
CERIAS Tech Report 2010-30
Attribute Based Group Key Management

 by Mohamed Nabeel, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

1

Attribute Based Group Key Management

Mohamed Nabeel, Elisa Bertino

Purdue University,

West Lafayette, Indiana, USA

{nabeel, bertino}@cs.purdue.edu

mailto:bertino}@cs.purdue.edu

2

Abstract

Attribute based systems enable fine-grained access control among a group of users each identified

by a set of attributes. Secure collaborative applications need such flexible attribute based systems for

managing and distributing group keys. However, current group key management schemes are not well

designed to manage group keys based on the attributes of the group members. In this paper, we propose

novel key management schemes that allow users whose attributes satisfy a certain access control policy

to derive the group key. Our schemes efficiently support rekeying operations when the group changes

due to joins or leaves of group members. During a rekey operation, the private information issued to

existing members remains unaffected and only the public information is updated to change the group

key. Our schemes are expressive; are able to support any monotonic access control policy over a set

of attributes. Our schemes are resistant to collusion attacks; group members are unable to pool their

attributes and derive the group key which they cannot derive individually.

Index Terms

Broadcast group key management; attribute based policies

I. INTRODUCTION

Current technological innovations and new application domains have pushed novel paradigms

and tools for supporting collaboration among (possibly very dynamic) user groups (see for

example the novel notion of group-centric information sharing [1]). An important requirement

in collaborative applications is to support operations for user group memberships, like join and

leave, based on identity attributes (attributes, for short) of users; we refer to this requirement

as attribute-based group dynamics. As today enterprises and applications are adopting identity

management solutions, it is crucial that these solutions be leveraged on for managing groups.

Typically, a user would be automatically assigned (de-assigned) a group membership based on

whether his/her attributes satisfy (cease to satisfy) certain group membership conditions. Another

critical requirement is to provide mechanisms for group key management (GKM), as very often

the goal of a group is to share data. Thus data must be encrypted with keys made available

only to the members of the group. The management of these keys, which includes selecting,

distributing, storing and updating keys, should directly and effectively support the attribute-

based group dynamics and thus requires an attribute-based group key management (AB-GKM)

scheme, by which group keys are assigned (or de-assigned) to users in a group based on their

3

identity attributes. This scheme recalls the notion of attribute-based encryption (ABE) [2], [3],

[4]; however, as we discuss later on, ABE has several shortcomings when applied to GKM.

Therefore, a different approach is needed.

A challenging well known problem in GKM is how to efficiently handle group dynamics,

i.e., a new user joining or an existing group member leaving. When the group changes, a new

group key must be shared with the existing members, so that a new group member cannot access

the data transmitted before she joined (backward secrecy) and a user who left the group cannot

access the data transmitted after she left (forward secrecy). The process of issuing a new key

is called rekeying or update. Another challenging problem is to defend against collusion attacks

by which a set of colluding fraudulent users are able to obtain group keys which they are not

allowed to obtain individually.

In a traditional GKM scheme, when the group changes, the private information given to all

or some existing group members must be changed which requires establishing private com­

munication channels. Establishing such channels is a major shortcoming especially for highly

dynamic groups. Recently proposed broadcast GKM (BGKM) schemes [5], [6] have addressed

such shortcoming. BGKM schemes allow one to perform rekeying operations by only updating

some public information without affecting private information existing group members possess.

However, BGKM schemes are not designed to support group membership policies over a set of

attributes. In their basic form, they can only support 1-out-of-n threshold policies by which a

group member possessing 1 attribute out of the possible n attributes is able to derive the group

key. In this paper we develop novel expressive AB-GKM schemes which allow one to express

any threshold or monotonic 1 conditions over a set of identity attributes.

A possible approach to construct an AB-GKM scheme is to utilize attribute-based encryption

(ABE) primitives [2], [3], [4]. Such an approach would work as follows. A key generation server

issues each group member a private key (a set of secret values) based on the attributes and the

group membership policies. The group key, typically a symmetric key, is then encrypted under

a set of attributes using the ABE encryption algorithm and broadcast to all the group members.

The group members whose attributes satisfy the group membership policy can obtain the group

key by using the ABE decryption primitive. One can use such an approach to implement an

1Monotone formulas are Boolean formulas that contain only conjunction and disjunction connectives, but no negation.

4

expressive collusion-resistant AB-GKM scheme. However, such an approach suffers from some

major drawbacks. Whenever the group dynamic changes, the rekeying operation requires to

update the private keys given to existing members in order to provide backward/forward secrecy.

This in turn requires establishing private communication channels with each group member which

is not desirable in a large group setting. Further, in applications involving stateless members

where it is not possible to update the initially given private keys and the only way to revoke a

member is to exclude it from the public information, an ABE based approach does not work.

Another limitation is that whenever the group membership policy changes, new private keys

must be re-issued to members of the group. Our constructions address these shortcomings.

Our AB-GKM schemes are able to support a large variety of conditions over a set of attributes.

When the group changes, the rekeying operations do not affect the private information of

existing group members and thus our schemes eliminate the need of establishing expensive

private communication channels. Our schemes provide the same advantage when the group

membership conditions change. Furthermore, the group key derivation is very efficient as it only

requires a simple vector inner product and/or polynomial interpolation. Additionally, our schemes

are resistant to collusion attacks. Multiple group members are unable to combine their private

information in a useful way to derive a group key which they cannot derive individually.

Our AB-GKM constructions are based on the ACV-BGKM (Access Control Vector BGKM)

scheme [6], a provably secure BGKM scheme, and Shamir’s threshold scheme [7]. In this paper,

we construct three AB-GKM schemes each of which is more suitable over others under different

scenarios. The first construction, inline AB-GKM, is based on the ACV-BGKM scheme. Inline

AB-GKM supports arbitrary monotonic policies over a set of attributes. In other words, a user

whose attributes satisfy the group policies is able to derive the symmetric group key. However,

inline AB-GKM does not efficiently support d-out-of-m (d ≤ m) attribute threshold policies

over m attributes. The second construction, threshold AB-GKM, addresses this weakness. The

third construction, access tree AB-GKM, is an extension of threshold AB-GKM and is the

most expressive scheme. It efficiently supports arbitrary policies. The second and third schemes

constructed by using a modified version of ACV-BGKM, also proposed in this paper.

The reminder of the paper is organized as follows: Section II discusses related work on GKM,

attribute based encryption, GKM in selective dissemination/broadcast encryption, and secret

sharing. Section III provides a summary of the ACV-BGKM scheme [6]. Sections IV, V, VI

5

TABLE I

ACRONYMS

Acronym Description

GKM Group Key Management

BGKM Broadcast GKM

ABE Attribute Based Encryption

ACV Access Control Vector

ABAC Attribute Based Access Control

AB-GKM Attribute Based GKM

PI Public Information tuple

UA User-Attribute matrix

show the construction of the inline AB-GKM, threshold AB-GKM, and access tree AB-GKM

schemes, respectively, and analyze their security and performance. Section VII shows an example

application of the three AB-GKM schemes. Section VIII concludes the paper. Appendix ?? proves

the security of the modified ACV-BGKM scheme. Table I list, for the convenience of the reader,

the acronyms used in the paper.

II. RELATED WORK

Group Key Management: Group Key Management (GKM) is a widely investigated topic in

the context of group-oriented multicast applications [8], [5]. Early approaches to GKM rely

on a key server to share a secret with users to distribute decryption keys [9], [10]. Such

approaches do not efficiently handle join and leave operations, as in order to achieve forward and

backward security, they require sending O(n) private rekey information, where n is the number

of users.Hierarchical key management schemes [11], [12], where the key server hierarchically

establishes secure channels with different sub-groups instead of individual users, were introduced

to reduce this overhead. However, they only reduce the size of the rekey information to O(log n),

and furthermore each user needs to manage at worst O(log n) hierarchically organized redundant

keys.

Broadcast Group Key Management (BGKM) schemes perform the rekey operation with only

one broadcast without affecting the secret information issued to existing users. Approaches

have also been proposed to make the rekey operation a one-off process [13], [5]. However,

6

these schemes are not formally proven to be secure. Recently Shang et. al. introduced the first

provably secure BGKM scheme ACV-BGKM [6]. Existing BGKM schemes require sending

O(n) public information when rekeying. We improve the complexity by utilizing subset-cover

techniques [14], [15]. The improved BGKM schemes can efficiently handle group dynamics

and lay the foundation for AB-GKM. However such schemes cannot directly handle expressive

conditions against attributes.

Attribute-Based Encryption and GKM: The concept of attribute-based encryption (ABE),

introduced by Sahai and Waters [2], can be considered as a generalization of identity based

encryption [16], [17] (IBE). In an ABE system, the plaintext is encrypted with a set of attributes.

The key generation server, which possesses the master key, issues different private keys to users

after authenticating the attributes they possess. Thus, these private keys are associated with the

set of attributes each user possesses. In its basic form, a user can decrypt a ciphertext if and only

if there is a match between the attributes of the ciphertext and the user’s key. The initial ABE

system is limited to only threshold policies by which there should be at least k out of n attributes

common between the attributes used to encrypt the plaintext and the attributes users possess.

