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ABSTRACT
The signature of a data structure reflects some unique properties of
the data structure and therefore can be used to identify instances of the
data structure in a memory image. Such signatures are important to
many computer forensics applications. Existing approaches propose
the use of value invariants of certain fields as data structure signa-
tures. However, they do not fully exploit pointer fields as pointers are
more dynamic in their value range. In this paper, we show that point-
ers and the topological properties induced by the points-to relations
between data structures can be used as signatures. To demonstrate
the idea, we develop SigGraph, a system that automatically extracts
points-to relations from kernel data structure definitions and gener-
ates unique graph-based signatures for the data structures. These sig-
natures are further refined by dynamic profiling to improve efficiency
and robustness. Our experimental results show that the graph-based
signatures achieve high accuracy in kernel data structure recognition,
with zero false negative and close-to-zero false positives. We further
show that SigGraph achieves strong robustness in the presence of ma-
licious pointer manipulations.

1. INTRODUCTION
Given a kernel data structure definition, identifying instances of

that data structure in a kernel memory image is a highly desirable ca-
pability in computer forensics, especially memory forensics where in-
vestigators try to recover semantic information from a memory image
obtained from a suspect/victim machine [23, 10, 18, 32, 30]. Anal-
ogous to the pattern recognition problem in image processing, the
problem of data structure – especially kernel data structure – instance
recognition has received increasing attention. For example, the state-
of-the-art solutions often rely on the field value invariance exhibited
by a data structure as its signature [33, 31, 12, 8, 7]. The value of
such a field is either constant or in a fixed range and the effectiveness
and robustness of the value-invariant approach has been well demon-
strated. However, there exist many kernel data structures that are not
covered by the value-invariant approach. For example, some data
structures do not have fields with invariant values or value ranges. It
is also possible that an invariant-value field is corrupted (e.g., by ker-
nel bugs or attacks), making the corresponding data structure instance
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un-recognizable. Furthermore, some value invariant-based signatures
may not be unique enough to distinguish themselves from others. For
example, a signature that demands the first field to have value 0 may
generate a lot of false positives.
In this paper, we present a complementary model for kernel data

structure signatures. Different from the value-invariant-based signa-
tures, our approach, called SigGraph, uses a graph structure rooted
at a data structure as the data structure’s signature. More specifi-
cally, for a data structure with pointer field(s), each pointer field –
identified by its offset from the start of the data structure – points to
another data structure. Transitively, such points-to relations entail a
graph structure rooted at the original data structure. We observe that
data structures with pointer fields widely exist in operating system
(OS) kernels. For example, when compiling the whole package of
Linux kernel 2.6.18-1, we found that over 40% of all data structures
have pointer field(s).
Compared with the field values of a data structure, the “topology”

of such a “points-to” graph (which is across data structures) is much
more stable. Moreover, in an OS kernel, it is unlikely that two dif-
ferent data structures have exactly the same graph-based signature,
which is confirmed by our experiments with a number of Linux ker-
nels. As such, SigGraph is deemed a natural scheme to uniquely iden-
tify kernel data structures with pointers.
SigGraph has the following key features: (1) It models the topolog-

ical invariants between a subject data structure and those directly or
transitively reachable via points-to relations. Furthermore, SigGraph
recognizes and formulates the challenge that different data structures
may share isomorphic structural patterns such that false positives are
induced if the invariants are not properly chosen. SigGraph proposes
a theoretically sound solution identifying signatures that are guaran-
teed not to cause false positives in ideal scenarios (e.g. pointers are
always not null) and develops a number of practical extensions to
adapt the algorithm to real-world scenarios (e.g. some pointers may
be null). (2) SigGraph exploits the wealth of points-to relations be-
tween kernel data structures, and is able to generate multiple signa-
tures for the same data structure. This is particularly powerful when
operating under malicious pointer mutation attacks. (3) SigGraph
avoids complex, expensive points-to analysis for void pointer han-
dling (e.g., in [9]) as it can generate distinct signatures without in-
volving those pointers. (4) The graph-based signatures can often be
described by context-free-grammars such that parsers/scanners can be
automatically generated to recognize data structure instances. More
specifically, to determine if address x holds an instance of data struc-
ture T , we only need to perform pattern matching starting at x using
the parser for T . This avoids the construction of (and dependence on)
a global memory graph starting from the global variables and stack
variables of a program/OS [17, 9].
We have performed extensive evaluation on SigGraph-generated

signatures with several Linux kernels and verified the uniqueness of
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Figure 1: A working example of kernel data structures and a graph-based signature. The triangles represent recursions.

the signature. Our signatures achieve low false positives and zero
false negatives when applied to data structure instance recognition on
kernel memory images. Furthermore, our experiments show that Sig-
Graph works in the absence of global memory maps and in the face of
a range of kernel attacks that corrupt pointer fields. Finally, we con-
duct a security analysis to recognize SigGraph’s strategic advantage
and disadvantage when facing kernel attacks.

2. OVERVIEW

2.1 Problem Statement and Challenges
The goal of SigGraph is to use the inter-data structure topology in-

duced by points-to relations as a data structure’s signature. Consider
7 simplified Linux kernel data structures, 4 of which are shown in Fig-
ure 1(a)-(d). In particular, task_struct(TS) contains 4 pointers
to thread_info(TI), mm_struct(MS), linux_binfmt(LB),
and TS, respectively. TI has a pointer to TS, and MS has two pointers:
one points to vm_area_struct(VA) (not shown in the figure) and
the other is a function pointer. LB has one pointer to module(MD).
At runtime, if a pointer is not null, its target object should have

the type of the pointer. Let ST (x) denote a boolean function that
decides if the memory region starting at x is an instance of type T
and let ∗x denote the value stored at x. Take task_struct data
structure as an example, we have the following rule, assuming all
pointers are not null.

STS(x) → STI(∗(x + 0)) ∧ SMS(∗(x + 4)) ∧
SLB(∗(x + 8)) ∧ STS(∗(x + 12))

(1)

It means that if STS(x) is true, then the four pointer fields must
point to regions with the corresponding types and hence the boolean
functions regarding these fields must be true. Similarly, we have the
following

STI(x) → STS(∗(x + 0)) (2)

SMS(x) → SVA(∗(x + 0)) ∧ SFP(∗(x + 4)) (3)

SLB(x) → SMD(∗(x + 0)) (4)

for thread_info, mm_struct, and linux_binfmt, respec-
tively. Substituting symbols in rule (1) using rules (2), (3) and (4),
we further have

STS(x) → STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))
SFP(∗(∗(x + 4) + 4)) ∧ SMD(∗(∗(x + 8) + 0))) ∧
STS(∗(x + 12))

(5)
The rule corresponds to the graph shown in Figure 1 (e), where

the nodes represent pointer fields with their shapes denoting pointer
types; the edges represent the points-to relations with their weights
indicating the pointers’ offsets; and the triangles represent recursive
occurrences of the same pattern. It means that if the memory region
starting at x is an instance of task_struct, the layout of the region
must follow the graph’s definition. Note that the inference of rule 5

is from left to right. However, we observe that the graph is so unique
that the reverse inference tends to be true. In other words, we can use
the graph as the signature of task_struct and achieve the reverse
inference as follows.

STS(x) ← STS(∗(∗(x + 0) + 0)) ∧ SVA(∗(∗(x + 4) + 0))
...

(6)

To realize the SigGraph signature scheme we need to address a
number of challenges:

• Capturing uniqueness of signatures. Given a static data struc-
ture definition, we aim to construct its points-to graph as shown
in the task_struct example. However, it is possible that
two distinct data structures may lead to isomorphic graphs which
cannot be used to distinguish instances of the two data struc-
tures. Hence our first challenge is to identify the sufficient and
necessary conditions for signature uniqueness between data struc-
tures.

• Generating signatures. It is possible that a data structure may
have multiple unique signatures, depending on how (especially,
how deep) the points-to edges are traversed when generating a
signature. In particular, among the valid signatures of a data
structure, finding the minimal signature that has the smallest
size while retaining uniqueness (relative to other data struc-
tures) is a combinatorial optimization problem. Finally, it is
desirable to automatically generate a parser for each signa-
ture that will perform the corresponding data structure instance
recognition on a memory image.

