In this section, we formally define our model for representing and querying a

database with probabilistic data. We allow two kinds of attributes – uncertain (or

pdf attributes) and certain (or precise) attributes. The model represents a set of

database tables T, with a set of probabilistic schemas {(ΣT , ∆T) : ∀T ∈ T} and a

111

history Λ for each dependent set of attributes in T. A database table T is defined by

a probabilistic schema (ΣT , ∆T) consisting of a schema (ΣT) and dependency infor-

mation (∆T). The schema ΣT is similar to the regular relational schema and specifies

the names and data types of the table attributes (both certain and uncertain). The

dependency information ∆T identifies the attributes in T that are jointly distributed

(i.e., correlated). The uncertain attributes are represented by pdfs (or joint pdfs) in

the table. In addition to pdfs, for each dependent group of uncertain attributes we

store its history Λ. We will now describe each of these concepts in detail.

8.2.1 Uncertain Datatypes and Correlations

There are two major kinds of uncertain data types that our model supports –

discrete and continuous. These data types are represented using their pdfs. The

uncertainty model in many real applications can be expressed using standard distri-

butions. Our model has built in support for many commonly used continuous (e.g.,

Gaussian, Uniform, Poisson) and discrete (e.g., Binomial, Bernoulli) distributions.

These distributions are stored symbolically in the database. The major advantage of

using these standard distributions is efficient representation and processing. When

the underlying data distribution cannot be represented using the standard distribu-

tions we revert to generic distributions – Histogram and Discrete sampling. The

histogram distribution consists of buckets over the data domain, along with the prob-

ability density in each bucket. The discrete sampling simply consists of multiple

value-probability pairs. The bin size (or number of sampling points) is an important

parameter that decides the trade-off between accuracy and efficiency.

The simple pdf distributions discussed above can be used to represent one dimen-

sional pdfs. But in many cases, there are intra-tuple correlations present within the

attributes. For example, in a location tracking application, the uncertainty between

the x- and y-coordinates of an object is correlated. These more complex distributions

are supported in our model using joint probability distributions across attributes.

112

For example, to represent the 2-D uncertainty in case of moving objects we represent

the uncertainty by creating two uncertain attributes x and y which specify the x- and

y-coordinates of the object, respectively. Instead of specifying two independent pdfs

over x and y, we have a single joint pdf over these two attributes.

The information about intra-tuple dependencies is captured by the schema de-

pendency information ∆T . ∆T is a partition of all the uncertain attributes present

in the table T . It consists of multiple sets of attributes that are correlated within a

tuple. These sets are called dependency sets. It also contains singleton sets contain-

ing attributes that are uncertain but are not dependent on any other attributes. The

attributes not listed in ∆T are assumed to be certain.

To illustrate, let us consider a table T with schema ΣT = (a1:d1, a2:d2, a3:d3, a4:d4),

where di represents the data type of attribute ai. If all the attributes in the table

are certain, ∆T = φ. On the other hand, if a1, a2 and a3 are uncertain and a1, a2 are

correlated, this information is represented by defining the dependency information as

∆T = {a1, a2}, {a3}. For the example presented in Table 8.1, ΣT = {id : int, x : real}

and ∆T = {x} (x represents the 1-D location). To model the location as a jointly

distributed 2-D attribute, ΣT = {id : int, x : real, y : real} and ∆T = {x, y}.

Consider the special case when all the attributes in a table T are jointly distributed

(i.e. ∆T = {ΣT}). This extreme case captures tuple uncertainty as the complete value

of the tuple is uncertain. The joint pdf over the attributes implicitly represents a

group of dependent tuples. In addition, we can define tuples which are continuous and

thus an infinite number of alternatives are possible for each tuple. This representation

is more powerful that the tuple uncertainty models in which each tuple can only have

a finite number of alternatives.

We allow the dependency information ∆T to contain phantom attributes which are

not present in ΣT . These extra attributes and their corresponding joint distribution

are needed for ensuring that the correlation information of the attributes that are

projected out is not lost during projections (See Section 8.3.3 for more information).

However, only the attributes in ΣT are visible to the user.

113

Definition 8.2.1 A probabilistic tuple t of table T (ΣT , ∆T) is represented by values

t.aj for all certain attributes aj and pdf ft(Si) for all sets of uncertain attributes

t.Si ∈ ∆T .

To be precise, let us define X t
Si

to be the random variable for an attribute set t.Si.

Thus, ft(Si) returns a pdf function that is defined over X t
Si

. That is, ft : Si → f(X t
Si

).

In the rest of this chapter, whenever we refer to ft(Si), it is understood that we are

referring to the underlying distribution f(X t
Si

).

Given ft(S), we can easily calculate ft(C), where C ⊂ S by marginalizing the pdf

of S.

ft(S) =

∫

S−C

ft(C) (8.1)

In case of discrete distributions, the integral is replaced by sum.

8.2.2 Partial PDFs

Table 8.4
Example: Missing Attributes Values vs Missing Tuples.

a b c Pr(b, c)

1
2 3 0.8

NULL NULL 0.2

2
4 7 0.2

4.1 3.7 0.6

In traditional databases, NULL is used to represent unknown or missing data. We

also use NULL values in our model to signify missing attribute values. However, there

is another way of representing missing data. The semantics of these two approaches

differ from each other. To illustrate this point, let us consider the example presented

in Table 8.4. The first tuple has missing (unknown) values for attribute b and c.

114

However, the presence of the tuple itself is certain as the probability Pr(b, c) adds up

to 1. The other approach for representing missing data uses a closed world assumption

to represent unknown information with partial pdfs. The probability that the second

tuple exists in the table is 0.8 (=
∑

Pr(b, c)) and thus with 0.2 probability the tuple

does not exist in the table. Although both these approaches signify missing data their

probabilistic interpretations are quite different.

The usual definition of a pdf requires that it sums up (or integrates) to 1. We

remove this restriction in our model in order to represent missing tuples with partial

pdfs. The support for partial pdfs is crucial in our model to ensure that database

operations such as selection are consistent with PWS. A partial pdf is a pdf where

only the events associated with the existence of the tuple are explicitly represented.

If the joint pdf of a tuple (defined formally in Section 8.3.2) sums to x, then 1 − x

is the probability that the tuple does not exist, under a closed world assumption. In

this chapter, we use the terms pdf and partial pdf interchangeably.

8.2.3 History

As discussed in the previous section, we allow multiple attributes to be jointly

distributed in our model. This flexibility makes the model very powerful in terms

of data representation, by allowing intra-tuple dependencies (i.e. correlation between

attributes). But for the model to be closed and correct under the usual database

operations, we need to handle inter-tuple dependencies as well. History captures

dependencies among attribute sets as a result of prior database operations. It is used

to ensure that the results of subsequent database operations are consistent with PWS.

This is described in more detail in Section 8.3. A similar concept is used in many tuple

uncertainty models to track correlations between tuples. [10] uses lineage and [15]

uses factor tables to capture such dependencies. As we are interested in capturing

historical dependencies between attributes of tuples, our concept of dependencies is

115

different from this related work, which capture these dependencies on a per tuple

basis.

We maintain the history of uncertain attributes by storing the top-level ancestors

of each dependency set in a tuple. The function Λ maps each pdf t.S of a tuple t, to

a set of pdfs that are its ancestors.

Definition 8.2.2 For a newly inserted tuple t in table T , Λ(t.S) = t.S, ∀S ∈ ∆T .

If a new pdf t′.S ′ is derived from pdfs t.Si via a database operation, then Λ(t′.S ′) =
⋃

i Λ(t.Si).

In other words, the ancestors are the base pdfs which are inserted in the database

by the user. We assume that the base tuples are independent. All the derived at-

tributes point back to the base pdfs from which they are derived.

Definition 8.2.3 If Λ(t.S1) ∩ Λ(t.S2) 6= φ, then the nodes t.S1 and t.S2 are said to

be historically dependent.

Note that the deletion of a base tuple will cause dependency sets of its derived

tuples to lose their ancestor information. Thus, while deleting a tuple from the base

table, we first check if any other tuple in the database is referencing any dependency

set within the tuple. If there is a reference, we delete the tuple but keep the de-

pendency set and its pdf as a phantom node until its reference count falls to zero.

Definition 8.2.2 assumes that the base tuples are historically independent. This is not

limiting since a historical dependency between attribute sets of a base table, can be

captured by creating a phantom ancestor and pointing the dependent attribute sets

to this common phantom ancestor.

