
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

CERIAS	
 Tech	
 Report	
 2009-­‐33	

	

Analysis	
 of	
 Port	
 Scanning	
 Attacks	

	

by	
 Yu	
 Zhang	

	

Center	
 for	
 Education	
 and	
 Research	

	

Information	
 Assurance	
 and	
 Security	

	

Purdue	
 University,	
 West	
 Lafayette,	
 IN	
 47907-­‐2086	

*UDGXDWH�6FKRRO�(7'�)RUP���
�5HYLVHG�������� � � � ���

385'8(�81,9(56,7<�
*5$'8$7(�6&+22/�

7KHVLV�'LVVHUWDWLRQ�$FFHSWDQFH�

7KLV�LV�WR�FHUWLI\�WKDW�WKH�WKHVLV�GLVVHUWDWLRQ�SUHSDUHG�

=9 >,%2+ %\��

(QWLWOHG %2%0=7-7 3* 4368 7'%22-2+ %88%'/7

)RU�WKH�GHJUHH�RI��� (3'836 3* 4,-03734,=

,V�DSSURYHG�E\�WKH�ILQDO�H[DPLQLQJ�FRPPLWWHH��

&,%6%8 &,%6+%:% � � � � � � �
��&KDLU�

(32+=%2 <9 � � � � � � �

<-%2+=9 >,%2+ � � � � � � �

:)6232 6)+3 � � � � � � �

7R�WKH�EHVW�RI�P\�NQRZOHGJH�DQG�DV�XQGHUVWRRG�E\�WKH�VWXGHQW�LQ�WKH�5HVHDUFK�,QWHJULW\�DQG�
&RS\ULJKW�'LVFODLPHU��*UDGXDWH�6FKRRO�)RUP������WKLV�WKHVLV�GLVVHUWDWLRQ�DGKHUHV�WR�WKH�SURYLVLRQV�RI�
3XUGXH�8QLYHUVLW\¶V�³3ROLF\�RQ�,QWHJULW\�LQ�5HVHDUFK´�DQG�WKH�XVH�RI�FRS\ULJKWHG�PDWHULDO���

� � � � � �
&LEVEX &LEVKEZE $SSURYHG�E\�0DMRU�3URIHVVRU�V���BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

��BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

%HMX]E 1EXLYV � ;MPPMEQ .� +SVQER ���������� $SSURYHG�E\��� �
� � � � � +HDG�RI�WKH�*UDGXDWH�3URJUDP� � � � � 'DWH�

*UDGXDWH�6FKRRO�)RUP����
�5HYLVHG������� �

385'8(�81,9(56,7<�
*5$'8$7(�6&+22/�

5HVHDUFK�,QWHJULW\�DQG�&RS\ULJKW�'LVFODLPHU�

7LWOH�RI�7KHVLV�'LVVHUWDWLRQ��
%2%0=7-7 3* 4368 7'%22-2+ %88%'/7

(3'836 3* 4,-03734,=)RU�WKH�GHJUHH�RI�BB�

,�FHUWLI\�WKDW�LQ�WKH�SUHSDUDWLRQ�RI�WKLV�WKHVLV��,�KDYH�REVHUYHG�WKH�SURYLVLRQV�RI�3XUGXH�8QLYHUVLW\�
([HFXWLYH�0HPRUDQGXP�1R��&�����6HSWHPEHU����������3ROLF\�RQ�,QWHJULW\�LQ�5HVHDUFK�
���

)XUWKHU��,�FHUWLI\�WKDW�WKLV�ZRUN�LV�IUHH�RI�SODJLDULVP�DQG�DOO�PDWHULDOV�DSSHDULQJ�LQ�WKLV�
WKHVLV�GLVVHUWDWLRQ�KDYH�EHHQ�SURSHUO\�TXRWHG�DQG�DWWULEXWHG��

,�FHUWLI\�WKDW�DOO�FRS\ULJKWHG�PDWHULDO�LQFRUSRUDWHG�LQWR�WKLV�WKHVLV�GLVVHUWDWLRQ�LV�LQ�FRPSOLDQFH�ZLWK�
WKH�8QLWHG�6WDWHV¶�FRS\ULJKW�ODZ�DQG�WKDW�,�KDYH�UHFHLYHG�ZULWWHQ�SHUPLVVLRQ�IURP�WKH�FRS\ULJKW�
RZQHUV�IRU�P\�XVH�RI�WKHLU�ZRUN��ZKLFK�LV�EH\RQG�WKH�VFRSH�RI�WKH�ODZ���,�DJUHH�WR�LQGHPQLI\�DQG�VDYH�
KDUPOHVV�3XUGXH�8QLYHUVLW\�IURP�DQ\�DQG�DOO�FODLPV�WKDW�PD\�EH�DVVHUWHG�RU�WKDW�PD\�DULVH�IURP�DQ\�
FRS\ULJKW�YLRODWLRQ��

=9 >,%2+ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
3ULQWHG�1DPH�DQG�6LJQDWXUH�RI�&DQGLGDWH�

���������� BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�
'DWH��PRQWK�GD\�\HDU��

/RFDWHG�DW�KWWS���ZZZ�SXUGXH�HGX�SROLFLHV�SDJHV�WHDFKBUHVBRXWUHDFK�FB���KWPO

ANALYSIS OF PORT SCANNING ATTACKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yu Zhang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2009

Purdue University

West Lafayette, Indiana

UMI Number: 3403158

All rights reserved
!

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.
!

UMI 3403158
Copyright 2010 by ProQuest LLC.
!

All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 East Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106-1346

ii

To my parents

iii

ACKNOWLEDGMENTS

This dissertation would not be possible without the support of my Ph.D. advisor,

Bharat Bhargava. His help throughout my Ph.D. study has significant impacts on my

understanding of research and computer science in general. His experiences inspired

and encouraged me to explore unknown areas and try out different ideas.

I am very grateful to Professor Dongyan Xu for his support and help during my

Ph.D. study. His comments and suggestions are very helpful to me. Without his help,

I would not learn many experiences in a timely manner and advance research. I also

would like to express my thanks to Professor Vernon Rego for serving on my Ph.D.

committee. His help and knowledge helped me improve the quality of the dissertation

significantly. I appreciate the guidance and help from Professor Xiangyu Zhang for

the Ph.D. study. His ideas and research methodology influenced me deeply.

Many thanks to Leszek Lilien and Nwokedi Idika for their help during my Ph.D.

study.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1	 Collaboration Among Attackers . 1

1.1.1	 Some Collaborative Attacks 1

1.1.2	 Dimensions of Attack Taxonomy 3

1.1.3	 Port Scanning Attacks . 6

1.2	 Related Work . 7

2	 THE EFFECTS OF THREADING, INFECTION TIME, AND MULTIPLE­
ATTACKER COLLABORATION ON ATTACK PROPAGATION 10

2.1	 Introduction . 10

2.2	 Related Work . 13

2.3	 Background on Fibonacci Number Sequence 14

2.3.1	 Fibonacci Rabbit Problem 16

2.3.2	 Definition of Fibonacci Number Sequence 16

2.3.3	 Properties of Fibonacci Number Sequence 17

2.3.4	 Generic Fibonacci Number Sequence: Arbitrary Initialization 18

2.3.5	 Generic Lucas Number Sequence 20

2.4	 Analysis of MMIMC and the Generic Fibonacci Malware Propagation

(GFMP) Model . 21

2.4.1	 Preliminaries . 22

2.4.2	 Generic Fibonacci Malware Propagation (GFMP) Model . . 27

2.4.3	 Properties of the GFMP Model 31

2.5	 Experiments . 35

2.5.1	 Verification of the GFMP Model: the Shift Property 35

2.5.2	 The Effect of Different Hitlist Sizes on Multi-threaded Propa­

gation . 38

2.5.3	 The Effect of Different Threading-Levels 39

2.5.4	 The Effect of Different Birth Rates 40

2.5.5	 The Effect of Different Patching Rates 42

2.5.6	 The Effect of Multiple Attackers 43

2.5.7	 The Effect of Different Propagation Times 44

v

Page
2.5.8	 Comparison With Existing Models 46

2.6 Conclusion . 47

3	 ALLOCATION SCHEMES, ARCHITECTURES, AND POLICIES FOR COL­
LABORATIVE PORT SCANNING ATTACKS 48

3.1 Introduction . 48

3.2 Related Work . 51

3.3 Issues on Port Scanning . 52

3.3.1	 Conventional Port Scanners 53

3.3.2	 Detection of Port Scanners 54

3.3.3	 Collaborative Port Scanners 54

3.4 DHT-based Collaborative Port Scanners 58

3.4.1	 Static and Dynamic Allocation of Targets 58

3.4.2	 Synchronization of Collaborative Port Scanners 61

3.4.3	 The DHT-based Contention-Avoidance Allocation Scheme . 66

3.4.4	 Detection Avoidance . 68

3.4.5	 Stop Policy . 72

3.4.6	 Target Selection and Revisit Policy 73

3.4.7	 Comparisons and Caveats 74

3.5 Experiments . 74

3.5.1	 Experiment Setup . 75

3.5.2	 Experiments on the Performance of the DHT-based Collabora­

tive Scanning Scheme . 75

3.5.3	 Experiment on the Number of Participating Collaborative Scan­

ners . 79

3.5.4	 Discussions on Deployment and Defense 82

3.6 Conclusion . 83

4 EXPERIMENTS ON DEFENSE . 85

4.1 Experiments on the Delaying and Varying the Response Latency . . 85

4.2 Experiments on the Host Patching/Refreshing/Revisiting 88

4.3 Experiments on Defense of Collaborative Attacks : Detection 90

5 ADDITIONAL EXPERIMENTS ON ATTACK 97

5.1 Experiments on the Witty Worm 97

5.2 Experiments on the Collaborative Routing and DDoS Attack 99

6 CONCLUSIONS AND FUTURE WORK 104

LIST OF REFERENCES . 107

VITA . 113

vi

LIST OF TABLES

Table Page

2.1 Notations used in this research . 15

vii

LIST OF FIGURES

Figure Page

2.1 The malware propagation tree. 23

2.2 The propagation of hitlist size 100 and 200. 36

2.3 The propagation of hitlist size 100 and 200. 37

2.4 The propagation of the multi-threaded malware. 38

2.5 The malware propagation with different number of threads. 39

2.6 The malware propagation with different birth rates. 41

2.7 The malware propagation with different patching rates. 42

2.8 The malware propagation with multiple attackers. 43

2.9 The malware propagation with different propagation times. 45

3.1 The flooding architecture. 63

3.2 The collaboration-server based architecture. 63

3.3 The distributed architecture. 64

3.4 The hybrid architecture. 64

3.5 The network topology of the OpenDHT lookup. 76

3.6 The performance of the DHT-based collaborative scanning scheme. . . 78

3.7 The performance of collaborative scanners with different participants. . 80

4.1 The performance of the scanning with different scanning granularity. . 87

4.2 The performance of the scanning with different revisit policies. 89

4.3 Part of the data set used in this experiment. 91

4.4 Packet distribution of the malicious data set. 92

4.5 Space distribution of the malicious data set. 92

4.6 Flow distribution of the malicious data set. 93

4.7 The output of the defense analysis (grouped). 93

4.8 The output of the defense analysis (Radial Model). 94

viii

Figure Page

4.9 The output of the defense analysis (Spring Model). 95

5.1 The propagation generated by our experiments 98

5.2 The network topology of a hypothetical collaborative attack. 100

5.3 The intrusion graph for the collaborative DDoS and routing attacks. . . 102

5.4 RTT time (second) vs. time in system (min). 103

ix

ABSTRACT

Zhang, Yu. Ph.D., Purdue University, December 2009. Analysis of Port Scanning
Attacks. Major Professor: Bharat K. Bhargava.

In this research, we present theoretical models and practical solutions to model

and analyze collaborative attacks, with a focus on port scanning attacks and malware

propagation.

We study the malware propagation and present results that help understand the ef­

fects of Multi-port scanning, Multi-threading, Infection time, Multiple starting points,

and Collaboration (MMIMC) on malware propagation. This research quantitatively

measures the effects of MMIMC on infected hosts. Experimental results show that

the above issues significantly affect malware propagation and verify our analysis.

We discuss architectures, polices, and allocation schemes for collaborative attack­

ers. We present a fast DHT-based collaborative attack scheme that aims to eliminate

duplicate attacks, minimize contention, and significantly increase the attack speed.

We propose different collaboration strategies and analyze their advantages and disad­

vantages. We discuss the static, dynamic, and hybrid target selection and allocation

schemes. We present the algorithm details and discuss the stop and revisit policies

for collaborative attackers.

Our experimental results suggest that collaborative attacks can significantly out­

perform individual attackers, and provide insights into many design and implemen­

tation issues.

1

1 INTRODUCTION

1.1 Collaboration Among Attackers

The growth of the Internet has rendered its coordination very complex. Security is

a key challenge in Internet since most protocols were designed without consideration

of any prevention against miscreants. In addition, many emerging technologies make

the Internet even more vulnerable, and attacks against networked systems are becom­

ing more complex and powerful. Individual attackers can collaborate to cause more

problems for the intruder-identification and defense mechanisms. In this dissertation,

we study collaborative attacks [69], [70], [71].

The current approaches to security in network systems deploy individualized se­

curity solutions. For example, antiviral software is used to defend against worms

and viruses, intrusion detection tools guard against scanning and Denial-of-Service

(DoS) attacks, firewalls aim to protect against unwanted connection attempts, and

mail filtering tries to foil spam and phishing attempts. Accordingly, most research

done today also focuses on improving these individual tools.

An important piece missing from the current research is understanding of ways in

which attackers can collaborate to launch attacks.

1.1.1 Some Collaborative Attacks

Collaborative attacks are those launched by multiple malicious adversaries that

synchronize their activities to attack network targets. In collaborative attacks, at­

tackers communicate and collaborative with each other to launch much more powerful

attacks. For instance, routing attacks can collaborative with Malware attacks and

Distributed Denial-of-Service (DDoS) attacks.

2

In the real world, the following collaborative attacks occurred or could have oc­

curred:

1. One can bring a large number of attackers to increase the computation power.

Attackers have employed this approach in the past. For instance, in 1999, more

than 100,000 PCs were used to crack the DES challenge of RSA [21].

2.	 One can assemble a reasonable number of attackers to influence the decision-

making of core machines, these include routing and Sybil [72] attacks.

3. One	 can employ a variety of technologies to launch a full-scale attack. For

instance, the coordinated Botnet zombie nodes can collaborate to launch DoS

attacks [5], and the well-orchestrated collaborative attacks on Estonia caused

large-scale disruptions [13].

Unlike single and un-collaborative group attacks, collaborative attacks may cause

more devastating impacts as it combines efforts of more than one attacker (or pro­

cesses). Examples of attacks include replication attacks, Sybil attacks [72], spam

attacks, phishing attacks, worms and viruses, DNS-related attacks, routing-related

attacks, Denial-of-Message (DoM) attacks, and DDoS attacks.

Three basic categories of attacks are as follows:

1.	 Independent attacks, which have no knowledge of other attacks. They can be

launched at the same time as other attacks but do not know other attacks.

2.	 Collaborative attacks that are coordinated and can be launched simultaneously

or sequentially. From the high-level or functional point of view, we further

identify the relationships between the launched collaborative attacks and clas­

sify them as: (i) non-overlapping (sequential); (ii) partially overlapping; and

(iii) fully overlapping. Attacks may target different parts of a network and aim

at depleting resources of the defenders. From the low-level or technical point of

view (e.g., techniques employed by attackers), attacks can be categorized into:

3

(i) attacks that may substitute each other; (ii) attacks that may diminish the

effects of each other; (iii) attacks that severely damage each other; (iv) attacks

that expose other attacks; (v) attacks that should be launched after each other;

and (vi) attacks that may target different areas of a network.

3.	 Replicated attacks, in which adversaries can insert additional replicated hostile

nodes into a network after obtaining some secret information from the captured

nodes or by infiltration. Nodes replicated in this way are likely to uncover the

shared secrets of the uncompromised neighboring nodes. Encrypted communica­

tion links can be established between a replicated node and the uncompromised

nodes. It should be clear that compromising even a single node might allow an

adversary to gain partial or even full control of a network by producing many

clones and deploying them in the original network.

1.1.2 Dimensions of Attack Taxonomy

Collaborative attacks can be organized into a comprehensive taxonomy. The tax­

onomy includes a number of essential dimensions:

1.	 Attack type: As already mentioned, the most relevant forms of attacks are:

replication attacks, Sybil attacks, DoM attacks and DoS attacks. Replication

attacks take place when adversaries are able to insert hostile nodes into the

network by obtaining some secret information from the captured nodes or by

infiltration. Sybil attacks occur when a node forges and uses several identities,

and in this way obtains a greater control over the network allowing sniffing,

packet dropping and delaying packets. DoS attacks occur when an attacker

floods a server with requests exhausting the server’s resources and thus its

availability to respond to requests from other nodes.

4

2.	 Attack timing: Attackers may take advantage of temporal features of the net­

work by choosing periods of higher susceptibility to perform the attack. Also

they could coordinate when each attacks to maximize their effectiveness.

3.	 Attack severity and strength: Damage caused by an attack is an important

factor in defining the defensive actions to be taken. For instance, an aggressive

attack should be handled with a higher priority than non-aggressive attacks.

4.	 Attack extent An attack may affect the whole network or a part of it. The

extent of an attack also affects the priority of the actions taken by defenders

against it.

5.	 Attacker’s familiarity with attack target: Attacks may be conducted by insiders,

quite familiar with attack targets, or outsiders. A more detailed categorization

may include an attacker who is: a stranger, an acquaintance, a friend, etc.

Inflicting damage is easier for an attacker more familiar with the attack target.

6.	 Attacker’s role: Attackers can be, for instance, regular users, administrators, or

guests.

7.	 Ranking of attackers. Attackers have usually distinct profiles. Some are more

effective than others, and some have typical behavior while others are more

difficult to characterize.

8.	 Composition and coordination of attack activities: Attackers can exhibit dif­

ferent abilities, including attack coordination abilities. In coordinated, well-

organized attacks, attackers with the highest leadership skills will become com­

manders. Both leaders and followers must share information. How it is done is

an important coordination characteristic to be captured in the model of coor­

dination. The graphs of relationships among attackers used in the model can

be tree-based and involve inheritance. Coordination lines can be employed to

represent coordination.

5

9.	 Communication between attackers: Attackers can employ checkpointing and

synchronization messages to communicate with each other. Coordination lines

can again be employed, this time to represent communication. Finding the

frequency and interval of attackers’ communication can be very useful. At­

tackers can also utilize independent checkpointing, taking checkpoints of their

own. They can also check later offline using other techniques, for instance,

out-of-band communication.

10.	 Mutual feedback among attackers In a dynamic environment, coordinated at­

tackers can benefit from exchange of feedback on their attack activities, includ­

ing information on the results of their attacks. For example, attackers knowing

that some ongoing attacks consume many resources of defenders, can adjust

their strategy. In this case, the attackers can:

(i) increase the power of the ongoing attacks; or

(ii) employ more sophisticated or more focused strategies; or

(iii) fine-tune the timing of their attacks. Attackers can also adjust the strength

of attacks dynamically. For instance, attackers can launch spasmatic attack

lasting for a short time, making attack detection and attacker identification

very difficult.

11.	 Attack and defense strategies: The number of attackers affects the performance

and power of attacks significantly. However, there are situations in which mul­

tiple attackers, not properly coordinated, could interfere with each other. Sim­

ilarly, multiple defenders could also hamper each other. We plan to identify

and describe strategies in which coordinated attacks provide synergistic effects,

greater than the sum of individual attack effort.

