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ABSTRACT
In data publishing, anonymization techniques such as generaliza-
tion and bucketization have been designed to provide privacy pro-
tection. In the meanwhile, they reduce the utility of the data. It is
important to consider the tradeoff between privacy and utility. In
a paper that appeared in KDD 2008, Brickell and Shmatikov pro-
posed an evaluation methodology by comparing privacy gain with
utility gain resulted from anonymizing the data, and concluded that
“even modest privacy gains require almost complete destruction of
the data-mining utility”. This conclusion seems to undermine ex-
isting work on data anonymization. In this paper, we analyzethe
fundamental characteristics of privacy and utility, and show that it
is inappropriate to directly compare privacy with utility.We then
observe that the privacy-utility tradeoff in data publishing is similar
to the risk-return tradeoff in financial investment, and propose an
integrated framework for considering privacy-utility tradeoff, bor-
rowing concepts from the Modern Portfolio Theory for financial
investment. Finally, we evaluate our methodology on the Adult
dataset from the UCI machine learning repository. Our results clar-
ify several common misconceptions about data utility and provide
data publishers useful guidelines on choosing the right tradeoff be-
tween privacy and utility.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Security, integrity, and protec-
tion; H.2.8 [Database Applications]: Data mining

General Terms
Algorithms, Experimentation, Security, Theory

Keywords
privacy, anonymity, data publishing, data mining

1. INTRODUCTION
Privacy-preserving publishing of microdata has received much

attention in recent years. Microdata contains records eachof which
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contains information about a specific entity, such as an individ-
ual, a household, or an organization. Each record has a number
of attributes: some attributes may be sensitive (such asdiseaseand
salary) and some may be quasi-identifiers (called QI, such aszip-
code, age, andsex) whose values, when taken together, can poten-
tially identify an individual.

Publishing microdata enables researchers and policy-makers to
analyze the data and learn important information benefitingthe so-
ciety as a whole, such as the factors causing certain diseases, effec-
tiveness of a medicine or treatment, and social-economic patterns
that can guide the formulation of effective public policies. In other
words, publishing microdata results inutility gain for the society
as a whole. However, as microdata contains specific information
about individuals, publishing microdata could also resultin pri-
vacy loss for individualswhose information is published. Hence
before the microdata can be made public, one must ensure thatthe
privacy loss is limited to an acceptable level. This is typically done
via anonymization, which transforms the microdata to improve the
privacy. Because anonymization makes data imprecise and/or dis-
torted, it also causes losses in potential utility gain, when compared
with the case of publishing the unanonymized microdata.

A fundamental problem in privacy-preserving data publishing is
how to make the right tradeoff between privacy and utility. The vast
majority of existing work on privacy-preserving data publishing
uses the following approach. First, one chooses a specific privacy
requirement, such ask-anonymity [25, 26],̀ -diversity [21],(α, k)-
anonymity [29],t-closeness [19], andδ-presence [23], based on in-
tuitions of what privacy means. Second, one studies the following
problem: after fixing a parameter for the privacy requirement (e.g.,
choosingk = 10 in k-anonymity), how to generate an anonymized
dataset that maximizes a particular utility measure, whichcan be
the number of equivalence class [21], or the discernibilitymet-
ric [4]. The above approach is limited in considering the tradeoff
between utility and privacy because it is unable to answer two im-
portant questions. First, how to choose among the differentprivacy
requirements? Second, how to choose a particular parameterfor
the particular requirement? For example, one would want to know
whether to choosek = 5 or k = 10 for k-anonymity. In this
approach, these issues are considered only from the privacyaspect,
and independent of the utility aspect. However, this is inadequate as
often times one does not have a clearly defined privacy requirement
set in stone, and may be willing to accept a little more privacy loss
to get a large gain in utility. In short, we currently lack a framework
for thinking about the privacy-utility tradeoff in data publishing.

In a paper that appeared in KDD 2008, Brickell and
Shmatikov [5] applied a fresh angle to the tradeoff between pri-
vacy and utility. They directly compared the privacy gain with the
utility gain caused by data anonymization, and reached an intrigu-



ing conclusion “even modest privacy gains require almost complete
destruction of the data-mining utility.” If this conclusion holds,
then it would mean that the vast majority of the work on privacy-
preserving publishing of microdata is meaningless, because one
might as well publish the microdata in some trivially anonymized
way. A simplified variant of the arguments made by Brickell and
Shmatikov [5] is as follows. (We will present the complete argu-
ments in Section 3.1.) Privacy loss of the published data is defined
by certain kinds of information learned by the adversary from the
dataset. Utility gain of the published data is defined as the same
kinds of information learned by the researchers. Because both the
adversary and the researchers see the same dataset and try tolearn
the same kinds of information, their knowledge gains are thesame.
Hence any utility gain by the anonymized data must be offset by the
same amount of privacy loss. We call the methodology by Brickell
and Shmatikov [5] thedirect comparisonmethodology.

In fact, the direct-comparison methodology [5] underestimates
the seriousness of privacy loss, as it usesaverageprivacy loss
among all individuals. When measuring privacy loss, one hasto
bound theworst-caseprivacy loss amongall individuals. It is not
acceptable if one individual’s privacy is seriously compromised,
even if the average privacy loss among all individuals is low. This
is clearly illustrated when New York Times reporters identified a
singleuser in the search logs published by AOL, causing AOL to
remove the data immediately and fire two employees involved in
publishing the data [3].

