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ABSTRACT 

Zhang, Yu. Ph.D., Purdue University, December 2009. Analysis of Port Scanning 
Attacks. Major Professor: Bharat K. Bhargava. 

In this research, we present theoretical models and practical solutions to model 

and analyze collaborative attacks, with a focus on port scanning attacks and malware 

propagation. 

We study the malware propagation and present results that help understand the ef­

fects of Multi-port scanning, Multi-threading, Infection time, Multiple starting points, 

and Collaboration (MMIMC) on malware propagation. This research quantitatively 

measures the effects of MMIMC on infected hosts. Experimental results show that 

the above issues significantly affect malware propagation and verify our analysis. 

We discuss architectures, polices, and allocation schemes for collaborative attack­

ers. We present a fast DHT-based collaborative attack scheme that aims to eliminate 

duplicate attacks, minimize contention, and significantly increase the attack speed. 

We propose different collaboration strategies and analyze their advantages and disad­

vantages. We discuss the static, dynamic, and hybrid target selection and allocation 

schemes. We present the algorithm details and discuss the stop and revisit policies 

for collaborative attackers. 

Our experimental results suggest that collaborative attacks can significantly out­

perform individual attackers, and provide insights into many design and implemen­

tation issues. 
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1 INTRODUCTION 

1.1 Collaboration Among Attackers 

The growth of the Internet has rendered its coordination very complex. Security is 

a key challenge in Internet since most protocols were designed without consideration 

of any prevention against miscreants. In addition, many emerging technologies make 

the Internet even more vulnerable, and attacks against networked systems are becom­

ing more complex and powerful. Individual attackers can collaborate to cause more 

problems for the intruder-identification and defense mechanisms. In this dissertation, 

we study collaborative attacks [69], [70], [71]. 

The current approaches to security in network systems deploy individualized se­

curity solutions. For example, antiviral software is used to defend against worms 

and viruses, intrusion detection tools guard against scanning and Denial-of-Service 

(DoS) attacks, firewalls aim to protect against unwanted connection attempts, and 

mail filtering tries to foil spam and phishing attempts. Accordingly, most research 

done today also focuses on improving these individual tools. 

An important piece missing from the current research is understanding of ways in 

which attackers can collaborate to launch attacks. 

1.1.1 Some Collaborative Attacks 

Collaborative attacks are those launched by multiple malicious adversaries that 

synchronize their activities to attack network targets. In collaborative attacks, at­

tackers communicate and collaborative with each other to launch much more powerful 

attacks. For instance, routing attacks can collaborative with Malware attacks and 

Distributed Denial-of-Service (DDoS) attacks. 
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In the real world, the following collaborative attacks occurred or could have oc­

curred: 

1. One can bring a large number of attackers to increase the computation power. 

Attackers have employed this approach in the past. For instance, in 1999, more 

than 100,000 PCs were used to crack the DES challenge of RSA [21]. 

2.	 One can assemble a reasonable number of attackers to influence the decision-

making of core machines, these include routing and Sybil [72] attacks. 

3. One	 can employ a variety of technologies to launch a full-scale attack. For 

instance, the coordinated Botnet zombie nodes can collaborate to launch DoS 

attacks [5], and the well-orchestrated collaborative attacks on Estonia caused 

large-scale disruptions [13]. 

Unlike single and un-collaborative group attacks, collaborative attacks may cause 

more devastating impacts as it combines efforts of more than one attacker (or pro­

cesses). Examples of attacks include replication attacks, Sybil attacks [72], spam 

attacks, phishing attacks, worms and viruses, DNS-related attacks, routing-related 

attacks, Denial-of-Message (DoM) attacks, and DDoS attacks. 

Three basic categories of attacks are as follows: 

1.	 Independent attacks, which have no knowledge of other attacks. They can be 

launched at the same time as other attacks but do not know other attacks. 

2.	 Collaborative attacks that are coordinated and can be launched simultaneously 

or sequentially. From the high-level or functional point of view, we further 

identify the relationships between the launched collaborative attacks and clas­

sify them as: (i) non-overlapping (sequential); (ii) partially overlapping; and 

(iii) fully overlapping. Attacks may target different parts of a network and aim 

at depleting resources of the defenders. From the low-level or technical point of 

view (e.g., techniques employed by attackers), attacks can be categorized into: 



3 

(i) attacks that may substitute each other; (ii) attacks that may diminish the 

effects of each other; (iii) attacks that severely damage each other; (iv) attacks 

that expose other attacks; (v) attacks that should be launched after each other; 

and (vi) attacks that may target different areas of a network. 

3.	 Replicated attacks, in which adversaries can insert additional replicated hostile 

nodes into a network after obtaining some secret information from the captured 

nodes or by infiltration. Nodes replicated in this way are likely to uncover the 

shared secrets of the uncompromised neighboring nodes. Encrypted communica­

tion links can be established between a replicated node and the uncompromised 

nodes. It should be clear that compromising even a single node might allow an 

adversary to gain partial or even full control of a network by producing many 

clones and deploying them in the original network. 

1.1.2 Dimensions of Attack Taxonomy 

Collaborative attacks can be organized into a comprehensive taxonomy. The tax­

onomy includes a number of essential dimensions: 

1.	 Attack type: As already mentioned, the most relevant forms of attacks are: 

replication attacks, Sybil attacks, DoM attacks and DoS attacks. Replication 

attacks take place when adversaries are able to insert hostile nodes into the 

network by obtaining some secret information from the captured nodes or by 

infiltration. Sybil attacks occur when a node forges and uses several identities, 

and in this way obtains a greater control over the network allowing sniffing, 

packet dropping and delaying packets. DoS attacks occur when an attacker 

floods a server with requests exhausting the server’s resources and thus its 

availability to respond to requests from other nodes. 
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2.	 Attack timing: Attackers may take advantage of temporal features of the net­

work by choosing periods of higher susceptibility to perform the attack. Also 

they could coordinate when each attacks to maximize their effectiveness. 

3.	 Attack severity and strength: Damage caused by an attack is an important 

factor in defining the defensive actions to be taken. For instance, an aggressive 

attack should be handled with a higher priority than non-aggressive attacks. 

4.	 Attack extent An attack may affect the whole network or a part of it. The 

extent of an attack also affects the priority of the actions taken by defenders 

against it. 

5.	 Attacker’s familiarity with attack target: Attacks may be conducted by insiders, 

quite familiar with attack targets, or outsiders. A more detailed categorization 

may include an attacker who is: a stranger, an acquaintance, a friend, etc. 

Inflicting damage is easier for an attacker more familiar with the attack target. 

6.	 Attacker’s role: Attackers can be, for instance, regular users, administrators, or 

guests. 

7.	 Ranking of attackers. Attackers have usually distinct profiles. Some are more 

effective than others, and some have typical behavior while others are more 

difficult to characterize. 

8.	 Composition and coordination of attack activities: Attackers can exhibit dif­

ferent abilities, including attack coordination abilities. In coordinated, well-

organized attacks, attackers with the highest leadership skills will become com­

manders. Both leaders and followers must share information. How it is done is 

an important coordination characteristic to be captured in the model of coor­

dination. The graphs of relationships among attackers used in the model can 

be tree-based and involve inheritance. Coordination lines can be employed to 

represent coordination. 
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9.	 Communication between attackers: Attackers can employ checkpointing and 

synchronization messages to communicate with each other. Coordination lines 

can again be employed, this time to represent communication. Finding the 

frequency and interval of attackers’ communication can be very useful. At­

tackers can also utilize independent checkpointing, taking checkpoints of their 

own. They can also check later offline using other techniques, for instance, 

out-of-band communication. 

10.	 Mutual feedback among attackers In a dynamic environment, coordinated at­

tackers can benefit from exchange of feedback on their attack activities, includ­

ing information on the results of their attacks. For example, attackers knowing 

that some ongoing attacks consume many resources of defenders, can adjust 

their strategy. In this case, the attackers can: 

(i) increase the power of the ongoing attacks; or 

(ii) employ more sophisticated or more focused strategies; or 

(iii) fine-tune the timing of their attacks. Attackers can also adjust the strength 

of attacks dynamically. For instance, attackers can launch spasmatic attack 

lasting for a short time, making attack detection and attacker identification 

very difficult. 

11.	 Attack and defense strategies: The number of attackers affects the performance 

and power of attacks significantly. However, there are situations in which mul­

tiple attackers, not properly coordinated, could interfere with each other. Sim­

ilarly, multiple defenders could also hamper each other. We plan to identify 

and describe strategies in which coordinated attacks provide synergistic effects, 

greater than the sum of individual attack effort. 

Note that not all the dimensions are required to describe a collaborative attack. 

For example, The impact of the attacks can be modeled as, impact = f(severity and 

strength of attack, extent of attack, communication between attackers, attack and 

defense strategies). 
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In summary, collaborative attackers can employ a variety of technologies and 

different collaboration strategies. In this dissertation, we focus on the collaborative 

port scanning attacks and defense to collaborative attacks. 

1.1.3 Port Scanning Attacks 

Our focus in this dissertation is the port scanning attacks. 

In port scanning attacks, network communication ports on the target hosts are 

scrutinized by attackers. In an individual port scan, one attacker scans and finds 

which ports are available on the target machine. In a coordinated port scan, multiple 

attackers scan and find which ports are available on a number of target machines. 

Issues we need to consider for collaborative port scanning attacks include Maximiz­

ing network usage, Minimizing latency, and Program Optimization (e.g., how many 

threads should be employed), etc. We need to consider general issues for distributed 

systems as well, including synchronization of attack progress, node crashing/failure, 

and node starvation, etc. 

Why do we focus on the port scanning attacks? Some people argue that port 

scanning attacks are not real attacks. However, we note that: 

1. First, port scanning attack is a fundamental form of network attack. One cannot 

attack without targets; 

2. Second, all attackers need to do reconnaissance before their attacks; 

3. Third, as soon as attackers discover vulnerable hosts, the actual infection takes 

little time to occur; 

4. Last, offline target discovery is difficult and time-consuming. 

A real-world example [4] further illustrates the importance of studying port scan­

ning attacks. A Dutch teenager has employed port scanning to discover specific jail-

broken I-phones that are vulnerable to a known vulnerability related to OpenSSH. 



7 

The teenager demanded money payment from those I-phone users who have been 

discovered by the port scanning. Without launching port scanning attacks, it would 

be impossible for him to find a large number of victims in short notice and receive 

international attention. 

1.2 Related Work 

A. Prior Work on Collaborative Attacks 

Many researchers have characterized specific Internet attacks or phenomenon using 

one or more sources of data. For instance, Ref. [73] has characterized spammer 

behavior. Ref. [74, 75] focus on specific worm outbreaks and Ref. [22] characterizes 

DoS attacks in the Internet. Very few works have focused on correlating various 

attacks. One of them is Ref. [76], in which the authors analyze data, logged by the 

Dshield project [82] on a large number of intrusion detection systems (IDSs), to find 

out related, possibly collaborative, attacks. Ref. [2] discusses security of WiMAX 

networks. 

B. Coordinated Attacks of SYN Floods and Slammer Worms 

A SYN flood attack is launched by sending more TCP connection requests than 

a target machine can process. A slammer worm uses random scanning to find and 

infect susceptible hosts. 

Both the SYN flood attack and the slammer worm, even if launched separately, 

can cause significant damage [74, 77]. If they are launched together in a coordinated 

way, the resulting consequences will be more devastating: the SYN flood attack will 

effectively block TCP connections while the Slammer worms will propagate via UDP 

connections. The coupled attack is not only more powerful but also more difficult to 

deal with. 

C. Sybil Attacks 

Douceur [72] discusses Sybil attacks, in which a malicious user obtains multiple 

fake identities and pretends to be multiple, distinct nodes in the system. In this way, 
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the malicious nodes can control the decisions of the system, especially if the decision 

process involves voting or any other type of collaboration. 

Trust relationships can be created in social networks to limit the number of nodes 

a malicious node can create. In such an approach, we need to consider trust, security, 

and privacy issues together, and in a systematic way, preferably at the policy level. 

In addition, a deliberate collaboration model is needed. 

Generic Sybil attacks can be found in Internet as well. For example, BGP would 

greatly suffer from the aforementioned attacks. Researchers at UCLA have proposed 

ways to detect invalid routing announcements in RIP [78] but mere detection cannot 

solve the problem thoroughly. Responding after detection and defending against such 

attacks, possibly coordinated, remains a challenge. 

D. Modeling Multistep Cyber Attacks for Attack Scenario Recognition 

Cheung et al. [79] state that many cyber attacks can be decomposed into multiple 

sub-attacks. The authors develop methods and a language for modeling multistep 

attack scenarios based on typical isolated alerts about attack steps. 

The idea of trust relationship [72, 80, 81] is used to limit the number of clones a 

malicious node can have and defend against Sybil attacks. However, no collaborative 

model is discussed in these works. In the RIP protocol [78], detection of invalid rout­

ing announcements has been suggested. The response after detection and ways to 

defend against such attacks remains a challenge. Many approaches are proposed. A 

stochastic model of collaborative internal and external attacks is used in [63]. Data 

Routing Information (DRI) table and cross checking [64] can be used to identify 

multiple cooperating black hole nodes. An on-demand routing protocol for ad hoc 

wireless networks can provide resilience to Byzantine failures caused by individual or 

colluding nodes [65]. A signature-based model can be used to detect collaborative 

attacks [69]. Clustering and merging functions can be used to recognize alerts that 

correspond to the same occurrence of an attack and create a new combined alert [68]. 

A collaborative system using Multicast, annotated topology information, and blind 
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detection techniques can be used to detect DDoS attacks [66]. Hidden Markov models 

can be used to detect collaborative attacks [67]. 

E. Collaborative attack modeling and attack graph analysis 

Bhargava et al. used casual model [60] and Lamport proposed event ordering [61] 

to identify events for concurrency control and synchronization of clocks in distributed 

systems. Attack graph was proposed to model the order of events. Lippmann et.al [62] 

analyzed most attack graph papers and concluded problems of attack graph analysis: 

scalability to large networks, generation of attack details, and computing complexity. 
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2 THE EFFECTS OF THREADING, INFECTION TIME, AND 

MULTIPLE-ATTACKER COLLABORATION ON ATTACK PROPAGATION 

2.1 Introduction 

Malware is software designed to compromise computer systems. Examples include 

Logic Bombs, Viruses, Worms, and Botnets [5], [33]. Malware can be classified into 

two categories: self-propagating malware and non-self-propagating malware. Self-

propagating malware poses a serious threat due to its ability to propagate through 

networks to infect a large number of hosts. E.g., worms have infected thousands 

of computers [8], [9], [18], [24]. Malware replicates itself and intrudes vulnerable 

hosts without human intervention. Malware can carry malicious payloads that can 

be released upon infection of the vulnerable hosts. Malware can cause significant 

damages, including consumption of network bandwidth, destructions of infected hosts, 

and leakage of private information, such as credit card numbers, etc. 

Typical Malware propagation consists of a number of steps: 

1. Reconnaissance: search vulnerable victim hosts by performing port scans; 

2. Infection: transmit malicious payloads, exploit vulnerabilities on victim hosts to 

gain control; 

3. Discovery : perform  information-gathering  activities  on  victim  hosts,  e.g.,  steal  

passwords and personal files; 

4. Destruction: perform destructive activities on victim hosts, e.g., re-format their 

hard disks. 

After the Infection step is done, the malware is ready to propagate from the newly 

infected host to another one by repeating the whole process. Note that not all malware 

propagation follow all of the above steps. 
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To perform a thorough port scan during reconnaissance, malware sends probe 

packets to each port on each victim host, and analyzes their responses. In a hy­

pothetical scenario, a packet sent to FTP port 21 on a victim host triggers a reply 

packet, which is then analyzed by malware to infer detailed information, such as the 

type and version of the operating system, about the victim host. Based on this infor­

mation, a well-tailored attack can be launched (e.g., exploiting the vulnerability that 

exists on the particular operating system). 

Malware has to perform port scans for a huge number of IP address/port number 

combinations. In IPv4 networks, the size of the IP address space is 232, and the 

size of the port number space is 216 . Hence, the size of the search space for the IP 

address/port number combination is 248 . While the large size of the search space 

renders port scanning a daunting task, malware authors have employed sophisticated 

techniques to perform fast scanning. E.g., many real-world worms search vulnerabil­

ities only on a particular port, which effectively reduces the size of the search space 

to 232 [42]. 