8.3 Probabilistic Operations

We begin by defining some basic operations on pdfs that underly the implementa-

tion of the usual database operations for our model. These operators are not directly

116

accessible by users. One of the strengths of our model is that correctness with respect

to PWS is achieved by manipulating the pdfs. Next, we present the usual relational

operations under our model. The section concludes with a discussion of new operators

that directly operate on the pdfs and are available to users as extensions to SQL.

8.3.1 Preliminaries

Here we describe some basic operations that are needed to define the usual re-

lational database operations. These are basic tools which allow us to handle pdfs

across the fundamental database operations of select, project and cartesian product.

Corresponding to these, we describe the operations floor, collapse and product on

pdfs. These operations are consistent with PWS interpretation of pdfs. Note that

we distinguish between attribute set of a pdf and attribute value set pdf which is all

possible combination of values for the attributes in the attribute set.

marginalize(f, A): Given a pdf f over attributes Af , and a subset of attributes

A ⊆ Af : the operation produces the pdf function f ′ over attributes A. This is done

by marginalizing the distribution f , i.e. f ′ =
∫

Af−A
f . For discrete distributions, the

integral is replaced by sum. It is easy to show the consistency wrt PWS because the

probability of an event is the sum of probabilities of all the possible worlds in which

the event occurs.

As an example, the results of marginalizing the pdf shown in Figure 8.2(c) over x

and y is shown in Figure 8.2(a) and Figure 8.2(b), respectively.

floor(f, F): Given a pdf f , on a domain D and given a subset F ′ ⊆ D, operation

floor(f, F) produces a new pdf f ′ such that values of f ′(x) = 0 whenever x ∈ F and

f ′(x) = f(x) otherwise. This floor operation corresponds to a selection predicate.

The values in F are those which do not pass the selection criteria and hence do not

exist in the resulting pdf. Going by the PWS, this means that in the possible world

where x takes the value in F , this tuple does not meet the selection criteria and hence

117

it does not exist. Multiple floor operations can be successively applied over a pdf

in any order and the result would be floor(f, F1 ∪ ...Fk) regardless of the order in

which they are applied.

The application of floor on a symbolic distribution (e.g. Gaus) will, in general,

result in a non-standard partial pdf. This partial pdf could be potentially captured by

a histogram representation. But, we can optimize the floor operation (and subsequent

operations) significantly, if we store symbolic floors to represent the flooring opera-

tion along with the original (symbolic) distribution. Our model has built-in support

for simple symbolic floors which result from some common selection predicates. To

illustrate, if the distribution of an attribute x is given by Gaus(5,1) and we apply

the selection predicate x < 5, the resulting pdf will be floored when x ≥ 5 (and its

value is given by Gaus(5,1) when x < 5). This resulting distribution is represented

as [Gaus(5,1), Floor{[5,∞]}] in our implementation.1

product(f1, f2): Given two pdfs f1 and f2 over attribute value sets S1 and S2 (in

a given tuple t) respectively, the operation product gives their joint pdf f (over

S ′ = S1 ∪ S2). We have to consider the following two cases:

f1 and f2 are historically independent: In this case, f(x) = f1(x1)f2(x2) where

x ∈ S1×S2 and x = (x1, x2). To illustrate, assuming the pdfs shown in Figure 8.2(a),

(b) are historically independent, the result of performing the product operation is

shown in Figure 8.2(c).

f1 and f2 are historically dependent: Let tj.Nj , 1 ≤ j ≤ m be the common

ancestors of t.S1 and t.S2 (i.e. tj .Nj ∈ Λ(t.S1) ∩ Λ(t.S2)). Each tj .Nj represents the

distribution of an attribute set (Nj) of a given tuple (tj). Thus Nj denotes the set of

attributes in tj .Nj . We define Cj = Nj ∩ S ′ and Di = Si −
⋃

Cj, i = 1 or 2. Thus Cj

is the set of attributes that the ancestor tj.Nj shares with either S1 or S2 . D1 (D2)

is the set of attributes in S1 (S2) that are not shared with any common ancestor. Let

1Similar implementation optimizations are possible for other operations presented in this chapter.
We skip their discussion in this chapter due to space limitation.

118

X

-25 -20 -15 -10 -5 0 5 10 15 20 25

p
d

f

0

0.005

0.01

0.015

0.02

0.025

0.03

(a)

Y

0 1 2 3 4 5 6 7 8 9 10

p
d

f

0

0.05

0.1

0.15

0.2

0.25

(b)

X
-25 -20 -15 -10 -5 0 5 10 15 20 25

Y
012345678910

J
o

in
t

p
d

f

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

(c)

Figure 8.2. Example of product operation.

X t
S be the random variable for an attribute set t.S. Let xt

S be an instance of X t
S.

With these notations, the joint pdf of resulting set t.S ′ is:

f(xt
S′) =







0, if f(xt
S1

) or f(xt
S2

) = 0

f(xt
D1

)f(xt
D2

)
∏m

j=1 f(x
tj
Cj

), otherwise

where, xt
S′ ∈ X t

D1
×X t

D2
×X t1

C1
×X t1

C1
. . .×X tm

Cm
×X tm

Cm

In other words, we first find the group of attribute sets (D1, D2 and Cj, ∀j) that

are independent of each other. We can multiply the distributions of these nodes as

they are independent. But, that would ignore any floors that were applied during

database operations from ancestor nodes tj .Nj to t.S1 or t.S2. One potential solution

is to keep track of all the operations and re-apply them2 but we observe that we can

2This method, though correct, is very inefficient and will not scale with database size and number
of operations.

119

infer the final floors from the distributions of t.S1 and t.S2. The regions where they

were floored are the regions whose corresponding possible worlds did not “survive”

the selection conditions. Thus, we propagate the floors of t.S1 and t.S2 to the joint

distribution. This operator is used for defining selection and is further discussed in

Section 8.3.4. Note that this operator is associative and hence can be used over more

than two pdfs as well.

8.3.2 Tuple Distribution

We now define the joint probability distribution over a probabilistic tuple. Ac-

cording to Definition 8.2.1, a probabilistic tuple consists of certain attributes and pdfs

for all the attributes appearing together in the dependency set. We can consider the

certain attributes as a pdf consisting of a single value with probability 1. Using this

notion, we define the joint distribution of a tuple as the product of all the certain

attributes and the dependency sets in that tuple. As discussed in Section 8.2.2, if the

joint pdf of the tuple sums to x (less than 1), then with probability 1− x the tuple

will not exist in the database. Thus, in order for a tuple to definitely exist in the

database, it should not contain any attribute sets with partial pdfs.

8.3.3 Projections

Given a table T , we define R = ΠA(T) as the table which contains a tuple t′

corresponding to each tuple t ∈ R (t → t′), such that the resulting schema ΣR = A.

The new dependency information ∆R can contain some of the attributes that are

projected away. These attributes and their corresponding distributes are kept to

ensure that we do not loose any floors associated with the projected out attributes.

∀Si ∈ ∆T , where Si ∩ A 6= φ or
∫

ft(Si) 6= 1, we keep Si ∈ ∆R. A number of

optimizations are possible to reduce the number of extra attributes that are kept in

∆R. For example, instead of the complete set Si, we can keep a subset S ′
i such that

for each tuple, S ′
i functionally determine Si.

120

The history of the new sets is updated to history of sets from which they are

derived i.e. ∀t′ ∈ R and ∀Sk ∈ ∆R where t → t′ and Sk ⊆ Si (Si ∈ ∆T), we have

Λ(t′.Sk) = Λ(t.Si).

Similar to other models for uncertain data, we do not address the issue of duplicate

elimination in projections in this chapter. This is because the concept of duplicate

elimination for probabilistic data in general leads to complex historical dependen-

cies. As part of our ongoing work, we are extending our model to address duplicate

elimination.

8.3.4 Selections

Given a table T with attributes ΣT and a boolean predicate Θ(A) defined over a

subset of attributes A of table T , the result of the selection operator is R = σΘ(A)(T).

If all the attributes in A are certain then we can simply use the “usual” definition of

select operator to get the result. If not, selection will introduce new dependencies in

the resulting set R, as explained below.

Case 1 All the attributes ai ∈ A are certain: The schema ΣR = ΣT and the

dependency information ∆R = ∆T . A tuple t ∈ T maps to a tuple t′ ∈ R (i.e. t→ t′),

if Θ(t.A) is true. That is, t′.ai = t.ai, ∀ certain ai and, ft′(Si) = ft(Si), ∀Si ∈ ∆R.

The history is simply “copied over” for all the dependency sets i.e. ∀Si, Λ(t′.Si) =

Λ(t.Si). As an example, the result of performing a selection σid=1(T) on the relation

T presented in Table 8.1 would give us a single tuple t = [1, Gaus(20, 5)].