The above reasoning seems to suggest that data anonymization
is even more doomed than being concluded in [5]. In this pa-
per, we show that there are important reasons why this is not the
case. Specifically, we show that arguments along the lines in[5] are
flawed. It is inappropriate to directly compare privacy withutility,
because of several reasons, including both technical and philosoph-
ical ones. The most important reason is that privacy is anindivid-
ual concept, and utility is anaggregateconcept. The anonymized
dataset is safe to be published only when privacy foreach indi-
vidual is protected; on the other hand, utility gain adds up when
multiple pieces of knowledge are learned. Secondly, even ifthe ad-
versary and the researcher learn exactly the same information, one
cannot conclude that privacy loss equals utility gain. We will elab-
orate this and other reasons why privacy and utility are not directly
comparable in Section 3.

If privacy and utility cannot be directly compared, how should
one consider them in an integrated framework for privacy-
preserving data publishing? For this, we borrow the efficient fron-
tier concept from the Modern Portfolio Theory which guides finan-
cial investments [8] (see Figure 1). When making investments, one
must balance the expected return with the risk (often definedas the
degree of volatility). One can choose an asset class with high risk
and high expected return (e.g., stock), or choose an asset class with
low risk and low expected return (e.g., cash), or choose a portfolio
that combines multiple asset classes to get more attractivetradeoff
between risk and return. Here the risk and expected return cannot
be directly compared against each other, just as privacy andutil-
ity cannot be compared. One can use points on a two-dimensional
plane (one dimension is risk, and the other is the expected return) to
represent portfolios, and the efficient frontier consists of all portfo-
lios such that there does not exist another portfolio with both lower
risk and higher expected return (which would be more efficient).
The points representing these efficient portfolios form thenorth-
west frontier on all points. One can then select a portfolio either
based on the maximum acceptable risk, or the slope of the curve,
which offers the best risk/return tradeoff.

Contributions. This paper studies the tradeoff between privacy

Figure 1: Efficient Frontier. (from Wikipedia)

and utility in microdata publishing. Our contributions areas fol-
lows. First, we identify several important characteristics of privacy
and utility. These observations correct several common miscon-
ceptions about privacy and utility. In particular, we show that the
arguments made in the KDD 2008 paper [5] are flawed.

Second, we present a systematic methodology for measuring pri-
vacy loss and utility loss. Privacy loss is quantified by the adver-
sary’s knowledge gain about the sensitive values of specificindivid-
uals, where the baseline is the trivially-anonymized data where all
quasi-identifiers are removed. Utility loss is measured by the infor-
mation loss about the sensitive values of large populations, where
the baseline is the original data (we shall argue that, unlike pri-
vacy loss, the utility of the anonymized data should be measured
against the original data rather than the trivially-sanitized data, and
should be measured as “utility loss” rather than “utility gain” in
Section 3.2).

Finally, we evaluate the tradeoff between privacy and utility on
the adult dataset from the UCI machine learning repository.Our
results show the privacy-utility tradeoff for different privacy re-
quirements and for different anonymization methods. We also give
quantitative interpretations to the tradeoff which can guide data
publishers to choose the right privacy-utility tradeoff.

The rest of the paper is organized as follows. Section 2 reviews
existing work and background information on microdata publish-
ing. Section 3 describes the direct-comparison methodology due
to Brickell and Shmatikov [5], clarifies the flaws of the direct-
comparison methodology and presents the three characteristics of
privacy and utility. Section 4 presents our methodology formeasur-
ing privacy and utility tradeoff. Section 5 experimentallyevaluates
our methodology and Section 6 concludes the paper with directions
for future work.

2. BACKGROUND AND RELATED WORK
The general methodology for evaluating privacy-utility tradeoff

fixes a privacy requirement with the privacy parameter and tries to
find an algorithm that produces an anonymized dataset that maxi-
mizes a particular utility measure. The three key components in the
above methodology are: (1) anonymization algorithm, (2) privacy
requirement, and (3) utility measure. We elaborate on them in the
rest of this section.

2.1 Generalization and Bucketization
One popular anonymization method is generalization [25, 26].

Generalization is applied on the quasi-identifiers and replaces a QI
value with a “less-specific but semantically consistent value”. As a
result, more records will have the same set of quasi-identifier val-
ues. We define anequivalence classof a generalized table to be a
set of records that have the same values for the quasi-identifiers.



One problem with generalization is that it cannot handle high-
dimensional data due to “the curse of dimensionality” [1]. Buck-
etization [30, 14, 22] was proposed to remedy this drawback.The
bucketization method first partitions tuples in the table into buck-
ets and then separates the quasi-identifiers with the sensitive at-
tribute by randomly permuting the sensitive attribute values in each
bucket. The bucketized data consists of a set of buckets with
permuted sensitive attribute values. Finally, another widely-used
method is suppression which replaces a QI value by a ‘*’ character.

2.2 Privacy Requirements
Several types of information disclosure in microdata publishing

have been identified in the literature [6, 16]. An important type of
information disclosure isattribute disclosure. Attribute disclosure
occurs when a sensitive attribute value is associated with an indi-
vidual. This is different from bothidentity disclosure(i.e., linking
an individual to a record in the database) andmembership disclo-
sure[7, 23] (i.e., learning whether an individual is included inthe
database). As in [5], this paper considersattribute disclosure.

k-Anonymity [25, 26] (requiring each equivalence class con-
tains at leastk records) aims at preventing identity disclosure.
Because identity disclosure leads to attribute disclosure(once the
record is identified, its sensitive value is immediately revealed),k-
anonymity can partly prevent attribute disclosure. But because at-
tribute disclosure can occur without identity disclosure [21, 29] (for
example, when all records in the equivalence class have the same
sensitive value),k-anonymity does not prevent attribute disclosure.

`-Diversity [21] remedies the above limitations ofk-anonymity
by requiring that in any equivalence class, each sensitive value can
occur with a frequency of at most1/`. While there are several
other definitions of̀ -diversity such as recursive(c, `)-diversity,
the above probabilistic interpretation is the most widely used one
in the literature. A similar privacy requirement is the(α, k)-
anonymity [29].