It is clear that malware with different scanning and propagation strategies has 

different propagation time. A number of models have been proposed to characterize 

propagation of worms, including the state-of-the-art Analytical Active Worm Prop­

agation (AAWP) model [18], and the epidemiological two-factor model [8]. Existing 

malware propagation models fail to consider a number of issues, including the follow­

ing: 

a) That malware can scan a host for multiple vulnerabilities: E.g., if malware fails 

to find any vulnerability on the FTP port 21 of a host, it can look for vulnerabilities 

on other ports, e.g., the DNS port 53. In case that malware discovers multiple 

vulnerabilities, it is able to exploit the most promising one according to some criteria 

(e.g., infection time). 

b) That scanning can be done by multiple threads : Multi-threaded malware can 

scan and infect multiple machines concurrently. Moreover, since vulnerabilities exist 
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on many ports, multi-threaded scanning of multiple ports on one host is an effective 

way to speed up port scans. Most existing models, including the AAWP model, fail 

to consider that malware may spawn a large number of threads to scan concurrently. 

c) That exploitation of vulnerabilities and infection of victim hosts are not done in­

stantly : It takes time for malware to transmit its payload, exploit a vulnerability, and 

subvert the defense system on a victim host. A newly found vulnerable host can nei­

ther be infected immediately nor be ready right away to infect other hosts. Although 

the AAWP model claims to incorporate the infection time, it simply makes the clock 

ticks larger, without calculating the ratio of scan time to infection/propagation time. 

In AAWP, all infected hosts perform scanning activities at the next time tick (denote 

it as t and time tick length as L). Therefore, newly infected hosts that were infected 

between time (t, t + L) are treated equally: hosts infected near time t perform the 

same number of scans as those infected near time t + L. Such equal treatment is im­

precise. It should be noted that port scans can be done much faster than infections. 

In the extreme case, Figure 1(c) in [18] assumes that the infection time could be as 

long as 60 seconds, while the scanning time for one IP/port combination is usually 

shorter than 0.1 second [19]. 

Theorem 1 in AAWP is proven by induction on the number of scans. If the scan is 

successful, it brings in a newly infected host. Hence, each induction step adds at most 

one host. At the next time tick, the number of infected hosts increases by at most 

one. AAWP assumes that the scans are performed step by step, i.e., in each step the 

scanning of one worm is performed, and the number of infected hosts is updated. The 

assumption differs from most real-world scenarios. For example, the famous NMAP 

scanner [19] is capable of scanning many hosts in parallel by dividing targets into 

multiple groups, and scanning an entire group at a time. 

d) That malware propagation can start from multiple places rather than a single 

starting point, and infected hosts can collaborate to increase damage (e.g., the Bot-

net [5] and the orchestrated attacks on Estonia [13]): Multiple attackers can simul­

taneously release the same malware at multiple places. Researchers suspect that the 
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Witty Worm [33] was released from multiple IP addresses. Malware can be released in 

different geographical regions as well, e.g., Europe, Asia, and North America, to sig­

nificantly expedite its propagation. Multiple starting points are not well-represented 

by existing models. 

In summary, little was done to understand the effects of Multi-port scanning, 

Multi-threading, Infection time, Multiple starting points, and Collaboration (MMIMC) 

on malware propagation. In this research, we quantitatively measure the effects of 

MMIMC on infected hosts. We employ the Fibonacci Number Sequence (FNS) to 

model the effects of infection time. The extended model can explain the impact of 

threading, infection time, and multiple-attacker collaboration, as well as the effects of 

hitlist size, birth rate, and patching rate on malware propagation. We derive the Shift 

Property, which illustrates that different malware initializations can be represented 

by shifting their propagations on the time axis. We prove the Linear Property, which 

shows that the effects of multiple-attacker collaboration can be represented by linear 

combination of individual attacks. Experimental results show that the above issues 

significantly affect malware propagation and verify our analysis. To our knowledge, 

this is the first research that provides quantitative analysis and experimental results 

on the effects of MMIMC. 

2.2 Related Work 

Scan Strategy. 

Over the years, researchers have proposed various scanning algorithms for mal-

ware, including: 

(a) naive random scanning, in which malware chooses a random address niformly 

from the IP address space [18]; 

(b) localized scanning, in which malware scans a local IP address with a high 

probability p and scans a random address with a low probability (1-p) each time [3]; 
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(c) importance scanning, in which malware assumes that the vulnerable hosts are 

unevenly distributed and such distributions are obtainable [32]; 

(d) self-learning scanning, in which malware estimates the distribution of the 

vulnerable hosts [26]; 

(e) hit-list scanning, in which malware uses an existing list. e.g., BGP routing 

table list, social network list, etc., to look for vulnerable hosts [24]; 

(f) permutation scanning, in which malware can determine whether a host is al­

ready infected and changes scan targets [24]; 

(g) sampling scanning, in which malware samples a target network before spread­

ing to it [17]; and 

(h) passive scanning, in which malware analyzes the network traffic passively. 

Malware Propagation. 

Wagner et al. [27] present characteristics of worms, including protocol, size of 

the payload, and scanning strategy, etc. Zou et al. [42] analyze the performances 

of different propagation strategies. Voyiatzis et al. [25] describe a class of worms 

that target network components such as routers. Vojnovic et al. [17] discuss how to 

minimize the required number of scans to infect hosts. Storm Worm [28], [29] uses the 

Distributed Hash Table (DHT) protocol based on Kademlia [16] to control infected 

nodes. Chen et al. [18] propose the Analytical Active Worm Propagation (AAWP) 

model. Zou et al. [8] propose the epidemiological two-factor model. Dagon et al. [11] 

discuss the taxonomy of Botnets. 

2.3 Background on Fibonacci Number Sequence 

In this section, we briefly summarize the Fibonacci Number Sequence (FNS) and 

discuss its generalizations. We infer several important properties of the FNS and 

discuss their uses in the malware propagation. In Section 2.4 we discuss in detail 

on how the FNS is applied to analyze the malware propagation and to model multi­

threading, infection time, multiple start points, and collaborative attacks. The FNS is 



15 

Table 2.1: Notations used in this research 

Notation Explanation 

b the number of IP addresses on the blacklist of the malware 

c the number of ports scanned for each IP address 

w the number of contagious hosts that can infect other hosts 

q the probability that a given IP address/port combination will 

be discovered by at least one infected host 

d 
destruction rate: the number of destructed hosts over 

the number of infected hosts 

k the number of threads in the malware 

p 
patching rate: the rate at which 

the vulnerable machines are patched 

r 
birth rate: the rate at which 

the new vulnerable hosts joins the network 

v 
the number of vulnerable (excluding infected) 

host/port combinations 

V 
the number of vulnerable (including infected) 

host/port combinations 

PT Propagation Time 

IT Infection Time 
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named after Leonardo Fibonacci. Interested readers are referred to [14] for thorough 

discussions of the FNS. Table 2.1 lists the notations used in this research. 

2.3.1 Fibonacci Rabbit Problem 

We briefly present the famous Fibonacci rabbit problem: In the beginning, there is 

no rabbit. A new pair of baby rabbits is introduced after one month. The baby rabbits 

get mature after one month. Each pair of mature rabbits has the ability to and will 

give birth to a new pair of baby rabbits every month. The question is: how many pairs 

of rabbits are there after n months? 

2.3.2 Definition of Fibonacci Number Sequence 

To solve the fibonacci rabbit problem, we assume that rabbits never die. We use 

Fn to represent the number of pairs of rabbits there are after n months. Note that 

F0 = 0 and F1 = 1. We observe that F2 = 1  = 2, since after 2 months the first pair 

of baby rabbits will get mature and cannot yet give birth to new baby rabbits. Note 

that in the malware propagation field, most existing models ignored this issue. 

Since rabbits never die, to calculate how many pairs of rabbits there are after n 

(n>1) months, we simply add the newly born rabbits to the existing rabbits after 

(n-1) months, which is represented by Fn−1. Not all those Fn−1 pairs of rabbits are 

mature. Because the baby rabbits take one months to get mature, we observe that 

the baby rabbits are those born within one month, i.e., the (n-2, n-1) month window. 

Therefore, the rabbits that were born before this window are all mature by Month n. 

There are Fn−2 pairs of such rabbits. 

Assume that Fn−1 and Fn−2 are known. We have: 

Fn = Fn−1 + Fn−2 when n > 1. 
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Hence, the solution can be summarized as: 
⎧ 

0 if n = 0;
⎪⎪⎪⎪⎪⎨

Fn = 1 if n = 1; (2.1)⎪⎪⎪⎪⎪Fn−1 + Fn−2 if n > 1.⎩ 

We call the numbers generated by the recursive definition (2.1) Fibonacci numbers, 

and call the number sequence FNS. 

2.3.3 Properties of Fibonacci Number Sequence 

Closed-Form Expression 

We can solve the recursive equation of the FNS with the initial conditions F0 = 0  

and F1 = 1. 

φn − (1 − φ)n √ 1 +  θ 
Fn = , whereθ = 5 andφ = (2.2)

θ 2 

Since | (1−φ)n 

| is a very small number (smaller than 0.1 when n is larger than 3),θ 

we can safely discard it and rewrite the result as: 

φn √ 1 +  θ 
Fn = , whereθ = 5 andφ = (2.3)

θ 2 

Note that φ is the golden ratio (approximately 1.618). 

Growth Rate 

The growth rate of the FNS, regardless of the initial values (except for F0 = F1 

= 0), is: 
Fn+1lim = φ 

n→∞ Fn 

Hence, the FNS approximately follows the exponential growth at the rate of the golden 

ratio φ when n is large. Note that the malware propagation is also exponential before 

saturation [28], [3]. 
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2.3.4 Generic Fibonacci Number Sequence: Arbitrary Initialization 

Definition of Generic Fibonacci Number Sequence 

If the initial values of the FNS are changed to x and y respectively, we will have 

the generic FNS Gx,y,n: 
⎧ 

x if n = 0;
⎪⎪⎪⎪⎪⎨

Gn = y if n = 1; (2.4)⎪⎪⎪⎪⎪Gn−1 + Gn−2 if n > 1.⎩ 

How to Calculate Generic Fibonacci Number Sequence 

Gx,y,n can be represented by the original FNS. 

Gx,y,n = xFn−1 + yFn (2.5) 

Due to space limitations, we omit the proof for Equation (2.5). Note that F−1 = F1 

- F0, thus Equation (2.5) still holds when n is 0. 

Similar to Section 2.3.3, when n is larger than 3, we apply Equation (2.3) and 

rewrite Gx,y,n as: 

Gx,y,n = xFn−1 + yFn 

φn−1 φn 

= x + y
θ θ 

φn (2.6)x 
= (  + y)

φ θ 
x 

= (  + y)Fn
φ 

We observe that the Generic FNS can be approximately calculated by multiplying 

the original FNS by a constant factor. 
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The Shift Property of Generic Fibonacci Number Sequence 

Given Equation (2.6) we can infer the ”Shift” property of the Generic FNS, i.e., 

the generic Fibonacci number Gx,y,n can be represented by the original Fibonacci 

number of Fn+s, where s is the number of shifts and s is equal to log(yφ+x) − 1. For-log φ 

mally: 

Theorem 1 Gx,y,n = F log(yφ+x)[n+ −1]log φ 

Proof: According to Equation (2.6), 

φn 

Gx,y,n = (  + y) 
x 
φ θ 
x + yφ φn 

= (  )
φ θ 

φlogφ (x+yφ) φn 

= (  )
φ θ 

log(x+yφ) φn 
log φ= (φ[ −1]) 

θ 
log(x+yφ) 

φ[n+ −1]log φ 

= 
θ 

Apply Equation(2.3), = F log(yφ+x) !
[n+ −1]log φ 

Given x and y, the number of shifts s is a constant number. Theorem 1 has impor­

tant implications on the Fibonacci malware propagation: it quantifies the effects of 

different initialization values, and proves that the same effects can be achieved by 

”shifting” the index of the original FNS by a constant number. Hence, the effects of 

hitlist scanning and flash scanning, etc., can be quantified in the model by shifting 

the regular scanning. We discuss this further in Section 2.4. 

The Linear Property of Generic Fibonacci Number Sequence 

The Linear Property of the Generic FNS states that the sum of two Generic FNSes 

with initial values (x1,y1) and (x2,y2) is equivalent to the Generic FNS with the initial 

values (x1 + x2, y1 + y2, respectively.  Formally:  
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Theorem 2 Gx1,y1,n + Gx2,y2,n = Gx1+x2,y1+y2,n 

Proof: According to Equation (2.6), 

φnx1 + x2Gx1+x2,y1+y2,n = (  + y1 + y2)
φ θ 

φn φnx1 x2= (  + y1) + ( + y2)
φ θ φ θ 

= Gx1,y1,n + Gx2,y2,n ! 

Corollary 1 Gmx,my,n = mGx,y,n 

Proof: According to Theorem 2, 

Gmx,my,n = Gx,y,n + G(m−1)x,(m−1)y,n
 

= 2Gx,y,n + G(m−2)x,(m−2)y,n
 

= ...
 

= kGx,y,n + G(m−k)x,(m−2)y,n 

= ... 

= mGx,y,n ! 

2.3.5 Generic Lucas Number Sequence 

A further generalization of the FNS is the Generic Lucas Number Sequence (LNS). 

Given constant integers x and y, we have: 
⎧ 

x if n = 0;
⎪⎪⎪⎪⎪⎨

Hn = y if n = 1; (2.7)⎪⎪⎪⎪⎪αHn−1 − βHn−2 if n > 1.⎩ 

The Generic FNS is a special case of the Generic LNS when α = 1 and β = -1. To 

investigate malware propagation, we are interested in the case where α = 1 and β = 

-q (|q|<1 ). We discuss this further in Section 2.4.2.4 
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When α = 1 and β = -q (|q|<1 ), as in Section 2.3.3, we can solve the recursive 4 

equation of the special LNS with the initial conditions H0 = x = 0 and H1 = y = 1, 

and get its closed-form expression: 

φn − (1 − φ)n 

Hn =	 , whereθ = 
J

1 + 4q
θ (2.8)

1 +  θ 
andφ = 

2
 
Since |q|<1 and 4q<1, we can expand θ using binomial expansion:
 4 

θ = 
J

1 + 4q 
+∞	

(−1)n(2n)! 
= 
+	 

(4q)m 

(1 − 2n)(n!)24n 
m=0 

n	
(−1)n(2n)!≈ 

+	 
(4q)m , n  = 2  

(1 − 2n)(n!)24n 
m=0 

4q	 (4q)2 

= 1 +  − 
2 8 

= 1 + 2q − 2q 2 

( θ−1 )n 2)n 

, | (1−φ)n 

| (φ−1)n	 

| (q−q2Hence, given that |q|<1 | = | = | | = | is a very small 4	 θ θ θ 1+2q−2q2 

number. Thus, we can can safely discard it and rewrite the result as (when α = 0  

and β = -1): 

φn 1 +  θ 
Hn = , whereθ = 

J
1 + 4q andφ =	 (2.9)

θ 2 

Note that when q = 1, we get the closed-form expression for FNS as in Section 

2.3.3. We observe that Equation 2.3 and Equation 2.9 differ only in the constants. 

Therefore, the properties, including the Shift Property and the Linear Property, of 

the Generic FNS all hold for the Generic LNS when α = 1 and β = -q (q<1
4 ). Due 

to space limitations, we omit the formal proof for this observation. 

2.4	 Analysis of MMIMC and the Generic Fibonacci Malware Propagation (GFMP) 

Model 

In this section, we extend the existing malware propagation models to address the 

issues of MMIMC. 
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2.4.1 Preliminaries 

Probability on Port Scanning 

We assume that during the reconnaissance step malware performs port scanning 

to discover vulnerable ports on the target host. 

Malware can scan a part of all IP addresses. For instance, reverse engineering 

[3], [9] shows that Code Red I and II never scan local (127.0.0.0/8) and multicast 

(224.0.0.0/8) addresses. This is overlooked by researchers (e.g., in [8] the authors 

assume that CodeRed scans all IP addresses with equal probability). Assume that 

IPv4 is in use and malware puts b IP addresses on its blacklist, i.e., it never scans 

those IP addresses. Thus, the number of IP addresses malware scans is (232 - b). 

Assume that malware scans c ports for each IP address. The size of the search space 

for malware is c(232 - b). 

While real-world scanners are mostly multi-threaded [19], existing malware prop­

agation models overlook multi-threading issues. We assume that malware employs 

multi-threaded programming and scans multiple address/port combinations concur­

rently. If there are k threads for each malware scanning module, we assume that each 

infected host can scan k address/port combinations simultaneously. 

We need to calculate how many new vulnerable IP address/port combinations 

are discovered in each time tick. Note that vulnerability discovery is not equiva­

lent to successful infection. After the vulnerability discovery, malware needs time to 

propagate to victim hosts and exploit the vulnerability. Assume that there are vi 

uninfected vulnerable IP address/port combinations (multiple ports on one host can 

be infected) at time tick i (time steps are equally sized). Given that each infected 

host can perform k scans simultaneously, we can calculate how many out of those vi 

combinations can be discovered by all infected hosts. 

