
CERIAS Tech Report 2010-14
Providing Availability on the Poly^2 Framework

 by Ankur Chakraborty
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

College of Technology

College of Technology Masters Theses

Purdue Libraries Year 2010

Providing Availability on the Polŷ2

Framework

Ankur Chakraborty
Purdue University - Main Campus, ankur.chakraborty@gmail.com

This paper is posted at Purdue e-Pubs.

http://docs.lib.purdue.edu/techmasters/18

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

 Ankur Chakraborty
!
!
Providing Availability on the Poly^2 framework

Master of Science

Eugene Spafford

Melissa Dark

Dongyan Xu

Eugene Spafford

Melissa Dark

Eugene Spafford 04/28/2010

Graduate School Form 20
(Revised 1/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

!
Providing Availability on the Poly^2 Framework

 Master of Science

Ankur Chakraborty

04/28/2010

PROVIDING AVAILABILITY ON THE POLY^2 FRAMEWORK

A Thesis

Submitted to the Faculty

of

Purdue University

by

Ankur Chakraborty

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2010

Purdue University

West Lafayette, Indiana

 ii

To my parents who gave constant encouragement and kept me going through

with their good humour, to Arjun for reminding of the encouragement and the

humour and to Dr. Anish Mathuria for shoving me headfirst into the pool of

research.

 iii

ACKNOWLEDGMENTS

The author would like to thank Dr. Eugene Spafford, Dr. Melissa Dark and Dr.

Dongyan Xu for the guidance and advice provided by them for the course of the

research done for this thesis.

The author would also like to thank Keith Watson for the help and support

provided during the course of this project.

 iv

TABLE OF CONTENTS

 Page
LIST OF TABLES .. v!
LIST OF FIGURES... vi!
ABSTRACT ..vii!
CHAPTER 1. INTRODUCTION...1!

1.1. Definitions..2!
1.2. Research Question..3!
1.3. Scope ..3!
1.4. Significance ...4!
1.5. Limitations ...6!
1.6. Delimitations..6!
1.7. Chapter Conclusion...7!

CHAPTER 2. LITERATURE SURVEY ..8!
2.1. Fault Detection ..8!
2.2. Replication...10!
2.3. Other Availability Techniques..12!
2.4. Security and Fault Tolerance ..14!
2.5. Looking at Cost Benefit Analysis Techniques ...17!
2.6. Chapter Conclusion...20!

CHAPTER 3. METHODOLOGY..21!
3.1. Implementation..21!
3.2. Cost-Benefit Analysis ..23!

CHAPTER 4. COST BENEFIT ANALYSIS..24!
4.1. Analysis of the Active State Replication Paradigm....................................24!
4.2. Analysis of the Checkpointing Paradigm...26!
4.3. Analysis of the Hybrid Recovery System ..27!
4.4. Conclusion...28!

CHAPTER 5. THE ARCHITECTURE..33!
5.1. Checkpoint Recovery ..34!
5.2. Active Replication..36!
5.3. Detection ...38!
5.4. Chapter Conclusion...38!

CHAPTER 6. CONCLUSION AND FUTURE WORK..41!
BIBLIOGRAPHY..44!

 v

 LIST OF TABLES

Table Page
Table 4.1 Table of Costs ...30!
Table 4.2 Table of Benefits ...31!

 vi

LIST OF FIGURES

Figure Page
Figure 5.1 Checkpointing form ..35!
Figure 5.2 Active Replication form ..37!
Figure 5.3 Poly^2 with Availability ...39!

vii

ABSTRACT

Chakraborty, Ankur. M.S., Purdue University, May, 2010. Providing Availability
on the Poly^2 Framework. Major Professor: Eugene Spafford, Melissa Dark.

Availability is not often a primary concern for frameworks meant to provide

security. Poly^2 is one such framework. It provides us with a hardened foundation based

on secure design principles to run mission-critical services. While, the primary focus of

Poly^2 till now seems to have been fault isolation, we will now attempt to add recovery

as well. However, current techniques may compromise the security principles on which

the framework was originally built. We propose a hybrid system based on two popular

techniques to rectify the same.

1

CHAPTER 1. INTRODUCTION

The Poly^2 (short for poly-computer poly-network) paradigm (Bryant et

al., 2003) posited a hardened framework in which the critical network services of

an organization can operate. This framework was intended to provide robust

protection against the attacks running within this domain. As a part of this

approach, network services are separated. They are placed in application-

specific systems and use minimized operating systems. This allows the isolation

of untrusted systems and services. This also prevents vulnerabilities in one

system from affecting other systems. The core design problems were inspired by

Saltzer and Schroeder principles (Saltzer & Schroeder, 1975) and Neuman’s

principles (Neumann, 2000).

 While the paradigm looks at securing the system and from containing any

unwanted breaches, it however leaves the issue of availability open. The setup

inspired by the Poly^2 ensures security and isolation of services to prevent the

repercussions of breaches from spreading beyond the affected service.

Availability has been defined in Bryant et al. (2003) as systems that are

continuously operational for long periods of time.

2

1.1. Definitions

The challenge with working on availability in this system is that the

security aspect of the paradigm will have to be kept at the forefront. This, of

course, would mean that a definition of availability has to be adopted that would

fit into this paradigm, which is why the above definition may seem inadequate.

 The notion of availability has been borrowed from the telecommunications

industry and the definitions also seem to have followed those norms. These

norms have laid more stress on fault tolerance due to it’s inherent understanding

in the matter of telecommunications. By this, availability as defined by the

Alliance for Telecommunications Industry Solutions Telecom Glossary (2007) is

“The ratio of (a) the total time a functional unit is capable of being used during a

given interval to (b) the length of the interval”. In Ross (1997), availability is

given as the probability that a system is functioning at time t. In Laprie (1992),

availability is given as readiness for correct service.

 However, all the above definitions relate to dependability only. Availability

is very closely related to security as security breaches have often led to

availability failures, examples of this being denial of service attacks, which often

lead to the service being unavailable. From a perspective of security, the

International Standards Organization (2000) defines availability as “Ensuring that

authorized users have access to information and associated assets when

required”. However, as is asserted in Rosseba et al. (2006), availability has to be

a consensus between dependability, security and usability. Therefore, the

3

definition that is given in International Standards Organization (1989) and the

International Standards Organization (2001) seems the most suited.

 Hence, the above definition that says, “Availability is the property of being

accessible and usable on demand by an authorized entity” will be adopted for the

purpose of this study. With this definition in mind, the research question will be

stated.

1.2. Research Question

How can services under the Poly^2 framework be made accessible and

usable on demand by an authorized entity through fault tolerance mechanisms?

What would be the costs involved in such a feature and how would they be

comparable to the alternatives?

1.3. Scope

 There would be certain constraints that would be placed upon the

problem. The study would be attempting to provide fault tolerance within the

context of the framework. However, there may be an issue where a better

availability solution may have to be compromised to stay within the original

principles of the framework.

The scope of the problem is limited to fault recovery. As a result, the

researcher would be studied implementation of fault tolerance techniques in the

4

context of providing secure services. However, Fault correction or prevention of

vulnerabilities are beyond the scope. When a service has been compromised,

the exact same service can be restored from a backup replica. This could

potentially mean a repeat of the event but this is beyond the scope of the current

endeavor.

