
CERIAS Tech Report 2010-05

LOGGING CROSS-SITE SCRIPTING ATTACKS IN FIREFOX FOR FORENSIC
INVESTIGATION

by Mithun Vaidhyanathan

Center for Education and Research in
Information Assurance and Security,

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

MITHUN VAIDHYANATHAN

LOGGING CROSS-SITE SCRIPTING ATTACKS IN FIREFOX FOR FORENSIC
INVESTIGATION

MASTER OF SCIENCE

MARCUS K. ROGERS

PASCAL MEUNIER

VICTOR RASKIN

MARCUS K. ROGERS

EUGENE SPAFFORD 19 APRIL 2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

LOGGING CROSS-SITE SCRIPTING ATTACKS IN FIREFOX FOR FORENSIC

INVESTIGATION
MASTER OF SCIENCE

MITHUN VAIDHYANATHAN

04/21/2010

LOGGING CROSS-SITE SCRIPTING ATTACKS IN FIREFOX FOR FORENSIC
INVESTIGATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Mithun Vaidhyanathan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2010

Purdue University

West Lafayette, Indiana

ii

For my parents, sister, brother-in-law and niece who have always given me unconditional

love and support. This is for the wonderful and positive influence that you all have had

on me.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Marcus Rogers for his continued guidance. I would

also like to thank my committee members Dr. Victor Raskin and Dr. Pascal Meunier for

their guidance.

Thanks to Prof. Charles Killian, Keith Watson and Ed Finkler too, for their help with

various aspects about programming languages and testing. I also extend my gratitude to

Mr. Giorgio Maone, the creator of the open source Firefox extension �– NoScript, for his

valuable inputs on the working of the extension as well as on the test environment used in

this work. I am grateful to a wonderful friend, Vikram, who has influenced me both

technically and non-technically. I also thank all professors who taught me, my friends,

colleagues and acquaintances at CERIAS, through whom I have learnt a lot about

information security and life in general. Thanks to Sarath, Ashrith, Ankur, Preeti Rao,

Pratik, Hina, Anurag, Utsav, Ashwin, Ryan, Preeti Rajendran, Guru, Marlene, Randy and

Joel �– your presence kept me going.

iv

TABLE OF CONTENTS

 Page
LIST OF TABLES ... vi
LIST OF FIGURES .. vii
ABSTRACT ... viii
CHAPTER 1. THE PROBLEM ...1

1.1. Introduction ...1
1.2. Statement of the Problem ..1
1.3. Statement of Purpose ...1
1.4. Significance of the Problem ..3
1.5. Definitions ...3
1.6. Assumptions ..5
1.7. Limitations ...5
1.8. Delimitations ...6
1.9. Summary ..6

CHAPTER 2. LITERATURE REVIEW ...7
2.1. Introduction ...7
2.2. Javascript Scrutiny ...7
2.3. Real Time Web Traffic Capture for Forensic Investigation9
2.4. Efficient Management of a Large Database ..10
2.5. A Tangential Problem ..11
2.6. Summary ..12

CHAPTER 3. METHODOLOGY ...13
3.1. Study Design ...13
3.2. Variables Measured ...13
3.3. Sampling ..15

3.3.1 Test Environment ..15
3.3.2 NoScript ..17

3.4. Table in MySQL Database for Logging ..20
3.5. Summary ..20

CHAPTER 4. DATA ...21
4.1 Collection of Samples ...21
4.2 Page Load Times with and without New Feature ...21
4.3 Sample Logs Logged into Database ...26
4.4 Summary ...28

v

 Page
CHAPTER 5. DISCUSSION AND CONCLUSION ..29

5.1 Results from Matched Pair t-test...29
5.2 Logs Collected ..31
5.3 Forensic Importance: Frequency Analysis ..32
5.4 Forensic Importance: Semantic Analysis..34
5.5 Privacy Concerns ..37
5.6 Future Work and Recommendations ..37
5.7 Conclusion ..39

LIST OF REFERENCES ...40
APPENDICES

Appendix A. System Details ...45
Appendix B. Javascript Function ..46
Appendix C. Servlet for Logging into Database ...48
Appendix D. MySQL Table ..50

vi

LIST OF TABLES

Table Page
Table 3.1 HTML tags used in data collection ..16
Table 4.1 Page load times in the absence of proposed solution ...22
Table 4.2 Page load times in the presence of proposed solution24
Table 4.3 Sample logs logged into database ..26
Table 5.1 Output from matched pair t-test in SAS ..29
Table 5.2 Frequency analysis of suspect domains ...33

vii

LIST OF FIGURES

Figure Page
Figure 3.1 Flowchart representing the concept ..14
Figure 3.2 XSS filtering in NoScript ...19
Figure 5.1 Ordered bar graph for suspect domains frequency analysis34
Figure 5.2 Decision tree for high priority log entry ...35
Figure 5.3 Decision tree for medium priority log entry ...36
Figure 5.4 Decision tree for low priority log entry ..36

viii

ABSTRACT

Vaidhyanathan, Mithun. M.S., Purdue University, May, 2010. Logging Cross-Site
Scripting Attacks in Firefox for Forensic Investigation. Major Professor: Marcus K.
Rogers

Detecting web application attacks is a task performed by many systems. An example of

such a system is the open source tool NoScript, which will be discussed at various points

in this work. Among these attacks, cross site scripting is a focus of this study, mainly due

to the levels of concern related to it. The primary goal of this research is to analyze how

efficiently a cross-site scripting attack once detected can be logged. Logging the attack

has benefits from a Cyberforensics point of view. This work analyzes related efforts and

the benefits of implementing such functionality. It was found that for the test system

analyzed, there was an additional overhead. This overhead, though, was seen to be within

acceptable limits defined in Usability Engineering literatures.

1

CHAPTER 1. THE PROBLEM

1.1. Introduction

This research proposes a concept by means of which a browser can analyze

incoming and outgoing web traffic and store this analysis. The concept of analyzing web

traffic already exists, but efficient storage of this analysis would be helpful from a

forensic standpoint. The capability of this system to store analysis on a centrally located

machine can provide for ease of investigation. Analysis to be stored includes details of

the cross-site scripting attack against the user. The study also focuses on the performance

aspects of such systems. The task of analyzing web traffic is considered to be an

important factor that decides the system performance. The goal is to have a storage

technique that result in minimum overhead.

1.2. Statement of the Problem

This research focuses on the following research question �– Can a Firefox web

browser efficiently log a cross-site scripting attack?