Denote the number of newly infected hosts as ni, the number of contagious hosts 

as w, and the probability that a given IP address/port combination is discovered 
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Figure 2.1.: The malware propagation tree. 

by at least one infected host as q. Note q = k . For a given IP address/port c(232−b) 

combination, we have: 

P(discovered by at least one infected host at time tick i) 

= 1  − P (not discovered by any of w infected hosts) 

= 1  − P (not discovered by one infected host)w 

= 1  − (1 − P (discovered by one infected host))w 

= 1  − (1 − q)w 

Hence, 

ni = [1 − (1 − q)w]vi (2.10) 
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The Propagation Tree of Self-Propagating Malware 

Assume that malware propagation starts from a single node. As shown in Fig. 

2.1, the propagation tree of malware P ropTr consists of: 

(a) a root node r : the  node  where  the  malware  executor  releases  it;  

(b) intermediate nodes : nodes that caused direct infections of one or more nodes; 

and 

(c) leaf nodes : nodes that caused no direct infections of other nodes.
 

Formally, we define:
 

(1) Source (Parent) Function S, such that: 

S(i) = j, iff node i, j ∈ P ropTr, and j is a parent of i in the tree P ropTr. As shown 

in Fig. 2.1, if S(i) = j, node i is the child of node j. 

(2) Malware Propagation Tree P ropTr, a directed tree in which each node is either: 

(a) root node r, where ! node j ∈ P ropTr such that j = r and S(r) = j; 

(b) intermediate node i, where ∃ node j ∈ P ropTr such that j = i and S(j) = i; or 

(c) leaf node e, where ! node j ∈ P ropTr such that j = e and S(j) = e, and ∃ node 

k ∈ P ropTr such that k = e and S(e) = k. 

The Propagation Forest of Self-propagating Malware 

If malware is released at k sources, ri, i  ∈ [1, . . ., k], we can generate one propaga­

tion tree for the malware propagation rooted at each source node. The propagation 

forest of self-propagating malware Fprop is the disjoint union of the propagation trees 

rooted at nodes ri, i  ∈ [1, . . ., k], formally: 

Fprop = 


k

P ropT ri 
(2.11) 

i=1 

The Infection Time and Propagation Time 

As shown in Fig. 2.1, there is a short delay between the intrusion of the mal-

ware and its propagation to other hosts. Such delay includes the time spent on the 
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vulnerability exploitation and subversion of the victim host. We denote the delay as 

infection time. 

Intuitively, we define the Infection Time (IT) as the time interval between the 

start of the infection on a particular host (i.e., the time when the host was initially 

intruded) and the start of propagation on the same host (i.e., the time when the same 

host was starting to infect other hosts). Formally, 

IT  = TStartP ropagation − TStartInfection (2.12) 

Actual infection times may vary and follow particular probability distributions. 

We could define the Propagation Time (PT) between two hosts as the time in­

terval between the infection of a particular host (denote it as s) and the successful 

infection of a subsequent target host (denote it as T(s)) that was caused by this par­

ticular host. Formally, 

PT (s, T (s)) = TInfection(T (s)) − TInfection(s) (2.13) 

For a host m that was never intruded or infected successfully, the time of infection 

(TInfection(m))) is defined as +∞ (infinite). 

We can measure the propagation time for all infected hosts and collect statistics 

about them. E.g., we can calculate the average propagation time. There is one 

problem with definition (2.12): it works only if there is at least one subsequent 

successful infection from the original host (s). If such infection was unsuccessful (e.g., 

if the target host was invulnerable) or there was no subsequent infection attempt (e.g., 

if malware on the host was quarantined by administrators) the propagation time is 

+∞ (infinite). 

Alternatively, we can calculate the propagation time from the infected hosts, un­

der the observation that each infected host must be infected by some source host. 

Hence, we define the Propagation Time (PT) between a host and its infector as: the 

time interval between the successful infection of a particular host (denote it as t) and 
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the infection of the host that infected t [15] (denote it as S(t)). Formally, 

PT  (S(t), t) =  TInfection(t) − TInfection(S(t)) (2.14) 

We can infer several important properties for Propagation Time (PT). 

1. Additivity: if there are three hosts (Host m, n, and o) that satisfy the following 

two conditions: 

a) the malware propagated directly from Host m to n; and 

b) the malware propagated directly from Host n to o, 

then the propagation time between Host m and o is the sum of the propagation time 

between Host m and n and the propagation time between Host n and o. Formally, 

For Hosts m, n, and o that satisfy S(o) = n and S(n) = m: 

PT  (m, o) =  PT  (m, n) +  PT  (n, o), (2.15) 

2. Diameter: the diameter of the tree (Diameter(P ropTr))is the time elapsed since the
 

release of the malware until the infection of the last vulnerable hosts (denote it as lv).
 

Hence, we can use PT(r, lv) to represent the diameter of the tree: Diameter(P ropTr)
 

= PT(r, lv).
 

Assume that there are n intermediate nodes on the path between r and lv. We denote
 

them as nodei, i  ∈ [1..n], where:
 

⎧ 

S(nodei) =  r, if i = 1;
⎪⎪⎪⎪⎪⎨ 

S(lv) =  nodei, if i = n; (2.16)⎪⎪⎪⎪⎪S(nodei+1) =  nodei if i ∈ (1..n).⎩ 

Using Property 1, Diameter(Tprop) can be further calculated as: 

Diameter(P ropTr) 

= PT(r, lv) 
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= PT(r, nodei) + PT(node1, node2) + ... + PT(nodei, nodei+1) + ... + PT(noden, 

lv) 
+

= PT  (r, nodei) +  PT  (noden, lv) +  PT  (nodei, nodei+1) (2.17) 
i 

i∈(1..n) 

2.4.2 Generic Fibonacci Malware Propagation (GFMP) Model 

We employ Fibonacci Number Sequence (FNS) to model infection time. Recall 

that in the Fibonacci rabbit problem, newly-born rabbits cannot give birth to baby 

rabbits immediately. Instead, they need some time to mature, which is reminiscent of 

the infection/propagation time problem discussed above: a captured host cannot scan 

and infect other hosts until its infection matures, i.e., until it is completely infected. 

1) Recursive Equation for the Malware Propagation 

Denote the number of all vulnerable hosts in the beginning as V and the number of 

infected hosts as Ij , where j denotes the time tick. Denote the length of the time slice 

between time ticks as L (one time slice could represent one second). Assume that the 

administrators may patch the vulnerable hosts. Assume that the propagation time is 

two time slices for all infections. Hence, the newly infected hosts intruded at time t 

are not able to infect new hosts at time t + L, but will be able to infect new hosts at 

time t + 2L. At time tick j + 2, there are Ij infected hosts that are contagious and 

can infect other hosts. Formally: 

w = Ij (2.18) 

At time tick j + 1, the number of uninfected vulnerable hosts is the number of all 

unpatched vulnerable (including infected and newly born) hosts minus the number 

of infected vulnerable hosts. Assume that malware can carry destructive payloads 

(e.g., programs that can re-format the hard drive). In this case, the destructed hosts 

are wiped out and removed from the vulnerable host list. Note that neither dead (or 

significantly damaged) nor newly-born hosts could be patched. 

We define destruction rate as the number of destructed hosts divided by the num­

ber of infected hosts, considering that only infected hosts can be destroyed. Therefore, 
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we calculate the number of dead hosts by multiplying the destruction rate by the num­

ber of infected hosts, instead of the number of all vulnerable hosts. We denote the 

destruction rate of the hosts as d, the birth rate of the vulnerable hosts (e.g., new 

vulnerable hosts that just joined the network) as r, and the patching rate of infected 

hosts as p. Formally, the number of hosts that are vulnerable (including infected and 

newly-born) and can be patched at time tick j + 1 is: 

vj+1 = (1 − p)vj − dIj + rvj = (1 − p + r)vj − dIj 

This is a recursive equation. We expand the recursion and get: 

j

vj+1 = (1 − p + r)j+1 v0 − 
+

(1 − p + r)kdIj−k. 
k=0 

Given that v0 = V, we have: 

j

vj+1 = (1 − p + r)j+1V − 
+

(1 − p + r)kdIj−k (2.19) 
k=0 

The number of hosts that are vulnerable but not infected is: 

 v = vj+1 − Ij+1 (2.20)j+1 

After one time slice (time tick j + 2), without considering destruction and patch­

ing, the number of infected hosts is the sum of the number of infected hosts at the 

previous time tick (j + 1) and the number of newly infected hosts during the time 

slice. The number of infected hosts that died or were patched during the time slice is 

dpj+1 = (d + p)Ij+1 (2.21) 

The number of newly infected hosts is calculated in Section 2.4.1. 
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Given (2.10), (2.18), (2.19), (2.20), (2.21), we have: 

Ij+2 

= Ij+1 + nj+1 − dpj+1 

= Ij+1 + vj+1(1 − (1 − q)Ij ) − (d + p)Ij+1 (2.22) 

= (1 − d − p)Ij+1 + [(1 − p + r)j+1V − 

j+
((1 − p + r)kdIj−k) − Ij+1][1 − (1 − q)Ij ] 

k=0 

Note this recursive growth function applies when there is at least one vulnerable host. 

2) Special Cases 

Special cases are as follows: 

a) If the birth and patching rates are equal, (2.22) can be simplified to: 

Ij+2 

= (1 − d − p)Ij+1+ 
(2.23) 

j

(V − d 
+ 

Ij−k − Ij+1)[1 − (1 − q)Ij ] 
k=0 

b) If the birth, destruction, and patching rates are all zero, (2.22) can be simplified 

to: 

Ij+2 = Ij+1 + (V − Ij+1)[1 − (1 − q)Ij ] (2.24) 

c) Binomial expansion can be used to expand and simplify 1 - (1 - q)Ij : 

1 − (1 − q)Ij 

Ij (2.25) 
Ij 
 +

= 1  − (−q)m 

m
m=0

We observe that: k represents the multi-threading level of the malware propagation 

scanner, and normally ranges from 1 to 210 or one thousand; V represents the number 

of vulnerable hosts(including infected hosts), and is normally smaller than 220 or one 

million; c represents the number of ports that the malware is scanning, and c > 0; 

and b represents the number of IP addresses that the malware puts on the blacklist. 
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- b ≈ 232If the malware puts local and multicast addresses on the blacklist only, 232 . 

< 210×220kV 1Hence, qV = c(232−b) 232 = . Note that these are conservative estimations since4 

normally k is much smaller than 210 and V is smaller than 220 . Since the number of 

infected hosts cannot be larger than the number of all vulnerable hosts, i.e., Ij ≤ 

V, we conclude that qIj is small. Therefore, we can safely discard the high order 

elements in Equation 2.25. We can rewrite Equation (2.24) as: 

Ij+2 = Ij+1 + (V − Ij+1)[1 − (1 − q)Ij ] 

1 
Ij

+
= Ij+1 + (V − Ij+1)[1 − (−q)m] 

m 
m=0 

Ij= Ij+1 + (V − Ij+1) (q)
1 

= Ij+1 + qIj(V − Ij+1) 

= Ij+1 + qIjV − qIjIj+1 

Ij+1During the initial phase of the spread of the malware, V is a small number, so we 

can safely throw away −qIjIj+1. Therefore: 

Ij+2 = Ij+1 + qV Ij (2.26) 

Equation 2.26 suggests that the initial spread of the malware approximately fol­

lows the Generic Lucas Number Sequence (LNS) [14] with α = 1 and β = -qV : 
⎧ 

x if j = 0;
⎪⎪⎪⎪⎪⎨

Ij = y if j = 1; (2.27)⎪⎪⎪⎪⎪Ij−1 − (−qV )Ij−2 if j > 1.⎩ 

d) We now discuss the effects of different lengths of the propagation time. Equa­

tion 2.26 holds when the propagation time is 2L (twice as much as the length of the 

unit time slice). Generally, if propagation time is eL, where e is an integer, we have: 

Ij+2 = Ij+1 + qV Ij+2−e, where j + 2  > e  (2.28) 
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We now have the equation that quantitatively measure the effects of propagation 

time. The equation shows that the longer propagation time is, the slower the mal-

ware propagates, which follows the intuition that longer propagation time hampers 

malicious activities of newly infected hosts. 

2.4.3 Properties of the GFMP Model 

We use the GFMP model to study the issues of threading, infection time, multiple 

starting points, and collaborations. Due to space limitations, we omit the discussion 

of properties of FNS and use them directly. Interested readers are referred to [30] for 

details. 

Multi-threading and the Closed-Form Expression 

The closed-form expression for the number of infected hosts at time tick j, when 

x = 0 and y = 1, is: 

φj 1 +  θ 
Ij = , whereθ = 

J
1 + 4qV andφ = 

θ 2 
[
J

c(232 − b) +  
J

c(232 − b) + 4kV ]j 

= 
2
J

c(232 − b) + 4kV [2
J

c(232 − b)]j−1 

Note that the malware propagation stops when all vulnerable hosts that can be in­

fected are infected. Hence, during the propagation Ij ≤ V. Hence, we can rewrite Ij 

as: ⎧ 

λ, if λ ≤ V;
⎪⎪⎪⎪⎪⎨

Ij = V, if λ > V. (2.29) 
√ √ 
[ c(232−b)+ c(232−b)+4kV ]j

⎪⎪⎪⎪⎪ (λ = √ √ 
c(232−b)]j−1 

)⎩ 
2 c(232−b)+4kV [2 

In Equation 2.29, k denotes the number of active threads in the malware scan­

ner. As k increases, the infection rate increases. However, note that multi-threaded 

programs can easily generate huge network traffic by sending out a large number of 

packets. While context switching for threads are smaller than those of processes, the 
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costs increase as k increases. Real-world multi-threaded malware normally employs 

10 - 100 threads. Equation 2.29 was derived from Equation 2.26, where we assume 

that the number of previously infected hosts is much smaller than the number of all 

vulnerable hosts ( Ij−1 is small), and dropped − k Hence, Equation (2.29) V c(232−b) IjIj+1. 

grows faster than actual malware propagation when the number of infected hosts is 

large. Experimental results that support Equation 2.29 are discussed in Section 3.5. 

Sophisticated Scanning and the Shift Property 

In Section 2.4.3, we derived the closed-form expression when malware employs 

multi-threaded random scanning, and the initial values of x and y are 0 and 1, respec­

tively. However, malware can employ more sophisticated scanning techniques, such 

as a combination of scanning strategies. Malware can use hitlist scanning to infect 

a large number of pre-selected vulnerable hosts [24] before performing regular ran­

dom scanning on newly infected hosts. Our extended model represents such scanning 

strategies by different initializations of x and y. E.g., if the size of the hitlist is h, 

we assume that at time tick 1 the number of infected hosts is h (the original release 

point of malware) instead of 1, i.e., x = 0 and y = h. 

According to the Shift Property of FNS, The Generic LNS sequence determined 

by Equation 2.29 with initial values x and y can be calculated as: 

GIx,y,j = I (2.30)log(yφ+x)[j+ −1]log φ 

When x = 0 and y = h, we have: 

GI0,h,j = I (2.31)log(hφ)[j+ −1]log φ 

Hence, the number of infected hosts of the malware with a hitlist of size h and the 

combined scanning strategy at time j can be represented by the number of infected 

hosts of the original random-scanning malware at time (j + s), where s is the shifting 

number log(hφ) − 1.log φ 
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Furthermore, according to properties of the FNS, 

GIx,y,j = xIj−1 + yIj 

Hence, the propagation of malware employing the combined hitlist and random scan­

ning is the linear combination of two propagations of malware employing random 

scanning only. When x = 0 and y = h, we have: 

GI0,h,j = hIj (2.32) 

We call h the linear Fibonacci Coefficient (FC) of the linear combination. 

Multiple Starting Points, Collaborative Attacks and the Linear Property 

Malware propagation can start from multiple places in the network rather than 

from a single point, and infected hosts can collaborate with each other to cause much 

more damage. E.g., the coordinated Botnet zombie nodes can collaborate to launch 

DoS attacks [5], and the well-orchestrated collaborative attacks on Estonia caused 

large-scale disruptions [13]. 

We consider the representation of the following attacks: 

Case 1. There are m uncoordinated attackers who release the same copy of mal-

ware at m places simultaneously. We assume that malware employs the localized 

random scanning strategy. We assume that the search spaces of attackers are inde­

pendent (e.g., attackers divide the whole IP address space equally into m parts and 

each attacker will be responsible for one part). For the initializations, we assume that 

x = 0 and y = 1 for all attackers. According to Equation 2.27, the propagation of mal-

ware released by all attackers can be represented as I0,1,j because their initial values 

kVand β coefficients are the same. Note that |β| = 
c( 2

32 now since the search space 
−b)m 

1for each attacker is now reduced to 232 
. Recall that we have |β| < . As discussed m 4 

kV mk 1in Section 2.4.2, if we assume that V = 220 and b = 0, we have 
c( 2

32 = < . 
−b) 212c 4 

m 

Hence, mk < 210, which means that the product of the number of threads per malware c 

and the number of attackers divided by the number of scanned ports is smaller than 
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1024, if there are one million vulnerable hosts. We assume that this condition holds 

and denote the propagation of the whole collaborative attack as IT OT ALxtotal,ytotal,j . 