1.4. Significance

 The question of availability arises when the system is required to be

continuously operational for long periods of time. The Poly^2 framework is meant

to contain within itself the services that are mission critical to an organization

(Bryant et al., 2003). Due to this nature of framework, it is necessary that proper

measures be taken to ensure the protection and continuation of these services.

 With the changing focus of security research, aspects other than security

are now also seen to be addressed (Meadows, 1994). Due to the prevalence of

denial-of-service attacks, it has become more important to address the issues of

availability in secure systems as well. Access control lists can be seen to address

the issues but unfortunately while they can prevent other processes from denying

the service access to resources, they cannot guarantee the actual provision of

the service.

It has been acknowledged in Kyamakya, et al. (2000) that totally secure

systems are not practical and that measures need to be taken to ensure that the

flow of services and information is uninterrupted. It has been mentioned that the

5

system requirements need the essential and non-essential services to be

separated. The essential or mission critical services need to be made accessible

and usable by authorized entities.

The issue of integrating the paradigms of security and fault tolerance has

been explored as a part of the literature review. However, this issue is seen in

the real world as two separate ones. But ensuring that secured services remain

accessible and usable is necessary for the organization to function since

businesses are becoming more and more dependant on computers and

computer networks. These services although often protected may still remain

vulnerable to faults such as hardware failure, excessive load, etc. Added to this,

it also remains that all possible exploits cannot be accounted for within these

services. It has to be ensured that these services are available in the presence of

any possible faults (malicious or otherwise). While stopping them may involve

techniques that could be more expensive, the Poly^2 approach has been the

isolation and absorption of these faults, the colloquial “rolling with the punches”.

This is what makes the issue of providing this aspect of availability within Poly^2

significant.

However, there are a number of approaches to providing reliability aspects

to the Poly^2 framework. We will be using the cost-benefit analysis based

approaches to look at the technique proposed by the author vis-à-vis the existing

ones. This would give a more clear indication as to the benefits posed by the

technique.

6

1.5. Limitations

 The following were the limitations under which the research was carried

out:

• While this study is to determine availability techniques for secure

network frameworks, the researcher will be focusing on the Poly^2

framework.

• For the cost-benefit analysis, the researcher will be focusing on

replication-based techniques.

• For the purpose of the implementation, the hardware of implementation

will be limited to the currently deployed hardware for Poly^2.

1.6. Delimitations

The following would be the delimitations under which the research would

be carried out:

• For the purposes of the project, the replicas will also have the same

vulnerabilities as the original services.

• The standing of the cost-benefit analysis is restricted to the service

providers.

• The cost-benefit analysis will be limited in its extent on the cost to

the Poly^2 framework.

7

• The cost and the benefits would be applicable to the service

providers whose services would be falling under the purview of

Poly^2.

1.7. Chapter Conclusion

This chapter introduced the research the research being carried out for the

thesis. Also explored was the significance of the research as well as the

constraints within which it is being carried out.

8

CHAPTER 2. LITERATURE SURVEY

There are primarily four components to a system providing availability –

fault detection, fault-tolerance, fault-recovery and fault prevention. The

researcher’s concerns are limited to fault-tolerance. This chapter will begin by

looking at existing literature in fault-detection since to be able to be tolerant to

faults, it is essential that they be detected first. It will then be looking at various

techniques for providing availability through replication and other techniques.

This section will be concluding with techniques that would harmonize both

availability and security.

2.1. Fault Detection

For failure detection, absence of proof of aliveness would be taken as

evidence of the same. Heartbeat messages provide perfect failure detection

(Anderson & Lee, 1982). They are exchanged between replicas during error-free

periods to keep a mutual track of redundant systems within the infrastructure.

Four accelerated heartbeat protocols were suggested to be used between

replicas (Gouda & McGuire, 1998). These protocols were based on the

principles of low beat rate, low detection delay and low probability of premature

9

termination. Low beat rate is the rate at which the beat messages are sent, the

detection delay is the longest period that can be allowed to pass after one

process terminates and the probability of premature termination is the probability

that the heartbeat protocol declares termination due to the loss of a beat

message. These were with the purpose of reducing overhead and increasing the

responsiveness and reliability of the protocol, respectively. The first one is a

binary protocol involving only two processes, the next one is a static one with n

processes, and the third and the fourth protocols start with one process and

gradually expand to include more. The first three are static in the matter that they

do not allow members to leave (the first two do not allow members to enter

either). The fourth one allows members to leave the heartbeat network as well.

Later, a multi-level heartbeat protocol architecture is provided that is primarily to

prevent single points of failure (Li et al., 2009). Heartbeat protocols are primarily

deployed as processes on the application layer. This brings up the restrictions of

the scheduler on the protocol that might result in the protocol being inadvertently

compromised. It was proposed to integrate the protocol with the network layer

(Wang & Li, 2008). This technique let the protocol run directly from the kernel.

However, it required that a separate network interface be used that would require

major changes in infrastructure.

Often, perfect failures (which are detected by the heartbeat protocol) may

need to be need to be achieved in cases such as network breaches where failure

is not evident but may need to be declared to prevent further damage and to let

recovery take place. For this purpose, watchdog timers or a STONITH like

10

approach, which uses a network power switch to reboot the service, may be

used. STONITH means “Shoot The Other Node In The Head”.

2.2. Replication

Due to the presence of single services running on each of the nodes on

the application nodes, a replication approach may be seen as a way towards

achieving availability. The semi-active replication (also known as leader/follower)

approach (Schmidt & O’Ryan, 2000) is one in which each non-deterministic

action is carried out in the replicas and then the leader notifies them that it has

been successfully carried out to keep the states consistent. This approach seems

to have limited applications. It requires that the files remain read-only. Due to

large volumes of data transfer, this approach may seem unsuitable for services

requiring high throughput. In the work by Deplance et al. (1999), a semi-active

replication strategy is implemented on the Chorus/ClassiX distributed operating

system. The main features of this system were that the management of the

replicas was transparent to the application designer and the application designer

had only to describe the distribution and replication of actors.

