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ABSTRACT

In data publishing, anonymization techniques such as génar
tion and bucketization have been designed to provide pripac-
tection. In the meanwhile, they reduce the utility of theaddt is
important to consider the tradeoff between privacy andtyitiln

a paper that appeared in KDD 2008, Brickell and Shmatikov pro
posed an evaluation methodology by comparing privacy gétim w
utility gain resulted from anonymizing the data, and codeldithat
“even modest privacy gains require almost complete detstruof
the data-mining utility”. This conclusion seems to underenex-
isting work on data anonymization. In this paper, we analyee
fundamental characteristics of privacy and utility, andwghhat it
is inappropriate to directly compare privacy with utilittVe then
observe that the privacy-utility tradeoff in data publighis similar
to the risk-return tradeoff in financial investment, andgm®e an
integrated framework for considering privacy-utility desoff, bor-
rowing concepts from the Modern Portfolio Theory for finaici
investment. Finally, we evaluate our methodology on the lAdu
dataset from the UCI machine learning repository. Our tesiér-
ify several common misconceptions about data utility araVicle
data publishers useful guidelines on choosing the righew be-
tween privacy and utility.

Categories and Subject Descriptors

H.2.7 [Database Administration]: Security, integrity, and protec-
tion; H.2.8 Database Applicationg: Data mining

General Terms
Algorithms, Experimentation, Security, Theory

Keywords

privacy, anonymity, data publishing, data mining

1. INTRODUCTION

Privacy-preserving publishing of microdata has receivaatim
attention in recent years. Microdata contains records efwfhich

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

KDD'09, June 28-July 1, 2009, Paris, France.

Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

contains information about a specific entity, such as arviddi
ual, a household, or an organization. Each record has a numbe
of attributes: some attributes may be sensitive (suatissaseand
salary) and some may be quasi-identifiers (called QI, suchijs
code age andsey whose values, when taken together, can poten-
tially identify an individual.

Publishing microdata enables researchers and policy1sadée
analyze the data and learn important information benefttiegso-
ciety as a whole, such as the factors causing certain disestéec-
tiveness of a medicine or treatment, and social-econontienpa
that can guide the formulation of effective public policiés other
words, publishing microdata results utility gain for the society
as a whole However, as microdata contains specific information
about individuals, publishing microdata could also resulpri-
vacy loss for individualsvhose information is published. Hence
before the microdata can be made public, one must ensurththat
privacy loss is limited to an acceptable level. This is taflicdone
via anonymizationwhich transforms the microdata to improve the
privacy. Because anonymization makes data imprecise addo
torted, it also causes losses in potential utility gain, wbempared
with the case of publishing the unanonymized microdata.

A fundamental problem in privacy-preserving data pubtighis
how to make the right tradeoff between privacy and utilitie vast
majority of existing work on privacy-preserving data pshing
uses the following approach. First, one chooses a specifiacyr
requirement, such @sanonymity [25, 26]/-diversity [21],(«, k)-
anonymity [29]t-closeness [19], andétpresence [23], based on in-
tuitions of what privacy means. Second, one studies theviirtig
problem: after fixing a parameter for the privacy requirenferg.,
choosingk = 10 in k-anonymity), how to generate an anonymized
dataset that maximizes a particular utility measure, wish be
the number of equivalence class [21], or the discernibititgt-
ric [4]. The above approach is limited in considering thelémaif
between utility and privacy because it is unable to answerita
portant questions. First, how to choose among the differevacy
requirements? Second, how to choose a particular pararoeter
the particular requirement? For example, one would wanhtmk
whether to choos& = 5 or k = 10 for k-anonymity. In this
approach, these issues are considered only from the prassct,
and independent of the utility aspect. However, this iséupchte as
often times one does not have a clearly defined privacy reopgnt
set in stone, and may be willing to accept a little more pgnMass
to get a large gain in utility. In short, we currently lack arffrework
for thinking about the privacy-utility tradeoff in data dighing.

In a paper that appeared in KDD 2008, Brickell and
Shmatikov [5] applied a fresh angle to the tradeoff betwegn p
vacy and utility. They directly compared the privacy gairihnthe
utility gain caused by data anonymization, and reached taigin



ing conclusion “even modest privacy gains require almostmete
destruction of the data-mining utility.” If this conclusicholds,
then it would mean that the vast majority of the work on prxac
preserving publishing of microdata is meaningless, bexau
might as well publish the microdata in some trivially anorigea
way. A simplified variant of the arguments made by Brickellan
Shmatikov [5] is as follows. (We will present the completguar
ments in Section 3.1.) Privacy loss of the published datefised
by certain kinds of information learned by the adversaryrfithe
dataset. Utility gain of the published data is defined as #mees
kinds of information learned by the researchers. Becausethe
adversary and the researchers see the same dataset antkamynto
the same kinds of information, their knowledge gains arestiree.
Hence any utility gain by the anonymized data must be offg¢té
same amount of privacy loss. We call the methodology by Biick
and Shmatikov [5] thelirect comparisormethodology.

In fact, the direct-comparison methodology [5] undereatas
the seriousness of privacy loss, as it usegrageprivacy loss
among all individuals. When measuring privacy loss, onethas
bound theworst-caseprivacy loss amongill individuals. It is not
acceptable if one individual's privacy is seriously compised,
even if the average privacy loss among all individuals is. [dWis
is clearly illustrated when New York Times reporters idéetl a
singleuser in the search logs published by AOL, causing AOL to
remove the data immediately and fire two employees involved i
publishing the data [3].