According to the Linear Property of the FNS, we have: 

m−1 +
IT OT ALxtotal,ytotal,j = I0,1,j 

n=0 

= mI0,1,j 

= I0,m,j 

Hence, the number of infected hosts of m uncoordinated attacks that perform localized 

scanning is equivalent to that of the single attack released at one point with initial 

values xtotal = 0, and ytotal = m. 

Case 2. There are still m collaborative attackers releasing malware. We assume 

that malware employs the sophisticated scanning strategy (but each malware copy 

shares the same search space) and malware at different hosts can communicate with 

each other to avoid duplicate infection attempts. Note we do not assume that infected 

hosts can avoid duplicate scanning (in which multiple attackers can be modeled as 

one attacker with a huge number of threads and minimal thread maintenance costs). 

We assume that initial values of the propagation of the malware released by Attacker 

An are xn and yn (n∈[0, . . ., m)). We still denote the propagation of the whole 

collaborative attack as IT OT ALxtotal,ytotal,j . 

According to Linear Property of the FNS, we have: 

m−1 +
IT OT ALxtotal,ytotal,j = Ixn,yn,j 

n=0 

m−1 +
= I�1 �1 + Ixn,yn,j

n=0 xn, n=0 yn,j (2.33) 
n=2 

= . . .  

= I�m−1 xn,
�m−1 yn,jn=0 n=0 

Hence, the power of the m collaborative attacks is equivalent to the single attack 
�m−1 �m−1released at one point with initial values xtotal = xn, and ytotal = yn. n=0 n=0 
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Equation 2.33 quantifies the power of collaborative attacks, and grows much faster 

than Equation 2.27. 

2.5 Experiments 

In this section, we present the experimental results on the impact of threading, 

infection time, and multiple-attacker collaboration, as well as the effects of hitlist 

size, birth rate, and patching rate on malware propagation. We have conducted the 

experiments on a network that consists of a Pentium 4 workstation and virtual ma­

chines. We simulate the worm propagation and use one machine to simulate multiple 

victim hosts. We implemented the malware propagation model in C++. Without loss 

of generality, in all the experiments, we set V (the number of all vulnerable hosts) 

to 1,000,000, c (the number of ports the malware scans for one host) to 1, and b 

(the number of IP addresses that the malware does not scan) to the size of local and 

multicast address space, which is approximately 225 . 

2.5.1 Verification of the GFMP Model: the Shift Property 

We perform experiments to verify our theoretical GFMP model before employing 

it to study the effects of other parameters. In particular, we want to show the Shift 

Property discussed in Section 2.4.3. In this experiment, we set k to 100, d to 0, p to 

0.0002, and r to 0.0002. 

From Equation 2.32, GI0,h,j = hIj , the number of infected hosts with hitlist size 

h divided by the number of infected hosts with hitlist size 1 is h. Hence, if sizes of 

the hitlists are 2, 100, and 200, the quotients are 2, 100, and 200, respectively. Note 

that the number of infected hosts with hitlist size 200 is 200 =2 times of the number 100 

of infected hosts with hitlist size 100. 

Fig. 2.2 shows the results on the propagation with hitlist sizes 1, 2, 100, and 

200. Note that numbers of infected hosts for hitlist sizes 1 and 2 are enlarged 100 

times. The results confirm our theoretical analysis, and verify the Shift Property. 
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Figure 2.2.: The propagation of hitlist size 100 and 200. 
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Figure 2.3.: The propagation of hitlist size 100 and 200. 

For instance, numbers of infected hosts with hitlist size 100 (or 200) are essentially 

coincident with the numbers of infected hosts (enlarged 100 times) with hitlist size 

1 (or 2). Numbers of infected hosts with hitlist size 200 are approximately twice as 

many as those with hitlist size 100. 

According to Equation 2.31, GI0,h,j = I log(hφ) . Therefore, we can compute 
[j+ −1]log φ 

the number of shifts required to calculate the number of infected hosts with hitlist 

, b = 225 100∗220 100size h = 100. Since k = 100, V = 220 , c = 1, we have: q = = 1∗(232−225) 32∗127 
√ √ 

= 0.025. Hence, θ = 1 + 4q = 1.098 = 1.048, and φ = 1+
2 

θ = 1.024 Therefore, the 

− 1 =  log(100∗φ)number of shifts is : log((h)φ) -1 = 2.010 - 1 = 200. log φ logφ 0.010 

Fig. 2.3 confirms our theoretical analysis. The solid line shows the propagation 

with hitlist size 1. The dotted line shows the propagation with hitlist size 100. The 

dashed line that connects the solid and dotted lines illustrates the number of required 

shifts, which is approximately constant. The projection of the dashed line on the 

x-axis shows that the number of shifts is roughly equal to 200, which verifies our 

analytical result. 
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Figure 2.4.: The propagation of the multi-threaded malware. 

2.5.2 The Effect of Different Hitlist Sizes on Multi-threaded Propagation 

We have conducted experiments to evaluate whether the hitlist scanning can accel­

erate the propagation of multi-threaded malware, and compared the effects of different 

hitlist sizes on the malware propagation. In this experiment, we set k (the number of 

threads in the malware vulnerability scanner of the malware) to 100, d (destruction 

rate) to 0.0001, p (patching rate) to 0.0002, and r (birth rate) to 0. Note that we set 

birth rate to 0 to show the effects of threading (otherwise the increased number of 

infected hosts might be caused by newly joined vulnerable hosts). 

Fig. 2.4 shows the malware propagation with hitlist sizes 50, 100, 1,000, 10,000, 

and 100,000. We observe that the propagation speed of the multi-threaded malware 

increases as the size of the hitlist increases. Specifically, with hitlists of sizes 100,000, 

10,000, 1,000, 100, and 50, the malware propagated to 500,000 hosts in 100, 210, 319, 

441, and 489 time ticks (seconds), respectively. We conclude that the hitlist scanning 

can effectively accelerate the multi-threaded malware propagation, especially when 

the size of the hitlist is large. 
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Figure 2.5.: The malware propagation with different number of threads. 

When the size of the hitlist is 100,000, the malware propagation reached its peak 

after 290 time ticks, after which the actual number of infected hosts decreased. Such 

decrease is caused by patching and destruction. In our experiment, destruction and 

patching rates are not zero. Moreover, we set the birth rate to zero so that no new 

vulnerable hosts will join the network. Therefore, after the malware propagation 

reached its peak, there will be no new vulnerable host to infect, and patched hosts 

can no longer be infected. Hence, the number of infected hosts decreases. Note 

that different birth and patching rates can cause different propagation behavior. We 

discuss our experimental results on the birth patching rates in Sections 2.5.4 and 

2.5.5, respectively. 

2.5.3 The Effect of Different Threading-Levels 

We conducted experiments to study how the number of scanning threads affects 

malware propagation. In this experiment, we set d to 0.0001, p to 0.0002, r to 0, and 

the hitlist size to 10000. 
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Fig. 2.5 shows the propagation with different threading-levels: 50, 100, and 250. 

We observe that the propagation speed increases as the number of threads in the 

malware increases. The effects of the multi-threads are significant: when the number 

of threads is 50, the malware took almost 700 time ticks to infect 800,000 hosts, while 

the same malware took approximately 300 time ticks with 100 threads and 100 time 

ticks with 250 threads to accomplish the same task. Note that when the number of 

threads is 250, the malware propagation reaches its peak in less than 200 time ticks. 

The number of infected hosts then decreased because of destruction and patching, 

since we assume that a patched host cannot be infected again in this experiment. 

The patching rate we set in this experiment is fairly high (0.0002), which means that 

in every time tick two out of one thousand infected hosts are patched. 

2.5.4 The Effect of Different Birth Rates 

We conducted experiments to study the effects of different birth rates on the 

malware propagation. In this experiment, we set d to 0.0005, p to 0.0000, k to 100, 

and the hitlist size to 10,000. Note we set the patching rate to 0 to focus on the birth 

rate. 

Fig. 2.6 shows the propagation with birth rates 0, 0.0001, 0.0002, 0.0003, 0.0004, 

and 0.0005. Note that when the birth rate is 0.0005, it is equal to the destruction rate 

(0.0005). We observe that the birth rate does matter during the malware propagation. 

Specifically, we observe that the number of infected hosts peaked at 1,050,000 when 

the birth rate is 0.0004, while the number of the infected hosts peaked at only 917,000 

when the birth rate is 0. 

Moreover, when the birth rate is 0.0005, which is equal to the destruction rate, 

we observe that the number of infected hosts peaked at 1,080,000. The number of 

infected hosts neither increased nor decreased afterwards. Therefore, an equilibrium 

was reached: although 5 out of 10,000 hosts are destructed in each time slice, 5 out 

of 10,000 hosts are newly born and infected by the malware in each time slice. 
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Figure 2.6.: The malware propagation with different birth rates. 
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Figure 2.7.: The malware propagation with different patching rates. 

2.5.5 The Effect of Different Patching Rates 

We performed experiments to evaluate the effects of different patching rates on 

the malware propagation. In this experiment, we set d to 0.0001, r to 0.0003, k to 

100, and the hitlist size to 10,000. 

Fig. 2.7 shows the malware propagation with patching rates ranging from 0 to 

0.010. We observe that patching significantly reduces the number of infected hosts. 

Specifically, we observe that the malware propagation peaked at 900,000 hosts when 

there was no patching, and the number of hosts dropped to approximately 700,000 

when the patching rate was just 0.001, which means that only one out of one thousand 

hosts is patched. The malware propagation peaked at only 193,000 hosts when the 

patching rate was 0.005, and the malware propagation was significantly reduced and 

peaked at only 66,000 hosts when the patching rate was 0.01 (one out of one hundred 

hosts). Therefore, we conclude that patching can significantly diminish the malware 

propagation and should be employed in all networks. 
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Figure 2.8.: The malware propagation with multiple attackers. 

2.5.6 The Effect of Multiple Attackers 

We conducted experiments to study the effects of multiple attackers on the mal-

ware propagation. In this experiment, we set d to 0.005, p to 0.005, r to 0.03, and 

k to 100. We first set the hitlist size to 100 and 200, respectively, and performed 

the experiments. Then, we simulated the multiple-attack scenario discussed in Case 

2 of Section 2.4.3: there are two collaborative attackers, one with hitlist size 100, 

and the other with hitlist size 200. The two attackers start at the same time, and 

communicate with each other to avoid duplicate infection attempts. 

According to Equation 2.33, the effects of a collaborative attack is the sum of 

the individual attacks. Fig. 2.8 presents the experimental results. The dotted line 

represents the propagation with hitlist size 100. The dashed line represents the prop­

agation with hitlist size 200. The solid line represents the propagation with two 

attackers, one with hitlist size 100 and the other with hitlist size 200. The number of 

infected hosts for the collaborative attack is approximately the sum of the number of 

hosts infected for the individual attacks with hitlist sizes 100 and 200 initially, which 

confirms Equation 2.33. However, we note that after around time tick 300, the sum 
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of the number of infected hosts for the individual attacks become larger than the 

number of infected hosts for the collaborative attacks, which means: 

IT OT ALxtotal,ytotal,j < I�m−1 xn,
�m−1 yn,jn=0 n=0 

The explanation is that the number of infected hosts for the collaborative attacks 

increases more slowly due to the contention between the collaborating attackers. In 

Case 2 of Section 2.4.3, we assume that the collaborative attackers can avoid dupli­

cate infection attempts, but cannot avoid duplicate scanning. Hence, some scanning 

activities in the collaborative attack may collide and such collision can decrease the 

efficiency of the collaborative attack. 

2.5.7 The Effect of Different Propagation Times 

We performed experiments to evaluate the effects of different propagation times 

on the malware propagation. In this experiment, we set d to 0.005, p to 0.005, r to 

0.003, k to 100, and the hitlist size to 1,000. Note that these destruction and patching 

rates are high. The sum of the two rates is 0.005 + 0.005 = 0.01. Note that the birth 

rate is 0.003, which is smaller than the patching rate. 

Fig. 2.9 shows the malware propagation with different propagation times: 2 time 

slices, 20 time slices, and 50 time slices. We observe that as the propagation time 

increases, the propagation speed decreases. In 200 time slices, the malware infected 

38,416, 13,249, and 5,512 hosts, with the 2-time-slice, the 20-time-slice, and the 50­

time-slice propagation times, respectively. In 300 time slices, the malware infected 

125,980, 39,497, and 13,403 hosts, with the 2-time-slice, the 20-time-slice, and the 

50-time-slice propagation times, respectively. Furthermore, the malware propagation 

reached its peak at time tick 482 with 263,732 infected hosts with the 2-time-slice 

propagation time, while the malware propagation with the 20-time-slice and the 50­

time-slice propagation times are still in the process of trying to infect more nodes. 

Therefore, we conclude that the defenders fighting malware should try to maximize 

its propagation time. 



45 

Figure 2.9.: The malware propagation with different propagation times. 



46 

2.5.8 Comparison With Existing Models 

In this subsection, we show that our model is better by comparing it to existing 

models. Fig. 1 in [18] shows the results obtained by the AAWP model by Chen et 

al.. Their experiments employ one million vulnerable machines, a scanning rate of 

100 scans/second, a death rate of 0.001/second, and random scanning. 

The leftmost graph in Fig. 1 in [18] illustrates the effects of hitlist size. In 

comparison, our results (Fig. 2.2, 2.3, and 2.4) verify the important shift property, 

and measure the impact of multi-threading and hitlist size on malware propagation. 

Our results are more practical since threading is employed by most real-world mal-

ware. The middle graph in Fig. 1 in [18] illustrates the effects of patching rate. In 

comparison, our results (Fig. 2.6 and 2.7) provide more insights into the effects of 

patching/birth/death rates. We incorporate not only patching and death rates in our 

studies, but also the birth rate. Our results on the birth rate (Fig. 2.6) are significant, 

especially for wireless and peer-to-peer networks, in which hosts may join or leave at 

any time. Our results show that death rate can cause the number of infected hosts 

to decrease over time, which cannot be inferred easily from Fig. 1 in [18]. 

The rightmost graph in Fig. 1 in [18] illustrates the impact of infection time. 

While their results show that infection times do not affect malware propagation sig­

nificantly, our results show otherwise. Our explanation is that we consider the impact 

of threading, infection time, and multiple-attacker collaboration, as well as the effects 

of hitlist size, birth rate, and patching rate on malware propagation. Our results are 

more intuitive because modern malware has very high propagation speed and longer 

infection time leaves less vulnerable hosts infected. 

In all, the comparison shows that our model is more accurate and complete by 

considering the issues of MMIMC, and provides more insights into malware propaga­

tion. 
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2.6 Conclusion 

We quantitatively study issues of Multi-port scanning, Multi-threading, Infection 

time, Multiple starting points, and Collaboration (MMIMC) in malware propagation. 

To our knowledge, there is no previous study on the effects of MMIMC. We discuss the 

limitations of current models, and explain the impact of threading, infection time, and 

collaboration, as well as the effects of hitlist size, birth rate, and patching rate. We 

consider the multi-threading issue during the calculation of probability of successful 

scans. We model the infection time and propagation time of the malware by employing 

Fibonacci Number Sequence. We derive the Shift Property and the Linear Property. 

We theoretically analyze the effects of the above issues, and perform experiments to 

verify the theoretical results. 
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3 ALLOCATION SCHEMES, ARCHITECTURES, AND POLICIES FOR 

COLLABORATIVE PORT SCANNING ATTACKS 

3.1 Introduction 

Attackers employ various technologies to launch attacks, such as Denial-of-Service 

(DoS), BotNet, Worm, and Virus, etc. The first step of these attacks is to discover 

vulnerable victim hosts. 

Nearly all attackers perform port scanning to find vulnerabilities on victim hosts. 

Most existing fast-replicated viruses and worms [28], [8], [9] perform port scanning to 

discover and infect targets. Hence, it is crucial to study port scanning and explore 

whether the latest advances in technologies have changed the horizon of port scan­

ning, including how to perform port scanning, expedite scanning speed, conduct port 

scanning from multiple machines, and defend against modern port scanners. 

Different network protocols employ different ports. Vulnerabilities exist in all 

protocols. Hence, to gather information completely, port scanners have to perform 

scanning for a large number of ports. The size of the port space is 65535 [36]. Ports 

0 to 1023 are well-known ports, ports 1024 to 49151 are registered ports, and ports 

49152 to 65535 are dynamic or private ports. 