`-Diversity ensures that the probability of inferring the sensitive
value is bounded by1/`. However, this confidence bound may be
too strong for some sensitive values (e.g., a common form of dis-
ease) and too weak for some other sensitive values (e.g., a rare form
of cancer).t-Closeness [19] remedies the limitations of`-diversity,
by requiring the sensitive attribute distribution in each equivalence
class to be close to that in the overall data. A closely-related privacy
requirement is the template-based privacy [27] where the probabil-
ity of each sensitive value is bounded separately.

Similar to t-closeness, semantic privacy [5] also tries to bound
the difference between the baseline belief (i.e., the distribution in
the overall population) and the posterior belief (i.e., thedistribu-
tion in each equivalence class). Unliket-closeness that uses Earth
Mover’s Distance (EMD) (which is anadditivemeasure), semantic
privacy uses amultiplicativemeasure which bounds the ratio of the
probability of each sensitive value in each equivalence class and
that in the overall distribution. One advantage of semanticprivacy
is that it gives a bound on the adversary’s knowledge gain: clas-
sification accuracy is bounded when semantic privacy is satisfied.
Semantic privacy is quite strong and it does not capture semantic
meanings of sensitive values as EMD.

2.3 Utility Measures
It is important that the anonymized data can be used for data

analysis or data mining tasks. Otherwise, one can simply re-
move all quasi-identifiers and output the trivially-anonymized data,
which provides maximum privacy.

Also, it is unclear what kinds of data mining tasks will be per-
formed on the anonymized data. Otherwise, instead of publishing

the anonymized data, one can simply perform the data mining tasks
and output their results. Because of this, most utility measures are
workload-independent, i.e., they do not consider any particular data
mining workload. For example, the utility of the anonymizeddata
has been measured by the number of generalization steps, theav-
erage size of the equivalence classes [21] , the discernibility metric
(DM) [4] which sums up the squares of equivalence class sizes, and
the KL-divergence between the reconstructed distributionand the
true distribution for all possible quasi-identifier values[13].

Several researchers have proposed to evaluate the utility of the
anonymized data in terms of data mining workloads, such as clas-
sification and aggregate query answering (A comprehensive dis-
cussion on the privacy-preserving data publishing is givenin [9]).
Classification accuracy on the anonymized data has been evaluated
in [18, 28, 10, 27, 5]. The main results from these studies are:
(1) anonymization algorithms can be tailored to optimize the per-
formance of specific data mining workloads and (2) utility from
classification is bounded when attributed disclosure is prevented.
Aggregate query answering has also been used for evaluatingdata
utility [30, 14, 24].

2.4 Limitations of the General Methodology
The general methodology (as described in the beginning of Sec-

tion 2) had several limitations. First, parameters of different privacy
requirements usually are not comparable; they may even havedif-
ferent domains. For example, thek parameter ink-anonymity [25,
26] can range from1 to the total number of records, the` parame-
ter in `-diversity [21] can range from1 to the total number of sen-
sitive values, thet parameter int-closeness [19] can be any value
in between of0 and1, and theδ parameter in semantic privacy [5]
can be any positive float number. Therefore, it is not reasonable to
compare different privacy requirements based on their parameters
because different privacy parameters have different meanings. Sec-
ond, the privacy parameters put an upper bound on the anonymized
data. The actual privacy loss in a particular anonymized dataset
may be less than the parameters indicate. Therefore, it is impor-
tant to measure privacy for aspecificanonymized dataset. Finally,
existing utility measures are limited in several aspects. We will
clarify these limitations in Section 3.2. In Section 4, we present
our privacy measure and utility measure, and our methodology for
evaluating privacy-utility tradeoff.

3. PRIVACY V.S. UTILITY
In this section, we discuss thedirect-comparisonmethodology

used by Brickell and Shmatikov [5]. We show that the direct-
comparison methodology is flawed, and identify three important
characteristics of privacy and utility, which lays the foundation for
our methodology described in Section 4.

3.1 The Direct Comparison Methodology
Recently, Brickell and Shmatikov [5] applied a fresh angle to

the tradeoff between privacy and utility. They directly compared
the privacy loss with the utility gain caused by data anonymization.
To allow such a comparison, one has to use thesamemeasure-
ment for both privacy and utility. In [5], the trivially-anonymized
data, where all quasi-identifiers are removed, is used as thebench-
mark for comparing the anonymized dataset with. Because the
trivially-anonymized data contains no identifier information and
thus does not reveal sensitive information of any individual (i.e.,
provides maximum privacy protection in the considered frame-
work). When a non-trivial anonymization is applied, information
on quasi-identifiers is revealed, which could cause both privacy loss
and utility gain, comparing to the trivially-anonymized data.



In the direct comparison methodology, this privacy loss is mea-
sured as the adversary’s accuracy improvement in guessing the sen-
sitive attribute value of an individual, and utility gain ismeasured
as the researcher’s accuracy improvement in building a classifica-
tion model for the sensitive attribute. This assumes that both the
adversary and the researcher have the same goal, i.e., learning in-
formation to predict the sensitive attribute value. Because whatever
information that can be discovered by the researcher can also be
learned by the adversary, the analysis of privacy-utility tradeoff is
trivialized: privacy loss always equals utility gain.

This trivialization is resulted from the following assumptions.

1. Both the adversary and the researcher have the same prior
knowledge about the data.

2. Both the adversary and the researcher use the same approach
to learn information from the anonymized data.

3. Learning the same kinds of information has the same impact
on privacy and utility.

If all of the three assumptions hold, privacy loss would equal utility
gain. Because of the first two assumptions, the adversary andthe
researcher would have exactly the same posterior belief about the
data. If the third assumption also holds, the adversary’s knowledge
gain would equal the researcher’s knowledge gain, implyingthat
privacy loss equals utility gain.

