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Abstract
The notion of confidence policy is a novel notion that exploits trustworthi-

ness of data items in data management and query processing. In this paper we
address the problem of enforcing confidence policies in data stream management
systems (DSMSs), which is crucial in supporting users with different access rights,
processing confidence-aware continuous queries, and protecting the secure stream-
ing data. For the paper, we first propose a DSMS-based framework of confidence
policy management and then present a systematic approach for estimating the trust-
worthiness of data items. Our approach uses the data item provenance as well as
their values. We introduce two types of data provenance: the physical provenance
which represents the delivering history of each data item, and the logical prove-
nance which describes the semantic meaning of each data item. The logical prove-
nance is used for grouping data items into semantic events with the same meaning
or purpose. By contrast, the tree-shaped physical provenance is used in comput-
ing trust scores, that is, quantitative measures of trustworthiness. To obtain trust
scores, we propose a cyclic framework which well reflects the inter-dependency
property: the trust scores of data items affect the trust scores of network nodes,
and vice versa. The trust scores of data items are computed from their value sim-
ilarity and provenance similarity. The value similarity comes from the principle
that “the more similar values for the same event, the higher the trust scores,” and
we compute it under the assumption of normal distribution. The provenance simi-
larity is based on the principle that “the more different physical provenances with
similar values, the higher the trust scores,” and we compute it using the tree sim-
ilarity. Since new data items continuously arrive in DSMSs, we need to evolve
(i.e., recompute) trust scores to reflect those new items. As evolution scheme, we
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propose the batch mode for computing scores (non)periodically along with the im-
mediate mode. To our best knowledge, our approach is the first supporting the
enforcement of confidence policies in DSMSs. Experimental results show that our
approach is very efficient.

1 Introduction

A large variety of novel applications, like supervisory systems, e-health, and e-surveilla-
nce, are characterized by real-time data streaming [17, 18] and continuous query pro-
cessing [15, 19, 21]. Continuous queries can be issued for a variety of purposes, ranging
from real-time decision making to statistical analysis and machine learning applica-
tions. These applications often have different requirements with respect to data trust-
worthiness, and so we need flexible data management systems allowing the various
applications to specify “how trustworthy” certain data need to be for each application.
As an example, we can consider a data stream management system (DSMS in short)
for monitoring battlefield. The DSMS gathers enemy locations from various sensors
deployed in vehicles, aircrafts, and satellites and processes the continuous queries over
those streaming data. In this DSMS, we must limit mission critical applications to ac-
cess only high confidence data in order to guarantee accurate decisions. By contrast,
analytic applications (e.g., network management) can access low confidence data for
the purpose of detecting possible sensor errors or malicious sabotage over the sensor
network. This example shows that it is important to assess the trustworthiness of data
items and control the use of data based on the purpose of use and trustworthiness level
of the data.

A possible approach to address such issue is based on two elements. The first
element is the association of a trust score with each data item (or group of data items).
Such score provides an indication about the trustworthiness of the data item and can
be used for data comparison or ranking. For example, even though the meaning of
absolute scores varies depending on the application or parameter settings, if a data
item has the highest trust score in a data set, then we can say that the data item is
most trustworthy compared with the other data items in the set. Also, as indicators
about data trustworthiness, trust scores can be used together with other factors (e.g.,
information about contexts and situations, past data history) for deciding about the use
of data items.

The second element of the approach is based on the notion of confidence policy [8].
Such a policy specifies for an application or task the minimum trust score that a data
item, or set of data items, must have for use by the application or task. Our confi-
dence policy language includes many other clauses (not presented in the paper for lack
of space) that can be used to formulate articulated conditions about data usage. As
such our confidence model subsumes very well known integrity models, like the Biba’s
model [6] and the Low Water-mark model [12]. Confidence policies are integrated
with query processing in that query results are filtered by the policies before being
returned to the application. We refer to queries enforcing such policies as confidence
policy-compliant queries.
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The goal of this paper is to develop a DSMS-based framework, focused on sensor
networks, that supports confidence policy-compliant queries and, as a core component,
provides a systematic approach for estimating and managing trust scores of data. Es-
pecially, we focus on assessing trust scores since it is a crucial building block for the
confidence policy management. Our approach is based on the concept of provenance,
as provenance gives important evidence about the origin of the data, that is, where and
how the data is generated. Provenance provides knowledge about how the data came
to be in its current state - where the data originated, how it was generated, and the
operations it has undergone since its creation.

In order to use data provenance in computing trust scores, we introduce two types
of data provenance for each data item: physical provenance and logical provenance.
The physical provenance shows where the data item was produced and how it was
delivered; by contrast, the logical provenance represents its semantic meaning or unit
in the given application. We use the physical provenance for computing trust scores
and the logical provenance for uniquely identifying a logical event for each data item.
We then propose a formal method for computing trust scores. Our method is based
on the principle that the more trustworthy data a source provides, the more trusted the
source is considered. There is thus an interdependency between network nodes and
data items with respect to the assessment of their trust scores, i.e., trust score of the
data affects the trust score of the network nodes that created and manipulated the data,
and vice-versa. To reflect such interdependency property in computing trust scores, we
propose a cyclic framework that generates (1) trust scores of data items from those of
network nodes and (2) trust scores of network nodes from those of data items. Trust
scores are gradually evolved in our cyclic framework.

Our framework works as follows. Trust scores are initially computed based on the
values and provenance of data items; we refer to these trust scores as implicit trust
scores. To obtain these trust scores, we use two types of similarity functions: value
similarity inferred from data values, and provenance similarity inferred from physi-
cal provenances. Value similarity is based on the principle that the more data items
referring to the same real-world event have similar values, the higher the trust scores
of these items are. We observe that most sensor data referring to the same event fol-
low normal distribution, and propose a systematic approach for computing trust scores
based on value similarity under the normal distribution. Provenance similarity is based
on the observation that different physical provenances of similar data values may in-
crease trustworthiness of data items. In other words, different physical provenances
provide more independent data items. In the paper we thus present a formal model
for computing the provenance similarity and integrating it into the normal distribution
framework.

In the paper, we also address the problem of efficiently computing trust scores in a
streaming environment. Trust scores in our cyclic framework can be modified when-
ever a new data item arrives. Such strategy, referred to as immediate mode, immedi-
ately reflects changes of data values onto trust scores. Such a strategy is not, however,
applicable when input rates are very high. To address the problem of performance
overhead, we propose a batch mode. Under such a mode trust scores are periodically
(or non-periodically) evolved for a (possibly very large) set of accumulated data items.
The batch mode provides comparable accuracy with respect to the immediate mode.
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We again exploit the normal distribution nature of data streams to decide exactly when
the evolution should be executed in the batch mode. More specifically, we recalculate
trust scores of network nodes only when recent input data items do not follow the nor-
mal distributions any longer. Otherwise, trust scores of data items are calculated with
old trust scores of network nodes.