Case 2 At least one of the attributes ai ∈ A is uncertain: The schema ΣR = ΣT

and dependency information ∆R = Ω(∆T ∪{A}). The closure Ω is defined as follows:

Definition 8.3.1 Given a set system {S1, S2, . . . , Sm} representing a hyper-graph,

the closure Ω({S1, S2, . . . , Sm}) produces a set system {S ′
1, S

′
2, . . . , S

′
m′} such that

S ′
1, S

′
2, . . . , S

′
m′ represent the hyper-graph produced by merging all the connected com-

ponents of {S1, S2, . . . , Sm}.

121

To illustrate, if ∆T = {{a, b}, {c, d}, {e, f}} and A = {b, c, g} (g is certain), then

Ω(∆T ∪ {A}) = {{a, b, c, d, g}, {e, f}}. Note that the sets {a, b} and {c, d} were

merged due to the condition on A. The dependency set {e, f} was not affected as

it is disjoint from A. Note that some of the certain attributes in T may become

uncertain in R.

Let us assume that a tuple t ∈ T maps to a tuple t′ ∈ R (i.e. t→ t′). For all the

certain attributes aj in R, we have t′.aj = t.aj (i.e., they are copied over). For the

dependency sets that were disjoint from A, we do not need to do anything special.

For the merged sets, we need to evaluate the resulting pdf. Thus, for ∀Sk ∈ ∆R, we

have the following cases:

Case 2(a) (A ∩ Sk = φ): This is the case when Sk does not share any attributes

with the selection set A, and thus using Definition 8.3.1 and the fact that all Si ∈ ∆T

are disjoint, we can see that Sk is derived from exactly one attribute set Si ∈ ∆T , i.e.

ft′(Sk) = ft(Si).

Case 2(b) (A∩Sk 6= φ): Using Definition 8.3.1 it is easy to see that (A ⊆ Sk). In

this case, Sk can be potentially derived from multiple attribute sets Si ∈ ∆T . These

attribute sets Si are the sets for which (A ∩ Si 6= φ). Let us assume fi, 1 ≤ i ≤ n

are their respective pdfs. Sk consists of all the attributes in such sets Si and A. Let

us assume that C is set of all certain attributes (C ⊂ A) and c is the value of C in

t. We define the identify pdf f0 over C as f0(c) = 1 and 0 otherwise. Now, we can

derive the resulting pdf of Sk by performing a product operation over f0, f1, . . . , fm

and flooring the resulting pdf in the region where Θ(A) is false. If the pdf of Sk is

completely floored (i.e. the resulting probability of the tuple becomes 0), we remove

that tuple from the result.

Similar to the previous case, the histories of the new dependency sets are updated

to the combined histories of sets from which they are derived i.e. ∀t′ ∈ R and

∀Sk ∈ ∆R where t→ t′, we have:

Λ(t′.Sk) =
⋃

∀Si⊆Sk,Si∈∆T

Λ(t.Si)

122

Consider the example shown in Table 8.2. The probabilistic schema of that relation

in our model would be represented as Σ = (a : int, b : int) and ∆ = {{a}, {b}}. There

are two tuples t1 and t2 in that relation with pdfs ft1({a}) = Discrete(0 : 0.1, 1 : 0.9)

and ft1({b}) = Discrete(1 : 0.6, 2 : 0.4) (this notation represents a discrete pdf,

whose parameters xi : yi denote the probability yi for value xi). Similarly, we can

write the pdfs of t2 as ft2({a}) = Discrete(7 : 1.0) and ft2({b}) = Discrete(3 :

1.0). Applying a selection predicate σa<b results in a table with schema Σ = (a :

int, b : int) and ∆ = {{a, b}}. This table consists of a single tuple t′ with the joint

distribution ft′({a, b}) = Discrete({0, 1} : 0.06, {0, 2} : 0.04, {1, 2} : 0.36). The

history Λ(t′.{a, b}) = {t1.{a}, t1.{b}}.

Theorem 8.3.1 The new pdf generated by selection operation is consistent with Pos-

sible Worlds Semantics.

Proof This follows from PWS consistency for the operators product and floor.

The product operation on contributing pdfs results in a joint pdf which is consistent

with the PWS semantics for all the non-zero values of the new pdf. Now, the various

selection criteria can be considered as multiple applications of the floor operation

which set the pdf to zero for all possible worlds where the corresponding attribute

values do not pass the selection criteria. In these possible worlds, the tuple containing

this pdf will not exist. Since operation floor can be applied in any order, one does not

need to re-apply selection criteria which were already captured by some dependency

set Si. 2

8.3.5 Joins

The join of two tables T1 1Θ(A) T2 can be written as σΘ(A)(T1 × T2). Thus, to

define the semantics of joins, we can use the semantics of selection and cross-product.

We have already seen selection, the cross-product R = T1 × T2 is defined as follows.

ΣR = ΣT1
∪ ΣT2

and ∆R = ∆T1
∪∆T2

. Let us assume a tuple t ∈ R is derived from

tuples t1 ∈ T1 and t2 ∈ T2 (i.e. (t1, t2) → t). ∀Sk ∈ ∆R and the corresponding

123

Si ∈ ∆Tc
, c = 1 or 2 we have, ft(Sk) = ftc(Si). Similarly, the history is also copied

over for the new sets, Λ(t′.Sk) = Λ(tc.Si).

Thus, conceptually joins are an application of cross-product followed by selection

(as defined in Section 8.3.4). The tuples that are produced as a result of join may

contain some dependencies (implied by history Λ) which are not captured by the

attribute dependencies (implied by ∆T). We can, in principle, apply the algorithm

explained in Section 8.3.4 to collapse the intra-tuple dependencies implied by Λ into

∆T . This decision will not affect the correctness or the semantics of the operations de-

fined in this section but will have a significant effect on performance. The definition of

the operations in this section assumes a lazy merging of dependencies and evaluation

of joint pdfs. In practice, a combination of these techniques can be used to improve

performance. Thus, the decision of whether to merge the intra-tuple dependencies

eagerly or lazily is left to the implementation.

T

Ta Tb

T1 (Incorrect!) T2 (Correct)

project(a)

join

t1
t2

ta1
ta2

tb1

t'1
t'2

project(b)

select(b>4)

a b

Discrete({4,5}:0.9, {2,3}:0.1)

Discrete({7,3}:0.7)

b

Discrete(5:0.9)

a

Discrete(4:0.9, 2:0.1)

Discrete(7:0.7)

a b

Discrete({4,5}:0.81, {2,5}:0.09)

Discrete({7,5}:0.63)

a b

Discrete({4,5}:0.9)

Discrete({7,5}:0.63)

Figure 8.3. Example illustrating histories.

Consider as an example, a table T with ΣT = (a : int, b : int) and ∆T = {{a, b}}

as shown in Figure 8.3. We perform operations Πa(T) and Πb(σb>4(T)) to obtain

124

the tables Ta and Tb (In this example, we do not need to keep the projected out

attributes, as both the attributes a and b functionally determine each other in both

the tuples). Clearly, ΣTa
= (a : int) and ∆Ta

= {{a}} for Ta; and ΣTb
= (b : int)

and ∆Tb
= {{b}} for Tb. Now, if we join Ta and Tb without considering historical

dependencies we would get an incorrect result T1. The tuple (2, 5) in t′1 can never

exist because it do not exist in any possible world corresponding to table T . Similarly,

the probability of tuple (4, 5) in T1 is incorrect as the pdfs of ta1 and tb1 share common

ancestor t1.{a, b} and thus the two events cannot be considered independent. Our

model detects the historical dependency between tuples ta1 and tb1 and uses that

information to correctly calculate the distribution of tuple t′1 in the final table T2 by

considering the joint distribution of attributes a and b in T . In addition, as part of

the tuple value (2, 3) (∈ T) was floored in table Tb, we correctly floored that value in

the distribution of t′1.{a, b}.

The correctness of the project and join operations with respect to the possible

world semantics follows from the correctness of the selection operation and are thus

omitted. Given the definition and the correctness of the selection, project, and join

operations, we obtain the following theorem.

Theorem 8.3.2 Our model is closed under selection, projection, and join operations.

8.3.6 Operations on Probability Values

We also allow queries based on the probability values of the tuples in our model.

One example of such queries are threshold queries. Given a table T with probabilistic

schema (ΣT , ∆T), a threshold query R = σPr(A)>p(T), where A ⊆ ΣT and p is the

probability threshold, returns all tuples whose probability over the attribute set A is

greater than p. As the operations on probability values act on the probabilistic model

instead of a possible world, the possible worlds semantics described in Section 8.1 is

not be used to define the semantics of these operations.