1.3. Statement of Purpose

This study analyzes browsers of the Firefox Version 3.0 category. The aim is to

analyze the web page and identify a cross-site scripting attack against the user. For

2

example, consider the Javascript function eval (). Execution of eval () occurs at run time,

typically with the help of a user input. In such cases, it is possible that an attacker can

inject a malicious script within the eval () function. These attacks fall into the broad

category of injection attacks. The study follows the testing guidelines and cheat sheet for

cross-site scripting given by The Open Web Application Security Project (OWASP,

2009).

Efficiency in detection would be determined by the overhead caused due to the

detection mechanism (i.e., the additional time it takes to load the web page). If the

overhead is reduced, then the mechanism would be more efficient. Logging of the event

is done if a cross-site scripting attack or vulnerability is detected. The ultimate goal of

any web application security initiative is to protect the confidentiality, integrity and

availability of critical information.

Once logged, the logs can be utilized for forensics. This study looks at two

forensic analysis techniques that may be used for investigation. They are frequency

analysis and semantic analysis. Frequency analysis in this study has been done on

potentially malicious end hosts called by an attacker�’s javascript code. The calls to the

suspicious hosts have been ordered from highest to lowest frequency. Such an analysis

can prove to be helpful in preventing any future attacks from these suspicious end hosts.

A strong policy can also be developed with this information.

Semantic analysis is used to analyze and check the log content for certain

conditions to finally arrive at a conclusion. The conclusion can be drawn from a decision

tree. The decision tree contains the course of action to be taken depending on whether the

3

condition is met or not. Both these analyses are explained in detail, within the context of

this study in chapter 5.

1.4. Significance of the Problem

This thesis corroborates existing cross-site scripting detection techniques as well

as provides a fresh approach for logging the analysis in real time, which can provide for

better forensic analysis. A study in 2008 by the Web Application Security Consortium

(WASC, 2008) found out that 39% of a total of 97,554 web application vulnerabilities are

cross-site scripting that had a 38% probability of detection. It can be seen that cross-site

scripting is a matter of concern in the real world, especially when dealing with the

Payment Card Industry (PCI).

Once cross-site scripting is detected, it is logged in a manner so that it can be used

as evidence in the future. One hard challenge being faced in computer forensics is the

reliability and the validity of the evidence that is collected and analyzed (Kessler, 2009).

One factor for this is the use of different forensic tools, which give varying results.

Logging a web application attack in real time, upon detection from the web browser has

its advantages; mainly, integrity and accuracy of data. Investigating and law enforcement

agencies are the main audiences who can be benefitted by this study.

1.5. Definitions

Availability �– Ensure that necessary access to information is not disrupted unless it has

been informed in advance (Paul, 2008).

4

Character Encoding �– �“Mapping between a character set and a range of binary numbers�”

(Roberts, Heller & Ernest, 1999, p. 377). Using this mapping, a potentially harmful

character maybe replaced with the corresponding binary representation, which is less

harmful.

Computer Forensics �– �“A sub-discipline of Digital & Multimedia Evidence, which

involves the scientific examination, analysis, and/or evaluation of digital evidence in

legal matters�” (SWGDE & SWGIT, 2009, p. 5).

Confidentiality �– Ensuring that only legitimate persons access information (Paul, 2008).

Cross-Site Scripting �– Running attacker�’s malicious scripts in an unsuspecting user�’s

browser (Auger, 2009).

Decision Tree �– Decision tree is a system that �“searches through data, eliminates those

that conform to a known legitimate specification and highlights the exceptions�” (Stallard

& Levitt, 2003, p. 3).

Frequency Analysis �– In this work, frequency analysis refers to constructing a frequency

table identifying the number of times a malicious end host was called and studying the

frequency distribution by means of a bar chart.

Integrity �– Ensuring that there is no data alteration (Paul, 2008).

Javascript �– �“Javascript is a lightweight interpreted programming language with object-

oriented capabilities�” (Flanagan, 2006, p. 1).

Semantic Analysis �– Within the context of this work, a forensic system employing

semantic analysis can be seen as a system that analyzes log content and abstracts the

evidence based on some logic (Lin, 2008).

5

Web Browser �– �“A web browser is an application that finds and displays web pages�”

(McDowell, 2007).

1.6. Assumptions

Some assumptions of this work are as follows:

 The developed extension is compatible with all versions of Firefox prior to

version number 3.0.15.

 The target audiences are those companies or businesses that want enhanced data

protection measures or a more detailed investigation by law enforcement

agencies.

 The detection of cross-site scripting attack is accurate as existing methods would

be used for detection. This work does not propose new detection methods, but

explains how existing detection methods can help incident response and forensics.

 Operating system resources that are used by the extension are minimal and hence,

performance can be measured based on the time it takes to open the web page.

1.7. Limitations

The limitations of the study can be stated as follows:

 The browser used is Firefox 3.0.15. As a result, the system has not been analyzed

in other browsers like Internet Explorer, Google chrome etc. The reason is that the

concept is based on the Firefox extension �‘NoScript�’ that was mentioned above.

 Only cross-site scripting attacks have been detected and logged.

6

 The extensive nature of the World Wide Web means that not all categories of

websites will be covered.

 The analysis has been logged in a MySQL database.

 The data being logged includes the malicious end website, timestamp, IP address

of the machine, the script in question and the malicious end host, if any, which

was called by the script.

 The study has been carried out on a Windows platform.

1.8. Delimitations

 Other forms of web application security concerns, apart from cross-site scripting,

such as buffer overflows, SQL injection etc. have not been looked into.

 The implementation has not been tested on any other operating system other than

Windows.

 Security issues related to the database have not been addressed in this study.

1.9. Summary

This chapter provided a primer into the research conducted. The main focus is on

how a web application attack can be logged after it is detected. Cross site scripting as a

web application attack has been chosen as a topic for study, mainly due to the existing

concerns about cross site scripting today. The chapters ahead will discuss an existing

system for detecting web application attacks and how the additional feature of logging

can be added and the performance issues around it.

7

CHAPTER 2. LITERATURE REVIEW

2.1. Introduction

The thesis research question is - Can a Firefox web browser efficiently log a

cross-site scripting attack? Security gaps of Javascript have been a matter of concern and

are widely discussed (Hendrickx, 2003). This thesis primarily focuses on cross-site

scripting attacks that occur due to lack of secure coding techniques such as escaping

potentially harmful characters. Even constructs such as eval () can contain other harmful

code that may execute while browsing and can compromise the client. The threats that

Javascript can pose in terms of cross site scripting are discussed by Alme (2009) in a

McAfee white paper. The need for further security measures to be incorporated into

Javascript forms one of the basic motivations of this research.