To avoid such a trivial result, at least one of the three assump-
tions must be changed. The direct comparison methodology in[5]
changes the first assumption. It assumes that the adversary has less
prior knowledge than the researcher. Specifically, it is assumed that
the microdata contains someneutral attributes that are known to
the researcher but not to the adversary; these neutral attributes are
not considered as QI’s. Then the benchmark trivially-anonymized
dataset becomes the dataset with only the neutral attributes and
the sensitive attribute, but not the QI’s. For anonymized dataset,
one compares with this new benchmark for privacy loss and utility
gain. Experiments in [5] leads to the intriguing conclusion“even
modest privacy gains require almost complete destruction of the
data-mining utility”. Because this approach gives the apparent im-
pression of limiting the adversary (who does not know the neutral
attributes), they further claim that “to protect against anadversary
with auxiliary information, the loss of utility must be evengreater”.

We now show that the above conclusions do not hold. Because
the researcher knows the neutral attributes, which often have corre-
lations with the sensitive attribute, the researcher can already learn
information about individuals from the new benchmark, and can
predict sensitive attributes of individuals quite well. Hence the ad-
ditional improvement the researcher can get from any anonymized
dataset would be small. Because the adversary does not know the
neutral attribute values of individuals, the adversary learns little
from the new benchmark, and hence is able to gain more from any
anonymized dataset. This naturally leads to the conclusionthat
publishing anonymized dataset is less useful for the researcher than
for the adversary. In fact, one can conclude this without running
any experiment. It essentially follows from the ways privacy loss
and utility gain are defined. Assuming the adversary has lessprior
knowledge than the researcher allows the adversary to “gainmore”
from the anonymized data. Under the more natural assumptions
that the adversary knows more information than the researcher and
the benchmark includes only the sensitive attribute, the comparison
between privacy loss and utility gain again becomes a trivial tie.

3.2 Characteristics of Privacy and Utility
From the analysis of the direct-comparison methodology above,

one can see that it essentially says that privacy gain equalsutility

loss. We now argue that directly comparing privacy and utility (as
in [5]) is neither reasonable nor feasible, because privacyand utility
have very different characteristics, as discussed below.

3.2.1 Specific and Aggregate Knowledge
The direct-comparison methodology implicitly assumes that

learning the same piece of information has thesameimpact on both
privacy and utility; otherwise one cannot compare them. In fact,
this assumption is used quite commonly (though often implicitly)
in the literature. For example, Iyengar [12] claims that classifica-
tion accuracy is maximized when the sensitive values are homo-
geneous within each equivalence class, which directly contradicts
the`-diversity requirement [21]. Similarly, privacy [21, 29, 19] is
quantified byP (SA|QI) (i.e., how much an adversary can learn
about the sensitive value of an individual from the individual’s QI
values) while utility [30] is measured by attribute correlations be-
tween the QI attributes and the sensitive attribute.

In reality, the same piece of information can have very differ-
ent impacts on privacy and utility. More specifically, fordifferent
kindsof knowledge, having the adversary and the researcher learn
exactly the same knowledge can be beneficial in some cases and
detrimental in other cases. For example, suppose that it is learned
from the published data that people living near a small town have a
much higher rate of getting cancer (say, 50%) than that amongthe
general population. Learning this piece of information canimpact
both privacy and utility. On the one hand, this piece of information
breaches the privacy of the people in this small town. For example,
when they go to purchase health/life insurance, it can adversely
affect their ability of getting insurance. On the other hand, by pub-
lishing this piece of information, people can investigate the causes
of the problem (e.g., find some sources of pollution) and dealwith
the problem (e.g., by removing the pollution sources or taking pre-
cautions). In this case, suchaggregateinformation results in more
utility gain than privacy loss as it benefits the society on the whole,
even for non-participants.

Suppose that, in another case, it is learned from the published
data that an individual has a 50% probability of having cancer be-
cause the individual’s record belongs to an equivalence class con-
taining two records one of which has cancer. Suchspecificinfor-
mation has no utility value to researchers but causes privacy loss.
Again, the information gain by the researcher and the adversary are
the same, but the utility gain and the privacy loss are very different.

The above arguments leads to the first characteristic of privacy
and utility: specificknowledge (that about a small group of in-
dividuals) has a larger impact onprivacy, while aggregatein-
formation (that about a large group of individuals) has a larger
impact on utility .

In other words, privacy loss occurs when the adversary learns
more information about specific individuals from the anonymized
data. But data utility increases when information about larger-size
populations is learned.

Another effect of the aggregate nature of utility is more philo-
sophical than technical. When publishing anonymized dataset, only
the individuals whose data are included have potential privacy loss,
while everyone in the society has potential utility gain. Infact, this
principle is implicit in any kind of survey, medical study, etc. While
each participant may loss more than she individually gains,the so-
ciety as a whole benefit. And everyone is benefiting from the survey
and study that one does not participate. Because benefit to society
is difficult (if not impossible) to precisely compute, it is unreason-
able to require that publishing certain anonymized datasetresults in
higher “utility gain” than “privacy loss” using some mathematical
measure.



3.2.2 Individual and Aggregate Concepts
Another important reason why privacy and utility cannot be di-

rectly compared is as follows. For privacy protection, it issafe to
publish the data only wheneveryrecord satisfies the privacy param-
eter (i.e., every individual has a bounded privacy loss). This implies
that privacy is anindividual concept in that each individual’s pri-
vacy is enforcedseparately. This characteristic is different from
utility gain. When multiple pieces of knowledge are learnedfrom
the anonymized data, data utility adds up. This implies thatutility
is anaggregateconcept in that utilityaccumulateswhen more use-
ful information is learned from the data. The above arguments lead
to the second characteristic of privacy and utility:privacy is an in-
dividual concept and should be measuredseparatelyfor every
individual while utility is an aggregateconcept and should be
measuredaccumulativelyfor all useful knowledge.