125

In general, consider the boolean predicate given by Θ(S), where S = {Pr(s1),

Pr(s2), . . ., Pr(sm)} and si ⊆ ΣT . The result R of applying this selection on T

consists of all tuples t ∈ T such that t satisfies Θ(S). The semantics of this operation

and effect on histories is similar to Case 1 defined in Section 8.3.4.

8.4 Chapter Summary

In this chapter, we presented a new model for handling arbitrary pdf (both discrete

and continuous) attributes natively at the database level. Our approach allows a more

natural and efficient representation and implementation for continuous domains. The

model can handle arbitrary intra- and inter-tuple correlations. We show that our

model is complete and closed under the fundamental relational operations of selection,

projection, and join. In our previous work we have developed Orion – an extension of

PostgreSQL that provides native support for attribute uncertainty with procedural

semantics. We have extended Orion to support our new model. The experiments

presented in Chapter 9 show the effectiveness and efficiency of our approach.

The results of this chapter can be found in [60]. We shift our focus to the imple-

mentation details of Orion in the next chapter.

126

9 ORION IMPLEMENTATION

This chapter discusses the implementation of Orion system [45], which is a state-of-

the-art uncertain database management system with built-in support for probabilistic

data as first class data types.

Uncertainty is prevalent in numerous application domains, ranging from informa-

tion extraction and integration to scientific data management and sensor databases.

Orion is a general-purpose uncertain DBMS that unifies the modeling of probabilistic

data across applications. This in turn provides additional opportunities to the query

engine for indexing and optimization.

One motivating example is a data cleaning system that automatically detects and

corrects errors. Since conventional database management systems assume data to be

certain and precise, the software must either construct its own probabilistic model

for the data, or simply pick one of the alternative values to store in the underlying

database. This leads to a no-win situation: the first option significantly complicates

the queries, while the second technique results in a substantial loss of information.

The Orion system provides a better solution: built-in support for uncertainty at

the database level. By extending the query processing engine of PostgreSQL, Orion

natively manages uncertain data.

There are two major versions of Orion system. The first system, called Orion

1.0 was developed based on the attribute uncertainty model presented in Chapter 3.

The major focus of Orion 1.0 was on Probabilistic Threshold Queries. Orion 2.0 was

later developed using the ideas presented in Chapter 8 and supports Possible Worlds

Semantics [59]. Both these systems are implemented inside PostgreSQL system [44].

We next provide a brief overview of these two systems.

127

9.1 Orion 1.0

Orion 1.0 implements the Uncertainty model presented in [11] and discussed in

Chapter 3. This model assumes that each data item can be represented by a range

of possible values and their distributions. The current version is publicly available

under the Purdue Free License and can be downloaded from [45].

9.1.1 System Architecture

Query Evaluation

Engine

Access Methods

Uncertain data

structures Probabilistic

Query

Operators

Other data types

Other operators

Uncertainty class

Figure 9.1. Architecture of Orion 1.0.

We develop our system on PostgreSQL [44] because it is an open-source system.

Also, its object-oriented design allows us to extend the functionalities easily without

modifying its internal code. We define new data types and queries through developing

external C libraries, and linking them with the PostgreSQL source code. Another

128

advantage is that the uncertainty functionalities do not interfere with the original

database; instead, uncertain and certain data can be “blended” together, and they

can be used by database queries at the same time. The high level architecture of

Orion is shown in Figure 9.1.

As shown in Figure 9.1, we have added a new class, called uncertainty class,

which stores the data structures and access methods of uncertain data. We have also

implemented a set of probabilistic query operators to manipulate the uncertain data.

The interface of the query evaluation engine is modified to interact with both the

uncertainty class and query operators. All other existing data types and operators in

the PostgreSQL system (dotted-line boxes) remain intact.

9.1.2 Supporting Uncertain Data

We support four types of data uncertainty: (1) Gaussian, (2) uniform, (3) his-

togram and (4) discrete. While Gaussian and uniform distributions are commonly

found in applications, we want to develop a system that is general enough to support

any kind of pdfs (e.g., Zipf and Poisson (for describing the frequency of events)).

Moreover, arbitrary operations on an uncertain item with standard distribution can

render a non-standard distribution. For example, the sum of two uniform distribution

is a triangular distribution. A histogram allows us more flexibility in query operator

implementation. Internal functions that convert different pdf types to histogram pdf

are also implemented.

In order to represent these data types, we define the uncertain class (with keyword

UNCERTAIN), as shown in Figure 9.1. It is a variable-length data type, which can

store an uncertain value (Gaussian, uniform, histogram or discrete). The design of

this class is flexible, and other kinds of uncertainty pdf (e.g. Poisson) can be added

to it with minimal change.

Like other relational database systems, PostgreSQL stores internal bookkeeping

information in catalogs (which are internally represented as tables). One key differ-

129

ence is that PostgreSQL stores much more information in these catalogs, such as data

types, access methods and functions. Thus, PostgreSQL can be modified or extended

by changing these catalogs. Moreover, the PostgreSQL server can incorporate user-

written codes through dynamic loading. Thus, the user can specify a shared library

that implements a new type or function, and these will be incorporated into the server

automatically.

To create a new uncertain data type, we use shared C libraries to specify the

internal representation of the data type, along with “helper functions” that operate on

the data types. These access functions are specified by the interface that PostgreSQL

uses to interact with a data type. The query engine interacts with the uncertain

data type through these access functions, as shown in Figure 9.1. Once these helper

functions are properly set, the uncertain data type becomes one of the data types in

PostgreSQL.

9.1.3 Probabilistic Queries

To support probabilistic queries, we provide PostgreSQL with the semantics of

operations like =, 6=, >, < on each uncertainty type, using compiled C functions

(Figure 9.1).Once these operations are defined, PostgreSQL automatically supports

queries like joins and selections for uncertain data by interacting with the probabilistic

operators as shown in 9.1.

We emphasize that only one uncertainty type, specified by the UNCERTAIN

keyword (with parameters describing uncertainty pdf type), is used. We choose not to

provide one keyword for each pdf type. A user should not have to think, for example,

what the resulting pdf is when a Gaussian pdf is multiplied with a uniform pdf. In

Orion, the user only needs to specify the result is UNCERTAIN. The system decides

the most appropriate resulting pdf.

130

Inserting Uncertain data. The following statement shows how a table with two

attributes (k, a) is created, where k and a are primary key and uncertain values,

respectively. The keyword uncertain specifies that a is uncertain.

CREATE TABLE T (

k INTEGER PRIMARY KEY,

a UNCERTAIN);

This schema is used for further discussion in this section. An uncertain value is

inserted as follows:

INSERT INTO T VALUES (1, ’(g, 0, 5)’);

where, g specifies that the Gaussian distribution is used and 0, 5 are its mean and

variance respectively. Similarly, we can insert a histogram or a discrete distribution

in Orion 1.0.

Extracting Uncertainty Information. Orion 1.0 allows the details of uncertain

attributes, like the lower bound of the uncertainty interval, the uncertainty pdf, and

data quality (e.g. mean and variance), to be extracted. For example, the following

query obtains the lower bound of a.U.

SELECT u_lower(a) FROM T;

SPJ Queries over uncertain data. Orion supports a number of queries over

uncertain data. Some examples of such queries are selections, projections, joins,

entity minimum/maximum query and value-minimum query [11]. All the probabilistic

conditions are converted into a boolean predicate using a probabilistic threshold. For

example, consider a SPJ query:

SELECT R.k, S.k

FROM R,S

WHERE R.a = S.a;

131

The uncertain attribute a is used to perform an equality join between tables R and

S. The probabilistic condition R.a = S.a is converted into a boolean predicate by

converting it into a threshold condition Pr(R.a = S.a) > p, where p is a system

defined threshold.

Quality. In addition to the usual database operations, Orion 1.0 supports quality

queries to compute the quality (preciseness) of uncertain values and query results [11].

Indexing and Cost Estimation. For efficient query execution, Orion uses Prob-

abilistic Threshold Index (PTI) introduced in [30]. The PostgreSQL query optimizer

uses this index automatically when it estimates that the cost of an index scan will be

lower than sequential scan. For this purpose, it uses the cost estimation techniques

presented in Chapter 7.

A complete discussion of the internals of Orion 1.0 is beyond the scope of this

thesis and can be found in the Orion 1.0 documentation [45].

9.2 Orion 2.0

In this section, we describe Orion 2.0, which is the current iteration of Orion.

Although there are superficial similarities, Orion 2.0 fundamentally differs from the

earlier version of Orion.