2.2. Javascript Scrutiny

 The following analysis begins with the argument as to why this thesis is relevant

to the field of web application security and is justified by three of the articles. Some more

examples that support the idea are provided. The penultimate part of the analysis deals

with issues relating to managing large amounts of data. Finally, a tangential issue

plaguing the area of web security is discussed.

8

 Livshits and Guarnieri (2009) proposed a system called GATEKEEPER which

combines policy enforcement along with the points-to analysis of Javascript. It is

an effective means for policy enforcement to prevent web-based attacks and

ensure safe web-browsing. These concepts have their application in research areas

like code optimization, debugging etc.

 An effective audit system in combination with an Intrusion Detection System was

presented to monitor Javascript in the Mozilla web browser by Hallaraker and

Vigna (2005). Process execution overhead increased as result of auditing but it

achieved the focus of study, which was detection of insecure Javascript

components

 The research by Ofuonye and Miller (2008) gives an insight into using code

instrumentation techniques to rewrite any malicious Javascript code that violates

the defined policies. It is a technique that can be used when the Javascript

vulnerability to be detected is known.

 The first two papers explain methods to detect typical malicious Javascript

constructs (excluding the eval () function). But these malicious constructs can be

embedded in the eval () function and can be executed at run time. In such a scenario,

these systems might fail. One solution could be to have a policy to block any calls to the

eval () function. However this defeats the purpose of having an eval () function in

Javascript; eval () has its uses and blocking it entirely is not a viable option. An approach

is required by which the contents of eval () can be analyzed at run time and can be

changed if they are found to be malicious or vulnerable. Ofuonye and Miller (2008)

9

provide an insight into how this can be done. The concept of code instrumentation (i.e.,

rewriting the part of code that is identified as malicious) is suggested as a solution. One

approach that can be adopted is that if the analyzed Javascript contains any call to eval()

function, it should be analyzed before the browser evaluates it. If the evaluation finds no

threats, the code can be allowed to execute. Otherwise the system must alert the user and

log this event.

 Eval () has been merely used as an example here for explaining the concept.

However, this work uses the overall concept explained above. To restate the summary of

chapter 1, an existing Firefox extension called �“NoScript�” is described in chapter 3 as it

forms an important part of the methodology. Sanitizing malicious code in run time is an

important step in the detection process, which is used by the extension and is also used in

this study.

2.3. Real Time Web Traffic Capture for Forensic Investigation

Ahmed, Hussain and Raza (2009) proposed a system that is an effective way to

enforce web policies in the corporate sector. It also supports the idea of collecting web

browsing information in real time and processing it proactively. The authors provide a

method to log web browsing activities of employees in an organization that can be used

for forensic investigation as well. This justifies the importance of logging vital data when

Javascript code is analyzed. If there is an investigation of a cybercrime incident, this

approach will help in getting data captured in real time. Here, it is important to identify

which data we need to capture. IP address is the most critical data. In addition to that,

10

capturing timestamps is vital too. Once the necessary data has been ported into a

database, concerned personnel can analyze it by using appropriate statistical tools.

The aim of this thesis is to serve as a proof of concept for such an effort, to

analyze a few advantages of such a system from a cyber forensics standpoint and to study

the performance aspects while loading a web page.

2.4. Efficient Management of a Large Database

 Kamara et al. (2003) proposed concepts that can be extremely useful for firewall

developers and testers. The main aim was to arrive at a matrix that linked firewall

vulnerability cause and effects with the firewall operation. It is really helpful in

resource allocation and avoiding errors in implementation and installation.

 Bertino et al. (2007) presented an effective approach to detect SQL injection by

using anomaly based detection. The use of the data mining concept �– �“association

rule mining�” is a novel means to form filtering rules.

 Jayaraman et al. (2008) used the strong concept of data structures in mining a

large biometric database.

 Debnath et al. (2008) presented an approach which ensured that DBAs would

focus only on tuning those configuration parameters which have the most impact

on system performance. This saves considerable time that the DBAs would

otherwise spend in tuning non-critical parameters.

11

 Storing of analysis, if a cross-site script attack occurs, is done in real time in this

particular work. This means that the database will increase on a regular basis and it is

important to manage this large data. These papers provide good background on this.

Similar to how Bertino et al. (2007) and Jayaraman et al. (2008) stress identifying only

the critical parameters and working around them, the database that is proposed to be built

should be tuned to resolve only those parameters that are highly critical to the

application.

2.5. A Tangential Problem

The concept of automatic updating of antivirus signature is important as it allows

the new signatures to be instantly loaded by avoiding the time delay in manual updating.

The study done by Badhusha et al. (2001) provides an implementation of this concept.

The concept of active networks was used to build a system that proactively updated the

antivirus signatures on end user systems instead of the users having to manually

download the new signature.

This study supports the case for a relevant question as follows: �“Can updating of

signature based systems be done using results from vulnerability analysis of websites?�”

The idea here is to make use of the Javascript analysis that would be logged. If there is a

new entry in the table, this new signature must be automatically updated by the software.

This will no doubt be a large scale effort. But initially, the antivirus provider may want to

implement this system for a small geography and then scale it up. The main advantage

here is that signature updates will happen rapidly, simply because of the large number of

web users. As a result, the types of attacks that can be detected by the antivirus will

12

increase. The performance of the antivirus would correspondingly improve. This concept

will be discussed further in the analysis section. Issues pertaining to privacy concerns

must be taken care of too, but that is out of scope for this discussion.

2.6. Summary

This chapter went through the existing works done for mitigating threats posed by

Javascript. Some analyzed policy violations while others attempted to rewrite the

Javascript code itself. A number of works that used various data mining strategies to

handle large amounts of data were discussed. Finally, a minor question that comes out of

this study was discussed; the need for having automatic updates of antivirus and malware

signatures was argued. This topic can be a detailed and independent research on its own.

It has been mentioned in this chapter to highlight an advantage of this study but it is not a

part of the study itself.

13

CHAPTER 3. METHODOLOGY

3.1. Study Design

This work is a quantitative study, employing an experimental design and using

descriptive statistics. Fig 3.1 shows a flowchart representing the concept. There are no

human subjects involved. The hypotheses are:

Null Hypothesis: A system that logs details from a cross site scripting attack detected in

the browser does not increase the time taken to open a webpage.