The above reasoning seems to suggest that data anonymizatio
is even more doomed than being concluded in [5]. In this pa-
per, we show that there are important reasons why this isheot t
case. Specifically, we show that arguments along the ling§ are
flawed. It is inappropriate to directly compare privacy witfiity,
because of several reasons, including both technical ataspph-
ical ones. The most important reason is that privacy isdivid-
ual concept, and utility is amggregateconcept. The anonymized
dataset is safe to be published only when privacyeachindi-
vidual is protected; on the other hand, utility gain adds upgmw
multiple pieces of knowledge are learned. Secondly, evéreiad-
versary and the researcher learn exactly the same infamatne
cannot conclude that privacy loss equals utility gain. Wik elab-
orate this and other reasons why privacy and utility are imettly
comparable in Section 3.

If privacy and utility cannot be directly compared, how shibu
one consider them in an integrated framework for privacy-
preserving data publishing? For this, we borrow the efficieomn-
tier concept from the Modern Portfolio Theory which guidesfi-
cial investments [8] (see Figure 1). When making investseotie
must balance the expected return with the risk (often defisetie
degree of volatility). One can choose an asset class with tiédg
and high expected return (e.g., stock), or choose an assstwith
low risk and low expected return (e.g., cash), or choose tighior
that combines multiple asset classes to get more attractideoff
between risk and return. Here the risk and expected retumata
be directly compared against each other, just as privacyuihd
ity cannot be compared. One can use points on a two-dimeaision
plane (one dimension is risk, and the other is the expectadh)eo
represent portfolios, and the efficient frontier consistaliportfo-
lios such that there does not exist another portfolio witthibower
risk and higher expected return (which would be more effi}ien
The points representing these efficient portfolios form ribeth-
west frontier on all points. One can then select a portfoiibes
based on the maximum acceptable risk, or the slope of theecurv
which offers the best risk/return tradeoff.

Contributions.  This paper studies the tradeoff between privacy
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Figure 1: Efficient Frontier. (from Wikipedia)

and utility in microdata publishing. Our contributions a fol-
lows. First, we identify several important characterstc privacy
and utility. These observations correct several commorcanis
ceptions about privacy and utility. In particular, we shdwattthe
arguments made in the KDD 2008 paper [5] are flawed.

Second, we present a systematic methodology for measuiing p
vacy loss and utility loss. Privacy loss is quantified by tHeea-
sary’s knowledge gain about the sensitive values of spéciicid-
uals, where the baseline is the trivially-anonymized datere all
quasi-identifiers are removed. Utility loss is measuredigyimfor-
mation loss about the sensitive values of large populatishere
the baseline is the original data (we shall argue that, antik-
vacy loss, the utility of the anonymized data should be meaku
against the original data rather than the trivially-saeii data, and
should be measured as “utility loss” rather than “utilityirgain
Section 3.2).

Finally, we evaluate the tradeoff between privacy andtytin
the adult dataset from the UCI machine learning reposit@ur
results show the privacy-utility tradeoff for differentiyacy re-
quirements and for different anonymization methods. We gige
quantitative interpretations to the tradeoff which candgudata
publishers to choose the right privacy-utility tradeoff.

The rest of the paper is organized as follows. Section 2wnevie
existing work and background information on microdata bl
ing. Section 3 describes the direct-comparison methogothg
to Brickell and Shmatikov [5], clarifies the flaws of the direc
comparison methodology and presents the three chardic®iié
privacy and utility. Section 4 presents our methodologynfieasur-
ing privacy and utility tradeoff. Section 5 experimentadyaluates
our methodology and Section 6 concludes the paper withtébrec
for future work.

2. BACKGROUND AND RELATED WORK

The general methodology for evaluating privacy-utilitgdeoff
fixes a privacy requirement with the privacy parameter aies to
find an algorithm that produces an anonymized dataset thet ma
mizes a particular utility measure. The three key companierthe
above methodology are: (1) anonymization algorithm, (2)auy
requirement, and (3) utility measure. We elaborate on thethe
rest of this section.

2.1 Generalization and Bucketization

One popular anonymization method is generalization [25, 26
Generalization is applied on the quasi-identifiers andaegs a QI
value with a “less-specific but semantically consistent@al As a
result, more records will have the same set of quasi-identifil-
ues. We define aaquivalence clasef a generalized table to be a
set of records that have the same values for the quasiidesti



One problem with generalization is that it cannot handléhig
dimensional data due to “the curse of dimensionality” [1]icB-
etization [30, 14, 22] was proposed to remedy this drawbadtie
bucketization method first partitions tuples in the tabke ibuck-
ets and then separates the quasi-identifiers with the senait
tribute by randomly permuting the sensitive attribute ealin each
bucket.
permuted sensitive attribute values. Finally, anotherelyidised
method is suppression which replaces a QI value by a **’ attara

2.2 Privacy Requirements

Several types of information disclosure in microdata g
have been identified in the literature [6, 16]. An importauet of
information disclosure igttribute disclosure Attribute disclosure
occurs when a sensitive attribute value is associated witingi-
vidual. This is different from botlidentity disclosurdi.e., linking
an individual to a record in the database) anembership disclo-
sure[7, 23] (i.e., learning whether an individual is includedtire
database). As in [5], this paper considatibute disclosure

k-Anonymity [25, 26] (requiring each equivalence class con-
tains at leastt records) aims at preventing identity disclosure.
Because identity disclosure leads to attribute disclogomee the
record is identified, its sensitive value is immediatelyei@ed),k-
anonymity can partly prevent attribute disclosure. Butduse at-
tribute disclosure can occur without identity disclos@g,[29] (for
example, when all records in the equivalence class haveatie s
sensitive value)k-anonymity does not prevent attribute disclosure.

{-Diversity [21] remedies the above limitations kfanonymity
by requiring that in any equivalence class, each sensitiigevcan
occur with a frequency of at modt/¢. While there are several
other definitions of¢-diversity such as recursivé, £)-diversity,
the above probabilistic interpretation is the most widedgd one
in the literature. A similar privacy requirement is the, k)-
anonymity [29].