Active replication on the other hand has all nodes concurrently process

the incoming traffic (Wang et al., 2001) with the clients seeing only one server

that is responding. There are two approaches to implementing this. The first one

is that all the nodes use reliable multicast protocols to deliver the traffic to them

such as those proposed in Deering (1989). This technique, however, requires

11

that both the client and the server are reliable multi-cast aware i.e. they are able

to use Application Programming Interfaces (APIs) for atomic

broadcasts/multicasts. Another way as proposed in Ayari et al. (2008a) and

Ayari et al. (2008b) is to provide a proxy or gateway as an intermediary to deliver

the messages to all the replicas. This may lead to higher processing overheads

and possible changes in the hardware architecture. Moreover, it ends up adding

another single point of failure. If either the proxy or gateway were to fail, it would

lead a nullification of the replication scheme. Architectural modification may also

be needed to accommodate the additional intermediary. Also, another suggested

technique of active state replication reduces the dependence on a single point of

failure. This involves the replicas passively intercepting and processing the traffic

offered to the primary server. However, only the primary server responds to the

traffic. This approach requires that the replicas be equivalent to the primary

server in regard to hardware and software capabilities. This seems suited to the

Poly^2 architecture where the replicas of the individual service servers would be

ones which would have exactly the same hardware and configurations. However,

this approach might lead to a breach of security. Because the primary server’s

state is replicated on all the replicas, a breach would also be replicated leading

possibly to recovery not occurring and hence defeating the whole purpose of

replication. In Engelmann (2007), approaches of replication to High-Performance

Computing (HPC) are described. An attempt is made to provide a generic

programming interface to create replication environments for different services

rather than building them from ground up. They provide three distinct models for

12

replication. An Active/Standby model is one in which there is one active service

and atleast one standby service that operates either in warm or hot standby

mode. An asymmetric active/active model is one in which there are two or more

active services, each of which operates independently and share no state,

however they do have their own standby services sharing states with the either of

the active services. A symmetric active/active model is one in which there are

two or more active services which have the same capabilities and share the

same global state.

2.3. Other Availability Techniques

A checkpointing approach (Laadan et al., 2005) can be seen as a passive

replication technique. The server state is periodically copied to a standby server

and restored from the checkpoints during failures. This approach works at the

transport layer in a protocol independent manner. This approach decouples the

operating system from distributed application. The application itself is run on a

virtualization layer. This allows the checkpointing application to simultaneously

and smoothly checkpoint the distributed application. The main problems seem to

be lack of perennial consistency between the primary servers and the replicas

and the significant overheads that may be incurred when creating the checkpoint.

From a security perspective, however, this approach may allow a fallback to a

point where the system was not compromised.

13

In Bhide (1992), availability schemes are discussed with two very distinct

scenarios. One is with a Shared Nothing Database with Asynchronous Replica

Management and the other is with a Network File System. In these schemes,

Bhide discusses a basic asynchronous replication technique on which both the

replication methods are based. All the transactions are carried out on the primary

entity and the transactions are located on a log that is often kept in a separate

domain to protect it from failure. The log is used to run the transactions on

replicas. This update can be done either upon failure or be carried out regularly.

This is seen to require large amounts of network bandwidth but is efficient in

terms CPU and I/O required. With the NFS, there are two layers of replication

that are carried out. One is at disk level and the other is at server-level. Each

server services two similar disks on which the data is replicated so in case of disk

failure on one of the disks, the other disk can maintain the data. With the servers,

in case of failure, the replica server can obtain the current “duplication cache”

from one of the disks and carry on the service keeping the failure and recovery

transparent to the users. However, in this case the protocol itself is stateless and

the effects of this technique with stateful protocols are yet to be seen. In case of

the asynchronous replica management, the transaction state is used to maintain

the replicas. All changes are recorded onto a log and in the event of a failure, the

replica fetches this log and updates it’s state to the primary server’s point of

failure.

 All these techniques, however, give security a secondary consideration.

They do form the basis and are also the most commonly used techniques used

14

to provide availability. We will now look at some of the existing work at

harmonizing fault tolerance and security.

2.4. Security and Fault Tolerance

In Meadows (1995), it is argued that the current security paradigm is a

subset of the types of approaches used in dependability. This is to move away

from the currently used approach of a worst case scenario. Instead in Meadows

(1994), it is suggested moving towards a failure model. Among the approaches

missed, is the particular one of fault tolerance. Though Meadows argues that

fault tolerance principles have been subconsciously used in security paradigms

such as operating systems that have multilevel security to keep possibly

malicious code in the untrusted portion of the system. Taking this view, Meadows

builds a fault model for security based on the three areas of faults in security

mechanisms, hostile attacks on the system and compromises due to poor usage

of the security mechanisms. However, we shall be taking an approach which

goes in the opposite direction in which Meadows has been pointing. Instead of

fashioning the security paradigm around the dependability paradigm, we will be

attempting to fashion fault tolerance around the security paradigm.

In Price (2001), the author attempts to provide fault tolerance to security

protocols. For this purpose, he redefines failure in case of protocols to say that it

occurs when the goals of the protocol specification are not met. He gave a fault

tolerance mechanism based on anonymity to provide security against denial of

15

service attacks. Next, he attempted to show the effect of state on fault tolerance

in secure services. He gave, on the basis of statelessness, two notions of

replication for secure services. A stateless server involves complete

independence between the replicas to prevent a malicious server from exposing

the rest of the replication group. However, this form of disconnection is not

feasible for providing availability. A semi-stateless server, on the other hand

shares a limited set of information with other servers within the group. This allows

a form of limited replication that can be controlled through the security policy.

This also prevents the malicious server from exposing the group completely. This

technique is one that can be easily integrated into a hardened framework where

security policy on the rest of the network is determined. However, unlike stateful

replication, this may lead to loss of functionality and may defeat the very purpose

of replication if the security policy is not configured properly.

In Malkhi and Reiter (1998), a secure replication technique is suggested

based on a quorum. In this case, there are a large number of servers and the

operations are carried out on a quorum of the same. i.e. if there are a total of n

servers, the operations are based on the responses from a quorum which is

typically !n. This allows the systems to tolerate a wide range of failures. This was

primarily meant to service applications such as Public Key infrastructures,

Publishing and dissemination and National Voting Systems.

In Cachin and Poritz (2002), a replication technique that maybe tolerant to

intrusions is suggested. It involves using a cryptographic channel for the purpose

of atomic broadcasts in order to securely maintain the causality of the system. It

16

is built upon multiple layers of cryptographic primitives and binary agreements

upon which the replication is carried out. The atomic broadcast itself is

considered a channel for the purposes of this system through which a secure

fault tolerance system is built.

In Schneider and Zhou (2005), a form of distributed trust is posited. This

involves basing the fault tolerance on the distributed trust. This way, if a single or

a small number of components are disabled or compromised, the ensemble of

state machines would still outvote their actions. The approach suggested here

however does tend to go against traditional replication paradigms. There

suggestions are to use multiple server configurations that may not necessarily

have common software. While, this approach will prevent vulnerabilities from

being replicated. It will also create issues with coordination of replicas.

In Reiter (1995), a toolkit is provided to attempt to provide a replication

solution to security-critical services. Called Rampart, it attempts to provide

correct and reliable replication service inspite of malicious intent of attackers

attempting to enter the system. This toolkit takes the approach of relieving the

developer of issues regarding replication and takes care of the aspect. The

primary components of the toolkit are the secure atomic multicast, reliable

multicast and the group membership protocol. Cryptographic attributes were

used to insure that the protocols functioned in asynchronous environments.

17

2.5. Looking at Cost Benefit Analysis Techniques

Cost benefit analysis is used to allocate resources more efficiently to

certain projects. Cost benefit analysis are performed either during the course of

the project, known as media res; while the project is being considered, known as

ex ante; or at the end of the project, also known as ex post (Boardman et al,

2006). Cost Benefit analysis is often used to show the superiority of a project

with respect to alternatives.