Alternate Hypothesis: A system that logs details from a cross site scripting attack

detected in the browser does increase the time taken to open a webpage.

A one tailed matched pair t-test has been performed with = 0.05

3.2. Variables Measured

The quantity that has been measured is the time taken to open an individual

website. A website in a test environment was opened in the Firefox 3.0.15 web browser

with the detection and logging mechanisms activated as well as deactivated. Time taken

to open a website with and without the mechanisms has been calculated (in

microseconds) using a standard timer function written in Java. Analysis has been done on

this data to understand the overhead in opening a website introduced by the detection and

logging mechanisms. The variables are enlisted as follows:

14

Independent Variable: Status of detection and logging mechanisms (Active or Inactive)

Dependent Variable: Time taken for a web page to load

Figure 3.1 Flowchart representing the concept

15

3.3. Sampling

The sampling method chosen is convenience sampling. The reason is the huge

number of websites on the internet. As on November 09, 2009, the total number of web

pages is 21.69 billion based on an estimation model proposed by Maurice de Kunder

(2007). This is an increase of almost 50% compared to the number estimated in

November, 2007. The time limitations of the thesis would make it infeasible to identify

representative websites, the results from which can be generalized to the entire World

Wide Web. This would also be inaccurate owing to the differences in the content of each

website.

As a result, data has been collected from a test environment. This includes a

dummy website similar to a bulletin board or a blog. The details are given in the next

subsection.

3.3.1. Test Environment

 MySQL database (Version 5.1.43) for logging.

 Apache Tomcat server (Version 6.0.18) on a Windows 7 host, running 11 virtual

hosts. One victim host running a mock bulletin board/ blog application and 10

attacker hosts. A javascript function is called when a cross site script attack is

detected. Appendix A provides complete system details.

 Different tags were used as potentially malicious code to be sanitized. Some of

them include <script /> and tags. These tags can be found as standard test

cases provided by OWASP (2010, January 16) and by RSnake (n.d.). They are a part of

16

standard cheat codes that testers can use to test an application for XSS. The complete list

of tags that have been used is given in table 3.1.

Table 3.1

HTML tags used in data collection

Sr.

No

Script Comments

1 <SCRIPT SRC = "" /> An external and helpful script can be run from the

location specified in src. But this could point to an

attacker's malicious script.

2 Image tag can get external image from the location

specified in src. But this could also point to an

attacker's malicious script.

3 <SCRIPT/SRC = "" /> More relevant to IE and Gecko rendering engines that

allows a slash between the tag and parameter.

4 <BODY

BACKGROUND= "">

Similar to Sr. Nos. 1 and 2, the location within double

quotes can point to an attacker's script.

5

6

7 <BGSOUND SRC

="">

8 <LAYER SRC = "">

17

 In this work, the sanitization happens on these tags when the javascript function

detects the �“<�” and �“>�” characters, which are escaped to �“<�” and �“>�”. This prevents

the browser from evaluating the malicious script as a regular script and just displays it on

the webpage. Appendix B shows the source code of this function.

 The solution is designed to stop the cross site script attack and log it into a

database. The database chosen for this purpose is MySQL. This solution is designed

keeping in mind existing cross site script attack detection systems. The javascript

function provided in appendix B can be applied to these existing systems; NoScript is one

such system that is explained in the next sub-section. One advantage of NoScript is its

open source nature that allows a transparent understanding of the system.

3.3.2. NoScript

 NoScript is an open-source Firefox add-on released under the GPL (GNU Public

License), which provides additional security while browsing the web on a Firefox

browser. It aims to disable executable web content like Javascript and Java by default,

however, a user can white-list a particular website to enable these contents (Maone, n. d.

b).

 Maone (n. d. a) and Maone (n. d. b) provide most of NoScript�’s documentation,

which are the FAQ and features sections respectively. A few of the features mentioned in

their documentation can be summarized as follows:

1. Java, silverlight, flash and other plugins

Along with javascript, NoScript can also block java, silverlight, flash and other

plugins on untrusted sites (Maone, n. d. b).

18

2. Untrusted blacklist

Certain sites that users do not trust can be added to a blacklist which causes

NoScript to block any kind of malicious scripts from that domain.

3. Anti XSS protection

XSS or cross site scripting is a web application attack where an attacker causes a

script to run in an unsuspecting user�’s browser. In other words, an attacker can

cause scripts to run from a site of their choice into the victim�’s site. NoScript

provides protection against such kinds of attacks. NoScript protects against Type

0, Type 1 and Type 2 XSS attacks, thus ensuring full protection while browsing.

 This work draws inspiration from the anti-XSS measures in NoScript. NoScript

checks for XSS, sanitizes the attack and show the user a small message saying that the

attack was filtered. Figure 3.2 shows such a message (Refer to the browser�’s information

bar for NoScript�’s message about XSS being prevented).

19

Figure 3.2 XSS filtering in NoScript. Adapted from �“NoScript - JavaScript/Java/Flash

blocker for a safer Firefox experience! - features �– InformAction�” by G. Maone, n.d. b,

retrieved from http://noscript.net/features

 As mentioned previously, the concept described in this thesis is that once an XSS

attack has been detected and sanitized, it is logged in a database. Applying this to

NoScript, NoScript�’s anti-XSS measure may be slightly modified to log it into a database

that can be monitored. To be precise, a function similar to the one in appendix B can be

added in a file in NoScript called �“RequestWatchdog.js�”. As NoScript is open-source, the

source code comes along with its installation (Maone, n. d. a). Hence, future work in this

regards is recommended, especially with more focus on the code. Doing so will be very

helpful from an incidence response and cyber forensics standpoint. The discussions in

chapter 5 will further clarify this.

20

3.4. Table in MySQL Database for Logging

 A table named �‘test_logging�’ was created in a MySQL database into which logs

were inserted once a malicious javascript function was sanitized. The definition of the

table can be seen in appendix D.

The table contains fields for IP address, script, time stamp and suspect URL. The

IP address is the IP address of the machine that was targeted, the script is the malicious

javascript that was sanitized, the time stamp is the exact time at which the script was

sanitized (provided by a javascript Date() object) and the suspect URL is the malicious

end host, if any, that the script was calling.

3.5. Summary

 In this chapter, the design method for the thesis was described as quantitative

research not involving human subjects, employing an experimental design. The quantity

that is measured is the time taken to open a web page with and without the cross-site

scripting detection and logging mechanisms. The sampling method chosen is

convenience sampling.