• Improving recognition accuracy. Although statically a data
structure may have a unique signature graph, at runtime, point-
ers may be null whereas non-pointer fields may have pointer-
like values. As a result the data structure instances in a memory
image may not fully match the signature. We need to handle
such issues to improve recognition accuracy.

2.2 System Overview
The overview of the SigGraph system is shown in Figure 2. It con-

sists of four key components: (1) data structure definition extractor,
(2) dynamic profiler, (3) signature generator, and (4) parser generator.
The starting point of our system is to extract data structure definitions
of the target OS. In this paper, we use the source code of Linux kernels
as subject programs. SigGraph extracts all kernel data structure def-
initions automatically through a compiler pass. Since our signatures
rely on pointer fields whose values may be null or some special
values, the dynamic profiler identifies such problematic pointer fields
and handle them accordingly. The signature generator is responsible
for checking if unique signatures exist for a data structure. If so, the
generator will generate them. The generated signatures are passed
to the parser generator component that can automatically generate
parsers for individual data structures from their signatures.
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Figure 2: SigGraph system overview

3. DATA STRUCTUREDEFINITIONEXTRAC-
TION

A naive method to extract data structure definitions is to directly
process source code. This method is error-prone because definitions
may be present in multiple source files; they may have various scopes
(i.e., the declaration contexts) and type aliases can be introduced by
typedef. SigGraph’s data structure definition extractor adopts a
compiler-based approach, where the compiler is instrumented to walk
through the source code and extract data structure definitions. It is
robust as it is based on a full-fledged language frontend. In partic-
ular, we introduce a compiler pass in gcc-4.2.4. The pass takes
abstract syntax trees (ASTs) as input as they retain substantial sym-
bolic information [1]. The compiler-based approach also allows us
to handle data structure in-lining, which occurs when a data structure
has a field that is of the type of another structure; after compilation,
the fields in the inner structure become fields in the outer structure.
Furthermore, we can easily see through type aliases introduced by
typedef via ASTs.
The net outcome of the compiler pass is the data structure defi-

nitions extracted in a canonical form. The pass is inserted into the
compilation work flow right after data structure layout is finished (in
stor-layout.c). During the pass, the AST of each data structure
is traversed. If the data structure type is struct or union, its field
type, offset, and size information is dumped to a file. To precisely
reflect the field layout after in-lining, we flatten the nested definitions
and adjust offsets.
We note that source code availability is not a fundamental require-

ment of SigGraph. For a close-source OS (e.g., Windows), if debug
information is provided with the binary, SigGraph can simply use the
debug information.

4. SIGNATURE GENERATION
Assume a data structure T has n pointer fields with offsets f1, f2,

..., fn and types t1, t2, ..., tn. A predicate St(x) determines if the
region starts at address x is an instance of t. The following production
rule can be generated for T .

ST (x) → St1 (∗(x + f1)) ∧ St2 (∗(x + f2)) ∧ ... ∧ Stn
(∗(x + fn))

(7)
The problem of data structure signature generation is along the re-
verse direction of the above rule. Given a memory snapshot, we hope
to identify instances of a data structure by trying to match the right-
hand side of the rule (as a signature) with memory content starting at
a certain location. Although it is generally difficult to infer the types
of memory at individual locations based on the memory content, it
is more feasible to infer if a memory location contains a pointer and
hence to identify the layout of pointers with high confidence. This
can be done recursively by following the pointers to the destination
data structures. As such, the core challenge in signature generation is
to find a finite graph induced by points-to relations (including point-
ers, pointer field offsets, and pointer types) that uniquely identifies a
target data structure, which is the root of the graph. For convenience
of discussion, we assume that pointers are not null and they each
have an explicit type (i.e. not a void * pointer). We will describe

struct X {

    ...

  [8]  struct Y  * x1; 

    ...

  [36] struct BB * x2;

    ...

  [48] struct CC * x3;

    ...

  [54] struct DD * x4;

}

struct A {

  [0]  struct B * a1;

    ...

  [12] struct C * a2;

    ...

  [18] struct D * a3;

}

c80b20e0: 00 00 00 00 01 20 00 32 0a 00 00 00 00 ae ff 00

c80b20f0: c8 40 30 b0 00 00 00 00 00 10 00 00 c8 40 42 30

c80b2100: 00 00 c8 41 00 22 00 00 00 10 00 00 00 00 00 00

Figure 3: Insufficiency of pointer layout uniqueness.

how to handle those real-world issues in Section 6.
As mentioned earlier, two distinct data structures may have iso-

morphic structural patterns. For example, if two data structures have
the same pointer field layout, we need to further look into the “next-
hop” data structures (we call them lower layer data structures) via the
points-to edges. Moreover, we observe that even though the pointer
field layout of a data structure may be unique (different from any other
data structure), an instance of such layout in memory is not neces-
sary an instance of the data structure. Consider Figure 3, struct
A and X have different layouts for their pointer fields. If the pro-
gram has only these two data structures, it appears that we can use
their one level pointer structure as the signature. However, this is
not true. Consider the memory segment at the bottom of Figure 3,
in which we detect three pointers (the boxed bytes). It appears that
SA(0xc80b20f0) is true because it fits the one level structure of
struct A. But it is possible that the three pointers are instead the
instances of fields x2, x3, and x4 in struct X and hence the re-
gion is part of an instance of struct X. In other words, a pattern
scanner based on struct A will generate many false positives on
struct X. The reason is that the structure of A coincides with the
sub-structure of X. As we will show later in Section 7, such coinci-
dences are very common.
To better model the issue, we introduce the concept of immediate

pointer pattern (IPP) that describes the one level pointer structure
as a string such that the aforementioned problem can be detected by
deciding if an IPP is the substring of another IPP.

DEFINITION 1. Given a data structure T , let its pointer field off-
sets be f1, f2, ..., and fn, pointing to types t1, t2, ..., and tn, resp. Its
immediate pointer pattern, denoted as IPP (T ), is defined as follows.
IPP (T ) = f1 · t1 · (f2−f1) · t2 · (f3−f2) · t3 · ... · (fn −fn−1) · tn.
We say an IPP (T ) is a sub-pattern of IPP (R) if g1 · r1 · (f2 −

f1) · r2 · (f3 − f2) · ... · (fn − fn−1) · rn is a substring of IPP (R),
with g1 >= f1 and r1, ..., rn any pointer types.

Intuitively, an IPP describes the types of the pointer fields and
their intervals. An IPP (T ) is a sub-pattern of IPP (R) if the pattern
of pointer field intervals of T is a sub-pattern of R’s, disregard the
types of the pointers. It also means that we cannot distinguish an
instance of T from an instance of R in memory if we do not look
into the lower layer structures. For instance in Figure 3, IPP (A) =
0 ·B ·12 ·C ·6 ·D and IPP (X) = 8 ·Y ·28 ·BB ·12 ·CC ·6 ·DD.
IPP (A) is a sub-pattern of IPP (X).

DEFINITION 2. Replacing a type t in a pointer pattern with
“(IPP (t))” is called one pointer expansion, denoted as t

−→.
A pointer pattern of a data structure T is a string generated by a

sequence of pointer expansions from IPP (T ).

For example, assume the definitions of B and D can be found in
Figure 4.
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struct B {

  [0]  E * b1;

  [4]  B * b2;

}

struct BB {

  [0]  EE * bb1;

  [4]  BB * bb2;

}

struct E {

    ...

  [12] G * e1;

    ...    

  [24] H * e3;

}

struct EE {

    ...

  [12] GG * ee1;

     ...    

  [24] HH * ee3;

}

0 +4

+12 +24

B/BB

B/BBE/EE

G/GG H/HH

struct D {

    ...

  [4]  I * d1;

}

struct DD {

    ...

  [8]  II * dd1;

}

(a) definitions (b) structures of B and BB

Figure 4: Data structure isomorphism.

IPP (A) = 0 · B · 12 · C · 6 · D
B
−→ 0 · (0 · E · 4 · B) · 12 · C · 6 · D

[1]

D
−→ 0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I)

[2]
(8)

The strings [1] and [2] are both pointer patterns of A. The pointer
patterns of a data structure are candidates for its signature. As one
data structure may have many pointer patterns, the challenge becomes
to algorithmically identify the unique pointer patterns of a given data
structure so that instances of the data structure can be identified from
memory by looking for satisfactions of the pattern without causing
false positives. If efficiency is a concern, the minimal pattern should
also be identified.