In Boardman et al, (2006), a fundamental approach to cost benefit

analysis is examined. It starts with the very basic process of identifying the set of

alternative projects that may be used instead of the one under consideration.

Next, the actor who plays the principal role in the project is identified. This actor

is said to have standing, i.e. it is their costs and benefits that are being studied.

Next the impact of the project alternatives is studied as benefits or costs. Along

with this, the measurement criterion is also specified. Next the impact of the

project is specified over its lifetime. This impact is monetized and the net value of

the project is discovered.

The above method deals on a generic level of cost-benefit analysis with

non-information technology projects as well. However, in cost-benefit analysis of

IT products, it is often difficult to evaluate the benefits (Sassone, 1998). There

are some methodologies that are discussed to carry out cost benefit analysis on

Information Technology products. Decision Analysis provides an operations

research perspective to making choices. It is particularly useful for evaluating

18

systems meant to support routine decision making. A structural model represents

a line of business or function and the impact of the information system on the

costs and benefits of the function. A breakeven analysis is carried out by

parametrizing the benefits obtained. This is often carried out when the benefits

cannot be quantified. Subjective analysis is carried out again when the benefits

are intangible, speculative or uncertain. It is often carried out in response to a

fixed cost.

However, for information security projects a different approach to cost

benefit analysis is required. The benefits are often tied directly to the costs

making cutting costs an important benefit (Gordon and Loeb, 2005).The

magnitude of cybersecurity breaches often defines the cost and whether it is

direct or indirect cost or whether it is implicit or explicit. The goal with

implementing any project has to be the maximization of benefits with respect to

the costs.

The benefits with respect to cybersecurity are often cost avoidance; i.e.

avoiding the costs that occur due to cybersecurity breaches. There are a number

of models that can be associated with the treatment of cost avoidance as

possible benefits in cybersecurity. Often, it is required that the anticipated

benefits be compared to costs over time. A model that is associated with such an

approach is the net present value (NPV) model. NPV refers to the difference

between the present cost of the project and its initial cost. This approach is useful

in considering incremental investment to cybersecurity. A positive NPV leads to

an acceptance of the measures, while a negative or zero NPV leads to rejection

19

or indifference. The NPV shows how much the anticipated benefits would

exceed the present value of the anticipated costs. The internal rate of return

(IRR) model is a derivative of the NPV model. Instead of dealing with present

value, it uses the average cost of capital as a metric. The cost of capital is the

minimum rate a project needs to earn in order to keep the organization’s value

from reducing. The IRR is the discount that makes the NPV equal to zero. An

IRR greater than the average cost of capital leads to an acceptance of the

measures, while lesser or equal IRR would lead to rejection or indifference.

The above, however, have dealt with how to carry out a cost-benefit

analysis. Wei et al (2001) carry out the cost-benefit analysis of installing a

Network Intrusion Detection System (NIDS). They use the Annual Loss

Expectancy (ALE) as their metric to determine the cost involved. ALE here refers

to the product of the number of incidents with the total number of incidents that

have occurred. They use a cost model based on operating costs, damage costs

and response costs where operating costs are the costs involved in analyzing the

stream of traffic, the response costs involve the costs of responding to the

intrusion while the damage costs involve the costs that might be incurred if the

intrusion is successful. The cost benefit is carried out based on the cost incurred

due to the ALE, the costs of the countermeasure and the savings incurred due to

the same.

20

2.6. Chapter Conclusion

This chapter explored the various fault detection techniques, replication

methods and other availability models in the course of this chapter. It then looked

at the various attempts that have been made at marrying the concepts of security

and fault tolerance. To get an indication of the benefits accrued due to the

project, a cost benefit analysis is carried out. This chapter looked at some

approaches that have been explored in the cybersecurity domain. Keeping these

in mind, the approach towards implementing availability within the Poly^2

framework will now be looked at.

21

CHAPTER 3. METHODOLOGY

3.1. Implementation

There would be two aspects of looking at the problem. One would be an

analysis of the costs associated with implementation of the aspect. The second

would be the implementation itself.

The research focuses on carrying out a study of high availability

techniques. For the analysis, a cost-benefit analysis of the techniques we have

suggested with respect to the Poly^2 system was carried out. This analysis took

into account changes to software, hardware, configuration as well as

architectural changes. Potential benefits will be including fault tolerant

characteristics in the Poly^2 framework. The Poly^2 framework is based on

secure design principles. As a part of the analysis, it has to be taken into account

as well as how much would these design principles be affected. Upon the

completion of the analysis, the most viable of the techniques will be

implemented.

The nodes of the Poly^2 framework are single service servers. Each of

them has customized operating systems and minimized network stacks. The

operating system is tuned to support a single, specific application. This tuning is

carried out primarily in terms of performance and security. This specialization

22

allows detection of deviations from normal behavior. With respect to the analysis,

it has to be seen as to how these techniques will affect this configuration and to

what extent.

The researcher has two possible approaches to the problem posited. He

can either adopt an active replication technique, a checkpointing approach or a

hybrid of both. An active replication technique would seem suited to the purpose

due the lack of service consolidation and the presence of a gateway within the

framework that would simplify the use of one-to-many multicast. However, with

active replication, malicious states might be replicated as well. Vulnerabilities and

breaches that had been found in the primary node would be replicated in the

replica as well which would not serve our purpose.

The checkpointing approach combined with an Intrusion Detection System

(IDS) may solve the above condition. If on detecting an intrusion or attack

through the IDS and failure of the node, the last checkpoint before the intrusion

may be restored. However, this approach may slow down legitimate faults that

occur through other means.

To detect failure in the nodes, a heartbeat protocol may be used. A

heartbeat protocol is already in place between the Poly^2 gateways and a

protocol based on the work of (Li et al., 2009) may be implemented with the

gateways as the control nodes.

The researcher expects a hybrid active replication-checkpointing approach

as a way towards solving our research question. As a part of this, it is expected

to make this feature a part of the Poly^2 framework.

23

3.2. Cost-Benefit Analysis

The cost-benefit analysis of the project was carried out based on the

benefits with respect to the alternatives available. We would be looking at active

replication and checkpointing as alternatives since they are the ones most

popular in usage today. Our costs would be based on the impact on the original

design of the Poly^2 framework, the engineering resources which would be

involved and the software engineering effort which would be involved. Our

benefits would be in terms of decrease in downtime and the effectiveness of the

recovery that can be initiated.

With respect to the monetary costs regarding the costs as well as benefits

with respect to the projects analyzed, costs are recorded on a per incident basis

leading to an average dollar value (Gordon et al, 2005). However, the Poly^2

framework is yet to be implemented commercially giving it a unique perspective.

Due to it’s current prototype status and lack of public deployment, obtaining

precise values for dollar costs would be beyond the scope, hence the analysis

would be restricted to non-monetary costs. The analysis restricts itself to the first

order effects of the costs as well as the benefits. That is, we consider the effects

only on the actors who would be affected through direct loss of business,

availability and reputation if the service became unavailable.

24

CHAPTER 4. COST BENEFIT ANALYSIS

As we have mentioned before, for the purpose of our cost benefit analysis

we will be looking at cost benefit analysis of the project through two aspects.