Pirretti et al. [18] gave an implementation of such a threshold ABE system using a variant of

the Sahai-Waters Large Universe construction [2]. Since the definition of the initial threshold

scheme, a few variants have been introduced to provide more expressive ABE systems. Goyal

et al. [3] introduced the idea of key-policy ABE (KP-ABE) systems and Bethencourt et al. [4]

introduced the idea of ciphertext-policy ABE (CP-ABE) systems. Even though these constructs

are expressive and provably secure, they are unable to efficiently support group management, and

especially to provide forward security when a user leaves the group (i.e. attribute revocation) and

to provide backward security when a new user joins the group. These schemes require sending

O(n) private rekey messages in order to handle group management operations. The proposers of

some of these schemes have suggested using an expiration attribute along with other attributes

for attribute revocation. However, such a solution is not suitable for highly dynamic groups

where joins and leaves are frequent. Traynor et. al. [19] proposes to improve the performance

of ABE by grouping users and assigning a unique group attribute to each group. However, their

approach only considers one attribute per user and does not support membership policy based

group key management.

Despite the limitations of ABE schemes with respect to revocation, flat table based GKM

7

schemes 2 based on ABE have been proposed [20], [21]. These schemes further suffer from the

inherent limited expressibility and scalability of flat table based GKM [22], [23].

GKM Schemes for Selective Dissemination Systems: Selective dissemination or broadcast

encryption systems allow one to encrypt a message once and broadcast to all the users in a

group, but only a subset of users who have the correct key can decrypt the message. The

database and security communities have carried out extensive research concerning techniques

for the selective dissemination of documents based on access control policies with their own

GKM schemes [24], [25], [26], [27], [28]. In such approaches, users are able to decrypt the

subdocuments, that is, portions of documents, for which they have the keys. However, such

approaches require all [25] or some [26] keys be distributed in advance during user registration

phase. This requirement makes it difficult to assure forward and backward key secrecy when

user groups are dynamic with frequent join and leave operations. Further, the rekey operation

is not transparent, thus shifting the burden of acquiring new keys on existing users when others

leave or join. Thus the proposed GKM schemes are not efficient. In contrast, our GKM schemes

make rekey transparent to users by not distributing actual keys. We remark that the efficiency

of the existing selective dissemination systems can be vastly improved by utilizing our GKM

schemes.

Secret Sharing Schemes: These schemes split a shared secret among a group of users by giving

secret shares to users and allow them to combine their secrets in a specific way and obtain the

shared secret. Shamir [7] proposed the first secret sharing scheme, (n, k)-threshold scheme, where

k users out of n can construct a unique polynomial f(x) of degree k− 1 and recover the shared

secret f(0). Since the definition of this initial scheme, there have been numerous extensions [29],

[30], [31]. A major difference between GKM protocols and secret sharing schemes is that the

former are designed to allow any individual group member to obtain a shared secret by itself, and

no persistent secure communication channel is assumed between valid group members, whereas

the latter are to prevent a single group member from gaining the secret alone, and require a

secure communication channel, when group members combine the secret shares, to protect the

shared secret from being learned by parties outside the group.

2A flat table GKM scheme assigns each member a unique n-bit string. The group key is managed through a set of auxiliary

keys which are tied to the unique strings given to the group members.

8

III. BACKGROUND

In this section, we provide an overview of the Broadcast Group Key Management (BGKM)

scheme in general and a description of a provably secure BGKM scheme called ACV-BGKM

(Access Control Vector BGKM) proposed by Shang et al. [6], [32] in order for readers to better

understand our constructions. It should be noted that we use ACV-BGKM in Section IV and a

modified version of ACV-BGKM in our constructions in Sections V, VI.

BGKM schemes are a special type of GKM scheme where the rekey operation is performed

with a single broadcast without using private communication channels. Unlike conventional GKM

schemes, BGKM schemes do not give users the private keys. Instead users are given a secret

which is combined with public information to obtain the actual private keys. Such schemes

have the advantage to require a private communication only once for the initial secret sharing.

The subsequent rekeying operations are performed using one broadcast message. Further, in such

schemes achieving forward and backward security requires only to change the public information

and does not affect the secret shares given to existing users. In general, a BGKM scheme consists

of the following five algorithms:

Setup(ℓ): It initializes the BGKM scheme using a security parameter ℓ. It also initializes the set

of used secrets S, the secret space SS, and the key space KS.

SecGen(): It selects a random bit string s /∈ S uniformly at random from the secret space SS,

adds s to S and outputs s.

KeyGen(S): It chooses a group key k uniformly at random from the key space KS and outputs

the public information tuple PI computed from the secrets in S and the group key k.

KeyDer(s, PI): It takes the user’s secret s and the public information PI to output the group

key. The derived group key is equal to k if and only if s ∈ S.

Update(S): Whenever the set S changes, a new group key k ′ is generated. Depending on the

construction, it either executes the KeyGen algorithm again or incrementally updates the output

of the last KeyGen algorithm.

Using the above abstract algorithms, we now provide an overview of the construction of the

ACV-BGKM scheme under a client-server architecture. The ACV-BGKM scheme satisfies the

requirements of minimal trust, key indistinguishability, key independence, forward secrecy,

backward secrecy and collusion resistance [8]. The ACV-BGKM algorithms are executed by a

trusted key server Svr and a group of users Usri, i = 1, 2, . . . , n.

9

Setup(ℓ): Svr initializes the following parameters: an ℓ-bit prime number q, the maximum group

size N (≥ n and N is usually set to n + 1), a cryptographic hash function H(·) : {0, 1}∗ → Fq,

where Fq is a finite field with q elements, the keyspace KS = Fq, the secret space SS = {0, 1}ℓ

and the set of issued secrets S = ∅.

SecGen(): Svr chooses the secret si ∈ SS uniformly at random for Usri such that si ∈/ S, adds

si to S and finally outputs si.

KeyGen(S): Svr picks a random k ∈ KS as the group key. Svr chooses N random bit strings

z1, z2, . . . , zN ∈ {0, 1}ℓ . Svr creates an n × (N + 1) Fq-matrix
 

1 a1,1 a1,2 . . . a1,N
 
1 . . .


 a2,1 a2,2 a2,N


A =
 

,.
.


.  

1 an,1 an,2 . . . an,N

where

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ N, si ∈ S. (1)

Svr then solves for a nonzero (N +1)-dimensional column Fq-vector Y such that AY = 0. Note

that such a nonzero Y always exists as the nullspace of matrix A is nontrivial by construction.

Here we require that Svr chooses Y from the nullspace of A uniformly at random. Svr constructs

an (N + 1)-dimensional Fq-vector

ACV = k · e1
T + Y,

where e1 = q
T denotes the transpose of vector (1, 0, . . . , 0) is a standard basis vector of FN+1 , v

v, and k is the chosen group key. The vector ACV controls the access to the group key k and

is called an access control vector. Svr lets

PI = �ACV, (z1, z2, . . . , zN)�,

and outputs public PI and private k.

KeyDer(si, PI): Using its secret si and the public information tuple PI , Usri computes ai,j, 1 ≤

j ≤ N, as in formula (1) and sets an (N + 1)-dimensional row Fq-vector

vi = (1, ai,1, ai,2, . . . , ai,N).

10

vi is called a Key Extraction Vector (KEV) and corresponds to a unique row in the access control

matrix A. Usri derives the key k ′ from the inner product of vi and ACV :

k ′ = vi · ACV.

The derived key k ′ is equal to the actual group key k if and only if si is a valid secret used

in the computation of PI , i.e., si ∈ S.

Update(S): It runs the KeyGen(S) algorithm and outputs the new public information PI ′ and

the new group key k ′ .

The above construction becomes impractical with large number of users since the complexity

of the matrix and the public information is O(n). We proprose two approaches to improve the

complexity in Section IV-C without keeping the underlying scheme unchanged.

IV. SCHEME 1: INLINE AB-GKM

Recall that in its basic form, a BGKM scheme can be considered as a 1-out-of-m AB-GKM

scheme. If Usri possesses the attribute attrj , Svr shares a unique secret si,j with Usri. Usri

is thus able to derive the symmetric group key if and only if Usri shares at least one secret

with Svr and that secret is included in the computation of the public information tuple PI . In

order for Svr to revoke Usrj , it only needs to remove the secrets it shares with Usrj from the

computation of PI; the secrets issued to other group members are not affected. We extend this

scheme to support arbitrary monotonic policies, Ps, over a set of attributes. A user is able to

derive the symmetric group key if and only if the set of attributes the user possesses satisfy P.

As in the basic BGKM scheme, Usri having attrj is associated with a unique secret value

si,j . However, unlike the basic BGKM scheme, PI is generated by using the aggregated secrets

that are generated combining the secrets issued to users according to P. For example, if P is a

conjunction of two attributes, that is attrr ∧attrs, the corresponding secrets si,r and si,s for each

Usri are combined as one aggregated secret si,r||si,s and PI is computed using these aggregated

secrets. By construction, the aggregated secrets are unique since the constituent secrets are

unique. Any Usri is able to derive the symmetric group key if and only if Usri has at least

one aggregated secret used to compute PI . Notice that multiple users cannot collude to create

an aggregated secret which they cannot individually create since si,j’s are unique and each

aggregated secret is tied to one specific user. Hence, colluding users cannot derive the group

11

symmetric key. Now we give a detailed description of our first AB-GKM scheme, inline AB­

GKM.