We have implemented the provenance-based confidence policy model and the cyclic
framework for computing trust scores. Through extensive experiments, we first show-
case that our confidence model works correctly in DSMSs, and the cyclic framework
gradually evolves trust scores by reflecting changes in data streams. We also show
that the batch mode is more flexible than the immediate mode in adjusting accuracy
and performance. These experimental results show that our provenance-based model
and cyclic framework provide a practical way of supporting the confidence policy in
DSMSs.

The rest of the paper is organized as follows. Section 2 presents the provenance-
based model for enforcing the confidence policy in DSMSs and introduces notions of
physical and logical provenances. Section 3 proposes the cyclic framework for gen-
erating trust scores of data items and network nodes based on their values and prove-
nance. Section 4 describes the immediate and batch modes as methods for evolving
trust scores. Section 5 reports the experimental results. Section 6 discusses related
work on stream data processing and confidence policies. We finally summarize and
conclude the paper in Section 7.

2 Provenance-based Model of Confidence Policy
Control

In this section, we show an overview of our confidence policy management frame-
work, and then, define physical and logical provenances. In the proposed framework,
we exploit our previous work [5, 7, 8] on confidence policy and trustworthiness assess-
ment. However, our work is totally different both in application targets and technical
solutions. We will discuss it in the related work section (Section 6).

2.1 Confidence Policy Management over Data Streams
Figure 1 shows our overall framework for confidence policy management on data
streams. The figure shows how the sensor data are processed and managed in a DSMS
and how they are delivered to users. As shown in the figure, the proposed framework
consists of three major components: trust score computation, query and policy evalu-
ation, and data quality management. The role of each component is as follows:

• Trust score computation obtains trust scores of data items based on those of
network nodes and (periodically) updates the trust scores to reflect the effect
of the newly arrived data items. It also maintains and updates trust scores of
network nodes based on the scores of data items.

• Query and policy evaluation executes continuous queries, each of which has its
own confidence range. We assume that each continuous query Q is given with its
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confidence range [qmax, qmin]. For each Q with [qmax, qmin], this component
first obtains the resulting data items by evaluating the given query Q and then
returns data items of which trust scores are in between qmax and qmin.

• Data quality management tries to control data quality (manually or automati-
cally) by adjusting data rates, increasing/decreasing the number of sensor nodes,
or changing delivery paths. Obviously, data quality affects trust scores, and many
approaches [9, 15, 21] on sensor networks have addressed the issue of controlling
data quality.

1 query & policy evaluationtrust score computation(focus of the paper)sensor network data quality management
stream of data items(with provenance)change of data quality queries with confidence ranges data items with trust scores 

DSMS stream of data items (with trust scores)
evaluation results [ ]( )min max, ,Q q q

( ), dd strust scores ofnetwork nodes
Figure 1: An overall framework of confidence policy control over data streams.

In this paper we focus on the first component so as to get reasonable trust scores of
data items and network nodes.

2.2 Physical Provenance and its Representation

The physical provenance of a data item shows where the item was produced and how
it was delivered to the server. We show in Section 3 how to exploit this physical prove-
nance to compute trust scores of data items and network nodes.

A network is usually modeled as a graph, and we thus model the physical (sensor)
network as a graph of G(N,E). Figure 2 (a) shows an example of a physical sensor
network. In the graph G(N, E), a set of nodes, N , and a set of edges, E, are defined
as follows:

• N = {ni | ni is a network node of whose identifier is i.}: a set of network nodes

• E = {ei,j | ei,j is an edge connecting nodes ni and nj .}: a set of edges con-
necting nodes

Regarding the network nodes in N , we categorize them into three types according to
their roles.
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Definition 1 A terminal node generates a data item and sends it to one or more inter-
mediate or server nodes. An intermediate node receives data items from one or more
terminal or intermediate nodes, and it passes them to intermediate or server nodes; it
may also generate an aggregated data item from the received data items and send the
aggregated item to intermediate or server nodes. A server node receives data items and
evaluates continuous queries based on those items. �
Without loss of generality, we assume that there is only one server node, denoted by
ns, in G.

Prior to formally defining the physical provenance, we introduce two assumptions
related to data values and intermediate node operations.

Assumption 1 A data item d has only one numeric attribute, and it carries a numeric
value vd and a provenance pd for that attribute. �

Assumption 1 is reasonable due to the following reasons. In general, a sensor node
has only one purpose, and it thus reports only one numeric value. Even for a data
item with two or more attributes, we can regard it as two or more different data items
since different attributes may have their own trust scores. With this observation, we
can easily extend our solution to multiple attributes. Each attribute can be handled
separately by assigning independent scores for each attributes. We can also use multi-
attribute distributions and Euclidian distance to directly extend our solution for multiple
attributes.

Assumption 2 Single-attribute operations such as selection and aggregation are al-
lowed in intermediate nodes, but multi-attribute operations such as join and projection
are not allowed. �

In sensor networks, some intermediate nodes may execute data operations such as
selection (or shedding), projection, join, and aggregation to reduce the network load or
the server processing load. However, to simplify the presentation, we focus on handling
selection and aggregation which are the most used operations in sensor networks. Join
operations are similar to aggregation since they both combine data from multiple nodes.
We will explore additional other operations in our future work.

We now define the physical provenance of a data item d, denoted it as pd. The
physical provenance pd shows where and how the data item d was generated and how
it was passed to the server ns.

Definition 2 The physical provenance pd of a data item d is a rooted tree satisfying
the following properties: (1) pd is a subgraph of the physical sensor network G(N,E);
(2) the root node of pd is the server node ns; (3) for two nodes ni and nj of pd, ni is a
child of nj if and only if ni passes the data item d to nj . �

Based on the tree nature, we can also categorize the types of nodes for physical prove-
nance trees as: root, internal, and terminal nodes. Each of these nodes has the form of
a (node, a set of edges for children) pair as follows:
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• Root node ns = (ns, {es,i | ni is a child of ns}), where ni can be an internal or
leaf node.

• Internal node ni = (ni, {ei,j | nj is a child of ni}), where nj can be another
internal or a leaf node.

• Leaf node ni = (ni, ∅).

We also categorize intermediate nodes into two types based on their operations. First,
we call the internal node having one child a simple node, which simply passes a data
item from its child to its parent. Simple nodes are typical in ad-hoc sensor networks
which relay data items to a server to address the insufficient capability of data transmis-
sion. Second, we call an intermediate node having two or more children an aggregate
node, which receives multiple data items from multiple children, generates an aggre-
gated data item, and passes it to its parent.