Note that not all the dimensions are required to describe a collaborative attack.

For example, The impact of the attacks can be modeled as, impact = f(severity and

strength of attack, extent of attack, communication between attackers, attack and

defense strategies).

6

In summary, collaborative attackers can employ a variety of technologies and

different collaboration strategies. In this dissertation, we focus on the collaborative

port scanning attacks and defense to collaborative attacks.

1.1.3 Port Scanning Attacks

Our focus in this dissertation is the port scanning attacks.

In port scanning attacks, network communication ports on the target hosts are

scrutinized by attackers. In an individual port scan, one attacker scans and finds

which ports are available on the target machine. In a coordinated port scan, multiple

attackers scan and find which ports are available on a number of target machines.

Issues we need to consider for collaborative port scanning attacks include Maximiz­

ing network usage, Minimizing latency, and Program Optimization (e.g., how many

threads should be employed), etc. We need to consider general issues for distributed

systems as well, including synchronization of attack progress, node crashing/failure,

and node starvation, etc.

Why do we focus on the port scanning attacks? Some people argue that port

scanning attacks are not real attacks. However, we note that:

1. First, port scanning attack is a fundamental form of network attack. One cannot

attack without targets;

2. Second, all attackers need to do reconnaissance before their attacks;

3. Third, as soon as attackers discover vulnerable hosts, the actual infection takes

little time to occur;

4. Last, offline target discovery is difficult and time-consuming.

A real-world example [4] further illustrates the importance of studying port scan­

ning attacks. A Dutch teenager has employed port scanning to discover specific jail-

broken I-phones that are vulnerable to a known vulnerability related to OpenSSH.

7

The teenager demanded money payment from those I-phone users who have been

discovered by the port scanning. Without launching port scanning attacks, it would

be impossible for him to find a large number of victims in short notice and receive

international attention.

1.2 Related Work

A. Prior Work on Collaborative Attacks

Many researchers have characterized specific Internet attacks or phenomenon using

one or more sources of data. For instance, Ref. [73] has characterized spammer

behavior. Ref. [74, 75] focus on specific worm outbreaks and Ref. [22] characterizes

DoS attacks in the Internet. Very few works have focused on correlating various

attacks. One of them is Ref. [76], in which the authors analyze data, logged by the

Dshield project [82] on a large number of intrusion detection systems (IDSs), to find

out related, possibly collaborative, attacks. Ref. [2] discusses security of WiMAX

networks.

B. Coordinated Attacks of SYN Floods and Slammer Worms

A SYN flood attack is launched by sending more TCP connection requests than

a target machine can process. A slammer worm uses random scanning to find and

infect susceptible hosts.

Both the SYN flood attack and the slammer worm, even if launched separately,

can cause significant damage [74, 77]. If they are launched together in a coordinated

way, the resulting consequences will be more devastating: the SYN flood attack will

effectively block TCP connections while the Slammer worms will propagate via UDP

connections. The coupled attack is not only more powerful but also more difficult to

deal with.

C. Sybil Attacks

Douceur [72] discusses Sybil attacks, in which a malicious user obtains multiple

fake identities and pretends to be multiple, distinct nodes in the system. In this way,

8

the malicious nodes can control the decisions of the system, especially if the decision

process involves voting or any other type of collaboration.

Trust relationships can be created in social networks to limit the number of nodes

a malicious node can create. In such an approach, we need to consider trust, security,

and privacy issues together, and in a systematic way, preferably at the policy level.

In addition, a deliberate collaboration model is needed.

Generic Sybil attacks can be found in Internet as well. For example, BGP would

greatly suffer from the aforementioned attacks. Researchers at UCLA have proposed

ways to detect invalid routing announcements in RIP [78] but mere detection cannot

solve the problem thoroughly. Responding after detection and defending against such

attacks, possibly coordinated, remains a challenge.

D. Modeling Multistep Cyber Attacks for Attack Scenario Recognition

Cheung et al. [79] state that many cyber attacks can be decomposed into multiple

sub-attacks. The authors develop methods and a language for modeling multistep

attack scenarios based on typical isolated alerts about attack steps.

The idea of trust relationship [72, 80, 81] is used to limit the number of clones a

malicious node can have and defend against Sybil attacks. However, no collaborative

model is discussed in these works. In the RIP protocol [78], detection of invalid rout­

ing announcements has been suggested. The response after detection and ways to

defend against such attacks remains a challenge. Many approaches are proposed. A

stochastic model of collaborative internal and external attacks is used in [63]. Data

Routing Information (DRI) table and cross checking [64] can be used to identify

multiple cooperating black hole nodes. An on-demand routing protocol for ad hoc

wireless networks can provide resilience to Byzantine failures caused by individual or

colluding nodes [65]. A signature-based model can be used to detect collaborative

attacks [69]. Clustering and merging functions can be used to recognize alerts that

correspond to the same occurrence of an attack and create a new combined alert [68].

A collaborative system using Multicast, annotated topology information, and blind

9

detection techniques can be used to detect DDoS attacks [66]. Hidden Markov models

can be used to detect collaborative attacks [67].

E. Collaborative attack modeling and attack graph analysis

Bhargava et al. used casual model [60] and Lamport proposed event ordering [61]

to identify events for concurrency control and synchronization of clocks in distributed

systems. Attack graph was proposed to model the order of events. Lippmann et.al [62]

analyzed most attack graph papers and concluded problems of attack graph analysis:

scalability to large networks, generation of attack details, and computing complexity.

10

2 THE EFFECTS OF THREADING, INFECTION TIME, AND

MULTIPLE-ATTACKER COLLABORATION ON ATTACK PROPAGATION

2.1 Introduction

Malware is software designed to compromise computer systems. Examples include

Logic Bombs, Viruses, Worms, and Botnets [5], [33]. Malware can be classified into

two categories: self-propagating malware and non-self-propagating malware. Self-

propagating malware poses a serious threat due to its ability to propagate through

networks to infect a large number of hosts. E.g., worms have infected thousands

of computers [8], [9], [18], [24]. Malware replicates itself and intrudes vulnerable

hosts without human intervention. Malware can carry malicious payloads that can

be released upon infection of the vulnerable hosts. Malware can cause significant

damages, including consumption of network bandwidth, destructions of infected hosts,

and leakage of private information, such as credit card numbers, etc.

Typical Malware propagation consists of a number of steps:

1. Reconnaissance: search vulnerable victim hosts by performing port scans;

2. Infection: transmit malicious payloads, exploit vulnerabilities on victim hosts to

gain control;

3. Discovery : perform information-gathering activities on victim hosts, e.g., steal

passwords and personal files;

4. Destruction: perform destructive activities on victim hosts, e.g., re-format their

hard disks.

After the Infection step is done, the malware is ready to propagate from the newly

infected host to another one by repeating the whole process. Note that not all malware

propagation follow all of the above steps.

11

To perform a thorough port scan during reconnaissance, malware sends probe

packets to each port on each victim host, and analyzes their responses. In a hy­

pothetical scenario, a packet sent to FTP port 21 on a victim host triggers a reply

packet, which is then analyzed by malware to infer detailed information, such as the

type and version of the operating system, about the victim host. Based on this infor­

mation, a well-tailored attack can be launched (e.g., exploiting the vulnerability that

exists on the particular operating system).

Malware has to perform port scans for a huge number of IP address/port number

combinations. In IPv4 networks, the size of the IP address space is 232, and the

size of the port number space is 216 . Hence, the size of the search space for the IP

address/port number combination is 248 . While the large size of the search space

renders port scanning a daunting task, malware authors have employed sophisticated

techniques to perform fast scanning. E.g., many real-world worms search vulnerabil­

ities only on a particular port, which effectively reduces the size of the search space

to 232 [42].

It is clear that malware with different scanning and propagation strategies has

different propagation time. A number of models have been proposed to characterize

propagation of worms, including the state-of-the-art Analytical Active Worm Prop­

agation (AAWP) model [18], and the epidemiological two-factor model [8]. Existing

malware propagation models fail to consider a number of issues, including the follow­

ing:

a) That malware can scan a host for multiple vulnerabilities: E.g., if malware fails

to find any vulnerability on the FTP port 21 of a host, it can look for vulnerabilities

on other ports, e.g., the DNS port 53. In case that malware discovers multiple

vulnerabilities, it is able to exploit the most promising one according to some criteria

(e.g., infection time).

b) That scanning can be done by multiple threads : Multi-threaded malware can

scan and infect multiple machines concurrently. Moreover, since vulnerabilities exist

12

on many ports, multi-threaded scanning of multiple ports on one host is an effective

way to speed up port scans. Most existing models, including the AAWP model, fail

to consider that malware may spawn a large number of threads to scan concurrently.

c) That exploitation of vulnerabilities and infection of victim hosts are not done in­

stantly : It takes time for malware to transmit its payload, exploit a vulnerability, and

subvert the defense system on a victim host. A newly found vulnerable host can nei­

ther be infected immediately nor be ready right away to infect other hosts. Although

the AAWP model claims to incorporate the infection time, it simply makes the clock

ticks larger, without calculating the ratio of scan time to infection/propagation time.

In AAWP, all infected hosts perform scanning activities at the next time tick (denote

it as t and time tick length as L). Therefore, newly infected hosts that were infected

between time (t, t + L) are treated equally: hosts infected near time t perform the

same number of scans as those infected near time t + L. Such equal treatment is im­

precise. It should be noted that port scans can be done much faster than infections.

In the extreme case, Figure 1(c) in [18] assumes that the infection time could be as

long as 60 seconds, while the scanning time for one IP/port combination is usually

shorter than 0.1 second [19].

Theorem 1 in AAWP is proven by induction on the number of scans. If the scan is

successful, it brings in a newly infected host. Hence, each induction step adds at most

one host. At the next time tick, the number of infected hosts increases by at most

one. AAWP assumes that the scans are performed step by step, i.e., in each step the

scanning of one worm is performed, and the number of infected hosts is updated. The

assumption differs from most real-world scenarios. For example, the famous NMAP

scanner [19] is capable of scanning many hosts in parallel by dividing targets into

multiple groups, and scanning an entire group at a time.

d) That malware propagation can start from multiple places rather than a single

starting point, and infected hosts can collaborate to increase damage (e.g., the Bot-

net [5] and the orchestrated attacks on Estonia [13]): Multiple attackers can simul­

taneously release the same malware at multiple places. Researchers suspect that the

13

Witty Worm [33] was released from multiple IP addresses. Malware can be released in

different geographical regions as well, e.g., Europe, Asia, and North America, to sig­

nificantly expedite its propagation. Multiple starting points are not well-represented

by existing models.

In summary, little was done to understand the effects of Multi-port scanning,

Multi-threading, Infection time, Multiple starting points, and Collaboration (MMIMC)

on malware propagation. In this research, we quantitatively measure the effects of

MMIMC on infected hosts. We employ the Fibonacci Number Sequence (FNS) to

model the effects of infection time. The extended model can explain the impact of

threading, infection time, and multiple-attacker collaboration, as well as the effects of

hitlist size, birth rate, and patching rate on malware propagation. We derive the Shift

Property, which illustrates that different malware initializations can be represented

by shifting their propagations on the time axis. We prove the Linear Property, which

shows that the effects of multiple-attacker collaboration can be represented by linear

combination of individual attacks. Experimental results show that the above issues

significantly affect malware propagation and verify our analysis. To our knowledge,

this is the first research that provides quantitative analysis and experimental results

on the effects of MMIMC.

2.2 Related Work

Scan Strategy.

Over the years, researchers have proposed various scanning algorithms for mal-

ware, including:

(a) naive random scanning, in which malware chooses a random address niformly

from the IP address space [18];

(b) localized scanning, in which malware scans a local IP address with a high

probability p and scans a random address with a low probability (1-p) each time [3];

14

(c) importance scanning, in which malware assumes that the vulnerable hosts are

unevenly distributed and such distributions are obtainable [32];

(d) self-learning scanning, in which malware estimates the distribution of the

vulnerable hosts [26];

(e) hit-list scanning, in which malware uses an existing list. e.g., BGP routing

table list, social network list, etc., to look for vulnerable hosts [24];

(f) permutation scanning, in which malware can determine whether a host is al­

ready infected and changes scan targets [24];

(g) sampling scanning, in which malware samples a target network before spread­

ing to it [17]; and

(h) passive scanning, in which malware analyzes the network traffic passively.

Malware Propagation.

Wagner et al. [27] present characteristics of worms, including protocol, size of

the payload, and scanning strategy, etc. Zou et al. [42] analyze the performances

of different propagation strategies. Voyiatzis et al. [25] describe a class of worms

that target network components such as routers. Vojnovic et al. [17] discuss how to

minimize the required number of scans to infect hosts. Storm Worm [28], [29] uses the

Distributed Hash Table (DHT) protocol based on Kademlia [16] to control infected

nodes. Chen et al. [18] propose the Analytical Active Worm Propagation (AAWP)

model. Zou et al. [8] propose the epidemiological two-factor model. Dagon et al. [11]

discuss the taxonomy of Botnets.

2.3 Background on Fibonacci Number Sequence

In this section, we briefly summarize the Fibonacci Number Sequence (FNS) and

discuss its generalizations. We infer several important properties of the FNS and

discuss their uses in the malware propagation. In Section 2.4 we discuss in detail

on how the FNS is applied to analyze the malware propagation and to model multi­

threading, infection time, multiple start points, and collaborative attacks. The FNS is

15

Table 2.1: Notations used in this research

Notation Explanation

b the number of IP addresses on the blacklist of the malware

c the number of ports scanned for each IP address

w the number of contagious hosts that can infect other hosts

q the probability that a given IP address/port combination will

be discovered by at least one infected host

d
destruction rate: the number of destructed hosts over

the number of infected hosts

k the number of threads in the malware

p
patching rate: the rate at which

the vulnerable machines are patched

r
birth rate: the rate at which

the new vulnerable hosts joins the network

v
the number of vulnerable (excluding infected)

host/port combinations

V
the number of vulnerable (including infected)

host/port combinations

PT Propagation Time

IT Infection Time

16

named after Leonardo Fibonacci. Interested readers are referred to [14] for thorough

discussions of the FNS. Table 2.1 lists the notations used in this research.

2.3.1 Fibonacci Rabbit Problem

We briefly present the famous Fibonacci rabbit problem: In the beginning, there is

no rabbit. A new pair of baby rabbits is introduced after one month. The baby rabbits

get mature after one month. Each pair of mature rabbits has the ability to and will

give birth to a new pair of baby rabbits every month. The question is: how many pairs

of rabbits are there after n months?

2.3.2 Definition of Fibonacci Number Sequence

To solve the fibonacci rabbit problem, we assume that rabbits never die. We use

Fn to represent the number of pairs of rabbits there are after n months. Note that

F0 = 0 and F1 = 1. We observe that F2 = 1 = 2, since after 2 months the first pair

of baby rabbits will get mature and cannot yet give birth to new baby rabbits. Note

that in the malware propagation field, most existing models ignored this issue.

Since rabbits never die, to calculate how many pairs of rabbits there are after n

(n>1) months, we simply add the newly born rabbits to the existing rabbits after

(n-1) months, which is represented by Fn−1. Not all those Fn−1 pairs of rabbits are

mature. Because the baby rabbits take one months to get mature, we observe that

the baby rabbits are those born within one month, i.e., the (n-2, n-1) month window.

Therefore, the rabbits that were born before this window are all mature by Month n.

There are Fn−2 pairs of such rabbits.

Assume that Fn−1 and Fn−2 are known. We have:

Fn = Fn−1 + Fn−2 when n > 1.

17

Hence, the solution can be summarized as:
⎧

0 if n = 0;
⎪⎪⎪⎪⎪⎨

Fn = 1 if n = 1; (2.1)⎪⎪⎪⎪⎪Fn−1 + Fn−2 if n > 1.⎩

We call the numbers generated by the recursive definition (2.1) Fibonacci numbers,

and call the number sequence FNS.

2.3.3 Properties of Fibonacci Number Sequence

Closed-Form Expression

We can solve the recursive equation of the FNS with the initial conditions F0 = 0

and F1 = 1.

φn − (1 − φ)n √ 1 + θ
Fn = , whereθ = 5 andφ = (2.2)

θ 2

Since | (1−φ)n

| is a very small number (smaller than 0.1 when n is larger than 3),θ

we can safely discard it and rewrite the result as:

φn √ 1 + θ
Fn = , whereθ = 5 andφ = (2.3)

θ 2

Note that φ is the golden ratio (approximately 1.618).

Growth Rate

The growth rate of the FNS, regardless of the initial values (except for F0 = F1

= 0), is:
Fn+1lim = φ

n→∞ Fn

Hence, the FNS approximately follows the exponential growth at the rate of the golden

ratio φ when n is large. Note that the malware propagation is also exponential before

saturation [28], [3].

18

2.3.4 Generic Fibonacci Number Sequence: Arbitrary Initialization

Definition of Generic Fibonacci Number Sequence

If the initial values of the FNS are changed to x and y respectively, we will have

the generic FNS Gx,y,n:
⎧

x if n = 0;
⎪⎪⎪⎪⎪⎨

Gn = y if n = 1; (2.4)⎪⎪⎪⎪⎪Gn−1 + Gn−2 if n > 1.⎩

How to Calculate Generic Fibonacci Number Sequence

Gx,y,n can be represented by the original FNS.

Gx,y,n = xFn−1 + yFn (2.5)

Due to space limitations, we omit the proof for Equation (2.5). Note that F−1 = F1

- F0, thus Equation (2.5) still holds when n is 0.

Similar to Section 2.3.3, when n is larger than 3, we apply Equation (2.3) and

rewrite Gx,y,n as:

Gx,y,n = xFn−1 + yFn

φn−1 φn

= x + y
θ θ

φn (2.6)x
= (+ y)

φ θ
x

= (+ y)Fn
φ

We observe that the Generic FNS can be approximately calculated by multiplying

the original FNS by a constant factor.

19

The Shift Property of Generic Fibonacci Number Sequence

Given Equation (2.6) we can infer the ”Shift” property of the Generic FNS, i.e.,

the generic Fibonacci number Gx,y,n can be represented by the original Fibonacci

number of Fn+s, where s is the number of shifts and s is equal to log(yφ+x) − 1. For-log φ

mally:

Theorem 1 Gx,y,n = F log(yφ+x)[n+ −1]log φ

Proof: According to Equation (2.6),

φn

Gx,y,n = (+ y)
x
φ θ
x + yφ φn

= ()
φ θ

φlogφ (x+yφ) φn

= ()
φ θ

log(x+yφ) φn
log φ= (φ[−1])

θ
log(x+yφ)

φ[n+ −1]log φ

=
θ

Apply Equation(2.3), = F log(yφ+x) !
[n+ −1]log φ

Given x and y, the number of shifts s is a constant number. Theorem 1 has impor­

tant implications on the Fibonacci malware propagation: it quantifies the effects of

different initialization values, and proves that the same effects can be achieved by

”shifting” the index of the original FNS by a constant number. Hence, the effects of

hitlist scanning and flash scanning, etc., can be quantified in the model by shifting

the regular scanning. We discuss this further in Section 2.4.