In contrast to other uncertain databases, Orion 2.0 supports both attribute and

tuple uncertainty with arbitrary correlations. This enables the database engine to

handle both discrete and continuous pdfs in a natural and accurate manner. The

underlying model is closed under the basic relational operators and is consistent with

Possible Worlds Semantics [59].

Orion 2.0 includes the following new and innovative contributions:

• An integrated implementation (within PostgreSQL) of the “PDF Attributes”

data model, which is consistent with Possible Worlds Semantics (PWS) and

supports both continuous and discrete uncertainty (See Chapter 8).

132

• Efficient access methods for querying uncertain data, including three index

structures based on R-trees, signature trees, and inverted indexes (See [30] and

Chapter 6).

• Improved query optimization, join algorithms, and selectivity estimation by

gathering and exploiting additional statistics over probabilistic data types (See

Chapter 5 and Chapter 7).

• Integration with PL/R for graphical visualization of and statistical inference

over uncertain data [61].

Orion 2.0 is an implementation of the new uncertainty model described in Chap-

ter 8.

9.2.1 System Implementation

Orion is primarily written in C, with some portions at the user level in PL/pgSQL.

Figure 9.2 gives a high level overview of the system architecture. The shaded regions

represent new components that correspond to the primary features of the Orion data

model. Partially shaded boxes highlight portions of the PostgreSQL backend we

extended to support queries over uncertain data. Clear boxes (which include the ma-

jority of the PostgreSQL backend) indicate components that have not been modified.

Query interface

One underlying goal in the design of Orion was to support uncertain data with

minimal changes to SQL. The resulting user interface is standard SQL plus a hand-

ful of data types and built-in functions for manipulating probabilistic data. These

include, for example, evaluating the cdf of an uncertain attribute, and converting

symbolic pdfs into approximations. In addition, we have integrated our system with

PL/R [61], an extension to PostgreSQL that allows the user to write SQL statements

and functions in the R programming language. “R is a free software environment for

133

Figure 9.2. Architecture of Orion 2.0.

statistical computing and graphics,”1 and provides elegant visualization of uncertain

pdfs in the Orion client.

Uncertain data types

Orion supports four main types of uncertain data attributes:

1. Continuous Numeric (ucon) – Each data item has an associated probability

density function for evaluating the probability of any given value.

Example: Temperature or voltage from a sensor.

1See http://www.r-project.org/

134

2. Discrete Numeric (udis) – Each data item has a probability distribution func-

tion, which stores the frequencies of the alternative values.

Example: Number of neighbors in a mobile network.

3. Ordered Categorical (uord) – Similar to discrete numeric, each data type comes

with a pdf that stores probabilities for each category.

Example: Fuzzy data value, e.g. low or high.

4. Unordered Categorical (unom) – Same as above, except there is no logical or-

dering between categories.

Example: Document classification or generic type.

Internal representation

All the uncertain attributes are stored internally using a data structure called

Uncertain. This type is hidden from the user, and is only accessible through the

four SQL data types listed above. Consequently, the data structure is generic and

represents all possible types of uncertainty pdfs. In particular, it can represent both

independent and joint distributions. When multiple attributes are correlated, the

system automatically stores the number of dimensions, the type of each dimension,

and the resulting joint pdf in a single data instance.

In addition to the pdf, Uncertain also maintains a list of floored regions and

historical dependencies that are due to operations on pdfs. Probabilistic schemas

(i.e. dependency sets) for each table are stored in the system catalog. All of this

information is used by internal functions to detect correlations while performing pdf

operations.

135

Query examples

The following examples show how probabilistic tables are created, populated and

queried. Note that apart from a few additional keywords, the interface is identical to

standard SQL.

-- Query1

CREATE TABLE location (

id integer, ts time,

xloc ucon, yloc ucon, room udis, -- unc. types

PRIMARY KEY (id, ts),

DEPENDENT (xloc, yloc)); -- prob. schema

-- Query2

INSERT INTO location VALUES (

1, ’2008-06-09 14:05:27’,

’prod(norm(5,3) , norm(7,3))’, -- 2D pdf

’dist(2 : 0.75 , 3 : 0.25)’); -- 1D pdf

-- Query3

SELECT xloc, room FROM location -- marginalized and floored pdfs

WHERE xloc > 5 and yloc < 5; -- with history

Query Rewriting

To support the uncertainty model described in Chapter 8, we used query rewriting

techniques. The other option was to introduce the probabilistic queries natively in

PostgreSQL. This would have involved major changes to PostgreSQL query engine

including the parser, path generator, optimizer and executor. The intrusive changes

would have hindered the power of PostgreSQL to handle certain (or precise) attribute

in the tables. On the other hand, as this approach required the implementation of

136

probabilistic queries from scratch, it would have given us a lot of flexibility for the

implementation of the model.

After a careful examination of the query discussed in Chapter 8, we found out that

all the queries can be implemented by using query rewriting techniques. Although,

this limits our flexibility, this technique allowed us to leverage the existing Post-

greSQL infrastructure for query optimization and execution with minimal changes.

As described in Chapter 8, internally all SQL queries are rewritten in terms of the

three basic functions on pdfs: floor, product and marginalize.

To illustrate this point, consider Query1. Both xloc and yloc are stored together

as one joint pdf as they are jointly distributed (specified by the keyword DEPENDENT).

Further, all uncertain data types are stored internally as UNCERTAIN. Therefore, Orion

rewrites this query as:

-- Query1 rewritten

CREATE TABLE location (

id integer, ts time,

xloc uncertain, room uncertain,

PRIMARY KEY (id, ts));

Additionally, it stores the information specifying the original data types (of xloc and

room) and their dependency sets in its schema.

Similarly, Query2 is rewritten to enforce type checking. Using the schema infor-

mation created during Query1, it checks if the 2D pdf that is being inserted into xloc

corresponds to (ucon, ucon). Similarly, it checks if the pdf that is being inserted into

room is of type udis.

Query3 consists of a selection followed by projection. The selection conditions

are converted into corresponding floor calls to xloc and yloc according the the rules

discussed in Chapter 8. This is followed by calls to marginalize function to generate

the final result. The final rewritten query that gets executed is:

-- Query3 rewritten

137

SELECT marginalize(floor(floor(xloc, !(xloc > 5)), !(yloc < 5)), 0)

as xloc, room FROM location

WHERE nonzero(xloc);

The second argument of floor(.,.) function specifies the pdf regions that is to be

floored. In this case, the application of the two floor functions in sequence corre-

sponds to the selection condition (xloc > 5 and yloc < 5). The fact that only the

first dimension (corresponding to xloc) is to be retained is expressed by the second

argument of marginalize(.,.). The final condition guarantees that all the resulting

tuples have non-zero probability of being present in the result.

Indexes and query optimization

The standard cost estimation and indexing techniques built into PostgreSQL are

not appropriate for uncertain data. Orion provides novel query cost estimation tech-

niques that are used for optimizing the generated query plans involving uncertain

data (See Chapter 7). In addition to cost estimation, Orion also includes a number of

uncertainty indexing methods and join algorithms for efficient execution of specialized

queries (See Chapter 5 and Chapter 6).

Minimal overhead

One major advantage with the design and implementation of Orion is that there

is virtually no system overhead in the absence of uncertain data. The modifications

for uncertain data support are for the most part self-contained, and operate side by

side with the standard indexing and query optimization components.

9.3 Comparison with other Systems

Due to the importance of uncertainty management in real-world applications, sev-

eral database systems for managing uncertain data have been proposed (See Chap-

138

ter 2). Table 9.1 shows the comparison of Orion with some of the recently proposed

uncertainty management systems. As described earlier, Orion is the only DBMS

with support for continuous uncertain data. Although all the models support the

tuple uncertainty model, only MayBMS and Orion support the attribute uncertainty

model. With a recent change, Trio has added limited support for attribute uncer-

tainty, as it can now store a joint distribution for all the uncertain attributes in a

tuple. This is opposed to our model, in which, multiple uncertain attributes can be

stored independently. All databases, except MystiQ, support an exact query evalua-

tion technique. MystiQ uses approximations for the queries for which it cannot find

a safe plan [17]. As regards to implementation, Orion and MayBMS are both im-

plemented as an extension to PostgreSQL, whereas the other database managements

systems are implemented as a wrapper to a relational DBMS. Finally, only Orion

supports indexing and query optimization for uncertain data.

9.4 Experimental Evaluation of Orion 2.0 Model

This section presents the experiments performed using Orion 2.0 to validate the

efficiency of the model presented in Chapter 8. Orion not only allows us to validate

the accuracy of our methods in a realistic runtime environment, it also gives additional

insight into the overall effect our techniques have on probabilistic query processing in

an industrial-strength DBMS. The following experiments were conducted on a Sun-

Blade-1000 workstation with 2 GB RAM, running SunOS 5.8, PostgreSQL 8.2.4, and

Orion 2.0.