Existence of Signature. The first question we need to answer is
whether a unique pointer pattern exists for a given data structure. Ac-
cording to the previous discussion, given a data structure T , if its
IPP is a sub-pattern of another data structure’s IPP (including the
case in which they are identical). We cannot use the one layer struc-
ture as the signature of T . We have to further use the lower-layer data
structures to distinguish it from the other data structure. However, it
is possible that T is not distinguishable from another data structureR
if their structures are isomorphic.

DEFINITION 3. Given two data structure T andR, let the pointer
field offsets of T be f1, f2, ..., and fn, pointing to types t1, t2, ..., and
tn, resp.; the pointer field offsets of R be g1, g2, ..., and gm, pointing
to types r1, r2, ..., and rm, resp.

T and R are isomorphic, denoted as T !" R, if and only if
[1] n ≡ m;
[2] ∀1 ≤ i ≤ n fi ≡ gi

[2.1]
∧ ( ti !" ri

[2.2]

∨ a cycle is formed when deciding ti !" ri

[2.3]
);

Intuitively, two data structures are isomorphic, if they have the
same number of pointer fields (Condition [1]) at the same offsets
([2.1]) and the types of the corresponding pointer fields are also iso-
morphic ([2.2]) or the recursive definition runs into cycles ([2.3]),
e.g., when ti ≡ T ∧ ri ≡ R.
Figure 4 (a) presents the definitions of some data structures in Fig-

ure 3. The data structures whose definitions are missing from the
two figures do not have pointer fields. According to Definition 3,
B !" BB because they both have two pointers at the same offsets;
and the types of the pointer fields are isomorphic either by the sub-
structures (E !" EE) or by the cycles (B !" BB).
Given a data structure, we can now decide if it has a unique signa-

ture. As mentioned earlier, we assume that pointers are not null and
are not of the void* type.

0 +4

+16 +24

B

BE

G H

0
+12

+18

C D

+4

B

0
+12

+18

C D

I

A A

Figure 5: If the offset of field e1 in struct G changes to 16,
struct A has two possible signatures.

THEOREM 1. Given a data structure T , if there does not exist a
data structure R such that
[1] IPP (T ) is a sub-pattern of IPP (R), and
[2] assume the sub-pattern in IPP (R) is g1 ·r1 · (f2−f1) ·r2 · (f3−
f2) · ... · (fn − fn−1) · rn, t1 !" r1, t2 !" r2, ... and tn !" rn,

T must have a unique pointer pattern, that is, the pattern can not
be generated from any other individual data structure through expan-
sions.

The proof of Theorem 1 is presented in Appendix I. Intuitively, the
theorem specifies that T must have a unique pointer pattern (i.e., a
signature) as long as there is not an R such that IPP (T ) is a sub-
pattern of IPP (R) and the corresponding types are isomorphic.
If there is an R satisfying [1] and [2] in the theorem, no matter

how many layers we inspect, the structure of T remains identical to
part of the structure of R, which makes them indistinguishable. In
Linux kernels, we have found a few hundred such cases (about 12%
of overall data structures). But most of them are data structures that
are rarely used or not important according to the kernel security and
forensics literature.
Note that two isomorphic data structures may have different con-

crete pointer field types. But given a memory snapshot, it is unlikely
for us to know the concrete types of memory cells. Hence, such in-
formation can not be used to distinguish the two data structures. In
fact, concrete type information is not part of a pointer pattern. Their
presence is rather for readability.
Consider the data structures in Figure 3 and Figure 4. Note all the

data structures whose definitions are not shown do not have pointer
fields. IPP (A) is a sub-pattern of IPP (X), B !" BB and C !"
CC. ButD is not isomorphic toDD due to their different immediate
pointer patterns. According to the theorem, there must be a unique
signature for A. In this example, the pointer pattern [2] in Equa-
tion (8) is a unique signature and if we find pointers that have such
structure in memory, they must indicate an instance of A.

Finding the Minimal Signature. Even though we can decide if a
data structure T has a unique signature with the theorem, there may
be multiple pointer patterns of T that can distinguish it from other
data structures. Ideally, we want to find the minimal pattern as it re-
quires the minimal parsing efforts during scanning. For example, if
field e1’s offset in struct G is 16, struct A has two possible
structures as shown in Figure 5. They correspond to the pointer pat-
terns

0 · (0 · (16 · G · 8 · H) · 4 · B) · 12 · C · 6 · D

and
0 · B · 12 · C · 6 · (4 · I)

One is generated by expanding B and then E, and the other is gen-
erated by expandingD. Either one can serve as a unique signature of
A.

4



Algorithm 1 An approximate algorithm for signature generation
Input: Data structure T ;
Output: The pointer pattern that serves as the signature.
1: s= IPP (T )
2: let IPP (T ) be f1 · t1 · (f2 − f1) · t2 · ... · (fn − fn−1) · tn

3: for each sub-pattern p=g1 ·r1 · (f2 −f1) ·r2 · (f3 −f2) · ... · (fn −fn−1) ·rn

in IPP (R) of a different structureR with f1 <= g1 do
4: distinct=distinct ∪ {p}
5: end for
6: while distinct #= φ do
7: s=expand(s)
8: for each p ∈ distinct do
9: p=expand(p)
10: if p is different from s disregard type symbols then
11: distinct= distinct − p
12: end if
13: end for
14: end while
15: return s

expand(s)
1: for each type symbol t ∈ s do
2: s= replace t with “(IPP (t))"
3: end for
4: return s

In general, finding the minimal unique signature is a combinato-
rial optimization problem: given a data structure T , find the mini-
mal pointer pattern of T that can not be a sub-pattern of any other
data structure R, that is, cannot be generated by pointer expansions
from a sub-pattern of IPP (R). The complexity of a general solution
is likely in the NP category. In this paper, we propose an approxi-
mate algorithm that guarantees to find a unique signature if one exists,
though the generated signature may not be the minimal one. It is a
breadth-first algorithm that performs expansions for all pointer sym-
bols on the same layer at one step until the pattern becomes unique.
The algorithm first identifies the set of data structures that may

have IPP (T ) as their sub-patterns (lines 3-5). Such sub-patterns are
stored in distinct. Next, it performs breadth-first expansions on the
pointer pattern of T , stored in s, and the patterns in distinct, until
all patterns can be distinguished. It is easy to infer that the algorithm
will eventually find a unique pattern if one exists.
For the data structures in Figures 3 and 4, the pattern generated for

A by the algorithm is

0 · (0 · E · 4 · B) · 12 · C · 6 · (4 · I) (9)

It is produced by expanding B andD in IPP (A).

Generating Multiple Signatures. In some scenarios, it is highly
desirable to generate multiple signatures for the same data structure.
A common scenario is that some pointer fields in a signature may not
be dependable. For example, certain kernel malware may corrupt the
values of some pointer fields and, as a result, the corresponding data
structure instance will not be recognized by a signature that involves
those pointers.
SigGraph mitigates such a problem by generating multiple unique

signatures. In particular, if certain pointer fields in a data structure
are potential targets of corruption, SigGraph will avoid using such
fields during signature generation in Algorithm 1. For example, if
field e1’s offset in struct G is 16 and field a3 in struct A is
not dependable. Algorithm 1 generates a signature for struct A by
pruning the sub-graph rooted at field a3 in Figure 5(a). The detailed
algorithm is elided.

5. PARSER GENERATION
Given a data structure signature, i.e., a pointer pattern, our tech-

nique can automatically generate a parser. The parser will be used to
scan memory images during forensic investigations and identify in-
stances of the data structure. To automatically generate parsers, we

1 int isInstanceOf_A(void *x){
2 x=x+0;
3 {
4 y=*x;
5 y=y+0’
6 assertPointer(*y);
7 y=y+4;
8 assertPointer(*y);
9 }
10 x=x+12;

11 assertPointer(*x);
12 x=x+6;
13 {
14 y=*x;
15 y=y+4;
16 assertPointer(*y);
17 }
18 return 1;
19 }

Figure 6: The generated parser for struct A’s signature in
Equation 9.

describe all signatures using a context free grammar (CFG). Then we
leverage yacc to generate parsers. The CFG is described as follows.