The Linear Property of Generic Fibonacci Number Sequence

The Linear Property of the Generic FNS states that the sum of two Generic FNSes

with initial values (x1,y1) and (x2,y2) is equivalent to the Generic FNS with the initial

values (x1 + x2, y1 + y2, respectively. Formally:

20

Theorem 2 Gx1,y1,n + Gx2,y2,n = Gx1+x2,y1+y2,n

Proof: According to Equation (2.6),

φnx1 + x2Gx1+x2,y1+y2,n = (+ y1 + y2)
φ θ

φn φnx1 x2= (+ y1) + (+ y2)
φ θ φ θ

= Gx1,y1,n + Gx2,y2,n !

Corollary 1 Gmx,my,n = mGx,y,n

Proof: According to Theorem 2,

Gmx,my,n = Gx,y,n + G(m−1)x,(m−1)y,n

= 2Gx,y,n + G(m−2)x,(m−2)y,n

= ...

= kGx,y,n + G(m−k)x,(m−2)y,n

= ...

= mGx,y,n !

2.3.5 Generic Lucas Number Sequence

A further generalization of the FNS is the Generic Lucas Number Sequence (LNS).

Given constant integers x and y, we have:
⎧

x if n = 0;
⎪⎪⎪⎪⎪⎨

Hn = y if n = 1; (2.7)⎪⎪⎪⎪⎪αHn−1 − βHn−2 if n > 1.⎩

The Generic FNS is a special case of the Generic LNS when α = 1 and β = -1. To

investigate malware propagation, we are interested in the case where α = 1 and β =

-q (|q|<1). We discuss this further in Section 2.4.2.4

21

When α = 1 and β = -q (|q|<1), as in Section 2.3.3, we can solve the recursive 4

equation of the special LNS with the initial conditions H0 = x = 0 and H1 = y = 1,

and get its closed-form expression:

φn − (1 − φ)n

Hn =	 , whereθ =
J

1 + 4q
θ (2.8)

1 + θ
andφ =

2

Since |q|<1 and 4q<1, we can expand θ using binomial expansion:
 4

θ =
J

1 + 4q
+∞	

(−1)n(2n)!
=
+	

(4q)m

(1 − 2n)(n!)24n
m=0

n	
(−1)n(2n)!≈

+	
(4q)m , n = 2

(1 − 2n)(n!)24n
m=0

4q	 (4q)2

= 1 + −
2 8

= 1 + 2q − 2q 2

(θ−1)n 2)n

, | (1−φ)n

| (φ−1)n	

| (q−q2Hence, given that |q|<1 | = | = | | = | is a very small 4	 θ θ θ 1+2q−2q2

number. Thus, we can can safely discard it and rewrite the result as (when α = 0

and β = -1):

φn 1 + θ
Hn = , whereθ =

J
1 + 4q andφ =	 (2.9)

θ 2

Note that when q = 1, we get the closed-form expression for FNS as in Section

2.3.3. We observe that Equation 2.3 and Equation 2.9 differ only in the constants.

Therefore, the properties, including the Shift Property and the Linear Property, of

the Generic FNS all hold for the Generic LNS when α = 1 and β = -q (q<1
4). Due

to space limitations, we omit the formal proof for this observation.

2.4	 Analysis of MMIMC and the Generic Fibonacci Malware Propagation (GFMP)

Model

In this section, we extend the existing malware propagation models to address the

issues of MMIMC.

22

2.4.1 Preliminaries

Probability on Port Scanning

We assume that during the reconnaissance step malware performs port scanning

to discover vulnerable ports on the target host.

Malware can scan a part of all IP addresses. For instance, reverse engineering

[3], [9] shows that Code Red I and II never scan local (127.0.0.0/8) and multicast

(224.0.0.0/8) addresses. This is overlooked by researchers (e.g., in [8] the authors

assume that CodeRed scans all IP addresses with equal probability). Assume that

IPv4 is in use and malware puts b IP addresses on its blacklist, i.e., it never scans

those IP addresses. Thus, the number of IP addresses malware scans is (232 - b).

Assume that malware scans c ports for each IP address. The size of the search space

for malware is c(232 - b).

While real-world scanners are mostly multi-threaded [19], existing malware prop­

agation models overlook multi-threading issues. We assume that malware employs

multi-threaded programming and scans multiple address/port combinations concur­

rently. If there are k threads for each malware scanning module, we assume that each

infected host can scan k address/port combinations simultaneously.

We need to calculate how many new vulnerable IP address/port combinations

are discovered in each time tick. Note that vulnerability discovery is not equiva­

lent to successful infection. After the vulnerability discovery, malware needs time to

propagate to victim hosts and exploit the vulnerability. Assume that there are vi

uninfected vulnerable IP address/port combinations (multiple ports on one host can

be infected) at time tick i (time steps are equally sized). Given that each infected

host can perform k scans simultaneously, we can calculate how many out of those vi

combinations can be discovered by all infected hosts.

Denote the number of newly infected hosts as ni, the number of contagious hosts

as w, and the probability that a given IP address/port combination is discovered

23

Figure 2.1.: The malware propagation tree.

by at least one infected host as q. Note q = k . For a given IP address/port c(232−b)

combination, we have:

P(discovered by at least one infected host at time tick i)

= 1 − P (not discovered by any of w infected hosts)

= 1 − P (not discovered by one infected host)w

= 1 − (1 − P (discovered by one infected host))w

= 1 − (1 − q)w

Hence,

ni = [1 − (1 − q)w]vi (2.10)

24

The Propagation Tree of Self-Propagating Malware

Assume that malware propagation starts from a single node. As shown in Fig.

2.1, the propagation tree of malware P ropTr consists of:

(a) a root node r : the node where the malware executor releases it;

(b) intermediate nodes : nodes that caused direct infections of one or more nodes;

and

(c) leaf nodes : nodes that caused no direct infections of other nodes.

Formally, we define:

(1) Source (Parent) Function S, such that:

S(i) = j, iff node i, j ∈ P ropTr, and j is a parent of i in the tree P ropTr. As shown

in Fig. 2.1, if S(i) = j, node i is the child of node j.

(2) Malware Propagation Tree P ropTr, a directed tree in which each node is either:

(a) root node r, where ! node j ∈ P ropTr such that j = r and S(r) = j;

(b) intermediate node i, where ∃ node j ∈ P ropTr such that j = i and S(j) = i; or

(c) leaf node e, where ! node j ∈ P ropTr such that j = e and S(j) = e, and ∃ node

k ∈ P ropTr such that k = e and S(e) = k.

The Propagation Forest of Self-propagating Malware

If malware is released at k sources, ri, i ∈ [1, . . ., k], we can generate one propaga­

tion tree for the malware propagation rooted at each source node. The propagation

forest of self-propagating malware Fprop is the disjoint union of the propagation trees

rooted at nodes ri, i ∈ [1, . . ., k], formally:

Fprop =

k

P ropT ri
(2.11)

i=1

The Infection Time and Propagation Time

As shown in Fig. 2.1, there is a short delay between the intrusion of the mal-

ware and its propagation to other hosts. Such delay includes the time spent on the

25

vulnerability exploitation and subversion of the victim host. We denote the delay as

infection time.

Intuitively, we define the Infection Time (IT) as the time interval between the

start of the infection on a particular host (i.e., the time when the host was initially

intruded) and the start of propagation on the same host (i.e., the time when the same

host was starting to infect other hosts). Formally,

IT = TStartP ropagation − TStartInfection (2.12)

Actual infection times may vary and follow particular probability distributions.

We could define the Propagation Time (PT) between two hosts as the time in­

terval between the infection of a particular host (denote it as s) and the successful

infection of a subsequent target host (denote it as T(s)) that was caused by this par­

ticular host. Formally,

PT (s, T (s)) = TInfection(T (s)) − TInfection(s) (2.13)

For a host m that was never intruded or infected successfully, the time of infection

(TInfection(m))) is defined as +∞ (infinite).

We can measure the propagation time for all infected hosts and collect statistics

about them. E.g., we can calculate the average propagation time. There is one

problem with definition (2.12): it works only if there is at least one subsequent

successful infection from the original host (s). If such infection was unsuccessful (e.g.,

if the target host was invulnerable) or there was no subsequent infection attempt (e.g.,

if malware on the host was quarantined by administrators) the propagation time is

+∞ (infinite).

Alternatively, we can calculate the propagation time from the infected hosts, un­

der the observation that each infected host must be infected by some source host.

Hence, we define the Propagation Time (PT) between a host and its infector as: the

time interval between the successful infection of a particular host (denote it as t) and

26

the infection of the host that infected t [15] (denote it as S(t)). Formally,

PT (S(t), t) = TInfection(t) − TInfection(S(t)) (2.14)

We can infer several important properties for Propagation Time (PT).

1. Additivity: if there are three hosts (Host m, n, and o) that satisfy the following

two conditions:

a) the malware propagated directly from Host m to n; and

b) the malware propagated directly from Host n to o,

then the propagation time between Host m and o is the sum of the propagation time

between Host m and n and the propagation time between Host n and o. Formally,

For Hosts m, n, and o that satisfy S(o) = n and S(n) = m:

PT (m, o) = PT (m, n) + PT (n, o), (2.15)

2. Diameter: the diameter of the tree (Diameter(P ropTr))is the time elapsed since the

release of the malware until the infection of the last vulnerable hosts (denote it as lv).

Hence, we can use PT(r, lv) to represent the diameter of the tree: Diameter(P ropTr)

= PT(r, lv).

Assume that there are n intermediate nodes on the path between r and lv. We denote

them as nodei, i ∈ [1..n], where:

⎧

S(nodei) = r, if i = 1;
⎪⎪⎪⎪⎪⎨

S(lv) = nodei, if i = n; (2.16)⎪⎪⎪⎪⎪S(nodei+1) = nodei if i ∈ (1..n).⎩

Using Property 1, Diameter(Tprop) can be further calculated as:

Diameter(P ropTr)

= PT(r, lv)

27

= PT(r, nodei) + PT(node1, node2) + ... + PT(nodei, nodei+1) + ... + PT(noden,

lv)
+

= PT (r, nodei) + PT (noden, lv) + PT (nodei, nodei+1) (2.17)
i

i∈(1..n)

2.4.2 Generic Fibonacci Malware Propagation (GFMP) Model

We employ Fibonacci Number Sequence (FNS) to model infection time. Recall

that in the Fibonacci rabbit problem, newly-born rabbits cannot give birth to baby

rabbits immediately. Instead, they need some time to mature, which is reminiscent of

the infection/propagation time problem discussed above: a captured host cannot scan

and infect other hosts until its infection matures, i.e., until it is completely infected.

1) Recursive Equation for the Malware Propagation

Denote the number of all vulnerable hosts in the beginning as V and the number of

infected hosts as Ij , where j denotes the time tick. Denote the length of the time slice

between time ticks as L (one time slice could represent one second). Assume that the

administrators may patch the vulnerable hosts. Assume that the propagation time is

two time slices for all infections. Hence, the newly infected hosts intruded at time t

are not able to infect new hosts at time t + L, but will be able to infect new hosts at

time t + 2L. At time tick j + 2, there are Ij infected hosts that are contagious and

can infect other hosts. Formally:

w = Ij (2.18)

At time tick j + 1, the number of uninfected vulnerable hosts is the number of all

unpatched vulnerable (including infected and newly born) hosts minus the number

of infected vulnerable hosts. Assume that malware can carry destructive payloads

(e.g., programs that can re-format the hard drive). In this case, the destructed hosts

are wiped out and removed from the vulnerable host list. Note that neither dead (or

significantly damaged) nor newly-born hosts could be patched.

We define destruction rate as the number of destructed hosts divided by the num­

ber of infected hosts, considering that only infected hosts can be destroyed. Therefore,

28

we calculate the number of dead hosts by multiplying the destruction rate by the num­

ber of infected hosts, instead of the number of all vulnerable hosts. We denote the

destruction rate of the hosts as d, the birth rate of the vulnerable hosts (e.g., new

vulnerable hosts that just joined the network) as r, and the patching rate of infected

hosts as p. Formally, the number of hosts that are vulnerable (including infected and

newly-born) and can be patched at time tick j + 1 is:

vj+1 = (1 − p)vj − dIj + rvj = (1 − p + r)vj − dIj

This is a recursive equation. We expand the recursion and get:

j

vj+1 = (1 − p + r)j+1 v0 −
+

(1 − p + r)kdIj−k.
k=0

Given that v0 = V, we have:

j

vj+1 = (1 − p + r)j+1V −
+

(1 − p + r)kdIj−k (2.19)
k=0

The number of hosts that are vulnerable but not infected is:

 v = vj+1 − Ij+1 (2.20)j+1

After one time slice (time tick j + 2), without considering destruction and patch­

ing, the number of infected hosts is the sum of the number of infected hosts at the

previous time tick (j + 1) and the number of newly infected hosts during the time

slice. The number of infected hosts that died or were patched during the time slice is

dpj+1 = (d + p)Ij+1 (2.21)

The number of newly infected hosts is calculated in Section 2.4.1.

29

Given (2.10), (2.18), (2.19), (2.20), (2.21), we have:

Ij+2

= Ij+1 + nj+1 − dpj+1

= Ij+1 + vj+1(1 − (1 − q)Ij) − (d + p)Ij+1 (2.22)

= (1 − d − p)Ij+1 + [(1 − p + r)j+1V −

j+
((1 − p + r)kdIj−k) − Ij+1][1 − (1 − q)Ij]

k=0

Note this recursive growth function applies when there is at least one vulnerable host.

2) Special Cases

Special cases are as follows:

a) If the birth and patching rates are equal, (2.22) can be simplified to:

Ij+2

= (1 − d − p)Ij+1+
(2.23)

j

(V − d
+

Ij−k − Ij+1)[1 − (1 − q)Ij]
k=0

b) If the birth, destruction, and patching rates are all zero, (2.22) can be simplified

to:

Ij+2 = Ij+1 + (V − Ij+1)[1 − (1 − q)Ij] (2.24)

c) Binomial expansion can be used to expand and simplify 1 - (1 - q)Ij :

1 − (1 − q)Ij

Ij (2.25)
Ij
 +

= 1 − (−q)m

m
m=0

We observe that: k represents the multi-threading level of the malware propagation

scanner, and normally ranges from 1 to 210 or one thousand; V represents the number

of vulnerable hosts(including infected hosts), and is normally smaller than 220 or one

million; c represents the number of ports that the malware is scanning, and c > 0;

and b represents the number of IP addresses that the malware puts on the blacklist.

30

- b ≈ 232If the malware puts local and multicast addresses on the blacklist only, 232 .

< 210×220kV 1Hence, qV = c(232−b) 232 = . Note that these are conservative estimations since4

normally k is much smaller than 210 and V is smaller than 220 . Since the number of

infected hosts cannot be larger than the number of all vulnerable hosts, i.e., Ij ≤

V, we conclude that qIj is small. Therefore, we can safely discard the high order

elements in Equation 2.25. We can rewrite Equation (2.24) as:

Ij+2 = Ij+1 + (V − Ij+1)[1 − (1 − q)Ij]

1
Ij

+
= Ij+1 + (V − Ij+1)[1 − (−q)m]

m
m=0

Ij= Ij+1 + (V − Ij+1) (q)
1

= Ij+1 + qIj(V − Ij+1)

= Ij+1 + qIjV − qIjIj+1

Ij+1During the initial phase of the spread of the malware, V is a small number, so we

can safely throw away −qIjIj+1. Therefore:

Ij+2 = Ij+1 + qV Ij (2.26)

Equation 2.26 suggests that the initial spread of the malware approximately fol­

lows the Generic Lucas Number Sequence (LNS) [14] with α = 1 and β = -qV :
⎧

x if j = 0;
⎪⎪⎪⎪⎪⎨

Ij = y if j = 1; (2.27)⎪⎪⎪⎪⎪Ij−1 − (−qV)Ij−2 if j > 1.⎩

d) We now discuss the effects of different lengths of the propagation time. Equa­

tion 2.26 holds when the propagation time is 2L (twice as much as the length of the

unit time slice). Generally, if propagation time is eL, where e is an integer, we have:

Ij+2 = Ij+1 + qV Ij+2−e, where j + 2 > e (2.28)

31

We now have the equation that quantitatively measure the effects of propagation

time. The equation shows that the longer propagation time is, the slower the mal-

ware propagates, which follows the intuition that longer propagation time hampers

malicious activities of newly infected hosts.

2.4.3 Properties of the GFMP Model

We use the GFMP model to study the issues of threading, infection time, multiple

starting points, and collaborations. Due to space limitations, we omit the discussion

of properties of FNS and use them directly. Interested readers are referred to [30] for

details.

Multi-threading and the Closed-Form Expression

The closed-form expression for the number of infected hosts at time tick j, when

x = 0 and y = 1, is:

φj 1 + θ
Ij = , whereθ =

J
1 + 4qV andφ =

θ 2
[
J

c(232 − b) +
J

c(232 − b) + 4kV]j

=
2
J

c(232 − b) + 4kV [2
J

c(232 − b)]j−1

Note that the malware propagation stops when all vulnerable hosts that can be in­

fected are infected. Hence, during the propagation Ij ≤ V. Hence, we can rewrite Ij

as: ⎧

λ, if λ ≤ V;
⎪⎪⎪⎪⎪⎨

Ij = V, if λ > V. (2.29)
√ √
[c(232−b)+ c(232−b)+4kV]j

⎪⎪⎪⎪⎪ (λ = √ √
c(232−b)]j−1

)⎩
2 c(232−b)+4kV [2

In Equation 2.29, k denotes the number of active threads in the malware scan­

ner. As k increases, the infection rate increases. However, note that multi-threaded

programs can easily generate huge network traffic by sending out a large number of

packets. While context switching for threads are smaller than those of processes, the

32

costs increase as k increases. Real-world multi-threaded malware normally employs

10 - 100 threads. Equation 2.29 was derived from Equation 2.26, where we assume

that the number of previously infected hosts is much smaller than the number of all

vulnerable hosts (Ij−1 is small), and dropped − k Hence, Equation (2.29) V c(232−b) IjIj+1.

grows faster than actual malware propagation when the number of infected hosts is

large. Experimental results that support Equation 2.29 are discussed in Section 3.5.

Sophisticated Scanning and the Shift Property

In Section 2.4.3, we derived the closed-form expression when malware employs

multi-threaded random scanning, and the initial values of x and y are 0 and 1, respec­

tively. However, malware can employ more sophisticated scanning techniques, such

as a combination of scanning strategies. Malware can use hitlist scanning to infect

a large number of pre-selected vulnerable hosts [24] before performing regular ran­

dom scanning on newly infected hosts. Our extended model represents such scanning

strategies by different initializations of x and y. E.g., if the size of the hitlist is h,

we assume that at time tick 1 the number of infected hosts is h (the original release

point of malware) instead of 1, i.e., x = 0 and y = h.

According to the Shift Property of FNS, The Generic LNS sequence determined

by Equation 2.29 with initial values x and y can be calculated as:

GIx,y,j = I (2.30)log(yφ+x)[j+ −1]log φ

When x = 0 and y = h, we have:

GI0,h,j = I (2.31)log(hφ)[j+ −1]log φ

Hence, the number of infected hosts of the malware with a hitlist of size h and the

combined scanning strategy at time j can be represented by the number of infected

hosts of the original random-scanning malware at time (j + s), where s is the shifting

number log(hφ) − 1.log φ

33

Furthermore, according to properties of the FNS,

GIx,y,j = xIj−1 + yIj

Hence, the propagation of malware employing the combined hitlist and random scan­

ning is the linear combination of two propagations of malware employing random

scanning only. When x = 0 and y = h, we have:

GI0,h,j = hIj (2.32)

We call h the linear Fibonacci Coefficient (FC) of the linear combination.