£-Diversity ensures that the probability of inferring thesitive
value is bounded by/¢. However, this confidence bound may be
too strong for some sensitive values (e.g., a common formsef d
ease) and too weak for some other sensitive values (e.ge foran
of cancer)t-Closeness [19] remedies the limitationgadiversity,
by requiring the sensitive attribute distribution in eacfuigalence
class to be close to that in the overall data. A closely-eel@rivacy
requirement is the template-based privacy [27] where thbalyil-
ity of each sensitive value is bounded separately.

Similar to ¢t-closeness, semantic privacy [5] also tries to bound
the difference between the baseline belief (i.e., theibigion in
the overall population) and the posterior belief (i.e., thigtribu-
tion in each equivalence class). Unlikeloseness that uses Earth
Mover’s Distance (EMD) (which is aadditivemeasure), semantic
privacy uses anultiplicativemeasure which bounds the ratio of the
probability of each sensitive value in each equivalencescknd
that in the overall distribution. One advantage of semaniiacy
is that it gives a bound on the adversary’s knowledge gaias-cl
sification accuracy is bounded when semantic privacy isfeedi.
Semantic privacy is quite strong and it does not capture séma
meanings of sensitive values as EMD.

2.3 Utility Measures

the anonymized data, one can simply perform the data miasigst
and output their results. Because of this, most utility mess are
workload-independent, i.e., they do not consider any palei data
mining workload. For example, the utility of the anonymizata
has been measured by the number of generalization stepay-the
erage size of the equivalence classes [21] , the discatpitriktric

The bucketized data consists of a set of buckets with (DM) [4] which sums up the squares of equivalence class sireb

the KL-divergence between the reconstructed distribugiod the
true distribution for all possible quasi-identifier valj&s].

Several researchers have proposed to evaluate the ufiliheo
anonymized data in terms of data mining workloads, suchass cl
sification and aggregate query answering (A comprehensgre d
cussion on the privacy-preserving data publishing is ginef9]).
Classification accuracy on the anonymized data has beeawatwdl
in [18, 28, 10, 27, 5]. The main results from these studies are
(1) anonymization algorithms can be tailored to optimize pler-
formance of specific data mining workloads and (2) utilitgrfr
classification is bounded when attributed disclosure isened.
Aggregate query answering has also been used for evaliddiag
utility [30, 14, 24].

2.4 Limitations of the General Methodology

The general methodology (as described in the beginning of Se
tion 2) had several limitations. First, parameters of défe privacy
requirements usually are not comparable; they may evendifve
ferent domains. For example, theparameter irk-anonymity [25,
26] can range from to the total number of records, tligparame-
ter in ¢-diversity [21] can range fron to the total number of sen-
sitive values, the parameter irt-closeness [19] can be any value
in between oD and1, and thej parameter in semantic privacy [5]
can be any positive float number. Therefore, it is not reaserta
compare different privacy requirements based on theirrpeters
because different privacy parameters have different meaniSec-
ond, the privacy parameters put an upper bound on the anaagmi
data. The actual privacy loss in a particular anonymizec#t
may be less than the parameters indicate. Therefore, itpsrim
tant to measure privacy forspecificanonymized dataset. Finally,
existing utility measures are limited in several aspectsee Wil
clarify these limitations in Section 3.2. In Section 4, wesent
our privacy measure and utility measure, and our methogdiog
evaluating privacy-utility tradeoff.

3. PRIVACY V.S. UTILITY

In this section, we discuss ttiirect-comparisormethodology
used by Brickell and Shmatikov [5]. We show that the direct-
comparison methodology is flawed, and identify three imgart
characteristics of privacy and utility, which lays the faation for
our methodology described in Section 4.

3.1 The Direct Comparison Methodology

Recently, Brickell and Shmatikov [5] applied a fresh angle t
the tradeoff between privacy and utility. They directly quamned
the privacy loss with the utility gain caused by data anorzation.
To allow such a comparison, one has to use shmemeasure-
ment for both privacy and utility. In [5], the trivially-amymized
data, where all quasi-identifiers are removed, is used asetheh-
mark for comparing the anonymized dataset with. Because the

It is important that the anonymized data can be used for data trivially-anonymized data contains no identifier informoat and

analysis or data mining tasks.
move all quasi-identifiers and output the trivially-anonyed data,
which provides maximum privacy.

Also, it is unclear what kinds of data mining tasks will be per
formed on the anonymized data. Otherwise, instead of fhiblis

Otherwise, one can simply re-

thus does not reveal sensitive information of any individie.,
provides maximum privacy protection in the considered fam
work). When a non-trivial anonymization is applied, infation
on quasi-identifiers is revealed, which could cause botlapyiloss
and utility gain, comparing to the trivially-anonymizedtda



In the direct comparison methodology, this privacy loss &am
sured as the adversary’s accuracy improvement in guessrageh-
sitive attribute value of an individual, and utility gainnseasured
as the researcher’s accuracy improvement in building sifice-
tion model for the sensitive attribute. This assumes th#t boe
adversary and the researcher have the same goal, i.eipigann
formation to predict the sensitive attribute value. Beeaubatever
information that can be discovered by the researcher canbals
learned by the adversary, the analysis of privacy-utiligdeoff is
trivialized: privacy loss always equals utility gain.

This trivialization is resulted from the following assurigpts.

loss. We now argue that directly comparing privacy andtyt{las
in [5]) is neither reasonable nor feasible, because prigacyutility
have very different characteristics, as discussed below.