A. Our construction

Inline AB-GKM consists of the following five algorithms:

Setup(ℓ): The Svr initializes the following parameters: an ℓ-bit prime number q, a cryptographic

hash function H(·) : {0, 1}∗ → Fq, where Fq is a finite field with q elements, the keyspace

KS = Fq, the secret space SS = {0, 1}ℓ, and the set of issued secrets S = ∅. The user-attribute

matrix UA is initialized with empty elements and the maximum group size N is decided in the

KeyGen. It defines the universe of attributes A = {attr1, attr2, · · · , attrm}.

SecGen(Usri, attrj): The Svr chooses the secret si,j ∈ SS uniformly at random for Usri such

that si,j ∈/ S, adds si,j to S, sets UA(i, j) = si,j , where UA(i, j) is the (i, j)th element of the

user-attribute matrix UA, and finally outputs si,j .

KeyGen(P): We first give a high-level description of the algorithm and then the details. Svr

transforms the policy P to disjunctive normal form (DNF). For each disjunctive clause of P in

DNF, it creates an aggregated secret (8s) from the secrets corresponding to each of the attributes

in the conjunctive clause. s8 is formed by concatenation only if there exists secrets for all the

attributes in a given row of the user-attribute matrix UA. The construction creates a unique

aggregated secret s8 since the corresponding secrets are unique.

For example, if the conjunctive clause is attrp ∧ attrq ∧ attrr, for each row i in UA, the

aggregated secret 8si is formed only if all elements UA(i, p), UA(i, q) and UA(i, r) have secrets

assigned.

All the aggregated secrets are added to the set AS. Finally, Svr invokes algorithm KeyGen(AS)

from the underlying BGKM scheme to output the public information PI and the symmetric group

key k.

Now we give the details of the algorithm. Svr converts P to DNF as follows
α

P =
V

conjuncti
i=1

where
β

conjuncti =
(

cond(
j

i)

j=1

� �

12

A simple multiplication of clauses (x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)) and then application of

the absorption law (x ∨ (x ∧ y = x)) are sufficient to convert monotone policies to DNF. Even

though there can be an exponential blow up of clauses during multiplication, it has been shown

that with the application of the absorption law the number of clauses in the DNF, at the end, is

always polynomially bounded. Svr selects N such that
α

N ≥
L

NUi = m
i=1

where NUi is the number of users satisfying conjuncti. Svr creates m s8i’s and adds them to

AS. Svr picks a random k ∈ KS as the shared group key. Svr chooses N random bit strings

z1, z2, . . . , zN ∈ {0, 1}ℓ . Svr creates an m × (N + 1) Fq-matrix A such that for 1 ≤ i ≤ m


1 if j = 1

ai,j =
H(s8i||zj) if 2 ≤ j ≤ N ; s8i ∈ AS 

Svr then solves for a nonzero (N + 1)-dimensional column Fq-vector Y such that AY = 0 and

sets

ACV = k · e1
T + Y, and

PI = ACV, (z1, z2, . . . , zN)

KeyDer(βi, PI): Given βi, the set of secrets for Usri, it computes the aggregated secret s8.

Using s8 and the public information PI , it computes ai,j, 1 ≤ j ≤ N, as in IV-A and sets an

(N + 1)-dimensional row Fq-vector vi = (1, ai,1, ai,2, . . . , ai,N). Usri derives the group key k ′

by the inner product of the vectors vi and ACV :

k ′ = vi · ACV.

The derived group key k ′ is equal to the actual group key k if and only if the computed aggregated

secret s8∈ AS.

Update(S): If a user leaves or join the group, a new symmetric group key k ′ is selected.

KeyGen(S) is invoked to generate the updated public information PI ′. Notice that the secrets

shared with existing users are not affected by the group change. It outputs the public PI ′ and

private k ′ .

13

B. Security and Performance

We can easily show that if an adversary A can break inline AB-GKM scheme in the random

oracle model, a simulator S can be constructed to break ACV-BGKM scheme.

The intuition behind is that under the random oracle model, the inline AB-GKM scheme is an

instance of the ACV-BGKM scheme as follows. The only difference between the ACV-BGKM

and inline AB-GKM schemes is that the former is based on unique secrets whereas the latter is

based on aggregated secrets. Since each aggregated secret is constructed by concatenating unique

secrets, each aggregated secret is unique. For each unique aggregated secret, under the random

oracle model, the cryptographic hash function H produces a unique value. It is equivalent to

producing unique values using H under the ACV-BGKM scheme using unique secrets. This also

implies that the aggregated secrets are as random as individual secrets and knowing a subset of

secrets for an aggregated secret does not give an advantage for A for guessing the aggregated

secret. Therefore, an instance of inline AB-GKM is essentially equivalent to an instance of

ACV-BGKM. Hence, if A breaks inline AB-GKM in the random oracle model with advantage

ǫ, we can build a trivial simulator S that breaks ACV-BGKM without knowing any secret used

to construct the public information tuple. Shang et al. [6], [32] have shown that the probability

of breaking ACV-BGKM is a negligible 1/q, where q is the ℓ bit large prime number initialized

in Setup.

Now, we discuss the efficiency of inline AB-GKM with respect to computational costs and

required bandwidth for rekeying.

For any Usri in the group, deriving the shared group key requires N hashing operations

(evaluations of H(·)) and an inner product computation vi · ACV of two (N + 1)-dimensional

Fq-vectors, where N is the maximum group size. Therefore the overall computational complexity

is O(n). In practice, this can be done very efficiently.

For every rekeying operation, Svr needs to form a matrix A by performing N 2 hashing

operations, and then solve a linear system of size N × (N + 1). Solving the linear system is the

most costly operation as N gets large for computation on Svr. It requires O(n3) field operations

in Fq when the method of Gauss-Jordan elimination [33] is applied. Experimental results about

the ACV-BGKM scheme [6] have shown that this can be performed in a short time when N is

up to 1000. In Section IV-C, we propose approaches to improve the complexity of the BGKM

� �

14

scheme.

When a rekeying process takes place, the new information to be broadcast is PI = ACV, (z1, . . . , zN) ,

where ACV is a vector consisting of (N +1) elements in Fq, and without loss of generality we

can pick zi to be strings with a fixed length. This gives an overall communication complexity

O(n). An advantage of inline AB-GKM is that the no peer-to-peer private channel is needed for

any persisting group members when rekeying happens.

Nowadays we generally care less about storage costs on both Svr and Usrs. Nevertheless, for

a group of maximum N users, in the worst case, inline AB-GKM only requires each Usr to

store (O(|A|)) secrets, one secret per attribute that Usr possesses, and Svr to keep track of all

O(n|A|) secrets.

C. Improving the Complexity

One disadvantage of the above construction is that size of the matrix A created during KeyGen

becomes very large as the number of users satisfying each conjunctive clause increases and can

go up to N = αn, where α is the number of conjunctive clauses in P and n the number

of users in the system. This increases the computational cost at Svr to solve the linear system

associated with A. Further, it requires to solve the complete system every time Update operation

is invoked and to send O(n) public rekey information. We propose two approaches to improve

the complexity: two layer approach and subset-cover approach.

1) Two Layer Approach: We suggest a two layer approach to improve the performance of

KeyGen and Update operations based on the following two observations:

1) Due to the non-linear cost associated with solving a linear system, we can reduce the

overall computational cost by breaking the linear system in to a set of smaller linear

systems.

2) When the group dynamic changes, in general, it only changes some Ui’s, where Ui is

the set of users satisfying conjuncti. Therefore, we can isolate the change to some linear

systems without affecting the complete system.

We give a high-level description of the two layer approach. During KeyGen, instead of creating

one single matrix A, Svr creates a separate matrix Ai for each conjuncti, 1 ≤ i ≤ α. Svr solves

each linear system Ai of size NUi × (NUi + 1) and obtain the public information tuple PIi and

an intermediate key ki. Notice that each linear system is independent and the computation can

15

easily be parallelized to further improve the performance. Using the set of intermediate keys

{ki|1 ≤ i ≤ α} as the set of secrets, Svr generates a parent matrix A of much smaller size

α × (α + 1) and computes the corresponding public PI associating the group key k.

During KeyDer, Usr first obtains the intermediate key kj for the conjunctj that she satisfies

using her secret(s) and PIj . Then, using kj and PI , Usr derives the group key k.

During Update, Svr first identifies which Ui’s, the user groups, have changed, and then update

only the corresponding PIi’s as well as PI setting a new group key k ′ .

2) Subset-Cover Approach: The two layer approach presented above in Section IV-C.1 also

becomes inefficient if each NUi is large. This is due to the fact that the computational and

communication complexities are still proportional to NUi values. We utilize the result from

previous research on broadcast encryption [14], [15] to improve the complexities. Based on that,

one can make the complexities sub-linear in the number of users by giving more than one secret

during SecGen for each attribute they possess. The secrets given to each user overlaps with

different subsets of users. During the KeyGen, Svr identifies the minimum number of subsets

to which all the users belong and uses one secret per identified subset. During KeyDer, a user

identifies the subset it belongs to and uses the corresponding secret to derive the group key.

Group dynamics are handled by making some of the secrets given to users invalid.