Multiple Starting Points, Collaborative Attacks and the Linear Property

Malware propagation can start from multiple places in the network rather than

from a single point, and infected hosts can collaborate with each other to cause much

more damage. E.g., the coordinated Botnet zombie nodes can collaborate to launch

DoS attacks [5], and the well-orchestrated collaborative attacks on Estonia caused

large-scale disruptions [13].

We consider the representation of the following attacks:

Case 1. There are m uncoordinated attackers who release the same copy of mal-

ware at m places simultaneously. We assume that malware employs the localized

random scanning strategy. We assume that the search spaces of attackers are inde­

pendent (e.g., attackers divide the whole IP address space equally into m parts and

each attacker will be responsible for one part). For the initializations, we assume that

x = 0 and y = 1 for all attackers. According to Equation 2.27, the propagation of mal-

ware released by all attackers can be represented as I0,1,j because their initial values

kVand β coefficients are the same. Note that |β| =
c(2

32 now since the search space
−b)m

1for each attacker is now reduced to 232
. Recall that we have |β| < . As discussed m 4

kV mk 1in Section 2.4.2, if we assume that V = 220 and b = 0, we have
c(2

32 = < .
−b) 212c 4

m

Hence, mk < 210, which means that the product of the number of threads per malware c

and the number of attackers divided by the number of scanned ports is smaller than

34

1024, if there are one million vulnerable hosts. We assume that this condition holds

and denote the propagation of the whole collaborative attack as IT OT ALxtotal,ytotal,j .

According to the Linear Property of the FNS, we have:

m−1 +
IT OT ALxtotal,ytotal,j = I0,1,j

n=0

= mI0,1,j

= I0,m,j

Hence, the number of infected hosts of m uncoordinated attacks that perform localized

scanning is equivalent to that of the single attack released at one point with initial

values xtotal = 0, and ytotal = m.

Case 2. There are still m collaborative attackers releasing malware. We assume

that malware employs the sophisticated scanning strategy (but each malware copy

shares the same search space) and malware at different hosts can communicate with

each other to avoid duplicate infection attempts. Note we do not assume that infected

hosts can avoid duplicate scanning (in which multiple attackers can be modeled as

one attacker with a huge number of threads and minimal thread maintenance costs).

We assume that initial values of the propagation of the malware released by Attacker

An are xn and yn (n∈[0, . . ., m)). We still denote the propagation of the whole

collaborative attack as IT OT ALxtotal,ytotal,j .

According to Linear Property of the FNS, we have:

m−1 +
IT OT ALxtotal,ytotal,j = Ixn,yn,j

n=0

m−1 +
= I�1 �1 + Ixn,yn,j

n=0 xn, n=0 yn,j (2.33)
n=2

= . . .

= I�m−1 xn,
�m−1 yn,jn=0 n=0

Hence, the power of the m collaborative attacks is equivalent to the single attack
�m−1 �m−1released at one point with initial values xtotal = xn, and ytotal = yn. n=0 n=0

35

Equation 2.33 quantifies the power of collaborative attacks, and grows much faster

than Equation 2.27.

2.5 Experiments

In this section, we present the experimental results on the impact of threading,

infection time, and multiple-attacker collaboration, as well as the effects of hitlist

size, birth rate, and patching rate on malware propagation. We have conducted the

experiments on a network that consists of a Pentium 4 workstation and virtual ma­

chines. We simulate the worm propagation and use one machine to simulate multiple

victim hosts. We implemented the malware propagation model in C++. Without loss

of generality, in all the experiments, we set V (the number of all vulnerable hosts)

to 1,000,000, c (the number of ports the malware scans for one host) to 1, and b

(the number of IP addresses that the malware does not scan) to the size of local and

multicast address space, which is approximately 225 .

2.5.1 Verification of the GFMP Model: the Shift Property

We perform experiments to verify our theoretical GFMP model before employing

it to study the effects of other parameters. In particular, we want to show the Shift

Property discussed in Section 2.4.3. In this experiment, we set k to 100, d to 0, p to

0.0002, and r to 0.0002.

From Equation 2.32, GI0,h,j = hIj , the number of infected hosts with hitlist size

h divided by the number of infected hosts with hitlist size 1 is h. Hence, if sizes of

the hitlists are 2, 100, and 200, the quotients are 2, 100, and 200, respectively. Note

that the number of infected hosts with hitlist size 200 is 200 =2 times of the number 100

of infected hosts with hitlist size 100.

Fig. 2.2 shows the results on the propagation with hitlist sizes 1, 2, 100, and

200. Note that numbers of infected hosts for hitlist sizes 1 and 2 are enlarged 100

times. The results confirm our theoretical analysis, and verify the Shift Property.

36

Figure 2.2.: The propagation of hitlist size 100 and 200.

37

Figure 2.3.: The propagation of hitlist size 100 and 200.

For instance, numbers of infected hosts with hitlist size 100 (or 200) are essentially

coincident with the numbers of infected hosts (enlarged 100 times) with hitlist size

1 (or 2). Numbers of infected hosts with hitlist size 200 are approximately twice as

many as those with hitlist size 100.

According to Equation 2.31, GI0,h,j = I log(hφ) . Therefore, we can compute
[j+ −1]log φ

the number of shifts required to calculate the number of infected hosts with hitlist

, b = 225 100∗220 100size h = 100. Since k = 100, V = 220 , c = 1, we have: q = = 1∗(232−225) 32∗127
√ √

= 0.025. Hence, θ = 1 + 4q = 1.098 = 1.048, and φ = 1+
2

θ = 1.024 Therefore, the

− 1 = log(100∗φ)number of shifts is : log((h)φ) -1 = 2.010 - 1 = 200. log φ logφ 0.010

Fig. 2.3 confirms our theoretical analysis. The solid line shows the propagation

with hitlist size 1. The dotted line shows the propagation with hitlist size 100. The

dashed line that connects the solid and dotted lines illustrates the number of required

shifts, which is approximately constant. The projection of the dashed line on the

x-axis shows that the number of shifts is roughly equal to 200, which verifies our

analytical result.

38

Figure 2.4.: The propagation of the multi-threaded malware.

2.5.2 The Effect of Different Hitlist Sizes on Multi-threaded Propagation

We have conducted experiments to evaluate whether the hitlist scanning can accel­

erate the propagation of multi-threaded malware, and compared the effects of different

hitlist sizes on the malware propagation. In this experiment, we set k (the number of

threads in the malware vulnerability scanner of the malware) to 100, d (destruction

rate) to 0.0001, p (patching rate) to 0.0002, and r (birth rate) to 0. Note that we set

birth rate to 0 to show the effects of threading (otherwise the increased number of

infected hosts might be caused by newly joined vulnerable hosts).

Fig. 2.4 shows the malware propagation with hitlist sizes 50, 100, 1,000, 10,000,

and 100,000. We observe that the propagation speed of the multi-threaded malware

increases as the size of the hitlist increases. Specifically, with hitlists of sizes 100,000,

10,000, 1,000, 100, and 50, the malware propagated to 500,000 hosts in 100, 210, 319,

441, and 489 time ticks (seconds), respectively. We conclude that the hitlist scanning

can effectively accelerate the multi-threaded malware propagation, especially when

the size of the hitlist is large.

39

Figure 2.5.: The malware propagation with different number of threads.

When the size of the hitlist is 100,000, the malware propagation reached its peak

after 290 time ticks, after which the actual number of infected hosts decreased. Such

decrease is caused by patching and destruction. In our experiment, destruction and

patching rates are not zero. Moreover, we set the birth rate to zero so that no new

vulnerable hosts will join the network. Therefore, after the malware propagation

reached its peak, there will be no new vulnerable host to infect, and patched hosts

can no longer be infected. Hence, the number of infected hosts decreases. Note

that different birth and patching rates can cause different propagation behavior. We

discuss our experimental results on the birth patching rates in Sections 2.5.4 and

2.5.5, respectively.

2.5.3 The Effect of Different Threading-Levels

We conducted experiments to study how the number of scanning threads affects

malware propagation. In this experiment, we set d to 0.0001, p to 0.0002, r to 0, and

the hitlist size to 10000.

40

Fig. 2.5 shows the propagation with different threading-levels: 50, 100, and 250.

We observe that the propagation speed increases as the number of threads in the

malware increases. The effects of the multi-threads are significant: when the number

of threads is 50, the malware took almost 700 time ticks to infect 800,000 hosts, while

the same malware took approximately 300 time ticks with 100 threads and 100 time

ticks with 250 threads to accomplish the same task. Note that when the number of

threads is 250, the malware propagation reaches its peak in less than 200 time ticks.

The number of infected hosts then decreased because of destruction and patching,

since we assume that a patched host cannot be infected again in this experiment.

The patching rate we set in this experiment is fairly high (0.0002), which means that

in every time tick two out of one thousand infected hosts are patched.

2.5.4 The Effect of Different Birth Rates

We conducted experiments to study the effects of different birth rates on the

malware propagation. In this experiment, we set d to 0.0005, p to 0.0000, k to 100,

and the hitlist size to 10,000. Note we set the patching rate to 0 to focus on the birth

rate.

Fig. 2.6 shows the propagation with birth rates 0, 0.0001, 0.0002, 0.0003, 0.0004,

and 0.0005. Note that when the birth rate is 0.0005, it is equal to the destruction rate

(0.0005). We observe that the birth rate does matter during the malware propagation.

Specifically, we observe that the number of infected hosts peaked at 1,050,000 when

the birth rate is 0.0004, while the number of the infected hosts peaked at only 917,000

when the birth rate is 0.

Moreover, when the birth rate is 0.0005, which is equal to the destruction rate,

we observe that the number of infected hosts peaked at 1,080,000. The number of

infected hosts neither increased nor decreased afterwards. Therefore, an equilibrium

was reached: although 5 out of 10,000 hosts are destructed in each time slice, 5 out

of 10,000 hosts are newly born and infected by the malware in each time slice.

41

Figure 2.6.: The malware propagation with different birth rates.

42

Figure 2.7.: The malware propagation with different patching rates.

2.5.5 The Effect of Different Patching Rates

We performed experiments to evaluate the effects of different patching rates on

the malware propagation. In this experiment, we set d to 0.0001, r to 0.0003, k to

100, and the hitlist size to 10,000.

Fig. 2.7 shows the malware propagation with patching rates ranging from 0 to

0.010. We observe that patching significantly reduces the number of infected hosts.

Specifically, we observe that the malware propagation peaked at 900,000 hosts when

there was no patching, and the number of hosts dropped to approximately 700,000

when the patching rate was just 0.001, which means that only one out of one thousand

hosts is patched. The malware propagation peaked at only 193,000 hosts when the

patching rate was 0.005, and the malware propagation was significantly reduced and

peaked at only 66,000 hosts when the patching rate was 0.01 (one out of one hundred

hosts). Therefore, we conclude that patching can significantly diminish the malware

propagation and should be employed in all networks.

43

Figure 2.8.: The malware propagation with multiple attackers.

2.5.6 The Effect of Multiple Attackers

We conducted experiments to study the effects of multiple attackers on the mal-

ware propagation. In this experiment, we set d to 0.005, p to 0.005, r to 0.03, and

k to 100. We first set the hitlist size to 100 and 200, respectively, and performed

the experiments. Then, we simulated the multiple-attack scenario discussed in Case

2 of Section 2.4.3: there are two collaborative attackers, one with hitlist size 100,

and the other with hitlist size 200. The two attackers start at the same time, and

communicate with each other to avoid duplicate infection attempts.

According to Equation 2.33, the effects of a collaborative attack is the sum of

the individual attacks. Fig. 2.8 presents the experimental results. The dotted line

represents the propagation with hitlist size 100. The dashed line represents the prop­

agation with hitlist size 200. The solid line represents the propagation with two

attackers, one with hitlist size 100 and the other with hitlist size 200. The number of

infected hosts for the collaborative attack is approximately the sum of the number of

hosts infected for the individual attacks with hitlist sizes 100 and 200 initially, which

confirms Equation 2.33. However, we note that after around time tick 300, the sum

44

of the number of infected hosts for the individual attacks become larger than the

number of infected hosts for the collaborative attacks, which means:

IT OT ALxtotal,ytotal,j < I�m−1 xn,
�m−1 yn,jn=0 n=0

The explanation is that the number of infected hosts for the collaborative attacks

increases more slowly due to the contention between the collaborating attackers. In

Case 2 of Section 2.4.3, we assume that the collaborative attackers can avoid dupli­

cate infection attempts, but cannot avoid duplicate scanning. Hence, some scanning

activities in the collaborative attack may collide and such collision can decrease the

efficiency of the collaborative attack.

2.5.7 The Effect of Different Propagation Times

We performed experiments to evaluate the effects of different propagation times

on the malware propagation. In this experiment, we set d to 0.005, p to 0.005, r to

0.003, k to 100, and the hitlist size to 1,000. Note that these destruction and patching

rates are high. The sum of the two rates is 0.005 + 0.005 = 0.01. Note that the birth

rate is 0.003, which is smaller than the patching rate.

Fig. 2.9 shows the malware propagation with different propagation times: 2 time

slices, 20 time slices, and 50 time slices. We observe that as the propagation time

increases, the propagation speed decreases. In 200 time slices, the malware infected

38,416, 13,249, and 5,512 hosts, with the 2-time-slice, the 20-time-slice, and the 50­

time-slice propagation times, respectively. In 300 time slices, the malware infected

125,980, 39,497, and 13,403 hosts, with the 2-time-slice, the 20-time-slice, and the

50-time-slice propagation times, respectively. Furthermore, the malware propagation

reached its peak at time tick 482 with 263,732 infected hosts with the 2-time-slice

propagation time, while the malware propagation with the 20-time-slice and the 50­

time-slice propagation times are still in the process of trying to infect more nodes.

Therefore, we conclude that the defenders fighting malware should try to maximize

its propagation time.

45

Figure 2.9.: The malware propagation with different propagation times.

46

2.5.8 Comparison With Existing Models

In this subsection, we show that our model is better by comparing it to existing

models. Fig. 1 in [18] shows the results obtained by the AAWP model by Chen et

al.. Their experiments employ one million vulnerable machines, a scanning rate of

100 scans/second, a death rate of 0.001/second, and random scanning.

The leftmost graph in Fig. 1 in [18] illustrates the effects of hitlist size. In

comparison, our results (Fig. 2.2, 2.3, and 2.4) verify the important shift property,

and measure the impact of multi-threading and hitlist size on malware propagation.

Our results are more practical since threading is employed by most real-world mal-

ware. The middle graph in Fig. 1 in [18] illustrates the effects of patching rate. In

comparison, our results (Fig. 2.6 and 2.7) provide more insights into the effects of

patching/birth/death rates. We incorporate not only patching and death rates in our

studies, but also the birth rate. Our results on the birth rate (Fig. 2.6) are significant,

especially for wireless and peer-to-peer networks, in which hosts may join or leave at

any time. Our results show that death rate can cause the number of infected hosts

to decrease over time, which cannot be inferred easily from Fig. 1 in [18].

The rightmost graph in Fig. 1 in [18] illustrates the impact of infection time.

While their results show that infection times do not affect malware propagation sig­

nificantly, our results show otherwise. Our explanation is that we consider the impact

of threading, infection time, and multiple-attacker collaboration, as well as the effects

of hitlist size, birth rate, and patching rate on malware propagation. Our results are

more intuitive because modern malware has very high propagation speed and longer

infection time leaves less vulnerable hosts infected.

In all, the comparison shows that our model is more accurate and complete by

considering the issues of MMIMC, and provides more insights into malware propaga­

tion.

47

2.6 Conclusion

We quantitatively study issues of Multi-port scanning, Multi-threading, Infection

time, Multiple starting points, and Collaboration (MMIMC) in malware propagation.

To our knowledge, there is no previous study on the effects of MMIMC. We discuss the

limitations of current models, and explain the impact of threading, infection time, and

collaboration, as well as the effects of hitlist size, birth rate, and patching rate. We

consider the multi-threading issue during the calculation of probability of successful

scans. We model the infection time and propagation time of the malware by employing

Fibonacci Number Sequence. We derive the Shift Property and the Linear Property.

We theoretically analyze the effects of the above issues, and perform experiments to

verify the theoretical results.

48

3 ALLOCATION SCHEMES, ARCHITECTURES, AND POLICIES FOR

COLLABORATIVE PORT SCANNING ATTACKS

3.1 Introduction

Attackers employ various technologies to launch attacks, such as Denial-of-Service

(DoS), BotNet, Worm, and Virus, etc. The first step of these attacks is to discover

vulnerable victim hosts.

Nearly all attackers perform port scanning to find vulnerabilities on victim hosts.

Most existing fast-replicated viruses and worms [28], [8], [9] perform port scanning to

discover and infect targets. Hence, it is crucial to study port scanning and explore

whether the latest advances in technologies have changed the horizon of port scan­

ning, including how to perform port scanning, expedite scanning speed, conduct port

scanning from multiple machines, and defend against modern port scanners.

Different network protocols employ different ports. Vulnerabilities exist in all

protocols. Hence, to gather information completely, port scanners have to perform

scanning for a large number of ports. The size of the port space is 65535 [36]. Ports

0 to 1023 are well-known ports, ports 1024 to 49151 are registered ports, and ports

49152 to 65535 are dynamic or private ports.

Port scanners must run extremely fast. Port scanners have employed sophisticated

techniques to expedite port scanning. For example, worms can search vulnerabilities

on a commonly used port (e.g., port 21 used by FTP, and port 443 used by HTTPS).

However, a typical complete port scan is time-consuming. For example, a 65,536-port

UDP scan for one target host could take more than 18 hours [19].

Attackers typically perform port scanning independently, without coordination,

to find victim hosts. If port scanning software packages are run on multiple machines

without coordination, their search spaces will overlap significantly. The overlap causes

49

reduction in the performance of the scanning. The network connections used by the

port scanners could get congested. The buffer size of the network software may not

be large enough to hold all the incoming data. The processing speed of the computer

may not be enough to analyze responses from all the networks. After all scanning

activities end, all the computers involved in the scanning must communicate to each

other and finalize the search results. Problems arise when their results differ. Such

differences are hard to analyze, due to the fast-changing nature of computer networks.

As defense technologies evolve, port scanners that exhibit unusual network behav­

iors, such as sending requests to all IP addresses in a Class B network, are more likely

to be detected. Such detection will likely disable the machine performing the scan­

ning immediately and trigger chained detections of all other machines involved. Given

the fact that virtually all networks are protected by firewalls, filters, and monitors,

a simple deployment of identical port scanning software packages to all computers

involved in the scanning is not acceptable.

A key observation to the above deployment plan is that there is a lack of collabo­

ration among the port scanners. We use collaboration and coordination interchange­

ably. A simple increase in the number of port scanners creates too much duplicate

work, increases the power of the whole attack incrementally, and introduces over­

head on analyzing, comparing, and resolving the conflicts in the results. Therefore,

we need a smarter deployment plan which makes full use of all scanners involved,

avoids performing duplicate actions to the maximum extent, and synchronize actions

of participating nodes properly and efficiently.

We propose a smart and efficient deployment plan of port scanner software pack­

ages to multiple computers. To address the issues above, our deployment plan employs

the Distributed Hash Table (DHT) to speed up the scanning, avoid duplicate scan­

ning and contention, and efficiently process and summarize the results from multiple

computers. The key idea is to perform DHT lookups on the target host before initiat­

ing any scanning activity. In general, the idea can be extended to other collaborative

attacks as well.

50

DHTs [58] are distributed systems that provide essential functionalities of hash

tables (HT). In HTs, one can insert items and query whether a particular item exists.