Port scanners must run extremely fast. Port scanners have employed sophisticated 

techniques to expedite port scanning. For example, worms can search vulnerabilities 

on a commonly used port (e.g., port 21 used by FTP, and port 443 used by HTTPS). 

However, a typical complete port scan is time-consuming. For example, a 65,536-port 

UDP scan for one target host could take more than 18 hours [19]. 

Attackers typically perform port scanning independently, without coordination, 

to find victim hosts. If port scanning software packages are run on multiple machines 

without coordination, their search spaces will overlap significantly. The overlap causes 
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reduction in the performance of the scanning. The network connections used by the 

port scanners could get congested. The buffer size of the network software may not 

be large enough to hold all the incoming data. The processing speed of the computer 

may not be enough to analyze responses from all the networks. After all scanning 

activities end, all the computers involved in the scanning must communicate to each 

other and finalize the search results. Problems arise when their results differ. Such 

differences are hard to analyze, due to the fast-changing nature of computer networks. 

As defense technologies evolve, port scanners that exhibit unusual network behav­

iors, such as sending requests to all IP addresses in a Class B network, are more likely 

to be detected. Such detection will likely disable the machine performing the scan­

ning immediately and trigger chained detections of all other machines involved. Given 

the fact that virtually all networks are protected by firewalls, filters, and monitors, 

a simple deployment of identical port scanning software packages to all computers 

involved in the scanning is not acceptable. 

A key observation to the above deployment plan is that there is a lack of collabo­

ration among the port scanners. We use collaboration and coordination interchange­

ably. A simple increase in the number of port scanners creates too much duplicate 

work, increases the power of the whole attack incrementally, and introduces over­

head on analyzing, comparing, and resolving the conflicts in the results. Therefore, 

we need a smarter deployment plan which makes full use of all scanners involved, 

avoids performing duplicate actions to the maximum extent, and synchronize actions 

of participating nodes properly and efficiently. 

We propose a smart and efficient deployment plan of port scanner software pack­

ages to multiple computers. To address the issues above, our deployment plan employs 

the Distributed Hash Table (DHT) to speed up the scanning, avoid duplicate scan­

ning and contention, and efficiently process and summarize the results from multiple 

computers. The key idea is to perform DHT lookups on the target host before initiat­

ing any scanning activity. In general, the idea can be extended to other collaborative 

attacks as well. 
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DHTs [58] are distributed systems that provide essential functionalities of hash 

tables (HT). In HTs, one can insert items and query whether a particular item exists. 

For each stored item, an associated value can be retrieved in the HT. Similarly, in 

DHTs, one can insert items and query for the existences of items. (Key, Value) pairs 

can be stored in DHTs as well. 

The difference between a DHT and a conventional HT is that the stored items are 

distributed over multiple computers. The key advantages of the DHT include: 

1.	 Efficiency: DHT is designed to store information and perform lookups effi­

ciently. 

2.	 Scalability: DHT is designed to scale to thousands of computers. 

3.	 Robustness: Most DHTs can let participating computers to join or leave at any 

time, and gracefully handle computer failures. 

4.	 Distribution: Items stored in DHTs are distributed over a large number of 

computers. No central server is needed to answer queries. 

Numerous application have employed DHT in the past, such as BitTorrent and 

Emule [54], [55]. 

DHT fits the collaborative port scanners because it allows efficient lookups of IP 

addresses (or IP address and port number pairs). In our deployment plan, each local 

port scanner double-checks an IP address in the DHT before the actual scanning, 

therefore avoids problems on duplicate scanning and contention. The DHT database 

serves as a result repository. It can store scanned results as the (IP address, scan 

result) pairs. Although DHT has associated overhead in insertions and lookups, it 

provides higher efficiency by avoiding duplicate scanning, contention, and unnecessary 

data analysis. Hence, the DHT-based collaborative port scanning scheme significantly 

improves over uncoordinated and unsynchronized scanning. 
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3.2 Related Work 

Port Scan. 

Port scanners employ various techniques. In a SYN Scan, the scanner produces 

its own IP packet and sends TCP SYN packets to victim hosts and analyzes the 

responses. In a UDP scan, the scanner sends UDP packets to victim hosts and checks 

whether ICMP port unreachable messages are received afterwards. 

Port scanning can be performed on multiple ports. Some scanners perform the 

scanning in two-iterations. These scanners scan with one technique, e.g., SYN scan, 

first before scanning the un-denied ports with other techniques. For instance, the 

famous NMAP scanner [19] uses the two-iteration approach when executed with the 

-SUV option. 

Ref. [53] discussed how to detect coordinated port scans. However, the author 

mainly focuses on the detection and did not provide details of how to coordinate the 

individual port scans. 

Port scanner needs to scan a large number of ports, as discussed in Ref. [36]. 

Example ports include port 7 for echo, port 21 for FTP, port 22 for SSH, port 23 for 

Telnet, port 25 for SMTP, port 80 for HTTP, port 79 for finger, port 110 for POP3, 

port 139 for NetBIOS, port 143 for IMAP, port 443 for HTTPS, and port 53 for DNS. 

Coordination. 

Port scanners can collaborate with each other and perform much more efficient 

reconnaissance. Staniford et al. [24] discussed the Warhol worm, which propagates 

extremely fast by self-coordination with both hit-list and permutation scanning. Wi­

ley [41] described an abstract distributed and collaborative worm Curris Yellow. 

Gates [53] discussed possible collaborations in port scans. 

Wang et al. [50] described an advanced peer-to-peer Botnet. The distributed.net [56] 

used distributed computing to break ciphers. Our work discusses specific issues of 

the DHT-based scheme, proposes different allocation strategies, and illustrates the 

scanning architectures and policies. 

http:distributed.net
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IPv6 Scan. 

Yang [35] discussed how to defend worms in IPv6 networks. Bellovin et al. [49] 

presented worm propagation strategies for IPv6 networks. Kamra et al. [51] proposed 

a DNS-scan method that can achieve high spread rates in IPv6 networks. 

Worm Scanning. 

Ref. [27] discusses characteristics of worms, including protocol, amount of payload 

and scanning strategy, etc. Ref. [42] talks about the performance and models of worm 

propagations. The authors talk about the local preference scans. If there are multiple 

attackers starting from multiple sources, local preference scans will be much more 

powerful. Ref. [25] describes a class of worms that target network systems such as 

routers. Ref. [17] discusses how to minimize the number of scans required to infect 

hosts. Zhang et al. [1] discussed a Fibonacci model of worm propagation. 

Defense. 

Wu et al. [43] proposed a worm detection architecture for various worm scanning 

techniques. Twycross et al. [44] built a virus throttle program that can detect the 

port scanner based on their abnormal network behaviors. Jung et al. [47] developed 

the Threshold Random Walk (TRW) algorithm to identify malicious remote hosts. 

Kumar et al. [52] presented the analysis of the Witty Worm and inferred about the 

IP address where the Witty Worm was released. Staniford et al. [48] described Spice, 

a port scanner that can detect stealthy scans. 

3.3 Issues on Port Scanning 

Most attacks include the reconnaissance step, in which attackers explore and dis­

cover victim hosts for vulnerabilities and important information for launching attacks, 

including operating system and firewall status. Port scanners are regularly used to 

perform such activities. 
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3.3.1 Conventional Port Scanners 

In a port scan, attackers scan a number of listening ports on the victim host. This 

method guarantees that all known vulnerabilities to attackers on the victim host can 

be discovered, i.e., there is no false negative. However, an exhaustive search is time-

consuming. On the other hand, in a port sweep, attackers scan a particular port on 

the a large number of victim hosts. Port sweep can reduce the size of search space 

significantly, but could ignore vulnerabilities on un-searched ports. It is clear that 

the optimal strategy is to scan only the common or vulnerable ports. Such strategy 

is difficult to achieve in practice. It is not uncommon to find attackers that employ 

a combination of both methods. Note that in a partial scan, attackers can only scan 

the ports that match the vulnerabilities that the attackers want to take advantage of. 

E.g., if the attacker could launch FTP and HTTPS attacks, ports 21 and 443 could be 

the only ports that the attacker scans. If there are multiple collaborative attackers, 

one attacker can provide vulnerability database such as the FTP and HTTPS ports 

mentioned above, another attacker can perform optimal scanning according to the 

available vulnerability database. 

For each port scan attempt, the result can be: 

1.	 listening : the scanned port is actively listening. E.g., provided that the victim 

host tries to accept the TCP connection request, a successful TCP SYN scan 

receives a SYN-ACK packet from it. 

2.	 not listening : the scanned port is not listening. E.g., if the victim host does 

not listen on a particular UDP port, a UDP scan directed to that port receives 

an ICMP port unreachable packet. 

3.	 unknown: there is no response from the victim host. The IP packets between 

the scanner and the victim host may be lost on the way, filtered by firewall, or 

blocked by the anti-virus software. 
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Successful scans can yield promising results, including the operating system of the 

target host, the protocol suite in use, and the open ports, etc. Note in case 3), victim 

hosts may not trust the machine running the port scanner for a number of reasons, 

including IP address not recognized, host not residing on the same LAN, etc. In such 

cases, a collaborative scan launched from hosts that are trusted by victim hosts may 

be successful. The information gathered by the trusted hosts can be passed to other 

malicious computers. 

3.3.2 Detection of Port Scanners 

Security monitors that could detect port scanning activities normally employ sim­

ple rules to label potential port scanning activities. E.g., the monitors can check 

whether there are a large number of probes (denote it as m) within a limited time 

period (denote it as n seconds) from a particular machine. Note n is normally set to 

a small number to reduce the burden of the Intrusion Detection Systems (IDS) due 

to their limited ability to log and analyze network traffic. Researchers have proposed 

new techniques for detecting port scanning activities, such as advanced techniques 

that employ machine learning and probabilistic packet inspection [47]. Port scan­

ners that choose scan targets randomly are more likely to be detected because of the 

large-scale network-indicators generated [39]. 

3.3.3 Collaborative Port Scanners 

Individual port scanners have limited power because they usually employ a spe­

cific technology. Ironically, they are more likely to get detected because they scan 

all targets individually and generate excessive network traffic. Collaborative port 

scanners can perform the work together. E.g., they can vary the port scanning tech­

nologies, the port scanning locations, the methods to choose scan targets, and the 

ways to divide work among themselves. We discuss possible scanning technologies 

and methods below. 
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C1) Port Scanning Technologies 

Collaborative port scanners can choose from a variety of port scanning technolo­

gies, including but not limited to [45], [47], [48]: 

1.	 Connect scan: The port scanner employs system call connect() to scan target 

hosts. This scan does not require special privileges. After a TCP connection 

is established to the victim host, the port scanner sends a RST packet to close 

the connection. One drawback of this scan is that the established connections 

are logged and easily noticed by security monitors and software packages. 

2.	 Application scan: The port scanner employs particular application-layer proto­

cols and sends requests according to the protocol-specifics. Example protocols 

include HTTP, FTP, and DNS. If the victim host responds to such application-

layer requests, the port scanner classifies the corresponding ports as active. 

3.	 Ident scan: The port scanner connects to the victim host, and uses a vulner­

ability in the ident protocol to retrieve usernames on the victim host. E.g., if 

the port scanner connects to a HTTP server, the ident protocol can be used to 

look up the username running it. 

4.	 SYN scan: The port scanner crafts its own TCP packet. The scanner first sends 

a SYN packet to the victim host. The victim host responds with a SYN/ACK 

packet. The scanner records this response and classifies the scanned port as 

listening and accepting incoming connections. The scanner could then send a 

reset (RST) packet to end the scan. Since the SYN scan does not establish a full 

TCP connection, the victim hosts will not run out of buffer space for accepting 

incoming connections. 

5.	 UDP scan: The port scanner crafts its own UDP packet. The scanner sends an 

arbitrary UDP packet to the victim host. If an ICMP port unreachable message 

is received afterwards, the scanner knows that the port is not active. However, 
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reply packets might be dropped on the network route. Certain network secu­

rity monitors and anti-virus software packages may filter out the UDP packets. 

Therefore, this scanning technology can be unprecise. 

6.	 ACK scan: The port scanner crafts its own probe packet and set the ACK flag. 

The scanner sends the probe packet to the victim host. If an ICMP unreachable 

message is received or there is no reply, the port scanner confirms that the probe 

packet is filtered by firewall or security software packages. Therefore, ACK scan 

is used to detect whether a particular network link is guarded by firewall or 

security softwares. If the network link is unfiltered, the victim host will return 

an RST packet. 

7.	 FIN and Null scan: The port scanner produces surreal scenarios and analyzes 

the responses from the victim hosts. In a FIN scan, the scanner sends a FIN 

packet to the victim host. If there is no reply from the victim host, the scanned 

port on the victim host is classified as open or filtered, because a closed port 

would send an RST packet. Similarly, in a Null scan, the port scanner produces 

a TCP packet that does not have any flag, and sends it to victim hosts. A lack 

of response suggests that the target port is either open or filtered. 

8.	 Cloaked scan: In cloaked scans, it is very difficult for defenders to figure out the 

identity of the scanners. Network devices, firewalls, security software packages, 

and servers can log potentially malicious activities (e.g., a connection without 

data transfer) and analyze them to find the scanners. Port scanners can use 

cloaked scans in such cases. Example cloaked scans include: a) proxy scan: 

in which the victim host sees a proxy machine rather than the attacker; b) 

fragmented packet scan: in which the port scanners send fragmented packets 

that can be combined together at the destination; and c) implementation-flaw 

scan: in which the port scanners exploit implementation flaws in the victim 

host to perform scanning. E.g., the old predictable IP ID sequence number 

bug [57] (now fixed) can be employed to do port scanning. 
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9.	 Multi-cast scan: The port scanners can send packets to a multicast address in 

this case. The packet is then directed to a large number of victim hosts. The 

port scanner can fake the source IP addresses so that responses can be directed 

to other collaborative attackers. 

C2) Target Selection Methods Collaborative port scanners can choose from a 

variety of target selection methods: 

1.	 Naive scanning : The port scanner chooses the next IP address to scan accord­

ing to an uniform distribution. Code red and Slammer worms employed this 

method. 

2.	 Local scanning : The port scanner gives priority to local IP addresses. More 

specifically, with probability p the port scanner chooses to scan an IP address 

that shares the same first x bits (x can be any number from 1 - 31) with it, and 

with probability (1-p) it chooses to scan a random IP address. 

3.	 Importance scanning : The port scanner assumes that the vulnerable hosts are 

unevenly distributed, hence important IP addresses should be scanned first. 

Ref. [32] proposes the importance-scanning method, assuming that the vulner­

able host distributions exist and are obtainable. Ref. [26] proposes the static 

importance-scanning strategies and assumes that keeping information about 

uninfected hosts is realistic. 

4.	 Sequential scanning (nearest neighbor scanning): The port scanner chooses to 

scan the next IP address in the lexicographical order. 

5.	 Hit-list scanning [24] : The port scanner employs an existing list of IP addresses 

and scans those addresses first. Such tables may be easily obtained from mul­

tiple sources, such as routing tables and social network profiles. In particular, 

the hitlist that has all the addresses in the BGP routing table is very easily 

obtained and effective. 
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6.	 Sampling scanning : The port scanner can choose to scan the representatives of 

subnets. After successful scans, the port scanner tries to infect the victim hosts 

and then start new scanning from the newly infected hosts. 

7.	 Passive scanning : The port scanner does not send scanning packets. Instead, 

it collects and analyzes the network traffic that pass through it. 

3.4 DHT-based Collaborative Port Scanners 

The fundamental problem for port scanners is to find vulnerabilities on all ports 

of target hosts, build exhaustive vulnerability database, and prepare for the launch 

of effective attacks against target hosts. As discussed in Section 3.1, port scanning 

can start from multiple sources instead of only one. The latter is assumed in cur­

rent research. Multiple port scanners might perform duplicate scanning or cause 

contention. 

Furthermore, as discussed in Section 3.3.3, port scanners on different machines 

can employ different technologies to scan the target hosts. It is not only inefficient to 

let all port scanners try all possible scan methods, but such exhaustive searches are 

also likely to trigger the alarms of defense systems. 

To avoid contention among port scanners and increase scanning speed and power, 

the collaborative port scanning scheme must define clear work allocation methods for 

all participating scanners, avoid generating excessive network traffic or leaving traces 

for tracebacks, and specify when to stop scanning for the scanners. We discuss these 

issues below. 

3.4.1 Static and Dynamic Allocation of Targets 

A number of attackers can perform the port scanning simultaneously to make 

much faster progresses. In this scenario, a number of attackers can divide the work 

to scan a large number of victim hosts. There are two ways to divide the work: 
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A1) Static Allocation 

The Static Allocation (SA) scheme avoids the duplicate work discussed above. In 

a SA scheme, the target address space is divided to all collaborative port scanners 

before the launch of the actual attack. Port number and IP address combinations, 

scanning technology, and vulnerability checking methods are divisible as well in this 

scheme. Each port scanner gets its own allocation of the target space, technology (to 

use), and vulnerability (to check) list. Without loss of generality, we only discuss the 

allocation methods for the target space. 