Figures 2 (b) and 2 (c) show some examples of the two different physical prove-
nances. As shown in the figures, physical provenances are subgraphs of the physical
sensor network of Figure 2 (a), and they are trees rooted at the server node ns. In Fig-
ure 2 (b) every node in the physical provenance pd is a simple node, which means that
the data item d is generated in a terminal node nt and simply passed to the server ns.
We call this type provenance a simple provenance, which can be represented as a sim-
ple path. On the other hand, in Figure 2 (c) an internal node ni is an aggregate node,
which means that ni generates a new data item d by aggregating multiple data items
d1, . . . , d4 from nt1 , . . . , nt4 and passes d to the server ns. We call this type prove-
nance an aggregate provenance, which is represented as a tree rather than a simple
path. server nodeintermediate nodes

terminalnodes
sn sn

1tn 2tn 3tn 4tnin
d

3d1d 2d 4d
sn

tn
d sn

tn
inan bn1d 2d

d
(a) A physical sensor network (b) A simple provenance (c) An aggregate provenance (d) An exception

Figure 2: A physical sensor network and physical provenance examples.

According to Definition 2, a physical provenance should be a tree. However, there
could be cycles in which the provenance is not a tree. Consider the example in Figure
2 (d), a terminal node nt generates two data items d1 and d2; d1 is passed to ni through
na while d2 is passed to ni through nb; the aggregate node ni generates a new data
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item d by aggregating d1 and d2; the data item d is finally passed to the server ns. In
this case the provenance is still a subgraph of G(N,E), but it is not a tree. We do not
consider this case because of two reasons. First, it rarely occurs in real environments.
Second, computing tree similarity can be done in O(n3log n) [16]; in contrast, comput-
ing graph similarity is known as an NP-hard problem [14] in general (refer to Section 3
for details). We note that basically there is no much difference between tree-shaped and
graph-shaped provenances. Only minor changes are required to support graph-based
provenance. In practice, the system will support both types of provenance and let the
application tradeoff between efficiency and accuracy.

2.3 Logical Provenance and its Representation
The logical provenance of a data item represents the semantic meaning of the data
item in the context of a given application, and it generally differs from the physical
provenance which represents the actual transmission information of the data item. For
example, the logical provenance can be a tracking of locations by which the data item
was issued, a chain of employers who used the data item, or a trail of business logics
that processed over the data item. In some applications, the logical provenance can be
identical to the physical provenance. In a business workflow system, for example, if
the physical network is constructed by following the workflow graph, the logical prove-
nance becomes identical to the physical provenance. To deal with more general appli-
cations, however, we assume that the logical provenance in the logical network differs
from the physical provenance in the physical network. We use this logical provenance
to identify logical events and to assign data items to those events.

We model the logical network as a tree of T (M,F ) where a set of nodes, M , and
a set of edges, F , are defined as follows:

• M = {mi |mi is a semantic node whose identifier is i.}: a set of semantic enti-
ties (i.e., each semantic entity is mapped to a node in the tree T .)

• F = {fi,j | fi,j is a (directed) edge from node mi to mj .}: fi,j means that the
semantic meaning of mi includes that of mj , i.e., there is an inclusion relation-
ship of mi ⊆ mj .

We model the logical network as a tree because many semantic structures have their
own hierarchies that represent semantic inclusion relationships among application en-
tities. Figure 3 shows some typical examples of logical networks. Figure 3 (a) shows
a hierarchy of geographic locations where the area of a parent node contains that of its
child node. Similarly, an organization chart and a business process in Figures 3 (b) and
3 (c) are modeled as rooted trees based on their own semantic hierarchies.

Based on the logical network, we now define the logical provenance of a data item
d, which is denoted as ld. The logical provenance ld, which shows the semantic mean-
ing of the data item d, can be simply represented as a set of nodes (i.e., semantic en-
tities) in the logical network. Considering the tree structure of the logical network we
define the logical provenance as a simple path as follows:
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(a) Geographic location (b) Organization chart (c) Business processLafayette IndianapolisChicagoWest Lafayette ChampaignTippecanoe CountyIndiana State Illinois StateUnited State
……… Division 1Department 1 Company

………Division 2Employee 1Employee 2Employee 3 Production 1 Production 3Production 2Assembly 1Examination 1Packaging
Figure 3: Examples of the logical network.

Definition 3 The logical provenance ld of a data item d is a simple path of nodes in
the logical network where (1) every node in ld includes the semantic meaning of d, (2)
the start node of ld is the lowest node in the tree T (M,F ), and (3) the end node of ld
is always the root node of T (M,F ). �

In Definition 3 the start node of ld is generally a leaf node in the tree, but it can also
be an internal node if the data item is issued from an aggregate node in the physical
network. For example, if a temperature data item is generated from a sensor of “West
Lafayette” (Figure 3 (a)), its logical provenance will be the path of (West Lafayette,
Tippecanoe County, Indiana State, United States); if throughput measures of employ-
ees 1 and 2 are aggregated in Division 1 (Figure 3 (b)), the logical provenance of the
aggregated data item will be (Division 1, Department 1, Company).

We use the logical provenance for event identification which is a process of group-
ing data items into semantic events. This process is essential to assess trust scores since
the score means how much a data item truly reflects a specific event. Event identifi-
cation consists of two steps: (1) choosing a set of semantic events from the logical
network and (2) identifying events for data items. Both steps are executed by the sever
node.

Choosing a set of semantic events: We choose a set of semantic nodes, Mevent ( ⊂M )
from the logical network T (M,F ). Mevent represents events that uniquely identify
the semantics of data items. For example, in the logical network for geometric location
(in Figure 3(a)), if we want to uniquely identify events in the city level, Mevent =
{Lafayette, Indianapolis, Chicago}. If in the state level, Mevent = {Indiana, Illinois}.
Mevent can be arbitrary chosen according to application requirements by either humans
or systems, but there are two rules that should be satisfied to identify events uniquely
and completely.

• Rule 1 (uniqueness): There should be no common nodes among subtrees whose
root node is mi ∈ Mevent.

• Rule 2 (completeness): In all possible logical provenances ld (i.e., a path from a
leaf node to the root node in T (M , F )), there should be at least one mi ∈Mevent

in ld.
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Identifying events: We identify which event is reflected in a data item d. This can be
done with a simple procedure to find a common node mevent between ld and Mevent

and to assign the semantic meaning (i.e., event) of mevent to d. According to the rules
1 and 2 for Mevent, we can always uniquely identify the event of a data item.

As we already described, the logical provenance is only used to identify semantic
events. We note that, if there is no logical provenance in an application, we use the
physical provenance for this purpose (e.g., grouping similar physical provenances as
an event).

3 Value- and Provenance-based
Trust Score Computation

3.1 Cyclic Framework for Incremental
Update of Trust Scores

We derive our cyclic framework based on the interdependency [5, 8] between data items
and their related network nodes. The interdependency means that trust scores of data
items affect trust scores of network nodes, and similarly trust scores of network nodes
affect those of data items. In addition, trust scores need to be continuously evolved in
the stream environment since new data items continuously arrive to the server. Thus,
a cyclic framework is adequate to reflect these interdependencies and continuous evo-
lution properties. Figure 4 shows the cyclic framework according to which the trust
score of data items and the trust score of network nodes are continuously updated. In
Section 2.3 we have already explained how to classify data items into events, and thus
computing trust scores will be done for the data items of the same event in a given
streaming window. Current trust scores of nodes (    )Next trust scores of nodes (    ) Intermediate trust scores of nodes (    )+ Current trust scores of data items (    ) Intermediate trust scores of data items (    )Next trust scores of data items (    )

A set of data items of the same event in a current window+1 235 4
6 ns ns)

ns
ds ds)ds

Figure 4: A cyclic framework of computing trust scores of data items and network
nodes.