21

CHAPTER 4. DATA

4.1. Collection of Samples

 There were two sets of samples collected each having 40 observations. All

observations have been collected from random clients made to access the website at

different times.

 The first set of data is collected to determine the time taken for the website to load

in the absence of the above mentioned solution (given in table 4.1) while the second set is

to determine the time taken for the website to load in the presence of the above

mentioned solution (given in table 4.2). The times taken give an indication of the

overhead caused by the solution.

4.2. Page Load Times with and without New Feature

 A matched pair t-test for the observations presented in tables 4.1 and 4.2 will help

in inferring about the page load time in presence of the solution, because in principle a

matched pair works well for two datasets which represent two different conditions (e.g.,

before and after) of the same subject under study (Moore, McCabe & Craig, 2009). The

results from the test have been discussed in the next chapter. The data presented has two

columns: IP address from which the malicious website was opened and time taken for the

webpage to load, in microseconds.

22

Table 4.1

Page load times in the absence of proposed solution

Sr. No IP address Page Load Time (microseconds)

1 IPADDRESS1 340

2 IPADDRESS1 213

3 IPADDRESS1 160

4 IPADDRESS1 148

5 IPADDRESS1 93

6 IPADDRESS1 96

7 IPADDRESS1 96

8 IPADDRESS1 139

9 IPADDRESS1 73

10 IPADDRESS1 71

11 IPADDRESS1 131

12 IPADDRESS2 139

13 IPADDRESS2 141

14 IPADDRESS2 137

15 IPADDRESS2 144

16 IPADDRESS2 144

17 IPADDRESS2 149

18 IPADDRESS2 109

19 IPADDRESS2 121

23

Sr. No IP address Page Load Time (microseconds)

20 IPADDRESS2 169

21 IPADDRESS2 79

22 IPADDRESS2 124

23 IPADDRESS2 132

24 IPADDRESS2 125

25 IPADDRESS2 130

26 IPADDRESS2 121

27 IPADDRESS3 76

28 IPADDRESS3 71

29 IPADDRESS3 63

30 IPADDRESS3 113

31 IPADDRESS3 54

32 IPADDRESS3 73

33 IPADDRESS3 74

34 IPADDRESS3 75

35 IPADDRESS3 71

36 IPADDRESS3 49

37 IPADDRESS3 74

38 IPADDRESS3 46

39 IPADDRESS3 73

40 IPADDRESS3 48

24

Table 4.2

Page load times in the presence of proposed solution

Sr. No IP address Page Load Time (microseconds)

1 IPADDRESS1 408

2 IPADDRESS1 244

3 IPADDRESS1 105

4 IPADDRESS1 123

5 IPADDRESS1 155

6 IPADDRESS1 166

7 IPADDRESS1 155

8 IPADDRESS1 167

9 IPADDRESS1 90

10 IPADDRESS1 88

11 IPADDRESS1 145

12 IPADDRESS2 145

13 IPADDRESS2 145

14 IPADDRESS2 198

15 IPADDRESS2 153

16 IPADDRESS2 157

17 IPADDRESS2 159

18 IPADDRESS2 140

19 IPADDRESS2 141

25

Sr. No IP address Page Load Time (microseconds)

20 IPADDRESS2 179

21 IPADDRESS2 151

22 IPADDRESS2 136

23 IPADDRESS2 213

24 IPADDRESS2 143

25 IPADDRESS2 134

26 IPADDRESS2 139

27 IPADDRESS3 82

28 IPADDRESS3 58

29 IPADDRESS3 90

30 IPADDRESS3 291

31 IPADDRESS3 56

32 IPADDRESS3 53

33 IPADDRESS3 86

34 IPADDRESS3 86

35 IPADDRESS3 82

36 IPADDRESS3 58

37 IPADDRESS3 80

38 IPADDRESS3 53

39 IPADDRESS3 84

40 IPADDRESS3 54

26

4.3. Sample Logs Logged into Database

 The logs explained here include the ones when a malicious script is sanitized. The

program logs the malicious script into the database into the table test_logging that

explained in section 3.4, along with the IP address, timestamp and the suspicious URL

that the script was calling. Table 4.3 represents a few sample entries from this log file.

This data provides important information about the script and the time of attack.

Table 4.3

Sample logs logged into database

Sr.
No

IP address Suspected script Time stamp Suspect URL

1 IP address 1 mithun says:
<script
src="http://attack
er:8080/attack/att
ack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker:8080/att
ack/attack.js

2 IP address 1 mithun says:
<script
src="http://attack
er4:8080/attack/at
tack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker4:8080/a
ttack/attack.js

3 IP address 1 mithun says:
<script
src="http://attack
er5:8080/attack/at
tack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker5:8080/a
ttack/attack.js

4 IP address 1 mithun says:
<script
src="http://attack
er6:8080/attack/at
tack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker6:8080/a
ttack/attack.js

27

Sr.
No

IP address Suspected script Time stamp Suspect URL

5 IP address 1 mithun says:
<script
src="http://attack
er7:8080/attack/at
tack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker7:8080/a
ttack/attack.js

6 IP address 1 mithun says:
<script
src="http://attack
er8:8080/attack/at
tack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker8:8080/a
ttack/attack.js

7 IP address 1 mithun says:
<script
src="http://attack
er9:8080/attack/at
tack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker9:8080/a
ttack/attack.js

8 IP address 1 mithun says:
<script
src="http://attack
er10:8080/attack/
attack.js" />

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker10:8080/
attack/attack.js

9 IP address 1 mithun says:
<IMG
SRC="http://attac
ker10:8080/attack
/attack.js">

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker10:8080/
attack/attack.js

10 IP address 1 mithun says:
<IMG
SRC="http://attac
ker4:8080/attack/
attack.js">

Tue Feb 23 2010
13:55:09 GMT-
0500 (US Eastern
Standard Time)

http://attacker4:8080/a
ttack/attack.js

28

4.4. Summary

 In this chapter, the important data that were collected for hypothesis testing were

explained. The three crucial data are time taken for the webpage to load in the presence

of the new feature, time taken for the webpage to load in the absence of the new feature

and the logs that were logged into the database. Results from analysis and related

discussions will be dealt with in the next chapter.

29

CHAPTER 5. DISCUSSION AND CONCLUSION

5.1. Results from Matched Pair t-test

 A matched pair t-test was run to do significance testing of the hypothesis stated in

chapter 3. The data described in chapter 4 was input into SAS. Table 5.1 shows the

output of matched pair t-test from SAS.