3.2.1 Specific and Aggregate Knowledge

The direct-comparison methodology implicitly assumest tha
learning the same piece of information hasshenempact on both
privacy and utility; otherwise one cannot compare them. alet,f
this assumption is used quite commonly (though often initp)c
in the literature. For example, lyengar [12] claims thasslfica-
tion accuracy is maximized when the sensitive values areohom

1. Both the adversary and the researcher have the same priofgeneous within each equivalence class, which directlyraditts

knowledge about the data.

the ¢-diversity requirement [21]. Similarly, privacy [21, 29]lis

2. Both the adversary and the researcher use the same approacduantified byP(SA|QI) (i.e., how much an adversary can learn

to learn information from the anonymized data.

about the sensitive value of an individual from the indiatisi QI
values) while utility [30] is measured by attribute cortedas be-

3. Learning the same kinds of information has the same impact tween the QI attributes and the sensitive attribute.

on privacy and utility.

If all of the three assumptions hold, privacy loss would équiéty
gain. Because of the first two assumptions, the adversaryhend
researcher would have exactly the same posterior beliaftahe
data. If the third assumption also holds, the adversaryesvedge
gain would equal the researcher’s knowledge gain, implyivag
privacy loss equals utility gain.

To avoid such a trivial result, at least one of the three agsum
tions must be changed. The direct comparison methodoloff] in
changes the first assumption. It assumes that the adverssigds
prior knowledge than the researcher. Specifically, it isiassd that
the microdata contains sonmeutral attributes that are known to
the researcher but not to the adversary; these neutrdads are
not considered as Ql's. Then the benchmark trivially-ameizgd
dataset becomes the dataset with only the neutral attsitartd
the sensitive attribute, but not the Ql's. For anonymizethsizt,
one compares with this new benchmark for privacy loss aridyuti
gain. Experiments in [5] leads to the intriguing conclusfemen
modest privacy gains require almost complete destructfome
data-mining utility”. Because this approach gives the appaim-
pression of limiting the adversary (who does not know thetna¢u
attributes), they further claim that “to protect againstaaiversary
with auxiliary information, the loss of utility must be evgreater”.

In reality, the same piece of information can have very diffe
ent impacts on privacy and utility. More specifically, fdifferent
kindsof knowledge, having the adversary and the researcher learn
exactly the same knowledge can be beneficial in some cases and
detrimental in other cases. For example, suppose thateaiméd
from the published data that people living near a small toawreta
much higher rate of getting cancer (say, 50%) than that arttang
general population. Learning this piece of information oapact
both privacy and utility. On the one hand, this piece of infation
breaches the privacy of the people in this small town. Fompte,
when they go to purchase health/life insurance, it can aeler
affect their ability of getting insurance. On the other hamgpub-
lishing this piece of information, people can investigdte tauses
of the problem (e.g., find some sources of pollution) and détl
the problem (e.g., by removing the pollution sources omglkire-
cautions). In this case, suelggregateinformation results in more
utility gain than privacy loss as it benefits the society anthole,
even for non-participants.

Suppose that, in another case, it is learned from the pudlish
data that an individual has a 50% probability of having caree
cause the individual’s record belongs to an equivalencesatan-
taining two records one of which has cancer. Ssphcificinfor-
mation has no utility value to researchers but causes priess.

We now show that the above conclusions do not hold. Because Again, the information gain by the researcher and the advgere

the researcher knows the neutral attributes, which oftea barre-
lations with the sensitive attribute, the researcher cazadly learn
information about individuals from the new benchmark, aad c
predict sensitive attributes of individuals quite well.ide the ad-
ditional improvement the researcher can get from any anaaan
dataset would be small. Because the adversary does not km&ow t
neutral attribute values of individuals, the adversaryredittle

the same, but the utility gain and the privacy loss are vefgmdint.
The above arguments leads to the first characteristic cagyiv
and utility: specificknowledge (that about a small group of in-
dividuals) has a larger impact onprivacy, while aggregatein-
formation (that about a large group of individuals) has a larger
impact on utility .
In other words, privacy loss occurs when the adversary searn

from the new benchmark, and hence is able to gain more from any more information about specific individuals from the anoiged

anonymized dataset. This naturally leads to the concluiah
publishing anonymized dataset is less useful for the rebeathan

for the adversary. In fact, one can conclude this withouhiug
any experiment. It essentially follows from the ways privdass
and utility gain are defined. Assuming the adversary haspgees
knowledge than the researcher allows the adversary to fgaie”
from the anonymized data. Under the more natural assungption
that the adversary knows more information than the reseasnid

the benchmark includes only the sensitive attribute, timeparison
between privacy loss and utility gain again becomes a triida

3.2 Characteristics of Privacy and Utility

From the analysis of the direct-comparison methodologyw@po
one can see that it essentially says that privacy gain equity

data. But data utility increases when information abolgdaisize
populations is learned.

Another effect of the aggregate nature of utility is morelghi
sophical than technical. When publishing anonymized éatasly
the individuals whose data are included have potentiahpyiVoss,
while everyone in the society has potential utility gainfdat, this
principle is implicitin any kind of survey, medical studyceWhile
each participant may loss more than she individually gahesso-
ciety as a whole benefit. And everyone is benefiting from tieeu
and study that one does not participate. Because benefitigtygo
is difficult (if not impossible) to precisely compute, it isneason-
able to require that publishing certain anonymized datasedts in
higher “utility gain” than “privacy loss” using some mathatical
measure.



3.2.2 Individual and Aggregate Concepts

Another important reason why privacy and utility cannot be d
rectly compared is as follows. For privacy protection, iséfe to
publish the data only whegveryrecord satisfies the privacy param-
eter (i.e., every individual has a bounded privacy loss)s hplies
that privacy is arindividual concept in that each individual’s pri-
vacy is enforcedseparately This characteristic is different from
utility gain. When multiple pieces of knowledge are learifien
the anonymized data, data utility adds up. This implies ttiity
is anaggregateconcept in that utilityaccumulatesvhen more use-
ful information is learned from the data. The above argusrad
to the second characteristic of privacy and utiliyivacyis anin-
dividual concept and should be measuredeparatelyfor every
individual while utility is an aggregateconcept and should be
measuredaccumulativelyfor all useful knowledge.