As shown in Figure 4, we maintain three different types of trust scores, current,
intermediate, and next trust scores to reflect the interdependency and continuous evo-
lution properties in computing trust scores. Trust scores of data items and network
nodes well reflect those properties as many as cycles are repeated. The computation of
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trust scores could be iterated until their score becomes less than the given threshold.
Repeating multiple cycles for a given streaming window, however, is not adequate in
most DSMSs due to the real-time processing requirement. We also note that, since
new data items are continuously added the stream, executing the cycle once whenever
a new data item arrives is enough to reflect the interdependency and continuous evo-
lution properties in the stream environment. In this paper, we thus execute the cycle
of computing trust scores whenever a new item arrives, and we explain in detail the
advanced computation modes, i.e., immediate and batch evolution modes in Section 4.

In Figure 4, the current, intermediate, and next trust scores of a data item d are
computed as follows: the current (trust) score of d, denoted by sd, is computed from
the current trust scores of its related nodes ( 1⃝); the intermediate (trust) score of d,
denoted by ŝd, is computed from a set of data items of the same event with d ( 2⃝);
the next (trust) score of d, denoted by s̄d, is gradually evolved from its current and
intermediate scores ( 3⃝). We present the detailed computation process for those trust
scores of data items in Section 3.3. Next, the current, intermediate, and next trust
scores of a network node n are computed as follows: the current (trust) score of n,
denoted by sn, is the next trust score assigned to that node at the last stage ( 6⃝); the
intermediate (trust) score of n, denoted by ŝn is computed from the next trust scores of
data items ( 4⃝); the next (trust) score of n, denoted by s̄n, is computed from its current
and intermediate scores ( 5⃝), and becomes its current trust score in the next stage. We
explain the detailed computation process for those trust scores of network nodes in
Section 3.2.

We note that these scores are used only for comparison purpose. For example, let
s1 and s2 be trust scores of data d1 and d2. If s1 > s2, d1 is more trustworthy than d2.
The meaning of absolute scores varies in applications or parameter values.

3.2 Trust Scores of Network Nodes
For a network node n whose current score is sn, we are about to compute its next score
s̄n In more detail, the trust score of n was computed as sn in the previous cycle, and
we now recompute the trust score as s̄n using a set of recent data items in a streaming
window in order to determine how the trust score is evolved in a new cycle. For a
network node n, we compute its next score based on the following two principles: the
first principle is that, to consider the interdependency property, the intermediate score
ŝn reflects the trust scores of its related data items; the second principle is that, to
gradually evolve trust scores of network nodes, the next score s̄n reflects its current
and intermediate scores sn and ŝn.

We now show how to compute ŝn and s̄n. First, we let Dn be a set of data items that
are issued from or passed through n in the given streaming window. That is, all data
items in Dn are identified to the same event, and they are issued from or passed through
the network node n. We adopt the idea that “higher scores for data items (∈ Dn) result
in higher scores for their related node (n)” [5, 7]. Thus, ŝn is simply computed as the
average of s̄d’s (d ∈ Dn), which are the next trust scores of data items in Dn. That is,
it is computed as follows:

ŝn =

∑
d∈Dn

s̄d

|Dn|
(1)
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In Eq. (1) we note that the trust score of a network node is determined by trust scores
of its related data items, and this satisfies the first principle, i.e., the interdependency
property. Also, based on sn and ŝn, the next score s̄n is computed as follows:

s̄n = cnsn + (1− cn)ŝn,

where cn is a given constant of 0 ≤ cn ≤ 1. (2)

The next score s̄n is evolved from the current score sn by the intermediate score ŝn,
and it will be used as the current score sn in the next computation cycle. Likewise, we
consider both sn and ŝn to obtain s̄n, and this satisfies the second principle, i.e., the
consideration of current and intermediate scores.

The constant cn in Eq. (2) represents how fast the trust score is evolved as the cycle
is repeated. The meaning of cn can be explained as follows. If cn has a larger value,
especially if cn > 1

2 , we consider sn to be more important than ŝn, and this means
that the previously accumulated historic score (sn) is more important than the latest
trust score (ŝn) recently computed from data items in Dn. On the other hand, if cn
has a smaller value, especially if cn < 1

2 , we consider the latest score ŝn to be more
important than the historic score sn. In summary, if cn is large, the trust score will
be evolved slowly; in contrast, if cn is small, the trust score will be evolved fast. In
the experiment we set cn = 1

2 to equally reflect the importance of sn and ŝn, and we
assume that the first value of sn is set to 1.

3.3 Trust Scores of Data Items
Basically we compute the trust score of a data item d using its value vd and phys-
ical provenance pd. As we explained in Section 2.3, data items with the same pur-
pose (property, region, etc.) are classified into the same event. To compute trust scores
of data items, we introduce the following assumption that all data items in the same
event follow a normal (Gaussian) distribution.

Assumption 3 For data items in a set D of the same event, their values are normally
distributed with the mean µ, variance σ2, and probability density function f(x) =

1
σ
√
2π

e−
(x−µ)2

2σ2 , where x is the attribute value vd of a data item d (∈ D). �

We note that the normal distribution assumption is not a limit of our solution. We can
adapt other distributions, histograms, or correlation information with simple changes of
the data similarity models. We use the normal distribution since it well reflects natural
phenomena. Especially, values sensed for one purpose in general follow a normal
distribution [10, 22], and thus Assumption 3 is reasonable for streaming data items in
sensor networks. Based on Assumption 3, we present the computation methods for sd,
ŝd, and s̄d, which are the current, intermediate, and next trust scores of d, respectively.

3.3.1 Current trust score sd

For a data item d, we first compute its current score sd based on current scores of net-
work nodes maintained in its physical provenance pd (see 1⃝ in Figure 4). This process
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reflects the interdependency property because we use trust scores of network nodes for
those of data items. In Section 2 we explained two different physical provenances: one
was the simple provenance of a path type; another was the aggregate provenance of a
tree type. According to this classification, we first present how to compute the current
score sd for the simple provenance and then extend it for the aggregate provenance.

In case of the simple provenance (like in Figure 2 (b)), we can represent its physical
provenance as pd = (n1, n2, . . . , nk = ns), that is, a sequence of network nodes that d
passes through. In this case, we determine the current score sd on the minimum score
of the network nodes in pd. This is based on an intuition that, if a data item passes
through network nodes in a sequential order, its trust score might be dominated by the
worst node with the smallest trust score1. That is, we compute sd as follows:

sd = min{sni | ni ∈ pd} (3)

Example 1 shows how to compute the current score sd if the data item d has a simple
provenance.