Signature := number · Pointer · Signature | ε
Pointer := type | (Signature)

(10)

In the above grammar, number and type are terminals that rep-
resent numbers and type symbols, respectively. A Signature is a
sequence of number · Pointer, in which Pointer describes either
the type or the Signature of the data structure being pointed-to. It
is easy to tell that the grammar describes all the pointer patterns in
Section 4, including the signature of A generated by our technique
(Equation (9)).
Parsers can be generated based on the grammar rules. Intuitively,

when a number symbol is encountered, the field offset should be in-
cremented by number. If a type is encountered, the parser asserts
that the corresponding memory contain a pointer. If a ‘(’ symbol is
encountered, a pointer dereference is performed and the parser starts
to parse the next level memory region until the matching ‘)’ is encoun-
tered. A sample parser generated for the signature in Equation (9)
can be found in Figure 6. Function isInstanceOf_A decides if
a given address is an instance of A; assertPointer asserts the
given address must contain a pointer value, otherwise an exception is
thrown and the function isInstranceOf_A returns 0. The yacc
rules to generate parsers are elided for brevity.
Considering non-pointer fields. So far a parser considers only the
positive information from the signature, which is the fields that are
supposed to be pointers, but does not consider the implicit negative
information, which is the fields that are supposed to be non-pointers.
In many cases, negative information is needed to construct robust
parsers.
For example, assume a data structure T has a unique signature 0 ·

A · 8 · B · 4 · C. If there is a pointer array that stores a consecutive
sequence of pointers, even though the signature is unique and has no
structural conflict with any other data structures, the generated parser
will mistakenly identify part of the array as an instance of T .
In order to handle such issues, the parser should also assert that

the non-pointer fields must not contain pointers. Hence the parser for
the above signature becomes the following. Method assertNot
Pointer asserts that the given address does not contain a pointer.

1 int isInstanceOf_T(void *x){
2 x=x+0;
3 assertPointer(*x); // field of type "A *"
4 x=x+4;
5 assertNotPointer(*x); // field of non-pointer
6 x=x+4;
7 assertPointer(*x); // field of type "B *"
8 x=x+4;
9 assertPointer(*x); // field of type "C *"
10 }

6. HANDLING PRACTICAL ISSUES
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Signature Statistics
Kernel #Total #Pointer #Unique Average #No Number of Signatures in Different Steps
version structs structs signature Percent depth signature 1 2 3 4 5 6 7 8 9 10 11 12 13
2.6.15-1 8850 3597 3229 89.76% 2.31 368 1355 823 461 229 76 194 85 4 1 0 1 - -
2.6.18-1 11800 4882 4305 88.18% 2.45 572 1820 1057 382 410 159 337 121 9 3 5 1 1 -
2.6.20-15 14992 6096 5395 88.50% 2.54 701 2137 1311 680 236 407 501 106 9 1 5 1 1 -
2.6.24-26 15901 6427 5645 87.83% 2.47 782 2172 1316 761 475 624 248 37 7 1 0 3 1 -
2.6.31-1 26799 9957 8683 87.20% 2.73 1274 3364 1951 696 319 1492 494 344 19 1 0 1 1 1

Table 1: Experimental results of signature uniqueness test

So far we have assumed an ideal environment for SigGraph. How-
ever, when applied to large system software such as the Linux kernel,
SigGraph faces a number of practical challenges. In this section, we
present our techniques to handle the following key issues.

1. Null Pointers – It is possible that pointer fields have a null
value, which are not distinguishable from other non-pointer
fields, such as integer or floating point fields with value 0. If 0s
are considered as a pointer value, a memory region with all 0
values would satisfy any immediate pointer patterns, which is
clearly undesirable.

2. Void Pointers – Some of the pointer fields may have a void*
type and they will be resolved to different types at runtime.
Obviously, our signature generation algorithm cannot handle
such cases.

3. User Level Pointers – It is also possible that a kernel pointer
field has a value that actually points to user space. For exam-
ple, the set_child_tid and clear_child_tid fields in
task_struct, and the vdso field in mm_struct point to
user space. The difficulty is that that user space pointers have
a very dynamic value range due to the very large user space,
which makes it hard to distinguish them from non-pointer fields.

4. Special Pointers – A pointer field may have non-traditional
pointer value. For example, for the widely used list_head
data structure, Linux kernel uses LIST_POISON1 with value
0x00100100 and LIST_POSION2with value 0x00200200
as two special pointer to verify that nobody uses non-initialized
list entries. Another special value SPINLOCK_MAGIC with
value 0xdead4ead also widely spreads in some pointer fields
such as in data structure radix_tree.

5. Pointer Like Values – Some of the non-pointer fields may have
values that resemble pointers. For example, it is not a very
uncommon coding style to cast a pointer to an integer field and
later cast it back to a pointer.

6. Undecided Pointers – Union types allow multiple fields with
different types to share the same memory location. This creates
problems for us too when pointer fields are involved.

7. Rarely Accessed Data Structures – Our algorithm presented
in Section 4 treats all data structures equally important and tries
to find signatures that are unique regarding all data structures.
However, some of the data structures are rarely used and hence
the conflicts caused by them may not be so important.

We find that most of the above problems boil down to the difficulty
in deciding if a field is pointer or non-pointer. Fortunately, the fol-
lowing observation leads to a simple solution: Pruning a few noisy
pointer fields does not degenerate the uniqueness of the graph-based
signatures. Even though a signature after pruning may conflict with
some other data structure signatures, we can often perform a fewmore
refinement steps to redeem the uniqueness. As such, we devise a

dynamic profiling phase to eliminate the undependable pointer/non-
pointer fields.
Our profiler relies on a virtual machine monitor QEMU [3] to keep

track of kernel memory allocation and deallocation for kernel data
structures. More specifically, since most kernel objects are man-
aged by slab allocators, we hook the allocation and deallocation of
kmem_cache objects through functions such as kmem_cache_alloc
and kmem_cache_zalloc, retrieving function arguments and re-
turn values to track these objects. Their types are acquired by looking
at their slab name tags. Then we track the life time of these objects,
and monitor their values. More details on how to track the alloca-
tion/deallocation of kernel objects at the VMM level can be found in
our technical report [28].
We monitor the values of a kernel data structure’s fields to collect

the following information: (1) How often a pointer field takes on a
value different from a regular non-null pointer value; (2) How often a
non-pointer field takes on a non-null pointer-like value; (3) How often
a pointer has a value that points to the user space. In our experiment,
we profile a number of kernel executions for long periods of time
(hours to tens of hours).
With the above profiles, we revise our signature generation algo-

rithm with the following refinements: (1) excluding all the data struc-
tures that have never been allocated in our profiling runs so that struc-
tural conflicts caused by these data structures can be ignored; (2) ex-
cluding all the pointer fields that have the void* type or fields of
union types that involve pointers – in other words, these fields are
considered undependable (Section 4), which is done by annotating
with a special symbol. Note that they should not be considered as
non-pointer fields either, so that method assertNonPointer dis-
cussed in Section 5 will not be applied to such fields; (3) excluding
all the pointer fields that have ever had a null value or a non-pointer
value during profiling; as well as all non-pointer fields that ever have
a pointer value during profiling. Neither assertPointer nor
assertNonPointer will be applied to these fields; (4) allowing
pointers to have special value 0x00100100 or 0x00200200.

7. EVALUATION
We have implemented a prototype of SigGraph, with C and Python

code. Specifically, we instrument gcc-4.2.4 to traverse ASTs and
collect data structure definitions. Our parser generator is lex/yacc
based, and the generated parsers are in C. The total implementation
is around 9.5K lines of C code and 6.8K LOC python code.

