
CERIAS Tech Report 2011-03
Data-centric Approaches to Kernel Malware Defense

 by Junghwan Rhee
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Junghwan Rhee By

Entitled
Data-Centric Approaches to Kernel Malware Defense

Doctor of Philosophy For the degree of

Is approved by the final examining committee:

Dongyan Xu Eugene H. Spafford

 Chair

Xiangyu Zhang Sonia Fahmy

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Dongyan Xu Approved by Major Professor(s): ____________________________________

Approved by: Sunil Prabhakar / William J. Gorman 06/21/2011
Head of the Graduate Program Date

Choose your degree

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Data-Centric Approaches to Kernel Malware Defense

For the degree of Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Junghwan Rhee

Printed Name and Signature of Candidate

06/13/2011

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

DATA-CENTRIC APPROACHES TO KERNEL MALWARE DEFENSE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Junghwan Rhee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2011

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Dongyan Xu who guided

and supported me throughout my study. He broadened my perspectives in research

and provided invaluable suggestions to overcome the challenges that I faced. His

sincere consideration of my family life and his knowledgeable advice during my job

search were greatly appreciated as well.

I also greatly appreciated the assistance of Professors Eugene Spafford, Xiangyu

Zhang, and Sonia Fahmy, who all served on my committee. Professor Spafford chal­

lenged me to go beyond engineering to focus on fundamentals and science in my

research. Professor Zhang provided inspiration to me as I worked to solve research

problems in the projects on which we worked together. Professor Fahmy helped me to

clarify, organize, and improve my research, which was an essential step to preparing

for my dissertation.

I was fortunate to work with brilliant colleagues, who are current members and

alumni of the Lab Friends: Ryan Riley, Xuxian Jiang, Zhiqiang Lin, Paul Ruth,

Ardalan Kangarlou, Sahan Gamage, and Zhongshu Gu. They all have my sincere

gratitude for their help and friendship.

Last but not the least, I could not have finished my study without the enduring

support of my family. I deeply appreciated the love and support of my wife, Chungah

Seo, during my many years of graduate study. Our two children, William and Lauren,

were delightful addition to our family during my study at Purdue, and they too

have endured some of our family struggles to finish. I am very thankful to our

parents: Kyuyoung Rhee, Younhee Rhee, Soontaek Seo, and Kyungsoon Yang, who

have provided valuable and enduring support to our family in many ways throughout

my study.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1	 Problem Statement . 1

1.2	 Statement of Thesis . 3

1.3	 Contributions . 4

1.4	 Terminology . 5

1.5	 Assumptions . 6

1.6 Organization . 7

2 RELATED WORK IN MALWARE ATTACKS AND DEFENSE 8

2.1	 Code Injection Attacks and Code Integrity-based Approaches 8

2.2	 Non-Code Injection Attacks and Defense Approaches 10

2.3	 Malware Defense Based on Code Behavior Signatures 11

2.4	 Malware Defense Based on Data Signatures 12

2.5	 Kernel Integrity Checking based on Kernel Memory Mapping 13

2.5.1 Static Type-projection Mapping 15

2.5.2 Dynamic Type-projection Mapping 16

2.6 Kernel Rootkit Profilers . 17

3 DATA-CENTRIC APPROACHES TO KERNEL MALWARE DEFENSE 18

3.1	 Code-centric Approaches versus Data-centric Approaches 18

3.1.1 Code-centric Malware Defense Approaches 18

3.1.2 Data-centric Malware Defense Approaches 20

3.2	 Design . 21

3.3	 Objectives . 21

3.4	 Types of Monitoring: Internal versus External 22

3.4.1 Internal Monitors . 23

3.4.2 External Monitors . 23

3.5	 General Data Object Properties and a Model for Kernel Memory Ac­
cess Patterns . 24

3.5.1 General Data Object Properties 24

3.5.2 A Model for Kernel Memory Access Patterns 27

3.5.3 A Conceptual View of General Data Object Properties . . . 28

iv

Page

4 KERNEL MALWARE DETECTION AND ANALYSIS WITH UN-TAMPERED
AND TEMPORAL VIEWS OF KERNEL OBJECTS 30

4.1 Introduction . 30

4.2 Design of LiveDM . 32

4.2.1	 Allocation-driven Mapping Scheme 33

4.2.2	 Techniques of LiveDM . 35

4.3 Implementation . 38

4.4 Evaluation . 40

4.4.1	 Runtime Tracking of Dynamic Kernel Objects 40

4.4.2	 Identifying Dynamic Kernel Objects 42

4.4.3	 Code Patterns Casting Objects from Generic Types to Specific

Types . 43

4.4.4	 Performance of Allocation-driven Mapping 44

4.5 Hidden Kernel Object Detector . 45

4.5.1	 Leveraging the Un-tampered View 46

4.5.2	 Detecting DKOM Data Hiding Attacks 47

4.6 Temporal Kernel Malware Analysis 51

4.6.1	 Systematic Visualization of Malware Influence via Dynamic

Kernel Memory . 52

4.6.2	 Selecting Semantically Relevant Kernel Behavior Using Data

Lifetime . 54

4.6.3	 Case (1): Privilege Escalation Using Direct Memory Manipu­

lation . 55

4.6.4	 Case (2): Dynamic Kernel Object Hooking 56

4.7 Summary . 58

5	 CHARACTERIZING KERNEL MALWARE BEHAVIOR WITH KERNEL

DATA ACCESS PATTERNS . 59

5.1 Introduction . 59

5.2 Design of DataGene . 61

5.2.1	 Data Behavior Profile Approach 63

5.2.2	 Generating a Data Behavior Profile 65

5.2.3	 Characterizing Malware Data Behavior 67

5.3 Implementation . 75

5.4 Evaluation . 76

5.4.1	 Malware Signature Generation 79

5.4.2	 False Positive Analysis . 80

5.4.3	 Detecting Rootkits using Data Behavior Signatures 83

5.4.4	 Similarities among Data Behavior Signatures 84

5.4.5	 Extracting Common Data Behavior Elements 87

5.4.6	 Monitoring Performance . 90

5.5 Summary . 92

v

Page

6 CONCLUSIONS . 93

6.1 Discussion and Limitations . 94

6.2 Conclusions . 98

6.3 Future Work . 100

LIST OF REFERENCES . 101

VITA . 109

vi

LIST OF TABLES

Table	 Page

4.1	 A list of core dynamic kernel objects and the source code elements used
to derive their data types in static analysis. (OS: Debian Sarge). . . . 42

4.2	 DKOM data hiding rootkit attacks that are automatically detected by
comparing LiveDM-generated view (L) and kernel memory view (S). . 48

4.3	 The list of kernel objects manipulated by adore-ng rootkit. (OS: Redhat
8). 53

5.1	 Details of data behavior profiles for benign kernel runs. CL: # of classes,
RS: # of read sites, WS: # of write sites. 77

5.2	 Details of malicious and benign kernel DBPs (D) and generated signatures
(S). CL: # of classes, RS: # of read sites, WS: # of write sites. . . . 78

5.3	 Details of the signatures for adore 0.38, SucKIT, and modhide rootkits.
CL: # of classes, RS: # of read sites, RD: # of number of read data
behavior elements, WS: # of write sites, WD: # of write data behavior
elements. 78

5.4	 Benign kernel runs tested for false positives. A: Sadore0.38, S: SSucKIT , M :
Smodhide. CL: # of classes, RS: # of read sites, WS: # of write sites. . 81

5.5	 The number of matched data behavior elements between three rootkit sig­
natures and the kernel runs with 16 kernel rootkits (average of 5 runs).
(AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng 1.56, FL: fuuld,
HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH:
modhide, MH1: modhide1) . 82

5.6	 The number of common data behavior elements in the combination of
rootkit signatures. (AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng
1.56, FL: fuuld, HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu,
CL: cleaner, MH: modhide, MH1: modhide1) 85

5.7	 Top common data behavior elements among the signatures of 16 rootkits.
(AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng 1.56, FL: fuuld,
HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH:
modhide, MH1: modhide1) . 88

5.8	 Configuration of benchmarks . 90

http:Sadore0.38

vii

LIST OF FIGURES

Figure	 Page

2.1	 Illustration of type-projection mapping 14

2.2	 Data hiding attack via pointer manipulation 14

3.1	 Code-centric malware defense approaches 19

3.2	 Data-centric malware defense approaches 19

3.3	 Design of data-centric malware defense architecture 21

3.4	 A lifetime of a dynamic data object . 25

3.5	 Identification of dynamic data objects 26

3.6	 A model for memory access patterns 27

3.7	 Conceptual views of the general data object properties 29

4.1	 Overview of LiveDM. 33

4.2	 A high level view of static code analysis 37

4.3	 Static code analysis. C: a call site, A: an assignment, D: a variable decla­
ration, T: a type definition, R: a return, and F: a function declaration. 37

4.4	 The usage of dynamic kernel objects during the booting stage (OS: Redhat

8). 40

4.5	 The usage of dynamic kernel objects during the booting stage (OS: Debian

Sarge). 41

4.6	 LiveDM identifies kernel objects and generates a kernel object map at

runtime.(OS: Redhat 8) . 41

4.7	 Performance of LiveDM for Linux 2.4 (OS: Redhat 8) 44

4.8	 Performance of LiveDM for Linux 2.6 (OS: Debian Sarge) 45

4.9	 Illustration of the kernel module hiding attack by cleaner rootkit. Note

that the choice of t1, t2, and t3 is for the convenience of showing data

status and irrelevant to the detection. This attack is detected based on

the difference between L and S. 46

viii

Figure	 Page

4.10 LiveDM detects process hiding rootkit attacks and pinpoints hidden pro­
cesses. 50

4.11 LiveDM detects kernel driver hiding rootkit attacks and pinpoints hidden

drivers. 51

4.12 Kernel control flow (top) and the usage of dynamic memory (below) at the

addresses of T3 (Case (1)) and P1 (Case (2)) manipulated by the adore-ng

rootkit. Time is in billions of kernel instructions. 53

4.13 Kernel data view before and after the adore-ng rootkit attack. 55

4.14 Kernel control flow view before and after the adore-ng rootkit attack. 57

5.1	 Overview of DataGene. 62

5.2	 An example of kernel code in benign and malicious kernel runs. 64

5.3	 Aggregating memory accesses on dynamic kernel objects regarding their

classes (allocation sites) c1 and c2. 66

5.4	 A diagram of memory access patterns (DBEs). A: a set of frequently

observed DBEs in benign kernel execution, B: a set of DBEs for benign

kernel runs, M : a set of DBEs for malicious runs, S: a set of DBEs specific

to malware attacks, F : a set of potential false positives DBEs. 67

5.5	 Controlling kernel execution instances in the signature generation stage to

reduce F . The descriptions for notations are shared with Figure 5.4. . 68

5.6	 Kernel execution instances in the detection stage. B ′: a set of DBEs for

benign runs in the detection stage, B ′′: a set of DBEs for benign runs

with false positives, M ′: a set of DBEs for malicious runs in the detection

stage. Other notations are shared with Figure 5.4 and 5.5. 69

5.7	 A procedure for signature generation and matching 70

5.8	 Using a single kernel run for both of benign and malware memory access

patterns . 72

5.9	 Similarities among the data behavior of rootkits. Types of arrows (|I|:

of the matched elements): thin solid (0 < |I| < 5), thick dashed (5

<= |I| < 25), and thick solid (|I| >= 25). 86

5.10 Performance comparison of unmodified QEMU, LiveDM, and DataGene

(OS: Redhat 8) . 91

ix

ABSTRACT

Rhee, Junghwan Ph.D., Purdue University, August 2011. Data-Centric Approaches
to Kernel Malware Defense. Major Professor: Dongyan Xu.

An operating system kernel is the core of system software which is responsible for

the integrity and operations of a conventional computer system. Authors of malicious

software (malware) have been continuously exploring various attack vectors to tamper

with the kernel. Traditional malware detection approaches have focused on the code-

centric aspects of malicious programs, such as the injection of unauthorized code

or the control flow patterns of malware programs. However, in response to these

malware detection strategies, modern malware is employing advanced techniques such

as reusing existing code or obfuscating malware code to circumvent detection.

In this dissertation, we offer a new perspective to malware detection that is differ­

ent from the code-centric approaches. We propose the data-centric malware defense

architecture (DMDA), which models and detects malware behavior by using the prop­

erties of the kernel data objects targeted during malware attacks. This architecture

employs external monitoring wherein the monitor resides outside the monitored kernel

to ensure tamper-resistance. It consists of two core system components that enable

inspection of the kernel data properties.

First, an external monitor has a challenging task in identifying the data object

information of the monitored kernel. We designed a runtime kernel object mapping

system which has two novel characteristics: (1) an un-tampered view of data objects

resistant to memory manipulation and (2) a temporal view capturing the allocation

context of dynamic memory. We demonstrate the effectiveness of these views by

detecting a class of malware that hides dynamic data objects. Also, we present our

analysis of malware attack behavior targeting dynamic kernel objects.

x

Second, in addition to the mapping of kernel objects, we present a new kernel

malware characterization approach based on kernel memory access patterns. This

approach generates signatures of malware by extracting recurring data access pat­

terns specific to malware attacks. Moreover, each memory pattern in the signature

represents abstract data behavior; therefore, it can expose common data behavior

among malware variants. Our experiments demonstrate the effectiveness of these

signatures in the detection of not only malware with signatures but also malware

variants that share memory access patterns.