Example 1 Suppose that a data item d has the simple provenance pd in Figure 5 (a).
There are six network nodes in pd, and their current scores are 0.88, 0.95, 0.95, 0.85,
0.97, and 0.98, respectively. Thus, its current trust score sd is computed as 0.85, that
is, the minimum current score of network nodes in pd. �11 sn n=

1n 2n 3n7n
6 sn n=

1n(a) A simple provenance (b) An aggregate provenance
2n 3n 4n 5n

{ }

  

  

  

1 23 45 61 2 3 4 5 60.88, 0.95,0.95, 0.85,0.97, 0.98, , , , ,n nn nn nds ss ss sp n n n n n n= =
= =
= =

=

9n
4n 5n 6n8n

10n     

    

  

    

1 2 34 5 67 89 10 110.86, 0.95, 0.92,0.91, 0.94, 0.91,0.89, 0.93,0.95, 0.91, 0.97,n n nn n nn nn n ns s ss s ss ss s s= = =
= = =
= =
= = =

0.91(avg) 0.92(avg)0.89 0.930.89(min) 0.92(min)0.905(avg)
Figure 5: Physical provenance examples and current scores of network nodes.

If a data item d has an aggregate provenance pd, we need to consider the tree struc-
ture (like in Figure 2 (c)) to compute its current score sd, since pd is represented as a
tree rather than as a simple path. Unlike the simple provenance, there are aggregate
nodes in the aggregate provenance (for example, see n7, n8, and n9 in Figure 5 (b)).

1We can also use an average score or weighted average score of network nodes to compute the current
score. In this case, we obtain the score by simply changing the minimum function to the average or weighted
average function in Eq. (3).
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Thus, for an aggregate node, we first obtain a representative score by aggregating cur-
rent scores of its child nodes and then use that aggregate score as a current score of
child nodes. We use an average score of child nodes as their aggregated score2. By
recursively executing this aggregating process, we simplify a tree to a simple path of
aggregated scores, and we finally compute the current score sd by taking their mini-
mum score as in Eq. (3).

Algorithm 1 shows a recursive solution for computing the current score sd from
its physical provenance pd, which can be either a simple or aggregate provenance. To
obtain the current score sd of a data item d, we simply call CompCurrentScore(ns)
where ns is the root node of pd. Example 2 shows how to compute the current score
sd if the data item d has an aggregate provenance.

Example 2 Consider a data item d that has the aggregate provenance pd in Figure 5 (b).
Network nodes n1, n2, and n3 send their data items to n7, and n7 generates a new data
item by aggregating their items. Similarly, n8 generates a new item for n4, n5, and
n6; n9 makes an item for n8 and n9. Current scores of n1, n2, and n3 are averaged
to 0.91; this average is compared to the current score 0.89 of n7; the minimum score
0.89 is selected in that path. Similarly, 0.92 is selected to represent n4, n5, n6, and n8.
Next, by averaging two scores 0.89 and 0.92, we obtain 0.905 as a representative score
of all child nodes of n9. Eventually, we obtain the current score sd as 0.905 since the
minimum of {0.905, 0.95, 0.91, 0.97} is 0.905. �

Algorithm 1 CompCurrentScore (ni: a tree node in pd)
1: if ni is a simple node (i.e., ni has only one child) then
2: Let nj be the child node of ni; // an edge ei,j connects two nodes.
3: return MIN(sni

, CompCurrentScore(nj ));
4: else if ni is an aggregate node with k children then
5: Let nj1 , . . . , njk

be k child nodes of ni;
6: return MIN(sni

, AVG(CompCurrentScore(nj1 ), . . .,
7: CompCurrentScore(njk

)));
8: else // ni is a leaf node.
9: return sni

;

10: end-if

3.3.2 Intermediate trust score ŝd

An intermediate trust score ŝd of a data item d is computed from the latest set of data
items of the same event with d in the current streaming window (see Figure 4). Let the
set of data items in the same event with d be D. In general, if set D changes, i.e., a
new item is added D or an item is deleted from D, we recompute the trust scores of
data items in D. We obtain ŝd through the initial and adjusting steps. In the initial
step, we use the value similarity of data items in computing an initial value of ŝd. In

2According to the aggregate operation applied to the aggregate node, we can use different methods. That
is, for AVG we can use an average of children, but for MIN or MAX we can use a specific score of a network
node that produces a resulting minimum or maximum value. An aggregation itself, however, represents
multiple nodes, and we thus use the average score of child nodes as their representative score.
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the adjusting step, we use the provenance similarity to adjust the initial value of ŝd by
considering physical provenances of data items.

(1) Initial score of ŝd based on value similarity
First, we explain the underlying idea of computing an initial value of ŝd based on the
value similarity of data items. Recall Assumption 3 which assumes that data items in
D are normally distributed, and their mean and variance are µ and σ2, respectively.
Based on this assumption, we observe that, for a set D of a single event, its mean is
the most representative value that well reflects the value similarity. This is because the
mean is determined by the majority values, and obviously those majority values are
similar to the mean in the normal distribution. Thus, we conclude that the mean has
the highest trust score; if the value of a data item is close to the mean, its trust score is
relatively high; if the value is far from the mean, its trust score is relatively low.

Based on those observations, we propose a method to compute the intermediate
score sd in the initial step. In obtaining ŝd, we assume vd ≥ µ. We can easily extend it
to the case of vd ≤ µ. For simplicity, we omit that case.

As the intermediate score ŝd, we use the cumulative probability of the normal dis-
tribution. In this method, we use “1 − the amount of how far vd is from the mean” as
the initial score of ŝd, and here “the amount of how far vd is from the mean” can be
thought as the cumulative probability of vd. Thus, as in Eq. (4), we obtain the initial ŝd
as the integral area of f(x).

ŝd = 2

(
0.5−

∫ vd

µ

f(x) dx

)
= 1−

∫ vd

2µ−vd

f(x) dx = 2

∫ ∞

vd

f(x) dx (4)

Figure 6 shows how to compute the integral area for the initial intermediate score sd.
In the figure, the shaded area represents the initial score of ŝd, which is obviously in
(0,1]. Here, the score ŝd increases as vd is close to µ.

( )( )
2 ddvvµ −

= µ − − µ
µ dv

 ( )dv f x dx
µ∫

  0.5 ( ) ( )d dv vf x dx f x dx∞

µ
− =∫ ∫x

( )f x
Figure 6: Computing the intermediate score of ŝd.

We note that our cyclic framework also well handles sudden changes of true sensing
values. For example, in our data similarity model, if a sensing value is quite different
from the other recent values, it can be estimated as false even though it is actually
true. In our framework, this case is gradually handled as time goes on. When a sensor
collects a different value, the score of this data is low since it is far from the mean of the
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normal distribution. If the data is true, adjacent sensors start collecting similar values,
and then, these values will get higher scores.
(2) Adjusted score of ŝd based on provenance similarity

The initial score of ŝd computed from the sensing values has the problem that it does
not consider the effect of provenance similarity. Thus, we need to adjust the interme-
diate score ŝd by reflecting the provenance similarity of data items. To achieve this,
we let a set of physical provenances in D be P and the similarity function between
two physical provenances pi, pj (∈ P ) be sim(pi, pj)

3. Here, the similarity func-
tion sim(pi, pj) returns a similarity value in [0, 1], and it can be computed from the
tree or graph similarity [14, 16]. Computing graph similarity, however, is known to
be an NP-hard problem [14], and we thus use the tree similarity [16], which is an edit
distance-based similarity measure.