This characteristic immediately implies the following oliary
on measuring privacy and utility.

COROLLARY 3.1. For privacy, theworst-caseprivacy loss
should be measured. For utility, tleggregatedutility should be
measured.

Hence it is possible to publish anonymized data even if fohea
individual, both the privacy loss and the utility gain areatimbe-
cause the utility adds up.

3.2.3 Correctness of Information

Yet another difference between privacy and utility emexglen
we consider the correctness of the information learned ftioen
anonymized data. When the adversary learns satseinforma-
tion about an individual, the individual’s privacy is bréad even
though the perception is incorrect. However, when the rebea
learns somdalse information, data utility deteriorates because it
may lead to false conclusions or even misleading publicjzsi

In fact, some studies have overlooked this difference betwe
privacy and utility. For example, the direct comparison moeiol-
ogy uses the trivially-anonymized data as the baselinedtr pri-
vacy and utility. While the trivially-anonymized data ispppriate
as the baseline for privacy [19, 5], it is inappropriate taused as
the baseline for utility gain. Consider using the anonymidata
for aggregate query answering, e.g., determining theibligton of
the sensitive values in a large population. Let the estichdte-
tribution be P. Let the distribution of the sensitive values in the
trivially-anonymized data b&). When the trivially-anonymized
data is used as the baseline, the anonymized data addsity util
when P is different from@. However, P might be significantly
different from the true distributio®. The estimated false infor-
mation does not contribute to utility; in fact, it worsene ttlata
utility.

This is the third characteristic of privacy and utilitgny infor-
mation that deviates from the prior belief, false or correct may
causeprivacy loss but only correct information contributes to
utility . This characteristics implies the following corollary oeaa
suring privacy and utility.

COROLLARY 3.2. Privacy should be measured agaitisé
trivially-anonymized datavhereas utility should be measured us-
ing the original dataas the baseline.

When the original data is used for measuring utility, we need
to measure “utility loss”, instead of “utility gain”. An idé (but
unachievable) privacy-preserving method should resueno pri-
vacy loss and zero utility loss.

To summarize, privacy cannot be compared with utility disec
because: (1) privacy concerns information about specifividu-

als while aggregate information about large populatioss abn-
tributes to utility, (2) privacy should be enforced for eaokli-
vidual and for the worst-case while utility accumulatesualéful
knowledge; (3) only participants have potential privacgslowhile
the society as a whole benefit, and (4) false information case
privacy damage but only correct information contributesititity
gain. All reasons suggest that the direct-comparison ndelbgy
is flawed. These characteristics also lay the foundationdiopro-
posed methodology in Section 4.

4. METHODOLOGY

In this section, we present our methodology for analyzirg th
privacy-utility tradeoff in determining how to anonymizadapub-
lish datasets. Data publishers often have many choicesvafcyr
requirements and privacy parameters. They can anonymée th
data and generate a number of datasets that satisfy diffpren
vacy requirements and different privacy parameters. Cftaas,
an important question for them is “which dataset should lwseh
to publish?”. Our methodology helps data publishers anghier
question.

We observe that the privacy-utility tradeoff in microdatepish-
ing is similar to the risk-return tradeoff in financial inte®nt. In
financial investment, risk of an asset class or a portfolity|s-
cally defined as volatility of its return rate, which can beangred
using, e.g., the standard deviation. Risk cannot be dyrecin-
pared with return, just as privacy cannot be directly coregavith
utility. Similarly, different investors may have differetolerance
of risks and expectation of returns. Different data pulgishmay
have different tolerance of privacy and expectation oftytil

We borrow the efficient frontier concept from the Modern Port
folio Theory. Given two anonymized datasdds and D-, we say
thatD; is more efficienthanDs if D; is as good a®s in terms of
both privacy and utility, and is better in at least one of aciy and
utility. Two anonymized datasefs; and D may not be compara-
ble because one may offer better privacy but worse utility.

Given a number of anonymized datasets, for each of them we
measure its privacy losB),ss relative to the case of publishing a
trivial anonymized dataset that has no privacy threat, &dtil-
ity loss Uj,s5 relative to the case of publishing the dataset without
anonymization. We obtain a set 0P, Uioss) pairs, one for
each anonymized dataset. We plot &, Uioss) pairs on a 2-
dimensional space, where theaxis depicts the privacy 1098,
and they-axis depicts the utility los#/;,ss. An ideal (but often
impossible) dataset would have,ss = 0 andU,,ss = 0, which
corresponds to the origin point of the coordinate. All dataghat
are most efficient will form a curve, and the data publisher ca
choose a dataset based on the desired levels of privacy #iby ut
and the shape of the curve.

To use our methodology, one must choose a measure for privacy
and a measure for utility. Our methodology is independerihef
particular choices for such measures. In this paper, wePuse
to measure the degree of attribute disclosure beyond wimabea
learned from publishing the sensitive attributes withouls.QW\e
introduce a novel utility measure, which is based on thetiotuof
measuring the accuracy of association rule mining results.

4.1 Measuring Privacy LossP,..

We propose a worst-case privacy loss measureQUet the dis-
tribution of the sensitive attribute in the overall tables i [19, 5],
we use the distributiof) as the adversaryjsrior knowledgeabout
the data, becaug@ is always available to the adversary even if all
quasi-identifiers are suppressed. This is true as long aetigtive



attribute is kept intact, as in most existing methods. Ryidaaks
occur only when the adversary learns sensitive informaimyond
the distributionQ).