Collaborative port scanners have a number of ways to define the SA policy to 

divide the work, i.e., ways to divide the large target address space. Examples include: 

1. Divide the address space by hosts. 

In this policy, each collaborating port scanner will be responsible for all ports 

on particular hosts. There are two methods to divide the addresses: 

(a)	 random: This policy divides the target address space randomly to individ­

ual port scanners. 

(b)	 sequential : This policy divides the target address space sequentially to 

individual port scanners. Each scanner will be responsible for a chunk of 

the huge IP address space. 

2. Divide the address space by port numbers. 

In this policy, each collaborating port scanner will be responsible for the same 

port on all hosts. There are two methods to divide the addresses as well : 

random and sequential. 

The SA scheme does not address a number of issues, including node failure and 

dynamic node joining and leaving. Note that in real attack scenarios, such as the worm 

scanning and propagation, newly infected hosts might join the existing attackers. 

Also, not all port scanning activities are equal. For instance, routers and firewalls 
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only filter packets from particular sources. Hence, port scanning packets from one 

scanner may be filtered, while the packets from another may go through. Moreover, 

port scanning can be done in different ways. One can initiate the port scanning with 

different power, such as packet sending rates. One can have unsuccessful scans due 

to network data loss and jittering. One can get active defense from defenders of the 

target systems and could even get detected and physically disabled by them. SA 

scheme fails to address these issues either. 

A2) Dynamic Allocation 

The Dynamic Allocation (DA) scheme does not pre-allocate target spaces and 

allows the attackers to divide the work on the fly. In this scheme, attackers can 

communicate with each other to dynamically determine the next hosts to scan. A 

key advantage of communication between attackers is that the scanning space can be 

constantly updated. 

In the state-of-the-art port scanners, e.g., the hit-list based worm scanners, the 

hit-list is divided by half each time using a top-down allocation approach when a new 

propagation is successful. In contrast, the DA scheme allows the scanning space to 

be constantly updated. 

In the DA scheme, one can develop distributed lookup tables to query whether a 

particular IP address has been scanned/infected or not. 

A3) Hybrid Allocation 

The Hybrid Allocation (HA) scheme combines the SA and DA schemes together. 

If the number of target hosts is large and the number of available attackers is not 

small, the system can divide the target hosts statically in the first step. The statically 

divided hosts are then assigned to different groups of attackers. The attackers for 

particular groups use the DA scheme to generate scan targets. For instance, to scan 

all target hosts a country, one can divide them by states, and allocate hosts in different 

states to different groups of attackers. The HA scheme is most useful when there are 

lots of target hosts and attackers. 
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3.4.2 Synchronization of Collaborative Port Scanners 

Based on the above discussion, in order to synchronize the actions of collaborative 

port scanners, we need to develop a dynamic or hybrid allocation scheme that allocates 

the scanning targets to individual port scanners. The DA or HA scheme must be 

extremely efficient so that it can respond to multiple requests from a large number of 

collaborative port scanners. During the on-the-fly target allocation, the DA scheme 

needs to make sure that two conditions are met: 

1. No two port scanners will be scanning the same IP address. 

2.	 A port scanner will not be scanning any IP address that has already been 

scanned by another port scanner. 

To facilitate our discussion, we define the status of an IP address based on whether 

it has been scanned. 

Definition 1. Port Scanning Status (PSS) 

The Port Scanning Status (PSS) of an IP address is a two-bit number that indi­

cates its the scanning information. More specifically, the PSS of an IP address i can 

be one of the following: 

1.	 00 — denotes that the IP address has never been scanned by any collaborating 

port scanner; 

2.	 01 — denotes that the IP address is currently being scanned by a collaborative 

port scanner; 

3.	 10 — denotes that the IP address has already been scanned by some port 

scanner. 

4.	 11 — denotes that the IP address has already been attacked by some attacker 

based on the scanning results. 
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Definition 2. Degree of Collaboration (DC) 

The Degree of Collaboration (DC) for a collaborative port scan is an integer 

that records the number of active collaborative port scanners. Since individual port 

scanners may join and leave at any time during a collaborative port scan, the number 

of active collaborative port scanners vary from time to time. Hence, the DC for a 

collaborative port scan at time tick t is : 

DCt = the number of active port scanners at time t. 

Definition 3. Collaboration Architecture (CA) 

Collaborative attackers need to communicate to each other over the network to 

synchronize their actions. In particular, collaborative port scanners need to synchro­

nize their scanning activities on IP addresses. To effectively communicate the PSS 

of an IP address and keep themselves updated about the DC, they need an efficient 

and robust distributed query system. The basic functionality of the query system is 

to store scanned results and provide real-time scanning status. Information like the 

scanned IP addresses, ports, and vulnerabilities are stored in the system. To facilitate 

discussion, we consider the case that only IP addresses are stored. 

There are a number of possible architectures for this query system : 

1.	 Flooding architecture: As shown in Fig. 3.1, in this architecture, each collaborat­

ing port scanner ”floods”, i.e., broadcasts messages to, all known collaborators 

to query the scanning status of a particular IP address. While robust against 

node failures, this architecture requires that each node stores its own scanning 

status information and incurs significant network overhead due to the huge 

amount of query traffic. 

2.	 Collaboration-server based architecture: As shown in Fig. 3.2, in this architec­

ture, each collaborating port scanner registers itself at a collaboration server 

dedicated to monitoring scanning status, and joins the collaborating port scan­

ner group. If a collaborating port scanner stops the scanning activities, it will 

notify the collaboration server. The collaboration server is responsible for stor­
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Figure 3.1.: The flooding architecture. 

Figure 3.2.: The collaboration-server based architecture. 

ing the scan status and results for all port scanners. Each collaborating port 

scanner queries the collaboration server for real-time scanning status and makes 

decision on the next scan target. While efficient, the reliability of this archi­

tecture depends on that of the collaboration server. If the collaboration server 

has limited bandwidth, it will not able to handle the large amount of network 

traffic generated by individual port scanners. 
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Figure 3.3.: The distributed architecture. 

Figure 3.4.: The hybrid architecture. 
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Moreover, the collaboration server is a single failure point. The collaborative 

port scan could not proceed if the server is down. Even if a new collaboration 

server can be established, a lot of efforts and time need to be spent in the 

recovery. The collaboration-server architecture is vulnerable to defense as well, 

e.g., the defenders can analyze the traffic patterns of the collaboration server, 

determine that it is acting as a communication and command center, and take 

it down to shut down the whole collaborative port scan. In the real world, 

researchers have proposed traffic analysis methods to defend against Botnets 

based on IRC channels [11], [40]. 

3.	 Distributed architecture: As shown in Fig. 3.3, in this architecture, the scanning 

status of all collaborating port scanners are distributed over all the scanners. 

Therefore, each collaborating port scanner issues queries to the distributed in­

formation system based on themselves. The distributed information system acts 

as the efficient storage and query server, scales to a large number of nodes, and 

provides high reliability. 

This architecture eliminates the concentration of information and network traffic 

on the collaboration server. Its efficiency is much higher than the flooding 

architecture. However, each port scanner has to both perform scanning and 

serve as a active node in the distributed information system. 

4.	 Hybrid collaboration architecture: As shown in Fig. 3.4, in this architecture, 

there are two groups of collaborating attackers: the first group of them is the 

traditional port scanner group, and the other is the information group, i.e., 

the one responsible for the distributed information system discussed in the dis­

tributed architecture. The attackers from the first port scanner group query the 

attackers from the information group for IP address scan status. The attackers 

from the information group builds, indexes, and stores all scan status infor­

mation efficiently. Attackers from the port scanner group view the distributed 

information system as a collaboration server discussed in 2). 
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The hybrid collaboration architecture combines the collaboration-server based 

architecture and the distributed architecture. Compared to the distributed ar­

chitecture, the hybrid architecture relieves the port scanners from infrastructure 

issues, i.e., storing scanning status information and answering IP scan status 

queries. It specifies a dedicated group of attackers responsible solely for the dis­

tributed information system on scanning status. Hence, attackers do not have 

to balance their resources between the actual attacks and the infrastructure. 

By such task division and collaboration, attackers take advantage of the benefits 

of both collaboration-server based and the distributed architectures. Therefore, 

they are more likely to increase the efficiency and the scalability of their systems 

and launch much more powerful attacks. 

3.4.3 The DHT-based Contention-Avoidance Allocation Scheme 

Overview 

We need a distributed port scanning system that can avoid duplicate scanning 

and contention among collaborative port scanners. duplicate scanning and contention 

include simultaneous scanning of an identical victim host, generation of excessive net­

work traffic on the same network link, and duplicate work of distributed port scanners, 

i.e., scanning the same port on the same victim host for an identical vulnerability. 

The proposed DHT-based collaborative scanning scheme can elegantly avoid dupli­

cate scanning and contention. The scheme incorporates the well-designed distributed 

lookup system, the DHT, that stores scanning status information and answers queries 

from collaborative port scanners. The DHT provides distributed look-up services. 

Based on the discussion in Section 3.4.2, The collaborative port scanning scheme em­

ploys the distributed/hybrid architectures because they provide higher efficiency and 

scalability. 

Traditional port scanners send probing packets and analyze responses from victim 

hosts. In the collaborative port scanning scheme, each collaborative port scanner 
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queries the DHT before each scanning. Note besides DHT, there are other candidates 

for the distributed information storage and query system, such as the Big Table [6]. 

If false positive can be tolerated, Bloom Filter [7] can help with the query system as 

well. 

The DHT-based scanning algorithm 

Each collaborative port scanner runs the new DHT-based scanning algorithm in 

the proposed scheme. 

The algorithm for the collaborative port scanner is presented in Algorithm 1. The 

collaborative port scanner picks up an IP address and a port number, and checks 

if the IP address and port number combination has been scanned already. If not, 

the port scanner performs port scanning activities using a randomly chosen scanning 

technology discussed in Section 3.3.3, and records the scanned results. There are two 

important methods for the collaborative port scanner: the GET() method, responsible 

for checking the scan status for IP address and port number combinations, and the 

SET() method, responsible for recording the scanned results. 

The algorithm for the GET() method in the scanner is presented in Algorithm 2. 

The GET() method processes the (IP address, port number) pair, and looks it up in 

the DHT to check its scan status. If there is a match, the GET() method returns a 

variable indicating that the (IP address, port number) pair has already been scanned. 

Otherwise the GET() method returns a variable indicating that the pair has not been 

scanned. To perform look-ups in the DHT, the GET() method can employ RPC 

calling mechanisms. Note that DHT performance optimizations allow fast lookups. 

E.g., caching and the hybrid architecture discussed above can significantly reduce the 

lookup latency. 

The algorithm for the SET() method in the scanner is presented in Algorithm 3. 

The SET() method processes the (IP address, port number) pair, and records its 

status in the DHT. Note the SET() method must take concurrency control issues into 
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consideration because no concurrent GET() and SET() should be allowed on the same 

(IP address, port number) pair to ensure correctness of the whole system. Although 

concurrent GET() accesses are allowed, no two SET() methods should be modifying 

the scanning status of the same (IP address, port number) at the same time. This 

problem is similar to the reader/writer lock problem: concurrent GET()s is allowed 

while concurrent SET()s and concurrent GET()s/SET()s are prohibited. The GET() 

and SET() methods can implement a reader/writer lock in this case to improve the 

lookup performance. Another way to improve the performance is to lock only part of 

the DHT. By default, given an (IP address, port number) pair, the SET() method can 

request to lock certain IP address ranges instead of the whole IP range. E.g., if the 

SET() method requests to lock only the Class B network that the given IP address 

belongs to, other SET() methods can write to other class B network addresses, which 

improves the performance of the whole system. 

3.4.4 Detection Avoidance 

An effective way to detect traditional port scanners is to watch for abnormal 

network traffic patterns. As discussed in Section 3.1, thresholds such as excessive 

number of pings within a certain time period can be set up to trigger alarms for port 

scanning activities. An obvious ”solution” is to perform ”stealth scans”, e.g., perform 

scanning activities slowly for several months and gather the results. Such solution 

cannot get enough information quickly and is not desirable for the port scanners. 

Collaborative port scanners can distribute the work among a large number of 

machines that are in different geographical areas, thus reduce the network traffic gen­

erated by individual port scanners and avoid detection. An optimal scanning strategy 

for detection avoidance is to ”blend into the crowds”, i.e., to mix scan traffic into nor­

mal network traffic and make it difficult for defenders to notice. E.g., smart scanning 

schemes that resemble the collaborative port scanners as web crawalers, bots, or spi­

ders could successfully foil a large number of defense systems. Moreover, by employing 
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Algorithm 1 The Collaborative Port Scanner 

// Get an unscanned IP address and port number combination. 

repeat 

// Do preprocessing works.
 

//
 

ip = ChooseIPAddressToScan();
 

port = RandomlyPickUpAnPortNumber();
 

// Check with the DHT to see if the IP address
 

// and port number combination has been scanned already.
 

// The GET() method returns NOT SCANNED if the
 

// IP address and port number combination has not been
 

// scanned yet.
 

scan status = GET(ip, port);
 

until scan status = NOT SCANNED 

// Perform the scanning activities. The scanning method 

// is generated randomly from the scanning technology 

// database, including the ones discussed in Section 3.3.3. 

scan method = RandomlyPickUpScanningMethod(); 

scan method.Send(probing packets, victim); 

scan method.Receive(responses, victim); 

scan method.scan result = Analyze(responses); 

// Record the result of the scanning to the DHT. 

SET(ip, port, scan method.scan result); 

// Return. 

return OK; 
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Algorithm 2 The GET Method 

// The GET() method :
 

// takes:
 

// (ip address, port number) pair as inputs; and
 

// returns:
 

// NOT SCANNED : if the pair has not been scanned yet;
 

// SCANNED : if the pair has been scanned already.
 

Require: IP address and port number are correctly passed in as arguments. 

// Do preprocessing works. 

ip port pair = GeneratePair(ip, port); 

// Contact the DHT to read information.
 

RPCCallBack = SetupRPCCall();
 

RPCCallBack.Run();
 

WaitForRPC();
 

// Get the scanning status for the (IP address, port number)
 

// pair.
 

scanning status = ProcessRPCResults();
 

// Return.
 

if scanning status = 0 then
 

return NOT SCANNED; 

else 

return SCANNED; 

end if 
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Algorithm 3 The SET Method 

// The SET() method : 

// takes: 

// (ip address, port number) pair and 

// the scanned result as inputs; 

// performs: 

// DHT information updates. 

Require: IP address, port number, and the scanned result are correctly passed in as 

arguments. 

// Do preprocessing works. 

ip port pair = GeneratePair(ip, port); 

// Request exclusive access for the DHT. 

Lock(starting IP address, ending IP address); 

// Contact the DHT to write information. 

RPCCallBack = SetupRPCCall(); 

RPCCallBack.Run(); 

WaitForRPC(); 

// Check if the update was successful. 

CheckSuccess(); 

Ensure: Update is successful. 

// Release the lock. 

Unlock(starting IP address, ending IP address); 

Ensure: lock is released. 

// Return.
 

return OK;
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the distributed and the hybrid architectures discussed in Sec.3.4.2 to distribute net­

work traffic, collaborative port scanners can escape detection of intelligent defenders. 

Methods that analyze the network traffic using data mining techniques [40] to identify 

command centers of collaborating malicious computers will fail to locate collaborative 

port scanners. 

3.4.5 Stop Policy 

A critical problem for the collaborative port scanners is to determine when to 

stop the scanning activities. Optimally, the collaborative port scanners stop after all 

hosts has been scanned for every possible vulnerability. In practice, this mission is 

difficult to accomplish because each host needs to make its own stop decision based 

on its knowledge of the global scanning activities. Ref. [37] proposes an autonomous 

design. In their design, each host employs a Sum-Count-X method to determine 

when to stop, and communication among hosts is necessary to improve the precision 

of stop estimation. Ref. [38] proposes a quorum-sensing design. However, they did 

not consider the network topology. Also, after the stopping of the worm propagation, 

a worm user needs to manually restart it. 

In our approach, The DHT records all scan statuses. We can constantly monitor 

the uninfected nodes as long as there are empty entries in the collaboration table. 