Our results utilizing these approaches in the defense against kernel rootkits demon­

strate that the DMDA can be an effective solution that complements code-centric

approaches in kernel malware defense.

1

1 INTRODUCTION

1.1 Problem Statement

An operating system (OS) kernel is the core of system software that is responsible

for the integrity and operations of a conventional computer system. It has been

targeted by malicious software (malware) that operates in kernel mode to implement

advanced stealthy features, such as backdoors or hidden services, that can elude user­

level anti-malware programs.

Malware tampers with program execution and achieves the attacker’s malicious

goals with a variety of techniques. Many traditional malicious programs use code

injection attacks (e.g., buffer overflows and format string bugs), which inject unau­

thorized code into the memory and executes malware functions. Various kinds of

malware, such as computer worms, viruses, exploits, and rootkits, have been using

this technique to execute malicious logic [1–3]. Many intrusion detection approaches

have been proposed to detect or prevent this type of malware attack [4–11].

In response to these malware defense approaches, malware writers have crafted

advanced attack vectors that avoid explicit injection of malicious code to elude such

detection approaches. Return-to-libc attacks [12, 13], return-oriented programming

[14–16], and jump-oriented programming [17–21] use a combination of existing code

pieces to compose malicious logic. Also, raw memory devices [22], third-party kernel

driver code, and program bugs [23–25] provide other vectors to reuse legitimate or

vulnerable code which are a part of programs for malware attacks.

Another group of defense approaches has been using the sequence of malware

code to detect malware [26–30]. These approaches use malware signatures composed

of malware code sequences, such as instruction sequences or system call patterns, to

match malware behavior. However, in response to them, malware began to employ

2

techniques to vary malware code execution patterns. Several papers have presented

code obfuscation [31–34] and code emulation [35] techniques, which can confuse mal­

ware detectors and avoid detection.

These arms-races observed between malware and malware detectors center around

the properties of malicious code: injection of code and the causal sequences of ma­

licious code patterns. Both techniques use primarily code information, ignoring the

identification and properties of the accessed data objects.

In general, computer programs are structured as code and data. Therefore, ma­

licious attacks are seen as the manipulation of the code and/or data objects of the

program under attack. Code has been a popular target of attacks, and thus it has

been intensively studied by existing malware detection approaches. In contrast, there

has been little focus to date on the data in malware defense research.

To address the challenges of relying on only code in malware defense, we propose

new approaches based on the properties of data objects that are targeted in malware

attacks. These approaches do not require the detection of the injected code or the

specific sequence of malicious code. Therefore, they are not directly subject to attacks

targeting the approaches based on code properties.

These approaches, however, have unique challenges in monitoring data objects:

the dynamic status of data objects and the difficulty of determining their integrity.

For instance, many data objects have readable-and-writable content and the locations

of dynamic objects are assigned at runtime [36]. A monitor observing data objects

should have a higher level privilege than the monitored program to reliably obtain its

data memory status. Monitoring kernel data objects is challenging because, in a con­

ventional computing environment, an OS kernel directly interacts with the hardware,

thereby lacking a layer below it on which to build a monitor.

3

1.2 Statement of Thesis

In this dissertation, we present a novel scheme that addresses these challenges and

enables OS kernel malware detection approaches based on kernel data properties. The

monitoring system should be designed in a way that cannot directly be altered by

potentially malicious code; therefore, we use an external monitor to observe the target

OS kernel. An external monitor has a challenging task in identifying the data object

information of the monitored kernel, which is known as a semantic gap [37]. Such

information should be reconstructed externally in the monitor. We propose the data­

centric malware defense architecture (DMDA) which uses data object properties to

detect kernel malware, which consists of two main components.

The first component is a kernel object mapping system that externally identifies

the dynamic kernel objects of the monitored OS kernel at runtime, and our aim is to

observe memory accesses to kernel data objects. This component is essential because

it enables an external monitor to recognize the data objects that are targeted by the

accesses. As well as being an infrastructure to recognize data objects, this system

provides effective applications such as the detection of data hiding kernel malware

attacks and the analysis of malware behavior targeting dynamic kernel objects.

In addition to the kernel data mapping system, we propose a new approach that

detects malware by matching memory access patterns that specifically occur during

malware attacks.

The thesis of this dissertation is as follows: it is possible to detect a class of ker­

nel malware that has recurring kernel memory reference patterns specific to malware

attacks. A software system that detects malware by using these patterns can be con­

structed using virtual machine technology without modifying the source code of the

monitored kernel. Dynamic kernel analysis can produce effective malware signatures

that can suppress frequent false positives in typical workloads by extracting malware

memory reference patterns specific to malware attacks.

4

1.3 Contributions

The contributions of this dissertation are as follows:

•	 General Data Properties. In this dissertation, we use the general character­

istics of data objects in memory operations (e.g., read, write, allocation, and

deallocation) to characterize kernel malware behavior. We discuss how data

properties are different from the code properties that are used by existing mal­

ware detection approaches. Then, we describe the details of the data properties

and define a model for kernel memory access patterns with the data properties.

•	 Runtime Kernel Memory Object Mapping for Malware Detection.

Our approaches externally inspect kernel data behavior for tamper-resistance

of the monitor. An external monitor is required to identify kernel objects before

it uses their properties because of its position. We propose a kernel mapping

approach with two characteristics that can be effective in malware defense: (1)

an un-tampered view of the data objects resistant to memory manipulation

and (2) a temporal view that captures the allocation context of the dynamic

memory.

•	 Kernel Malware Detection based on Memory Access Patterns. We

propose a new approach that detects malware based on recurring kernel mem­

ory access patterns specific to malware attacks. As this approach uses the

properties of data objects, it provides an alternate means to current malware

defense approaches that rely only on the code properties of malware behavior.

In addition, this new approach exposes the data access patterns of malware

attacks in a general form. Therefore, it can be effective at detecting not only

malware with signatures but also malware variants without signatures based on

common data access patterns.

5

1.4 Terminology

This section presents the definitions of the terminology used in this dissertation.

•	 Malware. We use the definition of Malware from [38]. Malware is malicious

software that is designed to disrupt or deny operation, gather information that

leads to loss of privacy or exploitation, gain unauthorized access to system

resources, and show other abusive behavior. It is a general term for many kinds

of malicious software, such as computer worms, viruses, spyware, adware, trojan

horses, and rootkits.

•	 Rootkit. We adapted the definition of rootkit from [3]. In this book, a rootkit

is defined as a set of programs and code that allows a permanent or consistent,

undetectable presence on a computer. This program is used to maintain access

to an administrator’s privilege in the system. Rootkits have various features to

accomplish this goal by manipulating system resources. The features that many

rootkits provide include hiding files, concealing network connections for hidden

services, hiding processes, and selectively removing system logs. In particular,

we focus on rootkits that operate in the kernel mode, which are called kernel

(-level) rootkits. When we use the term “rootkit” in this dissertation, we refer

to a kernel rootkit.

•	 Code Injection. Code injection is an attack mechanism to introduce unautho­

rized code to the program and move control flow to the new code. A wide range

of malware is based on this technique. For instance, computer worms, viruses,

exploits, rootkits, and recently SQL-injection belong to this category [1–3,39].

•	 Kernel Object Map. This term represents a map of kernel objects that

includes both static and dynamic kernel objects. The map includes detailed

information about kernel data objects such as the address ranges and the types

http:Rootkit.We

6

of kernel objects. This map is used in many approaches that detect and analyze

kernel malware [40–45].

•	 Kernel Memory Mapping. This term represents the process to generate a

kernel object map. A typical input is a memory snapshot [40–42] or an execution

of the monitored operating system [43–45]. The output is a kernel object map.

•	 Virtual Machine. We adapted our definition of a virtual machine from [46].

Virtual machine systems are efficient simulators for multiple copies of a ma­

chine on themselves. A virtual machine (VM) is the simulated machine. The

simulator software is called the virtual machine monitor (VMM) or the hy­

pervisor. The formal requirements of virtual machine systems were presented

in [47]. Early systems which used virtual machines include CP-67 and the IBM

360/67. We use a virtual machine technique to implement a monitoring system

for operating system kernels. This technique is also called “operating system

virtualization.”

1.5 Assumptions

In this dissertation, we assume that the monitored computer system has a single

CPU, which has one memory address space in kernel mode; therefore, we use one

kernel memory map to inspect an operating system kernel and detect kernel malware

throughout this work. Multi-processor (or multi-core) systems can be supported by

building kernel object maps depending on the number of kernel memory address

spaces supported by the CPUs.

The memory system for multi-processors (or multi-core) can have either a shared

memory architecture or a distributed memory architecture [48]. In a shared memory

architecture, all of the CPUs share a single physical memory address space. To sup­

port this memory architecture, building one kernel memory object map is necessary,

similar to a single CPU system. In distributed memory systems, CPUs have their own

7

local memory spaces which operate independently. The security monitor then needs

to support multiple memory spaces by generating a memory map for each processor.

We assume the operating system kernel manages dynamic kernel memory with a

set of kernel memory management functions. If the kernel code uses memory with­

out explicit memory allocation and deallocation events (e.g., treat the memory as a

buffer), it cannot be supported by our approach.

This dissertation presents our approach, techniques, implementation, and exper­

iments in the context of malware defense for operating system kernels. The applica­

bility of materials to other system layers is discussed in Section 6.1.

1.6 Organization

This dissertation is organized in six chapters. Following this introductory Chapter

1, we present related approaches in kernel malware defense and analysis in Chapter

2. The approaches based on data properties are introduced in Chapter 3. Chapter 4

presents a new mechanism to generate a runtime kernel object map, which becomes

the basis of our data property-based approaches. In addition to a kernel object map,

Chapter 5 presents the detection of malware using memory access patterns specific

to malware. Chapter 6 concludes this dissertation and presents future work.

8

2 RELATED WORK IN MALWARE ATTACKS AND DEFENSE

In this section, we discuss related work on malware attacks and defense mechanisms.

2.1 Code Injection Attacks and Code Integrity-based Approaches

Code injection attacks insert unauthorized code into a program’s memory space

and transfer the control to the injected code. Various kinds of malware, such as

computer worms [1], viruses [2, 49], shell code [50], and rootkits [3, 10, 11] use this

technique to change program behavior with malicious purposes. There are various

attack vectors to inject code. For instance, kernel rootkits load rootkit code into

kernel memory space by using kernel drivers or raw memory devices. Then, they

move the kernel control to the injected code by patching the system call table or

function pointers.

This category of malware can be defeated by enforcing the integrity of the pro­

gram’s code and only allowing the execution of authorized and un-tampered code.

There are various mechanisms to achieve this in the user space, in the kernel space,

and also in the hardware level.

In the user space, several types of approaches have been developed to detect or

prevent code injection attacks. Stack overflow was one of most popular attack vectors.

StackGuard [6] stops stack overflow by placing canary values and detecting the ma­

nipulation of return addresses. ProPolice [7] further reorganizes stack frames to make

buffer overflow difficult. In addition to stack protection, format string vulnerabilities

and heap vulnerabilities are also addressed by similar approaches [51,52].

Another category of approaches prevents attacks by enforcing the non-executable

page permission, which is generally known as the NX bit. The code pages are supposed

to be executable, but they are generally not meant to be modified. The data pages

�

9

can be writable, but their execution should be prevented. The pages containing

the injected code are enforced to be not executable. Therefore, their execution is

prevented. Memory pages should have either writable or executable permission (but

not both) and this characteristic is known as the W X property. Hardware vendors

have implemented it under various names (XD bit for Intel [53], Enhanced Virus

Protection for AMD [54], and XN – eXecute Never – bit for ARM [55]).

For CPUs without this support, non-executable pages can be implemented as

a software patch in the kernel code. Examples of software-based implementation

include PAGEEXEC by PaX [56], Exec Shield by Redhat [57], and W∧X by OpenBSD

[58]. Microsoft Windows supports non-executable pages when hardware support is

available, and this service is called Data Execution Prevention (DEP) [59].

While these approaches are effective for user programs, kernel malware has the

same privilege with kernel code. Thus, it is capable of directly manipulating kernel

code and hardware configurations. For this reason, defeating kernel malware requires

a monitoring mechanism which has a higher privilege than the OS kernel. For in-

stance, many approaches are based on the hardware layer, such as a PCI device [60]

or a layer comparable to hardware such as a virtual machine monitor [10,11,61].

Several intrusion detection approaches have been proposed to defeat kernel mal­

ware by checking kernel code integrity. Copilot [60] detects kernel rootkits by deter­

mining the manipulation of kernel text and invariant data structures. The state-based

control flow integrity checking system (SBCFI) detects kernel malware by validating

kernel components relevant to kernel control flow, such as the kernel text, system call

table, and function pointers [61].

NICKLE [10] and SecVisor [11] proposed a stronger and more effective form of

kernel code integrity checking. They determine kernel integrity violation by checking

the execution of injected code at runtime. These approaches prevent kernel malware

by allowing execution of only authorized and un-tampered kernel code.