7.1 Signature Uniqueness
We first test if unique signatures exist for kernel data structures. We

take 5 popular Linux distributions (from Fedora Core 5 and 6; and
Ubuntu 7.04, 8.04 and 9.10), and the corresponding kernel version
are shown in the first column of Table 1. Then we compile these
kernels using our instrumented gcc. Observe that there are quite a
large number of data structures in different kernels, ranged from 8850
to 26799. Overall, we find nearly 40% of the data structures have
pointer fields, and nearly 88% (shown in the 5th column) of the data
structures with pointer fields have unique signatures. We show the
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Static Properties of the Data Structure SigGraph Signature Value Invariant Signature
Category Statically-Derived Dynamically-Refined

Data Structure Name ID Size |F | |P | D
P

|P | D
P

|P | |Z| |C| |B| |A|

task_struct 1 1408 354 81 1 81 2 233 269 17 55 244
Processes thread_info 2 56 15 4 2 91 2 45 5 2 4 5

key 3 100 27 9 4 117 4 69 5 2 7 11
mm_struct 4 488 121 23 1 23 2 26 39 41 62 68

vm_area_struct 5 84 21 10 4 1444 4 60 15 0 3 17
Memory shmem_inode_info 6 544 135 51 1 51 2 147 32 24 51 41

kmem_cache 7 204 51 39 3 295 3 36 8 0 4 9
files_struct 8 384 50 41 3 3810 3 13 38 4 8 9
fs_struct 9 48 12 7 2 121 2 68 2 7 8 7

file 10 164 40 11 5 17034 5 3699 15 4 12 17
File dentry 11 144 63 16 5 27270 5 1444 44 4 14 16
System proc_inode 12 452 112 49 1 49 3 455 27 16 33 41

ext3_inode_info 13 612 151 58 1 58 2 166 59 27 50 53
vfsmount 14 108 27 23 4 6690 4 1884 4 0 20 24

inode_security_struct 15 60 16 6 7 277992 7 8426 1 1 3 2
sysfs_dirent 16 44 11 7 4 1134 4 61 3 0 4 8
socket_alloc 17 488 121 54 1 54 2 142 28 8 21 37

Network socket 18 52 13 7 5 45907 5 2402 1 4 10 6
sock 19 436 114 48 1 48 2 149 21 42 59 34

bdev_inode 20 568 141 65 1 65 2 166 22 13 31 39
mb_cache_entry 21 36 12 8 6 27848 6 6429 2 1 4 6

Others signal_struct 22 412 99 25 2 395 2 90 41 30 38 44
user_struct 23 52 13 4 6 586 6 394 1 0 1 2

Table 2: Summary of data structure signatures from Linux kernel 2.6.18-1

average steps of pointer pattern expansion needed to generate unique
signatures (in the 6th column). Because of graph isomorphism, there
are data structures that do not have any unique signatures. The total
number of such structures is shown in the 7th column. Note that these
are all static numbers before the dynamic refinement.
We also show the number of unique signatures at various steps of

expansions from column 8 to column 21 in Table 1. For example,
kernel 2.6.15-1 has 1355 data structures that have unique one-level
signatures and 823 data structures that have unique two-level signa-
tures.

7.2 Effectiveness Compared with Value-invariant
To test the effectiveness of SigGraph, we take Linux kernel 2.6.18-

1 as a working system, and show how the generated signatures can
detect data structure instances. We list 23 widely used kernel data
structures which are shown in the 2nd column of Table 2. We choose
these data structures because: (1) they are the most commonly exam-
ined data structures in existing literature [23, 10, 18, 32, 30, 33, 31,
8]; (2) they are very important data structures that can show the status
of the system (the primary focus of memory forensics) in the aspects
of process, memory, network and file system; from these data struc-
tures, we can reach most of the kernel objects; and (3) they contain
pointer fields. Note that when parsing instances for these data struc-
tures, other data structures are also traversed, as our signatures often
contain lower level data structures.
To ease our presentation, we assign an ID to each data structure,

which is shown in the 3rd column of Table 2, we use F to represent
the set of fine-grained fields, and P to represent the set of pointer
fields. A fine-grained field is a field with a primitive type (not a com-
posite data type such as a struct or an array). Then, we present the
corresponding total number of fields |F | and pointers |P | in the 5th

and 6th columns, respectively.

7.2.1 Experiment Setup
We performed two sets of experiments. We first use our profiler to
automatically prune the noisy pointer/non-pointer fields, generate re-
fined signatures, and then detect the instances. After that we perform
a comparison with value invariant based signatures to further confirm

the effectiveness of our system.
Memory Snapshot Collection The first input to the effectiveness test
is the snapshots of physical memory, which are acquired by instru-
menting QEMU [3] to dump them on demand. We set the size of the
physical RAM to 256M.
Ground Truth Acquisition The second input is the ground truth data
of the kernel objects under test. We leverage and modify a kernel
dump analysis tool, the RedHat crash utility [2], to analyze our
physical memory image and collect the ground truth, through a data
structure instance query interface driven by a python script. Note that
to enable the crash dump analysis, the kernel needs to be rebuilt
with debug information.

7.2.2 Dynamic Refinement
In this experiment, we carry out the dynamic refinement phase as de-
scribed in Section 6. The depth and the size of signatures before and
after pruning are presented in the “SigGraph Signature” columns in
Table 2, with D the depth and

P

|P | the number of pointer fields.
Note that the signature generation algorithm has to be run again on
the pruned data structure definitions to ensure uniqueness. Observe
that since pointer fields are pruned and hence the graph topology gets
changed, our algorithm has to perform a few more expansions to re-
deem uniqueness, and hence the depth of signatures increases after
pruning for some data structures, such as task_struct.

7.2.3 Value Invariant based Signatures
To compare our approach with value invariant based signatures [33,
31, 12, 8], we also implemented a basic value-invariant signature gen-
eration system. In particular, we generally derive four types of invari-
ants for each field, (1) zero-subset: a field is included if it is always
zero across all instances during training runs; (2) constant: a field is
always constant; (3) bitwise-AND: the bitwise AND of all values of
a field is not zero, that is, they have some non-zero common bits; and
(4) alignment: if all instances of a field are well-aligned at a power of
two (other than 1) number.
To derive these value invariants, we perform two types of profil-

ing: one is access frequency profiling (to prune out the fields that are
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never accessed by the kernel), the other is to sample their values and
produce the signatures. The access frequency profiling is achieved by
instrumenting QEMU to track memory reads and writes. Sampling is
similar to the sampling in our dynamic refinement phase.
All the data structures have value invariants, and the statistics of

these signatures are provided in the last four column of Table 2. The
total numbers of zero-subset, constant, bitwise-AND, and alignment
are denoted as |Z|, |C|, |B|, and |A|, respectively.

7.2.4 Results
The final results for each signature when scanning a test image is
shown in Table 3. The second column shows the total number of
true instances of the data structure, which is acquired by the modified
crash utility [2]. The |R| column shows the number of instances
the signature scanning detected. Due to the limitation of crash,
these objects have to be live, i.e., reachable from global or stack vari-
ables. However, signature approaches are able to identify free ob-
jects. Hence, the detected free objects are determined as false posi-
tives (FPs) based on the ground truth from crash. We further take
the free but not-yet-overwritten objects, which can also be traversed
by crash if the slab allocator haven’t released it to free pages, to bet-
ter evaluate the real FPs. We present the FPs without considering free
objects in the |FP | column and the FPs considering free objects in
the |FP ′| column. The false negative FN is computed by comparing
with the ground truth objects from crash.
Observe that among the examined 23 data structures, when free

objects are not considered, there are 16 that our approach precisely
and completely identifies all instances (both FP and FN are zero).
However, value invariant has only 5 such data structures. If we con-
sider free objects, 20 can be perfectly identified with our approach,
whereas 9 can be detected via the value based approach. Note for
value invariant signature systems, high false positive rates imply the
derived signatures are hardly useable. In other words, value invariant
systems may report no signature for these data structures. For the 23
data structure we listed, SigGraph produces high quality signatures.
From the table, we could see our system has false positive for three

of the data structures, in particular the vm_area_struct (ID 5
in Table 3), dentry (ID 11) and sysfs_dirent (ID 16). We
carefully examined the corresponding snapshot, and found the reason
is that some of them are truly freed object (the dentry case), and
some of them are caused by our profiling that failed to capture some
ground truth data (for vm_area_struct and sysfs_dirent).
The detailed false positive analysis on all these cases is presented in
Appendix II.