We give a high-level description of the basic subset-cover approach. More details are available

in the technical report. In the basic scheme, n users are organized as the leaves of a balanced

binary tree of height log n. A unique secret is assigned to each vertex in the tree. Each user is

given log n secrets that correspond to the vertices along the path from its leaf node to the root

node. In order to provide provide forward secrecy when a single user is revoked, the updated tree

is described by log n subtrees formed after removing all the vertices along the path from the user

leaf node to the root node. To rekey, Svr executes Update including log n secrets corresponding

the roots of these subtrees. Naor et. al. [14] improve this technique to simultaneously revoke

r users and describe the exiting users using r log (n/r) subtrees. Since then, there has been

many improvements to the basic scheme. In the remainder of the paper, in order to maintain the

simplicity we only provide one secret per attribute but the schemes can be trivially modified to

use subset-cover approach.

16

V. SCHEME 2: THRESHOLD AB-GKM

Consider now the case of policies by which a user can derive the symmetric group key k, if

it possesses at least d attributes out of the m attributes associated with the group. We refer to

such policies as threshold policies. Under the inline AB-GKM scheme presented in Section IV,

with such threshold policies the size of the access control matrix (A) increases exponentially.

Specifically, to support d-out-of -m, the inline AB-GKM scheme may require creating a matrix

of dimension up to O(nmd) where n is the number of users in the group. Thus, the inline AB­

GKM scheme is not suitable for threshold policies. In this section, we construct a new scheme,

threshold AB-GKM, which overcomes this shortcoming.

An initial construction to enforce threshold policies is to associate each user with a random

d − 1 degree polynomial, q(x), with the restriction that each polynomial has the same value at

x = 0 and q(0) = k, where k is the symmetric group key. For each attribute users have, they are

given a secret value. The secret values given to a user are tied to its random polynomial q(x). A

user having d or more secrets can perform a Lagrange interpolation to obtain q(x) and thus the

symmetric group key k = q(0). Since the secrets are tied to random polynomials, multiple users

are unable to combine their secrets in any way that makes possible collusion attacks. However,

revocation is difficult in this simple approach and requires re-issuing all the secrets again.

Our approach to address the revocation problem is to use a layer of indirection between the

secrets given to users and the random polynomials such that revocations do not require re-issuing

all the secrets again. We use a modified ACV-BGKM construction as the indirection layer. We

cannot directly use the ACV-BGKM construction since, when multiple instances of ACV-BGKM

are utilized, it does not prevent collusion attacks in which colluding users can recover the group

key which they cannot obtain individually. We first show the details of the modified ACV-BGKM

scheme and then present the threshold AB-GKM which uses the modified ACV-BGKM scheme

and Shamir’s secret sharing scheme.

A. Modified ACV-BGKM Scheme

The modified ACV-BGKM works under similar conditions as ACV-BGKM, but instead of

giving the same key k to all the users, KeyDer algorithm gives each Usri a different key ki

when the public information tuple PI is combined with their unique secret si.

� � � �

� �

� �

17

The algorithms are executed with a trusted key server Svr and a group of users Usri,

i = 1, 2, · · · , n with the attribute universe A = {attr1, attr2, · · · , attrm}. The construction is

as follows:

Setup(ℓ): Svr initializes the following parameters: an ℓ-bit prime number q, the maximum group

size N (≥ n), a cryptographic hash function H(·) : {0, 1}∗ → Fq, where Fq is a finite field with

q elements, the key space KS = Fq, the secret space SS = {0, 1}ℓ and the set of issued secret

tuples S = ∅. Each Usri is given a unique secret index 1 ≤ i ≤ N .

SecGen(): The Svr chooses the secret si ∈ SS uniformly at random for Usri such that si is

unique among all the users, adds the secret tuple i, si to S, and outputs i, si .

KeyGen(S, K): Given the set of secret tuples S = { i, si |1 ≤ i ≤ N} and a random set of

keys K = {ki|1 ≤ i ≤ N}, it outputs the public information tuple PI which allows each Usri

to derive the key ki using their secret si. The details follow.

Svr chooses N random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ and creates an N × 2N Fq-matrix

A where for a given row i, 1 ≤ i ≤ N

ai,j =






1 if i = j

0 if 1 ≤ j ≤ N and i = j

H(si||zj) if N < j ≤ 2N

L

Like in ACV-BGKM protocol, Svr computes the null space of A with a set of its N basis

vectors, and selects a vector Y as one of the basis vectors. Svr constructs an 2N -dimensional

Fq-vector

N

ACV = (
 ki
T ·
 ei) + Y,

i=1

where ei is the ith standard basis vector of F2
q
N . Notice that, unlike ACV-BGKM, a unique key

corresponding to Usri, ki ∈ K is embedded into each location corresponding to a valid index

i. Like, ACV-BGKM, Svr sets PI = ACV, (z1, z2, . . . , zN) , and outputs PI via the broadcast

channel.

KeyDer(si, PI): Usri, using its secret si and public PI , derives the 2N -dimensional row Fq ­

vector vi which corresponds to a row in A. Then Usri derives the specific key as ki = vi · ACV .

Update(S, K’): If a user leaves or join the group, a new set of keys K ′ is selected. KeyGen(S,

K’) is invoked to generate the updated public information PI ′. Notice that the secrets shared

with existing users are not affected by the group change. It outputs the public PI ′ .

18

1) Security of Modified ACV-BGKM: In this section, we prove the security of the modified

ACV-BGKM scheme. Specifically we prove the soundness of the modified ACV-BGKM scheme.

We will model the cryptographic hash function H as a random oracle. We further assume that

q = O(2ℓ) is a sufficiently large prime power and N is relatively small. We first present two

lemmas with their proofs and then prove that the modified ACV-BGKM scheme is indeed sound.

The following lemmas are useful for proving the security of the modified ACV-BGKM.

Lemma 1 says that in a vector space V over a large finite field, the probability that a randomly

chosen vector is in a pre-selected subspace, strictly smaller than V , is very small. Lemma 2,

which uses Lemma 1, is used to prove the soundness of the modified ACV-BGKM scheme.

Lemma 1: Let F = Fq be a finite field of q elements. Let V be an n-dimensional F -vector

space, and W be an m-dimensional F -subspace of V , where m ≤ n. Let v be an F -vector

uniformly randomly chosen from V . Then the probability that v ∈ W is 1/qn−m .

Proof: The proof is straightforward. We show it here for completeness. Let {v1, v2, . . . , vm}

be a basis of W . Then it can be extended to a basis of V by adding another n−m basis vector

vm+1, . . . , vn. Any vector v ∈ V can be written as

v = α1 · v1 + . . . + αn · vn, αi ∈ F, 1 ≤ i ≤ n,

and v ∈ W if and only if αi = 0 for m + 1 ≤ i ≤ n. When v is uniformly randomly chosen

from V , it follows

Pr[v ∈ W] = 1/qn−m .

(n+1) (2n)Lemma 2: Let F = Fq be a finite field of q elements. Let vi = eT +(0, . . . , 0, v , . . . , v),i i i

ei is the ith standard basis vector of F2
q
n, i = 1, . . . , m, and 1 ≤ m ≤ n, be 2n-dimensional

(n+1)F -vectors. Let v = eT +(0, . . . , 0, v , . . . , v(2n)) be a 2n-dimensional F -vector with v(j), j ≥

n + 1 chosen independently and uniformly at random from F and e from the 2n-dimensional

standard basis vectors with the position of the non-zero element ≤ m. Then the probability that

v is linearly dependent of {vi, 1 ≤ i ≤ m} is no more than 1/qn−m .
(n+1) (2n) (n+1) (2n)),Proof: Let wi = (vi , . . . , vi), 1 ≤ i ≤ m, w = (v , . . . , v and ui =

(1) (n)
, . . . , v). All wi span an F -subspace W whose dimension is at most m in an n-dimensional (vi i

� �

�	 �

�	 �

19

F -vector space. w and u are uniformly randomly chosen n-dimensional F -vectors. By Lemma 1,

1/qn−dim(W) ≤ 1/qn−mPr[w ∈ W] =	 .

It follows that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F]

m	 m

= Pr	
L

αi · ui = e T ∧ w =
L

αi · vi for some αi ∈ F
i=1 i=1

m

T = Pr	
L

αi · ui = e · Pr[w ∈ W]
i=1

≤ 1/qn · 1/qn−m = 1/q2n−m .

Definition 1 (Soundness of the modified ACV-BGKM scheme): Let Usri be an individual with­

out a valid secret and Usrj with a valid secret sj , 1 ≤ i, j ≤ N . The modified ACV-BGKM is

sound if

•	 The probability that Usri can obtain the correct key ki by substituting the secret with a

value val that is not one of the valid secrets and then running the key derivation algorithm

KeyDer is negligible.

•	 The probability that Usrj can obtain a correct key kr, where j = r and 1 ≤ r ≤ N , by

substituting sj and then running the key derivation algorithm KeyDer is negligible.

Theorem 1: The modified ACV-BGKM scheme is sound.

Proof: Let PI = ACV, (z1, . . . , zN) be the public information broadcast from Svr.

Case 1: Usri does not have a valid secret and tries to derive ki.

Let Y be a vector orthogonal to the access control matrix A.

Let

{vi, 1 ≤ i ≤ N}

be a basis of the nullspace of Y .

Let

(N+1) (2N)),v = e T + (0, . . . , 0, v , . . . , v

20

where

(i+N)v = H(val||zi), 1 ≤ i ≤ N.