�

10

2.2 Non-Code Injection Attacks and Defense Approaches

While many malware programs rely on code injection, there is another group

of malware that does not require the insertion of malicious code for attacks. The

malware of this class reuses an existing program’s code to elude intrusion detection

approaches based on code integrity. Following are several attack vectors of this group

of malware.

Kernel Memory Devices. Operating systems have kernel memory devices that al­

low the read and write capability of raw kernel memory. For example, Linux has sev­

eral devices, such as /dev/kmem, /dev/mem, and /dev/kcore; and Microsoft Windows

has similar devices called \Device\PhysicalMemory and \Device\DebugMemory. These

devices are intended for kernel debugging, efficient access to video memory, and mem­

ory forensic analysis; but if they are misused for malicious purposes, they can be a

serious threat to the kernel’s integrity. Some kernel rootkits use these devices to

manipulate kernel memory without using kernel drivers [22]. In the Windows plat­

form, several worms (e.g., W32/Myfip.h and W32/Fanbot.A) use raw memory device

\Device\PhysicalMemory to tamper with kernel memory [62]

Return-oriented Programming. Return-oriented programming [14, 15] generates

an attack by combining a large number of short instruction sequences (called gadgets)

that allow arbitrary computation. This technique is also used to implement kernel

level malware (e.g., return-oriented rootkits [16]). This type of malware only uses

existing kernel code and does not violate the W X property. Thus code integrity-

based approaches cannot detect its attacks. Several approaches have been proposed

to use runtime characteristics during attacks [17–20] to detect this malware. Other

approaches attempt to remove potential gadgets by removing return instructions [21]

or potential instruction sequences which can be used as gadgets [63] from the program.

Jump-oriented Programming. As detection approaches for return-oriented pro­

gramming appear [17–21], other instruction sequences, similar to the return gadgets,

are used for constructing attacks [64–66]. These approaches use instruction sequences

11

that end with jump instructions to connect multiple code pieces and to create mali­

cious logic. These approaches show that essentially any instruction sequence whose

control flow can be manipulated by attackers can be used for attacks. This idea was

conceptualized as “free-branches” by Kornau et. al. [67].

Vulnerable Code in OS Kernel. Most operating system kernels potentially carry

programming bugs [23–25]. Some of them are found and fixed by developers. How­

ever, attackers also find bugs and use them to compromise systems. For instance,

CVE-2010-3081 describes vulnerable kernel code that has existed since 2008. This

vulnerability has allowed attackers to gain the administrator privilege in virtually all

64 bit Linux systems using a simple user program (called a root exploit). This bug

was patched in Fall 2010. Vulnerable code such as this, being part of legitimate kernel

code, is difficult to detect for code integrity-based approaches if a malware attack is

triggered using kernel bugs.

Third-party Drivers. Kernel drivers are dynamically loaded at runtime. To ensure

the integrity of a kernel, this driver code should be properly handled. Code integrity­

based approaches [10,11] solve this problem by allowing a list of authorized drivers for

execution (e.g., a white list determined by a system administrator or the drivers signed

by operating system vendors [68]). These drivers are typically authorized without

systematic examination of code behavior for safety. Rather, the authorization is

based on trust in the developers and vendors of operating system (OS) kernels. Many

hardware vendors ship proprietary drivers without disclosing the source code. In such

case, the drivers may include potentially vulnerable code or hidden malicious code

that can be exploited for attacks. The rootkit case of Sony [69] shows one example

of code from vendors that can have undesired effects.

2.3 Malware Defense Based on Code Behavior Signatures

There has been a variety of approaches which characterize malware’s behavior

by using its control flow. Several approaches [26–29] build control flow graphs using

12

system call events, and another approach [30] uses CPU instructions to represent

malware behavior. While these malware patterns are derived from the events of

different system layers, they commonly represent the control flow of malware, which

is a sequence of code with causal dependence. There are two kinds of challenges for

these approaches.

First, advanced malware can generate variations in the control flow to avoid detec­

tion by these approaches. Several papers describe obfuscation techniques such as dead

code insertion, code transformation, and instruction substitution [31–34]. Malware

can obfuscate its code execution while retaining the same algorithm. In addition,

researchers introduced a new obfuscation technique that hides specific trigger-based

behavior by encrypting the code dependent on an input [33].

Second, malware’s control flow can dynamically vary at runtime and the detection

mechanism using malware’s code behavior should be able to handle such variations.

Balzarotti et al. presented a system [26] that uses system-call trace to determine

analysis-aware malware. In this paper, the authors described several cases where

the system-call trace can be inconsistent, such as the expiration of timeout and the

delivery of signals. Their system handles this problem by using a flexible matching

algorithm.

2.4 Malware Defense Based on Data Signatures

Like any other program, malware uses data structures. Some malware has its own

data structures. Other malware tampers with the data structures that they target to

make changes in the program’s behavior. There are several approaches that detect

malware based on the signatures of data structures.

Laika [70] determined data structures from a program’s memory. As one appli­

cation, the authors presented the detection of a botnet program by classifying data

structures specific to malware. This approach is effective for user space malware be­

cause each user program has its private memory space. However, kernel memory is

13

shared by the kernel text and many kernel drivers. Malware’s code and data are part

of a huge number of legitimate kernel code and data and therein lies the challenge to

applying this technique to kernel malware detection.

Dolan-Gavitt et al. proposed an approach that discovers data structures from

memory snapshots using value constraints [71]. This approach uses value properties,

such as constants, bitwise AND values, and alignments, to match data structure

instances. By using a fuzzing technique, they showed the generated value properties

are reliable to be used as a signature.

SigGraph is another type of data scanner which uses pointer constraints to match

data objects [72]. This approach generates a signature with a pointer connection

graph rooted at the data structure. To detect data structures, it scans memory

snapshots in a brute-force way as it matches pointer connections.

These approaches can discover data structures from a memory image in a benign

scenario. However, if those approaches are targeted for detecting malware, there could

be the following challenges. First, malware can manipulate the data objects so that

the data scanners fail to detect them while such objects are being properly used by

malware code. For example, malicious code can set invalid values or pointers in the

data structure while the injected malware code properly uses such objects. Second, it

is possible that some data structures may not have enough constraints to be matched

by these approaches. For instance, if a kernel data structure is simple, such as a string

buffer, these approaches do not have specific constraints to match them, leading to

many false positive cases.

2.5 Kernel Integrity Checking based on Kernel Memory Mapping

There have been several approaches [40, 41, 44, 45, 61] that leverage kernel mem­

ory mapping to test the integrity of OS kernels and detect kernel malware. These

approaches identify kernel memory objects by recursively traversing pointers in the

kernel memory starting from static objects in a similar way to garbage collection mech­

14

Figure 2.1.: Illustration of Figure 2.2.: Data hiding attack via pointer
type-projection mapping manipulation

anisms [73, 74]. A kernel object is identified by projecting the address and the type

of the traversed pointer onto memory; thus, we call this mechanism type-projection

mapping. For example, in Figure 2.1 the mapping process starts by evaluating the

pointer fields of the static data object. When the second field of this object is tra­

versed, the type X of the pointer is projected onto the memory located in the obtained

address a1, identifying a data instance of type X.

The underlying hypothesis of this mapping is that the traversed pointer type

accurately reflects the type of the projected object. In practice there are several

cases that this is not true. First, if an object allocated using a specific type is

later cast to a generic type (e.g., void*), then this mapping scheme cannot properly

identify this object using that pointer. For instance, in Figure 2.1 the third field

of the static object cannot be used to identify the Y instance because of its generic

void* type. Second, in modern OSes many kernel objects are linked using embedded

list structures that connect the objects using list types. When these pointers are

traversed, the connected objects are inaccurately identified as list objects. KOP [41]

addresses these problems by generating an extended type graph using static analysis.

Some other approaches [40,42] rely on manual annotations.

When type-projection mapping is used against kernel malware, these problems

may pose concerns as such inaccuracy can be deliberately introduced by kernel mal­

ware. In type-projection mapping, the kernel memory map is based on the content

15

of the kernel memory, which may have been manipulated by kernel malware. This

property may affect the detection of kernel rootkits that hide kernel objects by di­

rectly manipulating pointers. For instance, Fig 2.2 shows a potential malware attack

case. In this Figure, initially a singly linked circular list is composed of four data

instances. If malware manipulates connecting pointers as shown in the Figure, the

third instance will disappear from the linked list. The type-projection mapping does

not have information to determine this attack because it constructs a map of data

instances based on memory values.

To detect such attacks, a detector needs to rely on not only a kernel memory

map but also additional knowledge that reveals the anomalous status of the hidden

objects. For this purpose, several approaches [40–42] use data structure invariants.

For example, KOP [41] detects a process hidden by the FU Rootkit [75] by using

the invariant that there are two linked lists regarding process information that are

supposed to match, and one of them is not manipulated by the attack. However,

a data invariant is specific to semantic usage of a data structure and may not be

applicable to other data structures. For type-projection mapping, it is challenging to

detect data hiding attacks that manipulate a simple list structure (such as the kernel

module list in Linux) without an accompanying invariant.

In general, we can categorize these approaches into two categories based on whether

they make use of a static snapshot or dynamic runtime memory trace.

2.5.1 Static Type-projection Mapping

This approach uses a memory snapshot to generate a kernel memory map. SBCFI

[61] constructs a map to systematically detect the violation of persistent control flow

integrity. Gibraltar [40] extracts data invariants from kernel memory maps to detect

kernel rootkits. A significant advantage of this approach is the low cost to generate a

memory snapshot. A memory snapshot can be generated using an external monitor

16

such as a PCI interface [40], a memory dump utility [41], or a VMM [61], and the

map is generated from the snapshot later.

The memory snapshot is generated at a specific time instance (asynchronously).

Its usage is limited for analyzing kernel execution traces where dynamic kernel mem­

ory status varies over kernel execution. The same memory address, for example,

could store different dynamic data objects over a period of time (through a series

of deallocations and reallocations). The map cannot be used to properly determine

what data was stored at that address at a specific time. We call this a dynamic data

identity problem, and it occurs when an asynchronous kernel memory map is used for

inspection of dynamic memory status in the kernel execution traces.

2.5.2 Dynamic Type-projection Mapping

This mapping approach also uses the type-projection mechanism to identify ker­

nel objects, but its input is the trace of memory accesses recorded over runtime

execution instead of a snapshot. By tracking the memory accesses of malware code,

this approach can identify the list of kernel objects manipulated by the malware.

PoKeR [44] and Rkprofiler [45] use this approach to profile dynamic attack behavior

of kernel rootkits in Linux and Windows respectively.

As a runtime trace is used for input, this approach can overcome the asynchronous

nature of static type-projection mapping. Unfortunately, current work only focuses on

the data structures targeted by malware code, and may not capture other events. For

example, many malware programs call kernel functions during the attack or exploit

various kernel bugs, and these behaviors may appear to be part of legitimate kernel

execution. In these cases, dynamic type-projection techniques need to track all mem­

ory accesses to accurately identify the kernel objects accessed by legitimate kernel

execution. As this process is costly (though certainly possible), it is not straight­

forward for this approach to expand the coverage of the mapped data to all kernel

objects.

17

2.6 Kernel Rootkit Profilers

Kernel rootkit profilers [44, 45] analyze a variety of aspects of rootkit behavior

such as the memory access targets of malware code or user space impact. These

approaches derive the types of the attack targets by transitively deriving types of

kernel objects from static objects based on the rootkit behavior. However, some

attacks are difficult to be understood based on such assumption because rootkits can

use various other resources, such as hardware registers, to find the attack targets [76].

We demonstrated that there exist at least two real-world rootkits and two proof-of­

concept rootkits which can elude PoKeR [44].

K-Tracer [77] can analyze the malicious behavior of kernel rootkits in sensitive

events using dynamic slicing techniques. Its algorithm requires determination of the

sensitive data so it therefore can be difficult to analyze DKOM attacks [75] whose

targets may not be predetermined.

18

3 DATA-CENTRIC APPROACHES TO KERNEL MALWARE DEFENSE

In the previous chapter, we discussed related approaches in malware detection and

analysis. Many of those approaches characterize malware behavior based on code

information such as injected code and malicious control flow. We call such approaches

code-centric approaches because of their reliance on code information. In contrast,

we propose new approaches based on the properties of data objects and their access

patterns. Based on their use of data information to characterize malware, we call

them data-centric approaches. In this chapter, we first will distinguish the differences

between these two approaches. Then, we will present the details of our approach of

characterizing malware behavior based on data properties.

3.1 Code-centric Approaches versus Data-centric Approaches

3.1.1 Code-centric Malware Defense Approaches

Code-centric malware defense approaches use the properties of malicious code to

detect malware. Such approaches are illustrated in Figure 3.1. A square block named

cx represents a code entity such as a block of CPU instructions or a larger chunk of

code such as a system call.

Code injection is a commonly used technique by many malware programs. The

unauthorized injected code is shown as the shaded square cε. This attack technique

can be detected by checking the integrity of the authorized code and verifying whether

only such code is being executed. This methodology is referred to as the approach

based on code integrity (Section 2.1).