First, we will be looking at the alternatives. These include two recovery

paradigms, one is based on the active state replication paradigm and the other is

based on a checkpointing paradigm. Second, we will be looking at the alternative

suggested as a part of this project and comparing it to the other two alternatives.

This analysis was carried out in the media res form. In this case, i.e. it was

carried out in the duration of the project.

4.1. Analysis of the Active State Replication Paradigm

The active state replication paradigm relies on a single primary server and

multiple replicas of the server. Under normal functioning, the state of the primary

service is replicated across the replicas. Whenever the primary server is

subjected to a fault, one of the replicas takes over in a process that is transparent

to the user. There are two basic ways this technique can be implemented. One, a

proxy or gateway handles communication between the users and service. The

proxy keeps track of the availability of the service and distributes the incoming

25

communications to all the nodes but allows only the communication from the

active node to go out. When a fault occurs, it redirects traffic from the next active

node. The other type in which there is no proxy, all the nodes receive the traffic

and use it to update their states. However, it is only the active node that

responds. When it fails, the next node takes over. In case of a proxy, there has to

be a significant change to the Poly^2 architecture to accommodate another

gateway in front of the services. In case of no proxy, it becomes the responsibility

of the nodes internally to keep track of the active node. Also, to ensure that all

the nodes receive the incoming data, the multicast has to be reliable.

 For both forms of the technique, the communication costs will be high

since the states are being kept perennially updated. Putting up either a proxy or

making the multicast reliable will require a high engineering cost. In case an

exploit occurs, it is replicated across the nodes and persists even if the initial

active node fails and the new one takes over.

This technique however, offers lower downtime. Since the next node is

already active and in the current state of the service, it can take over seamlessly.

Also, due to state persistence, when the active node fails, the data is preserved

by all the nodes in the replication cluster. The storage required is limited to any

write action carried out on the nodes.

Hence, the high costs are associated with communications, engineering

and exploitation persistence. Costs are mitigated in terms of loss of data,

storage, downtime and loss of data.

26

4.2. Analysis of the Checkpointing Paradigm

The checkpointing paradigm ensures that service on restoration is always

restored from a point at which the service was uncompromised. A checkpoint is

maintained on which the image of the service is kept and if required updated.

When a fault occurs, the service is restored from the stored checkpoint. The

storage costs with regard to this are sufficiently high since a complete image will

have to be kept to initiate a recovery. Since the checkpoint is not necessarily a

reflection of the current state of the service, there may be a significant amount of

data loss when the recovery from checkpoint is initiated. There may be a

perceptible difference in time as the checkpointing showing a small but significant

downtime.

However, the communication costs would be low since the active node

would not need to communicate with any other node. The checkpoint can be

hosted as a virtual machine allowing restoration from an image. This decreases

the engineering effort required to carry it out. Since, a checkpoint need only be

carried out infrequently and then at the point of a fault, the processing overheads

involved are low. Since the current state is not maintained and the checkpoint is

restored from an uncompromised state, any exploitation on the service carried

out in the current state does not persist post-recovery.

Hence, the costs are associated in terms of storage, loss of data and

downtime. Costs are mitigated in terms of communication, engineering effort,

processing overheads and persistence of exploitations.

27

4.3. Analysis of the Hybrid Recovery System

The hybrid system creates a two-tier recovery technique including aspects

of both the active state replication as well as the checkpointing recovery system.

It invokes the active state replication when there are faults that may not have

been triggered by a malicious entity. In this case, one of the replicas would take

over the function of the primary service, maintaining the state and ensuring that

the process is transparent to the user. However, in case of exploits caused by a

malicious entity the service would be restored from a previous clean state

ensuring that service being provided is uncompromised. In case of this

technique, the average downtime would be lower since a checkpoint recovery

would only be triggered in case of a malicious activity being triggered by a

detection system. Also unlike the active replication system, the state would only

be maintained in case of fault that has not been triggered by a malicious entity.

This would ensure that the exploitation of vulnerabilities which may have been

persistent over the replicas is not so.

However, the costs incurred in this case would be the engineering efforts

involved in setting up this technique as well as the cost of setting up an intrusion

detection system to determine which faults may have been triggered by a

malicious entity. Also involved would be the cost of implementing both the

checkpointing recovery technique as well as the active state replication technique

including the human effort involved. In spite of the costs involved, the critical

services that fall within the purview of the Poly^2 framework would benefit greatly

28

from the hybrid technique. Availability of services often affects events such as

loss of business and reputation that is significant for the actors involved.

4.4. Conclusion

From the above analysis, we can observe that there are a number of

factors on which the costs can be obtained. These costs and their possible

mitigation can guide the reasoning for selecting a particular recovery technique.

This, however, does not take into account the costs or benefits with regard to the

adoption of the Poly^2 framework. This analysis was carried out with respect to

services that are being run under the Poly^2 framework.

With regard to costs of communications, it is seen to be high in case of

active replication and low in case of checkpointing. It is high in case of active

replication due to the communication required to maintain the state of the nodes.

The same cost applies to the hybrid recovery technique as well.

With regard to costs of storage, this cost is significantly high in case of the

checkpointing technique due to the requirement to store the image of the service.

This cost would apply to the hybrid recovery technique as well since the

checkpoint technique is implemented as a part of the hybrid recovery technique.

The active state replication has a high engineering cost as well as a

possibly high cost due to the impact on the framework. The hybrid recovery

technique also has the same cost associated. However, instead of using a proxy

that could potentially increase the impact on the framework itself, the proxy-less

29

alternative is used. This cost is however; relatively low for the checkpointing

technique where the service is hosted upon a virtual machine and restored from

an uncompromised image upon the occurrence of a fault. The similar cost for the

hybrid recovery mechanism is high since it is required to have both the functions

of the checkpointing as well as the active replication technique.

The cost occurring due to loss of data is high with the checkpointing

technique. This is due to the fact that when it is initiated, the service is restored to

a previous state and all the data in the interim is lost. This is mitigated with

respect to the hybrid recovery technique. In this case, the checkpointing is

initiated only when a malicious fault is thought to have occurred.

The cost associated with downtime is significantly higher in checkpointing.

This is mitigated in the hybrid recovery technique. This is again due to the fact

that the checkpointing is initiated only in the specific circumstance of a malicious

fault. Otherwise, the technique uses active replication to recover from a fault that

has a lower cost associated with downtime.

The cost associated with processing overheads is high with the active

replication technique since it requires that the state be constantly upgraded

across all nodes. This cost is reflected in the hybrid recovery as well.

The persistence of exploitation is present in the active replication

technique. However, it is significantly mitigated with the hybrid recovery

technique. In case of malicious faults, the technique uses the checkpointing from

a previously uncompromised state where the exploitations are no longer allowed

to persist.

30

Table 4.1 Table of Costs

Cost

Technique

Commu
nication

Storage Engin
eering

Loss of
Data

Downti
me

Proce
ssing
Overh
eads

Exploitat
ion

Persiste
nce

Active
Replication

 High Low High Low Low High High

Checkpoint
ing

Low High Low High High Low Low

Hybrid
Recovery

High High High Medium Medium High Medium

 With respect to the benefits, it is seen that the active replication technique

has a lower time to recovery in comparison to the checkpointing technique.