Summary No FNs are observed for our approach, while some are
observed for the value invariant based approach. Our approach also
has a very low FP rate. We believe the reasons are the following. (1)
Graph based signatures are more informative as they include informa-
tion of data structures at lower levels whereas value-based signatures
only look at one level (namely the fields of the data structure itself).
(2) Graph-base signatures are more stable and their uniqueness can
be algorithmically determined, that is, we can expand the signature
along points-to edges as many times as we want to achieve unique-
ness, which is hard to perform for value-based signatures.

More Capability in Memory Forensics We also observe that sig-
nature approaches, including both our approach and value-invariant
based approaches, can be used to identify free objects, such as in
the cases of mm_struct and fs_struct data structures. How-
ever, our approach can perform better and have identified more free
objects, such as in the case of inode_security, dentry, and
mb_cache_entry, than previous approaches. Note that object traver-
sal based approach is not able to identify free objects.

SigGraph Signature Value-Invariant
ID |I|

|R| FP FP ′ FN |R| FP FP ′ FN

1 88 88 0.00 0.00 0.00 88 0.00 0.00 0.00
2 88 88 0.00 0.00 0.00 93 6.45 6.45 1.08
3 22 22 0.00 0.00 0.00 19 0.00 0.00 15.79
4 52 54 3.70 0.00 0.00 55 5.45 0.00 0.00
5 2174 2233 2.64 0.40 0.00 2405 9.61 7.52 0.00
6 232 232 0.00 0.00 0.00 226 0.00 0.00 2.65
7 127 127 0.00 0.00 0.00 5124 97.52 97.52 0.00
8 53 53 0.00 0.00 0.00 50 0.00 0.00 6.00
9 52 60 13.33 0.00 0.00 60 13.33 0.00 0.00
10 791 791 0.00 0.00 0.00 791 0.00 0.00 0.00
11 31816 38611 17.60 0.01 0.00 31816 0.00 0.00 0.00
12 885 885 0.00 0.00 0.00 470 0.00 0.00 88.30
13 38153 38153 0.00 0.00 0.00 38153 0.00 0.00 0.00
14 28 28 0.00 0.00 0.00 28 0.00 0.00 0.00
15 40067 40365 0.74 0.00 0.00 142290 71.84 70.93 0.00
16 2105 2116 0.52 0.52 0.00 88823 97.63 97.63 0.00
17 75 75 0.00 0.00 0.00 75 0.00 0.00 0.00
18 55 55 0.00 0.00 0.00 49 0.00 0.00 12.24
19 55 55 0.00 0.00 0.00 43 0.00 0.00 27.90
20 25 25 0.00 0.00 0.00 24 0.00 0.00 4.17
21 520 633 17.85 0.00 0.00 638 18.50 0.00 0.00
22 73 73 0.00 0.00 0.00 72 0.00 0.00 1.39
23 10 10 0.00 0.00 0.00 10591 99.91 99.91 0.00

Table 3: Experimental results of our graph based signature and
value-invariant signature

7.3 Effectiveness without Memory Graph
Memory graph based techniques construct a global reference graph

that connects all live objects. The roots are global and stack variables.
Objects become invisible if pointers are corrupted so that they are not
reachable from the roots. In contrast, SigGraph explores individual
graph patterns related to the provided data structure, without con-
structing a global graph. Therefore, we believe SigGraph provides
more robustness against global/stack variable corruption.
To verify our claim, we developed a rootkit to test this feature.

In particular, the rootkit (a kernel module per se) overwrites several
global variables which are related to process list and the management
of slab cache, including pid_hash, init_task, and
task_struct_cachep.
Before loading our rootkit, we took a snapshot, which has 78 run-

ning process. Then we run our rootkit. The system crashed as ex-
pected due to the pointer corruption. We took another snapshot. Next,
we run the crash utility (which takes a memory graph-based ap-
proach) on these two images, for the first image, crash reported
there are 78 processes, but for the second one, it reported “invalid
kernel virtual address: 0 type: pid_hash content”.
Then, we run our task_struct signature parser to scan the pro-

cess instances, from the first image, we identified 78, and from the
second image, we reported 77 instances – this is because init_task
(which is an instance of task_struct) has been cleared.

7.4 Multiple Signatures
One powerful feature of SigGraph is that multiple signatures can be

generated for the same data structure. We perform the following ex-
periment with task_struct data structure. In each run of the ex-
periment, we exclude one of the 38 pointer fields of task_struct
(assuming that the pointer is corrupted) before running Algorithm 1.
In each of the 38 runs, the algorithm is still able to compute a unique,
alternative signature for task_struct. Next, we increase the num-
ber of corrupted pointer fields from 1 to 2, and conduct C2

38 runs
of Algorithm 1 (exhausting the combinations of the two pointers ex-
cluded). The algorithm is still able to generate a valid signature for
each run.
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Figure 7: Profiling result on task_struct field access

The above experiments indicate that SigGraph is robust in the face
of corrupted (excluded) pointer fields. However, the robustness has
its limit. As the other extreme, we exclude 37 of the 38 pointer
fields of task_struct and conduct C37

38 = 38 runs of Algorithm
1. Among the 38 runs, Algorithm 1 only generates valid signatures in
4 runs, where one of the following pointers is retained: fs_struct,
files_struct, namespace, and signal_struct.

7.5 Performance Overhead
SigGraph is mainly used in off-line memory forensic analysis and

thus its performance overhead is not so critical. Still, we measure the
performance overhead of our scanners generated by SigGraph. The
detailed results are shown in Appendix III. We believe that the perfor-
mance overhead is still reasonable. In particular, when the signatures’
depth is small, our scanners incur 10X to 20X overhead than value-
invariant scanners.

8. SECURITY ANALYSIS
In this section, we analyze how SigGraph can be used in a more

hostile environment, namely, in the presence of kernel level malware.
First, we study how SigGraph performs when the kernel is under

attack by kernel malware. We studied the 23 kernel rootkits in [29].
We found that the majority of these rootkits (e.g., adore-ng-0.56
and enyelkm-1.2) involve kernel hook (function pointer) hijack-
ing in order to achieve their goal of hiding objects (e.g., processes,
files, and network connections). Since they do not directly manipu-
late the kernel data structure instances, SigGraph signatures/parsers
will be able to recover relevant kernel data structure instances from
the memory image of a kernel under attack.
However, there exist rootkits that directly manipulate kernel data

structure values – especially those of the pointer fields. For exam-
ple, fuuld, linux-fu and hp-1.0.0 manipulate the next and
the previous pointers in task_struct at offsets 128 and 132
so that the task_struct for the malicious process is disconnected
from the tasks list. Yet SigGraph is still able to recover all instances
of task_struct (including the disconnected ones) from the mem-
ory image, thanks to the existence of multiple alternative signatures
of task_struct in the absence of those corrupted pointers (Sec-
tion 7.4). We have performed experiments to confirm the success of
SigGraph in the face of these rootkits (demonstrated in the video clip
submitted). In particular, the alternative task_struct signature
has