Malware programs often show specific code sequences during attacks. Several

malware detection approaches generate malware signatures by using such sequences.

��

19

�
��

� ��
�

 �

 �

 � �

 �

 �

 �

Figure 3.1.: Code-centric malware defense approaches

�����

��

��

�� ��

��

��

��

����
��

���
���������

���
���������

Figure 3.2.: Data-centric malware defense approaches

In Figure 3.1, a code sequence of c1 → c2 → c3 represents a control flow that occurs in

a normal program status. This flow is shown as a dashed arrow named as CFB. Let us

assume that a malicious program always executes the sequence of code c4 → c5 → c6

(CFM). This control flow can be used to match this malware’s behavior as the

malware signature (Section 2.3).

As discussed in Chapter 2, these approaches can be eluded by advanced malware

techniques. Existing code can be reused to create malicious logic (e.g., use c5 instead

of c2 to access data). Then code integrity-based approaches are not applicable to

detect the attacks. Code obfuscation techniques [31–34] can change CFM to another

flow, c4 ' c3 ' c5 → c6. Then the approaches based on malware code behavior can

be eluded.

20

3.1.2 Data-centric Malware Defense Approaches

The effects of code execution are typically reflected to data memory, and such

data accesses are shown as dotted arrows in Figures 3.1 and 3.2. A code-centric mal­

ware defense approach only uses the code information for characterizing the malware

activity. Therefore, the data information is presented as a cloud in Figure 3.1.

We want to identify this missing information and use it for kernel malware detec­

tion. Specifically, we use the general characteristics of data objects regarding their

usage, which are called the general data object properties (Section 3.5). This informa­

tion characterizes the lifetime events of a data object, which include the allocation,

the accesses, and the deallocation of an object. These events are expressed as the

properties of program execution, such as the addresses of the code that invokes mem­

ory operations. This information is general from the aspect that any data types of

data objects have such lifetime events.

Figure 3.2 presents our malware defense approach based on general data prop­

erties. Here the cloud area is clarified because the accessed object d1 is identified.

To make this information available, we designed a runtime kernel memory mapper

(Section 4). Malware behavior can be described with more details about what data

structures are accessed in addition to what code is executed.

A memory access pattern aB in a benign control flow CFB can be expressed as a

pair of the accessing code c2 and the accessed data d1, (c2, d1). Here let us assume

that this is the only access pattern found in the program source code. If another code,

such as c3, accesses d1, this memory access can be determined as an anomaly. This

data information can be applied to determine attacks exploiting the existing code.

Also, in the case where malware obfuscates its control flow CFM , if c5 still accesses

d1 after the obfuscation, the malware attack would remain detected in this approach.

In summary, introducing data information improves the details of malware be­

havior descriptions. In this dissertation, we propose the data-centric malware defense

architecture (DMDA), which models and detects malware behavior using the proper­

21

Runtime kernel object map

Kernel malware

signature generation

General data object properties

Kernel execution

Kernel monitoring &

malware detection
Malware
signature

LiveDM

DataGene

Kernel information

Prototype

Figure 3.3.: Design of data-centric malware defense architecture

ties of kernel data objects. We first present how we can generate the data information

(e.g., d1 in Figure 3.2). Then we present our new approach to characterize malware

based on kernel memory access patterns specific to malware attacks.

3.2 Design

The design of DMDA is illustrated in Figure 3.3. With the input of the operating

system kernel information and kernel execution, we first generate a kernel object map

(Chapter 4). This map is synchronously updated at runtime; thus, it enables us to de­

termine the targets of the kernel memory references. Using this map, we can monitor

and analyze kernel memory access patterns. By comparing benign kernel execution

and malicious kernel execution compromised by kernel rootkits, we systematically

extract the memory reference patterns specific to malware attacks. We match these

memory access patterns as malware signatures to detect kernel rootkits (Chapter 5).

In the following chapters, we will present each component in detail.

3.3 Objectives

In the design of DMDA, we seek to achieve the following objectives.

• External Monitoring. There is a design choice between internal and external

22

monitoring. Each choice has its advantages and disadvantages, which will be

discussed in Section 3.4. We place primary emphasis on the tamper-resistance of

the monitor; therefore, we chose a monitor to be placed outside of the monitored

kernel.

•	 Transparent Monitoring. We intend to design a security monitor that does

not require changes in the source code of the monitored kernel. Many widely-

used modern operating systems are proprietary. Avoiding source code changes

would facilitate the implementation supporting a wider scope of operating sys­

tems.

•	 Un-tampered Data View. Some kernel rootkits implement stealthy services

by manipulating pointers in kernel data structures. Therefore, the memory

content is subject to malware manipulation and should not be trusted. The

approaches based on memory snapshots [40, 41, 61] may have tampered views

because the map construction is based on memory status. We derive an un­

tampered data view by using memory allocation and deallocation events, instead

of memory values.

•	 Temporal Data View. Dynamic memory can represent multiple different

kernel objects depending on its memory allocation context. If the kernel object

map is not synchronously updated (temporal) for each allocation event, the

kernel object information may be outdated. This is particularly important for

our approach which uses memory reference patterns because it provides accurate

targets of memory accesses. Related kernel object mapping approaches based

on periodic memory snapshots [40,41,61] are not suitable for this purpose.

3.4 Types of Monitoring: Internal versus External

The location of a malware detector involves several design trade-offs in information

collection, performance, implementation efforts, and reliability against attacks.

23

3.4.1 Internal Monitors

An intrusion/malware detection monitor can be embedded inside the monitored

software (e.g., a user program or an OS kernel). This type of monitor is called

an internal monitor. Internal sensors [78] and embedded detectors [6, 51] belong to

internal monitors. As a part of a program, it has the convenience of being able to

access and evaluate the data structures of the monitored program. The performance

of these monitors depends on the frequency of the monitored activity and the overhead

per activity.

Implementation efforts would differ depending on how the monitoring code is gen­

erated. If the code is manually generated, the developer may need to understand

potentially vulnerable code to decide where the monitoring code should be placed.

In such cases, the implementation effort would be considered high. Systematic ap­

proaches, such as compiler-based methods, could lower the amount of human efforts

required.

The reliability of a monitoring activity against potential attacks is an important

issue for its credibility. Internal monitors are part of the monitored code so potentially

malicious code therefore has direct access to the monitoring code. Unless there is a

safety mechanism to ensure the integrity of an embedded monitor, it is exposed to

potential manipulation by malware.

3.4.2 External Monitors

A monitor can be placed outside the monitored software. This type of monitor

is called an external monitor. The monitors based on an external PCI device [60],

memory dump programs [40, 41], and a virtual machine monitor (VMM) [10, 37, 42,

61, 79] belong to the external type monitors group.

A significant advantage of these monitors is their reliability against potential at­

tacks. As the monitor is located outside the monitored software, potential attack

24

code within the monitored program does not have direct access to the monitor. This

tamper-resistance is essential for trusting the operation of the monitor.

Being outside the monitored program, this approach inherently has challenges,

however, in interpreting the internal status of the monitored program. For example,

when the VMM observes the memory of an OS, the memory status is viewed as raw

bits and bytes. An external monitor needs to interpret this low level representation

to high level information to determine an intrusion or infection. This problem is often

called a semantic gap [37].

The overhead of these monitors occurs when the monitor obtains the information

of the monitored entity. Once the information is grabbed, it can be processed in

parallel, thus avoiding a slow-down of the monitored program. The implementation

effort depends on what information is obtained from the monitored program and also

its interpretation of the extracted data.

In this dissertation, we emphasize the tamper-resistance of the monitor; there­

fore, we implement our system as an external monitor. Specifically, we use a virtual

machine monitor to inspect operating system kernels.

3.5 General Data Object Properties and a Model for Kernel Memory Access Patterns

3.5.1 General Data Object Properties

Data objects have several usage patterns in their lifetime. Dynamic data objects

are created (allocated) by some code. The values in the data objects are read or

overwritten. In the case of dynamic objects, they are destructed (deallocated) after

their usage. We call the properties of data objects in such usage patterns general

data object properties. In this section, we present the details of the properties we use

to monitor OS kernels and detect kernel malware.

Figure 3.4 illustrates the lifetime of a dynamic data object, which consists of the

memory operations applied to a data object and the data properties related to the

operations. Code ca calls a memory allocation function, kmalloc, and a memory

25

address Code memory Data memory address

allocation site
call kmalloc

call kfree

kmalloc

kfree

read *d2

write *d3

Allocated

data

obiect

free

d1allocation
Or

read site r d2read

write site w d3 Ow
write

d
deallocation site f

Figure 3.4.: A lifetime of a dynamic data object

block at the address range from d1 to d4 is allocated. This memory is used by read

and write memory accesses. Code cr reads values from the address d2(= d1 + or).

Code cw writes some value to the address d3(= d1 + ow). At the end of the lifetime

of this object, code cf calls a deallocation function, kfree to free this memory.

In this example, various data object addresses (dx), the accessed offsets (ox), and

the code addresses (cx) represent how this program handles this object. We describe

such properties related to memory operations in detail below.

Allocation and Deallocation. A dynamic object is allocated when a memory

allocation function is called. The address of the code that invokes a memory allocation

function is referred to as an allocation call site. This event is the start of the lifetime

of the allocated object. A deallocation event is the end of the lifetime of a dynamic

object. Similarly, the code address that calls a memory deallocation function is

referred to as a deallocation call site. Figure 3.4 illustrates the lifetime of a dynamic

data object, and these events are presented respectively as allocation and free.

Identification of Objects. When we identify data objects, we use the term, class,

to represent the identification of static and dynamic objects in a unified way. In

the case of static data objects, their data types and the address ranges are statically

b =
b =
b =

b = 7
b = 7
b = 7
b = 7

26

SourceVCodeVView RuntimeVView

Data definition (x.h}
struct X {
int a;
int b;

};

10 struct X *x1 = malloc(};

Runtime instances of Class 1

Runtime instances of Class 2

Class 1:
struct X

at x1.c: 10

Class 2:
struct X
at x2.c:70

a = 80
a = 80
a = 80
a = 80
b =

a =
a =
a =
a =
a =

b = 7

allocation

site:

x1.c: 10

Allocation

site:

x2.c:70

Program
x1.c

20

30 x1->a = 80;

x2.c
50 struct X *x2 = NULL;
60

70 x2 = malloc(};
80

90 x2->b = 7;

Figure 3.5.: Identification of dynamic data objects

assigned. This information is available in symbol tables (e.g., System.map in Linux).

By assigning a specific number to each object, we can uniquely identify its type and

address range. We call this unique number a class for a static object.

Identifying dynamic objects is more complicated for two reasons [36]. First, the

number of instances dynamically varies at runtime. Second, most dynamic memory

functions in unmodified operating systems do not maintain the type information for

each object. To derive the type information of dynamic objects, we introduce a

technique that infers data types using allocation call sites in Section 4. For dynamic

objects, an allocation call site is used as a class.

An allocation call site can be translated to a data type, but more precisely it is a

sub-class of a data type with the origin information where the objects are instantiated.

Figure 3.5 illustrates this relationship. A data type X is defined in x.h. Two allocation

sites instantiate the data objects of this data type. The objects of type X allocated

at x1.c:10 have the a fields set as 80. Another group of objects of type X allocated

27

Code memory Data memory o

c r::�/

writ: m,. f

Figure 3.6.: A model for memory access patterns

at x2.c:70 have their b fields set as 7. Although these objects have the same type,

their usages can be different depending on their origins, namely, the allocation sites.

This information enables finding the source of the data objects. It can be helpful to

analyze program bugs related to the heap memory; and, in malware analysis, it also

can provide understanding about the specific targets of malware attacks.

Data Fields. Non-primitive data structures typically consist of multiple data fields

which are located at specific offsets in data structures. When a reference monitor in­

spects memory accesses, the offsets can be simple and efficient representations of data

fields. Also, by using type definitions, offsets can be converted to field information.

Memory Access Code. During computation, memory values are loaded to a CPU

and the computed values are stored back to the memory. Such reads and writes are

the fundamental operations that a CPU accesses memory. In program execution,

the set of code that accesses data objects represents how the objects are used in the

program. We call the code that reads memory values a read access site. Similarly,

the code that writes to memory is called a write access site.

3.5.2 A Model for Kernel Memory Access Patterns

To characterize kernel malware behavior and detect its attacks, we use kernel

memory access patterns. In this section, we briefly describe a formal representation of

data access patterns, which are composed of general data object properties. Chapter

5 will present more details along with a running example.

28

We call a memory access pattern a data behavior element (DBE), which is defined

as a quintuple (5-tuple) of the general object properties illustrated in Figure 3.6:

(c, o, m, i, f) (3.1)

c represents the information of the accessing code, and o shows whether this access

is a read (o = 0) or a write (o = 1). m and i represent the information about the

accessed data object. If this object is static, m is 1 and i is the serial number that we

assigned based on the information generated in the compile time. If it is a dynamic

object, m is 0 and an allocation call site is used for i to represent the type of this

object. This information can infer its data type using debugging information and

source code analysis as described in Section 4.2.2. Finally, f shows the offset, which

represents the accessed field within the data object. By using the type definition, it

can be translated to a field symbol.