Table 5.1

Output from matched pair t-test in SAS

Sr. No. Statistic Value

1 N 40

2 Degrees of Freedom 39

3 t-value 3.85

4 P-value 0.0002

Note. N = number of observations

As can be seen, the obtained t-value was 3.85 which gave a P-value of

approximately 0.0002. As mentioned in chapter 3, was chosen as 0.05, which means P-

value < . Hence the null hypothesis is rejected. So, the data shows that a system that

logs details from a cross site scripting attack detected in the browser does increase the

time taken to open a webpage. It is however important to note a few more points about

time taken to open websites. Nielsen (1993) notes the following:

30

 0.1 second is about the limit for having the user feel that the system is reacting

instantaneously, meaning that no special feedback is necessary except to display

the result.

1.0 second is about the limit for the user's flow of thought to stay uninterrupted,

even though the user will notice the delay. Normally, no special feedback is

necessary during delays of more than 0.1 but less than 1.0 second, but the user

does lose the feeling of operating directly on the data.

10 seconds is about the limit for keeping the user's attention focused on the

dialogue. For longer delays, users will want to perform other tasks while waiting

for the computer to finish, so they should be given feedback indicating when the

computer expects to be done. Feedback during the delay is especially important if

the response time is likely to be highly variable, since users will then not know

what to expect. (p. 135)

 In this work, the average webpage load time in the absence of the detecting and

logging functions is 112 microseconds while the average webpage load time in the

presence of the detecting and logging functions is 135 microseconds. This means that

effectively, the webpage load time has increased by 20%. It can be seen that the time

taken to open the web site in the test environment with and without the detecting and

logging functions is much less than the 1st criteria (i.e., response time <= 0.1 seconds).

Comparable performance can be expected in other weblogs and websites which have

similar page sizes to be served. At the time of the tests, it should be noted that browser

31

extensions, such as NoScript, were not running. If the javascript function is integrated

into NoScript and the timings noted, then there would be more factors to be considered

while calculating overhead in addition to NoScript�’s anti-XSS protection. These include

features which are given by Maone (n. d. b).

 If the percentage increase in times were to be applied to the 2nd criteria, it can be

seen that for web pages that serve content in 8.33 seconds, the additional over head

would cause the content to be served in approximately 10 seconds. This is still less than

the limit given in the 3rd criteria, which confirms that a user need not be given any special

messages.

 If the time for serving web page content goes beyond these values, it is

recommended to display a message to the user about the time remaining for the page to

load, as mentioned in the 3rd criteria. This comes down to a trade-off between

performance of the system and the desired level of security. If a website has placed high

priority on security and can forego a certain loss in performance by allowing some

additional overhead, the system described in this work would be a good tool to employ.

5.2. Logs Collected

 The logs collected give information about the following parameters at the time of

the attack:

 IP Address of the targeted machine. This helps in identifying which host

was compromised.

32

 The script that was sanitized. This helps in further semantic analysis of the

malicious script.

 The time stamp at the time of the attack.

 The end host or domain that the script was calling. This helps in knowing

the domains that are suspicious.

 These details were entered into a table in a MySQL database, as explained in

section 3.4. The logging activity resulted in a table of 1755 rows inserted in 185 seconds

occupying 9 KB on the disk. This corresponds to a throughput of 0.0486 KB/sec. The

bulletin board application served a webpage of minimum size of 1.72 KB when no user

comments were posted and of maximum size of 8 KB when there were 41 user

comments. The throughput to the database observed is small with respect to the size of

the webpage being served. Hence, speed of general web browsing was not seen to be

affected.

5.3. Forensic Importance: Frequency Analysis

 Frequency analysis refers to identifying which host was called by the malicious

script and how many times. This exercise helps in identifying hosts that are obviously

suspicious so that the company�’s policies can be designed to block those hosts. As

explained in the previous sections, there were 10 suspicious hosts that the test scripts

were calling. A frequency analysis of the 10 hosts generated a frequency distribution as

given in table 5.2.

33

Table 5.2

Frequency analysis of suspect domains

Suspected Domain Number of hits

Domain2 70

Domain4 75

Domain5 75

Domain9 75

Domain10 145

Domain3 209

Domain1 210

Domain6 210

Domain7 265

Domain8 421

 The tests carried out resulted in domain8 being called maximum number of times

followed by domain7. So, a policy maker would want to ensure maximum restrictions

placed on these 2 domains compared to the other domains. An ordered bar graph for the

above table can be given as follows in Figure 5.1:

34

Figure 5.1 Ordered bar graph for suspect domains frequency analysis

5.4. Forensic Importance: Semantic Analysis

 Semantic analysis, in this work, refers to studying the type of script along with the

time stamp that was used for the cross site scripting attack. Some existing works done by

Stallard and Levitt (2003) and Lin (2008) point out to the use of semantic checking of log

files. By doing so, a prototype decision tree can be generated which can give forensics

experts an effective guide in interpreting logs and arriving at results. The decision tree

checks for certain behavior and depending on the outcome of the check, a decision can be

35

taken for e.g. non-malicious or malicious. One way of constructing the decision tree can

as given below.

 Before the system logs an XSS attack, it can set a priority value that indicates the

seriousness of that attack. It can take values like �“low�”, �“medium�” and �“high�” based on

an existing set of signatures. A forensic analyst, who examines the logs, can either

conclude that all three levels of attacks are serious or only the ones with a �“high�” priority

are serious. This helps in identifying if there is a false positive and in not reacting to

them, if found. This decision can be taken with the help of decision trees similar to the

ones shown in figures 5.2, 5.3 and 5.4.

Figure 5.2 Decision tree for high priority log entry

36

Figure 5.3 Decision tree for medium priority log entry

Figure 5.4 Decision tree for low priority log entry

37

 These decision trees help in weeding out the false positives or the less threatening

attacks or those attacks which are within a company�’s risk appetite. Also, researching on

the scripts that are logged will lead to a better understanding of how XSS attacks occur

and what measures can work against them.

5.5. Privacy Concerns

 Studying the privacy concerns is out of the scope of this research, but it is worth

mentioning some points about the same. The proposed solution would be targeted to

work in networks that are monitored such as a private company. Since such places would

already be governed by existing policies for web browsing, it would be fair to say that

appropriate policies can be incorporated within the existing policy framework. Policies

for internet usage within a company are quite common. Integrating a few policies

regarding the system just discussed into the internet usage policy can be an effective

measure to take.

5.6. Future Work and Recommendations

 This study can be worked upon further. One direction for future work can be to

include a wider gamut of websites. Studying websites that deliver web contents of

varying sizes will cover a wider range of websites.