This characteristic immediately implies the following corollary
on measuring privacy and utility.

COROLLARY 3.1. For privacy, theworst-caseprivacy loss
should be measured. For utility, theaggregatedutility should be
measured.

Hence it is possible to publish anonymized data even if for each
individual, both the privacy loss and the utility gain are small, be-
cause the utility adds up.

3.2.3 Correctness of Information
Yet another difference between privacy and utility emergeswhen

we consider the correctness of the information learned fromthe
anonymized data. When the adversary learns somefalse informa-
tion about an individual, the individual’s privacy is breached even
though the perception is incorrect. However, when the researcher
learns somefalse information, data utility deteriorates because it
may lead to false conclusions or even misleading public policies.

In fact, some studies have overlooked this difference between
privacy and utility. For example, the direct comparison methodol-
ogy uses the trivially-anonymized data as the baseline for both pri-
vacy and utility. While the trivially-anonymized data is appropriate
as the baseline for privacy [19, 5], it is inappropriate to beused as
the baseline for utility gain. Consider using the anonymized data
for aggregate query answering, e.g., determining the distribution of
the sensitive values in a large population. Let the estimated dis-
tribution beP̂ . Let the distribution of the sensitive values in the
trivially-anonymized data beQ. When the trivially-anonymized
data is used as the baseline, the anonymized data adds to utility
when P̂ is different fromQ. However,P̂ might be significantly
different from the true distributionP . The estimated false infor-
mation does not contribute to utility; in fact, it worsens the data
utility.

This is the third characteristic of privacy and utility:any infor-
mation that deviates from the prior belief, false or correct, may
causeprivacy loss but only correct information contributes to
utility . This characteristics implies the following corollary on mea-
suring privacy and utility.

COROLLARY 3.2. Privacy should be measured againstthe
trivially-anonymized datawhereas utility should be measured us-
ing the original dataas the baseline.

When the original data is used for measuring utility, we need
to measure “utility loss”, instead of “utility gain”. An ideal (but
unachievable) privacy-preserving method should result inzero pri-
vacy loss and zero utility loss.

To summarize, privacy cannot be compared with utility directly
because: (1) privacy concerns information about specific individu-

als while aggregate information about large populations also con-
tributes to utility, (2) privacy should be enforced for eachindi-
vidual and for the worst-case while utility accumulates alluseful
knowledge; (3) only participants have potential privacy loss, while
the society as a whole benefit, and (4) false information can cause
privacy damage but only correct information contributes toutility
gain. All reasons suggest that the direct-comparison methodology
is flawed. These characteristics also lay the foundation forour pro-
posed methodology in Section 4.

4. METHODOLOGY
In this section, we present our methodology for analyzing the

privacy-utility tradeoff in determining how to anonymize and pub-
lish datasets. Data publishers often have many choices of privacy
requirements and privacy parameters. They can anonymize the
data and generate a number of datasets that satisfy different pri-
vacy requirements and different privacy parameters. Oftentimes,
an important question for them is “which dataset should be chosen
to publish?”. Our methodology helps data publishers answerthis
question.

We observe that the privacy-utility tradeoff in microdata publish-
ing is similar to the risk-return tradeoff in financial investment. In
financial investment, risk of an asset class or a portfolio istypi-
cally defined as volatility of its return rate, which can be measured
using, e.g., the standard deviation. Risk cannot be directly com-
pared with return, just as privacy cannot be directly compared with
utility. Similarly, different investors may have different tolerance
of risks and expectation of returns. Different data publishers may
have different tolerance of privacy and expectation of utility.

We borrow the efficient frontier concept from the Modern Port-
folio Theory. Given two anonymized datasetsD̂1 andD̂2, we say
thatD̂1 is more efficientthanD̂2 if D̂1 is as good aŝD2 in terms of
both privacy and utility, and is better in at least one of privacy and
utility. Two anonymized datasetŝD1 andD̂2 may not be compara-
ble because one may offer better privacy but worse utility.

Given a number of anonymized datasets, for each of them we
measure its privacy lossPloss relative to the case of publishing a
trivial anonymized dataset that has no privacy threat, and its util-
ity lossUloss relative to the case of publishing the dataset without
anonymization. We obtain a set of(Ploss, Uloss) pairs, one for
each anonymized dataset. We plot the(Ploss, Uloss) pairs on a 2-
dimensional space, where thex-axis depicts the privacy lossPloss

and they-axis depicts the utility lossUloss. An ideal (but often
impossible) dataset would havePloss = 0 andUloss = 0, which
corresponds to the origin point of the coordinate. All datasets that
are most efficient will form a curve, and the data publisher can
choose a dataset based on the desired levels of privacy and utility
and the shape of the curve.

To use our methodology, one must choose a measure for privacy
and a measure for utility. Our methodology is independent ofthe
particular choices for such measures. In this paper, we usePloss

to measure the degree of attribute disclosure beyond what can be
learned from publishing the sensitive attributes without QIs. We
introduce a novel utility measure, which is based on the intuition of
measuring the accuracy of association rule mining results.

4.1 Measuring Privacy LossPloss

We propose a worst-case privacy loss measure. LetQ be the dis-
tribution of the sensitive attribute in the overall table. As in [19, 5],
we use the distributionQ as the adversary’sprior knowledgeabout
the data, becauseQ is always available to the adversary even if all
quasi-identifiers are suppressed. This is true as long as thesensitive



attribute is kept intact, as in most existing methods. Privacy leaks
occur only when the adversary learns sensitive informationbeyond
the distributionQ.