A DBE describes a single memory access pattern. An operating system kernel

instantiates tens of thousands of kernel objects from hundreds of kernel data types.

These runtime objects are read and overwritten by thousands of code sites in the

kernel. We collect a set of such kernel memory access patterns to represent the

runtime data access behavior of an operating system kernel. We call this set of DBEs

a data behavior profile (DBP), which is defined for an instance of the kernel execution

that starts from its booting and ends at its shutdown.

3.5.3 A Conceptual View of General Data Object Properties

The general data object properties show how kernel data objects are used in a

kernel. Therefore, the behavior of the kernel can be organized in a view centered by

kernel data information. Figure 3.7 presents this perspective in conceptual views of

the general data object properties. A rounded box represents the data objects of a

specific class.

29

A set of

A class for
dynamic objects

A set of Write
Write write sites write sites accesses

accesses
Written fields Written fields

Allocation Deallocation
site site(s)

Read fields Read fields Read Read
accesses accesses

A set of A set of
read sites read sites

A class for a
static object

Figure 3.7.: Conceptual views of the general data object properties

The case of dynamic objects is shown in the left side of Figure 3.7. An allocation

event becomes the start of its lifetime. The end of its lifetime is defined by its

deallocation event(s) which is shown as a deallocation site(s). The case of static

objects is shown in the right side of Figure 3.7. Note that, in this case, allocation and

deallocation information is removed because static objects are determined at compile

time.

At runtime, these objects are used via read and write accesses. On top of the

boxes, a set of write access sites and the overwritten field offsets are shown. Similarly,

under the boxes, a set of read access sites and the read fields are presented. This

information is common in both dynamic and static objects.

In this chapter, we have presented the general data object properties and our

model of kernel memory access patterns. This information is the foundation of our

approaches, and the behavior of the benign kernel execution and kernel malware will

be modeled in terms of this information. In the remainder of this dissertation, we

present how to generate a runtime map of kernel data objects which enables the

general data object properties in Section 4. On top of this system component, we

present how to detect a class of malware which has specific memory access patterns

based on the general data object properties in Section 5.

30

4 KERNEL MALWARE DETECTION AND ANALYSIS WITH UN-TAMPERED

AND TEMPORAL VIEWS OF KERNEL OBJECTS

DMDA uses the properties of kernel data objects for malware detection. Because it

employs external monitoring, the identification of data objects should be extracted

from the kernel and reconstructed in the monitor. In this chapter, we will introduce

a runtime kernel memory mapping mechanism and demonstrate its effectiveness.

4.1 Introduction

Dynamic kernel memory is where the majority of kernel data resides. Operating

system (OS) kernels frequently allocate and deallocate numerous dynamic objects of

various types. As a result of the complexity of identifying such objects at runtime,

dynamic kernel memory is a source of many kernel security and reliability problems.

For instance, an increasing amount of kernel malware targets dynamic kernel objects

[42, 44,75,80]; and many kernel bugs are caused by dynamic memory errors [23–25].

Advanced kernel malware uses stealthy techniques such as directly manipulating

kernel data (i.e., DKOM [75]) or overwriting function pointers (i.e., KOH [80]) located

in dynamic kernel memory. This allows attacks such as process hiding and kernel-

level control flow hijacking. These anomalous kernel behaviors are difficult to analyze

because they involve manipulating kernel objects that are dynamically allocated and

deallocated at runtime; unlike persistent kernel code or static kernel data that are

easier to locate, monitor, and protect.

To detect these attacks, some existing approaches use kernel memory mapping

based on the contents of runtime memory snapshots [40, 41, 61] or memory access

traces [44, 45]. These approaches commonly identify a kernel object by projecting

the type and address of a pointer onto the memory. However, such a technique may

31

not always be accurate – for example, when an object is type cast to a generic type

or when an embedded list structure is used as part of larger data types. In benign

kernel execution, such inaccuracy can be corrected [41]; but it becomes a problem

in malware analysis as the memory contents may have been manipulated by kernel

malware. For example, a DKOM attack to hide a process may modify the next task

and prev task pointers in the process list. This causes the process to disappear

from the OS view as well as from the kernel memory map. To detect this attack,

some existing approaches rely on data invariants such as that the list used for process

scheduling should match the process list. However, not every data structure has an

invariant. Additionally, the kernel memory map generated from a snapshot [40,41,61]

reflects kernel memory status at a specific time instance. Therefore, the map is of

limited usage in analyzing kernel execution. Some mapping approaches are based

on logging malware memory accesses [44,45] and thus provide temporal information.

However they only cover objects accessed by the malware code and cannot properly

handle certain attack patterns because of assumptions in its mapping algorithm [76].

In this chapter, we present a new kernel memory mapping scheme called allocation-

driven mapping that complements the existing approaches. Our scheme identifies

dynamic kernel objects by capturing their allocations and does not rely on the runtime

content of kernel memory to construct the kernel object map. As such, the map is

resistant to attacks that manipulate the kernel memory. On top of our scheme,

we build a hidden kernel object detector that uses the un-tampered view of kernel

memory to detect DKOM data hiding attacks without requiring kernel object-specific

invariants. In addition, our scheme keeps track of each kernel object’s life time. This

temporal property is useful in the analysis of kernel/kernel malware execution. We

also build a temporal malware behavior monitor that systematically analyzes the

impact of kernel malware attacks via dynamic kernel memory using a kernel execution

trace. We address a challenge in the use of kernel memory mapping for temporal

analysis of kernel execution: A dynamic memory address may correspond to different

kernel objects at different times because of the runtime allocation and deallocation

32

events. This problem can be handled by allocation-driven mapping. The lifetime of

a dynamic kernel object naturally narrows the scope of a kernel malware analysis.

The contributions of this chapter are summarized as follows:

•	 We present a new kernel memory mapping scheme called allocation-driven map­

ping that has the following properties desirable for kernel malware analysis: un­

tampered identification of kernel objects and temporal status of kernel objects.

•	 We implement allocation-driven mapping at the virtual machine monitor (VMM)

level. The identification and tracking of kernel objects take place in the VMM

without modification to the guest OS.

•	 We develop a hidden kernel object detector that can detect DKOM data hiding

attacks without requiring data invariants. The detector works by comparing

the status of the un-tampered kernel map with that of kernel memory.

•	 We develop a malware behavior monitor that uses a temporal view of kernel

objects in the analysis of kernel execution traces. The lifetimes of dynamic

kernel objects in the view guide the analysis to the events triggered by the

objects manipulated by the malware.

We have implemented a prototype of allocation-driven mapping called LiveDM

(Live Dynamic kernel memory Map). It supports three off-the-shelf Linux distri­

butions. LiveDM is designed for use in non-production scenarios such as honeypot

monitoring, kernel malware profiling, and kernel debugging.

4.2 Design of LiveDM

In this section, we first introduce the allocation-driven mapping scheme, based on

which our LiveDM system is implemented. We then present key enabling techniques

to implement LiveDM.

33

a(�(kmalloc(Isize,(flag)j

kfree(Ia)j

Kernel(object

�RuntimeV MMVmonitoring

KerneiVobjectVmap

>
0
0

Allocation

Deallocation

CaiiV
site

a:Va+si e:VcaiiVsite

a
a+si e

KerneiVmemoryVpooi

Debugging(
Information(

and
Static(analysis

Data(
ty e

address

Figure 4.1.: Overview of LiveDM.

4.2.1 Allocation-driven Mapping Scheme

Allocation-driven mapping is a kernel memory mapping scheme that generates a

kernel object map by capturing the kernel object allocation and deallocation events

of the monitored OS kernel. LiveDM uses a VMM to track the execution of the

running kernel. Figure 4.1 illustrates how LiveDM works. Whenever a kernel object

is allocated or deallocated, LiveDM will intercede and capture its address range and

the information to derive the data type of the object subject to the event (details in

Section 4.2.2) to update the kernel object map.

First, this approach does not rely on any content of the kernel memory which

can potentially be manipulated by kernel malware. Therefore, the kernel object map

provides an un-tampered view of kernel memory wherein the identification of kernel

data is not affected by the manipulation of memory contents by kernel malware. This

tamper-resistant property is especially effective to detect sophisticated kernel attacks

that directly manipulate kernel memory to hide kernel objects. For instance, in the

type-projection mapping if the pointer fields of the static objects are nullified, dynamic

objects cannot be identified because those objects cannot be reached by recursively

scanning pointers in the memory. In practice, there can be multiple pointer references

to a dynamic object. However, malware can completely isolate an object to be hidden

by tampering with all pointers pointing to the object. The address of the hidden

34

object can be safely stored in a non-pointer storage (e.g., int or char) to avoid being

discovered by the type-projection mapping algorithm while it can be used to recover

the object when necessary. Many malicious programs carefully control their activities

to avoid detection and prolong their stealthy operations, and it is a viable option to

suspend a data object in this way temporarily and activate it again when needed [81].

In the allocation-driven mapping approach, however, this attack will not be effec­

tive. As shown in Figure 4.1, each dynamic object is recognized upon its allocation.

Therefore the identification of dynamic objects is reliably obtained and protected

against the manipulation of memory contents. The key observation is that allocation-

driven mapping captures the liveness status of the allocated dynamic kernel objects.

For malware writers, this property makes it significantly more difficult to manipulate

this view. In Section 4.5, we show how this mapping can be used to automatically de­

tect DKOM data hiding attacks without using any data invariant specific to a kernel

data structure.

Second, LiveDM reflects a temporal status of dynamic kernel objects because it

captures their allocation and deallocation events. This property enables the use of

the kernel object map in temporal malware analysis where temporal information,

such as kernel control flow and dynamically changing data status, can be inspected

to understand complicated kernel malware behavior.

In Section 2.5.1, we pointed out that a dynamic data identity problem can occur

when a snapshot-based kernel memory map is used for dynamic analysis. Allocation­

driven mapping provides a solution to this problem by accurately tracking all alloca­

tion and deallocation events. This means that even if an object is deallocated and its

memory reused for a different object, LiveDM will be able to properly track it.

Third, allocation-driven mapping does not suffer from the casting problem that

occurs when an object is cast to a generic pointer because it does not evaluate pointers

to construct the kernel object map. For instance, a general pointer such as a void

pointer does not hinder the identification of the data instance that is pointed to by

the pointer because this object is determined by capturing its allocation. However,

35

we note that another kind of casting can pose a problem: If an object is allocated

using a generic type and it is cast to a specific type later, allocation-driven mapping

will detect the earlier generic type. However, our study in Section 4.4 shows that this

behavior is unusual in Linux kernels.

There are a number of challenges in implementing the LiveDM system based on

allocation-driven mapping. For example, kernel memory allocation functions do not

provide a simple way to determine the type of the object being allocated.1 One so­

lution is to use static analysis to rewrite the kernel code to deliver the allocation

types to the VMM, but this would require the construction of a new type-enabled

kernel, which is not readily applicable to off-the-shelf systems. Instead, we use a

technique that derives data types by using runtime context (i.e., call stack informa­

tion). Specifically, this technique systematically captures code positions for memory

allocation calls by using virtual machine techniques (Section 4.2.2) and translates

them into data types so that OS kernels can be transparently supported without any

change in the source code.

4.2.2 Techniques of LiveDM

We employ a number of techniques to implement allocation-driven mapping. At

the conceptual level, LiveDM works as follows. First, a set of kernel functions (such

as kmalloc) are designated as kernel memory allocation functions. If one of these

functions is called, we say that an allocation event has occurred. Next, whenever this

event occurs at runtime, the VMM intercedes and captures the allocated memory

address range and the code location calling the memory allocation function. This code

location is referred to as an allocation call site and we use it as a unique identifier for

the allocated object’s type at runtime. Finally, the source code around each allocation

call site is analyzed offline to determine the type of the kernel object being allocated.

1Kernel level memory allocation functions are similar to user level ones. The function kmalloc, for
example, does not take a type but a size to allocate memory.

36

Runtime Kernel Object Map Generation

At runtime, LiveDM captures all allocation and deallocation events by interceding

whenever one of the allocation/deallocation functions is called. There are three things

that need to be determined at runtime: (1) the call site, (2) the address of the object

allocated or deallocated, and (3) the size of the allocated object.

To determine the call site, LiveDM uses the return address of the call to the

allocation function. In the instruction stream, the return address is the address of

the instruction after the call instruction. The captured call site is stored in the kernel

object map so that the type can be determined during offline source code analysis.

The address and size of objects being allocated or deallocated can be derived from

the arguments and return value. For an allocation function, the size is typically given

as a function argument and the memory address as the return value. For a deallo­

cation function, the address is typically given as a function argument. These values

can be determined by the VMM by leveraging function call conventions. 2 Function

arguments are delivered through the stack or registers, and LiveDM captures them by

inspecting these locations at the entry of memory allocation/deallocation calls. To

capture the return value, we need to determine where the return value is stored and

when it is stored there. Integers up to 32-bits as well as 32-bit pointers are delivered

via the EAX register and all values that we would like to capture are either of those

types. The return value is available in this register when the allocation function re­

turns to the caller. To capture the return values at the correct time the VMM uses

a virtual stack. When a memory allocation function is called, the return address is

extracted and pushed on to this stack. When the address of the code to be executed

matches the return address on the stack, the VMM intercedes and captures the return

value from the EAX register.