However for the hybrid recovery technique, it is seen that while time to recovery

is low when it is functioning in the active replication form, it may increase when a

malicious fault occurs and the checkpointing form is employed.

 In case of the state preservation and continuity of the service, the hybrid

recovery technique maintains the state in case of normal functioning, i.e. when

no faults occur and when there are non-malicious faults. In case of the

checkpointing technique, the current state is not preserved and on recovery,

current connections and data may be lost.

 In case of removal of exploits, when a malicious fault occurs, the hybrid

recovery technique initiates the checkpointing that restores the service from an

uncompromised image. However, an active replication technique replicates the

exploit over all the nodes and when the current active node fails, the node to take

over has the same exploit.

31

 Both the checkpointing and active replication respond to all incidents in

the same manner. However, the hybrid recovery mechanism differentiates the

response based on the input from the intrusion detection system. If a non-

malicious fault occurs, the active replication form is triggered. If a malicious fault

is detected, the checkpointing technique is initiated. This ensures that while the

state is preserved and normal functioning can be carried out in cases of non-

malicious faults but in case of malicious ones, the exploits are not allowed to

remain persistent and all connections including potentially malicious ones are

abandoned.

Table 4.2 Table of Benefits

Benefit

Technique

Time to
Recovery

Preserv
ation of
State

Removal
of

potential
exploits

Response
to incident

Active
Replication

Low High Low Low

Checkpointing High Low High Low
Hybrid

Recovery
Medium High High High

We see that the hybrid recovery technique shares the costs with regard to

both the active replication as well as the checkpointing technique. However, it

also mitigates the costs with respect to both leading to reduced loss of data and

downtime (in comparison to checkpointing) and reduced persistence of exploits

(in comparison to active replication). It also is able to provide a differentiated

32

response in case of both malicious and non-malicious faults and thus, providing

an alternative to both active replication and checkpointing.

33

CHAPTER 5. THE ARCHITECTURE

To implement the technique, a two-tier architecture was implemented. To

recover from non-malicious faults, it is considered valuable if the state is

maintained. This means that the recovery would need to be such that loss in

capacity is transparent to the service user. However for malicious faults, such a

capacity may not be wholly in favour of the service. A state of being actively

replicated may not be advisable in the case of a malicious fault. In such a case, it

might be required that the connections be abandoned and restored to a

previously uncompromised state. Hence, it would be important that the

potentially malicious connection is abandoned and the service restored. This is

carried out by restoring the service from a backup in the form of an image. There

is, however, another issue of detecting when a malicious fault occurs. For this

purpose, we use an intrusion detection system (IDS) to generate the alerts

whenever a potentially malicious activity occurs.

To maintain the state in case of non-malicious faults, replicas of the

service are kept whose states are kept consistent with that of the primary service.

In the event of the failure of the primary service, one of the replicas may be able

to take over in a process that is transparent to the user. Due to the maintenance

of the state, current connections are not lost and neither is the data.

34

Next, the three main components of the architecture would be explored.

The checkpointing system that provides recovery from malicious would be first

explored. Then, the active state replication would be looked at. After that, the

detection system that bridges these two recovery systems would be looked at.

5.1. Checkpoint Recovery

The recovery system suggested is similar to the one proposed by Laadan

et al (2005). However, this system has significant changes to accommodate the

requirements of the project including the limitations and the scope already stated.

To carry out the checkpointing, another layer introduced between the host

operating system and the service. The service itself is hosted on a virtual

machine that is in turn hosted on the server. The servers used are of two kinds –

Sun SunFire V60X and Dell PowerEdge 1850.

The SunFire V60X has the host operating system as FreeBSD 8.0 running

under the following hardware specifications:

• "#$%&''$#!()*+!,-.&/!0&$-!(123!456*!

• 789+!):1;!9<!

• =>%5&+!?)1!@<!A1!%>%5&!

• B&.C$#DE-F+!GH>/!):I)::I):::!B,=!

The Dell PowerEdge 1850 has the host operating system as FreeBSD 8.0

running under the following hardware specifications:

• "#$%&''$#!()*+!,-.&/!0&$-!(123!456*!

35

• 789+!):1;!9<!

• =>%5&+!):1;!@<!!

• B&.C$#DE-F+!GH>/!):I)::I):::!B,=!

The service itself is run on virtual machines on a Sun VirtualBox platform

administered across the network by the Poly^2 security server. The running of

the checkpointing technique is shown below.

Figure 5.1 Checkpointing form

 When the service is initialized, a image of it is created and kept. Assuming

that initially image was not compromised, this image is kept as an

uncompromised state. When the compromise of a service is detected, the current

state of the service is abandoned and the service is restored from the

uncompromised image. However, as a result of this all current connections are

abandoned and any data that was in the current state is also. In case of the chat

server implementation, this refers primarily to the chat history and the

36

connections to the clients. When the service is compromised and a recovery is

carried out from a checkpoint, the connections as well as the chat history are

lost.

5.2. Active Replication

The replication for maintaining the state of the application is carried out at

an application level. For the purpose of the project, the application to be used for

the purpose is chat server that has been replicated across two servers. This

would be similar to the approach taken by Wang et al (2001). The application

itself built upon the foundation provided by the JGroups API. JGroups is a toolkit

for providing reliable multicast communication. This property is used to provide

maintenance of state between the primary service and it’s replicas. Interactions

take place between the client and the cluster hosting the services. The cluster is

transparent to the user. Upon failure of the primary server, a replica takes over

it’s functions in a manner that the previous sessions are carried over. Such a

function while desirable in the case of a non-malicious failure, however, in case

of the involvement of a malicious entity, the recovery would revert to the

checkpoint system enumerated formerly. The active replication form is shown

below.

37

Figure 5.2 Active Replication form

 The user interacts with the service in a manner that the active replication

form is transparent to it. Whenever there is a communication from the user to the

active node, all the nodes intercept it but the active node only sends the

response. This ensures that the state (in this case, the chat history) is current

across all the nodes. Whenever the current active node fails, the operation can

be taken over by the next node.

38

5.3. Detection

There has to be a differentiation as to when of the above two techniques

has to be used. While the active replication technique maintains the state of the

service but the technique requires a higher overhead and also leads to

persistence of any exploits that take place. The checkpoint technique ensures

that the system is restored from a clean state, however, with significant loss of

data and higher recovery time.

To differentiate which of the two techniques should be employed

according to the event, an intrusion detection system was employed. On

detection of an event by the system, the checkpoint recovery is triggered.

In case of this project, an intrusion detection system based on SNORT

was employed. It was hosted upon a hardened system having a FreeBSD 8.0

operating system. The hardware it was hosted upon was a Sun SunFire V60x.

The intrusion detection system was placed in front of the primary gateway

to and was made transparent to the services as well users accessing the

services.

5.4. Chapter Conclusion

The architecture that has been enumerated is overlayed upon the Poly^2

framework. It does not affect the original design of the Poly^2 framework but

extends it. All services are still isolated from each other not only in their own

39

individual servers but in their individual clusters. Attacks taking place on a

specific service are not only isolated to the particular service but the service itself

is not completely lost as well with recovery mechanisms being in place. The

complete framework is seen below.

