
CERIAS Tech Report 2010-03

BROADCAST GROUP KEY MANAGEMENT WITH ACCESS CONTROL
VECTORS

by Ning Shang, Mohamed Nabeel, Elisa Bertino, Xukai Zou

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

1

Broadcast Group Key Management with

Access Control Vectors

Ning Shang #, Mohamed Nabeel #, Elisa Bertino #, Xukai Zou ∗

#Purdue University,
West Lafayette, Indiana, USA

{nshang, nabeel, bertino}@cs.purdue.edu

∗Indiana University Purdue University Indianapolis
Indianapolis, IN 46202, USA

xkzou@cs.iupui.edu

2

Abstract

Secure collaborative applications currently enabled by the Internet need flexible and efficient mech-

anisms for managing and distributing group keys. The secure transmission of information among

collaborating users should be efficient as well as flexible in order to support access control models

with different granularity levels for different kinds of applications such as secure group communication,

secure dynamic conferencing, and selective/hierarchical access control disseminated information. In this

paper, we propose the first provably secure broadcast Group Key Management (BGKM) scheme where

each user in a group shares a secret with the trusted key server and the subsequent rekeying for join or

departure of users requires only one broadcast message. Our scheme satisfies all the requirements laid

down for an effective GKM scheme and requires no change to secret shares existing users possess. We

analyze the security of our BGKM scheme and compare it with the existing BGKM schemes which are

mostly ad-hoc.

Index Terms

Access Control, Broadcast Group Key Management, Security Model

I. INTRODUCTION

The rapid development of the Internet and the Web in past decades has significantly changed

the way people live, work, learn, think, shop, and communicate all over the globe. The open

nature of the Internet makes it a double-edged sword: On the one hand, telecommunication

and exchange of information have never been faster, easier, and more effective; on the other

hand, new forms of threats like worms, viruses, cyber crimes have emerged that compromise

data/information security and user privacy, and have posed many open challenges to the world.

Cryptographic techniques such as data encryption provide solutions for protecting informa-

tion transmitted over the Internet. Efficient symmetric-key encryption algorithms like AES [1],

Twofish [2], Blowfish [3], RC4 [4] are widely used in many Internet-based protocols and

applications for securing data. In general, the strength of data encryption with a symmetric-key

algorithm depends on the strength of the secret key, which must be known by all participating

parties in communication. The process of selecting, distributing, storing and updating secret

symmetric keys is called key management. Reliable, efficient and secure key management is

usually a challenging problem in many real-world applications.

3

Group key management (GKM), as a specific case of key management, is related to the

following scenario: Consider a server that sends data to a group of users in a multicast/broadcast1

session through an open communication channel. To ensure data confidentiality, the server

shares a secret group key K with all group members and encrypts the broadcast data using

a symmetric encryption algorithm with K as the encryption key. Knowing the symmetric key

K, any valid group member can decrypt the encrypted broadcast message. When the group

dynamics changes, i.e., when a new user joins or an existing user leaves the group, a new group

key must be generated and redistributed in a secure way to all current group members, so that

a new group member cannot recover earlier transmitted data (backward secrecy), and a user

who has left the group cannot learn anything from future communications in the group (forward

secrecy). This process is called update or rekeying. The technique to maintain, distribute and

update the group keys is called group key management. Group key management is a crucial

component of secure group-oriented communications (SGC) and applications such as secure

data broadcasting/dissemination [5], audio/video conferences, interactive online group games,

file sharing, online publication, pay TV, and various emerging scenarios in cloud computing.

A number of approaches have been proposed for group key management. The centralized

approaches [6], [7], [8], [9], [10], [11], [12], [13], [14] use a single trusted party to generate,

distribute and update shared group keys. The decentralized approaches [15], [16], [17], [18],

[19], [20] assume an infrastructure of group members and make use of multiple collaborating

trusted entities to manage the group keys. In the distributed approaches [21], [22], [23], [24],

[25], [26], [27], the data server can be treated as a group member, and all group members

cooperate to compute the shared group keys. The aforementioned GKM schemes are good at

supporting specific GKM scenarios such as SGC, as described above, secure dynamic confer-

encing (SDC) where any subset of a group of users can form a SGC and selective/hierarchical

access control. However, they do not have the flexibility and efficiency to support combinations

of these scenarios which we increasingly encounter in secure collaborative computing (SSC).

A broadcast GKM (BGKM) scheme addresses these weaknesses. In such a scheme each user

in a group shares a secret with a trusted key server and the subsequent rekeying for join or

1The key management discussed in this paper will be similar in multicast and broadcast cases. Therefore without loss of

generality, we will only mention broadcast in the following discussions.

4

departure of users requires only one broadcast message and no change to secret shares existing

users possess. However, the security of existing such schemes [28], [29], [30] have neither been

analyzed fully nor proven formally.

A major difference between GKM protocols and secret sharing schemes, such as Shamir’s

(n, k)-threshold scheme [31], is that the former are designed to allow any individual group

member to obtain a shared secret by itself, and no persistent secure communication channel is

assumed between valid group members, whereas the latter are to prevent a single group member

from gaining the secret alone, and require a secure communication channel, when group members

combines the “secret shares”, to protect the shared secret from being learned by parties outside

the group. Another major difference between these two approaches is that the GKM protocols are

intended for applications such as content broadcasting and collaborative applications, in which

parties need to quickly gain accesses to the protected information. In some of these applications,

parties may also need to keep private from other parties the fact that they are getting access to

the protected information. Secret sharing schemes are more suitable for applications requiring

separation of duty, in which no single party can be entrusted with the secret key.

Several requirements are identified and discussed by Challel and Seba [32] for effective GKM.

Generally speaking, an efficient and practical GKM should address the following requirements.

• Minimal trust requires the GKM scheme to place trust on a small number of entities.

• Key hiding requires that with given public information, it is hard for anyone outside the

group to gain the shared group key. Ideally, every element in the keyspace should have the

same probability of being the real key.

• Key independence requires that the leak of one key does not compromise other keys.

• Forward secrecy means that a member who has left the group cannot access any future

group keys.

• Backward secrecy means that a newly joining group member cannot access any old keys.