For each stored item, an associated value can be retrieved in the HT. Similarly, in

DHTs, one can insert items and query for the existences of items. (Key, Value) pairs

can be stored in DHTs as well.

The difference between a DHT and a conventional HT is that the stored items are

distributed over multiple computers. The key advantages of the DHT include:

1.	 Efficiency: DHT is designed to store information and perform lookups effi­

ciently.

2.	 Scalability: DHT is designed to scale to thousands of computers.

3.	 Robustness: Most DHTs can let participating computers to join or leave at any

time, and gracefully handle computer failures.

4.	 Distribution: Items stored in DHTs are distributed over a large number of

computers. No central server is needed to answer queries.

Numerous application have employed DHT in the past, such as BitTorrent and

Emule [54], [55].

DHT fits the collaborative port scanners because it allows efficient lookups of IP

addresses (or IP address and port number pairs). In our deployment plan, each local

port scanner double-checks an IP address in the DHT before the actual scanning,

therefore avoids problems on duplicate scanning and contention. The DHT database

serves as a result repository. It can store scanned results as the (IP address, scan

result) pairs. Although DHT has associated overhead in insertions and lookups, it

provides higher efficiency by avoiding duplicate scanning, contention, and unnecessary

data analysis. Hence, the DHT-based collaborative port scanning scheme significantly

improves over uncoordinated and unsynchronized scanning.

51

3.2 Related Work

Port Scan.

Port scanners employ various techniques. In a SYN Scan, the scanner produces

its own IP packet and sends TCP SYN packets to victim hosts and analyzes the

responses. In a UDP scan, the scanner sends UDP packets to victim hosts and checks

whether ICMP port unreachable messages are received afterwards.

Port scanning can be performed on multiple ports. Some scanners perform the

scanning in two-iterations. These scanners scan with one technique, e.g., SYN scan,

first before scanning the un-denied ports with other techniques. For instance, the

famous NMAP scanner [19] uses the two-iteration approach when executed with the

-SUV option.

Ref. [53] discussed how to detect coordinated port scans. However, the author

mainly focuses on the detection and did not provide details of how to coordinate the

individual port scans.

Port scanner needs to scan a large number of ports, as discussed in Ref. [36].

Example ports include port 7 for echo, port 21 for FTP, port 22 for SSH, port 23 for

Telnet, port 25 for SMTP, port 80 for HTTP, port 79 for finger, port 110 for POP3,

port 139 for NetBIOS, port 143 for IMAP, port 443 for HTTPS, and port 53 for DNS.

Coordination.

Port scanners can collaborate with each other and perform much more efficient

reconnaissance. Staniford et al. [24] discussed the Warhol worm, which propagates

extremely fast by self-coordination with both hit-list and permutation scanning. Wi­

ley [41] described an abstract distributed and collaborative worm Curris Yellow.

Gates [53] discussed possible collaborations in port scans.

Wang et al. [50] described an advanced peer-to-peer Botnet. The distributed.net [56]

used distributed computing to break ciphers. Our work discusses specific issues of

the DHT-based scheme, proposes different allocation strategies, and illustrates the

scanning architectures and policies.

http:distributed.net

52

IPv6 Scan.

Yang [35] discussed how to defend worms in IPv6 networks. Bellovin et al. [49]

presented worm propagation strategies for IPv6 networks. Kamra et al. [51] proposed

a DNS-scan method that can achieve high spread rates in IPv6 networks.

Worm Scanning.

Ref. [27] discusses characteristics of worms, including protocol, amount of payload

and scanning strategy, etc. Ref. [42] talks about the performance and models of worm

propagations. The authors talk about the local preference scans. If there are multiple

attackers starting from multiple sources, local preference scans will be much more

powerful. Ref. [25] describes a class of worms that target network systems such as

routers. Ref. [17] discusses how to minimize the number of scans required to infect

hosts. Zhang et al. [1] discussed a Fibonacci model of worm propagation.

Defense.

Wu et al. [43] proposed a worm detection architecture for various worm scanning

techniques. Twycross et al. [44] built a virus throttle program that can detect the

port scanner based on their abnormal network behaviors. Jung et al. [47] developed

the Threshold Random Walk (TRW) algorithm to identify malicious remote hosts.

Kumar et al. [52] presented the analysis of the Witty Worm and inferred about the

IP address where the Witty Worm was released. Staniford et al. [48] described Spice,

a port scanner that can detect stealthy scans.

3.3 Issues on Port Scanning

Most attacks include the reconnaissance step, in which attackers explore and dis­

cover victim hosts for vulnerabilities and important information for launching attacks,

including operating system and firewall status. Port scanners are regularly used to

perform such activities.

53

3.3.1 Conventional Port Scanners

In a port scan, attackers scan a number of listening ports on the victim host. This

method guarantees that all known vulnerabilities to attackers on the victim host can

be discovered, i.e., there is no false negative. However, an exhaustive search is time-

consuming. On the other hand, in a port sweep, attackers scan a particular port on

the a large number of victim hosts. Port sweep can reduce the size of search space

significantly, but could ignore vulnerabilities on un-searched ports. It is clear that

the optimal strategy is to scan only the common or vulnerable ports. Such strategy

is difficult to achieve in practice. It is not uncommon to find attackers that employ

a combination of both methods. Note that in a partial scan, attackers can only scan

the ports that match the vulnerabilities that the attackers want to take advantage of.

E.g., if the attacker could launch FTP and HTTPS attacks, ports 21 and 443 could be

the only ports that the attacker scans. If there are multiple collaborative attackers,

one attacker can provide vulnerability database such as the FTP and HTTPS ports

mentioned above, another attacker can perform optimal scanning according to the

available vulnerability database.

For each port scan attempt, the result can be:

1.	 listening : the scanned port is actively listening. E.g., provided that the victim

host tries to accept the TCP connection request, a successful TCP SYN scan

receives a SYN-ACK packet from it.

2.	 not listening : the scanned port is not listening. E.g., if the victim host does

not listen on a particular UDP port, a UDP scan directed to that port receives

an ICMP port unreachable packet.

3.	 unknown: there is no response from the victim host. The IP packets between

the scanner and the victim host may be lost on the way, filtered by firewall, or

blocked by the anti-virus software.

54

Successful scans can yield promising results, including the operating system of the

target host, the protocol suite in use, and the open ports, etc. Note in case 3), victim

hosts may not trust the machine running the port scanner for a number of reasons,

including IP address not recognized, host not residing on the same LAN, etc. In such

cases, a collaborative scan launched from hosts that are trusted by victim hosts may

be successful. The information gathered by the trusted hosts can be passed to other

malicious computers.

3.3.2 Detection of Port Scanners

Security monitors that could detect port scanning activities normally employ sim­

ple rules to label potential port scanning activities. E.g., the monitors can check

whether there are a large number of probes (denote it as m) within a limited time

period (denote it as n seconds) from a particular machine. Note n is normally set to

a small number to reduce the burden of the Intrusion Detection Systems (IDS) due

to their limited ability to log and analyze network traffic. Researchers have proposed

new techniques for detecting port scanning activities, such as advanced techniques

that employ machine learning and probabilistic packet inspection [47]. Port scan­

ners that choose scan targets randomly are more likely to be detected because of the

large-scale network-indicators generated [39].

3.3.3 Collaborative Port Scanners

Individual port scanners have limited power because they usually employ a spe­

cific technology. Ironically, they are more likely to get detected because they scan

all targets individually and generate excessive network traffic. Collaborative port

scanners can perform the work together. E.g., they can vary the port scanning tech­

nologies, the port scanning locations, the methods to choose scan targets, and the

ways to divide work among themselves. We discuss possible scanning technologies

and methods below.

55

C1) Port Scanning Technologies

Collaborative port scanners can choose from a variety of port scanning technolo­

gies, including but not limited to [45], [47], [48]:

1.	 Connect scan: The port scanner employs system call connect() to scan target

hosts. This scan does not require special privileges. After a TCP connection

is established to the victim host, the port scanner sends a RST packet to close

the connection. One drawback of this scan is that the established connections

are logged and easily noticed by security monitors and software packages.

2.	 Application scan: The port scanner employs particular application-layer proto­

cols and sends requests according to the protocol-specifics. Example protocols

include HTTP, FTP, and DNS. If the victim host responds to such application-

layer requests, the port scanner classifies the corresponding ports as active.

3.	 Ident scan: The port scanner connects to the victim host, and uses a vulner­

ability in the ident protocol to retrieve usernames on the victim host. E.g., if

the port scanner connects to a HTTP server, the ident protocol can be used to

look up the username running it.

4.	 SYN scan: The port scanner crafts its own TCP packet. The scanner first sends

a SYN packet to the victim host. The victim host responds with a SYN/ACK

packet. The scanner records this response and classifies the scanned port as

listening and accepting incoming connections. The scanner could then send a

reset (RST) packet to end the scan. Since the SYN scan does not establish a full

TCP connection, the victim hosts will not run out of buffer space for accepting

incoming connections.

5.	 UDP scan: The port scanner crafts its own UDP packet. The scanner sends an

arbitrary UDP packet to the victim host. If an ICMP port unreachable message

is received afterwards, the scanner knows that the port is not active. However,

56

reply packets might be dropped on the network route. Certain network secu­

rity monitors and anti-virus software packages may filter out the UDP packets.

Therefore, this scanning technology can be unprecise.

6.	 ACK scan: The port scanner crafts its own probe packet and set the ACK flag.

The scanner sends the probe packet to the victim host. If an ICMP unreachable

message is received or there is no reply, the port scanner confirms that the probe

packet is filtered by firewall or security software packages. Therefore, ACK scan

is used to detect whether a particular network link is guarded by firewall or

security softwares. If the network link is unfiltered, the victim host will return

an RST packet.

7.	 FIN and Null scan: The port scanner produces surreal scenarios and analyzes

the responses from the victim hosts. In a FIN scan, the scanner sends a FIN

packet to the victim host. If there is no reply from the victim host, the scanned

port on the victim host is classified as open or filtered, because a closed port

would send an RST packet. Similarly, in a Null scan, the port scanner produces

a TCP packet that does not have any flag, and sends it to victim hosts. A lack

of response suggests that the target port is either open or filtered.

8.	 Cloaked scan: In cloaked scans, it is very difficult for defenders to figure out the

identity of the scanners. Network devices, firewalls, security software packages,

and servers can log potentially malicious activities (e.g., a connection without

data transfer) and analyze them to find the scanners. Port scanners can use

cloaked scans in such cases. Example cloaked scans include: a) proxy scan:

in which the victim host sees a proxy machine rather than the attacker; b)

fragmented packet scan: in which the port scanners send fragmented packets

that can be combined together at the destination; and c) implementation-flaw

scan: in which the port scanners exploit implementation flaws in the victim

host to perform scanning. E.g., the old predictable IP ID sequence number

bug [57] (now fixed) can be employed to do port scanning.

57

9.	 Multi-cast scan: The port scanners can send packets to a multicast address in

this case. The packet is then directed to a large number of victim hosts. The

port scanner can fake the source IP addresses so that responses can be directed

to other collaborative attackers.

C2) Target Selection Methods Collaborative port scanners can choose from a

variety of target selection methods:

1.	 Naive scanning : The port scanner chooses the next IP address to scan accord­

ing to an uniform distribution. Code red and Slammer worms employed this

method.

2.	 Local scanning : The port scanner gives priority to local IP addresses. More

specifically, with probability p the port scanner chooses to scan an IP address

that shares the same first x bits (x can be any number from 1 - 31) with it, and

with probability (1-p) it chooses to scan a random IP address.

3.	 Importance scanning : The port scanner assumes that the vulnerable hosts are

unevenly distributed, hence important IP addresses should be scanned first.

Ref. [32] proposes the importance-scanning method, assuming that the vulner­

able host distributions exist and are obtainable. Ref. [26] proposes the static

importance-scanning strategies and assumes that keeping information about

uninfected hosts is realistic.

4.	 Sequential scanning (nearest neighbor scanning): The port scanner chooses to

scan the next IP address in the lexicographical order.

5.	 Hit-list scanning [24] : The port scanner employs an existing list of IP addresses

and scans those addresses first. Such tables may be easily obtained from mul­

tiple sources, such as routing tables and social network profiles. In particular,

the hitlist that has all the addresses in the BGP routing table is very easily

obtained and effective.

58

6.	 Sampling scanning : The port scanner can choose to scan the representatives of

subnets. After successful scans, the port scanner tries to infect the victim hosts

and then start new scanning from the newly infected hosts.

7.	 Passive scanning : The port scanner does not send scanning packets. Instead,

it collects and analyzes the network traffic that pass through it.

3.4 DHT-based Collaborative Port Scanners

The fundamental problem for port scanners is to find vulnerabilities on all ports

of target hosts, build exhaustive vulnerability database, and prepare for the launch

of effective attacks against target hosts. As discussed in Section 3.1, port scanning

can start from multiple sources instead of only one. The latter is assumed in cur­

rent research. Multiple port scanners might perform duplicate scanning or cause

contention.

Furthermore, as discussed in Section 3.3.3, port scanners on different machines

can employ different technologies to scan the target hosts. It is not only inefficient to

let all port scanners try all possible scan methods, but such exhaustive searches are

also likely to trigger the alarms of defense systems.

To avoid contention among port scanners and increase scanning speed and power,

the collaborative port scanning scheme must define clear work allocation methods for

all participating scanners, avoid generating excessive network traffic or leaving traces

for tracebacks, and specify when to stop scanning for the scanners. We discuss these

issues below.

3.4.1 Static and Dynamic Allocation of Targets

A number of attackers can perform the port scanning simultaneously to make

much faster progresses. In this scenario, a number of attackers can divide the work

to scan a large number of victim hosts. There are two ways to divide the work:

59

A1) Static Allocation

The Static Allocation (SA) scheme avoids the duplicate work discussed above. In

a SA scheme, the target address space is divided to all collaborative port scanners

before the launch of the actual attack. Port number and IP address combinations,

scanning technology, and vulnerability checking methods are divisible as well in this

scheme. Each port scanner gets its own allocation of the target space, technology (to

use), and vulnerability (to check) list. Without loss of generality, we only discuss the

allocation methods for the target space.

Collaborative port scanners have a number of ways to define the SA policy to

divide the work, i.e., ways to divide the large target address space. Examples include:

1. Divide the address space by hosts.

In this policy, each collaborating port scanner will be responsible for all ports

on particular hosts. There are two methods to divide the addresses:

(a)	 random: This policy divides the target address space randomly to individ­

ual port scanners.

(b)	 sequential : This policy divides the target address space sequentially to

individual port scanners. Each scanner will be responsible for a chunk of

the huge IP address space.

2. Divide the address space by port numbers.

In this policy, each collaborating port scanner will be responsible for the same

port on all hosts. There are two methods to divide the addresses as well :

random and sequential.

The SA scheme does not address a number of issues, including node failure and

dynamic node joining and leaving. Note that in real attack scenarios, such as the worm

scanning and propagation, newly infected hosts might join the existing attackers.

Also, not all port scanning activities are equal. For instance, routers and firewalls

60

only filter packets from particular sources. Hence, port scanning packets from one

scanner may be filtered, while the packets from another may go through. Moreover,

port scanning can be done in different ways. One can initiate the port scanning with

different power, such as packet sending rates. One can have unsuccessful scans due

to network data loss and jittering. One can get active defense from defenders of the

target systems and could even get detected and physically disabled by them. SA

scheme fails to address these issues either.

A2) Dynamic Allocation

The Dynamic Allocation (DA) scheme does not pre-allocate target spaces and

allows the attackers to divide the work on the fly. In this scheme, attackers can

communicate with each other to dynamically determine the next hosts to scan. A

key advantage of communication between attackers is that the scanning space can be

constantly updated.

In the state-of-the-art port scanners, e.g., the hit-list based worm scanners, the

hit-list is divided by half each time using a top-down allocation approach when a new

propagation is successful. In contrast, the DA scheme allows the scanning space to

be constantly updated.

In the DA scheme, one can develop distributed lookup tables to query whether a

particular IP address has been scanned/infected or not.

A3) Hybrid Allocation

The Hybrid Allocation (HA) scheme combines the SA and DA schemes together.

If the number of target hosts is large and the number of available attackers is not

small, the system can divide the target hosts statically in the first step. The statically

divided hosts are then assigned to different groups of attackers. The attackers for

particular groups use the DA scheme to generate scan targets. For instance, to scan

all target hosts a country, one can divide them by states, and allocate hosts in different

states to different groups of attackers. The HA scheme is most useful when there are

lots of target hosts and attackers.

61

3.4.2 Synchronization of Collaborative Port Scanners

Based on the above discussion, in order to synchronize the actions of collaborative

port scanners, we need to develop a dynamic or hybrid allocation scheme that allocates

the scanning targets to individual port scanners. The DA or HA scheme must be

extremely efficient so that it can respond to multiple requests from a large number of

collaborative port scanners. During the on-the-fly target allocation, the DA scheme

needs to make sure that two conditions are met:

1. No two port scanners will be scanning the same IP address.

2.	 A port scanner will not be scanning any IP address that has already been

scanned by another port scanner.

To facilitate our discussion, we define the status of an IP address based on whether

it has been scanned.

Definition 1. Port Scanning Status (PSS)

The Port Scanning Status (PSS) of an IP address is a two-bit number that indi­

cates its the scanning information. More specifically, the PSS of an IP address i can

be one of the following:

1.	 00 — denotes that the IP address has never been scanned by any collaborating

port scanner;

2.	 01 — denotes that the IP address is currently being scanned by a collaborative

port scanner;

3.	 10 — denotes that the IP address has already been scanned by some port

scanner.

4.	 11 — denotes that the IP address has already been attacked by some attacker

based on the scanning results.

62

Definition 2. Degree of Collaboration (DC)

The Degree of Collaboration (DC) for a collaborative port scan is an integer

that records the number of active collaborative port scanners. Since individual port

scanners may join and leave at any time during a collaborative port scan, the number

of active collaborative port scanners vary from time to time. Hence, the DC for a

collaborative port scan at time tick t is :

DCt = the number of active port scanners at time t.

Definition 3. Collaboration Architecture (CA)

Collaborative attackers need to communicate to each other over the network to

synchronize their actions. In particular, collaborative port scanners need to synchro­

nize their scanning activities on IP addresses. To effectively communicate the PSS

of an IP address and keep themselves updated about the DC, they need an efficient

and robust distributed query system. The basic functionality of the query system is

to store scanned results and provide real-time scanning status. Information like the

scanned IP addresses, ports, and vulnerabilities are stored in the system. To facilitate

discussion, we consider the case that only IP addresses are stored.

There are a number of possible architectures for this query system :

1.	 Flooding architecture: As shown in Fig. 3.1, in this architecture, each collaborat­

ing port scanner ”floods”, i.e., broadcasts messages to, all known collaborators

to query the scanning status of a particular IP address. While robust against

node failures, this architecture requires that each node stores its own scanning

status information and incurs significant network overhead due to the huge

amount of query traffic.

2.	 Collaboration-server based architecture: As shown in Fig. 3.2, in this architec­

ture, each collaborating port scanner registers itself at a collaboration server

dedicated to monitoring scanning status, and joins the collaborating port scan­

ner group. If a collaborating port scanner stops the scanning activities, it will

notify the collaboration server. The collaboration server is responsible for stor­

63

Figure 3.1.: The flooding architecture.