When the adversary sees the anonymized data, the adversary’s
posterior knowledgeabout the sensitive attribute of a tuplet re-
duces to the equivalence class that containst. Let the distribution
of the sensitive attribute in the equivalence class beP (t). The pri-
vacy loss for a tuplet is measured as the distance betweenQ and
P (t). We use the JS-divergence distance measure:

Ploss(t) = JS(Q, P (t)) =
1

2
[KL(Q, M) + KL(P (t),M)]

whereM = 1

2
(Q + P (t)) andKL(, ) is the KL-divergence [15]:

KL(Q, P ) =
∑

i

qi log
qi

pi

Note that here we JS-divergence rather than KL-divergence
because KL-divergence is not well-defined when there are zero
probabilities in the second distributionP . Therefore, using KL-
divergence would require that for every equivalence class,all sensi-
tive attribute values must occur at least once. However, most exist-
ing privacy requirements such as`-diversity [21],t-closeness [19],
and sematic privacy [5] do not have such a property. Finally,the
worst-case privacy loss is measured as the maximum privacy loss
for all tuples in the data:

Ploss = max
t

Ploss(t)

It should be noted that one has the option to use other distance
measures. Whichever distance measure one chooses, it should be
the case that less privacy loss occurs when the distance is smaller.
Studying which distance measure one should choose is beyondthe
scope of this paper.

4.2 Measuring Utility Loss Uloss

In general, there are two approaches to measure utility. In the
first approach, one measures the amount of utility that is remained
in the anonymized data. This includes measures such as the average
size of the equivalence classes [21] and the discernibilitymetric [4].
This also includes the approach of evaluating data utility in terms
of data mining workloads. In the second approach, one measures
the loss of utility due to data anonymization. This is measured
by comparing the anonymized data with the original data. This
includes measures such as the number of generalization steps and
the KL-divergence between the reconstructed distributionand the
true distribution for all possible quasi-identifier values[13].

It should be noted that, when the utility of the original datais
low, it should be expected that the utility of the anonymizeddata
is also low. In this case, the first approach may conclude thatdata
anonymization has destroyed data utility while in fact, thelow data
utility is due to low utility of the original data. Similarly, the fact
the anonymized data can be used for a variety of data mining tasks
does not imply that the anonymization method is effective; another
anonymization method may provide even higher data utility with
less privacy loss. Due to these reasons, the first approach provides
little indication with regard to whether an anonymization method is
effective or not. Our methodology therefore adopts the second ap-
proach. This is also consistent with our arguments about data utility
in Section 3.2: utility should be measured asutility lossagainstthe
original data.

When we measure utility loss, we need to decide which data
mining task should be chosen. Previous studies have evaluated data
utility in terms of classification [12, 18, 27, 5]. Because classifica-
tion can also be used by the adversary to learn the sensitive val-
ues of specific individuals, when the adversary’s knowledgegain

is bounded, data utility of classification is also bounded (see Sec-
tion 4.2 of [5]). Therefore, data utility of classification will not
constitute a major part of data utility because it is boundedfor a
safely-anonymized dataset. Because of this, we do not measure
data utility in terms of classification. Note that, we do not intend to
underestimate the potential use of the anonymized data for classifi-
cation purposes. In fact, we agree with the previous studieson the
utility of classification.

Instead of classification, we use the anonymized data for associ-
ation rule mining [31] and aggregate query answering [30, 14, 24].
For both workloads, an important task is to reconstruct the sensitive
attribute distribution for large populations. This is alsoconsistent
with our arguments about data utility in Section 3.2: information on
large populations contributes to utility. A large population can be
specified by a support value and a predicate involving only quasi-
identifiers, e.g., “Age ≥ 40&&Sex = Male”. The support value
is the number of records in the data that satisfy the predicate. We
therefore adopt the following methodology for measuring utility
lossUloss.

First, we find all large populations whose support values areat
leastminSup (whereminSup is a user-defined threshold value).
To allow the large populations to be defined in terms of general-
ized predicate such as “Age ≥ 40”, we use generalized predicates
that involve not only values from the attribute domain of thequasi-
identifiers but also values from the generalization hierarchy of the
quasi-identifiers (see for example [20] and other data mining lit-
erature on generalized association rule mining). We use theFP-
tree [11] algorithm for discovering large populations.

Next, for each large populationy, we compute the estimated dis-
tributionP̄y of the sensitive attribute from the anonymized data and
the true distributionPy of the sensitive attribute from the original
data. We adopt the uniform distribution assumption: every value in
a generalized interval is equally possible and every sensitive value
in an equivalence class is also equally possible. We measurethe
difference betweenPy andP̄y as the researcher’s information loss
when analyzing the the large populationy. Again, we use the JS-
divergence as the distance measure, i.e.,Uloss(y) = JS(Py , P̄y).

Finally, because utility is anaggregateconcept, we measure the
utility loss Uloss by averaging utility lossUloss(y) for all large
populationy.

Uloss =
1

|Y |

∑

y∈Y

Uloss(y)

whereY is the set of all large populations. The anonymized data
provides maximum utility whenUloss = 0. In our experiments
(see Section 5), we also empirically evaluate data utility in terms of
aggregate query answering.

4.3 Special Cases
There are two special cases for the privacy-utility tradeoff. The

first case is to publish the trivially-anonymized data whereall
quasi-identifiers are completely suppressed. In this case,the es-
timated distribution of the sensitive attribute for every individual
equals to the overall distributionQ. BecauseJS[Q, Q] = 0, we
havePloss(t) = 0 for every tuplet. Therefore,Ploss = 0, achiev-
ing maximal privacy protection.

Similarly, the estimated distribution of the sensitive attribute for
every large population also equals to the overall population Q. Be-
cause the overall distributionQ may be quite different from the
true distribution, utility loss could be significant. This trivially-
anonymized dataset is the first baseline that ensuresPloss = 0 but
Uloss can be large.