• Collusion resistance requires that a set of colluding fraudulent users should not obtain keys

which they are not allowed to obtain individually.

• Low bandwidth overhead requires that the rekeying should not incur a high volume of

messages.

• Computational costs should be acceptable at both the server and the group member.

• Storage requirements for keys and other relevant information should be minimal.

5

• Ease of maintenance requires that a single change of membership in the group does not

need many changes to take place for the other group members.

• Other requirements include service availability, minimal packet delays, and so on. These

factors are sometimes more affected by real-world settings and implementation, and less

related to the high-level design of the GKM.

Note that the trivial group key management in which the key server delivers new keys to

each user though a secure private communication channel whenever rekeying occurs suffers

from a high volume of communications and the fact that secure communication channels are

in general costly to set up and maintain. Thus such a trivial approach is not practical for large

scale systems. The problem becomes worse for SDC applications where there can be possibly

O(2n) sub-groups, where n is the number of users, each sharing a unique key.

In this paper, we propose a new BGKM scheme which, to the best of our knowledge, is

the first provably secure BGKM scheme. Our new scheme is flexible, efficient and secure. It

keeps the use of secure private communication channels minimal by not requiring any private

communications when rekeying takes place either among the group members or between the

key server and a persisting group member. The size of the broadcast rekeying messages is linear

with the total number of group members. In order to obtain a shared group key, a group member

need only perform efficient hashing operations and an inner product of vectors over a finite field.

The following are the key contributions of our work:

• Formalization of the problem of BGKM.

• Introduction to a new BGKM scheme using the formalization.

• Thorough analysis of the security of the new scheme.

• Comparison of security and complexity of our scheme with existing BGKM schemes.

• Introduction to a faster variant of the proposed scheme.

• Empirical evaluation of the performance of the new scheme.

The rest of the paper is organized as follows. Section II discusses related work in BGKM.

Section III formally defines BGKM, and proposes ACV-BGKM, our new solution to BGKM.

Section IV analyzes ACV-BGKM with respect to security and efficiency, compares ACV-BGKM

with existing BGKM schemes. Section V presents experimental results. Section VI discusses a

possible scheme to improve the performance of ACV-BGKM. Section VII concludes the paper.

6

II. RELATED WORK

Roughly speaking, we call a centralized group key management protocol a broadcast group key

management (BGKM) scheme if it only uses a broadcast communication channel for rekeying.

A formal definition of BGKM can be found in Section III. An important advantage of BGKM

is that it is easy to maintain, in that an existing group member does not need to privately

communicate with any other party when rekeying happens.

In this section we review existing BGKM protocols which are comparable to the new scheme

we propose. We will compare them with our BGKM scheme later in Section IV-C.

CRT-BGKM. The first known BGKM scheme is proposed by Chiou and Chen [28] and is based

on the concept of a secure lock implemented using the Chinese Remainder Theorem (CRT) [33].

The CRT-BGKM can be described as follows. There are a key server and a group of N members

in the system considered by the scheme. The key sever first shares a secret value ki with each

of the group member, through a secure private communication channel.2 The key server also

publishes N (large) integers mi that are pairwise relatively prime. The key server chooses a

secret value K as the shared group key, encrypts K using a symmetric-key encryption algorithm

with ki as the encryption key to obtain a ciphertext Ki, and uses the CRT to compute an integer

M such that M = Ki (mod mi), 1 ≤ i ≤ N . The key server then broadcast M to the group. For

a group member to derive the symmetric key K, it computes Ki = M (mod mi) and decrypts

Ki with its secret value ki to get the desired group key K. When rekeying happens, a similar

process is executed for all updated group members by only using the broadcast channel. The

security of CRT-BGKM has not been formally analyzed so far.

SS-BGKM. A BGKM scheme proposed by Berkovits [29] is based on “k out of n” secret

sharing. They present two examples using polynomial interpolation [31] and a related vector

formulation [34]. In both examples, each of the N members are given a secret share and

another N + r (where r > 0) shares are given to all the users in the system. In other words, it

creates a N + r + 1 out of 2N + r + 1 secret sharing scheme. A valid user who has N + r + 1

shares can recover the secret, but others cannot. In the first example, each member reconstructs

the secret using N + r + 1 shares whereas in the second example, the common N + r shares

2Chiou and Chen proposed a similar BGKM using public-key cryptosystem [28]. However, such a scheme is less efficient

than the private-key version summarized here, and thus we will not cover it.

7

are used in a pre-evaluation and only the needed result is given, to reduce the load on members.

Like CRT-BKGM, when rekeying happens, the secret sharing system needs to be constructed

again. Both variants are theoretically correct. However, it is not clear what security implications

the proposed variants have due to certain assumptions made about the properties of secret shares

and repeated use of the same shares for rekeying.

ACP-BGKM. Another BGKM scheme proposed by Zou, Dai and Bertino [30] is based on a

construction called an access control polynomial (ACP). The ACP-BGKM can be summarized

as follows. Like in the case of CRT-BGKM and SS-BGKM, there are a key server and a group

of N members. A finite field Fq and a cryptographic hash function H(·) : {0, 1}∗ → Fq are

pre-chosen as public system parameters. The key server first chooses and sends a secret bit string

sidi to each group member through a secure private communication channel. The key server then

picks a random bit string z, and creates an access control polynomial

A(x) =
N
∏

i=1

(x − H(sidi||z)) .

The key server randomly chooses K ∈ Fq as the shared group key, and sets P (x) = A(x) + K.

The key server broadcasts P (x) and z to the group. A group member with sidi can derive the

shared group key as K = P (H(sidi||z)). When rekeying takes place, a new K is chosen by the

key server, and new z and P (x) are generated according to the updated group membership. Again,

only the broadcast channel is used for rekeying. Unlike CRT-BGKM, no encryption algorithm

is needed in ACP-BGKM. This makes ACP-BGKM potentially more efficient. However, like

CRT-BGKM and SS-BGKM, no formal security analysis is available yet for ACP-BGKM. It is

not clear so far what security assumption ACP-BGKM is based on. More specifically, as will

be shown in Section IV-C, failing to satisfy the key hiding property, ACP-BGKM easily allows

anyone to determine whether any given value is a valid group key using only part of the public

information.