 Figure 5.3 Poly^2 with Availability

The application clusters shown have the recovery mechanisms for the

particular service. Each of the services is contained within a single cluster

instead of a single server. The nodes in each cluster provide for the active

replication while each node has the capacity to carry out a checkpoint recovery

on direction from the security server. The security server also monitors the

40

intrusion detection system and upon receiving a alert, it instructs the nodes of

attacked service to undergo checkpointing.

41

CHAPTER 6. CONCLUSION AND FUTURE WORK

The recovery mechanisms that have been explored in this project add a

novel extension to the Poly^2 framework. The original framework isolated each of

the services into their own ‘cages’. A cage was their particular hardware and

operating system allowing for their isolation to the outside attacks. The recovery

mechanisms acted as an extension to this concept. Each of the service cages is

extended to be a cluster to provide recovery to the service.

The recovery mechanism suggested in this work is novel in the sense that

it takes the advantages of two well-known mechanisms and applies them in a

manner that mitigates their disadvantages. The active state replication ensures

that in case of non-malicious faults, the user experiences only a minimal amount

of disturbance. However, the checkpointing recovery system ensures that in case

of malicious faults, the system recovers from it albeit with an increased amount of

downtime and loss of data.

This system is meant to be used under two conditions. The service has to

be placed under the Poly^2 framework. The service also has to be such that it is

expected to be attacked occasionally and not with a very high frequency. This

was shown by the cost-benefit analysis where it was seen that a high occurrence

42

of the checkpointing form, which is employed in case of malicious faults, will lead

to a higher cost in terms of downtime and loss of data.

However, there are some issues that can be addressed. Currently, the

recovery in the checkpoint mechanism takes place from a former, static version

of the service. Whenever, the service is restored from an uncompromised image,

it is still vulnerable to the same vulnerability that previously exploited the service.

This can be improved by having a mechanism that on regular intervals updates

the service image so that on recovery at some point, the service restored is a

fixed version of the image.

The intrusion detection system is a rule-based system that detects

breaches based upon the ruleset upon which the system functions. However, if

the breach is not detected by the intrusion detection system, it may lead to a fault

that the system may believe to be non-malicious which will eventually lead to an

incorrect part of the mechanism being initiated. A detection system that is more

robust may improve the functioning of the overall system.

The active replication part of the system is currently taking place at an

application level. Improving this in a manner such that this takes place at a level

independent of the application allowing this system to be generic for any

application that would need to be placed within the framework.

The recovery system though hybrid in nature can be improved by

changing the very essence of it. The current system requires that the functions

be differentiated on the basis of input received from the detection system. A

unified recovery paradigm that can provide comprehensive recovery within the

43

paradigm of the Poly^2 framework would be an interesting improvement to the

project.

The Poly^2 framework is meant to protect an organization’s mission-

critical services. However, setting up such a framework for an organization can

be an expensive undertaking. It would be an interesting exploration to look at an

approach where the framework is offered as a service where mission-critical

services can be placed in their individual Poly^2 ‘cages’.

BIBLIOGRAPHY

44

BIBLIOGRAPHY

Anderson, T., & Lee, P. (1982). Fault tolerance terminology proposals. In Proceeding of

the 12th International Symposium on Fault Tolerant Computing.

Ayari, N., Barbaron, D., & Lefevre, L. (2008). On Improving the Reliability of Internet

Services through Active Replication. In Parallel and Distributed Computing,

Applications and Technologies, 2008. PDCAT 2008. Ninth International

Conference on (pp. 259-262). Presented at the Parallel and Distributed

Computing, Applications and Technologies, 2008. PDCAT 2008. Ninth

International Conference on. doi:10.1109/PDCAT.2008.82

Ayari, N., Barbaron, D., Lefevre, L., & Primet, P. (2008). Fault tolerance for highly

available internet services: concepts, approaches, and issues. Communications

Surveys & Tutorials, IEEE, 10(2), 34-46. doi:10.1109/COMST.2008.4564478

Bhide, A. (1992). Experiences with two high availability designs [replication techniques].

In Management of Replicated Data, 1992., Second Workshop on the (pp. 51-54).

Presented at the Management of Replicated Data, 1992., Second Workshop on

the. doi:10.1109/MRD.1992.242618

45

Bryant, E., Early, J., Gopalakrishna, R., Roth, G., Spafford, E., Watson, K., Williams, P.,

et al. (2003). Poly^2 paradigm: A secure Network Service Architecture.

Presented at the Annual Computer Security Applications Conference.

Cachin, C., & Poritz, J. (2002). Secure INtrusion-Tolerant Replication on the Internet. In

Dependable Systems and Networks, 2002. DSN 2002. Proceedings.

International Conference on (pp. 167-176). Presented at the Dependable

Systems and Networks, 2002. DSN 2002. Proceedings. International Conference

on. doi:10.1109/DSN.2002.1028897

Chee, J. (2008). Host Intrusion Prevention Systems and Beyond. SANS Institute.

Deering, S. (1989, August). RFC 1112: Host Extensions for IP Multicasting. Network

Working Group.

Deplanche, A., Theaudiere, P., & Trinquet, Y. (1999). Implementing a semi-active

replication strategy in CHORUS/ClassiX, a distributed real-time executive. In

Reliable Distributed Systems, 1999. Proceedings of the 18th IEEE Symposium

on (pp. 90-101). Presented at the Reliable Distributed Systems, 1999.

Proceedings of the 18th IEEE Symposium on. doi:10.1109/RELDIS.1999.805086

46

Engelmann, C., Scott, S. L., Leangsuksun, C., & He, X. (2007). On Programming

Models for Service-Level High Availability. In Availability, Reliability and Security,

2007. ARES 2007. The Second International Conference on (pp. 999-1008).

Presented at the Availability, Reliability and Security, 2007. ARES 2007. The

Second International Conference on. doi:10.1109/ARES.2007.109

Fei-fei Li, Xiang-zhan Yu, & Gang Wu. (2009). Design and Implementation of High

Availability Distributed System Based on Multi-level Heartbeat Protocol. In

Control, Automation and Systems Engineering, 2009. CASE 2009. IITA

International Conference on (pp. 83-87). Presented at the Control, Automation

and Systems Engineering, 2009. CASE 2009. IITA International Conference on.

doi:10.1109/CASE.2009.115

Garbin, D., & Knepley, J. (2009). Design and analysis of high availability networks. In

Technologies for Homeland Security, 2009. HST '09. IEEE Conference on (pp. 1-

6). Presented at the Technologies for Homeland Security, 2009. HST '09. IEEE

Conference on. doi:10.1109/THS.2009.5168007

Geraint Price, C Geraint Price, & Geraint Price. (1999). The Interaction Between Fault

Tolerance and Security. Retrieved from

HTTP://CITESEERX.IST.PSU.EDU/VIEWDOC/SUMMARY?DOI=10.1.1.62.8328

Gordon, L. A., Loeb, M. P., Lucyshyn, W., & Richardson, R. (2005). The 2005 CSI/FBI

computer crime and security survey. Computer Security Journal, 21(3), 1.