Therefore, the stop condition for the collaborative port scanners can be defined as 

all (IP address, port number) pairs have been scanned, as reflected in the DHT. We 

believe the collaborative-table approach is faster and more efficient since the DHT 

serves as the monitor and recorder of all status messages. No approximate calculation 

is used. If not all hosts or ports need to be scanned, users can relax the definition 

of the stop policy. E.g., collaborative port scanners can be defined to stop after 90 

percent of all hosts are scanned. 
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3.4.6 Target Selection and Revisit Policy 

A key step in the DHT-based collaborative port scanning is to generate random 

IP addresses and port numbers. Random number generators can be exploited to 

analyze the bandwidth of worm senders [52]. Hence, one enhancement to the scheme 

is to employ a variety of random number generating methods. By varying the way 

to generate random IP addresses and port numbers, the collaborative port scanning 

becomes polymorphic, and is much more resistant to analysis and defense. 

To improve the efficiency of the collaborative port scanners, learning algorithms 

can be employed. The DHT stores a lot of information, which can be analyzed to 

improve future scanning activities. Moreover, the collaborative port scanners can 

scan a portion of all IP addresses and port numbers to reduce the scanning time. 

For example, they can selectively scan only one IP in a Class C subnet, and use 

the scanning results to infer information about other target hosts that reside in the 

same subnet. Some IP addresses are employed by honeynets. To prevent collaborative 

port scanners from being detected and analyzed by such honeynets, the corresponding 

entries in the DHT for these addresses can be marked as ”do not scan”. 

Host configurations and vulnerability statuses change over time. To capture the 

changes, collaborative port scanners should revisit the hosts. Some hosts have dy­

namic IP addresses. In such cases, collaborative port scanners can periodically revisit 

them and update the information on the hosts and IP addresses. A simple revisit pol­

icy is the Age Policy. In the Age Policy, there is an age attribute for each DHT entry. 

The age is increased by the DHT automatically and checked against a threshold. If 

the age reaches the threshold, the system purges its entry from the DHT to initiate 

a new scan. Note that researchers have studied revisit policies for web crawlers [59] 

and such policies could be adapted. 

The DHT-based scheme needs to handle errors of participating nodes. E.g., par­

ticipating nodes may provide incorrect scanning results. A simple solution to this 

problem is to set the revisit policy to allow each target to be scanned twice within 
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each scanning period. Then the system could compare the results to decide if the 

results are usable. 

3.4.7 Comparisons and Caveats 

The DHT-based collaborative port scanning scheme can scan multiple vulnera­

bilities on multiple ports. In contrast, Botnets and the Curious Yellow worm [41] 

typically propagate by exploiting a known vulnerability on a certain port. In prac­

tice, if the target hosts do not have such vulnerability or have applied patches to fix 

it, the propagation will fail. Some real-world worms, e.g., the Witty Worm [33] can 

check for multiple vulnerabilities. In the DHT-based scheme, attackers share knowl­

edge about the progress and information with each other. Therefore, attackers can 

check for a large number of vulnerabilities and choose one to exploit. 

While the extended hit-list methods consist of information on IP addresses, the 

DHT-based scheme records information on not only IP addresses, but also attributes 

for each host or subnet. Example attributes include whether the hosts are web, mail, 

or DNS servers, a ranked list of existing vulnerabilities, and the name and version 

of the host operating system. During the collaborative port scanning information 

regarding the configuration of victim hosts can be fingerprinted to facilitate the launch 

of future attacks. 

3.5 Experiments 

In this section, we present the experimental evaluation of the DHT-based col­

laborative port scanning scheme. We conduct experiments to verify our theoretical 

analysis, in particular: the impact of the DHT-based scanning scheme. 
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3.5.1	 Experiment Setup 

We have conducted the experiments by employing OpenDHT [83] on PlanetLab. 

OpenDHT runs on a large number (around 200) of PlanetLab nodes. Fig. 3.5 shows 

the architecture of our experimental DHT platform. We employ the hybrid archi­

tecture discussed in Section 3.4.2. Queries issued from collaborative scanners can be 

forwarded to the OpenDHT. Note that we utilize this architecture to learn about the 

latency of DHT. 

The experimental network consists of Intel Dual Core workstations and virtual 

machines running Windows XP. Without loss of generality, we use IPv4 networks 

and set the size of target IP address space to 232 . The scanning methods used in the 

experiment include TCP scanning, UDP scanning, and version detection [19] that 

could return the system and version information running on the target hosts. We ran 

port scans on the target hosts to understand the latencies associated with scanning. 

Such latency information are used to simulate port scanning. Our experiments then 

simulate the actual port scanning attacks and the DHT latencies. 

3.5.2	 Experiments on the Performance of the DHT-based Collaborative Scanning 

Scheme 

We conduct experiments to study the performance of the proposed collaborative 

port scanning scheme. In our experiment, there are 1,000 target hosts that need to 

be scanned. We compare the performance of 4 different scanning setups: 

1. 10 collaborative port scanners.	 In this setup, there are 10 collaborative port 

scanners that employ the fast intelligent DHT-based collaborative scanning 

scheme. The 10 collaborative port scanners divide the 1,000 target hosts into 

2 groups. Each group has 500 target hosts. They conduct the scanning group 

by group, i.e., they only start to scan the second group of targets after finish­

ing scanning the first group of targets. (We discuss more on the collaboration 

methods in the next experiment.) The collaborative scanners keep each other in­
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Figure 3.5.: The network topology of the OpenDHT lookup. 
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formed of the progress of the whole scanning through the DHT. The algorithms 

employed by the 10 collaborative port scanners are discussed in Section 3.4. 

2. 10 port scanners that operate with the static division scheme. In this setup, the 

10 port scanners are divided into 2 groups, and each group has 5 port scanners. 

The two groups of scanners operate individually. Within a group, the 5 port 

scanners divide the targets statically into 5 parts, and each of them will be 

responsible for approximately one fifth of the target hosts. 

3. 10 port scanners that operate individually.	 In this setup, there are 10 port 

scanners, but they just scan randomly without communicating with each other. 

As soon as the port scanner finishes scanning 50 hosts (one twentieth of all 

target hosts), it reports the results to a central node, and waits for the signal 

from the central node. The central node collects the scanned results from all 

scanner nodes, and combines their results. As soon as the central node finishes 

combining scanning results from all 10 scanners, it sends signals to all 10 port 

scanner nodes. In the next round, each port scanner only scans targets that 

have not been scanned in previous rounds. This procedure is repeated until all 

hosts are scanned. 

4.	 a single port scanner. In this setup, there is only one port scanner. It is 

responsible for scanning all the target hosts. 

All port scanners scan the well known ports for each victim host in this experiment. 

We impose a limit of 20 on the number of connections which a single port scanner 

can initiate to a target host. A typical DHT lookup takes approximately 3 seconds 

with 10 active scanners. Note that a scanner has to write the results to DHT after a 

successful scan. A typical port scanning for one victim host that covers TCP ports 

and version information takes 2 minutes. 

Fig. 3.6 shows the number of successfully scanned hosts over time for the 4 scan­

ning setups. 
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Figure 3.6.: The performance of the DHT-based collaborative scanning scheme. 
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We observe that, for the DHT-based 10 collaborative port scanner setup, on av­

erage, the time of the work spent in the core port scanning part constitutes most of 

the total operation time. It takes the collaborative port scanners 216 minutes to scan 

all the target hosts. The overhead ratio of the collaboration, including storing and 

retrieving the scanning status for the target hosts, is approximately 8 percent. 

Our results show that the DHT-based 10 collaborative port scanners clearly out­

perform the other 3 non-DHT-based setups, and that the performance of the single 

port scanner is the worst among all setups. Our results show that the time to finish 

scanning all target hosts of the DHT-based collaborative port scanners is approxi­

mately 60 percent of the port scanners with static divisions, and 41.7 percent of the 

port scanners that operate individually. The explanation is that the DHT-based col­

laborative port scanners are able to perform port scanning concurrently with much 

more resources and minimal contention. The other 2 setups that employ static di­

vision or operate individually could not eliminate duplicate scanning and scan effi­

ciently. 

The experimental results verify our analysis and confirm the performance of DHT-

based collaborative port scanners. 

3.5.3 Experiment on the Number of Participating Collaborative Scanners 

In our first experiment, 10 DHT-based collaborative port scanners collaborate 

with each other to conduct port scanning. Questions then arise as how would the 

performance of the collaborative port scanners change, as the number of participating 

nodes change. One would expect that a larger number of participating nodes increase 

the number of scanned target hosts within a specific time. However, more scanner 

nodes could generate more network traffic and impose larger overhead on the DHT due 

to a large number of scanning status lookup and store requests. In the extreme case, 

an infinite number of participating nodes generate excessive traffic and overburden the 
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Figure 3.7.: The performance of collaborative scanners with different participants. 

DHT, effectively rendering a Distributed Denial-of-Service (DDoS) attack. Therefore, 

we cannot arbitrarily increase the number of scanner nodes. 

We conduct experiments to find out the relation between the collaborative port 

scanners and the number of participating scanner nodes. Note that different DHT 

systems and scanning methods have different latencies and could affect such relation. 

Hence, in our experiments, we vary the scanning methods and use different gateways 

of the DHT system to create different latencies. 

More thorough scans and farther gateways typically have higher latencies. If 

scanning latency is extremely low when compared to DHT latency, a small number 

of participating scanner nodes that employ the static division scheme would perform 

well. The reason is that a large number of nodes overburden the DHT, increase DHT 

latency, and slow down the whole port scan. When scanning latency is extremely 

high when compared to DHT latency, a large number of participating scanner nodes 

perform better. The explanation is that a smaller number of nodes neither have 

enough parallelism nor fully utilize the DHT system. The most interesting scenario 

is when neither scanning nor DHT latency is too high or too low . In such cases, a 

large number of participating scanner nodes incur overhead on the DHT system, but 

could also overcome the slowness of the scanning itself. 
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Fig. 3.7 shows the number of successfully scanned hosts over time for different 

number of participating scanner nodes. We observe that the performance of DHT-

based collaborative port scanners increase as the number of participating scanner 

nodes increases. However, the efficiency of the DHT-based collaborative port scan­

ner scheme decreases as the number of participating scanner nodes increases, which 

confirms our analysis above. 

If the number of participating scanner nodes is approximately the ratio of scanning 

latency to DHT latency, a good balance between the costs for maintaining a large 

number of scanner nodes and the performance of the collaborative port scanning can 

be struck. 

Our theoretical analysis is as follows. Denote the number of target hosts as M, 

the scanning latency as S, the average DHT latency as D, the actual DHT latency as 

d, the number of collaborative port scanners as n, the ratio of the scanning latency 

to the DHT latency as k, we have: 

S 
k = 

D 

The actual DHT latency increases as the number of collaborative port scanners 

increases. We assume that the increase is linear, hence: 

d = D ∗ n 

The total latency L for one parallel scan is the sum of the scanning latency and the 

DHT latency : 

L = S + d 

The number of parallel scans needed for M hosts P is M . n 

Hence, the total scanning time 

M M 
T = P ∗ L = (S + D ∗ n) ∗ = (D ∗ k + D ∗ n) ∗ 

n n (3.1)
k 

= M ∗ D ∗ (1 + ) 
n 



82 

Note that n should be no more than M. When n = M, the total scanning time reaches 

its minimum at M * D. 

In the real world, we may not be able to include M scanners. However, when n is 

equal to k, the total scanning time is simplified to 2 * M * D, which is at least half 

as fast as the fastest possible scanning. 

In our experiments, the scanning and DHT latencies are 2 minutes and 6 seconds 

(on average with 10 collaborative port scanners), respectively. Hence, the optimal 

number of scanner nodes is 120 / 6 = 20. The experimental results confirm our 

analysis. With 10 scanner nodes, the overhead of the DHT-based collaborative scan­

ning scheme is approximately 8 percent. With 20 scanners nodes, the overhead is 

approximately 10 percent. With 50 scanner nodes, the overhead is approximately 30 

percent. Note that the quality of the DHT system affects the overhead with respect 

to different number of scanner nodes. In the real world, if more efficient systems can 

be utilized, the number of collaborative port scanners can be very large and still does 

not incur too much overhead. 

3.5.4 Discussions on Deployment and Defense 

In our experiments, we have examined the performance of the DHT-based scanning 

system. Large-scale deployment of the DHT-based collaborative attack scheme in the 

real world needs attention on a number of issues. Defenders of collaborative port 

scanners can mitigate the attacks by employing countermeasures to these issues. 

Detection Avoidance. Certain routers and firewalls check network traffic against 

pre-set thresholds. Defense mechanisms such as the communication pattern anal­

ysis [40] could reveal the centralized servers. The DHT-based collaborative attack 

scheme could employ several methods to avoid detection: 1) limit the rate for sending 

and receiving packets; 2) create de-centralized traffic that obfuscate the communica­

tion pattern analysis; and 3) employ encryption for the DHT-related packets whenever 

possible, since most existing defense systems cannot analyze encrypted traffic. 
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Integrity of the DHT. DHT functionality is crucial in the collaborative port scan­

ning scheme. If the defenders can locate the DHT servers, they could try to discon­

nect, mislead, and defend against them by offense [20]. Hence, protecting the DHT 

against misuse, errors, and attacks is very important for the real-world collaborative 

scanners. Mechanisms that can help protect the DHT include user authentication 

and encryption of the stored IP address, port number, and scanning status values. 

User authentication may introduce extra communication latency and hurt the per­

formance of the DHT-based collaborative scanning scheme, while the encryption of 

the information stored in DHT may increase the time to store and look up scanning 

statuses. 

Scale of the DHT. In practice, the collaborative port scanning system may imple­

ment its own fast DHT system. We have seen similar large-scale system in industry, 

including BigTable [6] of Google and Dynamo [12] of Amazon. The DHT system 

can run on a large number of attacker nodes in the hybrid mode, e.g., 10,000, in 

practice. If more attacker machines are allocated to the DHT system, however, there 

will be fewer hosts responsible for the actual scanning, which can result in deteri­

orated scanning performance. If the collaborative port scanning system can utilize 

some publicly-available infrastructure and leverage its power, the overall scanning 

performance could improve significantly. 

3.6 Conclusion 

We study the collaborative port scanning, in which attackers collaborate to search 

the network for open ports that could be exposed to attacks. We propose different 

collaborative scanning strategies and analyze their advantages and disadvantages. We 

discuss the static, dynamic, and hybrid allocation schemes and how to employ DHT 

in the system. We conduct experiments to evaluate the performance and overhead of 

the collaborative port scanning system. 
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Our results show that DHT-based collaborative port scanning is a promising ap­

proach. It provides good performance, and proves that attacks can be launched by 

collaboration. As network speed increases in the future, we may witness an increased 

number of sophisticated collaborative attacks that orchestrate the computing power 

of a large number of attackers. Our results suggest that issues like the number of col­

laborative attackers in the system, different methods of collaboration, scanning gran­

ularity, and revisit policy all significantly affect the performance of the collaborative 

port scanners. We discuss issues that need consideration in real-world deployment 

and defense mechanisms that could mitigate the collaborative port scanners. 
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4 EXPERIMENTS ON DEFENSE 

In previous chapters, we discussed the methods and impact of collaborative attacks, 

with a focus on port scanning attacks. In this chapter, we develop and experiment 

with various methods to defend against such attacks. 

There are a lot of ideas for defense. E.g., one can use uncommon port numbers, 

disable not-running services, and use TCPwrapper (Unix tool that performs access 

control based on IP/domain, etc.) to defend against collaborative port scanning 

attacks. Our methods include: 

1. Delay and vary the response latency for attackers.	 By slowing down the port 

scanning attack, we hope that the whole attack will be slowed down. For 

instance, sending a slow TCP ACK reply would normally foil fast-paced port 

scanning attacks. 

2. Reload the system with different settings and parameters. This includes patch­

ing, refreshing, and revisiting (for attackers). Attackers then would have only 

old information regarding the attacks on file. Therefore they could not launch 

attacks based on such information. To obtain updated information, attackers 

have to update their database and re-scan/revisit the victim hosts again. 

4.1 Experiments on the Delaying and Varying the Response Latency 

To defend against port scanning attacks, defenders can slow down the response to 

attackers. Meanwhile, collaborative attackers could perform the port scanning with a 

variety of granularity. In our experiments, response slowdown is modeled as a higher 

granularity of scanning. The reasoning behind this method is that higher-granularity 
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port scanning attacks have higher latencies, which resembles the slow response to 

attackers. 

Different granularity of scanning result in different latencies. In this experiment, 

we compare the performance of different scanning granularity, including scanning 511, 

1,023, and 2,047 ports. There are 10 collaborative attackers and 1,000 target hosts 

in this experiment. We compare its performance against a single port scanner. 

Fig. 4.1 shows the performance of the single and the 10 collaborative attackers 

with different scanning granularity. 

We observe that with finer scanning granularity, i.e., more ports are scanned for 

each target host, the performance of the whole port scanning system decreases. The 

explanation is that more time are spent in the scanning part and less hosts can be 

scanned within a given time. 