When the adversary sees the anonymized data, the adversary’

posterior knowledgebout the sensitive attribute of a tuplee-
duces to the equivalence class that containiset the distribution
of the sensitive attribute in the equivalence clasg§e). The pri-
vacy loss for a tuplé is measured as the distance betwéeand
P(t). We use the JS-divergence distance measure:

Pioss(t) = JS(Q, P(t)) = %[KL(Q, M) + KL(P(t), M)]
whereM = $(Q + P(t)) andK L(,) is the KL-divergence [15]:

KL(Q,P)=> g log}%

Note that here we JS-divergZence rather than KL-divergence
because KL-divergence is not well-defined when there are zer
probabilities in the second distributiaR. Therefore, using KL-
divergence would require that for every equivalence classensi-
tive attribute values must occur at least once. Howevert mast-
ing privacy requirements such ésliversity [21],¢-closeness [19],
and sematic privacy [5] do not have such a property. Fingilg,
worst-case privacy loss is measured as the maximum privssy |
for all tuples in the data:

]Dloss - Hl?.X ]Dluss(t)

It should be noted that one has the option to use other distanc
measures. Whichever distance measure one chooses, itldieoul
the case that less privacy loss occurs when the distanceaitesm
Studying which distance measure one should choose is bdlend
scope of this paper.

4.2 Measuring Utility Loss v,

In general, there are two approaches to measure utilityhdn t
first approach, one measures the amount of utility that isaneed
in the anonymized data. This includes measures such aseeg@v
size of the equivalence classes [21] and the discernilnilégric [4].
This also includes the approach of evaluating data utititterms
of data mining workloads. In the second approach, one measur
the loss of utility due to data anonymization. This is meadur
by comparing the anonymized data with the original data.sThi
includes measures such as the number of generalizatios atep
the KL-divergence between the reconstructed distribusiod the
true distribution for all possible quasi-identifier valyés].

It should be noted that, when the utility of the original data
low, it should be expected that the utility of the anonymiziada
is also low. In this case, the first approach may concludedat
anonymization has destroyed data utility while in fact, ltve data
utility is due to low utility of the original data. Similarjythe fact
the anonymized data can be used for a variety of data mingis ta
does not imply that the anonymization method is effectivether
anonymization method may provide even higher data utiliiy w
less privacy loss. Due to these reasons, the first approaeidps
little indication with regard to whether an anonymizatioatirod is
effective or not. Our methodology therefore adopts the isgegp-
proach. This is also consistent with our arguments aboatuddity
in Section 3.2: utility should be measuredudsity lossagainsthe
original data

When we measure utility loss, we need to decide which data
mining task should be chosen. Previous studies have eedldata
utility in terms of classification [12, 18, 27, 5]. Becausagdifica-
tion can also be used by the adversary to learn the sensdive v
ues of specific individuals, when the adversary’s knowleggim

is bounded, data utility of classification is also boundezk (Sec-
tion 4.2 of [5]). Therefore, data utility of classificationillsnot
constitute a major part of data utility because it is bounfiedca
safely-anonymized dataset. Because of this, we do not measu
data utility in terms of classification. Note that, we do mdend to
underestimate the potential use of the anonymized dataddssiti-
cation purposes. In fact, we agree with the previous stuzliehe
utility of classification.

Instead of classification, we use the anonymized data facass
ation rule mining [31] and aggregate query answering [30244
For both workloads, an important task is to reconstruct émsisive
attribute distribution for large populations. This is atsmsistent
with our arguments about data utility in Section 3.2: infatimn on
large populations contributes to utility. A large popubatican be
specified by a support value and a predicate involving onbsgu
identifiers, e.g., Age > 40&& Sex = Male”. The support value
is the number of records in the data that satisfy the preglicae
therefore adopt the following methodology for measurinigjtyt
lossUjpss.

First, we find all large populations whose support valuesaare
leastminSup (whereminSup is a user-defined threshold value).
To allow the large populations to be defined in terms of gdnera
ized predicate such asige > 40", we use generalized predicates
that involve not only values from the attribute domain of teasi-
identifiers but also values from the generalization hidnaraf the
quasi-identifiers (see for example [20] and other data mitiiA
erature on generalized association rule mining). We usd-Ehe
tree [11] algorithm for discovering large populations.

Next, for each large populatian we compute the estimated dis-
tribution P, of the sensitive attribute from the anonymized data and
the true distributionP, of the sensitive attribute from the original
data. We adopt the uniform distribution assumption: evetyein
a generalized interval is equally possible and every seasitlue
in an equivalence class is also equally possible. We medkare
difference betweew®, and P, as the researcher’s information loss
when analyzing the the large populatign Again, we use the JS-
divergence as the distance measure, ilg..s(y) = JS(Py, Py).

Finally, because utility is anggregateconcept, we measure the
utility loss U.ss by averaging utility losg;,ss(y) for all large
populationy.

Z Uloss (y)

1
Uloss = T~
Yl =

whereY is the set of all large populations. The anonymized data
provides maximum utility whe/;,ss = 0. In our experiments
(see Section 5), we also empirically evaluate data utititierms of
aggregate query answering.

4.3 Special Cases

There are two special cases for the privacy-utility trafledhe
first case is to publish the trivially-anonymized data whate
quasi-identifiers are completely suppressed. In this dhsees-
timated distribution of the sensitive attribute for evenglividual
equals to the overall distributio®. Because/S[Q, Q] = 0, we
haveP,,,s(t) = 0 for every tuplet. ThereforeP,,ss = 0, achiev-
ing maximal privacy protection.

Similarly, the estimated distribution of the sensitiveiatite for
every large population also equals to the overall poputaflo Be-
cause the overall distributio@ may be quite different from the
true distribution, utility loss could be significant. Thisvtally-
anonymized dataset is the first baseline that ensbirges = 0 but
Uioss Can be large.