Using a series of synthetically generated datasets, we explore the performance

and accuracy of our model’s operations over pdfs. Each dataset consists of random

“sensor readings,” using the schema Readings(rid, value). The uncertain pdfs

(e.g. reported from the sensors) are Gaussians, with their means distributed uniformly

from 0 to 100, and their standard deviations distributed normally using µ = 2 and σ =

0.5. We also generate numerous range queries, with midpoints distributed uniformly

139

T
ab

le
9.

1
C

om
p
ar

is
on

of
O

ri
on

2.
0

w
it

h
ot

h
er

U
n
ce

rt
ai

n
ty

M
an

ag
em

en
t

S
y
st

em
s.

T
ri

o
[3

]
M

a
y
B

M
S

[4
3
]

M
y
st

iQ
[1

7
]

O
ri

o
n

2
.0

C
on

ti
n
u
ou

s
u
n
ce

rt
ai

n
d
at

a
N

o
N

o
N

o
Y

es

T
u
p
le

u
n
ce

rt
ai

n
ty

Y
es

Y
es

Y
es

Y
es

A
tt

ri
b
u
te

u
n
ce

rt
ai

n
ty

L
im

it
ed

Y
es

N
o

Y
es

C
or

re
la

ti
on

s
Y

es
Y

es
Y

es
Y

es

E
va

lu
at

io
n

te
ch

n
iq

u
e

E
x
ac

t
E

x
ac

t
S
om

et
im

es
ap

p
ro

x
im

at
e

E
x
ac

t

Im
p
le

m
en

ta
ti

on
te

ch
n
iq

u
e

O
u
ts

id
e

D
B

M
S

In
si

d
e

D
B

M
S

O
u
ts

id
e

D
B

M
S

In
si

d
e

D
B

M
S

In
d
ex

es
an

d
q
u
er

y
op

ti
m

iz
at

io
n

N
o

N
o

N
o

Y
es

140

between 0 and 100, but with interval lengths distributed normally using µ = 10 and

σ = 3.

For simplicity, we omit the initial results of evaluating pdfs symbolically because

they produce no approximation error and incur negligible overhead. Instead, our

results focus on the relative performance of approximating symbolic pdfs with his-

tograms as opposed to discrete sampling. Although it’s obvious theoretically that

histograms will generally outperform discrete representations, we wish to quantify

the observed difference of these two approximations in our actual implementation.

9.4.1 Accuracy vs Sample Size

The first experiment shows the average error when answering range queries over

histogram and discrete approximations of symbolic pdfs. We first discretize our

dataset of random Gaussian pdfs, varying the number of sample points. Figure 9.3

shows the average approximation error of the cdf values returned at each sample size.

The standard error over these averages is negligible. As expected, the histogram

representation outperforms the discrete, even in the worst case (not shown). With

only five sampling points, the accuracy is around ±0.01 probability mass. A discrete

approximation requires over twenty-five sampling points, which greatly increases the

size of each tuple and thus the overall I/O cost. Of course, a symbolic representation

is both ideal in storage size and accuracy.

We also show the standard deviation of the error values themselves, at each sample

size, plotted only in the positive direction for clarity. As expected, a discrete repre-

sentation has a considerably higher variance in approximation error than a histogram.

Sometimes the error is quite large, for example in boundary cases when the query

barely misses a discrete point. Continuous representations (including histograms)

avoid this issue altogether because they can accurately estimate probability mass at

arbitrary points. The difference in error is likely to be even greater in more complex

pdfs.

141

5 10 15 20 25

0
.0

0
0

.0
2

0
.0

4
0

.0
6

Sample size

A
v

er
ag

e
er

ro
r

Discrete

Histogram

Figure 9.3. Accuracy vs Sample Size.

9.4.2 Performance of Discretized PDFs

For this experiment, we compare the performance of the aforementioned approx-

imate representations. We fix the number of histogram bins at five and the number

of discrete sample points at twenty-five, in order to compare runtimes at an equiva-

lent level of accuracy. As shown in Figure 9.4, discretizing the data not only takes

additional processing time, but also incurs more disk reads, yielding a steeper rise in

cost. Runtimes for the symbolic representation are just under the five-bin histogram

times, but we do not show these here since they give an even higher level of accuracy.

142

0.5 1.0 1.5 2.0 2.5 3.0

0
5

1
0

1
5

Number of tuples (M)

A
v

er
ag

e
ru

n
ti

m
e

(s
)

Discrete

Histogram

Figure 9.4. Performance of Discretized PDFs.

9.4.3 Overhead of Histories

The final experiment shows the overall performance of the implementation of

our proposed model inside PostgreSQL. We run two types of queries: joins over range

queries (which involve floors and products), and projections of the resulting correlated

data (triggering a collapse of the 2D pdfs). Figure 9.5 compares the average runtime of

these queries with and without the overhead of maintaining histories for correctness.

Note that ignoring histories will result in incorrect answers. The overhead shown in

this figure ranges between 5-20%. Thus, although the proposed model is complex, it

is efficient to implement and we pay a small overhead for correctness.

143

1 2 3 4 5

0
1

0
0

2
0

0
3

0
0

Number of tuples (K)

A
v

er
ag

e
ru

n
ti

m
e

(s
)

Join (with histories)

Join (w/o histories)

Project (with histories)

Project (w/o histories)

Figure 9.5. Overhead of Histories.

9.5 Chapter Summary

The Orion project aims to build a general-purpose uncertain DBMS to support

both current and forthcoming applications. Research and development of a database

system that supports uncertain data will advance scientific understanding and enable

future work in a variety of fields. But whether emerging applications use databases

simply as an information storage technology rather than an effective data management

solution depends on to what extent they can reason about and make use of the

uncertainty of data directly.

The Orion system was presented in numerous conferences [62–64] and workshops

and received considerable interest from the research community. In the next chapter,

we present the future work in the field of uncertain data management.

144

10 FUTURE WORK

This chapter presents our ongoing and future work in the field of uncertainty

management in databases.

10.1 Modeling and Approximations

The current model described in Chapter 8 unifies both tuple and attribute uncer-

tainty and is closed under the simple database operations of selections, projections

and joins. If we extend the same model to handle operations like projections with

duplicate elimination and aggregates, the history graphs become very complex. A

future goal is to define the semantic meaning of these operations according to PWS

and extend the current model to handle them efficiently.

Many applications require enforcing of constraints on probabilistic data. Some

examples are primary/foreign key constraints and functional dependencies. We are

currently expanding our current model to express these constraints.

There are many useful operations on probabilistic data that can not be explained

through Possible Worlds Semantics as they involve conditions on aggregate probabil-

ities of possible worlds. Threshold queries and distributional similarity are examples

of such operations. We plan to extend the PWS to define the semantics of such

operations.

There are many cases when the user is not concerned about the exact probabilities

of query results. In these cases, the model should be able to generate approximate

probabilities along with some guarantees over them. We would like to include the

ability to do such approximations in the model. Some possible solutions would be to

use Monte Carlo simulations and/or approximate inferencing. These approximations

145

will be especially useful when the historical dependencies are complex and exact

probability calculations would be computationally very expensive for the system.

10.2 Nearest Neighbor Queries

There has been some work on supporting Nearest Neighbor (NN) queries on un-

certain data [31]. In case of certain data, the definitions of NN and k-NN are obvious,

but the semantics of these queries over uncertain data is not very clear. We present

some of the possible semantics of NN queries in the following definitions.

Definition 10.2.1 Given a set U of uncertain data, a Nearest Neighbor query Q on

this data returns the tuple a ∈ U which is most likely to be the nearest neighbor of

query point Q.

This definition is the most widely used definition of nearest neighbor queries in

the current literature. A k-NN of above query just returns k tuples sorted according

to their probability values which are the most likely contender for the NN.

Note that this is not the only possible way of defining NN queries. Below we

present an alternate formulation of the NN queries that is based on the notion of

τ -radius.

Definition 10.2.2 Given a query point q, a threshold τ and an uncertain item a, τ -

radius r of a is defined as the distance from a query point q such that the probability

that a lies in a radius of r around q exceeds τ .

Given this notion of τ -radius, we can define the alternate notion NN of a query

point q as:

Definition 10.2.3 Given a query point q, a threshold τ and a set of uncertain items

U , the NN of q is the tuple a ∈ U which minimizes the τ -radius over all the uncertain

items in U .