Usri can derive the key using v by running the KeyDer algorithm if and only if v is linearly

dependent from vi, 1 ≤ i ≤ N . When val is not a valid secret and H is a random oracle, v is

indistinguishable from a vector whose first N entries are from eT and the rest of the N entries

are independently and uniformly chosen from Fq. By Lemma 2, the probability that v is linearly

dependent from {vi, 1 ≤ i ≤ N} is no more than 1/q2N−N = 1/qN , which is negligible. This

proves that the modified ACV-BGKM scheme is sound in case 1.

Case 2: Usrj has a valid secret sj and tries to derive kr, where r = j and 1 ≤ r ≤ N .

Since Usrj has a valid secret sj , it can construct the jth row of A as follows:

T (N+1) (2N)
vj = e + (0, . . . , 0, v , . . . , v),j j j

where

(i+N)
vj = H(sj||zi), 1 ≤ i ≤ N.

Usrj can obtain the key kj using vj:

kj = ACV · vj.

In order to obtain the key kr, Usrj needs to compute ACV · vr where vr is defined as follows.

T (N+1) (2N)= e + (0, . . . , 0, v , . . . , v),vr r r r

where

(i+N)vr = H(val||zi), 1 ≤ i ≤ N.

By construction, vr is linearly independent from vj . When val is not a valid secret and H is

a random oracle, vr is indistinguishable from a vector whose first N entries are from er
T and

the rest of the N entries are independently and uniformly chosen from Fq. Thus, knowing vj

does not provide an advantage for Usrj to compute vr. Therefore, the probability of deriving

kr by running the KeyDer algorithm remains the same negligible value 1/qN as in case 1. This

proves that the modified ACV-BGKM scheme is sound in case 2.

21

B. Our Construction

Now we provide our construction of the threshold AB-GKM scheme which utilizes the

modified ACV-BGKM scheme.

Recall that in this protocol, we wish to allow a user to derive the symmetric group key k

if the user possesses at least d attributes out of m. For each user Usri we associate a random

d − 1 degree polynomial qi(x) with the restriction that each polynomial has the same value k,

the symmetric group key, at x = 0, that is, qi(0) = k. We associate a random secret value with

each user attribute. For each attribute attri, we generate a public information tuple (PIi) using

the modified ACV-BGKM scheme with the restriction that the temporary key that each Usrj

derives is tied to their random polynomial qj(x), that is qj(i) = ki. Notice that each user obtains

different temporary keys from the same PI . If a user can derive d temporary keys corresponding

to d attributes, it can compute its random function q(x) and obtain the group symmetric key k.

Notice that, since the temporary keys are tied to a unique polynomial, multiple users are unable

to collude and combine their temporary keys in order to obtain the symmetric group key which

they are not allowed to obtain individually. Thus, our construction prevents collusion attacks.

A detailed description of our threshold AB-GKM scheme follows.

Setup(ℓ, d) Svr initializes the parameters of the underlying modified ACV-BGKM scheme: the

ℓ-bit prime number q, the maximum group size N (≤ n), the cryptographic hash function H ,

the key space KS, the secret space SS, the set of issued secrets S, the user-attribute matrix UA

and the universe of attributes A = {attr1, attr2, · · · , attrm}. Svr sets the degree of the random

polynomial assigned to each user to be d − 1.

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq and a set, Q of elements in Fq:

x − jI
Δi,Q(x) = .

i − j
j∈Q,j #=i

SecGen(γi) For each attribute attrj ∈ γi, where γi ⊂ A, Svr invokes SecGen() of the modified

ACV-BGKM scheme in order to obtain the random secret si,j . It returns βi, the set of secrets

for all the attributes in γi.

KeyGen(α) For each user Usri, Svr assigns a random degree d − 1 polynomial qi(x) with

qi(0) set to the group symmetric key k. For each attribute attrj in the set of attributes α

(α ⊂ A and |α| ≥ d), it selects the set of secrets corresponding to attrj , Sj and invokes

22

KeyGen(Sj , {q1(j), q2(j), · · · , qN(j)}) of the modified ACV-BGKM scheme to obtain PIj , the

public information tuple for attrj . It outputs the private group key k and the set of public

information tuples PI = {PIj| for each attrj ∈ α}.

KeyDer(βi, PI) Using the set of d secrets βi = {si,j|1 ≤ j ≤ N} for the d attributes attrj ,

1 ≤ j ≤ N , and the corresponding d public information tuples PIj ∈ PI, 1 ≤ j ≤ N , it derives

the group symmetric key k as follows.

First, it derives the temporary key kj for each attribute attrj using the underlying modified

ACV-BGKM scheme as KeyDer(si,j , PIj). Then, using the set of d points Qi = {(j, kj)|1 ≤

j ≤ N}, it computes qi(x) as follows:

x − jI
Δj,Qi

(x) =
i − j

j∈Qi,j #=i

L
qi(x) = kjΔj,Qi

(x).
j∈Qi

It outputs the group key k = qi(0).

Update() If a user leaves or joins the group, a new symmetric group key k ′ is selected. The

Update method of the underlying modified ACV-BGKM scheme is invoked to generate the

updated public information. Notice that the secrets shared with existing users are not affected

by the group change.

C. Security and Performance

If an adversary can break our threshold AB-GKM scheme, a simulator can be constructed

to break the modified ACV-BGKM scheme. We give a high-level detail of the reduction based

proof.

Suppose an adversary A having a set of d−1 attributes α can break our scheme in the random

oracle model with advantage ǫ. We build a simulator S that can derive the key kd from PId

corresponding to attrd ∈ α with advantage ǫ. In other words, we build a simulator to break the

modified ACV-BGKM scheme.

The intuition behind our proof is that, by construction, the modified ACV-BGKM instances

corresponding to the attributes are independent. In other words, a user who can access the key

� �

23

for one attribute does not have any advantage in obtaining the key for another attribute using

the known attribute.

S runs Setup of the threshold AB-GKM scheme. A obtains secrets {si|i = 1, 2, · · · , d − 1}

for the attributes α it has. S constructs the public information tuples {PIi|i = 1, 2, · · · , d − 1},

each having a random key ki corresponding to a random degree d − 1 polynomial q(x) and

sends them along with PId to A. A outputs k, which is equal to q(0). This allows S to fully

determine q(x) as it now has d points and derive the key kd = q(d). In other words, it allows S

to break the modified ACV-BGKM scheme to recover the intermediate key kd from the public

information tuple PId without the knowledge of the secret sd. In Appendix I, we show that the

probability of breaking the modified ACV-BGKM scheme is a negligible 1/qN where q is the ℓ

bit prime number and N is the maximum number of users.

Now, we discuss the efficiency of the threshold AB-GKM with respect to computational costs

and required bandwidth for rekeying.

For any Usri in the group deriving the shared group key requires:
�d

i=1 Ni hashing operations

(evaluations of H(·)), where Ni is the maximum number of users having attri; and d inner product

computations vi · ACVi of two (2Ni)-dimensional Fq-vectors and the Lagrange interpolation

O(m log2 m), where m = |A|. Therefore, the overall computational complexity is O(N +
�d m log2 m) where N = i=1 Ni. Notice that the inner product computations are independent

and can be parallelized to improve performance.

For every rekeying phase, for each attri, Svr needs to form a matrix Ai by performing Ni
2

hashing operations, and then solve a linear system of size Ni × (2Ni). Solving the linear system

is the most costly operation as Ni gets large for computation on Svr; it requires O(
�m N3)i=1 i

field operations in Fq.

When a rekeying process takes place, the new information to be broadcast is PIi = ACVi, (z1, . . . , zNi) ,

i = 1, 2, · · · ,m, where ACVi is a vector consisting of (2Ni) elements in Fq, and without loss of

generality we can pick zi to be strings with a fixed length. This gives an overall communication

complexity O(
�m

i=1 Ni).

For a group of maximum N users, in the worst case, the threshold AB-GKM only requires

each Usr to store (O(m)) secrets, one secret per attribute that Usr possesses and Svr to keep

track of all O(Nm) secrets.

24

VI. SCHEME 3: ACCESS TREE AB-GKM

In the inline AB-GKM scheme, the policy P is embedded into the BGKM scheme itself. As

discussed in Section V, while this approach works for many different types of policies, such an

approach is not able to efficiently support threshold access control policies. Scheme 2, threshold

AB-GKM, on the other hand, is able to efficiently support threshold policies, but it is unable

to support other policies. In order to support more expressive policies, we extend the threshold

AB-GKM. Like the threshold AB-GKM, instead of embedding P in the BGKM scheme, we

construct a separate BGKM instance for each attribute. Then, we embed the P in an access

structure T . T is a tree with the internal nodes representing threshold gates and the leaves

representing attributes. The construction of T is similar to that of the approach by Goyal et

al. [3]. However, unlike Goyal et al.’s approach, the goal of our construction is to derive the

group key for the users whose attributes satisfy the access structure T .

A. Access Tree

Let T be a tree representing an access structure. Each internal node of the tree represents a

threshold gate. A threshold gate is described by its child nodes and a threshold value. If nx is

the number of children of a node x and tx is its threshold value, then 0 < tx ≤ nx. Notice that

when tx = 1, the threshold gate is an OR gate and when tx = nx, it is an AND gate. Each leaf

node x of the tree is described by an attribute, a corresponding BGKM instance and a threshold

value tx = 1. The children of each node x are indexed from 1 to nx.