The second special case is to publish the original datasetenvh



Attribute Type | #of values requirements span a similar range of privacy loss onatheis.
1 Age Numeric 74 Specifically, we choosg € {10, 50, 100, 200, 500, 1000, 2000,
2| Workclass | Categorical 8 5000}. For example, whelt = 5000, the evaluated privacy loss
3 Education Categorical 16 P,ss = 0.086 and the evaluated utility l0sE;,ss = 0.0288,
4 | Marital_Status| Categorical 7 which corresponds to the leftmost point on #x@nonymity curve
5 Race Categorical 5 in Figure 2(a). We choosee {3.0, 3.5, 4.0, 4.25, 4.5, 4.75, 5.0,
6 Gender Categorical 2 5.5}, t € {0.075,0.10.15, 0.20.25, 0.30.35, 0.4}, andd € {1.0,
7 Occupation Sensitive 14 1.2, 1.4, 1.5, 1.7, 1.9, 2.0, 2.1}. Therefore, we hav8 points
on each privacy-requirement curve and they span a simitagera
Table 1: Description of the Adult dataset. on thezx-axis, from 0 to 0.6 (see Figure 2). Note that we choose

0 > 1 because the Mondrian algorithm returns one single equiva-
lence class wheh < 1. Fort-closeness, we use JS-divergence as
the distance measure. For utility measuUfgss, we fix the mini-
mum support value asinSup = 0.05.

all quasi-identifiers are kept intact. In this case, anynestéd in-
formation is correct and the estimated distribution equalshe
true distribution, i.e. P, = P, for every populationy. Because
JS(Py, Py) = 0, we havelU,.ss(y) = 0 for every population
y. Therefore,U,,ss = 0, achieving maximum utility preserva-
tion. However, because the sensitive value for every iddai is

Results. Figure 2(a) shows the utility loss v.s. privacy loss with re-
spect to different privacy requirements. We stress thagthesults

revealed, which can be quite different from the overallritistion, are affected by our choice of measures for privacy andytlfione
privacy 10ssP,,.. is significant. The original dataset is the second C€hooses a different measure for privacy (or utility), thee tigure
baseline that ensurég,., = 0 but Pj,.. can be significant. may look differently. As we can see frpm the flguteclosen_ess
performs better than other privacy requirements. Baseti®fig-
4.4 Advantages ure, one would probably choose one of the three left-mositpdor

t-closenesst(= 0.075,¢ = 01, ¢ = 0.15) to publish, since they of-
fer the best trade-off between privacy and utiliyDiversity does
not perform well because it aims at bounding the posteritiebe
rather than the distance between the prior belief and thiepos
belief. Therefore, even whefidiversity is satisfied, the posterior
belief can still be far away from the prior belief, thus leakisen-
sitive information, based on the privacy loss meaddrgs.

Interestingly, semantic privacy does not perform well @ittSe-
mantic privacy bounds the ratio of the posterior belief dverior
belief for every sensitive value. Semantic privacy thusvjates a
good privacy measure (note thahas to be non-negative in order
for semantic privacy to be achievable). However, semamiagy
is difficult to achieve in that the number of equivalence stss(or
buckets) is small, especially when the sensitive attriltldmain
size is large. In our experiments, there adesensitive values in
the attribute domain of “Occupation”, and requiring theador
each of thel4 sensitive values for each equivalence class (bucket)
to be bounded is very difficult to achieve in practice.

Our results demonstrate the similarity between the privaity
tradeoff in data publishing and the risk-return tradeof(ffe 1) in
financial investment. One difference is that in data publighwe
measure utility loss rather than utility gain. We believatthas in
financial investment, there exists an efficient frontier &adpub-
lishing, which consists of all anonymized datasets suchttiae
does not exist another anonymized dataset with both loviaqyr
5. EXPERIMENTS loss and lower utility loss. The data publishers should adg-

We implemented Mondrian [17] to enforce four requirements: sider those “efficient” anonymized dataset when publishdaga.
k-anonytmity [26],¢-diversity [21],t-closeness [19], and semantic  For Figure 2(a), the efficient frontier should be somewheiev
privacy [5]. We used both generalization and bucketization thet-closeness line.

We used the Adult dataset (which has been widely used inprevi  Figure 2(b) shows the tradeoff for two anonymization method
ous studies) from the UCI Machine Learning Repository [2heT  generalization and bucketization. We use bobttiiversity and¢-
data contains 45222 records and we use seven attributes ddth, closeness for the experiment. The results show that buekitin
as described in Table 1. provides substantially better data utility than genegdion, when

. . only attribute disclosure is considered.
5.1 Utlllty LOSS Uioss V.S. Prlvacy LOSSPis Interpretation of the privacy loss. We quantitatively illustrate

For each privacy requirement, we use the Mondrian algortthm  the amount of privacy loss. Specifically, we want to answer th

Our evaluation methodology has a number of advantages when
compared with existing work. First, one can use this mettaggo
to compare datasets anonymized using different requiressngryg.,
both¢-diversity andi-closeness are motivated by protecting against
attribute disclosure, by choosing one privacy loss measmecan
compare datasets anonymized wittliversity for different/ values
and those anonymized withcloseness for differeritvalues.

Second, we measure utility loss against the original ddtera

than utility gain. Utility gain is not well-defined in data Iplishing.
In order to measure utility gain, a baseline dataset musebaet!.
Because only correct information contributes to utilihe baseline
dataset must contain correct information about large ijmus.
In [5], Brickell and Shmatikov used the trivially-anonyraei data
as the baseline, in which every distribution is estimatebeidhe
overall distribution and therefore causes incorrect im@tion.

Third, we measure utility for aggregate statistics, rathan for
classification. This is because, as several studies havenstioe
utility of the anonymized data in classification is limite¢h@n pri-
vacy requirements are enforced.