In Section III, we abstract out common features from the above three BGKM implementations,

and formally define a general BGKM scheme as well as its relevant security notions. We propose

a new and secure BGKM implementation, ACV-BGKM, which uses linear algebra and is based

on a structure called access control vector (ACV). ACV-BGKM is analyzed and compared with

CRT-BGKM, SS-BGKM and ACP-BGKM in Section IV.

8

III. BGKM WITH ACCESS CONTROL VECTORS

In this section, we formally define a broadcast group key management scheme and its security,

and propose a new group key management scheme which enables any valid member in the group

which holds an individual subscription token (IST) to derive a common group key.

Definition 1 (BGKM): A broadcast group key management scheme (BGKM) is composed of

two entities: 1) a key server (Svr), and 2) group members (Usrs), a persistent broadcast channel
from Svr to all Usrs, an ephemeral private channel3 between Svr and each individual Usr, and
the following phases:

ParamGen Svr takes as input a security parameter k and outputs a set of public parameters

Param, which includes the domain KS of possible key values.

TkDeliv Svr sends each Usr an individual subscription token (IST) through a private channel.
KeyGen Svr chooses a shared group key K ∈ KS. Based on the ISTs of Usrs, Svr computes
a set of values PubInfo. Svr keeps K secret, and broadcasts through the broadcast channel

PubInfo to all group members Usr.
KeyDer Usr uses its IST and PubInfo to compute the shared group key K.

Update When the shared group K can no longer be used (e.g., when there is a change of

group dynamics such as join and departure of group users), Svr generates new group key K ′

and PubInfo′, then broadcasts the new PubInfo to the group. Each Usr uses its IST and the
new PubInfo′ to compute the new shared group key K ′. We call the system after the Update
phase a new “session”. The Update phase is also called a rekeying phase.

A. Basic notions

Negligible functions

We call a function f : N → R negligible if for every positive polynomial p(·) there exists an N

such that for all n > N , we have f(n) < 1/p(n) [35].

Random oracle model

The random oracle model is a paradigm introduced by Bellare and Rogaway [36] for design

and analysis of certain cryptographic protocols. Intuitively, a random oracle is a mathematical

3In our BGKM definition, an ephemeral private channel is a secure communication channel which is used only once in the

life time of a group member. One can think of an instantiation of such a channel as an onsite/face-to-face registration process.

9

function that can be queried by anyone, and maps every query to a uniformly randomly chosen

response from its output domain. In practice, random oracles can be used to model cryptographic

hash functions in many cryptographic schemes.

B. Security definitions

As motivated in Section I, with Svr being trusted, a BGKM scheme should allow a valid

group member to derive the shared group key, and prohibit anyone outside the group from doing

so. Formally speaking, a BGKM scheme should satisfy the following security properties. It must

be correct, sound, key hiding, and forward/backward key protecting.

1) Correct: Let Usr be a current group member with an IST. Let K and PubInfo be Svr’s
output of the KeyGen phase. Let K ′ be Usr’s output of the KeyDer phase. A BGKM scheme is

correct if Usr can derive the correct group key K with overwhelming probability, i.e., Pr[K =

K ′] ≥ 1 − f(k), where f is a negligible function in k.

2) Sound: Let Usr be an individual without a valid IST. A BGKM is sound if the probability

that Usr can obtain the correct group key K by substituting the IST with a value val that is not
one of the valid ISTs and then following the key derivation phase KeyDer is negligible.
3) Key hiding: A BGKM is key hiding if given PubInfo, any party which does not have a valid

IST cannot distinguish the real group key from a randomly chosen value in the keyspace KS

with nonnegligible probability. More specifically, a BGKM is key hiding if for any adversary A

as a probabilistic interactive Turing machine [37], Pr[A wins the game in Fig. 1] ≤ 1/2+ f(k),

where f is a negligible function in k.

4) Forward/backward key protecting: Suppose Svr runs an Update phase to generate Param
for a new shared group key K ′, and a previous member Usr is no longer a group member after
the Update phase. Let K be a previous shared group key which can be derived by Usr with
token IST. A BGKM is forward key protecting if an adversary with knowledge of IST, K, and

the new PubInfo cannot distinguish the new key K ′ from a random value in the keyspace KS

with nonnegligible probability. Similarly, a BGKM scheme is backward key protecting if a new

group member Usr after the Update phase cannot learn anything about the previous group keys.

10

Fig. 1. The adversary game for BKGM’s key hiding property. With the knowledge of PubInfo, the adversary is not able to
distinguish one of its chosen keys from the other.

C. ACV-BGKM

In this section we describe a new BGKM scheme, ACV-BGKM, which is designed to be

secure and efficient, and satisfies all the aforementioned requirements. ACV-BGKM uses an

access control vector (ACV) which enables every valid group member to derive the shared group

key.

Protocol 1 (ACV-BGKM): ACV-BGKM involves a trusted key server Svr and a group of
members Usri, i = 1, 2, . . . , n. There is a long-term broadcast channel from Svr to all Usrs, and
an ephemeral private channel between Svr and each individual Usr which is required only once.
ParamGen Svr takes a security parameter k = !. Svr chooses an !-bit prime number q, a

positive integer N ≥ n which represents the maximum allowed number of group members, and

a cryptographic hash function H(·) : {0, 1}∗ → Fq, where Fq is a finite field with q elements,

which can be represented by {0, 1, . . . , q − 1} with modular arithmetic. Svr sets the keyspace
KS = Fq. Svr outputs via the broadcast channel Param = 〈KS, N,H(·)〉.

TkDeliv For each 1 ≤ i ≤ n, Svr chooses a random bit string isti ∈ {0, 1}∗ as an IST

for each Usri, and sends isti to Usri using a private channel. Note that this is the only case
when a private channel is used in the protocol. Svr saves these isti together with the group’s
membership information locally. Without loss of generality, we also assume that isti (= istj for
i (= j. In practice, an isti is chosen long enough (e.g., ≥ 80 bits) so that guessing becomes

infeasible.