146

Similarly, a k-NN of q would a data item which has the k-th minimum τ -radius.

We explored some of these aspects in [56]. We plan to future investigate the NN

queries based on above definitions and derive efficient solutions for evaluating them.

10.3 Query Optimization

As we have seen earlier, there has been a recent interest in pushing uncertainty

management to the database level. Once we have database systems capable of man-

aging uncertain data, we would need to efficiently execute queries over the uncertain

data. For certain data, various techniques for indexing and cost estimation have

been developed. Similar techniques for uncertain data need to be developed. Our

indexing and selectivity work was the first step in this direction. We would like to

continue in this direction by developing novel indexing and cost estimation techniques

for uncertain data.

While the certain data in databases is usually uncorrelated, correlations are nat-

urally present in uncertain data. This important distinction can be used to develop

query optimization techniques that can suggest alternate query plans based on cor-

relations that are observed in the input data.

Another important dimension in Query optimization is the issue of query plans.

For certain data, there has been a lot of work for generating and transforming query

plans into near optimal query plans. Many operations over uncertain data involve

threshold predicates and/or top-k queries. We need to develop new algorithms and

heuristics for pushing these predicates down the query plan. We have already started

work in this direction and plan to extend our indexing and cost estimation solutions

for it. The final goal would be to implement these techniques inside the PostgreSQL

query optimization engine.

147

10.4 Data Mining and Information Retrieval

In recent years there has been a surge of interest in problems related to Data

Mining and Information Retrieval. There has been a lot of work for developing

algorithms that either work on certain data or assume that the uncertainty in the data

can be removed (e.g. by taking the most probable value). The underlying data that

these algorithms often work on can have uncertainties inherent in them. We plan to

extend the current algorithms (e.g. associating rule mining, classification, clustering)

in the fields of Data mining and Information Retrieval to handle uncertain data. An

important challenge is to develop efficient algorithms that are able to produce returns

that show significant improvement over the base case when uncertainties are ignored,

without too much computational overhead.

10.5 Privacy and Anonymity

Uncertainty can be used to guarantee privacy and anonymity. The basic idea is to

“blur” the certain data points (e.g. location, salary) by adding uncertainty to them.

While tuple-uncertainty (or discrete uncertainty pdf) can be used for this purpose,

the concept of continuous uncertainty pdfs is more useful for privacy. Our model

already handles continuous uncertainty and correlations and it would be interesting

to see how we can extend the current model for privacy and anonymization, while

providing some useful guarantees.

10.6 Reliability

While the notion of reliability looks very similar to uncertain data with tuple

uncertainty (i.e. if you have probabilities of existence associated with each tuple),

the actual problem is much more complex. The reliability of data can change after the

data is inserted into the database, hinting at using histories for maintaining reliability.

Further, reliability can be very subjective with each user having his/her own notion

148

of data reliability. In a sense, the concept of reliability is complementary to the

concept of data accuracy and quality. We would like to explore this domain further

and develop techniques based on uncertain data management which can handle data

reliability issues.

149

11 CONCLUSION

Due to the presence of numerous applications that handle probabilistic data, uncer-

tainty management in databases has attracted considerable research interest in recent

years. The ultimate goal of this research is to take the burden of managing uncertain

data away from the applications to the database systems. In this dissertation, we

identified and solved important issues for managing uncertain data natively at the

database level.

We proposed the semantics of join operation in presence of attribute uncertainty.

Joining uncertain data can be very costly and we discussed three pruning techniques

to reduce this cost. The experiments show that with only a small overhead these

techniques can improve the join performance significantly. We presented two index

structure for indexing categorical (discrete) uncertain data. Since such uncertainty

can be considered as an extension of set-values attributes, we proposed the extension

of signature trees and inverted indexes for this problem. These index structures were

shown to be efficient and have good scalability with respect to the dataset and domain

size. For query optimization of probabilistic queries, we presented novel selectivity

estimation techniques. These techniques were shown to be efficient and gave good

estimates for threshold queries.

A new model for handling arbitrary pdf (both discrete and continuous) attributes

natively at the database level was also presented. Our approach allows a more natural

and efficient representation and implementation for continuous domains. The model

can handle arbitrary intra- and inter-tuple correlations. Our model is consistent with

Possible Worlds Semantics and is closed under fundamental relation operations of

selection, projection and join.

We also presented and discussed the implementation of Orion – an extension of

PostgreSQL that provides native support for uncertain data. We have extended Orion

150

to support our new model. The experiments performed in Orion show the effectiveness

and efficiency of our approach.

Finally, we presented our ongoing and future work in the field of uncertain data

management. Despite the significant gains already made, numerous interesting open

problems remain. The new model presented in this thesis raises a number of interest-

ing problems that have not been solved yet. We believe that this dissertation is an

important step towards the realization of our goal of managing uncertainty natively

at the database level.

LIST OF REFERENCES

151

LIST OF REFERENCES

[1] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
In Proceedings of International Conference on Very Large Data Bases (VLDB),
2004.

[2] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-
driven data acquisition in sensor networks. In Proceedings of International Con-
ference on Very Large Data Bases (VLDB), 2004.

[3] J. Widom. Trio: A system for integrated management of data, accuracy, and lin-
eage. In Proceedings Conference on Innovative Data Systems Research (CIDR),
2005.

[4] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha. Updating and querying
databases that track mobile units. Distributed and Parallel Databases, 7(3):257–
387, 1999.

[5] A. Hendrich, M. Chow, B. Skierczynski, and Z. Lu. A 36-hospital time and mo-
tion study: How do medical-surgical nurses spend their time? The Permanente
Journal, 12(3), 2008.

[6] N. Khoussainova, M. Balazinska, and D. Suciu. Towards correcting input data
errors probabilistically using integrity constraints. In Proceedings of the 5th ACM
International Workshop on Data Engineering for Wireless and Mobile Access,
2006.

[7] R. McCann, P. DeRose, A. Doan, and R. Ramakrishnan. SLIC: On-the-fly
extraction and querying of web data. Technical Report TR-1558, Computer
Sciences Department, University of Wisconsin-Madison, 2006.

[8] D. Burdick, P. Deshpande, T. Jayram, R. Ramakrishnan, and S. Vaithyanathan.
OLAP over uncertain and imprecise data. In Proceedings of International Con-
ference on Very Large Data Bases (VLDB), 2005.

[9] S. Prabhakar. Tutorial on probabilistic queries and uncertain data. In Proceedings
of Internation Conference on Management of Data (COMAD), 2005.

[10] O. Benjelloun, A. Sarma, A. Halevy, and J. Widom. ULDBs: Databases with
Uncertainty and Lineage. In Proceedings of the 32nd International Conference
on Very Large Data Bases (VLDB), pages 953–964, 2006.

[11] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries
over imprecise data. In Proceedings of International Conference on Management
of Data (SIGMOD), pages 551–562, San Diego, California, June 2003.

152

[12] D. Barbará, H. Garcia-Molina, and D. Porter. The management of probabilistic
data. IEEE Transactions on Knowledge and Data Engineering, 4(5):487–502,
1992.

[13] D. Dey and S. Sarkar. A probabilistic relational model and algebra. ACM
Transactions of Database Systems, 21(3):339–369, 1996.

[14] L. Lakshmanan, N. Leone, R. Ross, and V. Subrahmanina. Probview: A flex-
ible probabilistic database system. ACM Transactions on Database Systems,
22(3):419–469, 1997.

[15] P. Sen and A. Deshpande. Representing and querying correlated tuples in prob-
abilistic databases. In Proceedings of 23rd International Conference on Data
Engineering (ICDE), 2007.

[16] L. Antova, C. Koch, and D. Olteanu. 10106

worlds and beyond: Efficient rep-
resentation and processing of incomplete information. In Proceedings of 23rd
International Conference on Data Engineering (ICDE), 2007.

[17] J. Boulos, N. Dalvi, B. Mandhani, S. Mathur, C. Re, and D. Suciu. MYSTIQ: A
system for finding more answers by using probabilities. In Proceedings of ACM
Special Interest Group on Management Of Data (SIGMOD), 2005.

[18] A. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for un-
certain data. In Proceedings IEEE Internation Conference on Data Engineering
(ICDE), 2006.

[19] A. Deshpande and S. Madden. MauveDB: Supporting model-based user views in
database systems. In Proceedings of ACM Special Interest Group on Management
Of Data (SIGMOD), pages 73–84, 2006.

[20] D. Pfoser and C.S. Jensen. Capturing the uncertainty of moving-objects repre-
sentations. In Proceedings of the Scientific and Statistical Database Management
Conference (SSDBM), pages 123–132, 1999.