Finally, we measure privacy loss in the worst-case and nmeasu
the accumulated utility loss. Our methodology thus evalsidhe
privacy loss foreveryindividual and the utility loss forll pieces
of useful knowledge.

compute the anonymized data that satisfies the privacynegent. following question: suppose an individual's sensitiveueals re-
Then, privacy 10s$,s5 and utility lossUi,; are measured for the  vealed, what is the privacy loss for that individual?
anonymized data. The overall distribution of the sensitive attribute “Ocatipn” is

We plot the privacy loss on the-axis and utility loss on the ¢ — (0.0314, 0.1331, 0.1063, 0.1196, 0.1323, 0.1329, 0.0452,

y-axis. Experimental results are shown in Figure 2. We choose (0657, 0.1225, 0.0327, 0.0512, 0.0052, 0.0216, 0.0003). If
the privacy parameters (i.ek, ¢, t, and ) such that all privacy
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Figure 2: Privacy-Utility Tradeoff: Ujoss V.S. Pioss
an individual’s sensitive value is revealed, the privacssl¢com- original table asict_count and the reconstructed count from the
puted through JS-divergence) is 0.692 when the sensitive va anonymized table asec_count. Then the average relative error is
“Armed-Forces” (which is the least frequent sensitive ealith computed over all queries as:
a frequency of 0.0003) and the privacy loss (computed throug 1
JS-divergence) is 0.488 when the sensitive valu€isft-repair’ p= Y [rec_countq — act_countq| .o
(which is the most frequent sensitive value with a frequeaty 1Q ey act_confq

0.1331). The above calculation shows that when an indiVelua ] )

privacy is revealed, the privacy loss is in between of 0.488 a  WhereQ is the set of quenes_generated based on the two parame-

0.692 for the sensitive attribute “Occupation” of the Additaset. ters, gd andsel. In our experiments, we randomly generate 1000
This means that privacy loss cannot be greater than 0.698: Ho adgregate queries of the above form, i@), = 1000.

ever, when the privacy loss is larger than 0.488, it does resirm  Results. We plot the privacy loss on the-axis and the average

that at least one individual's sensitive value is revealmtause relative error on thej-axis. Figure 3(a) shows the tradeoff with

it may be the case that there is a large amount of privacy Ioss 0 respect to different privacy requirements. Interestintie figure

the least-frequent sensitive value “Armed-Forces” evegh the shows a similar pattern as that in Figure 2(a) where utiityniea-

equivalence class (bucket) satisfiediversity where? € {3, 3.5}, sured adJ,ss, instead of average relative error. The experiments
as shown by the rightmost two points on theliversity curve confirm that our utility measur&,. captures the utility of the
shown in Figure 2(a). Note thdtdiversity requires that even the  anonymized data in aggregate query answering. One adeanfag
least-frequent (i.e., the most sensitive) sensitive vatust occur Usoss is to allow evaluating data utility based on the originaladat
with a probability of at least /. and the anonymized data, avoiding the experimental ovdshef
Interpretation of the utility loss. We also quantitatively illustrate ~ €valuating a large random set of aggregate queries.

the amount of utility loss. Specifically, we want to answe fl- Figure 3(b) measures the tradeoff with respect to diffesent
lowing question: what is the utility loss when all quasisitiiers values. We useé-closeness and bucketization and fik = 4. Our
are removed? The utility loss is calculated by averagingithiey experiments show that the average relative error is smaliensel
loss for all large populations, where the estimated distiin is is larger. Because a largeel value corresponds to queries about
always the overall distributio. Our calculation shows that when larger populations, this shows that the anonymized dataearsed
all quasi-identifiers are removed, the utility loss0i®5. In Fig- to answer queries about larger populations more accurately

ure 2, utility loss is lower than.04 in all cases, and is lower than Figure 3(c) measures the tradeoff with respect to differght
0.02 in many cases, showing that publishing the anonymized data values. We again usecloseness and bucketization and 4o{ =
does improve the quality of data utility than publishingitly 0.05. Interestingly, the rgsults show that the anonymlzed dalta c
anonymized dataset. be used to answer queries more accuratelydagcreases. This

is because when query selectivity is fixed, the number oftpaim
: the retrieved region is larger whep is larger, implying a larger
5.2 Aggregate Query Answe“ng query region. This also shows that the anonymized data camean

data in terms of aggregate query answering, which has bed=iywi

used for measuring data utility [30, 14, 24].
We consider the “COUNT” operator where the query predicate 6. CONCLUSIONS AND FUTURE WORK

involves the sensitive attribute, as in [30, 20]. A querydicate In this paper, we identify three important characteristibsut

is characterized by two parameters: (1) the predicate difoen privacy and utility. These characteristics show that theali

gd and (2) the query selectivityel. The predicate dimensioqd comparison methodology in [5] is flawed. Based on these char-
indicates the number of quasi-identifiers involved in thedizate. acteristics, we present our methodology for evaluatingagsi-

The query selectivitysel indicates the fraction of selected values utility tradeoff. Our results give data publishers usefuidglines

for each quasi-identifier. For each selected parametergamergte on choosing the right tradeoff between privacy and utility.

a set of1000 queries for the experiments. One important question is how to use the anonymized data for

For each query, we run the query on the both the original table data analysis (such as aggregate query answering) and data m
and the anonymized table. We denote the actual count from theing (such as association rule mining). We use the randomi-dist
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Figure 3: Average relative error V.S. Pj,ss

bution assumption as in most previous studies. Specificaity
interpret a generalized interval as that every value innterval is
equally possible. And when we use bucketization, given &étuc
of records, we assume that every sensitive value in the bugke
equally possible. This uniform-distribution assumpticas tbeen
studied for the privacy aspect [20] but there is no work onutile
ity aspect as far as we know. We believe that a more sophistica
approach of using the anonymized data can improve the détg ut
and thus improve the quality of the privacy-utility tradieof
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