The second special case is to publish the original dataset where



Attribute Type # of values
1 Age Numeric 74
2 Workclass Categorical 8
3 Education Categorical 16
4 Marital_Status Categorical 7
5 Race Categorical 5
6 Gender Categorical 2
7 Occupation Sensitive 14

Table 1: Description of theAdult dataset.

all quasi-identifiers are kept intact. In this case, any estimated in-
formation is correct and the estimated distribution equalsto the
true distribution, i.e.,P̄y = Py for every populationy. Because
JS(Py , Py) = 0, we haveUloss(y) = 0 for every population
y. Therefore,Uloss = 0, achieving maximum utility preserva-
tion. However, because the sensitive value for every individual is
revealed, which can be quite different from the overall distribution,
privacy lossPloss is significant. The original dataset is the second
baseline that ensuresUloss = 0 butPloss can be significant.

4.4 Advantages
Our evaluation methodology has a number of advantages when

compared with existing work. First, one can use this methodology
to compare datasets anonymized using different requirements. E.g.,
both`-diversity andt-closeness are motivated by protecting against
attribute disclosure, by choosing one privacy loss measure, one can
compare datasets anonymized with`-diversity for different̀ values
and those anonymized witht-closeness for differentt values.

Second, we measure utility loss against the original data rather
than utility gain. Utility gain is not well-defined in data publishing.
In order to measure utility gain, a baseline dataset must be defined.
Because only correct information contributes to utility, the baseline
dataset must contain correct information about large populations.
In [5], Brickell and Shmatikov used the trivially-anonymized data
as the baseline, in which every distribution is estimated tobe the
overall distribution and therefore causes incorrect information.

Third, we measure utility for aggregate statistics, ratherthan for
classification. This is because, as several studies have shown, the
utility of the anonymized data in classification is limited when pri-
vacy requirements are enforced.

Finally, we measure privacy loss in the worst-case and measure
the accumulated utility loss. Our methodology thus evaluates the
privacy loss foreveryindividual and the utility loss forall pieces
of useful knowledge.

5. EXPERIMENTS
We implemented Mondrian [17] to enforce four requirements:

k-anonytmity [26],̀ -diversity [21],t-closeness [19], and semantic
privacy [5]. We used both generalization and bucketization.

We used the Adult dataset (which has been widely used in previ-
ous studies) from the UCI Machine Learning Repository [2]. The
data contains 45222 records and we use seven attributes of the data,
as described in Table 1.

5.1 Utility Loss Uloss V.S. Privacy LossPloss

For each privacy requirement, we use the Mondrian algorithmto
compute the anonymized data that satisfies the privacy requirement.
Then, privacy lossPloss and utility lossUloss are measured for the
anonymized data.

We plot the privacy loss on thex-axis and utility loss on the
y-axis. Experimental results are shown in Figure 2. We choose
the privacy parameters (i.e.,k, `, t, andδ) such that all privacy

requirements span a similar range of privacy loss on thex-axis.
Specifically, we choosek ∈ {10, 50, 100, 200, 500, 1000, 2000,
5000}. For example, whenk = 5000, the evaluated privacy loss
Ploss = 0.086 and the evaluated utility lossUloss = 0.0288,
which corresponds to the leftmost point on thek-anonymity curve
in Figure 2(a). We choosè∈ {3.0, 3.5, 4.0, 4.25, 4.5, 4.75, 5.0,
5.5}, t ∈ {0.075, 0.1,0.15, 0.2,0.25, 0.3,0.35, 0.4}, andδ ∈ {1.0,
1.2, 1.4, 1.5, 1.7, 1.9, 2.0, 2.1}. Therefore, we have8 points
on each privacy-requirement curve and they span a similar range
on thex-axis, from 0 to 0.6 (see Figure 2). Note that we choose
δ ≥ 1 because the Mondrian algorithm returns one single equiva-
lence class whenδ < 1. For t-closeness, we use JS-divergence as
the distance measure. For utility measureUloss, we fix the mini-
mum support value asminSup = 0.05.

Results. Figure 2(a) shows the utility loss v.s. privacy loss with re-
spect to different privacy requirements. We stress that these results
are affected by our choice of measures for privacy and utility. If one
chooses a different measure for privacy (or utility), then the figure
may look differently. As we can see from the figure,t-closeness
performs better than other privacy requirements. Based on the fig-
ure, one would probably choose one of the three left-most points for
t-closeness (t = 0.075, t = 01, t = 0.15) to publish, since they of-
fer the best trade-off between privacy and utility.`-Diversity does
not perform well because it aims at bounding the posterior belief
rather than the distance between the prior belief and the posterior
belief. Therefore, even wheǹ-diversity is satisfied, the posterior
belief can still be far away from the prior belief, thus leaking sen-
sitive information, based on the privacy loss measurePloss.

Interestingly, semantic privacy does not perform well either. Se-
mantic privacy bounds the ratio of the posterior belief and the prior
belief for every sensitive value. Semantic privacy thus provides a
good privacy measure (note thatδ has to be non-negative in order
for semantic privacy to be achievable). However, semantic privacy
is difficult to achieve in that the number of equivalence classes (or
buckets) is small, especially when the sensitive attributedomain
size is large. In our experiments, there are14 sensitive values in
the attribute domain of “Occupation”, and requiring the ratio for
each of the14 sensitive values for each equivalence class (bucket)
to be bounded is very difficult to achieve in practice.

Our results demonstrate the similarity between the privacy-utility
tradeoff in data publishing and the risk-return tradeoff (Figure 1) in
financial investment. One difference is that in data publishing, we
measure utility loss rather than utility gain. We believe that, as in
financial investment, there exists an efficient frontier in data pub-
lishing, which consists of all anonymized datasets such that there
does not exist another anonymized dataset with both lower privacy
loss and lower utility loss. The data publishers should onlycon-
sider those “efficient” anonymized dataset when publishingdata.
For Figure 2(a), the efficient frontier should be somewhere below
thet-closeness line.