47

Gouda, M., & McGuire, T. (1998). Accelerated heartbeat protocols. In Distributed

Computing Systems, 1998. Proceedings. 18th International Conference on (pp.

202-209). Presented at the Distributed Computing Systems, 1998. Proceedings.

18th International Conference on. doi:10.1109/ICDCS.1998.679503

Hamada, M. (1995). Using statistically designed experiments to improve reliability and

to achieve robust reliability. Reliability, IEEE Transactions on, 44(2), 206-215.

doi:10.1109/24.387372

Information Processing Systems - Interconnection Reference Model - Part 2: Security

Architecture. (1989). . International Standards Organization.

Information Technology - Code of practice for information security management. (2000).

. International Standards Organization.

Information Technology - Security Techniques - Guidelines for the management of IT

Security. (2001). . International Standards Organization.

Kalbarczyk, Z., Iyer, R., Bagchi, S., & Whisnant, K. (1999). Chameleon: a software

infrastructure for adaptive fault tolerance. Parallel and Distributed Systems, IEEE

Transactions on, 10(6), 560-579.

Kyamakya, K., Jobman, K., & Meincke, M. (2000). Security and survivability of

distributed systems: an overview. In MILCOM 2000. 21st Century Military

Communications Conference Proceedings (Vol. 1, pp. 449-454 vol.1). Presented

at the MILCOM 2000. 21st Century Military Communications Conference

Proceedings. doi:10.1109/MILCOM.2000.904993

48

Laadan, O., Phung, D., & Nieh, J. (2005). Transparent Checkpoint-Restart of Distributed

Applications on Commodity Clusters. In Cluster Computing, 2005. IEEE

International (pp. 1-13). Presented at the Cluster Computing, 2005. IEEE

International. doi:10.1109/CLUSTR.2005.347039

Laprie, J. (1992). Dependability: Basic Concepts and Terminology. Springer-Verlag.

Lundell, J. (2001). A fault-tolerant approach to network security. In Network Computing

and Applications, 2001. NCA 2001. IEEE International Symposium on (p. 227).

Presented at the Network Computing and Applications, 2001. NCA 2001. IEEE

International Symposium on. doi:10.1109/NCA.2001.962536

Malkhi, D., & Reiter, M. (1998). Secure and scalable replication in Phalanx. In Reliable

Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium on (pp.

51-58). Presented at the Reliable Distributed Systems, 1998. Proceedings.

Seventeenth IEEE Symposium on. doi:10.1109/RELDIS.1998.740474

Meadows, C. (1995). Applying the dependability paradigm to computer security. In New

Security Paradigms Workshop, 1995. Proceedings (pp. 75-79). Presented at the

New Security Paradigms Workshop, 1995. Proceedings.

doi:10.1109/NSPW.1995.492346

Meadows, C. (1994). The Need for a Failure Model for Security. Article, . Retrieved

October 15, 2009, from HTTP://EPRINTS.KFUPM.EDU.SA/70629/

49

Neumann, P. (2000). Practical Architectures for survivable systems and networks

(Technical Report Phase Two No. Project 1688). Menlo Park, California: SRI

International.

Price, G. (2001). Broadening the Scope of Fault Tolerance within Secure Services. In

Security Protocols (pp. 155-164). Retrieved from

HTTP://DX.DOI.ORG/10.1007/3-540-44810-1_20

Reiter, M. K. (1995). The Rampart Toolkit for Building High-Integrity Services. In

Selected Papers from the International Workshop on Theory and Practice in

Distributed Systems (pp. 99-110). Springer-Verlag. Retrieved from

HTTP://PORTAL.ACM.ORG/CITATION.CFM?ID=723763

Ross, S. (1997). Introduction to probability models (6th ed.). Academic Press.

RossebeØ, J. E. Y., Lund, M. S., Husa, K. E., & Refsdal, A. (2006). A Conceptual Model

for Service Availability. In Quality of Protection (pp. 107-118). Retrieved from

HTTP://DX.DOI.ORG/10.1007/978-0-387-36584-8_9

Rosseboe, J., & Braek, R. (2006). Towards a framework of authentication and

authorization patterns for ensuring availability in service composition. In

Availability, Reliability and Security, 2006. ARES 2006. The First International

Conference on (p. 10 pp.). Presented at the Availability, Reliability and Security,

2006. ARES 2006. The First International Conference on.

doi:10.1109/ARES.2006.135

50

Saltzer, J., & Schroeder, M. (1975). The protection of information in computer systems.

In Proceeding of the IEEE (Vol. 63, pp. 1278-1308).

Schmidt, D., & O'Ryan, C. (2000). Leaders/Followers, A design pattern for efficient

multi-threaded I/O demultiplexing and dispatching. Siemens.

Schneider, F., & Zhou, L. (2005). Implementing trustworthy services using replicated

state machines. Security & Privacy, IEEE, 3(5), 34-43.

doi:10.1109/MSP.2005.125

Telecom Glossary. (2007). . Alliance for Telecommunications Industry Solutions.

Wang, L., Zhou, W., & Jia, W. (2001). The design and implementation of an active

replication scheme for distributing services in a cluster of workstations. Journal of

Systems and Software.

Xinyu Chen, & Lyu, M. (2005). Reliability analysis for various communication

schemes in wireless CORBA. Reliability, IEEE Transactions on, 54(2), 232-242.

doi:10.1109/TR.2005.847268

Yen, I., Ahmed, I., Jagannath, R., & Kundu, S. (1998). Implementation of a

customizable fault tolerance framework. In Object-Oriented Real-time Distributed

Computing, 1998. (ISORC 98) Proceedings. 1998 First International Symposium

on (pp. 230-239). Presented at the Object-Oriented Real-time Distributed

Computing, 1998. (ISORC 98) Proceedings. 1998 First International Symposium

on. doi:10.1109/ISORC.1998.666793

51

Zhanjie Wang, & Xiao Li. (2008). A New Real-Time Heartbeat Failure Detector. In

Wireless Communications, Networking and Mobile Computing, 2008. WiCOM

'08. 4th International Conference on (pp. 1-3). Presented at the Wireless

Communications, Networking and Mobile Computing, 2008. WiCOM '08. 4th

International Conference on. doi:10.1109/WICOM.2008.1233

Boardman, A., Greenberg, D., Vining, A., & Weimer, D. (2005). Cost Benefit Analysis:

Concepts and Practice (3rd ed.). Prentice Hall.

Gordon, L., & Loeb, M. (2005). Managing Cybersecurity Resources: A Cost-Benefit

Analysis (1st ed.). McGraw-Hill.

Sassone, P. G. (1988). Cost benefit analysis of information systems: A survey of

methodologies. ACM SIGOIS Bulletin, 9(2-3), 126–133.

Wei, H., Frinke, D., Carter, O., & Ritter, C. (2001). Cost Benefit Analysis of Network

Intrusion Dertection System. CSI 28th Annual Computer Security Conference

October 29-31, 2001 Washington, DC.