We observe that the performance of the collaborative attackers decreases more 

slowly than that of the single port scanner. The explanation is that when scanning 

granularity is coarse, scanning takes a short time, and the collaborative attackers 

spend significant amount of time in the collaboration, including infrastructure reads 

and writes. However, when scanning granularity is fine, scanning takes a much longer 

time, and the collaborative attackers spend a smaller portion of time in collaboration, 

resulting higher efficiency. 

The experimental results also confirm our analysis for the previous experiment. 

According to Equation (3.1), finer scanning granularity, which results in longer scan­

ning latency, increases the number of collaborative attackers needed to reach optimal 

efficiency. We can infer from the results that the collaborative attackers can realize its 

potential in power with complete and large-scale scans, which are much slower. Note 

it is easier for defense systems to detect complete scans that cover a large number of 

ports or perform target system fingerprinting. 
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Figure 4.1.: The performance of the scanning with different scanning granularity. 
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4.2 Experiments on the Host Patching/Refreshing/Revisiting 

We need to study how to defend the powerful collaborative attacks. One way is to 

refresh and patch the hosts so that the information gathered by collaborative attackers 

become outdated and the vulnerabilities the collaborative attackers plan to exploit no 

longer exist. Collaborative attackers can implement revisit policies (see Section 3.4 for 

detailed discussions). Questions then arise as whether the revisit policy would have a 

large impact on the performance of collaborative attackers and how to devise a revisit 

policy. Defenders to collaborative attacks could refresh themselves or intentionally 

disclose wrong information to foil the collaborative attack. For instance, if defenders 

change IP addresses every 60 minutes, the collaborative attacks could fail. In this 

experiment, we quantitatively measure such defense tactics. In particular, we study 

the impact of revisit policy on the performance of collaborative attackers. There are 

20 collaborative attackers and 1,000 target hosts in this experiment. The 20 scanners 

are divided into 2 groups that collaborate through the DHT. Scanning of one target 

host takes 2 minutes to finish. For the revisit policy, making a target host revisit-able 

is implemented as removing its scanning status entry in the DHT. Our experimental 

revisit policies include: 

1. Make the target hosts revisit-able after 50 minutes. 

2. Make the target hosts revisit-able after 100 minutes. 

3. Make the target hosts revisit-able after 150 minutes. 

4. Make the target hosts revisit-able after 500 minutes. 

Fig. 4.2 shows the numbers of scanned hosts with different revisit policies. The 

no revisit line depicts the regular collaborative scanning scheme that does not im­

plement a revisit policy. We observe that revisit policy has a large impact on the 

performance of the collaborative attackers. Specifically, the revisit time significantly 

affects the number of scanned hosts over time. We observe that as the collaborative 
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Figure 4.2.: The performance of the scanning with different revisit policies. 
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scan progresses, the revisit policy kicks in at a certain point, depending on the pre-set 

revisit time. Since a lot of hosts scanned in the beginning can ”expire” according to 

the revisit time, the revisit policy causes a reduction in the number of hosts that the 

system considers as ”scanned”. The number of scanned hosts then fluctuates as the 

collaborative attackers scan the expired hosts and other hosts become expired. 

Although the number of scanned hosts is not constant as the number of rounds 

increases, we observe that the system reaches an equilibrium around a certain number 

of hosts. As the revisit time increases, the equilibrium number increases as well. 

However, there is a tradeoff. The revisit time cannot be arbitrarily increased because 

longer revisit time means that the scanning results for the target hosts are less up-to­

date. The revisit time cannot be arbitrarily decreased either. If the revisit time is set 

as the time required to perform scanning on one host, as soon as the scanning of one 

target host completes, the scanning results for another target host could expire and 

arbitrarily delay the whole port scanning. Note if the revisit time is approximately 

twice as much as the time required to scan all victim hosts, the system will scan all 

target hosts again, which renders low efficiency. 

We infer some guidelines for setting up the revisit policy. If the Age Policy dis­

cussed in Section 3.4.6 is employed, the scanning latency for one target host takes 

time t, the size of target host space is h, the number of scanners is s, it is recom­

mended that the system makes the target hosts revisit-able after at least ht time. s 

In our experiment, the recommended revisit time is 1000∗2 = 100 (minutes), and the 20 

system is able to maintain scanning results for approximately half of all hosts. Note 

the Age Policy might not be the best policy. As discussed in section 3.4.6, more 

complex revisit policies can be employed to improve the efficiency of the system. 

4.3 Experiments on Defense of Collaborative Attacks : Detection 

In this experiment, our objective is to detect if the incoming attack is launched 

by collaborative attacks and detect collaborative attackers among all attacks. 
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Figure 4.3.: Part of the data set used in this experiment. 

Our experiment infrastructure including network of collaborative attackers. Col­

laborative attackers communicate (e.g., they send and receive packets from each other) 

and leave traces on the network. We collect data on the interaction of collaborative 

attackers, and combine the logs and communication data with malicious data and 

”peaceful” normal data to generate a huge data set. We then try to determine if the 

given data set contains collaborative attacks. We analyze the data to determine the 

collaborating groups and whether they are performing malicious activities. Fig. 4.3 

produced by [10] shows an sample of the data set. 

We could monitor the network gateways, routers, and switches to log essential 

data. 

Here are the statistics for the attack data we used. 

1. Average packet (/second): 16.007 

2. Average packet size : 90.227 bytes 

3. Average bytes/second 1444.228 

4. Average MBit/sec 0.012 
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Figure 4.4.: Packet distribution of the malicious data set. 

Figure 4.5.: Space distribution of the malicious data set. 

5. Format: libpcap 

6. Packet size limit: 65535 

7. Encapsulation: Ethernet 

Fig. 4.4, Fig. 4.5, and Fig. 4.6 show the packet and space distributions of the 

malicious data set used in our experiment. We observe that majority of the data are 

TCP traffic. 
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Figure 4.6.: Flow distribution of the malicious data set. 

Figure 4.7.: The output of the defense analysis (grouped). 
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Figure 4.8.: The output of the defense analysis (Radial Model). 
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Figure 4.9.: The output of the defense analysis (Spring Model). 
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We try to find out collaborative groups and whether they are malicious attackers. 

We use the communication graph, which represents the communication relation­

ships among computers, and the content database, which stores the communication 

details among computers together to determine whether there exists collaborating 

attackers. More specifically, we group computers which exhibit similar communica­

tion behaviors together, and use thresholds to decide whether they are performing 

malicious behavior (such as excessive number of IP address lookups for collaborative 

port scanners). In our experiment, we set the threshold to 3, which means that the 

sum of the in and out degrees should exceed 3 for the collaborative attacker clique to 

accept a node as a member. The collaborative attacker clique must identify a core 

member whose sum of in and out degrees greatly exceed the normal threshold. For 

instance, if a collaborative clique has 4 members, the sum of in and out degrees for its 

core member must be no smaller than 12, and should be larger than 12 in most cases. 

Note that the in and out degree are relative degrees within specific LANs, hence in 

degree of 1 does not suggest that the node received only one message. 

Models for collaboration could be flooding architecture, collaboration-server based 

architecture, distributed architecture, and the hybrid architecture, etc. Details re­

garding some of the architectures are discussed in Section 3.4.2. 

Fig. 4.7 shows our experimental results. Our results show that analyzing the fre­

quent interaction of collaborative attackers can be analyzed in communication graph 

and the collaboration clique can be highlighted out. 

Fig. 4.8 and Fig. 4.9 show the generated communication graph by the spring and 

radial models used by the experiment tool SMART [84]. We clearly identify the 

collaborative attackers in the group. The experimental results prove the validity of 

the communication analysis. 

We observe that we have successfully identified 80 percent of all the collaborative 

attackers. The threshold we set for collaborative attackers (3-edge rule) eliminated 

one of the collaborative attackers due to its infrequency usage of ARP messages. 
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5 ADDITIONAL EXPERIMENTS ON ATTACK 

In this chapter, we present results on experiments on collaborative attacks and pos­

sible defense strategies. Our experiments provide insights into collaborative attack 

strategies, collaborative attack granularity, and defense systems such as the revisit 

policy. The experiment setup follows the description in previous chapters. 

5.1 Experiments on the Witty Worm 

We conduct experiments and compare our experimental results to the real-world 

propagation of the Witty Worm. 

The Witty Worm [33] is suspected to employ a hitlist scanning or was released on 

previously hacked hosts. 

Figure 1 in [33] on Witty Worm Global View (from www.caida.org), by C. Shannon 

and D. Moore, shows the initial spread (the first half minute) of the Witty Worm. The 

initial spread is unusual and could not be explained by the existing models including 

the AAWP model, because the worm propagated to 110 hosts in the first 10 seconds. 

However, our experimental results correctly show that the effect of hitlist scanning 

can be approximated by the linear combination of two random scannings. When 

the linear Fibonacci Coefficient (h, the size of hitlist) is large, the unusual growth 

of the malware propagation can be explained by the linear combination of regular 

propagations. 

Fig. 5.1 shows our experimental results with hitlist size 1 (enlarged 100 times, and 

right-shifted by 10 time ticks). We observe that the graph approximately matches 

the propagation of the Witty Worm. Subtle differences exist (e.g., the concavity), 

and possible causes are different operating environment and different settings of pa­

rameters (e.g., k and b). 

http:www.caida.org
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Figure 5.1.: The propagation generated by our experiments 
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5.2 Experiments on the Collaborative Routing and DDoS Attack 

We would like to verify the existence of collaborative attacks and that they can 

cause more damages or gain more control of the target system. We have conducted 

experiments to verify the power of collaborative attacks, analyzed the collaborative 

attack, and generated the intrusion graph of the attack. 

In the example collaborative attack, the goal is to launch a DDoS attack against a 

target node T, as shown in Fig. 5.2. Attackers 1, 2, .., n are directly associated with 

router R1 with the firewall and target node T is associated with switch S1 without 

a firewall. To launch DDoS attacks, attackers need to send out a large number of 

abnormal packets, and those packets arrive at the first router, R1, before going to 

the Internet. 

Since R1 is a sophisticated router with a firewall, it employs a packet filtering 

mechanism, and can automatically filter out the incoming packets from IP addresses 

that are sending out large amount of abnormal traffic. Hence, regular DDoS attack 

packets will be filtered out and the attack will fail. However, certain vulnerabilities in 

router R1 can be exploited to disable its firewall and packet filtering. In a collaborative 

attack, one attacker can attack router R1, while other attackers launch the DDoS 

attack after the first one successfully disables the firewall of router R1. 

Input variable parameters include: 

1. N: Number of normal TCP connections; 

2. M: the speed of link from each host to router, 10Mb/s; 

3. B: buffer space at each router, 4K ∗ N bytes; Size packet: packet size, 1K bytes; 

and 

4. MR: speed of the link between R1 and R2, 1.5Mb/s. 

For the regular DDoS attack, we modify the router information controller such 

that router will impose a limit on the number of SYN packets per second permitted 

to pass. After the limit is passed router will send SYN/ACK packets for the hosts. 
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Figure 5.2.: The network topology of a hypothetical collaborative attack. 
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Output Performance Metrics include: 

1.	 Round-Trip time: The time for sending a echo request and getting a reply 

between two nodes in the system; and 

2. Bandwidth: The bandwidth of the network connection. 

We used SSFNet [23], and conducted the experiments in Linux 2.6.13 with Java 

runtime Environment. The topology of the network is Dumbbell (Fig. 5.2). 

Steps of the experiment include: 

1.	 Initialize the system with various number of TCP connections, first with the 

regular DDoS attack scenario for various periods, such as 15 minutes. 

2. Initialize the system with various number of TCP connections, with the col­

laborative DDoS and routing attack scenario for various periods, such as 15 

minutes. 

3. Start the system with two HTTP servers, one on each target node. The N(10) 

TCP connections will send traffic for 2 seconds and restart. We run the DDoS 

attack after 5 minutes of system start and measure estimated RTT time. 

We utilize the SSF.App.DDoS package and run the DDoSSession() function. Selec­

tion of master and zombie nodes is done randomly among the nodes directly connected 

to Router 1(R1). Two target nodes are selected among the nodes directly connected 

to Router 2(R2). For the regular DDoS attack, we modify the router information 

controller such that router will impose a limit on the number of SYN packets per sec­

ond permitted to pass. After the limit is passed router will send SYN/ACK packets 

for the hosts. However, for collaborative attacks, a ”trojan horse” is embedded in 

a router. As soon as the DDoS attack is launched, the master node will send out a 

secret message to the router such that a ”trojan” embedded in the router will change 

the routing information such that the router will no longer impose such SYN packet 

limits. 
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Figure 5.3.: The intrusion graph for the collaborative DDoS and routing attacks. 
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Figure 5.4.: RTT time (second) vs. time in system (min). 

We analyze the collaborative DDoS and routing attacks and build the intrusion 

graph, shown in Fig. 5.3 (green and red arrows model the coordination between 

attackers). 

Fig. 5.4 shows that collaborative attacks can cause much more damage than single 

attacks. X-axis represents time(in minutes) and Y-axis rerepresents RTT time(in sec­

onds). In this example, the DDoS attacks were started at time t=5min. The red line 

shows the collaborative attacks of routing and DDoS. The Blue line shows the regu­

lar DDoS attack. Because router has the defense mechanism built-in against DDoS 

attack, the regular attack did not accomplish its goal. However, in the collaborative 

attack case, when launched together with routing attacks, DDoS attack effectively 

blocked the user from establishing any new TCP connection. 
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6 CONCLUSIONS AND FUTURE WORK 

In this dissertation, we have made significant contributions to the research on collab­

orative attacks: 

1. We study the malware propagation and present results that help understand 

the effects of Multi-port scanning, Multi-threading, Infection time, Multiple 

starting points, and Collaboration (MMIMC) on malware propagation. 

2. We discuss architectures, polices, and allocations schemes for collaborative at­

tackers. We present a fast DHT-based collaborative attack scheme that aims to 

eliminate duplicate attacks, minimize contention, and significantly increase the 

attack speed. 

3. We propose different collaboration strategies and analyze their advantages and 

disadvantages. 

4. We	 discuss the static, dynamic, and hybrid target selection and allocation 

schemes. 

5. We present the algorithm details and discuss the stop and revisit policies for 

collaborative attackers. 

6. Our experimental results provide insights into many design and implementation 

issues for collaborative attack and defense. 

In Chapter 2, we focused on applying the Fibonacci Number Sequence (FNS) and 

its properties to analyze the performance of malware propagation schemes, including 

collaborative malware propagation. We employed the patching rate to model the 
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defense activities as a black box. Questions then arise as how to defend sophisti­

cated malware and delay the collaborative propagation. Modeling and analysis of the 

sophisticated collaborative defense is an interesting subject for future work. 

In Case 2 of Section 2.4.3, we assume that malware entities at different hosts 

can communicate with each other to avoid duplicate infection attempts. We note 

that communications may incur overhead, which could be caused by network delays, 

the limitations of communication protocols, the sizes of the data buffers at different 

hosts, etc (Currently, the overhead is not modeled). Advanced malware can also em­

ploy intelligent localized-scan algorithms. Modeling communications and processing 

overhead, intelligent collaboration schemes, and smart localized-scan algorithms for 

malware is the subject for future work. Researchers discussed how to improve the 

performance of scanning by sampling [17]. With the prevalence of wireless networks, 

there will be more dynamic hosts that may join and leave the network frequently. We 

plan to extend the our analysis to represent the sampling scheme and the dynamic 

host memberships. In Section 2.4, we assume that propagation time is the same 

for all infections. In the real world, propagation time for different infections may 

vary. If the propagation time is three time slices, we can apply the Tribonacci Num­

ber Sequence [31] to study the malware propagation. Analysis of effects of varying 

propagation times is the subject for future work. 

There are a number of ways to enhance or defend the collaborative attack scheme 

discussed in Chapter 3, which are the subjects for future work. 

First, the port scanners can employ the insider collaboration technique. In the 

insider collaboration attack, an insider gathers the knowledge about vulnerable hosts. 

The outsider launches port scanning with the pre-acquired knowledge from the insider. 

In this case, the knowledge of vulnerable hosts can be gathered offline rather than 

online. 

Second, port scanners can also employ heuristics and more intelligent algorithms. 

For example, learning algorithms can be utilized. However, such port scanners may 

scan very slowly due to the complicity of the algorithms. Solutions include offline 
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training of the scanner with a lot of log data. Smarter revisit policies can be employed 

as well. 

Third, collaborative port scanners can employ the passive and stealth technique. 

For example, they can passively log and analyze the network traffic. Such techniques 

could enhance the collaborative port scanners and challenges the defense systems. 

Finally, we could fingerprint the collaboration methods employed by the collabora­

tive attackers. Defense systems can implement algorithms that learn and classify the 

communication patterns like the flooding, server-based, and distributed architectures. 

Then, they can monitor and analyze the network traffic to detect these collaboration 

patterns and flag corresponding nodes as possible collaborative attackers. 
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