Figure 2(b) shows the tradeoff for two anonymization methods:
generalization and bucketization. We use both`-diversity andt-
closeness for the experiment. The results show that bucketization
provides substantially better data utility than generalization, when
only attribute disclosure is considered.

Interpretation of the privacy loss. We quantitatively illustrate
the amount of privacy loss. Specifically, we want to answer the
following question: suppose an individual’s sensitive value is re-
vealed, what is the privacy loss for that individual?

The overall distribution of the sensitive attribute “Occupation” is
Q = (0.0314, 0.1331, 0.1063, 0.1196, 0.1323, 0.1329, 0.0452,
0.0657, 0.1225, 0.0327, 0.0512, 0.0052, 0.0216, 0.0003). If
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Figure 2: Privacy-Utility Tradeoff: Uloss V.S.Ploss

an individual’s sensitive value is revealed, the privacy loss (com-
puted through JS-divergence) is 0.692 when the sensitive value is
“Armed-Forces” (which is the least frequent sensitive value with
a frequency of 0.0003) and the privacy loss (computed through
JS-divergence) is 0.488 when the sensitive value is “Craft-repair”
(which is the most frequent sensitive value with a frequencyof
0.1331). The above calculation shows that when an individual’s
privacy is revealed, the privacy loss is in between of 0.488 and
0.692 for the sensitive attribute “Occupation” of the Adultdataset.

This means that privacy loss cannot be greater than 0.692. How-
ever, when the privacy loss is larger than 0.488, it does not mean
that at least one individual’s sensitive value is revealed,because
it may be the case that there is a large amount of privacy loss on
the least-frequent sensitive value “Armed-Forces” even though the
equivalence class (bucket) satisfies`-diversity wherè ∈ {3, 3.5},
as shown by the rightmost two points on the`-diversity curve
shown in Figure 2(a). Note that`-diversity requires that even the
least-frequent (i.e., the most sensitive) sensitive valuemust occur
with a probability of at least1/`.

Interpretation of the utility loss. We also quantitatively illustrate
the amount of utility loss. Specifically, we want to answer the fol-
lowing question: what is the utility loss when all quasi-identifiers
are removed? The utility loss is calculated by averaging theutility
loss for all large populations, where the estimated distribution is
always the overall distributionQ. Our calculation shows that when
all quasi-identifiers are removed, the utility loss is0.05. In Fig-
ure 2, utility loss is lower than0.04 in all cases, and is lower than
0.02 in many cases, showing that publishing the anonymized data
does improve the quality of data utility than publishing trivially
anonymized dataset.

5.2 Aggregate Query Answering
Our second experiment evaluates the utility of the anonymized

data in terms of aggregate query answering, which has been widely
used for measuring data utility [30, 14, 24].

We consider the “COUNT” operator where the query predicate
involves the sensitive attribute, as in [30, 20]. A query predicate
is characterized by two parameters: (1) the predicate dimension
qd and (2) the query selectivitysel . The predicate dimensionqd
indicates the number of quasi-identifiers involved in the predicate.
The query selectivitysel indicates the fraction of selected values
for each quasi-identifier. For each selected parameter, we generate
a set of1000 queries for the experiments.

For each query, we run the query on the both the original table
and the anonymized table. We denote the actual count from the

original table asact_count and the reconstructed count from the
anonymized table asrec_count. Then the average relative error is
computed over all queries as:

ρ =
1

|Q|

∑

q∈Q

|rec_countq − act_countq |

act_confq

∗ 100

whereQ is the set of queries generated based on the two parame-
ters,qd andsel . In our experiments, we randomly generate 1000
aggregate queries of the above form, i.e.,|Q| = 1000.

Results. We plot the privacy loss on thex-axis and the average
relative error on they-axis. Figure 3(a) shows the tradeoff with
respect to different privacy requirements. Interestingly, the figure
shows a similar pattern as that in Figure 2(a) where utility is mea-
sured asUloss, instead of average relative error. The experiments
confirm that our utility measureUloss captures the utility of the
anonymized data in aggregate query answering. One advantage of
Uloss is to allow evaluating data utility based on the original data
and the anonymized data, avoiding the experimental overheads of
evaluating a large random set of aggregate queries.

Figure 3(b) measures the tradeoff with respect to differentsel

values. We uset-closeness and bucketization and fixqd = 4. Our
experiments show that the average relative error is smallerwhensel

is larger. Because a largersel value corresponds to queries about
larger populations, this shows that the anonymized data canbe used
to answer queries about larger populations more accurately.

Figure 3(c) measures the tradeoff with respect to differentqd

values. We again uset-closeness and bucketization and fixsel =
0.05. Interestingly, the results show that the anonymized data can
be used to answer queries more accurately asqd increases. This
is because when query selectivity is fixed, the number of points in
the retrieved region is larger whenqd is larger, implying a larger
query region. This also shows that the anonymized data can answer
queries about larger populations more accurately.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we identify three important characteristicsabout

privacy and utility. These characteristics show that the direct-
comparison methodology in [5] is flawed. Based on these char-
acteristics, we present our methodology for evaluating privacy-
utility tradeoff. Our results give data publishers useful guidelines
on choosing the right tradeoff between privacy and utility.

One important question is how to use the anonymized data for
data analysis (such as aggregate query answering) and data min-
ing (such as association rule mining). We use the random distri-
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bution assumption as in most previous studies. Specifically, we
interpret a generalized interval as that every value in the interval is
equally possible. And when we use bucketization, given a bucket
of records, we assume that every sensitive value in the bucket is
equally possible. This uniform-distribution assumption has been
studied for the privacy aspect [20] but there is no work on theutil-
ity aspect as far as we know. We believe that a more sophisticated
approach of using the anonymized data can improve the data utility,
and thus improve the quality of the privacy-utility tradeoff.
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