Our approach to take into account provenance similarity in computing the interme-
diate score ŝd is based on some intuitive observations. In the following, notation ‘∼’
means “is similar to”, and notation � means “is not similar to.” Given two data items
d, t ∈ D, their values vd, vt, and their physical proveances pd, pt ∈ P ,

• if pd ∼ pt and vd ∼ vt, the provenance similarity makes a small positive effect
on ŝd;

• if pd ∼ pt and vd � vt, the provenance similarity makes a large negative effect
on ŝd;

• if pd � pt and vd ∼ vt, the provenance similarity makes a large positive effect
on ŝd;

• if pd � pt and vd � vt, the provenance similarity makes a small positive effect
on ŝd;

Table 1 summarizes these observations. As shown in the table, the provenance similar-
ity makes positive or negative effect on the trust score according to the corresponding
value similarity, and we are going to reflect this property to adjusting the intermediate
score ŝd.

Table 1: Effect of provenance similarity in adjusting ŝd.
pd ∼ pt pd � pt

(provenances are similar) (provenances are not similar)

vd ∼ vt + + + +

(values are similar) (small positive effect) (large positive effect)

vd � vt − − − −

(values are not similar) (large negative effect) (small negative effect)

3Data items in the same event may have similar physical provenances, so we may assume that the number
of possible provenances in an event is finite and actually small. Thus, for the real-time processing purpose,
we can materialize all sim(pi, pj)’s in advance and maintain them in memory.
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Based on the above observations, we introduce a measure of adjustable similarity
to reflect the provenance similarity in adjusting ŝd. Given two data items d, t (∈ D),
we first define the adjustable similarity between d and t, denoted by ρd,t, as follows:

ρd,t =

{
1 − sim(pd, pt), if dist(vd, vt) < δ1; // positive effect
−sim(pd, pt), if dist(vd, vt) > δ2; // negative effect
0, otherwise. // no effect

(5)

In Eq. (5), dist(vd, vt) is a distance function between vd and vt; δ1 is a threshold
indicating when vd and vt are to be treated as similar; δ2 is a threshold indicating when
vd and vt are to be treated as dissimilar. In the experiment we set δ1 and δ1 to 20%
and 80% of the average distance, respectively. The adjustable similarity ρd,t in Eq. (5)
well reflects the effect of provenance and value similarities in Table 1. That is, if vd
and vt are similar, ρd,t has a positive value of “1 − sim(pd, pt)” determined by the
provenance similarity; in contrast, if they are not similar, ρd,t has a negative value of
“−sim(pd, pt).” To consider adjustable similarities of all data items in D, we now
obtain their sum ρd as follows:

ρd =
∑

t∈D,t ̸=d

ρd,t (6)

We exploit the adjustable similarity ρd in the framework of normal distribution in
order to reflect the provenance similarity to adjusting the intermediate score ŝd, Simply
speaking, we adjust the value vd by considering ρd and use the adjusted value, denoted
by v̄d, to compute ŝd instead of vd. In more detail, we first normalize ρd into [−1, 1]
using its maximum and minimum similarities, ρmax and ρmin. The normalized value
of ρd, denoted by ρ̄d, is thus computed as follows:

ρ̄d = 2
ρd − ρmin

ρmax − ρmin
− 1, where ρmax = max{ρt| t ∈ D}

and ρmin = min{ρt| t ∈ D} (7)

We then adjust the data value vd to a new value v̄d as follows:

v̄d = min{vd − ρ̄d(cp · σ), µ},
where cp is a constant greater than 0. (8)

Figure 7 shows how the value vd changes to v̄d based on the adjustable similarity
ρ̄d in the framework of a normal distribution. As shown in the figure, if ρ̄d > 0,
i.e., if the provenance similarity makes a positive effect, vd moves to the left in the
distribution graph, i.e., the intermediate score ŝd increases; in contrast, if ρ̄d < 0, i.e.,
if the provenance similarity makes a negative effect, vd moves to the right in the graph,
i.e., ŝd decreases. In Eq. (8), cp represents the important factor of provenance similarity
in computing the intermediate score. That is, as cp increases, the provenance similarity
becomes more important. We use 0.2 as the default value of cp, i.e., we move the data
value vd in ±20% range of the standard deviation σ.

By using the adjusted data value v̄d, we finally recompute the intermediate score
ŝd. By simply changing vd to v̄d, we can also obtain Eq. (9) from Eq. (4) in which
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Figure 7: Effect of provenance similarity on a data value.

the integral area for the intermediate score may increase or decrease by the provenance
similarity.

ŝd = 2

∫ ∞

v̄d

f(x) dx = 1−
∫ v̄d

2µ−v̄d

f(x) dx (9)

3.3.3 Next trust score s̄d

For a data item d we eventually compute its next trust score s̄d by using the current
score sd and the intermediate score ŝd. In obtaining s̄d, we use sd for the interdepen-
dency property since sd is computed from network nodes, and we exploit ŝd for the
continuous evolution property since ŝd is obtained from the latest set of data items.
Similar to computing the next score s̄n of a network node n in Eq. (2), we compute s̄d
as follows:

s̄d = cdsd + (1− cd)ŝd,

where cd is a given constant of 0 ≤ cd ≤ 1. (10)

As shown in Eq. (10), the next score s̄d is gradually evolved from the current and inter-
mediate scores sd and ŝd. We also note that s̄d will be used to compute the intermediate
scores (i.e., ŝn) of network nodes in the next computation cycle (see 4⃝ in Figure 4) for
the interdependency and continuous evolution properties.

Similar to the constant cn used in computing sn for a network node n in Eq. (2),
the constant cd in Eq. (10) represents how fast the trust score evolves as the cycle is
repeated. That is, if cd has a larger value, the previously accumulated historic score (sd)
is more important than the recently computed score (ŝd); in contrast, if cd has a smaller
value, the recent score is more important than the historic score. In summary, if cd is
large, trust scores of data items evolve slowly; in contrast, if cd is small, they evolve
fast. In the experiment we set cd = 1

2 to equally reflect the importance of sd and ŝd.
In this section, instead of calibrating our model with real data sets, we present

general principles for choosing parameter values(e.g., confidence ranges control the
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tradeoff between the number and quality of results, cn controls how fast scores are
evolved). We believe these principles can be used in most applications.