11

KeyGen Svr picks a random K ∈ KS as the shared group key. Svr chooses N random bit

strings z1, z2, . . . , zN ∈ {0, 1}∗. Svr creates an n × (N + 1) Fq-matrix

A =













1 a1,1 a1,2 . . . a1,N

1 a2,1 a2,2 . . . a2,N

...
...

...
...

...

1 an,1 an,2 . . . an,N













,

where

ai,j = H(isti||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ N. (1)

Svr then solves for a nonzero (N +1)-dimensional column Fq-vector Y such that AY = 0. Note

that such a nonzero Y always exists as the nullspace of matrix A is nontrivial by construction.

Here we require that Svr chooses Y from the nullspace of A uniformly randomly.4 We call such

a vector Y an access control vector (ACV). Svr constructs an (N+1)-dimensional Fq-vector X =

K ·eT
1 +Y , where e1 = (1, 0, . . . , 0) is a standard basis vector of FN+1

q , vT denotes the transpose

of vector v, and K is the pre-chosen shared group key. Svr lets PubInfo = 〈X, (z1, z2, . . . , zN)〉,

and broadcasts PubInfo via the broadcast channel.
KeyDer Having isti and PubInfo, Usri computes ai,j, 1 ≤ j ≤ N, as in formula (1) and sets

an (N + 1)-dimensional row Fq-vector vi = (1, ai,1, ai,2, . . . , ai,N). Usri derives the group key
as K ′ = vi · X .

Update Svr runs the KeyGen phase again with respect to the current group users, creates a
new group key K̂ and random ẑi, 1 ≤ i ≤ N , and broadcasts P̂ubInfo = 〈X̂, (ẑ1, ẑ2, . . . , ẑN)〉

via the broadcast channel. A current Usr derives the shared group key by following the same
procedure specified in the KeyDer phase.

IV. ANALYSIS

In this section, we prove the security of the ACV-BGKM and further analyze the scheme with

respect to the requirements discussed in Section I.

4Note that the nullspace of A has dimension at least N +1−n. Let {v1, . . . , vs} be a basis of this nullspace. Then Y can be

chosen as Y =
Ps

i=1
βivi, where βi are uniformly randomly chosen from Fq . We want Y to be chosen in this way to prevent

an adversary from successfully guessing by taking advantage of the fact that certain linear solvers output basis vectors of the

nullspace in a patterned format (e.g., in Echelon form).

12

A. ACV-BGKM security analysis

In the security analysis of ACV-BGKM, we will model the cryptographic hash function H

as a random oracle. We further assume q = O(2k) is a sufficiently large prime power and N is

relatively small.

The following lemmas are useful for the security analysis of ACV-BGKM. Lemma 1 says

that in a vector space V over a large finite field, the probability that a randomly chosen vector

is in a pre-selected subspace, strictly smaller than V , is very small. Lemma 2 will be used in

the proof of Theorem 2.

Lemma 1: Let F = Fq be a finite field of q elements. Let V be an n-dimensional F -vector

space, and W be an m-dimensional F -subspace of V , where m ≤ n. Let v be an F -vector

uniformly randomly chosen from V . Then the probability that v ∈ W is 1/qn−m.

Proof: The proof is straightforward. We show it here for completeness. Let {v1, v2, . . . , vm}

be a basis of W . Then it can be extended to a basis of V by adding another n−m basis vector

vm+1, . . . , vn. Any vector v ∈ V can be written as

v = α1 · v1 + . . . + αn · vn, αi ∈ F, 1 ≤ i ≤ n,

and v ∈ W if and only if αi = 0 for m + 1 ≤ i ≤ n. When v is uniformly randomly chosen

from V , if follows

Pr[v ∈ W] = 1/qn−m.

Lemma 2: Let F = Fq be a finite field of q elements. Let vi = (1, v(2)
i , . . . , v(n)

i), i = 1, . . . ,m,

and 1 ≤ m < n, be n-dimensional F -vectors. Let v = (1, v(2), . . . , v(n)) be an n-dimensional

F -vector with v(j), j ≥ 2 independently and uniformly randomly chosen from F . Then the

probability that v is linearly dependent of {vi, 1 ≤ i ≤ m} is no more than 1/qn−m.

Proof: Let wi = (v(2)
i , . . . , v(n)

i), 1 ≤ i ≤ m, and w = (v(2), . . . , v(n)). All wi span an

F -subspace W whose dimension is at most m in an (n − 1)-dimensional F -vector space. w is

a uniformly randomly chosen (n − 1)-dimensional F -vector. By Lemma 1,

Pr[w ∈ W] = 1/qn−1−dim(W) ≤ 1/qn−1−m.

13

It follows that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F]

= Pr

[

m
∑

i=1

αi = 1 ∧ w =
m

∑

i=1

αi · vi for some αi ∈ F

]

= Pr

[

m
∑

i=1

αi = 1

]

· Pr[w ∈ W]

≤ 1/q · 1/qn−1−m = 1/qn−m.

Theorem 1: ACV-BGKM is correct.

Proof: The correctness of ACV-BGKM can be easily seen: Knowing its IST isti and
the public values z1, z2, . . . , zN , a group member Usri can compute one row of matrix A as

vi = (1, ai,1, ai,2, . . . , ai,N), where ai,j, 1 ≤ j ≤ N are as in formula (1). Therefore vi · Y = 0

for ACV Y , and thus the group key can be derived with probability 1 as

vi · X = vi ·
(

K · eT
1 + Y

)

= K · vi · e
T
1 = K.

Theorem 2: ACV-BGKM is sound.

Proof: Let Y be a given access control vector. Let {vi, 1 ≤ i ≤ N} be a basis of the

nullspace of Y . Let v = (1, v(2), . . . , v(N+1)), where v(i+1) = H(val||zi), 1 ≤ i ≤ N . Usr can
derive the group key using v by following the KeyDer phase if and only if v is linearly dependent
of vi, 1 ≤ i ≤ N . When val is not a valid IST and H is a random oracle, v is indistinguishable

from a vector whose first entry is 1 and the other entries are independently and uniformly chosen

from Fq. By Lemma 2, the probability that v is linearly dependent of {vi, 1 ≤ i ≤ N} is no

more than 1/qN+1−N = 1/q, which is negligible. This proves the soundness of ACV-BGKM.