Figure 3.2.: The collaboration-server based architecture.

ing the scan status and results for all port scanners. Each collaborating port

scanner queries the collaboration server for real-time scanning status and makes

decision on the next scan target. While efficient, the reliability of this archi­

tecture depends on that of the collaboration server. If the collaboration server

has limited bandwidth, it will not able to handle the large amount of network

traffic generated by individual port scanners.

64

Figure 3.3.: The distributed architecture.

Figure 3.4.: The hybrid architecture.

65

Moreover, the collaboration server is a single failure point. The collaborative

port scan could not proceed if the server is down. Even if a new collaboration

server can be established, a lot of efforts and time need to be spent in the

recovery. The collaboration-server architecture is vulnerable to defense as well,

e.g., the defenders can analyze the traffic patterns of the collaboration server,

determine that it is acting as a communication and command center, and take

it down to shut down the whole collaborative port scan. In the real world,

researchers have proposed traffic analysis methods to defend against Botnets

based on IRC channels [11], [40].

3.	 Distributed architecture: As shown in Fig. 3.3, in this architecture, the scanning

status of all collaborating port scanners are distributed over all the scanners.

Therefore, each collaborating port scanner issues queries to the distributed in­

formation system based on themselves. The distributed information system acts

as the efficient storage and query server, scales to a large number of nodes, and

provides high reliability.

This architecture eliminates the concentration of information and network traffic

on the collaboration server. Its efficiency is much higher than the flooding

architecture. However, each port scanner has to both perform scanning and

serve as a active node in the distributed information system.

4.	 Hybrid collaboration architecture: As shown in Fig. 3.4, in this architecture,

there are two groups of collaborating attackers: the first group of them is the

traditional port scanner group, and the other is the information group, i.e.,

the one responsible for the distributed information system discussed in the dis­

tributed architecture. The attackers from the first port scanner group query the

attackers from the information group for IP address scan status. The attackers

from the information group builds, indexes, and stores all scan status infor­

mation efficiently. Attackers from the port scanner group view the distributed

information system as a collaboration server discussed in 2).

66

The hybrid collaboration architecture combines the collaboration-server based

architecture and the distributed architecture. Compared to the distributed ar­

chitecture, the hybrid architecture relieves the port scanners from infrastructure

issues, i.e., storing scanning status information and answering IP scan status

queries. It specifies a dedicated group of attackers responsible solely for the dis­

tributed information system on scanning status. Hence, attackers do not have

to balance their resources between the actual attacks and the infrastructure.

By such task division and collaboration, attackers take advantage of the benefits

of both collaboration-server based and the distributed architectures. Therefore,

they are more likely to increase the efficiency and the scalability of their systems

and launch much more powerful attacks.

3.4.3 The DHT-based Contention-Avoidance Allocation Scheme

Overview

We need a distributed port scanning system that can avoid duplicate scanning

and contention among collaborative port scanners. duplicate scanning and contention

include simultaneous scanning of an identical victim host, generation of excessive net­

work traffic on the same network link, and duplicate work of distributed port scanners,

i.e., scanning the same port on the same victim host for an identical vulnerability.

The proposed DHT-based collaborative scanning scheme can elegantly avoid dupli­

cate scanning and contention. The scheme incorporates the well-designed distributed

lookup system, the DHT, that stores scanning status information and answers queries

from collaborative port scanners. The DHT provides distributed look-up services.

Based on the discussion in Section 3.4.2, The collaborative port scanning scheme em­

ploys the distributed/hybrid architectures because they provide higher efficiency and

scalability.

Traditional port scanners send probing packets and analyze responses from victim

hosts. In the collaborative port scanning scheme, each collaborative port scanner

67

queries the DHT before each scanning. Note besides DHT, there are other candidates

for the distributed information storage and query system, such as the Big Table [6].

If false positive can be tolerated, Bloom Filter [7] can help with the query system as

well.

The DHT-based scanning algorithm

Each collaborative port scanner runs the new DHT-based scanning algorithm in

the proposed scheme.

The algorithm for the collaborative port scanner is presented in Algorithm 1. The

collaborative port scanner picks up an IP address and a port number, and checks

if the IP address and port number combination has been scanned already. If not,

the port scanner performs port scanning activities using a randomly chosen scanning

technology discussed in Section 3.3.3, and records the scanned results. There are two

important methods for the collaborative port scanner: the GET() method, responsible

for checking the scan status for IP address and port number combinations, and the

SET() method, responsible for recording the scanned results.

The algorithm for the GET() method in the scanner is presented in Algorithm 2.

The GET() method processes the (IP address, port number) pair, and looks it up in

the DHT to check its scan status. If there is a match, the GET() method returns a

variable indicating that the (IP address, port number) pair has already been scanned.

Otherwise the GET() method returns a variable indicating that the pair has not been

scanned. To perform look-ups in the DHT, the GET() method can employ RPC

calling mechanisms. Note that DHT performance optimizations allow fast lookups.

E.g., caching and the hybrid architecture discussed above can significantly reduce the

lookup latency.

The algorithm for the SET() method in the scanner is presented in Algorithm 3.

The SET() method processes the (IP address, port number) pair, and records its

status in the DHT. Note the SET() method must take concurrency control issues into

68

consideration because no concurrent GET() and SET() should be allowed on the same

(IP address, port number) pair to ensure correctness of the whole system. Although

concurrent GET() accesses are allowed, no two SET() methods should be modifying

the scanning status of the same (IP address, port number) at the same time. This

problem is similar to the reader/writer lock problem: concurrent GET()s is allowed

while concurrent SET()s and concurrent GET()s/SET()s are prohibited. The GET()

and SET() methods can implement a reader/writer lock in this case to improve the

lookup performance. Another way to improve the performance is to lock only part of

the DHT. By default, given an (IP address, port number) pair, the SET() method can

request to lock certain IP address ranges instead of the whole IP range. E.g., if the

SET() method requests to lock only the Class B network that the given IP address

belongs to, other SET() methods can write to other class B network addresses, which

improves the performance of the whole system.

3.4.4 Detection Avoidance

An effective way to detect traditional port scanners is to watch for abnormal

network traffic patterns. As discussed in Section 3.1, thresholds such as excessive

number of pings within a certain time period can be set up to trigger alarms for port

scanning activities. An obvious ”solution” is to perform ”stealth scans”, e.g., perform

scanning activities slowly for several months and gather the results. Such solution

cannot get enough information quickly and is not desirable for the port scanners.

Collaborative port scanners can distribute the work among a large number of

machines that are in different geographical areas, thus reduce the network traffic gen­

erated by individual port scanners and avoid detection. An optimal scanning strategy

for detection avoidance is to ”blend into the crowds”, i.e., to mix scan traffic into nor­

mal network traffic and make it difficult for defenders to notice. E.g., smart scanning

schemes that resemble the collaborative port scanners as web crawalers, bots, or spi­

ders could successfully foil a large number of defense systems. Moreover, by employing

69

Algorithm 1 The Collaborative Port Scanner

// Get an unscanned IP address and port number combination.

repeat

// Do preprocessing works.

//

ip = ChooseIPAddressToScan();

port = RandomlyPickUpAnPortNumber();

// Check with the DHT to see if the IP address

// and port number combination has been scanned already.

// The GET() method returns NOT SCANNED if the

// IP address and port number combination has not been

// scanned yet.

scan status = GET(ip, port);

until scan status = NOT SCANNED

// Perform the scanning activities. The scanning method

// is generated randomly from the scanning technology

// database, including the ones discussed in Section 3.3.3.

scan method = RandomlyPickUpScanningMethod();

scan method.Send(probing packets, victim);

scan method.Receive(responses, victim);

scan method.scan result = Analyze(responses);

// Record the result of the scanning to the DHT.

SET(ip, port, scan method.scan result);

// Return.

return OK;

70

Algorithm 2 The GET Method

// The GET() method :

// takes:

// (ip address, port number) pair as inputs; and

// returns:

// NOT SCANNED : if the pair has not been scanned yet;

// SCANNED : if the pair has been scanned already.

Require: IP address and port number are correctly passed in as arguments.

// Do preprocessing works.

ip port pair = GeneratePair(ip, port);

// Contact the DHT to read information.

RPCCallBack = SetupRPCCall();

RPCCallBack.Run();

WaitForRPC();

// Get the scanning status for the (IP address, port number)

// pair.

scanning status = ProcessRPCResults();

// Return.

if scanning status = 0 then

return NOT SCANNED;

else

return SCANNED;

end if

71

Algorithm 3 The SET Method

// The SET() method :

// takes:

// (ip address, port number) pair and

// the scanned result as inputs;

// performs:

// DHT information updates.

Require: IP address, port number, and the scanned result are correctly passed in as

arguments.

// Do preprocessing works.

ip port pair = GeneratePair(ip, port);

// Request exclusive access for the DHT.

Lock(starting IP address, ending IP address);

// Contact the DHT to write information.

RPCCallBack = SetupRPCCall();

RPCCallBack.Run();

WaitForRPC();

// Check if the update was successful.

CheckSuccess();

Ensure: Update is successful.

// Release the lock.

Unlock(starting IP address, ending IP address);

Ensure: lock is released.

// Return.

return OK;

72

the distributed and the hybrid architectures discussed in Sec.3.4.2 to distribute net­

work traffic, collaborative port scanners can escape detection of intelligent defenders.

Methods that analyze the network traffic using data mining techniques [40] to identify

command centers of collaborating malicious computers will fail to locate collaborative

port scanners.

3.4.5 Stop Policy

A critical problem for the collaborative port scanners is to determine when to

stop the scanning activities. Optimally, the collaborative port scanners stop after all

hosts has been scanned for every possible vulnerability. In practice, this mission is

difficult to accomplish because each host needs to make its own stop decision based

on its knowledge of the global scanning activities. Ref. [37] proposes an autonomous

design. In their design, each host employs a Sum-Count-X method to determine

when to stop, and communication among hosts is necessary to improve the precision

of stop estimation. Ref. [38] proposes a quorum-sensing design. However, they did

not consider the network topology. Also, after the stopping of the worm propagation,

a worm user needs to manually restart it.

In our approach, The DHT records all scan statuses. We can constantly monitor

the uninfected nodes as long as there are empty entries in the collaboration table.

Therefore, the stop condition for the collaborative port scanners can be defined as

all (IP address, port number) pairs have been scanned, as reflected in the DHT. We

believe the collaborative-table approach is faster and more efficient since the DHT

serves as the monitor and recorder of all status messages. No approximate calculation

is used. If not all hosts or ports need to be scanned, users can relax the definition

of the stop policy. E.g., collaborative port scanners can be defined to stop after 90

percent of all hosts are scanned.

73

3.4.6 Target Selection and Revisit Policy

A key step in the DHT-based collaborative port scanning is to generate random

IP addresses and port numbers. Random number generators can be exploited to

analyze the bandwidth of worm senders [52]. Hence, one enhancement to the scheme

is to employ a variety of random number generating methods. By varying the way

to generate random IP addresses and port numbers, the collaborative port scanning

becomes polymorphic, and is much more resistant to analysis and defense.

To improve the efficiency of the collaborative port scanners, learning algorithms

can be employed. The DHT stores a lot of information, which can be analyzed to

improve future scanning activities. Moreover, the collaborative port scanners can

scan a portion of all IP addresses and port numbers to reduce the scanning time.

For example, they can selectively scan only one IP in a Class C subnet, and use

the scanning results to infer information about other target hosts that reside in the

same subnet. Some IP addresses are employed by honeynets. To prevent collaborative

port scanners from being detected and analyzed by such honeynets, the corresponding

entries in the DHT for these addresses can be marked as ”do not scan”.

Host configurations and vulnerability statuses change over time. To capture the

changes, collaborative port scanners should revisit the hosts. Some hosts have dy­

namic IP addresses. In such cases, collaborative port scanners can periodically revisit

them and update the information on the hosts and IP addresses. A simple revisit pol­

icy is the Age Policy. In the Age Policy, there is an age attribute for each DHT entry.

The age is increased by the DHT automatically and checked against a threshold. If

the age reaches the threshold, the system purges its entry from the DHT to initiate

a new scan. Note that researchers have studied revisit policies for web crawlers [59]

and such policies could be adapted.

The DHT-based scheme needs to handle errors of participating nodes. E.g., par­

ticipating nodes may provide incorrect scanning results. A simple solution to this

problem is to set the revisit policy to allow each target to be scanned twice within

74

each scanning period. Then the system could compare the results to decide if the

results are usable.

3.4.7 Comparisons and Caveats

The DHT-based collaborative port scanning scheme can scan multiple vulnera­

bilities on multiple ports. In contrast, Botnets and the Curious Yellow worm [41]

typically propagate by exploiting a known vulnerability on a certain port. In prac­

tice, if the target hosts do not have such vulnerability or have applied patches to fix

it, the propagation will fail. Some real-world worms, e.g., the Witty Worm [33] can

check for multiple vulnerabilities. In the DHT-based scheme, attackers share knowl­

edge about the progress and information with each other. Therefore, attackers can

check for a large number of vulnerabilities and choose one to exploit.

While the extended hit-list methods consist of information on IP addresses, the

DHT-based scheme records information on not only IP addresses, but also attributes

for each host or subnet. Example attributes include whether the hosts are web, mail,

or DNS servers, a ranked list of existing vulnerabilities, and the name and version

of the host operating system. During the collaborative port scanning information

regarding the configuration of victim hosts can be fingerprinted to facilitate the launch

of future attacks.

3.5 Experiments

In this section, we present the experimental evaluation of the DHT-based col­

laborative port scanning scheme. We conduct experiments to verify our theoretical

analysis, in particular: the impact of the DHT-based scanning scheme.

75

3.5.1	 Experiment Setup

We have conducted the experiments by employing OpenDHT [83] on PlanetLab.

OpenDHT runs on a large number (around 200) of PlanetLab nodes. Fig. 3.5 shows

the architecture of our experimental DHT platform. We employ the hybrid archi­

tecture discussed in Section 3.4.2. Queries issued from collaborative scanners can be

forwarded to the OpenDHT. Note that we utilize this architecture to learn about the

latency of DHT.

The experimental network consists of Intel Dual Core workstations and virtual

machines running Windows XP. Without loss of generality, we use IPv4 networks

and set the size of target IP address space to 232 . The scanning methods used in the

experiment include TCP scanning, UDP scanning, and version detection [19] that

could return the system and version information running on the target hosts. We ran

port scans on the target hosts to understand the latencies associated with scanning.

Such latency information are used to simulate port scanning. Our experiments then

simulate the actual port scanning attacks and the DHT latencies.

3.5.2	 Experiments on the Performance of the DHT-based Collaborative Scanning

Scheme

We conduct experiments to study the performance of the proposed collaborative

port scanning scheme. In our experiment, there are 1,000 target hosts that need to

be scanned. We compare the performance of 4 different scanning setups:

1. 10 collaborative port scanners.	 In this setup, there are 10 collaborative port

scanners that employ the fast intelligent DHT-based collaborative scanning

scheme. The 10 collaborative port scanners divide the 1,000 target hosts into

2 groups. Each group has 500 target hosts. They conduct the scanning group

by group, i.e., they only start to scan the second group of targets after finish­

ing scanning the first group of targets. (We discuss more on the collaboration

methods in the next experiment.) The collaborative scanners keep each other in­

76

Figure 3.5.: The network topology of the OpenDHT lookup.

77

formed of the progress of the whole scanning through the DHT. The algorithms

employed by the 10 collaborative port scanners are discussed in Section 3.4.

2. 10 port scanners that operate with the static division scheme. In this setup, the

10 port scanners are divided into 2 groups, and each group has 5 port scanners.

The two groups of scanners operate individually. Within a group, the 5 port

scanners divide the targets statically into 5 parts, and each of them will be

responsible for approximately one fifth of the target hosts.

3. 10 port scanners that operate individually.	 In this setup, there are 10 port

scanners, but they just scan randomly without communicating with each other.

As soon as the port scanner finishes scanning 50 hosts (one twentieth of all

target hosts), it reports the results to a central node, and waits for the signal

from the central node. The central node collects the scanned results from all

scanner nodes, and combines their results. As soon as the central node finishes

combining scanning results from all 10 scanners, it sends signals to all 10 port

scanner nodes. In the next round, each port scanner only scans targets that

have not been scanned in previous rounds. This procedure is repeated until all

hosts are scanned.

4.	 a single port scanner. In this setup, there is only one port scanner. It is

responsible for scanning all the target hosts.

All port scanners scan the well known ports for each victim host in this experiment.

We impose a limit of 20 on the number of connections which a single port scanner

can initiate to a target host. A typical DHT lookup takes approximately 3 seconds

with 10 active scanners. Note that a scanner has to write the results to DHT after a

successful scan. A typical port scanning for one victim host that covers TCP ports

and version information takes 2 minutes.

Fig. 3.6 shows the number of successfully scanned hosts over time for the 4 scan­

ning setups.

78

Figure 3.6.: The performance of the DHT-based collaborative scanning scheme.

79

We observe that, for the DHT-based 10 collaborative port scanner setup, on av­

erage, the time of the work spent in the core port scanning part constitutes most of

the total operation time. It takes the collaborative port scanners 216 minutes to scan

all the target hosts. The overhead ratio of the collaboration, including storing and

retrieving the scanning status for the target hosts, is approximately 8 percent.

Our results show that the DHT-based 10 collaborative port scanners clearly out­

perform the other 3 non-DHT-based setups, and that the performance of the single

port scanner is the worst among all setups. Our results show that the time to finish

scanning all target hosts of the DHT-based collaborative port scanners is approxi­

mately 60 percent of the port scanners with static divisions, and 41.7 percent of the

port scanners that operate individually. The explanation is that the DHT-based col­

laborative port scanners are able to perform port scanning concurrently with much

more resources and minimal contention. The other 2 setups that employ static di­

vision or operate individually could not eliminate duplicate scanning and scan effi­

ciently.

The experimental results verify our analysis and confirm the performance of DHT-

based collaborative port scanners.

3.5.3 Experiment on the Number of Participating Collaborative Scanners

In our first experiment, 10 DHT-based collaborative port scanners collaborate

with each other to conduct port scanning. Questions then arise as how would the

performance of the collaborative port scanners change, as the number of participating

nodes change. One would expect that a larger number of participating nodes increase

the number of scanned target hosts within a specific time. However, more scanner

nodes could generate more network traffic and impose larger overhead on the DHT due

to a large number of scanning status lookup and store requests. In the extreme case,

an infinite number of participating nodes generate excessive traffic and overburden the

80

Figure 3.7.: The performance of collaborative scanners with different participants.

DHT, effectively rendering a Distributed Denial-of-Service (DDoS) attack. Therefore,

we cannot arbitrarily increase the number of scanner nodes.

We conduct experiments to find out the relation between the collaborative port

scanners and the number of participating scanner nodes. Note that different DHT

systems and scanning methods have different latencies and could affect such relation.

Hence, in our experiments, we vary the scanning methods and use different gateways

of the DHT system to create different latencies.

More thorough scans and farther gateways typically have higher latencies. If

scanning latency is extremely low when compared to DHT latency, a small number

of participating scanner nodes that employ the static division scheme would perform

well. The reason is that a large number of nodes overburden the DHT, increase DHT

latency, and slow down the whole port scan. When scanning latency is extremely

high when compared to DHT latency, a large number of participating scanner nodes

perform better. The explanation is that a smaller number of nodes neither have

enough parallelism nor fully utilize the DHT system. The most interesting scenario

is when neither scanning nor DHT latency is too high or too low . In such cases, a

large number of participating scanner nodes incur overhead on the DHT system, but

could also overcome the slowness of the scanning itself.