We define the functions in Table II in order to construct our scheme. All the functions except

sat are straightforward to implement. A brief description of sat follows:

The function sat(Tx, α) works as a recursive function. If x is a leaf node, it returns 1, provided

that the attribute associated with x is in the set of attributes α and 0 otherwise. If x is an internal

node, if at least tx children nodes of x return 1, then sat(Tx, α) returns 1 and 0 otherwise.

B. Our Construction

The access tree AB-GKM scheme consists of five algorithms:

Setup(ℓ): Svr initializes the parameters of the underlying modified ACV-BGKM scheme: the

prime number q, the maximum group size N (≤ n), the cryptographic hash function H , the key

25

TABLE II

ACCESS TREE FUNCTIONS

Function Description

index(x) Returns the index of node x

parent(x) Returns the parent node of node x

attr(x) Returns the index of the attribute associated with a leaf node x

qx The polynomial assigned to node x

sat(Tx, α) Returns 1 if the set of attributes α satisfies Tx, the subtree rooted at

node x, and 0 otherwise

space KS, the secret space SS, the set of issued secrets S, the user-attribute matrix UA and the

universe of attributes A = {attr1, attr2, · · · , attrm}.

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq and a set, Q of elements in Fq:

x − jI
Δi,Q(x) = .

i − j
j∈Q,j #=i

SecGen(γi): For each attribute attrj ∈ γi, where γi ⊂ A, Svr invokes SecGen() of the modified

ACV-BGKM scheme to obtain the random secret si,j . It returns βi, the set of secrets for all the

attributes in γi.

KeyGen(P): Svr transforms the policy P into an access tree T . The algorithm outputs the public

information which a user can use to derive the group key if and only if the user’s attributes

satisfy the access tree T built for the policy P. The algorithm constructs the public information

as follows.

For each user Usri having the intermediate set of keys Ki = {ki,j|1 ≤ j ≤ m}, where ki,j

represents the intermediate key for Usri and attrj , the following construction is performed. For

each attribute attri, there is a leaf node in T . The construction of the tree is performed top-down.

Each node x in the tree is assigned a polynomial qx. The degree of the polynomial qx, dx is

set to tx − 1, that is, one less than the threshold value of the node. For the root node r, qr(0)

is set to the group key k and dr other points are chosen uniformly at random so that qr is a

unique polynomial of degree dr fully defined through Lagrange interpolation. For any other node

x, qx(0) is set to qparent(x)(index(x)) and dx other points are chosen uniformly at random to

uniquely define qx. For each leaf node x corresponding to a unique attribute attrj , qx(0) is set

26

to qparent(x)(1) and ki,j = qx(0).

At the end of the above computation, we have all the sets of intermediate keys K = {Ki|Usri, 1 ≤

i ≤ N}. For each leaf node x, the modified BGKM algorithm KeyGen(Sx, Kx), where Sx is

the set of secrets corresponding to the attribute associated with the node x and Kx = {ki,j|1 ≤

i ≤ N, attrj}, j = attr(x), is invoked to generate public information tuple PIx. We denote the

set of all the public information tuples PI = {PIj|attrj, 1 ≤ j ≤ m}.

KeyDer(βi, PI): Given βi, a set of secret values corresponding to the attributes of Usri, and the

set of public information tuples PI, it outputs the group key k.

The key derivation is a recursive procedure that takes βi and PI to bottom-up derive k. Note

that a user can obtain the key if and only if her attributes satisfy the access tree T , i.e., sat(Tr, βi)

= 1. The high-level description of the key derivation is as follows.

For each leaf node x corresponding to the attribute with the user’s secret value sx ∈ βi, the user

derives the intermediate key kx using the underlying modified BGKM scheme KeyDer(sx, P Ix).

Using Lagrange interpolation, the user recursively derives the intermediate key kx for each

internal ancestor node x until the root node r is reached and kr = k. Notice that since intermediate

keys are tied to unique polynomials, users cannot collude to derive the group key k if they are

unable to derive it individually. A detailed description follows.

If x is a leaf node, it returns an empty value ⊥ if attr(x) ∈ βi, otherwise it returns the key

kx as follows:

kx = vx · ACVx,

where vx is the key derivation vector corresponding to the attribute attrattr(x) and ACVx the

access control vector in PIx.

If x is an internal node, it returns an empty value ⊥ if the number of children nodes having

a non-empty key is less than tx, otherwise it returns kx as follows:

Let the set Qx contain the indices of tx children nodes having non-empty keys {ki|i ∈ Qx}.

27

y − iI
Δi,Qx

(y) =
j − i

i∈Q ,i#=jx

L
qx(y) = kiΔi,Qx

(y)
i∈Qx

kx = qx(0).

The above computation is performed recursively until the root node is reached. If Usri satisfies

T , Usri gets k = qr(0), where r is the root node. Otherwise, Usri gets an empty value ⊥.

C. Security and Performance

If an adversary can break our access tree AB-GKM scheme, a simulator can be constructed

to break the modified ACV-BGKM scheme. We give a high-level detail of the reduction based

proof.

Suppose that an adversary A having a set of attributes α that does not satisfy the access tree

T breaks our scheme in the random oracle model with advantage ǫ. Let the root node of T be

r and the group key k = qr(0). Notice that since A does not satisfy T and qr(x) a tr-out-of-nr

threshold scheme, A satisfies no more than tr − 1 subtrees rooted at children of r out of the nr

subtrees. By inference, it is easy to see that A does not satisfy at least one leaf node. We build

a simulator S that can derive kx from PIx corresponding to one such unsatisfied leaf node with

advantage ǫ. In other words, we build a simulator to break the modified ACV-BGKM scheme.

Like the proof in Section V, using A as a routine, S can obtain the group key k with advantage

ǫ. Now, S works downwards T to recover the keys for nodes originally unsatisfied by A using

Lagrange interpolation. For example, using k and tr − 1, S obtains the key ktr for the tth
r child

node of r. Finally, S obtains the key kx for an unsatisfied leaf node x corresponding to attrx.

In other words, it allows S to break the modified ACV-BGKM scheme to recover the key kx

from the public information tuple PIx without the knowledge of the secret sx. We show that

the probability of breaking the modified ACV-BGKM scheme following KeyDer algorithm is a

negligible 1/qN where q is the ℓ bit prime number and N is the maximum number of users.

Now, we discuss the efficiency of threshold AB-GKM with respect to computational costs

and required bandwidth for rekeying.

28

For any Usri in the group, deriving the shared group key requires:
�d

i=1 Ni hashing operations

(evaluations of H(·)), where d = |βi|, Ni is the maximum number of users having attri, and

d inner product computations vi · ACVi of two (2Ni)-dimensional Fq-vectors and M Lagrange

interpolations O(Mm log2 m), where M = No. of internal nodes in T and m = |A|. Therefore,
�dthe overall computational complexity is O(N + Mm log2 m) where N = i=1 Ni. Notice that

the inner product computations are independent and can be parallelized to improve performance.

The cost of rekeying, communication and storage are comparable to those of the threshold

scheme presented in Section V.

VII. APPLICATION TO A MEDICAL SYSTEM

Among other applications, fine-grained access control in a group setting using broadcast

encryption is one important application of AB-GKM schemes. We illustrate our AB-GKM

schemes using a healthcare scenario [18], [6]. A hospital (Svr) supports fine-grained access

control on electronic health records (EHRs) [34], [35] by encrypting and making the encrypted

records available to hospital employees (Usrs). Typical hospital users include employees playing

different roles such as receptionist, cashier, doctor, nurse, pharmacist, system administrator and

non-employees such as patients. An EHR document is divided into subdocuments including

BillingInfo, ContactInfo, Medication, PhysicalExam, LabReports and so on. In accordance with

regulations such as health insurance portability and accountability act (HIPAA), the hospital

policies specify which users can access which subdocument(s). A cashier, for example, need not

have access to data in EHRs except for the BillingInfo, while a doctor or a nurse need not have

access to BillingInfo. These policies can be based on the content of EHRs itself. An example

of such policies is that “information about a patient with cancer can only be accessed by the

primary doctor of the patient”. In addition, patients define their own privacy policies to protect

their EHRs. For example, a patient’s policy may specify that “only the doctors and nurses who

support her insurance plan can view her EHR”.

In order to support content-based access control, the hospital maintains some associations

among users and data. Tables III and IV show some example associations. Table III shows

for each patient, identified by the pseudonym “Patient ID”, the corresponding insurance plan.

Table IV shows the insurance plans supported by each doctor and nurse, identified by the

pseudonym “Employee ID”.

29

TABLE III

PATIENT INSURANCE PLANS

Patient ID Insurance Plan

pat
1 Med A

pat
2 Med B

pat
3 ACME

pat
4 Med A

TABLE IV

INSURANCE PLANS SUPPORTED BY DOCTORS/NURSES

EmployeeID Attributes Insurance Plan(s)

emp
1 doctor MedB, ACME

emp
2 doctor ACME

emp
3 nurse/junior ACME

emp
4 nurse/senior MedA

emp
5 nurse/senior MedC

emp
6 doctor MedA

emp
7 doctor MedB, ACME

emp
8 nurse/senior MedA

emp
9 nurse/senior MedA, MedB, ACME

The hospital runs Setup algorithm to initialize system parameters and issues secrets to em­

ployees by running the SecGen algorithm. Table V shows the content of the user attribute matrix

UA that the hospital maintains.