P

|P | = 221.
While SigGraph has no problem handling the existing rootkits, we

envision that there may be more sophisticated attempts to evade Sig-
Graph in the future. We will discuss them in the following. We as-
sume that the attacker has knowledge about SigGraph and has gained
control of the kernel. Evasion can be approached by manipulating
pointer fields or non-pointer fields.
Malicious Pointer Value Manipulation Since SigGraph relies on
inter-data structure topology induced by pointers, manipulating point-
ers would be a natural attempt to defeat SigGraph. However, com-
pared to non-pointer values, pointers are more sensitive to mutation
because any changes to a pointer value may very likely lead to ker-
nel crashes. Note that re-pointing a pointer to another data structure
instance of the same type may not affect SigGraph in discovering the
mutated instance. While the attacker may try to manipulate pointer
fields that are not used, recall that SigGraph has a dynamic refine-
ment phase that gets rid of such unused or undependable fields before
signature generation.
The attack may try extra hard by destroying a pointer field after a

reference, and then restoring it before its next reference. As such, it is
likely for a snapshot not to see the true value, depending on the tim-
ing. However, carrying out such attacks is challenging as there may
be many places that access the pointer field. All such places need to
be patched in order to respect the original semantics of the kernel. We
can anticipate that demands a complex and expensive static analysis
on the kernel. To achieve an under-approximation of the demanded
efforts. We conducted a profiling experiment on task_struct.
We collect the functions that access each field, including both point-
ers and non-pointers. The results are shown in Figure 7(a), We ob-
serve that on average fields are accessed by at least 6 functions. Some
fields have even been accessed by 70 functions (the statistics is shown
in Figure 7(b)). Note that these are only profiled numbers, the static
counterparts may be even larger. Even if the attacker achieves some
success, SigGraph can still leverage its multiple signature capability
to avoid using pointers that are easily manipulatable.
Malicious Non-Pointer Value Manipulation Another possible way
to confuse SigGraph is to mutate a non-pointer value to resemble that
of a pointer. SigGraph has also built-in protection against such at-
tacks. First of all, the dynamic refinement phase will get rid of most
fields that are vulnerable to such mutation. Moreover, compared to
mutation within a domain, such as changing an integer field (with
the range from 1 to 100) from 55 to 56, cross-domain mutation, such
as changing the integer field to a pointer, has a much higher chance
to crash the system. Hence, we suspect that not many non-pointer
fields are susceptible. In the future, we plan to use fuzzing, similar
to [12], to study how many fields allow such cross domain value mu-
tation. In fact, we can simply integrate SigGraph signatures with the
value-invariant signatures (e.g., those derived by [12]) for the same
data structure, which is likely to achieve stronger robustness against
malicious non-pointer manipulation.
Other Possible Attacks The attacker can change data structure layout
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to evade SigGraph. However, such attacks are challenging. He/she
needs to intercept the corresponding kernel object allocations and de-
allocations to change layout at runtime. Furthermore, all accesses
to the affected fields need to be patched. Without knowing how the
layout is changed, SigGraph will fail.
Furthermore, the attacker could also try to generate fake data struc-

ture instances to thwart the use of SigGraph. However, we should
point out that fake instance creation is a generally hard problem across
all signature-based approaches, including the value-invariant approaches.
In fact, SigGraph makes such attacks harder as the attacker would
have to fake the multiple data structures involved in a graph signa-
ture and make sure that all the points-to relations among these data
structures are setup properly.

9. RELATEDWORK
Memory Forensics Memory forensics is a process of analyzing a
memory image to explain the current state of a computer system. It
has been evolving from basic techniques such as string search to more
complex methods such as object traversal (e.g.,[23, 30, 10, 18, 9]) and
signature based scanning (e.g., [33, 31, 12, 8, 4]).
Object traversal techniques search memory by walking through OS

data structures. They rely on building a whole reference graph of
all data structures. Hence, they mostly work for live data because
“dead” (i.e. freed) data cannot be reached by the reference graph.
Constructing reference graphs relies on precisely resolving types of
memory objects, which is often hard in the presence of void pointers
or unknown data structures. For example, kernel objects that are part
of a rootkit data structure cannot be traversed via the reference graph
as the rootkit data structure type is unknown, even though the kernel
data structure definitions themselves are known. Also, if a pointer
in the reference graph is corrupted, then the memory region being
pointed to cannot be visited. However, in SigGraph, we can avoid
such problems as we do not rely on a fully connected global reference
graph.
Signature scanning directly searches memory using signatures. In

particular, Schuster [31] presented PTfinder for linearly searching
Windows memory to discover process and thread structures, using
manually created signatures. Similar to PTfinder, GREPEXEC [4],
Volatility [33], Memparser [8] are the other systems that have more
capabilities of searching other objects. As signatures are the key to
these system, Dolan-Gavitt at el. [12] proposed an automated way to
derive robust data structure signatures. SigGraph complements these
systems by deriving another scheme for data structure signature gen-
eration.
Rootkit Detection Kernel-level rootkits pose a significant threat to
the integrity of operating systems. Earlier research uses specification
based approach deployed in hardware (e.g., [34, 21]), virtual machine
monitor (e.g., Livewire [14]), or binary analysis [16] to detect kernel
integrity violations. Recent advance includes state-based control flow
integrity checking (e.g., SBCFI [24] and KOP [9]), and data structure
invariant based checking (e.g., [22, 7, 12]).
Our work is inspired by the data structure invariant detection, and

hence closely related to [22, 7, 12]. In particular, Petroni et al. [22]
proposed examining semantic invariants (such as a process must be
on either the wait queue or the run queue) of kernel data structures
to detect rootkits. The key observation is that any violations of se-
mantic invariants indicate rootkit presence. However, the extraction
of semantic invariants was based on manually created rules. After-
wards, Baliga et al. [7] presented using dynamic invariant detector
Daikon [13] to extract data structure constraints. The invariants de-
tected include membership, non-zero, bounds, length, and subset re-
lations. In contrast, we focus on structural patterns. We believe our
approach is complementary to theirs. Most recently, Dolan-Gavitt at

el. [12] proposed a novel system to automatically select robust sig-
natures for kernel object signatures. Their observation is that value-
invariants could be evaded by attackers and thus they propose to use
fuzzing technique to test the robustness of value-invariants. The key
difference is that they focus on value invariants while we focus on
pointer-induced topological patterns between data structures. As dis-
cussed earlier, the best practice is likely the integration of the two
approaches.
Malware Signature Derivation based on Data Structure Pattern
Data structures are one of the important and intrinsic properties of a
program. Recent advance has demonstrated that data structure pat-
terns can be used as program signature. In particular, Laika [11]
shows a way of inferring the layout of data structure from snapshot,
and use the layout as signature. Their inference is based on an un-
supervised Bayesian learning and they assume no prior knowledge
about program data structures. Laika and SigGraph are substantially
different: (1) Laika focuses on how to derive a program signature
from data structure patterns, whereas SigGraph focuses on how to
discover data structure instances from data structure patterns and how
to derive such patterns. (2) Technically, Laika does not aim to accu-
rately infer the data structure patterns (a large number of wrong lay-
out could not hurt their system as they just want to have a classifier
to classify the program), however we have to accurately match the
instance, otherwise the high false positive and the high false negative
ratios would render the system unusable. (3) Laika is not interested
in any particular type of objects, whereas the output of SigGraph is
the specific data structure instances.
Data Structure Type Inference There is a large body of research in
program data structure type inference, such as object oriented type in-
ference [20], and aggregate structure identification [26], binary static
analysis based type inference [5, 6, 27], abstract type inference [19,
15], and dynamic heap type inference [25]. Most these techniques are
static, aiming to infer types of unknown objects in code. SigGraph is
more relevant to dynamic techniques. Dynamic heap type inference
by Polishchuk et al. [25] focuses on typing heap objects in memory,
using various constraints, such as size and type constraints. Heap ob-
ject types are decided by resolving these constraints. The difference
between their work and ours is that they assume all the heap objects
are known, including their sizes and locations in the heap. This is
done through instrumentation. However, SigGraph’s input is simply
a memory image.
10. CONCLUSION
In this paper, we have demonstrated that the points-to graphs be-

tween data structures can be used as data structure signatures. We
present SigGraph, a system that automatically derives such graph-
based data structure signatures. It complements the value-invariant
signature systems by covering the majority of kernel data structures
with pointer fields. Our experiments show that the signatures gener-
ated by SigGraph achieve zero false negative rate and very low false
positive rate. Moreover, the signatures are not affected by the ab-
sence of global memory graphs and are robust against the corruption
of pointer fields. For best effect, we advocate the combination of our
graph-based signatures and the value-invariant-based signatures.
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struct vm_area_struct {

   [0] struct mm_struct *vm_mm;

   [4] long unsigned int vm_start;

   [8] long unsigned int vm_end;

  [12] struct vm_area_struct *vm_next;

  [16] pgprot_t vm_page_prot;

  [20] long unsigned int vm_flags;

  ...