Theorem 3: ACV-BGKM is key hiding.

Proof: Let PubInfo = 〈X, (z1, . . . , zN)〉 be the public information broadcast from Svr.
This is the only piece of information seen by the adversary that is related to the group key.

By construction, X must be linearly independent of the standard basis vector eT
1 , i.e., X has

a nonzero entry after the first position. For any K ∈ KS = Fq, let Y = X − K · eT
1 . Then it

14

is clear that all Fq-vectors v such that v · Y = 0 form an N -dimensional Fq-vector space, say

W . It follows that the N basis vectors of W can be chosen in such a way that they all have

nonvanishing first entries. Therefore, the number of vectors v with 1 as their first entry such that

v ·X = K is qN−1, for all K ∈ KS. When the cryptographic hash function H(·) is modeled as a

random oracle and a valid IST is unknown, every such a vector v assumes the same probability

when computed as specified in the KeyDer phase. This implies that every K ∈ KS has the same

probability, 1/q, to be the designated group key in the view of the adversary. The key hiding

property of ACV-BGKM follows as a direct consequence. Note that ACV-BGKM is key hiding

against a computationally unbounded adversary.

It is clear that “forward/backward key protecting” is a stronger condition than “key hiding.”

However, we will use the proof of the latter to show the former.

Theorem 4: ACV-BGKM is forward/backward key protecting.

Proof: (Sketch) We first consider the forward key protecting property of ACV-BGKM.

Suppose that after the Update phase, an adversary has one IST ist from the previous session

S0 which do not propagate to the new session S1. As the choices of ist and the nullspace of
the ACV in session S0 can be viewed as (statistically) jointly independent of the determination

of the nullspace of the ACV in session S1, when H is modeled as a random oracle and by

design of the Update phase, Usr cannot learn the group key for session S1 with non-negligible

probability due to the key hiding property of ACV-BGKM.

Similarly, ACV-BGKM is backward key protecting.

Other related GKM security aspects mentioned in Section I are briefly discussed as follows.

Minimal trust. In order to protect the shared group key from an adversary outside of the group,

ACV-BGKM only requires to use a private channel once between Svr and each Usr, during
the TkDeliv phase. The security of the ephemeral private channels needs to be guaranteed. Any
other communications, including the ones for key issuance and rekeying, are executed via an

open broadcast channel.

Key independence. It is clear that the group keys (of different sessions) are independent by

ACV-BGKM construction. Furthermore, the ISTs are also independent of each other, because

they are randomly generated.

Collusion resistance. For BGKM, it only makes sense to consider collusion attacks from outside

the group. The case that a valid group member passes its IST or the derived group key to

15

others is not addressed by BGKM. Similar to the analysis for ACV-BGKM’s forward/backward

key protecting property, ACV-BGKM is resistant to polynomially computationally bounded

adversaries. In particular, colluding group members are not able to get other members ISTs

to derive group keys of earlier or later sessions.

B. ACV-BGKM efficiency analysis

We discuss the efficiency of ACV-BGKM with respect to computational costs and required

bandwidth for rekeying.

For any Usri in the group, deriving the shared group key requires N hashing operations

(evaluations of H(·)) and an inner product computation vi · X of two (N + 1)-dimensional Fq-

vectors, where N is the maximum group size. The overall computational complexity is O(N).

In practice, this can be done very efficiently.

For every rekeying phase, Svr needs to form a matrix A by performing N2 hashing operations,

and then solve a linear system of size (N +1)×N . Solving the linear system is the most costly

operation as N gets large for computation on Svr: It requires O(N3) field operations in Fq when

the method of Gauss-Jordan elimination [38] is applied. Experimental results in Section V shows

that this can be performed in a short time when N is up to 1000. Moreover, in practice, this

process can be parallelized on Svr to further reduce the real execution time.
When a rekeying process takes place, the new information to be broadcast is PubInfo =

〈X, (z1, . . . , zN)〉, where X is a vector consisting of (N +1) elements in Fq, and without loss of

generality we can pick zi to be strings with a fixed length. This gives an overall communication

complexity O(N). An advantage of ACV-BGKM is that the peer-to-peer private channel is not

needed for any persisting group members when rekeying happens.

Nowadays we generally care less about storage costs on both Svr and Usrs. Nevertheless, for
a group of maximum N users, ACV-BGKM only requires each Usr to store its own IST (O(1)),

and the Svr to keep track of all O(N) ISTs of the group members.

C. Comparison with existing BGKM schemes

In this section, we compare ACV-BGKM with the CRT [28], SS [29] and ACP [30] approaches

to BGKM from the view points of efficiency and security.

16

TABLE I

EFFICIENCY COMPARISON OF BGKM SCHEMES. N IS THE NUMBER OF GROUP MEMBERS. ! IS THE BIT LENGTH OF THE

MODULI IN CRT-BGKM, AND THAT OF THE FINITE FIELDS IN ACP-BGKM, ACV-BGKM, AND SS-BGKM (WE ONLY

DISCUSS THE POLYNOMIAL-BASED APPROACH IN THIS DISCUSSION). NOTE THAT AMONG ALL BGKM SCHEMES, ONLY

ACV-BGKM IS PROVABLY SECURE.

Comm.
Usr Svr

Key indish. Need enc. alg.
Space Time Space Time

SS-BGKM O(N!) O(!) O(N2!2) O(N!) O(N!2) Yes No

CRT-BGKM O(N!) O(!) O(N!2) O(N!) O(N!2) Yes Yes

ACP-BGKM O(N!) O(!) O(N!2) O(N!) O(N2!2) No No

ACV-BGKM O(N!) O(!) O(N!2) O(N!) O(N3!2) Yes No

In order to make a relatively fair comparison of the schemes, we assume that the secret values

ki, public moduli mi in CRT-BGKM and the finite fields in ACP-BGKM and ACV-BGKM have

about the same size so that the three schemes provide roughly the same level of security against

brute-force attacks. Let this size be ! bits, and let N be the number of group members. It is

clear that in all the schemes, O(!) (disk) space is needed for a group member Usr to store the
secret information obtained from the key server Svr through the private channel5. Assuming that
a modular multiplication in Fq takes time O(!2) and a hashing operation takes constant time, the

key derivation cost for a Usr is O(N!2) in both ACP-BGKM and ACV-BGKM. In CRT-BGKM,

Usr needs to perform a long division between an (N · !)-bit integer M and an !-bit modulus

mi, followed by a symmetric-key decryption. When the schoolbook long division is used and

assuming that the decryption operation takes O(1) time, the overall complexity of key derivation

in CRT-BGKM is also O(N!2). The key derivation cost of SS-BGKM is somewhat different:

it requires a Usr to reconstruct the polynomial (at least its constant term) through polynomial
interpolation; when the Lagrange interpolation formula is being used, it requires O(N2!2) time.