4 Incremental Evolution of Trust Scores
Since new data items continuously arrive in DSMSs, we need to evolve (i.e., recom-
pute) trust scores to reflect those new items. In this section, we propose two evolution
schemes: immediate mode and batch mode. We compare these two modes in Section
4.1, and then explain the batch mode in detail in Section 4.2.

4.1 Immediate Mode vs. Batch Mode
The immediate mode evolves current, intermediate, and next trust scores of data items
and network nodes whenever a new data item arrives at the server. It means that all the
steps in the cyclic framework are conducted for every new data item d. The immedi-
ate mode provides high accurate trust scores since scores reflect the latest data items.
However, this mode incurs a heavy computation overhead since all the trust scores of
data items in the given streaming window and network nodes included in the physical
provenance should be recomputed whenever a single data item arrives. Especially, the
immediate mode is not feasible when the arrival rate of data items is very fast.

The batch mode accumulates a certain amount of input data items, and then evolves
trust scores only once for the accumulated data items. Even though the current trust
score of data item d is calculated whenever a new data item d arrives (i.e., 1⃝ in Figure
4), the other scores are not recalculated until the system reaches a certain condition. By
reducing the number of evolutions, the batch mode reduces the computation overhead
so as to make the cyclic framework scalable over the input rate of data items and the
size of sensor networks. However, the accuracy of trust scores can be low compared
with the immediate mode, since between evolutions the system uses old information.

We thus can see that there is a tradeoff between accuracy and efficiency. In the next
section, we describe the batch mode in detail, and then, explain how can we balance
the tradeoff. We omit the explanation of immediate mode since we already described
the cyclic framework in the context of the immediate mode.

4.2 Batch Mode in Detail
The batch mode consists of two stages: a stall stage and an evolution stage. In the
stall stage, for each input data item d, the current trust score sd is calculated from the
current trust scores of its related nodes (see Eq. (3)), and d is accumulated into a buffer.
In the evolution stage, the other trust scores, i.e., s̄d, ŝd, sn, s̄n, and ŝn, are computed
based on the data items accumulated in the buffer. The batch mode starts with the stall
stage and triggers the evolution stage when a threshold is reached. Here, managing the
threshold is the key concept for balancing efficiency and accuracy. A higher threshold
means a higher efficiency but a lower accuracy; in contrast, a lower threshold means a
lower efficiency but a higher accuracy.
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The simplest way to manage the threshold is to use a counter or a timer. In this naive
approach, the evolution stage begins for every certain number (i.e., threshold) of data
items or for every certain time period. This approach is easy and efficient. However,
the naive approach cannot promptly adapt the current status of the sensor network since
the static counter or timer cannot reflect the dynamic changes of the current status.

We propose an advanced approach to manage the threshold. The approach uses the
concept of confidence interval of the normal distribution to reflect the current status of
the sensor network. Let t1 be a time point when the previous evolution was conducted
and t2 be the current time point. To determine when the evolution stage is triggered, we
compare Nt1(µt1 , σt1), the normal distribution at t1, and µt2 , the mean of data items
whose arrival times are in (t1, t2). Here, the threshold is given as a confidence level γ.
If µt2 falls out of the confidence interval of γ in Nt1(µt1 , σt1), we trigger the evolution
stage and recompute Nt2(µt2 , σt2) for the next evolution. This approach increases the
accuracy of the batch mode since it dynamically discards the probabilistic model that
is not any longer accurate and reconstructs a new model reflecting the current status.

Figure 8 shows the advanced approach where the confidence level (i.e., threshold)
γ is equal to 95%. Here, n1 denotes the number of accumulated data items used in
generating Nt1(µt1 , σt1) at time point t1. If µt2 < µt1 − 1.96 · σt1√

n1
or µt2 > µt1 +

1.96 · σt1√
n1

(i.e., µt2 is out of the confidence interval), the evolution stage starts since
the current probabilistic model is not correct with a confidence level of 95%.
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Figure 8: Managing the threshold in the advanced batch mode.

5 Experimental Evaluation
In this section, we present our performance evaluation. In what follows, we first de-
scribe the experimental environment, and then present the experimental results.
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5.1 Experimental Environment
The goal of our experiments is to evaluate the efficiency and effectiveness of our ap-
proach for the computation of trust scores. To evaluate the efficiency, we measure the
elapsed time for processing a data item with our cyclic framework in the context of a
large scale sensor network and a large number of data items. To evaluate the effective-
ness, we simulate an injection of incorrect data items into the network and show that
trust scores rapidly reflect this situation. Finally, we compare the immediate and batch
modes with respect to efficiency and effectiveness.

We simulate a sensor network (i.e., physical network) and a logical network for the
experiments. For simplicity, we model our sensor network as an f -ary complete tree
whose fanout and depth are f and h, respectively. We vary the values of f and h to
control the size of sensor networks for assessing the scalability of our framework. We
also simulate a logical network as a tree with a number of leaf nodes equal to Nevent.
This parameter represents the number of unique events.

We use synthetic data that has a single attribute whose values follow a normal
distribution with mean µi and variance σi

2 for each event i (1 ≤ i ≤ Nevent). To
generate data items, for each event, we assign Nassign leaf nodes of the sensor network
with an interleaving factor Ninterleave . This means that the data items for an event
are generated at Nassign leaf nodes and the interval between the assigned nodes is
Ninterleave (e.g., if Ninterleave = 0, then Nassign nodes are exactly adjacent with each
other). To simulate the incorrect data injection, we randomly choose an event and a
node assigned for the event, and then generate a random value which is not following
the normal distribution for the event.

For the similarity function between two physical provenances pi and pj (i.e., sim(pi,pj)),
we use a path edit distance defined as follows:

sim(pi, pj) = 1 −
1

h

h∑
k=1

node distance between pi and pj at the k-th level
total number of nodes at the k-th level

Here, the node distance is defined as the number of nodes between two nodes at the
same level. All the experiments have been conducted on a PC with a 2.2GHz Core2
Duo processor and 2GB RAM running Windows/XP. The program code has been writ-
ten in Java with JDK 1.6.0. Table 2 summarizes the experimental parameters and their
default values. In all experiments we use the default values unless mentioned other-
wise.

Table 2: Summary of notation.
Symbols Definitions Default
h height of the sensor network 5
f fanout of the sensor network 8
Nevent # of unique events 1000
Nassign # of nodes assigned for an event 30
Ninterleave interleaving factor 1
ω size of window for each event 20
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As can be seen in Table 2 we only vary some application insensitive parameters.
The other parameters (e.g., weights, thresholds) may be more sensitive to application
contexts (e.g., data distributions, attack patterns). We will consider these parameters
with specific applications in our future work and mention this as future research.

5.2 Experimental Results
(1) Computation efficiency: We measured the elapsed time for processing a data item.
Figure 9 reports the elapsed times for different values of h’s and ω’s.
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Figure 9: Elapsed times for computing trust scores.