81

Fig. 3.7 shows the number of successfully scanned hosts over time for different

number of participating scanner nodes. We observe that the performance of DHT-

based collaborative port scanners increase as the number of participating scanner

nodes increases. However, the efficiency of the DHT-based collaborative port scan­

ner scheme decreases as the number of participating scanner nodes increases, which

confirms our analysis above.

If the number of participating scanner nodes is approximately the ratio of scanning

latency to DHT latency, a good balance between the costs for maintaining a large

number of scanner nodes and the performance of the collaborative port scanning can

be struck.

Our theoretical analysis is as follows. Denote the number of target hosts as M,

the scanning latency as S, the average DHT latency as D, the actual DHT latency as

d, the number of collaborative port scanners as n, the ratio of the scanning latency

to the DHT latency as k, we have:

S
k =

D

The actual DHT latency increases as the number of collaborative port scanners

increases. We assume that the increase is linear, hence:

d = D ∗ n

The total latency L for one parallel scan is the sum of the scanning latency and the

DHT latency :

L = S + d

The number of parallel scans needed for M hosts P is M . n

Hence, the total scanning time

M M
T = P ∗ L = (S + D ∗ n) ∗ = (D ∗ k + D ∗ n) ∗

n n (3.1)
k

= M ∗ D ∗ (1 +)
n

82

Note that n should be no more than M. When n = M, the total scanning time reaches

its minimum at M * D.

In the real world, we may not be able to include M scanners. However, when n is

equal to k, the total scanning time is simplified to 2 * M * D, which is at least half

as fast as the fastest possible scanning.

In our experiments, the scanning and DHT latencies are 2 minutes and 6 seconds

(on average with 10 collaborative port scanners), respectively. Hence, the optimal

number of scanner nodes is 120 / 6 = 20. The experimental results confirm our

analysis. With 10 scanner nodes, the overhead of the DHT-based collaborative scan­

ning scheme is approximately 8 percent. With 20 scanners nodes, the overhead is

approximately 10 percent. With 50 scanner nodes, the overhead is approximately 30

percent. Note that the quality of the DHT system affects the overhead with respect

to different number of scanner nodes. In the real world, if more efficient systems can

be utilized, the number of collaborative port scanners can be very large and still does

not incur too much overhead.

3.5.4 Discussions on Deployment and Defense

In our experiments, we have examined the performance of the DHT-based scanning

system. Large-scale deployment of the DHT-based collaborative attack scheme in the

real world needs attention on a number of issues. Defenders of collaborative port

scanners can mitigate the attacks by employing countermeasures to these issues.

Detection Avoidance. Certain routers and firewalls check network traffic against

pre-set thresholds. Defense mechanisms such as the communication pattern anal­

ysis [40] could reveal the centralized servers. The DHT-based collaborative attack

scheme could employ several methods to avoid detection: 1) limit the rate for sending

and receiving packets; 2) create de-centralized traffic that obfuscate the communica­

tion pattern analysis; and 3) employ encryption for the DHT-related packets whenever

possible, since most existing defense systems cannot analyze encrypted traffic.

83

Integrity of the DHT. DHT functionality is crucial in the collaborative port scan­

ning scheme. If the defenders can locate the DHT servers, they could try to discon­

nect, mislead, and defend against them by offense [20]. Hence, protecting the DHT

against misuse, errors, and attacks is very important for the real-world collaborative

scanners. Mechanisms that can help protect the DHT include user authentication

and encryption of the stored IP address, port number, and scanning status values.

User authentication may introduce extra communication latency and hurt the per­

formance of the DHT-based collaborative scanning scheme, while the encryption of

the information stored in DHT may increase the time to store and look up scanning

statuses.

Scale of the DHT. In practice, the collaborative port scanning system may imple­

ment its own fast DHT system. We have seen similar large-scale system in industry,

including BigTable [6] of Google and Dynamo [12] of Amazon. The DHT system

can run on a large number of attacker nodes in the hybrid mode, e.g., 10,000, in

practice. If more attacker machines are allocated to the DHT system, however, there

will be fewer hosts responsible for the actual scanning, which can result in deteri­

orated scanning performance. If the collaborative port scanning system can utilize

some publicly-available infrastructure and leverage its power, the overall scanning

performance could improve significantly.

3.6 Conclusion

We study the collaborative port scanning, in which attackers collaborate to search

the network for open ports that could be exposed to attacks. We propose different

collaborative scanning strategies and analyze their advantages and disadvantages. We

discuss the static, dynamic, and hybrid allocation schemes and how to employ DHT

in the system. We conduct experiments to evaluate the performance and overhead of

the collaborative port scanning system.

84

Our results show that DHT-based collaborative port scanning is a promising ap­

proach. It provides good performance, and proves that attacks can be launched by

collaboration. As network speed increases in the future, we may witness an increased

number of sophisticated collaborative attacks that orchestrate the computing power

of a large number of attackers. Our results suggest that issues like the number of col­

laborative attackers in the system, different methods of collaboration, scanning gran­

ularity, and revisit policy all significantly affect the performance of the collaborative

port scanners. We discuss issues that need consideration in real-world deployment

and defense mechanisms that could mitigate the collaborative port scanners.

85

4 EXPERIMENTS ON DEFENSE

In previous chapters, we discussed the methods and impact of collaborative attacks,

with a focus on port scanning attacks. In this chapter, we develop and experiment

with various methods to defend against such attacks.

There are a lot of ideas for defense. E.g., one can use uncommon port numbers,

disable not-running services, and use TCPwrapper (Unix tool that performs access

control based on IP/domain, etc.) to defend against collaborative port scanning

attacks. Our methods include:

1. Delay and vary the response latency for attackers.	 By slowing down the port

scanning attack, we hope that the whole attack will be slowed down. For

instance, sending a slow TCP ACK reply would normally foil fast-paced port

scanning attacks.

2. Reload the system with different settings and parameters. This includes patch­

ing, refreshing, and revisiting (for attackers). Attackers then would have only

old information regarding the attacks on file. Therefore they could not launch

attacks based on such information. To obtain updated information, attackers

have to update their database and re-scan/revisit the victim hosts again.

4.1 Experiments on the Delaying and Varying the Response Latency

To defend against port scanning attacks, defenders can slow down the response to

attackers. Meanwhile, collaborative attackers could perform the port scanning with a

variety of granularity. In our experiments, response slowdown is modeled as a higher

granularity of scanning. The reasoning behind this method is that higher-granularity

86

port scanning attacks have higher latencies, which resembles the slow response to

attackers.

Different granularity of scanning result in different latencies. In this experiment,

we compare the performance of different scanning granularity, including scanning 511,

1,023, and 2,047 ports. There are 10 collaborative attackers and 1,000 target hosts

in this experiment. We compare its performance against a single port scanner.

Fig. 4.1 shows the performance of the single and the 10 collaborative attackers

with different scanning granularity.

We observe that with finer scanning granularity, i.e., more ports are scanned for

each target host, the performance of the whole port scanning system decreases. The

explanation is that more time are spent in the scanning part and less hosts can be

scanned within a given time.

We observe that the performance of the collaborative attackers decreases more

slowly than that of the single port scanner. The explanation is that when scanning

granularity is coarse, scanning takes a short time, and the collaborative attackers

spend significant amount of time in the collaboration, including infrastructure reads

and writes. However, when scanning granularity is fine, scanning takes a much longer

time, and the collaborative attackers spend a smaller portion of time in collaboration,

resulting higher efficiency.

The experimental results also confirm our analysis for the previous experiment.

According to Equation (3.1), finer scanning granularity, which results in longer scan­

ning latency, increases the number of collaborative attackers needed to reach optimal

efficiency. We can infer from the results that the collaborative attackers can realize its

potential in power with complete and large-scale scans, which are much slower. Note

it is easier for defense systems to detect complete scans that cover a large number of

ports or perform target system fingerprinting.

87

Figure 4.1.: The performance of the scanning with different scanning granularity.

88

4.2 Experiments on the Host Patching/Refreshing/Revisiting

We need to study how to defend the powerful collaborative attacks. One way is to

refresh and patch the hosts so that the information gathered by collaborative attackers

become outdated and the vulnerabilities the collaborative attackers plan to exploit no

longer exist. Collaborative attackers can implement revisit policies (see Section 3.4 for

detailed discussions). Questions then arise as whether the revisit policy would have a

large impact on the performance of collaborative attackers and how to devise a revisit

policy. Defenders to collaborative attacks could refresh themselves or intentionally

disclose wrong information to foil the collaborative attack. For instance, if defenders

change IP addresses every 60 minutes, the collaborative attacks could fail. In this

experiment, we quantitatively measure such defense tactics. In particular, we study

the impact of revisit policy on the performance of collaborative attackers. There are

20 collaborative attackers and 1,000 target hosts in this experiment. The 20 scanners

are divided into 2 groups that collaborate through the DHT. Scanning of one target

host takes 2 minutes to finish. For the revisit policy, making a target host revisit-able

is implemented as removing its scanning status entry in the DHT. Our experimental

revisit policies include:

1. Make the target hosts revisit-able after 50 minutes.

2. Make the target hosts revisit-able after 100 minutes.

3. Make the target hosts revisit-able after 150 minutes.

4. Make the target hosts revisit-able after 500 minutes.

Fig. 4.2 shows the numbers of scanned hosts with different revisit policies. The

no revisit line depicts the regular collaborative scanning scheme that does not im­

plement a revisit policy. We observe that revisit policy has a large impact on the

performance of the collaborative attackers. Specifically, the revisit time significantly

affects the number of scanned hosts over time. We observe that as the collaborative

89

Figure 4.2.: The performance of the scanning with different revisit policies.

90

scan progresses, the revisit policy kicks in at a certain point, depending on the pre-set

revisit time. Since a lot of hosts scanned in the beginning can ”expire” according to

the revisit time, the revisit policy causes a reduction in the number of hosts that the

system considers as ”scanned”. The number of scanned hosts then fluctuates as the

collaborative attackers scan the expired hosts and other hosts become expired.

Although the number of scanned hosts is not constant as the number of rounds

increases, we observe that the system reaches an equilibrium around a certain number

of hosts. As the revisit time increases, the equilibrium number increases as well.

However, there is a tradeoff. The revisit time cannot be arbitrarily increased because

longer revisit time means that the scanning results for the target hosts are less up-to­

date. The revisit time cannot be arbitrarily decreased either. If the revisit time is set

as the time required to perform scanning on one host, as soon as the scanning of one

target host completes, the scanning results for another target host could expire and

arbitrarily delay the whole port scanning. Note if the revisit time is approximately

twice as much as the time required to scan all victim hosts, the system will scan all

target hosts again, which renders low efficiency.

We infer some guidelines for setting up the revisit policy. If the Age Policy dis­

cussed in Section 3.4.6 is employed, the scanning latency for one target host takes

time t, the size of target host space is h, the number of scanners is s, it is recom­

mended that the system makes the target hosts revisit-able after at least ht time. s

In our experiment, the recommended revisit time is 1000∗2 = 100 (minutes), and the 20

system is able to maintain scanning results for approximately half of all hosts. Note

the Age Policy might not be the best policy. As discussed in section 3.4.6, more

complex revisit policies can be employed to improve the efficiency of the system.

4.3 Experiments on Defense of Collaborative Attacks : Detection

In this experiment, our objective is to detect if the incoming attack is launched

by collaborative attacks and detect collaborative attackers among all attacks.

91

Figure 4.3.: Part of the data set used in this experiment.

Our experiment infrastructure including network of collaborative attackers. Col­

laborative attackers communicate (e.g., they send and receive packets from each other)

and leave traces on the network. We collect data on the interaction of collaborative

attackers, and combine the logs and communication data with malicious data and

”peaceful” normal data to generate a huge data set. We then try to determine if the

given data set contains collaborative attacks. We analyze the data to determine the

collaborating groups and whether they are performing malicious activities. Fig. 4.3

produced by [10] shows an sample of the data set.

We could monitor the network gateways, routers, and switches to log essential

data.

Here are the statistics for the attack data we used.

1. Average packet (/second): 16.007

2. Average packet size : 90.227 bytes

3. Average bytes/second 1444.228

4. Average MBit/sec 0.012

92

Figure 4.4.: Packet distribution of the malicious data set.

Figure 4.5.: Space distribution of the malicious data set.

5. Format: libpcap

6. Packet size limit: 65535

7. Encapsulation: Ethernet

Fig. 4.4, Fig. 4.5, and Fig. 4.6 show the packet and space distributions of the

malicious data set used in our experiment. We observe that majority of the data are

TCP traffic.

93

Figure 4.6.: Flow distribution of the malicious data set.

Figure 4.7.: The output of the defense analysis (grouped).

94

Figure 4.8.: The output of the defense analysis (Radial Model).

95

Figure 4.9.: The output of the defense analysis (Spring Model).

96

We try to find out collaborative groups and whether they are malicious attackers.

We use the communication graph, which represents the communication relation­

ships among computers, and the content database, which stores the communication

details among computers together to determine whether there exists collaborating

attackers. More specifically, we group computers which exhibit similar communica­

tion behaviors together, and use thresholds to decide whether they are performing

malicious behavior (such as excessive number of IP address lookups for collaborative

port scanners). In our experiment, we set the threshold to 3, which means that the

sum of the in and out degrees should exceed 3 for the collaborative attacker clique to

accept a node as a member. The collaborative attacker clique must identify a core

member whose sum of in and out degrees greatly exceed the normal threshold. For

instance, if a collaborative clique has 4 members, the sum of in and out degrees for its

core member must be no smaller than 12, and should be larger than 12 in most cases.

Note that the in and out degree are relative degrees within specific LANs, hence in

degree of 1 does not suggest that the node received only one message.

Models for collaboration could be flooding architecture, collaboration-server based

architecture, distributed architecture, and the hybrid architecture, etc. Details re­

garding some of the architectures are discussed in Section 3.4.2.

Fig. 4.7 shows our experimental results. Our results show that analyzing the fre­

quent interaction of collaborative attackers can be analyzed in communication graph

and the collaboration clique can be highlighted out.

Fig. 4.8 and Fig. 4.9 show the generated communication graph by the spring and

radial models used by the experiment tool SMART [84]. We clearly identify the

collaborative attackers in the group. The experimental results prove the validity of

the communication analysis.

We observe that we have successfully identified 80 percent of all the collaborative

attackers. The threshold we set for collaborative attackers (3-edge rule) eliminated

one of the collaborative attackers due to its infrequency usage of ARP messages.

97

5 ADDITIONAL EXPERIMENTS ON ATTACK

In this chapter, we present results on experiments on collaborative attacks and pos­

sible defense strategies. Our experiments provide insights into collaborative attack

strategies, collaborative attack granularity, and defense systems such as the revisit

policy. The experiment setup follows the description in previous chapters.

5.1 Experiments on the Witty Worm

We conduct experiments and compare our experimental results to the real-world

propagation of the Witty Worm.

The Witty Worm [33] is suspected to employ a hitlist scanning or was released on

previously hacked hosts.

Figure 1 in [33] on Witty Worm Global View (from www.caida.org), by C. Shannon

and D. Moore, shows the initial spread (the first half minute) of the Witty Worm. The

initial spread is unusual and could not be explained by the existing models including

the AAWP model, because the worm propagated to 110 hosts in the first 10 seconds.

However, our experimental results correctly show that the effect of hitlist scanning

can be approximated by the linear combination of two random scannings. When

the linear Fibonacci Coefficient (h, the size of hitlist) is large, the unusual growth

of the malware propagation can be explained by the linear combination of regular

propagations.

Fig. 5.1 shows our experimental results with hitlist size 1 (enlarged 100 times, and

right-shifted by 10 time ticks). We observe that the graph approximately matches

the propagation of the Witty Worm. Subtle differences exist (e.g., the concavity),

and possible causes are different operating environment and different settings of pa­

rameters (e.g., k and b).

http:www.caida.org

98

Figure 5.1.: The propagation generated by our experiments

99

5.2 Experiments on the Collaborative Routing and DDoS Attack

We would like to verify the existence of collaborative attacks and that they can

cause more damages or gain more control of the target system. We have conducted

experiments to verify the power of collaborative attacks, analyzed the collaborative

attack, and generated the intrusion graph of the attack.

In the example collaborative attack, the goal is to launch a DDoS attack against a

target node T, as shown in Fig. 5.2. Attackers 1, 2, .., n are directly associated with

router R1 with the firewall and target node T is associated with switch S1 without

a firewall. To launch DDoS attacks, attackers need to send out a large number of

abnormal packets, and those packets arrive at the first router, R1, before going to

the Internet.

Since R1 is a sophisticated router with a firewall, it employs a packet filtering

mechanism, and can automatically filter out the incoming packets from IP addresses

that are sending out large amount of abnormal traffic. Hence, regular DDoS attack

packets will be filtered out and the attack will fail. However, certain vulnerabilities in

router R1 can be exploited to disable its firewall and packet filtering. In a collaborative

attack, one attacker can attack router R1, while other attackers launch the DDoS

attack after the first one successfully disables the firewall of router R1.

Input variable parameters include:

1. N: Number of normal TCP connections;

2. M: the speed of link from each host to router, 10Mb/s;

3. B: buffer space at each router, 4K ∗ N bytes; Size packet: packet size, 1K bytes;

and

4. MR: speed of the link between R1 and R2, 1.5Mb/s.

For the regular DDoS attack, we modify the router information controller such

that router will impose a limit on the number of SYN packets per second permitted

to pass. After the limit is passed router will send SYN/ACK packets for the hosts.

100

Figure 5.2.: The network topology of a hypothetical collaborative attack.

101

Output Performance Metrics include:

1.	 Round-Trip time: The time for sending a echo request and getting a reply

between two nodes in the system; and

2. Bandwidth: The bandwidth of the network connection.

We used SSFNet [23], and conducted the experiments in Linux 2.6.13 with Java

runtime Environment. The topology of the network is Dumbbell (Fig. 5.2).

Steps of the experiment include:

1.	 Initialize the system with various number of TCP connections, first with the

regular DDoS attack scenario for various periods, such as 15 minutes.

2. Initialize the system with various number of TCP connections, with the col­

laborative DDoS and routing attack scenario for various periods, such as 15

minutes.

3. Start the system with two HTTP servers, one on each target node. The N(10)

TCP connections will send traffic for 2 seconds and restart. We run the DDoS

attack after 5 minutes of system start and measure estimated RTT time.

We utilize the SSF.App.DDoS package and run the DDoSSession() function. Selec­

tion of master and zombie nodes is done randomly among the nodes directly connected

to Router 1(R1). Two target nodes are selected among the nodes directly connected

to Router 2(R2). For the regular DDoS attack, we modify the router information

controller such that router will impose a limit on the number of SYN packets per sec­

ond permitted to pass. After the limit is passed router will send SYN/ACK packets

for the hosts. However, for collaborative attacks, a ”trojan horse” is embedded in

a router. As soon as the DDoS attack is launched, the master node will send out a

secret message to the router such that a ”trojan” embedded in the router will change

the routing information such that the router will no longer impose such SYN packet

limits.

102

Figure 5.3.: The intrusion graph for the collaborative DDoS and routing attacks.

103

Figure 5.4.: RTT time (second) vs. time in system (min).

We analyze the collaborative DDoS and routing attacks and build the intrusion

graph, shown in Fig. 5.3 (green and red arrows model the coordination between

attackers).