In what follows we show how an example access control policy is enforced for each of

the three AB-GKM schemes we constructed. Note that the example policies considered in the

following sub-sections are not related and used only for the illustrative purposes.

A. Inline AB-GKM

First we illustrate the use of inline AB-GKM scheme. Consider the following policy speci­

fication on the Medication subdocument of the EHR: “A senior nurse or a doctor can access

Medication” and “Doctors and nurses supporting the insurance plan of a patient can access

30

TABLE V

USER ATTRIBUTE MATRIX

Emp

ID

doctor nurse senior junior MedA MedB MedC ACME

emp1 100 ⊥ ⊥ ⊥ ⊥ 111 ⊥ 102

emp2 120 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 105

emp3 ⊥ 106 ⊥ 120 ⊥ ⊥ ⊥ 121

emp4 ⊥ 103 150 ⊥ 175 ⊥ ⊥ ⊥

emp5 ⊥ 133 151 ⊥ ⊥ ⊥ 161 ⊥

emp6 129 ⊥ ⊥ ⊥ 141 ⊥ ⊥ ⊥

emp7 119 ⊥ ⊥ ⊥ ⊥ 133 ⊥ 137

emp8 ⊥ 143 152 ⊥ 115 ⊥ ⊥ ⊥

emp9 ⊥ 109 156 ⊥ 117 119 ⊥ 124

the patient’s EHR”. The insurance plan is an attribute of the Medication subdocument. The

corresponding access control policy looks like as follows:

P = ((“role = nurse” ∧ “level = senior”) ∨ (“role = doctor”)) ∧ (“patient-insurance =

employee-insurance”)

The policy is expressed in CNF as follows:

P = ((“role = nurse” ∧ “level = senior” ∧ “patient-insurance = employee-insurance”) ∨ (“role

= doctor” ∧ “patient-insurance = employee-insurance”)

Let the medication subdocument of pati, 1 ≤ i ≤ 4 be Mi. Since the above access control

policy involves content based access control and the patients are covered under three different

insurance plans, we need to perform three encryptions with three different keys. Medication

subdocuments M1 and M4 are encrypted with the same symmetric group key k1, M2 with k2 and

M3 with k3. We now show how the hospital executes the KeyGen algorithm for k1. The hospital

computes the aggregated secrets for the employees who satisfy the above access control policy

with the MedA insurance plan (Table VI).

The hospital then invokes the KeyGen algorithm with the group key k1 and the aggregated

secrets in Table VI to generate the corresponding public information tuple PI1:

� �

31

TABLE VI

AGGREGATED SECRETS FOR k1

Emp

ID

Attributes Aggregated Secret

emp
4 nurse, senior, MedA 103||150||175

emp
6 doctor, MedA 129||141

emp
8 nurse, senior, MedA 143||152||115

emp
9 nurse, senior, MedA 109||156||117

PI1 = ACV1, (z1, z2, z3, z4) .

The hospital publishes Ek1 (M1), Ek1 (M4), where E is a symmetric encryption algorithm,

along with PI1. Similarly, two additional KeyGen operations are performed for the Medication

subdocuments M2 and M3.

Fine grained access control. Notice that only those employees who satisfy the access control

policy can derive one or more symmetric group keys k1, k2, k3 using KeyDer algorithm and

decrypt the Medication subdocuments. Specifically, only emp4, emp6, emp8 and emp9 can

access M1 and M4, only emp1, emp7 and emp9 can access M2, and only emp1, emp2, emp7

and emp9 can access M3. Observe that even though emp5 is a senior nurse, she cannot decrypt

any of the Medication subdocuments as the insurance plan that she supports is different. Even

though emp3 is a nurse with an insurance plan overlapping with that of a patient, she cannot

decrypt any of the Medication subdocuments since she is a junior nurse.

Collusion resistance. It may appear that if emp3 and emp5 collude, they can obtain M3. However,

the inline AB-GKM construction makes it impossible to combine secrets from multiple users to

create a valid aggregated secret. Thus, neither emp3 nor emp5 can access M3.

Handling user dynamics. Assume a new doctor who supports the insurance plan MedA joins the

hospital. In order to provide backward security, the hospital needs to update only PI1, the public

information tuple corresponding to the Medication subdocuments M1 and M4, and re-encrypt M1

and M4 with the new group key k1
′ . A similar approach is taken to assure forward security when

an employee resigns from the hospital or some attributes are revoked. Notice that our scheme can

� �

� �

� �

� �

32

even handle policy changes with the same approach used for handling changes in user attributes.

B. Threshold AB-GKM

Now we illustrate the use of the threshold AB-GKM scheme. Consider the following policy

specification on the Medication subdocument of the EHR. “An employee supporting at least two

insurance plans can access the Medication of any patient”. We consider each insurance plan as

an attribute. Since there are four insurance plans, MedA, MedB, MedC and ACME, the above

policy can be implemented by a 2-out-of-4 threshold AB-GKM scheme. Table VII shows the

list of employees who satisfy each insurance plan attribute.

TABLE VII

LIST OF EMPLOYEES SATISFYING EACH INSURANCE PLAN

Attribute Employee IDs

MedA emp
4
, emp

6
, emp

8
, emp

9

MedB emp
1
, emp

7
, emp

9

MedC emp
5

ACME emp
1
, emp

2
, emp

3
, emp

7
, emp

9

The hospital executes the KeyGen algorithm to generate 4 PI tuples and encrypts the Med­

ication subdocuments with the group symmetric key k:

PIMedA = ACVMedA, (z1, z2, z3, z4)

PIMedB = ACVMedB, (z5, z6, z7)

PIMedC = ACVMedC , (z8)

PIACME = ACVACME, (z9, z10, z11, z12, z13)

Threshold access control. Notice that only three employees can derive the group key k using

KeyDer algorithm to decrypt the Medication subdocuments: emp1, emp7, and emp9. Our

threshold scheme is very flexible in that an employee supporting more than two insurance plans

can use any two insurance plans to derive the key k. For example, emp9 can use any two of

her three insurance plans.

33

Collusion resistance. Notice that emp4 supports MedA and emp5 supports MedC. It may appear

that these two employees can collude in order to derive the group key k. Since the threshold

AB-GKM scheme associates each user with a unique degree 1 polynomial, combining the

intermediate keys derived from PIMedA and PIMedB for emp4 and emp5, respectively, does

not result in a correct polynomial whose constant is the group key k.

Handling user dynamics. Assume that emp1 no longer supports the insurance plan ACME. The

hospital re-generates the public information by removing emp1 from the calculation of PIACME

and associating a new group key k ′ . emp1 is not able to derive k ′ since it is associated only

with PIMedB. Notice that the revocation does not affect the secret information each existing

employee has. A similar approach is taken when an existing employee supports a new insurance

plan. It should be noted that our scheme has the added flexibility to support a different threshold

policy by requiring only to change the public information.

C. Access Tree AB-GKM

Now we illustrate the use of the access tree AB-GKM scheme. Consider the following policy

specification on the Medication subdocument of the EHR. “A senior nurse supporting at least

two insurance plans can access Medication of any patient”. In order to implement this access

control policy, we need to consider attributes role, level and insurance plan. The access control

policy looks as follows:

P = (“role = nurse” ∧ “level = senior” ∧ “2-out-of-{MedA, MedB, MedC, ACME}”)

In addition to Table VII containing the list of employees satisfying insurance plans, the hospital

maintains the list of employees satisfying the attributes nurse and senior as shown in Table VIII.

TABLE VIII

LIST OF EMPLOYEES SATISFYING ATTRIBUTES

Attribute Employee IDs

nurse emp
3
, emp

4
, emp

5
, emp

8
, emp

9

senior emp
4
, emp

5
, emp

8
, emp

9

The above policy can be represented using an access tree with two internal nodes and six leaf

nodes. The root node is an AND gate and has three children. The first and second children of

� �

� �

� �

� �

� �

� �

34

the root node represent the attributes nurse and senior, respectively, and the third child of the

root node is a 2-out-of-4 threshold gate which has four children representing the four insurance

plans.

The hospital executes the KeyGen algorithm to generate six PI tuples and encrypts the

Medication subdocuments with the group symmetric key k:

PIMedA = ACVMedA, (z1, z2, z3, z4)

PIMedB = ACVMedB, (z5, z6, z7)

PIMedC = ACVMedC , (z8)

PIACME = ACVACME, (z9, z10, z11, z12, z13)

PInurse = ACVnurse, (z14, z15, z16, z17, z18)

PIsenior = ACVsenior, (z19, z20, z21, z22)

Expressive access control. Notice that only one employee, emp9, can derive the group key k

using KeyDer algorithm to decrypt Medication subdocuments.

Collusion resistance. Notice that emp4 supports MedA and emp5 supports MedC and both of

them are senior nurses. It may appear that these two employees can collude to derive the group

key k. Since, in this particular example, the access tree AB-GKM scheme associates each user

with two unique polynomials, one for the AND gate and another for the threshold gate, none of

them individually satisfies the access tree and KeyDer results in an incorrect key.

Handling user dynamics. Assume that emp4 starts to support the insurance plan ACME in

addition to MedA. The hospital re-generates the public information by adding emp4 to the

calculation of PIACME and associating a new group key k ′ . Now emp4 is able to derive k ′

using KeyDer as its attributes satisfy the access tree. Notice that the change in the user attributes

does not affect the secret information each existing employees have. A similar approach is taken

when one or more of these attributes are revoked from an existing employee. It should be noted

that, like the first two schemes, this scheme has the added flexibility to support changes to the

access tree by requiring only changes to the public information.