In all the algorithms, Svr takes O(N) space to store group members’ ISTs. In order to generate

5Depending on implementation, a group member may require more space (in memory) when performing computation for

shared group key derivation.

17

the broadcast PubInfo for rekeying, in CRT-BGKM Svr uses CRT to construct the message
M , which takes time O(N!2) when Garner’s algorithm (Algorithm 2.1.7 in [39]) is used and

schoolbook multiplication is considered; in ACP-BGKM Svr takes time O(N2!2) to generate

the access control polynomial, when polynomial multiplication is done in a straightforward way;

in SS-BGKM Svr takes time O(N) to create the polynomial, and time O(N!2) to generate the

shares via polynomial evaluation, which produce an overall O(N!2); and in ACV-BGKM it takes

time O(N3!2) for Svr to compute an access control vector by solving a linear system with the

method of Gauss-Jordan elimination. The communication complexity for rekeying is O(N!) for

all the BGKM schemes since only one broadcast of O(N) elements is performed.

The efficiency of ACV-BGKM is comparable to the existing BGKM schemes, except that in

ACV-BGKM the asymptotic order for Svr to generate the rekeying information is higher than that
in the other three. However, in practice it can still be done very efficiently, as shown in Section V,

even when there are thousands of members in the group. We also present an overview of a faster

ACV-BGKM in Section VI. Most importantly, ACV-BGKM has the following advantages when

compared with its counterparts.

First note that an encryption algorithm is needed for CRT-BGKM, but not for ACP-BGKM

and ACV-BGKM. Given that, a one-to-one correspondence between the secret values ki and the

public moduli mi must be kept by the server in CRT-BGKM, and also the size of the moduli mi

is required to be at least as large as the block size of the encryption algorithm.6 SS-BGKM, ACP-

BGKM and ACV-BGKM do not have these restrictions. Therefore SS-BGKM, ACP-BGKM and

ACV-BGKM are easier to maintain than CRT-BGKM.

Another important fact to mention is that ACP-BGKM does not satisfy the key hiding (indis-

tinguishability) property as defined in Section III-B. This can be easily seen in the following toy

example.

Example 1: Let N = 2 and the finite field be F2 in ACP-BGKM. Suppose Svr broadcasts a
polynomial P (x) = x2 + x + 1 ∈ F2[x] through the broadcast channel. Note that in this case

the keyspace KS = F2, and thus ideally the probability that 0 or 1 is the designated group key

should be 0.5 for anyone without a valid IST sid. However, note that P (x) is irreducible over

6If AES is used, each mi must be at least 128-bit long.

18

F2; hence the only way to write P (x) in the form
N
∏

i=1
(x − ai) + K is

P (x) = (x − 0)(x − 1) + 1.

Therefore, knowing only the polynomial P (x), anyone can conclude that the shared group key

K must be 1. This is against the indistinguishability of the key (IND-key) property of BGKM.

In general, to win the game in Fig. 1 the adversary can compute two polynomials A0(x) =

P (x) − K0 and A1(x) = P (x) − K1, and check if one of A0(x) and A1(x) fails to split

completely into a product of linear polynomials in Fq[x]: If it happens, then the other polynomial

must correspond to the real group key. Numerical results have shown that when n gets large,

the number of values K ∈ Fq such that P (x)−K splits completed over Fq gets rare. Hence the

adversary can win the game with nonnegligible probability.

Most importantly, compared to existing schemes, the newly proposed ACV-BGKM is more

flexible and provably secure. The security of the existing BGKM schemes are not formally

proven. A concerning fact about the existing BGKM schemes is that as the number of users

increases, the security of the scheme appears to weaken. We summarize the above discussion in

Table I.

V. EXPERIMENTAL RESULTS

In this section we evaluates the computational efficiency of ACV-BGKM. We simulate the

KeyGen phase at Svr and the KeyDer phase at Usrs. In the experiment, we vary both the size
of the underlying prime field Fq and the size of the group of Usrs, and measure the Svr-side
and Usr-side computation time. To emphasize on the arithmetic operations, we do not count
the time for hashing operations in the experiment. The code is written in the Magma scripting

language [40], and uses Magma’s internal library for finite field arithmetic and solving linear

systems. The experiment was performed on a machine running GNU/Linux kernel version 2.6.9

with a Dual Core AMD Opteron(TM) Processor 2200 MHz and 16 Gbytes memory. Only one

processor was used for computation. The experimental results are reported in Fig. 2 and Fig. 3.

Fig. 2 reports the ACV-BGKM running time at Svr and Usr for group sizes 600, 800, 1000

and 1200, and with the size of the prime field ranging from 64 to 128 bits. The running time is

averaged over 20 iterations. As shown in the figure, the average computation time increases in

19

Fig. 2. Computation time at Svr and Usr for different Fq

general as the size of the prime field increases. The actual running time depends on the prime

field that is chosen and the way field arithmetic is performed in Magma.

Fig. 3 reports the ACV-BGKM running time at Svr and Usr for fixed field lengths (in bits)
64, 80, 96 and 112, with the size of the group ranging from 100 to 2000 members. The running

time is averaged over 20 iterations. It shows that the ACV-BGKM rekeying process runs fast

on Svr when there are hundreds of Usrs in the group. It takes less than two minutes for Svr to
generate new PubInfo when there are up to 2000 Usrs and when the prime field is large enough.
Both figures show that it takes very little time for a Usr to derive the shared group key, and

a practically short time for the Svr to generate the key and the broadcast rekeying information,
when the underlying finite field and the group size are both considerably large. Further per-

formance gains can be achieved when the prime number q is chosen to be in a special form,

e.g., a generalized Mersenne prime (Solinas prime) [41], for which fast field arithmetic in Fq is

20

Fig. 3. Computation time at Svr and Usr for different group sizes

available.