Fig. 5.4 shows that collaborative attacks can cause much more damage than single

attacks. X-axis represents time(in minutes) and Y-axis rerepresents RTT time(in sec­

onds). In this example, the DDoS attacks were started at time t=5min. The red line

shows the collaborative attacks of routing and DDoS. The Blue line shows the regu­

lar DDoS attack. Because router has the defense mechanism built-in against DDoS

attack, the regular attack did not accomplish its goal. However, in the collaborative

attack case, when launched together with routing attacks, DDoS attack effectively

blocked the user from establishing any new TCP connection.

104

6 CONCLUSIONS AND FUTURE WORK

In this dissertation, we have made significant contributions to the research on collab­

orative attacks:

1. We study the malware propagation and present results that help understand

the effects of Multi-port scanning, Multi-threading, Infection time, Multiple

starting points, and Collaboration (MMIMC) on malware propagation.

2. We discuss architectures, polices, and allocations schemes for collaborative at­

tackers. We present a fast DHT-based collaborative attack scheme that aims to

eliminate duplicate attacks, minimize contention, and significantly increase the

attack speed.

3. We propose different collaboration strategies and analyze their advantages and

disadvantages.

4. We	 discuss the static, dynamic, and hybrid target selection and allocation

schemes.

5. We present the algorithm details and discuss the stop and revisit policies for

collaborative attackers.

6. Our experimental results provide insights into many design and implementation

issues for collaborative attack and defense.

In Chapter 2, we focused on applying the Fibonacci Number Sequence (FNS) and

its properties to analyze the performance of malware propagation schemes, including

collaborative malware propagation. We employed the patching rate to model the

105

defense activities as a black box. Questions then arise as how to defend sophisti­

cated malware and delay the collaborative propagation. Modeling and analysis of the

sophisticated collaborative defense is an interesting subject for future work.

In Case 2 of Section 2.4.3, we assume that malware entities at different hosts

can communicate with each other to avoid duplicate infection attempts. We note

that communications may incur overhead, which could be caused by network delays,

the limitations of communication protocols, the sizes of the data buffers at different

hosts, etc (Currently, the overhead is not modeled). Advanced malware can also em­

ploy intelligent localized-scan algorithms. Modeling communications and processing

overhead, intelligent collaboration schemes, and smart localized-scan algorithms for

malware is the subject for future work. Researchers discussed how to improve the

performance of scanning by sampling [17]. With the prevalence of wireless networks,

there will be more dynamic hosts that may join and leave the network frequently. We

plan to extend the our analysis to represent the sampling scheme and the dynamic

host memberships. In Section 2.4, we assume that propagation time is the same

for all infections. In the real world, propagation time for different infections may

vary. If the propagation time is three time slices, we can apply the Tribonacci Num­

ber Sequence [31] to study the malware propagation. Analysis of effects of varying

propagation times is the subject for future work.

There are a number of ways to enhance or defend the collaborative attack scheme

discussed in Chapter 3, which are the subjects for future work.

First, the port scanners can employ the insider collaboration technique. In the

insider collaboration attack, an insider gathers the knowledge about vulnerable hosts.

The outsider launches port scanning with the pre-acquired knowledge from the insider.

In this case, the knowledge of vulnerable hosts can be gathered offline rather than

online.

Second, port scanners can also employ heuristics and more intelligent algorithms.

For example, learning algorithms can be utilized. However, such port scanners may

scan very slowly due to the complicity of the algorithms. Solutions include offline

106

training of the scanner with a lot of log data. Smarter revisit policies can be employed

as well.

Third, collaborative port scanners can employ the passive and stealth technique.

For example, they can passively log and analyze the network traffic. Such techniques

could enhance the collaborative port scanners and challenges the defense systems.

Finally, we could fingerprint the collaboration methods employed by the collabora­

tive attackers. Defense systems can implement algorithms that learn and classify the

communication patterns like the flooding, server-based, and distributed architectures.

Then, they can monitor and analyze the network traffic to detect these collaboration

patterns and flag corresponding nodes as possible collaborative attackers.

LIST OF REFERENCES

107

LIST OF REFERENCES

[1] Y. Zhang and B. Bhargava,	 The Effects of Threading, Infection Time, and
Multiple-Attacker Collaboration on Malware Propagation, The 28th IEEE In­
ternational Symposium on Reliable Distributed Systems (SRDS), Niagara Falls,
NY, Sep. 2009

[2] B. Bhargava, Y. Zhang, N. Nidika, L. Lilien, and M. Azarmi, Collaborative at­
tacks in WiMAX networks, WILEY International Journal of Security and Com­
munication Networks (SCN), Special Issue, 2009.

[3] S. Friedl, Analysis of the New Code Red II Variant, http://www.unixwiz.net/
techtips/CodeRedII.html, Last accessed Apr. 3, 2009

[4]	 http://blogs.pcmag.com/securitywatch/2009/11/jailbroken_iphones_

hacked_user.php

[5] R. Vogt, J. Aycock, and M. Jacobson, Army of Botnets, Proceedings of the
Network and Distributed System Security Symposium, San Diego, CA, Feb.
2007

[6] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Burrows, T. Chan­
dra, A. Fikes, and R. Gruber. Bigtable: A Distributed Storage System for Struc­
tured Data. Proceedings of the 7th Symposium on Operating System Design and
Implementation, 2006.

[7] Burton H. Bloom, Space/Time Trade-offs in Hash Coding with Allowable Errors,
Communications of the ACM, Vol. 13, 1970

[8] C. Zou, W. Gong, and D. Towsley, Code Red Worm Propagation Modeling and
Analysis, Proceedings of the 9th ACM Conference on Computer and Communi­
cation Security , Washington D.C., Nov. 2002

[9] D. Moore, C. Shannon, and J. Brown, Code-Red:	 a Case Study on the Spread
and Victims of an Internet Worm, Proceedings of ACM/USENIX Internet Mea­
surement Workshop, France, Nov. 2002

[10]	 http://www.wireshark.org/

[11] D. Dagon, G. Gu, C. Lee, and W. Lee, A Taxonomy of Botnet Structures, Pro­
ceedings of the 23rd Annual Computer Security Applications Conference (AC­
SAC), Dec. 2007.

[12] G.	 DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A.
Pilchin, S. Sivasubramanian, P. Vosshall, W. Vogels, Dynamo: Amazon’s Highly
Available Key-Value Store, Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles, Oct. 2007

http:http://www.wireshark.org
http://blogs.pcmag.com/securitywatch/2009/11/jailbroken_iphones
http:http://www.unixwiz.net

108

[13] Editorial, A Cyberblockade in Estonia, New York Times, Jun. 2, 2007

[14] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience,
Aug. 2001

[15] A. Svensson, A Note on Generation Times in Epidemic Models, Mathematical
Biosciences, Vol. 208, Iss. 1, Jul. 2007

[16] Kademlia	 Specification, http://xlattice.sourceforge.net/components/
protocol/kademlia/specs.html, last accessed Jul. 1, 2009

[17] M. Vojnovic, V. Gupta, T. Karagiannis, and C. Gkantsidis, Sampling Strategies
for Epidemic-Style Information Dissemination, Proceedings of the IEEE INFO­
COM, Apr. 2008

[18] Z. Chen, L. Gao, and K. Kwiat, Modeling the Spread of Active Worms, Pro­
ceedings of the IEEE INFOCOM, Apr. 2003

[19] NMAP documentation, /urlhttp://nmap.org/book/man-performance.html, last
accessed Jul. 1, 2009

[20] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker, DDoS
Defense by Offense, ACM SIGCOMM 2006, Pisa, Italy, Sep. 2006

[21]	 http://www.sans.org/reading_room/whitepapers/vpns/the_day_des_
died_722

[22] D. Moore, G. M. Voelker, and S. Savage, Inferring Internet Denial-of-Service
Activity, Usenix Security Symposium, 2001.

[23]	 http://www.ssfnet.org/homePage.html

[24] S. Staniford, V. Paxson and N. Weaver, How to Own the Internet in Your Spare
Time, Proceedings of the 11th USENIX Security Symposium, Aug. 2002

[25] A.G. Voyiatzis and D.N. Serpanos, Pulse:	 A Class of Super-Worms Against
Network Infrastructure. Proceedings of ICDCS Workshops, May 2003

[26] Z. Chen and C. Ji, A Self-Learning Worm Using Importance Scanning, ACM
Workshop on Rapid Malcode, Nov. 2005

[27] A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand, Experiences with
Worm Propagation Simulations, Proceedings of ACM Workshop on Rapid Mal-
code, Oct. 2003

[28] S. Sarat and A. Terzis, Measuring the Storm Worm Network. Technical Report
01-10-2007, http://hinrg.cs.jhu.edu/uploads/Main/STORMTR.pdf

[29] C. Kanich, K. Levchenko, and B. Enright, G. M.Voelker and S. Savage, The
Heisenbot Uncertainty Problem: Challenges in Separating Bots from Chaff,
Proceedings of the USENIX Workshop on Large-Scale Exploits and Emergent
Threats, San Franciso, CA, Apr. 2008

[30] Y. Zhang and B. Bhargava, Fibonacci Modeling of Malware Propagation, Tech­
nical Report TR-08-017, Department of Computer Sciences, Purdue University,
2008

http://hinrg.cs.jhu.edu/uploads/Main/STORMTR.pdf
http://www.ssfnet.org/homePage.html
http://www.sans.org/reading_room/whitepapers/vpns/the_day_des
http://xlattice.sourceforge.net/components

109

[31] I. Dumitriu, On Generalized Tribonacci Sequences and Additive Partitions, Dis­
crete Mathematics, Vol. 219 , Iss. 1-3, 2000

[32] Z. Chen and C. Ji, Optimal Worm-Scanning Method Using Vulnerable-Host Dis­
tributions International Journal of Security and Networks, Special Issue on Com­
puter and Network Security, Vol. 2, 2007

[33]	 http://www.caida.org/research/security/witty/, last accessed Jul. 1, 2009

[34] C. Zou, D. Towsley, and W. Gong, On the Performance of Internet Worm Scan­
ning Strategies, Performance Evaluation, Jul. 2006

[35] J. Yang, Fast Worm Propagation in IPv6 Networks, http://www.cs.virginia.
edu/~jy8y/publications/cs85104.pdf

[36]	 http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

[37] J. Ma, G. Voelker and S. Savage, Self-stopping Worms, Proceedings of the ACM
Workshop on Rapid Malcode (WORM), Washington D.C., Nov. 2005.

[38] R. Vogt, J. Aycock, and M. Jacobson Jr., Quorum Sensing and Self-Stopping
Worms. Proceedings of the 5th ACM Workshop on Recurring Malcode (WORM
2007), Alexandria, VA, Nov. 2007.

[39] Detecting	 and Recovering from a Virus Incident http://www.sans.org/
reading_room/whitepapers/malicious/903.php

[40] G. Gu, J. Zhang, and W. Lee, BotSniffer: Detecting Botnet Command and
Control Channels in Network Traffic, Proceedings of the 15th Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2008

[41] B. Wiley, Curious Yellow: The First Coordinated Worm Design, http://blanu.
net/curious_yellow.html, Last Accessed Apr. 20, 2008

[42] C. Zou, D. Towsley, and W. Gong. On the Performance of Internet Worm Scan­
ning Strategies, Elsevier Journal of Performance Evaluation, Jul. 2006

[43] J. Wu, S. Vangala, L. Gao, and K. Kwiat, An Effective Architecture and Al­
gorithm for Detecting Worms with Various Scan Techniques, Network and Dis­
tributed System Security Symposium (NDSS), 2004

[44] J. Twycoss, M. Williamson: Implementing and Testing a Virus Throttle. Pro­
ceedings of the 12th USENIX Security Symposium, Washington, 2003

[45] M. Vivo, E. Carrasco, G. Isern, G. Vivo, A Review of Port Scanning Techniques,
ACM Computer Communications Review, Vol. 29, Apr. 1999

[46] M. Ruiz-Sanchez, E. Biersack, and W. Dabbous, Survey and Taxonomy of IP
Address Lookup Algorithms, IEEE Network Magazine,vol.15, Mar.-Apr. 2001

[47] J. Jung, V. Paxson, A. Berger, and J. Balakrishnan, Fast Portscan Detection
Using Sequential Hypothesis Testing, Proceedings of the IEEE Symposium on
Security and Privacy, May 2004

[48] S. Staniford,	 J. Hoagland, J. McAlerney, Practical Automated Detection of
Stealthy Portscans. Journal of Computer Security 10(1/2), 2002

http:Magazine,vol.15
http://blanu
http:http://www.sans.org
http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
http://www.cs.virginia
http://www.caida.org/research/security/witty

110

[49] S. Bellovin, B. Cheswick, A. Keromytis, Worm Propagation Strategies in an IPv6
Internet. http://www.cs.columbia.edu/~smb/papers/v6worms.pdf, LOGIN,
Vol 31. No.1.

[50] P.	 Wang, S. Sparks, and C. Zou, An Advanced Hybrid Peer-to-Peer Botnet,
preprint, IEEE Transactions on Dependable and Secure Computing, 2009

[51] A. Kamra, H. Feng, V. Misra and A. Keromytis, The Effect of DNS Delays on
Worm Propagation in an IPv6 Internet, Proceedings of IEEE Infocom, Miami,
FL, 2005.

[52] A. Kumar, V. Paxson, N. Weaver, Exploiting Underlying Structure for Detailed
Reconstruction of an Internet-scale Event, Proceedings of ACM IMC, New Or­
leans, LA, Oct. 2005.

[53] C. Gates, Coordinated Port Scans:	 A Model, A Detector and An Evaluation
Methodology. Ph.D. Thesis. Dalhousie University. Feb., 2006

[54]	 http://www.bittorrent.com/

[55]	 http://www.emule-project.net/

[56]	 http://www.distributed.net/

[57] Strange Attractors and TCP/IP Sequence Number Analysis – One Year Later,
http://www.iu.hio.no/~haugerud/ids/SAATSNA_OYL.pdf

[58] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, and I. Stoica, Looking Up
Data in P2P Systems, Communications of the ACM, Feb. 2003.

[59] J. Cho and H. Garcia-Molina, Effective Page Refresh Policies for Web Crawlers,
ACM Transactions on Database Systems, 28(4): Dec. 2003.

[60] B. Bhargava and C. Hua, A Causal Model for Analyzing Distributed Concurrency
Control Algorithms, IEEE Transactions on Software Engineering, 1983

[61] L. Lamport, Time, Clocks and the Ordering of Events in a Distributed System,
Communications of the ACM 21.7, 558-565, Jul. 1978.

[62] R. Lippmann and K. Ingols, An Annotated Review of Past Papers on Attack
Graphs. Technical report, MIT Lincoln Laboratory, Mar. 2005.

[63] X. Li and S. Xu, A Stochastic Modeling of Coordinated Internal and Exter­
nal Attacks. Technical Report available at http://www.cs.utsa.edu/~shxu/
collaborative-attack-model.pdf

[64] S. Ramaswamy,	 H. Fu, and K. E. Nygard, Effect of Cooperative Black Hole
Attack on Mobile Ad Hoc Networks, International Conference on Wireless Net­
works, 2005

[65] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, An On-Demand Se­
cure Routing Protocol Resilient to Byzantine Failures. In ACM Workshop on
Wireless Security (WiSe) in conjunction with MobiCom, 2002

[66] A. Hussain, J. Heidemann, and C. Papadopoulos, COSSACK: Coordinated Sup­
pression of Simultaneous Attacks, In DISCEX, 2003

http://www.cs.utsa.edu/~shxu
http://www.iu.hio.no/~haugerud/ids/SAATSNA_OYL.pdf
http:http://www.distributed.net
http:http://www.emule-project.net
http:http://www.bittorrent.com
http://www.cs.columbia.edu/~smb/papers/v6worms.pdf

111

[67] D. Ourston, S. Matzner, W. Stump, and B. Hopkins, Coordinated Internet At­
tacks: Responding to Attack Complexity, Journal of Computer Security. Vol.
12(2), 2004

[68] F. Cuppens and A. Miege, Alert Correlation in a Cooperative Intrusion Detection
Framework, IEEE Symposium on Security and Privacy, 2002

[69] Jiahai Yang, Peng Ning, X. Sean Wang, and Sushil Jajodia, CARDS: A Dis­
tributed System for Detecting Collaborative Attacks. Proceedings of IFIP TC11
Sixteenth Annual Working Conference on Information Security, Aug. 2000.

[70] J. Garca, F. Autrel, J. Borrell, Y. Bouzida, S. Castillo, F. Cup-pens	 et G.
Navarro, Preventing Collaborative Attacks Via Alert Correlation, 9th Nordic
Workshop on Secure IT Systems (NORDSEC 2004). Finland, Nov. 2004.

[71] Sanjay Ramaswamy, Huirong Fu, Manohar Sreekantaradhya, John Dixon, and
Kendall Nygard, Prevention of Cooperative Black Hole Attack in Wireless Ad
Hoc Networks, ICWN’03, Las Vegas, NV, USA, Jun. 2003.

[72] J. Douceur, The Sybil Attack, 1st International Workshop on Peer-to-Peer Sys­
tems, 2002.

[73] A.Ramachandran and N.Feamster, Understanding the Network-Level Behavior
of Spammers, In ACM SIGCOMM, Vol. 36, 2006.

[74] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, Inside
the Slammer Worm. IEEE Security and Privacy journal, Vol. 1, 2003

[75] D. Moore, C. Shannon, J. Brown, Code-Red:	 a Case Study on the Spread and
Victims of an Internet Worm, ACM/USENIX IMW, 2002.

[76] S. Katti, B. Krishnamurthy and D. Katabi, Collaborating Against Common
Enemies. ACM Internet Measure Conference (IMC), 2005.

[77] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram, D. Zam­
boni. Analysis of a Denial of Service Attack on TCP. IEEE Symposium on Se­
curity and Privacy, 1997

[78] D. Pei, D. Massey, and L. Zhang, Detection of Invalid Routing Announcements
in the RIP Protocol, GLOBECOM, 2003

[79] S. Cheung, U. Lindqvist, and M. Fong, Modeling Multistep Cyber Attacks for
Scenario Recognition, DARPA Information Survivability Conference and Expo­
sition, 2003.

[80] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, SybilGuard:	 Defending
Against Sybil Attacks via Social Networks, Proceedings of ACM SIGCOMM
Conference, Sep. 2006

[81] H. Yu, P.	 B. Gibbons, and M. Kaminsky, Toward an Optimal Social Network
Defense Against Sybil Attacks, Proceedings of the Twenty-Sixth Annual ACM
Symposium on Principles of Distributed Computing, 2007

[82] http://www.dshield.org/

http:http://www.dshield.org

112

[83] S. Rhea, B. Godfrey,	 B. Karp, J. Kubiatowicz, S. Ratnasamy, S. Shenker, I.
Stoica, and H. Yu, OpenDHT: A Public DHT Service and Its Uses, Proceedings
of ACM SIGCOMM 2005, Aug. 2005.

[84] Safe Mapping and Reporting Tool (SMART), http://safemap.sourceforge.
net/

http://safemap.sourceforge

VITA

113

VITA

Yu Zhang received the B.E. degree in computer science, at the age of 19, from

Special Class for Gifted Young, University of Science and Technology of China, the

M.S. degree in computer science, at the age of 21, from Purdue University, and the

Ph.D. degree in computer science, at the age of 24, from Purdue University. He has

worked at Cisco Systems, VMware, and Google. He has published in various journals

and conferences. He is a recipient of a Computer Science Graduate Student Board

travel grant for the IEEE Symposium on Reliable Distributed Systems. Part of this

dissertation has appeared in research proposals and journal papers.