The primary web application attack that was studied was XSS. However, similar

principles can be applied to other types of web application attacks like SQL injection. It

would be worthwhile to study how well different types of web application attacks can be

38

handled by such a system. Similar to this work, importance must be given to performance

issues, when implementing such a system for other types of web application attacks.

As described in the previous section, studying privacy related issues can aid in

understanding and working around these issues. If a company is chosen as case study,

knowing thoughts of employees as well as the employer will assist in identifying the most

critical privacy issues.

Currently, the error rates for such a system are not known. A dedicated study that

identifies the false positives and false negatives of the system will also be beneficial.

Knowing the error rates will help in conforming to the Daubert criteria for acceptance of

Cyberforensics tools. Carrier (2003) has summarized the four points for satisfying

Daubert criteria as follows:

Testing: Can and has the procedure been tested?

Error Rate: Is there a known error rate of the procedure?

Publication: Has the procedure been published and subject to peer review?

Acceptance: Is the procedure generally accepted in the relevant scientific

community? (p.3)

Carrier (2003) has pointed out to the usefulness of open source tools when it

comes to meeting these guidelines. As stated earlier, one tool where this work can be

applied was �“NoScript�” which is open source. Such tools provide for greater transparency

and are easy for peer reviewing. The fact that source code is available to all and that the

system is understood by users makes it easier for open source tools to satisfy the

guidelines stated above.

39

In chapter 2, a mention was made about dynamic updating of antivirus logs. A

previous work done by Badhusha et al (2001) corresponded to this idea. The concept

presented in this work can be used to dynamically update signatures relating to web

application attacks. As mentioned in chapter 2, dynamic updates will be beneficial as data

can be collected by a large number of users who access the web in the presence of this

system. This will ensure a better prevention of web application attacks by antivirus

softwares.

5.7. Conclusion

 This study presented a system that logs cross site scripting attacks detected in a

Firefox web browser. This system has its uses in the cyber forensics field, namely

through frequency analysis of malicious end websites and through semantic checking of

log files. This would prove extremely beneficial for forensic analysts in making

decisions, as was also seen in the works done by Stallard and Levitt (2003) and Lin

(2008). As mentioned in section 1.4, a challenge faced in cyber forensics is reliability and

validity of the evidence gathered and analyzed (Kessler, 2009). Additional logs such as

the ones described in this work can be expected to prove beneficial. Further

improvements were suggested while discussing possible future works, which included

analyzing other forms of web application attacks and also ascertaining the error rates of

such systems.

LIST OF REFERENCES

40

LIST OF REFERENCES

Ahmed, M. K., Hussain, M. & Raza, A. (2009). An automated user transparent approach

to log web URLs for forensic analysis. Paper presented at the Fifth International

Conference on IT Security Incident Management and IT Forensics.

doi: 10.1109/IMF.2009.12

Alme, C. (2009). Web browsers: An emerging platform under attack [White paper].

Retrieved from

http://newsroom.mcafee.com/images/10039/wp_webw_browsers_w_en.pdf

Auger, R. (2009, October 22). Cross site scripting. Retrieved from

http://projects.webappsec.org/Cross-Site-Scripting

Badhusha, A., Buhari, S., Junaidu, S., & Saleem, M. (2001). Automatic signature files

update in antivirus software using active packets. Paper presented at the

ACS/IEEE International Conference on Computer Systems and Applications,

Beirut, Lebanon. doi: 10.1109/AICCSA.2001.934043

Bertino, E., Kamra, A., & Early, J.P. (2007, April). Profiling database applications to

detect SQL injection attacks. Paper presented at the IEEE International

Performance, Computing, and Communications Conference, New Orleans, LA,

USA. doi: 10.1109/PCCC.2007.358926

41

Carrier, B. (2003). Open source digital forensics tools. Retrieved from

http://www.digital-evidence.org/papers/opensrc_legal.pdf

Debnath, B. K., Lilja, D. J., & Mokbel, M. F. (2008). SARD: A statistical approach for

ranking database tuning parameters. Paper presented at the IEEE 24th

International Conference on Data Engineering Workshop, Cancun, Mexico.

doi: 10.1109/ICDEW.2008.4498279

De Kunder, M. (2007). Worldwidewebsize.com | the size of the World Wide Web.

Retrieved from

http://www.worldwidewebsize.com/

Flanagan, D. (2006, August). JavaScript: The definitive guide. Sebastopol, CA, USA:

O�’Reilly Media, Inc.

Hallaraker, O., & Vigna, G. (2005). Detecting malicious javascript code in mozilla.

Proceedings of the 10th IEEE International Conference on Engineering of

Complex Computer Systems, (pp. 85-94). doi: 10.1109/ICECCS.2005.35

Hendrickx, M. (2003). XSS: Cross site scripting, detection and prevention [White paper].

 Retrieved October 9, 2009, from

http://www.ictsecurity.gov.my/readTxtFile.jsp?URLLINK=xss1.pdf

Jayaraman, U., Prakash, S., Gupta, D., & Gupta, P. (2008, August 20). An indexing

technique for biometric database. Proceedings of the 2008 International

Conference on Wavelet Analysis and Pattern Recognition, (pp. 758-763).

doi: 10.1109/ICWAPR.2008.4635879

42

Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., & Frantzen, M. (2003). Analysis of

vulnerabilities in internet firewalls. Computers & Security, 22 (3), 214-232.

doi: 10.1016/S0167-4048(03)00310-9

Kessler, G.C. (2009, June 1). The acceptability, usefulness, and challenges of digital

forensic evidence. Paper presented at the 2009 Techno Security Conference,

Myrtle Beach, SC, USA. Retrieved from

http://electronics.wesrch.com/paper_details/pdf/EL11TZ7OSJAIK/challenges_of_

digital_forensic_evidence

Lin, J. (2008, October 17 �– 18). A web forensic system based on semantic checking. Paper

presented at the 2008 International Symposium on Computational Intelligence

and Design

doi: 10.1109/ISCID.2008.76

Livshits, B., & Guarnieri, S. (2009). Gatekeeper: Mostly static enforcement of security

and reliability policies for javascript code. (Microsoft Research technical report

no. MSR-TR-2009-43). Retrieved from

http://research.microsoft.com/pubs/79571/gatekeeper_tr.pdf

Maone, G. (n.d. a). NoScript - Javascript/java/flash blocker for a safer firefox

experience! - faq – informaction. Retrieved from

 http://noscript.net/faq

Maone, G. (n.d. b). NoScript - Javascript/java/flash blocker for a safer firefox

experience! - features – informaction. Retrieved from

http://noscript.net/features

43

McDowell, M. (2007, November 7). Cyber security tip st04-022. Retrieved from

http://www.us-cert.gov/cas/tips/ST04-022.html

Moore, D. S., McCabe, G. P., & Craig, B. A. (2009). Introduction to the practice of

statistics. New York, NY: W. H. Freeman and Company.