2A function call convention is a scheme to pass function arguments and a return value. We use the
conventions for the x86 architecture and the gcc compiler [82].

37

Figure 4.2.: A high level view of static code analysis

(a) Case 1 (b) Case 2

(c) Case 3

Figure 4.3.: Static code analysis. C: a call site, A: an assignment, D: a variable
declaration, T: a type definition, R: a return, and F: a function declaration.

Dynamic Data Type Inference

The object type information related to kernel memory allocation events is deter­

mined using static analysis of the kernel source code offline. Figure 4.2 illustrates a

high level view of our method. First, the allocation call site (C) of a dynamic object

is mapped to the source code fork.c:610 using debugging information found in the

kernel binary. This code assigns the address of the allocated memory to a pointer

variable at the left-hand side (LHS) of the assignment statement (A). As this vari­

able’s type can represent the type of the allocated memory, it is derived by traversing

38

the declaration of this pointer (D) and the definition of its type (T). Specifically,

during the compilation of kernel source code, a parser sets the dependencies among

the internal representations (IRs) of such code elements. Therefore, the type can be

found by following the dependencies of the generated IRs.

For type resolution, we enumerate several patterns in the allocation code as shown

in Figure 4.3(a), 4.3(b), and 4.3(c). Case 1 is the typical pattern (C→A→D→T) as

just explained. In Case 2, the definition (D) and allocation (A) occur in the same line.

The handling of this case is similar to that of Case 1. Case 3, however, is unlike the

first two cases. The pattern in Case 3 does not use a variable to handle the allocated

memory address, rather it directly returns the value generated from the allocation

call. When a call site (C) is converted to a return statement (R), we determine the

type of the allocated memory using the type of the returning function (F). In Figure

4.3(c), this pattern is presented as C→R→F→T.

Prior to static code analysis, we generate the set of information about these code

elements to be traversed (i.e., C, A, D, R, F, and T) by compiling the kernel source

code with the compiler that we instrumented (Section 4.3).

4.3 Implementation

Allocation-driven mapping is general enough to work with an OS that follows

the standard function call conventions (e.g., Linux, Windows, etc.). Our prototype,

LiveDM, supports three off-the-shelf Linux OSes of different kernel versions: Fedora

Core 6 (Linux 2.6.18), Debian Sarge (Linux 2.6.8), and Redhat 8 (Linux 2.4.18).

LiveDM can be implemented on any software virtualization system, such as VMware

(Workstation and Player) [83], VirtualBox [84], and Parallels [85]. We choose the

QEMU [86] with KQEMU optimizer for implementation convenience.

In the kernel source code, many wrappers are used for kernel memory management,

some of which are defined as macros or inline functions and others as regular functions.

Macros and inline functions are resolved as the core memory function calls at compile

http:andRedhat8(Linux2.4.18

39

time by a preprocessor; thus, their call sites are captured in the same way as core

functions. However, in the case of regular wrapper functions, the call sites will belong

to the wrapper code.

To solve this problem, we take two approaches. If a wrapper is used only a few

times, we consider that the type from the wrapper can indirectly imply the type used

in the wrapper’s caller because of its limited use. If a wrapper is widely used in many

places (e.g., kmem cache alloc – a slab allocator), we treat it as a memory allocation

function. Commodity OSes, which have mature code quality, have a well defined set

of memory wrapper functions that the kernel and driver code commonly use. In our

experience, capturing such wrappers, in addition to the core memory functions, can

cover the majority of the memory allocation and deallocation operations.

We categorize the captured functions into four classes: (1) page allocation/free

functions, (2) kmalloc/kfree functions, (3) kmem cache alloc/free functions (slab

allocators), and (4) vmalloc/vfree functions (contiguous memory allocators). These

sets include the well defined wrapper functions as well as the core memory functions.

In our prototype, we capture about 20 functions in each guest kernel. The memory

functions of an OS kernel can be determined from its design specification (e.g., the

Linux Kernel API) or kernel source code.

Automatic translation of a call site to a data type requires a kernel binary that is

compiled with a debugging flag (e.g., -g to gcc) and whose symbols are not stripped.

Modern OSes, such as Ubuntu, Fedora, and Windows, generate kernel binaries of this

form. Upon distribution, typically the stripped kernel binaries are shipped; however,

unstripped binaries (or symbol information in Windows) are optionally provided for

kernel debugging purposes. The experimented kernels of Debian Sarge and Redhat

8 are not compiled with this debugging flag. Therefore, we compiled the distributed

source code and generated the debug-enabled kernels. These kernels share the same

source code with the distributed kernels, but the offset of the compiled binary code

can be slightly different because of the additional debugging information.

40

 0

 2000

 4000

 6000

 8000

 10000

2 4 6 8

N
um

be
r

of
 C

ap
tu

re
d

M
em

or
y

B
lo

ck
s

jbd
ext3

parport,parport_pc

ieee1394,ohci1394

ip_tables
iptable_filter

ipt_REJECT

8390
ne2k-pci

autofs

Total number of blocks
Page blocks

Kmalloc/kfree blocks

Number of Executed Instructions (in billions)

Figure 4.4.: The usage of dynamic kernel objects during the booting stage (OS:
Redhat 8).

For static analysis we use a gcc [82] compiler (version 3.2.3) that we instrumented

to generate internal representations for the source code of the experimented kernels.

We place hooks in the parser to extract the abstract syntax trees for the code elements

necessary in the static code analysis.

4.4 Evaluation

In this section, we evaluate the basic functionality of LiveDM with respect to

the identification of kernel objects, casting code patterns, and the performance of

allocation-driven mapping. The guest systems are configured with 256MB RAM and

the host machine has a 3.2Ghz Pentium D CPU and 2GB of RAM.

4.4.1 Runtime Tracking of Dynamic Kernel Objects

LiveDM synchronously identifies dynamic kernel objects on their allocations and

deallocations. Therefore unlike other kernel memory mapping approaches that sample

memory status, LiveDM can continuously track changes in kernel memory status.

41

 25000
Total number of blocks

0

 5000

 10000

 15000

 20000

T
he

 N
um

be
r

of
 C

ap
tu

re
d

M
em

or
y

B
lo

ck
s

unix, ide_core, pdc202xx_new, aec62xx, alim15x3
amd74xx, atiixp, cmd64x, cs5520, cs5530, cy82c693
generic

hpt34x, ide_disk, hpt366, ns87415, opti621
pdc202xx_old, piix, rz1000, sc1200, serverworks
siimage, sis5513, slc90e66, triflex, trm290, via82cxxx
ide_generic
jbd, ext3

cdrom
ide_cd

psmouse

evdev
mousedev

tsdev
8390, ne2k_pci

usbcore

ehci_hcd, ohci_hcd, uhci_hcd

ipv6

Page frame blocks
Kmalloc/kfree blocks

5 10 15 20

The Number of Executed Instructions (in Billions)

Figure 4.5.: The usage of dynamic kernel objects during the booting stage (OS:
Debian Sarge).

Figure 4.6.: LiveDM identifies kernel objects and generates a kernel object map at
runtime.(OS: Redhat 8)

Figure 4.4 and 4.5 present the statistics of runtime dynamic kernel objects during

the booting stage in two Linux operating systems. Figure 4.6 illustrates the GUI

interface of our prototype implementation. The black screen at the top shows the

42

Table 4.1: A list of core dynamic kernel objects and the source code elements used
to derive their data types in static analysis. (OS: Debian Sarge).

Call Site Declaration Data Type Case #Objects
T
as

k
/S

ig kernel/fork.c:248
kernel/fork.c:801
fs/exec.c:601
kernel/fork.c:819

kernel/fork.c:243
kernel/fork.c:795
fs/exec.c:587
kernel/fork.c:813

task struct
sighand struct
sighand struct
signal struct

1
1
1
1

66
63
1
66

arch/i386/mm/pgtable.c:229 arch/i386/mm/pgtable.c:229 pgd t 2 54
kernel/fork.c:433 kernel/fork.c:431 mm struct 1 47

M
em

or
y
 kernel/fork.c:559

kernel/fork.c:314
mm/mmap.c:923
mm/mmap.c:1526

kernel/fork.c:526
kernel/fork.c:271
mm/mmap.c:748
mm/mmap.c:1521

mm struct
vm area struct
vm area struct
vm area struct

1
1
1
1

7
149
1004

5
mm/mmap.c:1722 mm/mmap.c:1657 vm area struct 1 48
fs/exec.c:402 fs/exec.c:342 vm area struct 1 47
kernel/fork.c:677 kernel/fork.c:654 files struct 1 54
kernel/fork.c:597 kernel/fork.c:597 fs struct 2 53
fs/file table.c:76 fs/file table.c:69 file 1 531

F
il
e

sy
st

em
 fs/buffer.c:3062

fs/block dev.c:232
fs/dcache.c:692
fs/inode.c:112
fs/namespace.c:55

fs/buffer.c:3062
fs/block dev.c:232
fs/dcache.c:689
fs/inode.c:107
fs/namespace.c:55

buffer head
bdev inode
dentry
inode
vfsmount

2
2
1
1
2

828
5

4203
1209
16

fs/proc/inode.c:93 fs/proc/inode.c:90 proc inode 1 237
drivers/block/ll rw blk.c:1405 drivers/block/ll rw blk.c:1405 request queue t 2 18
drivers/block/ll rw blk.c:2950 drivers/block/ll rw blk.c:2945 io context 1 10

N
et

w
or

k

net/socket.c:279
net/core/sock.c:617
net/core/dst.c:125
net/core/neighbour.c:265
net/ipv4/tcp ipv4.c:134
net/ipv4/fib hash.c:586

net/socket.c:278
net/core/sock.c:613
net/core.dst.c:119
net/core/neighbour.c:254
net/ipv4/tcp ipv4.c:133
net/ipv4/fib hash.c:461

socket alloc
sock
dst entry
neighbour
tcp bind bucket
fib node

1
1
1
1
2
1

12
3
5
1
4
9

guest operating system. The kernel object map is illustrated below this screen. The

statistics of active kernel objects are shown in the left pane.

4.4.2 Identifying Dynamic Kernel Objects

To demonstrate the ability of LiveDM to inspect the runtime status of an OS

kernel, we present a list of important kernel data structures captured during the

execution of Debian Sarge OS in Table 4.1. These data structures manage the key OS

status such as process information, memory mapping of each process, and the status

of file systems and network which are often targeted by kernel malware and kernel

bugs [23–25,42,44,60,61,87]. Kernel objects are recognized using allocation call sites

shown in column Call Site during runtime. Using static analysis, this information

43

is translated into the data types shown in column Data Type by traversing the

allocation code and the declaration of a pointer variable or a function shown in column

Declaration. Column Case shows the kind of the allocation code pattern described

in Section 4.2.2. The number of the identified objects for each type in the inspected

runtime status is presented in column #Objects. At that time instance, LiveDM

identified total of 29488 dynamic kernel objects with their data types derived from

231 allocation code positions.

To evaluate the accuracy of the identified kernel objects, we build a reference

kernel where we modify kernel memory functions to generate a log of dynamic kernel

objects and run this kernel in LiveDM. We observe that the dynamic objects from the

log accurately match the live dynamic kernel objects captured by LiveDM. To check

the type derivation accuracy, we manually translate the captured call sites to data

types by traversing kernel source code as done by related approaches [41, 70]. The

derived types at the allocation code match the results from our automatic static code

analysis.

4.4.3 Code Patterns Casting Objects from Generic Types to Specific Types

In Section 4.2.1, we discussed that allocation-driven mapping has no problem

handling the situation where a specific type is cast to a generic type, but casting

from generic types to specific types can be a problem. To estimate how often this

type of casting occurs, we manually checked all allocation code positions where the

types of kernel objects are derived for the inspected status. We checked for the code

pattern that memory is allocated using a generic pointer and then the address is cast

to the pointer of a more specific type. Note that this pattern does not include the

use of generic pointers for generic purposes. For example, the use of void or integer

pointers for bit fields or buffers is a valid use of generic pointers. Another valid use

is kernel memory functions that internally handle pre-typed memory using generic

pointers to redefine it to various types. We found 25 objects from 10 allocation code

http:LiveDM.We

44

Figure 4.7.: Performance of LiveDM for Linux 2.4 (OS: Redhat 8)

positions (e.g., tty register driver and vc allocate) exhibiting this behavior at

runtime. Such objects are not part of the core data structures shown in Table 4.1,

and they account for only 0.085% of all objects. Hence we consider them as non­

significant corner cases. As the code positions where this casting occurs are available

to LiveDM, we believe that the identification of this behavior and the derivation of

a specific type can be automated by performing static analysis on the code after the

allocation code.