[21] A. Yazici, A. Soysal, B. Buckles, and F. Petry. Uncertainty in a nested relational
database model. Elsevier Data and Knowledge Engineering, 30, 1999.

[22] A. Nierman and H. V. Jagadish. ProTDB: Probabilistic Data in XML. In
Proceedings of International Conference on Very Large Data Bases (VLDB),
2002.

[23] E. Hung, L. Getoor, and V. S. Subrahmanian. PXML: A probabilistic semistruc-
tured data model and algebra. In Proceedings IEEE Internation Conference on
Data Engineering (ICDE), 2003.

[24] J. Galindo, A. Urrutia, and M. Piattini. Fuzzy Databases: Modeling, Design,
and Implementation. Idea Group Publishing, 2006.

[25] M. Boughanem, F. Crestani, and G. Pasi. Management of uncertainty and im-
precision in multimedia information systems: Introducing this special issue. In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
11(1):1–4, 2003.

153

[26] P. Bosc and O. Pivert. About projection-selection-join queries addressed to
possibilistic relational databases. IEEE Transactions on Fuzzy Systems, 13(1),
2005.

[27] B. Boss and S. Helmer. Index structures for efficiently accessing fuzzy data
including cost models and measurements. Fuzzy Sets and Systems, 108(1), 1999.

[28] S. Helmer. Evaluating different approaches for indexing fuzzy sets. Fuzzy Sets
and Systems, 140(1), 2003.

[29] P. Bosc and M. Galibourg. Indexing principles for a fuzzy data base. Information
Systems, 14(6), 1989.

[30] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. Vitter. Efficient indexing
methods for probabilistic threshold queries over uncertain data. In Proceedings
of International Conference on Very Large Data Bases (VLDB), 2004.

[31] V. Ljosa and A. Singh. APLA: Indexing arbitrary probability distributions. In
Proceedings of 23rd International Conference on Data Engineering (ICDE), 2007.

[32] C. Böhm, A. Pryakhin, and M. Schubert. The gauss-tree: Efficient object iden-
tification in databases of probabilistic feature vectors. In Proceedings of Inter-
national Conference on Data Engineering (ICDE), 2006.

[33] A. Faradjian, J. Gehrke, and P. Bonnet. GADT: A probability space ADT
for representing and querying physical world. In Proceedings of International
Conference on Data Engineering (ICDE), 2002.

[34] H. Gunadhi and A. Segev. Query processing algorithms for temporal intersection
joins. In Proceedings IEEE Internation Conference on Data Engineering (ICDE),
1991.

[35] D. Pfoser and C. Jensen. Incremental join of time-oriented data. In Proceedings of
the Scientific and Statistical Database Management Conference (SSDBM), 1999.

[36] M. Soo, R. Snodgrass, and C. Jensen. Efficient evaluation of the valid-time
natural join. In Proceedings IEEE Internation Conference on Data Engineering
(ICDE), 1994.

[37] D. Zhang, V. Tsotras, and B. Seeger. Efficient temporal join processing us-
ing indicies. In Proceedings IEEE Internation Conference on Data Engineering
(ICDE), 2002.

[38] J. Enderle, M. Hampel, and T. Seidl. Joining interval data in relational
databases. In Proceedings of International Conference on Management of Data
(SIGMOD), 2004.

[39] C. Faloutsos. Signature files. In Information Retrieval: Data Structures & Algo-
rithms, pages 44–65. Prentice-Hall, 1992.

[40] N. Mamoulis, D. Cheung, and W. Lian. Similarity search in sets and categorical
data using signature tree. In Proceedings of IEEE International Conference on
Data Engineering (ICDE), 2003.

[41] N. Mamoulis. Efficient processing of joins on set-valued attributes. In Proceedings
of ACM International Conference on Management of Data (SIGMOD), 2003.

154

[42] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms for selec-
tivity estimation of range predicates. In Proceedings of International Conference
on Management of Data (SIGMOD), 1996.

[43] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple relational
processing of uncertain data. In Proceedings of 24th International Conference on
Data Engineering (ICDE), 2008.

[44] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation of POST-
GRES. In IEEE Transactions on Knowledge and Data Engineering, volume 2,
pages 125–142, March 1990.

[45] Orion: A database system for managing uncertain data. http://orion.cs.
purdue.edu/, 2008.

[46] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[47] R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. Vitter, and Y. Xia. Efficient
join processing over uncertain data. In Proceedings of ACM 15th Conference on
Information and Knowledge Management (CIKM), 2006.

[48] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of english words. In
Meeting of the Association for Computational Linguistics, 1993.

[49] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press
/ Addison-Wesley, 1999.

[50] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middle-
ware. In Proceedings of ACM Symposium on Principles of Database Systems,
2001.

[51] I. Ilyas, W. Aref, and A. Elmagarmid. Supporting top-k join queries in relational
databases. In Proceedings of International Conference on Very Large Data Bases
(VLDB), 2003.

[52] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proceedings of International Conference on Management of Data (SIGMOD),
pages 47–57, 1984.

[53] K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A hierar-
chical monothetic document clustering algorithm for summarization and brows-
ing search results. In Proceedings of the 13th international conference on World
Wide Web, 2004.

[54] C. Oh, K. Honda, and H. Ichihashi. Fuzzy clustering for categorical multivariate
data. In IFSA World Congress and 20th NAFIPS International Conference,
2001.

[55] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch. Indexing
uncertain categorical data. In Proceedings of 23rd International Conference on
Data Engineering (ICDE), 2007.

[56] Y. Qi, S. Singh, R. Shah, and S. Prabhakar. Indexing probabilistic nearest-
neighbor threshold queries. In Proceedings of Workshop on Management of Un-
certain Data (MUD, VLDB), 2008.

155

[57] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch. Query selectiv-
ity estimation for uncertain data. In Proceedings of 20th International Conference
on Scientific and Statistical Database Management (SSDBM 2008), 2008.

[58] R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying imprecise data in
moving object databases. IEEE Transactions on Knowledge and Data Engineer-
ing, 16(7), 2004.

[59] Joseph Y. Halpern. Reasoning about Uncertainty. The MIT Press, 2003.

[60] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, S. Hambrusch, J. Neville, and
R. Cheng. Database support for probabilistic attributes and tuples. In Proceed-
ings of 23rd International Conference on Data Engineering (ICDE), 2008.

[61] Joseph E Conway. PL/R - R Procedural Language for PostgreSQL. http:
//www.joeconway.com/plr/, 2008.

[62] R. Cheng, S. Singh, and S. Prabhakar. U-DBMS: A database system for manag-
ing constantly-evolving data. In Proceedings of Very Large Databases Conference
(VLDB Demo), 2005.

[63] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and R. Shah.
Orion 2.0: Native support for uncertain data. In Proceedings of Special Interest
Group on Management of Data (SIGMOD Demo), 2008.

[64] S. Singh, C. Mayfield, S. Mittal, S. Prabhakar, S. Hambrusch, and R. Shah. The
orion uncertain data management system. In Proceedings of the 14th Interna-
tional Conference on Management of Data (COMAD Demo), 2008.

VITA

156

VITA

Sarvjeet Singh was a Ph.D. student in the Department of Computer Science at

Purdue University since fall of 2003. He research interests lie in problems related to

uncertain data management, privacy and security in databases and artificial intelli-

gence.

Prior to joining Purdue, Sarvjeet obtained his B.Tech. in Computer Science and

Engineering from the Indian Institute of Technology (IIT), Mumbai, India. During his

B.Tech., he worked on various projects in the areas of artificial intelligence, databases

and data mining. For his B.Tech. final project, he developed and implemented a mul-

tilingual and meaning-based search engine, with the goal of eliminating the language

barrier and improving the recall and precision of current keyword search engines.

During summer of 2001, he worked as a research associate at the Center of Studies in

Resources Engineering (CSRE), IIT Bombay, where he developed and implemented

algorithms for registration and analysis of satellite images. He received his M.S. in

Computer Science from Purdue University in May 2005. He worked as summer in-

tern at Amazon.com in the summer of 2005, where he developed a high performance

fault-tolerant business application utilizing distributed caching and databases. In

2006, he worked as graduate research professional in the Rosen Center for Advanced

Computing at Purdue, where he developed mobile applications for deployment in

intelligent environments using technologies such as J2ME, and conducted research

on issues related to communication technologies such as RFID and Bluetooth. He

worked at Google as an intern from June to September 2008, where he proposed and

implemented a solution for automatic schema change detection and reconciliation of

constantly evolving data sources. He graduated in May 2009 from Purdue University

with a Ph.D. degree in computer science.