VI. TOWARDS A FASTER ACV-BGKM SCHEME

In this section we lay the foundation towards a faster protocol of ACV-BGKM, called FACV-

BGKM, at the expense of additional space, precomputation and an index. It follows a baby-

step-giant-step (BSGS) rekey mechanism where infrequent giant steps are performed analogous

to the ACV-BGKM scheme. However, the amortized computational and communication cost is

reduced by the introduction of frequent baby steps. Due to space constraints, we only describe

the changes to the ACV-BGKM protocol below.

Protocol 2 (FACV-BGKM): FACV-BGKM works under similar conditions as ACV-BGKM.

ParamGen Svr selects N ′ = N +M where M ≤ N . For the maximum security and minimum

amortized cost, it is recommended to set M = N .

21

TkDeliv Svr assigns an index i (1 ≤ i ≤ N), selected uniformly at random, to each of the n

current users . Svr chooses N ISTs and sends an IST and corresponding index to each user.

The remaining N − n precomputed ISTs are used for rekeying when new users join the group.

KeyGen Svr creates an N × (N + M) Fq-matrix A where for a given 1 ≤ i ≤ N

ai,j =











1 if i = j

0 if 1 ≤ j ≤ N and i $= j

H(isti||zj) if N < j ≤ N + M

Like in ACV-BGKM protocol, Svr computes the null space of A with a set of its M basis

vectors, and selects an access control vector Y as one of the basic vectors. Svr caches these
basic vectors and marks Y as “used.” Svr constructs an (N + M)-dimensional Fq-vector X =

(
∑n

i=1 K · eT
i) +Y , where ei is the ith standard basis vector of FN+M

q . Notice that, unlike ACV-

BGKM, the key is embedded to all the locations corresponding to valid indices. Like, ACV-

BGKM, Svr sets PubInfo = 〈X, (z1, z2, . . . , zM)〉, and broadcasts PubInfo via the broadcast
channel.

KeyDer Usri, knowing the index i and isti, derives the (N + M)-dimensional row Fq-vector vi

which corresponds to a row in A. Usri derives the group key as K = vi · X .

Update Unlike ACV-BGKM, Svr does not run the complete KeyGen phase again. If a new
Usrt joins the group, Svr selects an unused index t and istt from the precomputed ISTs and

computes the new X̂ with a new key K̂. If an existing Usrr leaves the group, Svr selects a new
key K̂ and computes a new

X̂ = (
n

∑

j=1
j !=i

K̂ · eT
i) + Ŷ ,

where Ŷ is an “unused” basis vector which is among the precomputed set in KeyGen phase. Svr
marks Ŷ as “used”, and broadcasts only X̂ while keeping the other public information unchanged.

We call these operations a “baby-step rekey” since it only takes time O(N) compared to O(N3)

in ACV-BGKM. A complete KeyGen (i.e. “giant-step rekey”) with time O(N3) needs to be

performed every M Updates since otherwise a group member who has been valid for the last
M sessions can recover the null space of A, thus the matrix A itself. A giant-step rekey also

needs to be performed with a resized matrix A before M updates, if the number of joins exceeds

N − n after the current giant-step rekey to accommodate new users.

22

As described above, the KeyGen cost is amortized to obtain a scheme faster than the ACV-
BGKM scheme. Due to space constraints, we omit the security/performance analysis of the

FACV-BGKM scheme from this paper. We note that it is an interesting open research problem

to decide the optimal M and N values depending on the application scenario.

VII. CONCLUSIONS

We have proposed a new BGKM scheme ACV-BGKM which is controlled by a trusted

key server, and allows any valid user in the group to derive a shared group key on its own

from broadcast public information. The scheme minimizes the usage of private peer-to-peer

communication channels, and only uses a broadcast channel to deliver new rekeying messages

when the group key needs to be changed. The communication overhead is linear with the number

of users in the group. The scheme uses only efficient hash operations and linear algebra over

finite fields in computation, and does not require any encryption scheme. It is secure in that

even a computationally unbounded adversary cannot obtain the shared group key without a

valid token from the key server. The key derivation is efficient for any group member. The

experimental results show that the generation of the rekeying information takes a short time on

a personal computer for a group of thousands of members. Such a scheme is useful to important

practical applications like selective data dissemination, secure VoIP conferences, group-based

online computer games, and so on. We have used the Magma computer algebra system to

obtain the experimental results. We expect to see a better performance with more efficient

software/hardware implementations of ACV-BGKM. As future work, we plan to empirically

evaluate the performance of the FACV-BGKM scheme under different parameters.

REFERENCES

[1] “Advanced Encryption Standard (AES),” http://www.csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[2] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson, “Twofish,” http://www.schneier.com/twofish.html.

[3] B. Schneier, “Blowfish,” http://www.schneier.com/blowfish.html.

[4] “RC4,” http://www.rsa.com/rsalabs/node.asp?id=2250.

[5] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving approach to policy-based content dissemination,” in

ICDE ’10: Proceedings of the 2010 IEEE 26th International Conference on Data Engineering, 2010.

[6] H. Harney and C. Muckenhirn, “Group key management protocol (GKMP) specification,” http://tools.ietf.org/html/rfc2093,

United States, 1997.

[7] ——, “Group key management protocol (GKMP) architecture,” http://tools.ietf.org/html/rfc2094, United States, 1997.

23

[8] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The VersaKey framework: versatile group key management,”

IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1614–1631, 1999.

[9] D. Wallner, E. Harder, and R. Agee, “Key management for multicast: Issues and architectures,” ftp://ftp.isi.edu/in-notes/

rfc2627.txt, United States, 1999.

[10] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas, “Multicast security: A taxonomy and some efficient

constructions,” in Proc. IEEE INFOCOM’99, vol. 2. New York, NY: IEEE, Mar. 1999, pp. 708–716.