4.4.4 Performance of Allocation-driven Mapping

As LiveDM is mainly targeted for non-production environments such as honeypots

and kernel debugging systems, performance is not a primary concern. Still, we would

like to provide a general idea of the cost of allocation-driven mapping. To measure the

overhead to generate a kernel object map at runtime, we ran three benchmarks: com­

piling the kernel source code, UnixBench (Byte Magazine Unix Benchmark 5.1.2), and

nbench (BYTEmark* Native Mode Benchmark version 2). The normalized runtime

overhead of our implementation is presented in Figure 4.7 and Figure 4.8. Compared

to unmodified QEMU, our prototype incurs (in the worst case) 41.77% overhead for

45

Figure 4.8.: Performance of LiveDM for Linux 2.6 (OS: Debian Sarge)

Redhat 8 (Linux 2.4) and 125.47% overhead for Debian Sarge (Linux 2.6). For CPU

intensive workload such as nbench, the overhead is near zero because the VMM rarely

intervenes. However, applications that use kernel services requiring dynamic kernel

memory have higher overhead. As a specific example, compiling the Linux kernel

exhibited an overhead of 29% for Redhat 8 and 115.69% for Debian Sarge. It is

important to note that these numbers measure overhead when compared to an un­

modified VMM. Software based virtualization will add additional overhead as well.

For the purpose of inspecting fine-grained kernel behavior in non-production envi­

ronments, we consider this overhead acceptable. The effects of overhead can even be

minimized in a production environment by using decoupled analysis [88].

4.5 Hidden Kernel Object Detector

One problem with static type-projection approaches is that they are not able to

detect dynamic kernel object manipulation without some sort of data invariant. In

this section we present a hidden kernel object detector built on top of LiveDM that

does not suffer from this limitation.

http:and125.47

46

(a) Temporal live status of kernel modules based on
allocation-driven mapping.

(b) Live set (L) and scanned set (S) for kernel mod­
ules at t1, t2, and t3.

Figure 4.9.: Illustration of the kernel module hiding attack by cleaner rootkit.
Note that the choice of t1, t2, and t3 is for the convenience of showing data status

and irrelevant to the detection. This attack is detected based on the difference
between L and S.

4.5.1 Leveraging the Un-tampered View

Some advanced DKOM-based kernel rootkits hide kernel objects by simply remov­

ing all references to them from the kernel’s dynamic memory. We model the behavior

of this type of DKOM data hiding attack as a data anomaly in a list. If a dynamic

kernel object does not appear in a kernel object list, then it is orphaned and hence

an anomaly. As described in Section 4.2.1, allocation-driven mapping provides an

un-tampered view of the kernel objects not affected by manipulation of the actual

47

kernel memory content. Therefore, if a kernel object appears in the LiveDM-generated

kernel object map but cannot be found by traversing the kernel memory, then that

object has been hidden. More formally, for a set of dynamic kernel objects of a given

data type, a live set L is the set of objects found in the kernel object map. A scanned

set S is the set of kernel objects found by traversing the kernel memory as in the

related approaches [40,41,61]. If L and S do not match, then a data anomaly will be

reported.

This process is illustrated in the example of the cleaner rootkit that hides the

adore-ng rootkit module (Figure 4.9). Figure 4.9(a) presents the timeline of this

attack using the lifetime of kernel modules. Figure 4.9(b) illustrates the detailed

status of kernel modules and corresponding L and S at three key moments. Kernel

modules are organized as a linked list starting from a static pointer variable. When

the cleaner module is loaded after the adore-ng module, it modifies the linked list

to bypass the adore-ng module entry (shown at t2). Therefore, when the cleaner

module is unloaded, the adore-ng module disappears from the module list (t3). At

this point in time the scanned set S based on static type-projection mapping has

lost the hidden module, but the live set L keeps the view of all kernel modules alive.

Therefore, the monitor can detect a hidden kernel module because of the condition,

|L| � |S|.=

4.5.2 Detecting DKOM Data Hiding Attacks

There are two dynamic kernel data lists which are favored by rootkits as attack

targets: the kernel module list and the process control block (PCB) list.3 However

other linked list-based data structures can be similarly supported as well. The basic

procedure is to generate the live set L and periodically generate and compare with

the scanned set S. We tested 8 real-world rootkits and 2 of our own rootkits (linuxfu

and fuuld) previously used in [44, 76, 89], and these rootkits commonly hide kernel

3A process control block (PCB) is a kernel data structure containing administrative information for
a particular process. Its data type in Linux is task struct.

48

Table 4.2: DKOM data hiding rootkit attacks that are automatically detected by comparing LiveDM-generated view (L)
and kernel memory view (S).

Rootkit
Name

|L| - |S| Manipulated Data Operating
System

Attack
Vector Type Field

hide lkm # of hidden modules module next Redhat 8 /dev/kmem
fuuld # of hidden PCBs task struct next task, prev task Redhat 8 /dev/kmem
cleaner # of hidden modules module next Redhat 8 LKM
modhide # of hidden modules module next Redhat 8 LKM
hp 1.0.0 # of hidden PCBs task struct next task, prev task Redhat 8 LKM
linuxfu # of hidden PCBs task struct next task, prev task Redhat 8 LKM
modhide1 1 (rootkit self-hiding) module next Redhat 8 LKM

kis 0.9 (server) 1 (rootkit self-hiding) module next Redhat 8 LKM
adore-ng-2.6 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM
ENYELKM 1.1 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM

49

objects by directly manipulating the pointers of such objects. LiveDM successfully

detected all these attacks based on the data anomaly from kernel memory maps and

the results are shown in Table 4.2.

In the experiments, we focus on a specific attack mechanism – data hiding via

DKOM – rather than the attack vectors – how to overwrite kernel memory – or

other attack features of rootkits for the following reason. There are various attack

vectors including the ones that existing approaches cannot handle and they can be

easily utilized. Specifically, we acknowledge that the rootkits based on a loadable

kernel module (LKM) can be detected by code integrity approaches [10, 11] with

the white listing scheme of kernel modules. However, there exist alternate attack

vectors such as /dev/mem, /dev/kmem devices, return-oriented techniques [14, 16],

kernel bugs, and unproven code in third-party kernel drivers that can elude existing

kernel rootkit detection and prevention approaches. We present the DKOM data

hiding cases of LKM-based rootkits as part of our results because these rootkits can

be easily converted to make use of these alternate attack vectors.

We also include results for two other rootkits that make use of these advanced

attack techniques. hide lkm and fuuld in Table 4.2 respectively hide kernel modules

and processes without any kernel code integrity violation (via /dev/kmem) purely

based on DKOM, and current rootkit defense approaches cannot properly detect

these attacks. However, our monitor effectively detects all DKOM data hiding attacks

regardless of attack vectors by leveraging the LiveDM-generated kernel object map.

Allocation-driven mapping can uncover the hidden object even in more adversarial

scenarios. For example, if a simple linked list having no data invariant is directly

manipulated without violating kernel code integrity, LiveDM will still be able to detect

such an attack and uncover the specific hidden object.

In the experiments that detect rootkit attacks, we generate and compare L and

S sets every 10 seconds. When a data anomaly occurs, the check is repeated in 1

second. (The repeated check ensures that a kernel data structure was not simply in

50

Figure 4.10.: LiveDM detects process hiding rootkit attacks and pinpoints hidden
processes.

an inconsistent state during the first scan.) If the anomaly persists, then we consider

it as a true positive.

To ensure that the detected cases are not caused by memory leaks, we generated

the hash values for the memory corresponding to the hidden objects after the violation

of the lifetime invariant is detected. The hash values for the hidden modules and PCBs

are being changed which confirm that the detected cases are not memory leaks.

With these monitoring policies, we successfully detected all tested DKOM hiding

attacks without any false positives or false negatives.

We note that while this section focuses on data hiding attacks based on DKOM,

data hiding attacks without manipulating data (such as rootkit code that filters sys­

tem call results) may also be detected using the LiveDM system. Instead of comparing

the un-tampered LiveDM-generated view with the scanned view of kernel memory, one

could simply compare the un-tampered view with the user-level view of the system.

Figure 4.10 and 4.11 demonstrate how our prototype implementation detects data

hiding rootkit attacks. Figure 4.10 demonstrates the attack of hp rootkit. This rootkit

hides two processes, crond and sshd. LiveDM systematically detects such hidden

http:Figure4.10

51

Figure 4.11.: LiveDM detects kernel driver hiding rootkit attacks and pinpoints
hidden drivers.

processes and pinpoints them in the list of processes at the left pane and in the map

of processes. Similarly Figure 4.11 shows the detection of modhide rootkit attacks.

Two kernel drivers, ip tables and ne2k-pci, are hidden via pointer manipulation.

Those hidden drivers are successfully detected by LiveDM and shown in the driver

list and in the map of kernel drivers.

4.6 Temporal Kernel Malware Analysis

Kernel rootkit analysis approaches based on dynamic type-projection are able to

perform temporal analysis of a running rootkit. One problem with these approaches,

however, is that they are only able to track malware actions that occur from injected

rootkit code. If a rootkit modifies memory indirectly through other means such as

legitimate kernel functions or kernel bugs, these approaches are unable to follow the

attack. Allocation-driven mapping does not share this weakness. To further illustrate

the strength of allocation-driven mapping, we built a temporal malware behavior

52

monitor (called a temporal monitor or a monitor below for brevity) that uses a kernel

object map in temporal analysis of a kernel execution trace.

In this section, we highlight two features that allocation-driven mapping newly

provides. First, allocation-driven mapping enables the use of a kernel object map

covering all kernel objects in temporal analysis ; therefore for any given dynamic kernel

object we can inspect how it is being used in the dynamic kernel execution trace

regardless of the accessing code (either legitimate or malicious), which is difficult for

both static and dynamic type-projection approaches. Second, the data lifetime in

allocation-driven mapping lets the monitor avoid the dynamic data identity problem

(Section 2.5.1) which can be faced by an asynchronous memory map.

4.6.1 Systematic Visualization of Malware Influence via Dynamic Kernel Memory

Our monitor systematically inspects and visualizes the influence of kernel malware

attacks targeting dynamic kernel memory. To analyze this dynamic attack behavior,

we generate a full system trace including the kernel object map status, the executed

code, and the memory accesses during the experiments of kernel rootkits. When a

kernel rootkit attack is launched, if it violates kernel code integrity, the rootkit code

is identified by using our previous work, NICKLE [10]. Then the temporal monitor

systematically identifies all targets of rootkit memory writes by searching the kernel

object map. If the attack does not violate code integrity, the proposed technique in

the previous section or any other approach can be used to detect the dynamic object

under attack. The identified objects then become the causes of malware behavior and

their effects are systematically visualized by searching the original and the modified

kernel control flow triggered by such objects. For each object targeted by the rootkit,

there are typically multiple behaviors using its value. Among those, this monitor

samples a pair of behaviors caused by the same code, the latest one before the attack

and the earliest one after the attack, and presents them for a comparison.

53

Table 4.3: The list of kernel objects manipulated by adore-ng rootkit. (OS: Redhat
8).

Runtime Identification Offline Data Type Interpretation
Call Site Offset Type / Object (Static, Module object) Field
fork.c:610
fork.c:610
fork.c:610
fork.c:610
fork.c:610
fork.c:610
generic.c:436

0x4,12c,130
0x134,138,13c
0x140,144,148
0x1d0
0x1d4
0x1d8
0x20

task struct (Case (1))
task struct (Case (1))
task struct (Case (1))
task struct (Case (1))
task struct (Case (1))
task struct (Case (1))
proc dir entry (Case (2))

flags,uid,euid
suid,fsuid,gid
egid,sgid,fsgid
cap effective
cap inheritable
cap permitted
get info

(Static object)
(Static object)
(Static object)

proc root inode operations
proc root operations
unix dgram ops

lookup
readdir
recvmsg

(Module object)
(Module object)

ext3 dir operations
ext3 file operations

readdir
write

Figure 4.12.: Kernel control flow (top) and the usage of dynamic memory (below) at
the addresses of T3 (Case (1)) and P1 (Case (2)) manipulated by the adore-ng

rootkit. Time is in billions of kernel instructions.

As a running example in this section, we will present the analysis of the attacks

by the adore-ng rootkit. This rootkit is chosen because of its advanced malware

behavior triggered by dynamic objects; and other rootkits can be analyzed in a similar

way. Table 4.3 lists the kernel objects that the adore-ng rootkit tampers with. In

particular, we focus on two specific attack cases using dynamic objects: (1) The first

case is the manipulation of a PCB (T3) for privilege escalation and (2) the second case

is the manipulation of a function pointer in a dynamic proc dir entry object (P1)

to hijack kernel control flow. Figure 4.12 presents a detailed view of kernel control

flow and the usage of the targeted dynamic kernel memory in the attacks. The X axis

shows the execution time, and kernel control flow is shown at top part of this figure.

54

The space below shows the temporal usage of dynamic memory at the addresses of T3

and P1 before and after rootkit attacks. Thick horizontal lines represent the lifetime

of kernel objects which are temporally allocated at such addresses. + and × symbols

below such lines show the read and write accesses on corresponding objects. The

aforementioned analysis process is illustrated as solid arrows. From the times when

T3 and P1 are manipulated (shown as dotted circles), the monitor scans the execution

trace backward and forward to find the code execution that consumes the values read

from such objects (i.e., + symbols).