35

VIII. CONCLUSION

In this paper, we have presented three attribute based group key management (AB-GKM)

schemes: inline AB-GKM, threshold AB-GKM, and access tree AB-GKM. In all our schemes,

when the group changes, the rekeying operations do not affect the private information of existing

group members and thus our schemes eliminate the need of establishing expensive private

communication channels. We have also shown that our schemes are resistant to collusion attacks;

multiple users are not able to combine their private information to derive a group key which

they cannot derive individually.

Our constructions are based on a provably secure ACV-BGKM scheme and Shamir’s threshold

scheme. We have introduced a modified ACV-BGKM scheme with security proofs in order to

construct threshold and access tree AB-GKM schemes. We have provided high-level proofs of

security of the three schemes under the random oracle model. We have also described a practical

group scenario where our schemes are utilized to manage the group.

As future work, we plan to implement the proposed schemes and experimentally evaluate their

performance.

REFERENCES

[1]	 R. Krishnan, R. Sandhu, J. Niu, and W. H. Winsborough, “Foundations for group-centric secure information sharing

models,” in Proceedings of the 14th ACM symposium on Access control models and technologies, ser. SACMAT ’09.

New York, NY, USA: ACM, 2009, pp. 115–124. [Online]. Available: http://doi.acm.org/10.1145/1542207.1542227

[2]	 A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Eurocrypt 2005, LNCS 3494. Springer-Verlag, 2005, pp.

457–473.

[3]	 V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted

data,” in CCS ’06: Proceedings of the 13th ACM conference on Computer and communications security. New York, NY,

USA: ACM, 2006, pp. 89–98.

[4]	 J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” in SP ’07: Proceedings of the

2007 IEEE Symposium on Security and Privacy. Washington, DC, USA: IEEE Computer Society, 2007, pp. 321–334.

[5]	 X. Zou, Y. Dai, and E. Bertino, “A practical and flexible key management mechanism for trusted collaborative computing,”

INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, pp. 538–546, April 2008.

[6]	 N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving approach to policy-based content dissemination,” in

ICDE ’10: Proceedings of the 2010 IEEE 26th International Conference on Data Engineering, 2010.

[7]	 A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

[8]	 Y. Challal and H. Seba, “Group key management protocols: A novel taxonomy,” International Journal of Information

Technology, vol. 2, no. 2, pp. 105–118, 2006.

http://doi.acm.org/10.1145/1542207.1542227

36

[9]	 H. Harney and C. Muckenhirn, “Group key management protocol (gkmp) specification,” Network Working Group, United

States, Tech. Rep., 1997.

[10]	 H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain, “A secure multicast protocol with copyright protection,” SIGCOMM

Comput. Commun. Rev., vol. 32, no. 2, pp. 42–60, 2002.

[11]	 C. Wong and S. Lam, “Keystone: a group key management service,” in International Conference on Telecommunications,

ICT, 2000.

[12]	 A. Sherman and D. McGrew, “Key establishment in large dynamic groups using one-way function trees,” Software

Engineering, IEEE Transactions on, vol. 29, no. 5, pp. 444–458, May 2003.

[13]	 S. Berkovits, “How to broadcast a secret,” in EUROCRYPT ’91: Proceedings of the 10th annual international conference

on Advances in Cryptology. Berlin, Heidelberg: Springer-Verlag, 1991, pp. 535–541.

[14]	 D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing schemes for stateless receivers,” in Proceedings of

the 21st Annual International Cryptology Conference on Advances in Cryptology, ser. CRYPTO ’01. London, UK:

Springer-Verlag, 2001, pp. 41–62. [Online]. Available: http://portal.acm.org/citation.cfm?id=646766.704277

[15]	 D. Halevy and A. Shamir, “The lsd broadcast encryption scheme,” in Proceedings of the 22nd Annual International

Cryptology Conference on Advances in Cryptology, ser. CRYPTO ’02. London, UK: Springer-Verlag, 2002, pp. 47–60.

[Online]. Available: http://portal.acm.org/citation.cfm?id=646767.704291

[16]	 D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in CRYPTO ’01: Proceedings of the 21st

Annual International Cryptology Conference on Advances in Cryptology. Springer-Verlag, 2001, pp. 213–229.

[17]	 C. Cocks, “An identity based encryption scheme based on quadratic residues,” in Proceedings of the 8th IMA International

Conference on Cryptography and Coding. London, UK: Springer-Verlag, 2001, pp. 360–363.

[18]	 M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure attribute-based systems,” in CCS ’06: Proceedings of the 13th

ACM conference on Computer and communications security. New York, NY, USA: ACM, 2006, pp. 99–112.

[19]	 P. Traynor, K. R. B. Butler, W. Enck, and P. McDaniel, “Realizing massive-scale conditional access systems through

attribute-based cryptosystems,” in Proceedings of the Network and Distributed System Security Symposium, 2008, ser.

NDSS 2008, 2008.

[20]	 L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion-resistant group key management using attribute-aased

encryption. cryptology eprint archive report 2007/161,” 2007.

[21]	 S. Yu, K. Ren, and W. Lou, “Attribute-based on-demand multicast group setup with membership anonymity,” in

Proceedings of the 4th international conference on Security and privacy in communication netowrks, ser. SecureComm

’08. New York, NY, USA: ACM, 2008, pp. 18:1–18:6. [Online]. Available: http://doi.acm.org/10.1145/1460877.1460900

[22]	 I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key management for secure internet multicast using boolean

function minimization techniques,” in INFOCOM 1999. The 18th Conference on Computer Communications. IEEE, 1999,

pp. 689–698.

[23]	 M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The versakey framework: versatile group key management,”

Selected Areas in Communications, IEEE Journal on, vol. 17, no. 9, pp. 1614 –1631, Sep. 1999.

[24]	 A. Fiat and M. Naor, “Broadcast encryption,” in Advances in Cryptology - CRYPTO 93, ser. Lecture Notes in

Computer Science, D. Stinson, Ed., vol. 773. Springer Berlin / Heidelberg, 1994, pp. 480–491. [Online]. Available:

http://dx.doi.org/10.1007/3-540-48329-2 40

[25]	 E. Bertino and E. Ferrari, “Secure and selective dissemination of XML documents,” ACM Trans. Inf. Syst. Secur., vol. 5,

no. 3, pp. 290–331, 2002.

http://dx.doi.org/10.1007/3-540-48329-2
http://doi.acm.org/10.1145/1460877.1460900
http://portal.acm.org/citation.cfm?id=646767.704291
http://portal.acm.org/citation.cfm?id=646766.704277

37

[26]	 G. Miklau and D. Suciu, “Controlling access to published data using cryptography,” in VLDB ’2003: Proceedings of the

29th international conference on Very large data bases. VLDB Endowment, 2003, pp. 898–909.

[27]	 D. Halevy and A. Shamir, “The lsd broadcast encryption scheme,” in Advances in Cryptology CRYPTO 2002, ser.

Lecture Notes in Computer Science, M. Yung, Ed., vol. 2442. Springer Berlin / Heidelberg, 2002, pp. 145–161.

[Online]. Available: http://dx.doi.org/10.1007/3-540-45708-9 4

[28]	 D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast encryption with short ciphertexts and private keys,”

in Advances in Cryptology CRYPTO 2005, ser. Lecture Notes in Computer Science, V. Shoup, Ed., vol. 3621. Springer

Berlin / Heidelberg, 2005, pp. 258–275. [Online]. Available: http://dx.doi.org/10.1007/11535218 16

[29]	 J. Benaloh and J. Leichter, “Generalized secret sharing and monotone functions,” in CRYPTO ’88: Proceedings of the 8th

Annual International Cryptology Conference on Advances in Cryptology. London, UK: Springer-Verlag, 1990, pp. 27–35.

[30]	 E. F. Brickell, “Some ideal secret sharing schemes,” in EUROCRYPT ’89: Proceedings of the workshop on the theory and

application of cryptographic techniques on Advances in cryptology. New York, NY, USA: Springer-Verlag New York,

Inc., 1990, pp. 468–475.

[31]	 T. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in Advances in Cryptology

CRYPTO 91, ser. Lecture Notes in Computer Science, J. Feigenbaum, Ed., vol. 576. Springer Berlin / Heidelberg, 1992,

pp. 129–140. [Online]. Available: http://dx.doi.org/10.1007/3-540-46766-1 9

[32]	 N. Shang, M. Nabeel, E. Bertino, and X. Zou, “Broadcast group key management with access control vectors,” Department

of Computer Science, Tech. Rep., 4 2010.

[33]	 D. Dummit and R. Foote, “Gaussian-Jordan elimination,” in Abstract Algebra, 2nd ed. Wiley, 1999, p. 404.

[34]	 “XML in clinical research and healthcare industries,” http://xml.coverpages.org/healthcare.html.

[35]	 M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B. Laleci, “A survey and analysis of electronic healthcare record

standards,” ACM Comput. Surv., vol. 37, no. 4, pp. 277–315, 2005.

http://xml.coverpages.org/healthcare.html
http://dx.doi.org/10.1007/3-540-46766-1
http://dx.doi.org/10.1007/11535218
http://dx.doi.org/10.1007/3-540-45708-9