From Figure 9 (a), we can see that the elapsed time increases as h increases. The
reason is that, as h increases, the length of physical provenance also increases. How-
ever, the increasing rate is not high; for example, the elapsed time increases only by
9.7% as h varies from 5 to 6. The reason is that the additional operations for longer
physical provenance linearly increase when computing trust scores for both data items
and network nodes. For data items, only sd and ŝd are affected by the length of the
physical provenance, i.e., an additional iteration is required to compute a weighted sum
for sd and a provenance similarity comparison for ŝd. For network nodes, the compu-
tation cost increases linearly with the height (not with the total number of nodes), since
we consider a very small number of network nodes related to the provenance of the
new data item.

From Figure 9(b), we can see that the elapsed time increases more sharply as ω
increases. The reason is that the number of similarity comparisons (not an iteration)
for ŝd linearly increases as ω increases. However, we can see that the performance is
still adequate for handling high data input rates; for example, when ω is 80, the system
can process 25 data items per second.
(2) Effectiveness: To assess the effectiveness of our approach, we injected incorrect
data items into the sensor network, and then observed the change of trust scores of
data items. Figure 10 shows the trend in trust score changes for different values of
the interleaving factor Ninterleave . Here, Ninterleave affects the similarity of physi-
cal provenances for an event, i.e., if Ninterleave increases, the provenance similarity
decreases.
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Figure 10 (a) shows the changes in the trust scores when incorrect data items are
injected. The figure shows that trust scores change more rapidly when Ninterleave is
smaller. The reason for this trend is explained by the principle “different values with
similar provenance result in a large negative effect.” In contrast, Figure 10 (b) shows
the changes when the correct data items are generated again. In this case, we can see
that the trust scores are modified more rapidly when Ninterleave is larger. The reason
for this trend is explained by the principle “similar values with different provenance
result in a large positive effect.”
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Figure 10: Changes of trust scores for incorrect data items.

(3) Immediate vs. Batch: To compare the immediate and batch modes, we measured
the average elapsed time for processing a data item and the average difference of trust
scores when the confidence level γ of the batch mode varied. Here, γ determines the
threshold for triggering the evaluation stage, i.e., the smaller γ means a more frequent
invocation of the evolution stage since the confidence interval becomes narrow. Fig-
ure 11 reports the comparison results.
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Figure 11: Comparison of the intermediate and batch modes.

Figure 11(a) shows the relative elapsed time for a data item. We can see that the
performance advantage of the batch mode is high when γ is large. The reason is that
the number of executions becomes small for large values of γ. In contrast, Figure 11(b)
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shows that the accuracy of the batch mode decreases for large values of γ. The reason
is the use of decayed network trust scores for computing new data trust scores between
evaluations stages. However, we can see that the error rate is not high; for example,
when γ = 99%, the error is only 74.5%. This means that the batch mode does not
significantly reduce the effectiveness (accuracy) compared with the immediate mode.

In summary, the experimental results show that our approach is a practical tech-
nique for computing trust scores in sensor networks. Especially, the batch mode signif-
icantly reduces the computing overhead without losing accuracy and so it is well suited
for handling fast data streams.

6 Related Work
Work related to our approach falls into four categories: (i) access control policies, (ii)
provenance (or lineage) management, (iii) trustworthiness calculation, and (iv) data
quality management in sensor networks.

For access control in a relational database management system, most existing ac-
cess control models, like Role-Based Access Control (RBAC) [11] and Privacy-aware
RBAC [20], perform authorization checking before every data access. We can exploit
one of these access control models together with our confidence policy model to imple-
ment the query and policy evaluation component of an overall framework. Thus, our
confidence policy is complementary to such conventional access control enforcement
and applies to query results.

Data provenance, also referred to as lineage or pedigree in databases [25], has been
widely investigated. Approaches have been developed for tracking the provenance of
the query results, i.e., recording the sequence of steps taken in a workflow system
to derive the dataset, and computing confidence levels of the query results [2, 4, 13,
23]. For example, Widom et al. [26] have developed the Trio system which supports
management of information about data accuracy and lineage (provenance). Sarma et
al. [24] have developed an approach to compute lineage and confidence in probabilistic
databases according to a decoupled strategy. These approaches compute the confidence
of query results based on the confidence on the base tuples in the database, i.e., they
assume that the confidence of each base tuple (i.e., data item) is known whereas we
actually compute the trust score for each data item. In addition, very few approaches
have been proposed for evaluating trustworthiness of data items and network nodes in
DSMSs.

Recently, Bertino et al. [5] introduced a novel notion of confidence policy and pre-
sented a conceptual approach for computing trustworthiness of data items and data
sources. They pointed out that trust scores can be affected by four factors: data simi-
larity, data conflict, path similarity, and data deduction. Based on these factors, Dai et
al. [7, 8] proposed a novel approach for computing trustworthiness and evaluating the
confidence policy compliant queries. Even though we exploit the observations in [7, 8],
we believe that this paper makes the following novel contributions, which are very in-
novative with respect to the state of the art in streaming data management: (1) We
provide a trustworthiness assessment framework for data streams which have unique
characteristics such as fast data arrivals and incremental updates [1, 3]. These charac-
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teristics make the problem of assessing data becomes very challenging, and thus the
previous results in a static database cannot be directly applied to the streaming envi-
ronment. (2) We formally present the interdependency and the value and provenance
similarities with a statistical model. This model is well suited for data streams since
trust scores are computed incrementally and well reflect the current situations of sen-
sor networks. (3) We provide a new approach(batch mode) to handle fast streams. It
provides a solution for an important data stream issue, that is, handling the tradeoff
between efficiency and accuracy.

There have been many efforts on data quality management in sensor networks [9,
15, 21]. In particular, Hwang et al. [15] and Olston et al. [21] proposed quality man-
agement methods for continuous queries of sensor networks. David et al. [9] proposed
quality improvement methods in sensor networks by using cache mechanisms. As we
mentioned in Section 2.1, we can use these previous results for the data quality man-
agement component in Figure 1.

7 Conclusions
In this paper we propose a provenance-based solution for enforcing the confidence
policy in DSMSs. Our solution provides a systematic approach for computing and
evolving the trustworthiness levels of data items and network nodes and is able to sup-
port confidence policy compliant continuous queries in DSMSs. The contributions
of the paper can be summarized as follows. First, we propose a provenance-based
framework that enforces confidence policies in the evolution of continuous queries
over streaming data. Second, based on the notion of physical and logical networks, we
introduce the notions of the physical and logical provenances for data items, respec-
tively. Third, we introduce a cyclic framework of computing actual trust scores of data
items and network nodes based on the value and provenance similarities embedded in
data items. Fourth, we propose a batch mode and an intermediate mode to achieve
efficiency and accuracy. Fifth, through extensive experiments, we showcase that our
confidence model and cyclic framework works well in DSMSs, and the batch mode is
more flexible than the immediate mode.

As future work, we plan to further investigate the following issues: (1) consider
multiple dependent attributes and multi-attribute in-network operations (thus dropping
Assumptions 1 and 2) and (2) consider other probability distributions instead of normal
distributions (thus dropping Assumption 3).
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