}

Figure 8: False Positive Analysis of vm_area_struct.
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Appendix I: The Proof of Theorem 1

PROOF. For each data structure R different from T , either con-
dition [1] or [2] is not satisfied according to the preconditions of the
theorem.
If [1] is not satisfied, IPP (T ) can be used to distinguish T from

R.
If [2] is not satisfied, there must be an i such that ti is not isomor-

phic to ri. There must be a minimal k, after k level of expansions, the
pointer pattern of ti is different from ri’s, disregard the type symbols.
We say one level of expansion is to expand along all type symbols for
one step. IPP (T ) can be considered as the pointer pattern of T with
k = 0 level of expansion.
Since there are finite number of data structures, we can always

identify the maximal among all the k values. Lets denote it as kmax.
Hence, the pointer pattern of T after kmax levels of expansions can
distinguish T from any other individual data structure.

Appendix II: False Positive Analysis
In this appendix, we analyze the three false positive cases in detail for
data structure vm_area_struct, dentry and sysfs_dirent.
For vm_area_struct, we have 9 false positives among the to-

tal 2233 detected instances. After dynamic refinement, some pointer
fields are pruned, such as the pointer field at offset 12 (as shown in
Figure 8). Finally, the generated unique signature contains only the
first layer pointer structure, in particular, it consists of a pointer field
at offset 0 (mm_struct), and then a sequence of non-pointer fields,
and so on. However, the task_structure starting from offset
156 has the identical sub-pattern except the offset 160 is a pointer.
But in some rare occasions (which are not captured by our profiler),
the pointer field at offset 160 could be 0, leading to a false positive.
This is due to the difference between the training images and the test
image. We find 9 FPs in this case.
We have 2 FPs for dentry, which are shown in Figure 9(a). We

classify these two instances as FPs because they cannot be found in
either the pool of live objects or the pool of free objects. However, if
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fp1

0xc72bdf48: 0x00000000  0x00000010  0x00000001  0xdead4ead

0xc72bdf58: 0xffffffff  0xffffffff  0x00000000  0x00000000

0xc72bdf68: 0x00200200  0xc710e1c8  0x57409b84  0x00000009

0xc72bdf78: 0xc72bdfb4  0xc72bdf7c  0xc72bdf7c  0xc72bdef4

0xc72bdf88: 0xc017b72e  0xc72bdf8c  0xc72bdf8c  0xc72bdf94

0xc72bdf98: 0xc72bdf94  0x00000000  0x00000000  0xcf91fe00

fp2

0xcb1d5088: 0x00000000  0x00000010  0x00000001  0xdead4ead

0xcb1d5098: 0xffffffff  0xffffffff  0x00000000  0x00000000

0xcb1d50a8: 0x00200200  0xcb80ebc8  0xe50e3f24  0x0000000a

0xcb1d50b8: 0xcb1d50f4  0xcb1d50bc  0xcb1d50bc  0xcb1dcf84

0xcb1d50c8: 0xc017b72e  0xcb1d50cc  0xcb1d50cc  0xcb1d50d4

0xcb1d50d8: 0xcb1d50d4  0x026a0005  0x00000000  0xcf91fe00

true

0xc001c0a8: 0x00000000  0x00000000  0x00000001  0xdead4ead

0xc001c0b8: 0xffffffff  0xffffffff  0x00000000  0xc67617f4

0xc001c0c8: 0xc12a0e7c  0xc727faa8  0xbfbb9195  0x00000009

0xc001c0d8: 0xc001c114  0xc001c16c  0xc05b9f5c  0xc001c174

0xc001c0e8: 0xc727faec  0xc001c0ec  0xc001c0ec  0xc001c0f4

0xc001c0f8: 0xc001c0f4  0x8bfffff9  0x00000000  0xcf91fe00

struct dentry {

    [0] atomic_t d_count;

    [4] unsigned int d_flags;

    [8] raw_spinlock_t raw_lock;

   [12] unsigned int magic;

   [16] unsigned int owner_cpu;

   [20] void *owner;

   [24] struct inode *d_inode;

   [28] struct hlist_node d_hash;

   [36] struct dentry *d_parent;

   ...

   [84] long unsigned int d_time;

   [88] struct dentry_operations *d_op;

   ...

}

(a) False Positive of dentry

struct sysfs_dirent {

   [0] atomic_t s_count;

   [4] struct list_head s_sibling;

  [12] struct list_head s_children;

  [20] void *s_element;

  [24] int s_type;

  [28] umode_t s_mode;

  [32] struct dentry *s_dentry;  [pruned]

  [36] struct iattr *s_iattr;    [pruned]

  [40] atomic_t s_event; }

fp1

0xcffaeffc: 0x00000000  0xcffa3800  0xcffaf800  0xcffa3808

0xcffaf00c: 0xcffaf808  0xcffc2800  0x00000000  0x00000000

0xcffaf01c: 0xcfd9bde0  0x00000008  0x70008086

fp2

0xcffaf7fc: 0x00000000  0xcffaf000  0xc03709a8  0xcffaf008

0xcffaf80c: 0xcffc2814  0xcffc2800  0x00000000  0x00000000

0xcffaf81c: 0xcfd9be60  0x00000000  0x12378086      

fp3

0xcffa37fc: 0x00000000  0xcffa3000  0xcffaf000  0xcffa3008

0xcffa380c: 0xcffaf008  0xcffc2800  0x00000000  0x00000000

0xcffa381c: 0xcfd9bd60  0x00000009  0x70108086  

fp4

0xcffa2ffc: 0x00000000  0xcffa2800  0xcffa3800  0xcffa2808

0xcffa300c: 0xcffa3808  0xcffc2800  0x00000000  0x00000000

0xcffa301c: 0xcfd9bce0  0x0000000b  0x71138086     

fp5

0xcffa27fc: 0x00000000  0xcffa2000  0xcffa3000  0xcffa2008

0xcffa280c: 0xcffa3008  0xcffc2800  0x00000000  0x00000000

0xcffa281c: 0xcfd9bc60  0x00000010  0x00b81013     

fp6

0xc037099c: 0x00000000  0xcffc2800  0xcffc2800  0xcffaf800

0xc03709ac: 0xcffa2000  0xc0327d79  0x00000000  0x00000124

0xc03709bc: 0xc01de4bc  0x00000000  0x00000000      

(b) False Positive of sysfs_dirent

Figure 9: False Positive Analysis

we carefully check each field value, especially the boxed ones: the
0xdead4ead (SPINLOCK MAGIC at offset 12) and 0xcf91fe00 (a
pointer to dentry_operations at offset 88), it is hard to believe
these are not dentry instances, when compared with the true in-
stance. As such, we suspect they are not FPs, and they are the cases
that the slab allocator has freed the memory page of the destroyed
dentry instances.
We have 6 FPs in sysfs_dirent data structure among the 2116

detected instances. The detailed memory dump of these 6 FP cases
is shown in Figure 9(b). After our dynamic refinement, the fields at
offsets 32 and 36 are pruned because they often contain null point-
ers, and the final signature entails checking two list_head data
structures followed by a void* pointer at offset 4, 8, 12, 16 and 20,
and four non-pointer field checking. Note one list_head has only
two fields: previous and next pointer. However, there are 6 memory
chunks that match our signature in the testing image. The chunks are
not captured as part of the ground truth of any data structures. We
suspect that it could be the case that they are aggregations of multi-
ple data structures and the aggregations coincidentally manifest the
pattern.

Appendix III: Performance Overhead
We also measured the performance overhead of our scanner (i.e., the
parser). We run both our scanner and value invariant scanners on the
testing image (256MB) in a machine with 3GB memory and an In-
tel Core 2 Quad CPU (2.4Ghz) running Ubuntu-9.04 (Linux kernel
2.6.28-17). The final result of the normalize performance overhead is
shown in Figure 10. We could see the performance overhead for our
scanner is still acceptable. We need to do address translation when
there is a memory de-reference, but there is no need in value-invariant
scanner. Thus, in all the case value-invariant inevitably performs bet-
ter than our scanner. If the depth is relatively small, such as the 10
case with depth D = 2, our scanner only has 10X to 20X overhead
than value invariant scanner. The deeper, the worse in our scanner,
because more nodes need to be examined and more address transla-
tion needs to be involved, this is why the case of inode_security
(with D = 7) and mb_cache_entry (with D = 6), we have big
performance overhead. Thus, if the depth is not so high for the de-
sired data structure, our system may be used as an online scanner. For
example, in our experiment, it actually only takes a few seconds when

scanning fs_struct, thread_info, and files_struct.
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