Nielsen, J. (1993). Usability engineering. San Diego, CA, USA: Academic Press, Inc.

Ofuonye, E., & Miller, J. (2008). Resolving javascript vulnerabilities in the browser

runtime. Paper presented at the 19th International Symposium on Software

Reliability Engineering.

doi: 10.1109/ISSRE.2008.11

Paul, M. (2008). Software security: Being secure in an insecure world. Retrieved from

https://buildsecurityin.us-cert.gov/swa/downloads/CSSLP_WhitePaper_3B.pdf

Roberts, S., Heller, P., & Ernest, M. (1999). Complete java 2 certification study guide.

New Delhi, India: BPB Publications

RSnake. (n.d.). XSS (cross site scripting) cheat sheet retrieved from

http://ha.ckers.org/xss.html

Stallard, T., & Levitt, K. (2003, December 8 �– 12). Automated analysis for digital

forensic science: Semantic integrity checking. In Proceedings of the 19th Annual

Computer Security Applications Conference, (p. 160)

 doi: 10.1109/CSAC.2003.1254321

The Open Web Application Security Project (OWASP). (2009, September 21). Cross-site

scripting (XSS). Retrieved from

http://www.owasp.org/index.php/cross-site_scripting_(xss)

44

The Open Web Application Security Project (OWASP). (2010, January 16). XSS (cross

site scripting) prevention cheat sheet. Retrieved from

http://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention

_Cheat_Sheet

The Scientific Working Group on Digital Evidence and the Scientific Working Group on

Imaging Technology (SWGDE & SWGIT). (2009, May 22).

SWGDE and SWGIT digital & multimedia evidence glossary version 2.3.

Retrieved from

http://www.swgde.org/documents/swgde2009/SWGDE_SWGITGlossaryV2.3.pdf

Web Application Security Consortium (WASC) (2008). Web application security

statistics. Retrieved from

http://projects.webappsec.org/Web-Application-Security-Statistics

APPENDICES

45

Appendix A. System Details

A single system was used to serve the virtual hosts on Apache Tomcat as well as

to run MySQL database for logging. Its details are as follows:

 Operating System: Windows 7 Home Premium

 Manufacturer: Hewlett-Packard

 Model: HP-G60 530 US Notebook PC

 Processor: Pentium (R) Dual-Core CPU T 4300 @ 2.10GHz

 RAM: 3 GB

 Architecture: 64-bit

46

Appendix B. Javascript Function

The following function has been used to sanitize a potentially malicious script and log to

a server if an attack is detected.

function chkmsg(s)
{
var xhr = null;
var myHost = "";
var newstr = s.replace("<","<"); //check for unescaped characters
newstr = newstr.replace(">",">");
var start = s.indexOf("http");
var end = s.indexOf("\"",start+7);
var badUrl = s.substring(start, end);

 try
 {
 if(s!=newstr)
 {
 var check = badUrl.indexOf("http://victim");
 if(check==-1) //if script was calling an external domain, log it
 {
 var currentTime = new Date();
 myHost =
"http://log_server_domain/examples/dbInsert?param1="+s+"¶m2="+newstr+"¶
m3="+currentTime+"¶m4="+badUrl+"¶m5="+navigator.appName;
 document.write(unescape("%3Cscript src='" +
myHost + "' type='text/javascript'%3E%3C/script%3E"));
/*myHost contains URL of the log server. This value can be customized with the help of
a properties file*/
 }
 }
 }
 catch(err)
 {
 var txt="Host not found!!\n";
 txt+="Reason: "+err.description+"\n";

47

 alert(txt);
 }
return newstr;
}

This function calls a servlet named dbInsert to log into database. The source code

of this servlet is given in appendix C.

48

Appendix C. Servlet for Logging into Database

The following servlet code is used to log a cross-site scripting attack that is

detected. It inserts details into a table in MySQL called �“test_logging�”. This table is given

in Appendix D.

/**
 * @(#)dbInsert.java
 *
 *
 * @author vvnmithun
 * 2010/2/18
 */
import java.sql.*;
import java.io.*;
import java.util.*;
import java.lang.*;
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class dbInsert extends HttpServlet {
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 System.out.println("dbInsert called");
 Connection con=null;
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 con =
DriverManager.getConnection("jdbc:mysql://localhost:3306/thesis","root","thesis");
 String oldScript = "";
 String sanitScript = "";
 String ipAddress = "";
 //Date today = new Date();
 String today = "";
 String hostName = "";

49

 String badHost = "";
 String browserType = "";
 oldScript = request.getParameter("param1");
 sanitScript = request.getParameter("param2");
 ipAddress = request.getRemoteAddr();
 hostName = request.getRemoteHost();
 today = request.getParameter("param3");
 badHost = request.getParameter("param4");
 browserType = request.getParameter("param5");
 String query0 = null;
 query0 = "insert into test_logging values
('"+hostName+"','"+oldScript+"','"+today+"','"+badHost+"');";
 Statement stmt0 = con.createStatement();
 stmt0.executeUpdate(query0);
 stmt0.close();
 con.close();
 System.out.println("DB insertions done");
 }

 catch (ClassNotFoundException cE) {
 System.out.println("Class Not Found Exception: "+ cE.toString());
 try{
 con.close();
 }
 catch (SQLException e2) {
 System.out.println("SQL Exception: "+ e2.toString());
 }
 } catch(Exception e)
 {
 System.out.println("Error"+e);
 try{
 con.close();
 }
 catch (SQLException e2) {
 System.out.println("SQL Exception: "+ e2.toString());
 }
 }
 finally {
 out.close();
 }
 }
}

50

Appendix D. MySQL Table

The MySQL create statement used for the table described in chapter 3, section 4

is given below. This table serves as the log.

CREATE TABLE thesis.test_logging (
 ip_address varchar(200) DEFAULT NULL,
 script varchar(200) DEFAULT NULL,
 time_stamp varchar(200) DEFAULT NULL,
 suspect_url varchar(200) DEFAULT NULL,
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