[11] C. Wong, M. Gouda, and S. Lam, “Secure group communications using key graphs,” IEEE/ACM Trans. Netw., vol. 8,

no. 1, pp. 16–30, 2000.

[12] H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain, “A secure multicast protocol with copyright protection,” SIGCOMM

Comput. Commun. Rev., vol. 32, no. 2, pp. 42–60, 2002.

[13] A. Nemaney Pour, K. Kumekawa, T. Kato, and S. Itoh, “A hierarchical group key management scheme for secure multicast

increasing efficiency of key distribution in leave operation,” Comput. Netw., vol. 51, no. 17, pp. 4727–4743, 2007.

[14] W. Ng, M. Howarth, Z. Sun, and H. Cruickshank, “Dynamic balanced key tree management for secure multicast

communications,” IEEE Trans. Comput., vol. 56, no. 5, pp. 590–605, 2007.

[15] A. Ballardie, “Scalable multicast key distribution,” http://tools.ietf.org/html/rfc1949, United States, 1996.

[16] R. Oppliger and A. Albanese, “Distributed registration and key distribution (DiRK),” Information systems security: facing

the information society of the 21st century, pp. 199–208, 1996.

[17] L. Dondeti, S. Mukherjee, and A. Samal, “Scalable secure one-to-many group communication using dual encryption,”

Computer Communications, vol. 23, pp. 1681–1701, 2000.

[18] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono, D. Kiwior, J. Kurose, D. Towsley, S. Vasudevan, and C. Zhang,

“Secure group communications for wireless networks,” in Military Communications Conference, 2001. MILCOM 2001.

Communications for Network-Centric Operations: Creating the Information Force. IEEE, vol. 1, 2001, pp. 113–117 vol.1.

[19] A. Schaff, “Dynamic group communication security,” in ISCC ’01: Proceedings of the Sixth IEEE Symposium on Computers

and Communications. Washington, DC, USA: IEEE Computer Society, 2001, p. 49.

[20] S. Rafaeli and D. Hutchison, “Hydra: A decentralised group key management,” in WETICE ’02: Proceedings of the 11th

IEEE International Workshops on Enabling Technologies. Washington, DC, USA: IEEE Computer Society, 2002, pp.

62–67.

[21] I. Ingemarsson, D. Tang, and C. Wong, “A conference key distribution system,” Information Theory, IEEE Transactions

on, vol. 28, no. 5, pp. 714–720, Sep 1982.

[22] A. Fiat and M. Naor, “Broadcast encryption,” in CRYPTO ’93: Proceedings of the 13th annual international cryptology

conference on Advances in cryptology. New York, NY, USA: Springer-Verlag New York, Inc., 1994, pp. 480–491.

[23] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-Hellman key distribution extended to group communication,” in CCS ’96:

Proceedings of the 3rd ACM conference on Computer and communications security. New York, NY, USA: ACM, 1996,

pp. 31–37.

[24] M. Burmester and Y. Desmedt, “A secure and efficient conference key distribution system,” Lecture Notes in Computer

Science, vol. 950, pp. 275–286, 1995.

[25] C. Boyd, “On key agreement and conference key agreement,” in ACISP ’97: Proceedings of the Second Australasian

Conference on Information Security and Privacy. London, UK: Springer-Verlag, 1997, pp. 294–302.

[26] K. Becker and U. Wille, “Communication complexity of group key distribution,” in CCS ’98: Proceedings of the 5th ACM

conference on Computer and communications security. New York, NY, USA: ACM, 1998, pp. 1–6.

24

[27] Y. Kim, A. Perrig, and G. Tsudik, “Communication-efficient group key agreement,” in Sec ’01: Proceedings of the 16th

international conference on Information security: Trusted information, 2001, pp. 229–244.

[28] G. Chiou and W. Chen, “Secure broadcasting using the secure lock,” Software Engineering, IEEE Transactions on, vol. 15,

no. 8, pp. 929–934, Aug 1989.

[29] S. Berkovits, “How to broadcast a secret,” in EUROCRYPT ’91: Proceedings of the 10th annual international conference

on Advances in Cryptology. Berlin, Heidelberg: Springer-Verlag, 1991, pp. 535–541.

[30] X. Zou, Y. Dai, and E. Bertino, “A practical and flexible key management mechanism for trusted collaborative

computing,” in INFOCOM. IEEE, 2008, pp. 538–546. [Online]. Available: http://dblp.uni-trier.de/db/conf/infocom/

infocom2008.html#ZouDB08

[31] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

[32] Y. Challal and H. Seba, “Group key management protocols: A novel taxonomy,” International Journal of Information

Technology, vol. 2, no. 2, pp. 105–118, 2006.

[33] T. Hungerford, “Chinese remainder theorem,” in Algebra (Graduate Texts in Mathematics). Springer, February 2003, pp.

131–132.

[34] E. F. Brickell, “Some ideal secret sharing schemes,” in EUROCRYPT ’89: Proceedings of the workshop on the theory and

application of cryptographic techniques on Advances in cryptology. New York, NY, USA: Springer-Verlag New York,

Inc., 1990, pp. 468–475.

[35] O. Goldreich, Foundations of Cryptography: Basic Tools. New York, NY, USA: Cambridge University Press, 2000.

[36] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm for designing efficient protocols,” in CCS ’93:

Proceedings of the 1st ACM conference on Computer and communications security. New York, NY, USA: ACM, 1993,

pp. 62–73.

[37] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof-systems,” in STOC ’85:

Proceedings of the seventeenth annual ACM symposium on Theory of computing. New York, NY, USA: ACM, 1985, pp.

291–304.

[38] D. Dummit and R. Foote, “Gauss-Jordan elimination,” in Abstract Algebra, 2nd ed. Wiley, 1999, p. 404.

[39] R. Crandall and C. Pomerance, Prime numbers: A computational perspective. New York: Springer-Verlag, 2001.

[40] W. Bosma, J. Cannon, and C. Playoust, “The MAGMA algebra system I: the user language,” J. Symb. Comput., vol. 24,

no. 3-4, pp. 235–265, 1997.

[41] J. Solinas, “Generalized mersenne numbers,” CACR, Tech. Rep. CORR 99-39, 1999.