4.6.2 Selecting Semantically Relevant Kernel Behavior Using Data Lifetime

Our monitor inspects dynamic memory states in the temporal execution trace and

as such we face the dynamic data identity problem described in Section 4.2.1. The core

of the problem is that one memory address may correspond with multiple objects over

a period of time. This problem can be solved if the lifetime of the inspected object

is available because the monitor can filter out irrelevant kernel behaviors triggered

by other kernel objects that share the same memory address. For example, in Figure

4.12, we observe the memory for T3 is used for four other PCBs (i.e., T1, T2, T4,

and T5) as well in the history of kernel execution. Simply relying on the memory

address to analyze the trace can lead to finding kernel behavior for all five PCBs.

However, the monitor limits the inspected time range to the lifetime of T3 and select

only semantically relevant behaviors to T3. Consequently it can provide a reliable

inspection of runtime behavior only relevant to attacks.

Other kernel memory mapping approaches commonly cannot handle this problem

properly. In static type-projection, when two kernel objects from different snapshots

are given we cannot determine whether they represent the same data instance or

not, even though their status is identical because such objects may or may not be

different data instances depending on whether memory allocation/deallocation events

occur between the generation of such snapshots. Dynamic type-projection mapping

55

(a) The original data view at t2.

(b) The manipulated data view at t3.

Figure 4.13.: Kernel data view before and after the adore-ng rootkit attack.

is only based on malware instructions, and thus does not have information about

allocation and deallocation events which occur during legitimate kernel execution.

4.6.3 Case (1): Privilege Escalation Using Direct Memory Manipulation

To demonstrate the effectiveness of our temporal monitor we will discuss two

specific attacks employed by adore-ng. The first is a privilege escalation attack that

works by modifying the user and group ID fields of the PCB. The PCB is represented

by T3 in Figure 4.12. To present the changed kernel behavior from the manipulation

of T3, the temporal monitor finds the latest use of T3 before the attack (at t2) and the

earliest use of it after the attack (at t3). The data views at such times are presented

56

in Figure 4.13(a) and 4.13(b) as 2-dimensional memory maps where a kernel memory

address is represented as the combination of the address in the Y axis and the offset in

the X axis. These views present kernel objects relevant to this attack before and after

the attack. The manipulated PCB is marked with “Case (1)” in the views and the

values of its fields are shown in the box on the right side of each view (PCB status).

These values reveal a stealthy rootkit behavior that changes the identity of a user

process by directly patching its PCB (DKOM). Before the attack (Figure 4.13(a)),

the PCB has the credentials of an ordinary user whose user ID is 500. However,

after the attack, Figure 4.13(b) shows the credentials of the root user. This direct

transition of its status between two accounts is abnormal in conventional operating

system environments. su or sudo allow privileged operations by forking a process

to retain the original identity. Hence we determine that this is a case of privilege

escalation that illegally enables root privileges for an ordinary user.

4.6.4 Case (2): Dynamic Kernel Object Hooking

The next adore-ng attack hijacks kernel code execution by modifying a function

pointer and this attack is referred to as Kernel Object Hooking (KOH) [80]. This

behavior is observed when the influence of a manipulated function pointer in P1

(see Figure 4.12) is inspected. To select only the behaviors caused by this object, the

monitor guides the analysis to the lifetime of P1. The temporal monitor detects several

behaviors caused by reading this object and two samples are chosen among those to

illustrate the change of kernel behavior by comparison: the latest original behavior

before the attack (at t1) and the earliest changed behavior after the attack (at t4).

The monitor generates two kernel control flow graphs at these samples, each for a

period of 4000 instructions. Figure 4.14(a) and 4.14(b) present how this manipulated

function pointer affects runtime kernel behavior. The Y axis presents kernel code;

thus, the fluctuating graphs show various code executed at the corresponding time of

X axis. A hook-invoking function (proc file read) reads the function pointer and

57

(a) The original control flow at t1.

(b) The hijacked control flow at t4.

Figure 4.14.: Kernel control flow view before and after the adore-ng rootkit attack.

calls the hook code pointed to by it. Before the rootkit attack, the control flow jumps

to a legitimate kernel function tcp get info which calls sprintf after that as shown

in Figure 4.14(a). However, after the hook is hijacked, the control flow is redirected

to the rootkit code which calls kmalloc to allocate its own memory, then comes back

to the original function (Figure 4.14(b)).

58

4.7 Summary

In this chapter, we presented allocation-driven mapping, a kernel memory mapping

scheme, and its implementation – LiveDM. By capturing the kernel objects’ allocation

and deallocation events, our scheme provides an un-tampered view of kernel objects

that will not be affected by kernel malware’s manipulation of kernel memory content.

The LiveDM-generated kernel object map accurately reflects the status of dynamic

kernel memory and tracks the lifetimes of dynamic kernel objects. This temporal

property is highly desirable in temporal kernel execution analysis where both kernel

control flow and dynamic memory status can be analyzed in an integrated fashion.

We have demonstrated the effectiveness of the LiveDM system by developing a hidden

kernel object detector and a temporal malware behavior monitor and applying them

to a corpus of kernel rootkits.

http:LiveDM.By

59

5 CHARACTERIZING KERNEL MALWARE BEHAVIOR WITH KERNEL

DATA ACCESS PATTERNS

In this chapter, we demonstrate the second component of DMDA, characterization

of kernel malware behavior with kernel data access patterns. Based on the kernel

object mapping system presented in the previous chapter, the memory access patterns

specific to malware attacks are determined and matched to detect the kernel malware.

Moreover we analyze common malware behavior in terms of memory access patterns

to determine the applicability of our approach to malware variants.

5.1 Introduction

Characterizing malware behavior is a non-trivial research problem and there have

been many approaches to address its challenges. A large body of work uses malware’s

control flow patterns, such as instruction sequences or system-call sequences, to detect

or analyze malware [26–30]. In response to such approaches, malware often employs

various obfuscation techniques to confuse malware analyzers [31–34]. Meanwhile,

these approaches face challenges arising from execution dynamics, such as dynamic

code paths and the impact of other system components (e.g., network latency and

signals), which can cause variations in the characterized malware patterns. The

situation is more complicated in the kernel space because operating system (OS)

kernels have a highly dynamic workload, including interrupts, the coordination of

user processes, and the management of low level resources (e.g., page tables).

For detection and prevention of kernel malware, there is another collection of work

called the code integrity-based approach [10, 11]. This approach allows only autho­

rized code for execution and considers any code outside the white list as malicious.

Therefore, this approach is effective for kernel rootkits that introduce new code to

60

kernel space. However, other advanced rootkits perform the attacks by exploiting

only legitimate kernel code (e.g., the usage of memory devices [22], kernel bugs, and

return-oriented programming [90]); and such attacks are not properly handled by this

approach. In addition, this approach authorizes kernel driver code based on policies

trusting OS developers or venders without systematic examination of the code. For

example, existing code integrity-based approaches [10, 11] allow the kernel text and

a list of benign kernel modules included in the OS distributions. These policies do

not provide safety from hidden malicious code inside the authorized code. Thus the

capability of examining kernel drivers for potentially malicious behavior regardless of

such policies is desirable.

In this chapter, we introduce an alternative approach that characterizes kernel

malware behavior by using its data access patterns. We assume that when kernel

malware tampers with core kernel data, there exist kernel data access patterns spe­

cific to the attacks. As such, we could take a subset of data access patterns that

consistently appears in multiple kernel execution instances only when the malware

is active and generate a malware signature using the subset.1 These patterns under

constraints neither include malware’s temporal control flow information, nor the code­

specific information about the malware. Therefore, this approach is less susceptible

to obfuscation and more effective for matching malware variants.

To evaluate the effectiveness of our approach, we generated the signatures of three

classic rootkits and matched them with benign kernel runs and malicious kernel runs

where the rootkits are active. This experiment detects the presence of 16 kernel

rootkits that have a variety of attack goals and mechanisms without triggering any

false positives in typical benign workload. We further analyzed the data behavior of

these rootkits and found that a majority of them exhibit shared behaviors. We argue

that such common behavior can be used to effectively detect malware variants (e.g.,

polymorphic rootkits, different versions, and similar rootkits).

The contributions of this chapter are as follows:

1We use the terms “a kernel execution instance” and “a kernel run,” to represent an instance of the
OS kernel execution, which starts from its booting and ends at its shutdown.

61

•	 We present a complementary approach that characterizes kernel malware be­

havior by using its data access patterns specific to the attacks. This approach

can be applied to detect kernel rootkits that do not violate kernel code integrity.

•	 This approach can automatically construct malware signatures by using a binary­

only malware program. Malware behavior is extracted by capturing a subset of

kernel behavior that consistently appears across kernel execution instances only

when the malware is active.

•	 This signature uses data behavior with generalized code information and does

not involve control flow of malware code execution. Hence it can detect the

variants of kernel malware by exposing similar data behavior across kernel mal­

ware.

We have implemented a prototype called DataGene based on our approach. Data-

Gene is mainly designed for non-production systems such as a honeypot and a malware

analysis system. For instance, when a new proprietary driver is deployed, DataGene

can inspect it for potential hidden malicious behavior similar to the behavior observed

in existing kernel malware. If a newly distributed kernel malware sample shares any

data behavior with existing kernel malware, DataGene can detect it and extract its

data behavior. It can be further used to detect this malware and its variants. In

addition, DataGene can detect challenging kernel rootkits that do not violate ker­

nel code integrity. Therefore, this data-centric approach can complement the code

integrity-based approach in the defense against kernel malware.

5.2 Design of DataGene

In this section, we present the design of DataGene that characterizes the behavior

of kernel malware and determines its presence based on data access patterns. As

DataGene uses information regarding memory accesses, our design employs virtual

62

Figure 5.1.: Overview of DataGene.

machine techniques to capture the accesses. The overview of DataGene is presented

in Figure 5.1, and the components of this system are as follows.

As a basic unit to represent the kernel’s data behavior, DataGene generates a

summary of the access patterns for all kernel objects accessed in a kernel execution

instance. To identify dynamic kernel memory objects, this process takes advantage of

a kernel memory mapping process (shown as The Kernel Memory Mapper in Figure

5.1). For each access on kernel memory in the guest OS, the virtual machine monitor

(VMM) intercedes and records the information of the kernel memory access, such

as the accessing code, the accessed memory type, and the accessed offset (The Data

Behavior Aggregator).

To determine the malware behavior, the memory access patterns for two kinds

of kernel execution instances are generated: benign kernel runs and malicious kernel

runs where kernel malware is active. By taking the difference between the two sets of

memory access patterns, we extract the data behavior specific to the kernel malware

and generate its signature (Data Behavior Signature). To detect kernel malware, the

generated signature is compared to the memory access patterns of a tested kernel

execution instance (Checking Kernel Execution).

63

5.2.1 Data Behavior Profile Approach

In this section, we present basic terminologies that represent the memory access

patterns of kernel execution.

Definition 5.2.1 (Data Behavior Element) A data behavior element (DBE) rep­

resents a pattern of a memory access. It is defined as a quintuple, (c, o, m, i, f):

the address of the code that accesses memory (c), the kind (read or write) of memory

access (o), the kind (static or dynamic) of the accessed memory (m), the class of the

accessed memory (i), and the accessed offset(s) (f) inside the memory of the class i.

c is the address of the kernel code that reads or writes kernel memory. o represents

the kind of memory access which is 0 for a memory read and 1 for a memory write.

The kind of accessed memory, m, is 0 for a dynamic object and 1 for a static

object. The class i is defined differently, depending on m. Static objects are known

at compile time; therefore, we are able to assign unique numbers as their identifiers.

A class of a static object can represent either a static data object or a kernel function

in the kernel text. In the case of dynamic kernel objects, there are multiple memory

instances for the same data type at runtime. Dynamic kernel objects allocated by

the same code correspond to the data instances of the specific data type used in the

allocation code. Thus, we aggregate the access patterns of dynamic kernel objects

that share the allocation code. The address of this code (called an allocation code

site) is used as a unique class for such objects.

f is an offset, or a range of offsets, accessed by the code at c. We allow a range

of offsets because if this object is an array, the accessed offsets can vary for the same

accessing code. Handling them as separate data behavior elements can cause a high

number of elements with slightly different offsets for the same accessing code. To

avoid this problem, we use a threshold to convert a list of elements whose offsets are

different (but with the same accessing code) to an element with an offset range.

Definition 5.2.2 (Kernel Execution Instance) A kernel execution instance or a

kernel run is an instance of the OS kernel execution.

64

Figure 5.2.: An example of kernel code in benign and malicious kernel runs.

Definition 5.2.3 (Data Behavior Profile) For a kernel execution instance r, a

data behavior profile (DBP) is defined as a set of memory access patterns (DBEs)

observed and it is denoted as Dr.

A data behavior profile represents a set of data behavior elements observed in a

kernel execution instance. It is a summary of all observed kernel-mode memory access

patterns in the kernel run.

Figure 5.2 presents kernel code showing the examples of data behavior elements.

The rounded box in the middle of Figure 5.2 shows a dynamic kernel object allocated

by the code at the address c1. This figure shows how this object is accessed by several

code sites in kernel execution. Two fields, next task (offset 80) and prev task (offset

84), are written by the code at c2. The code at c3 reads the pid field (offset 120) and

another code at c4 reads this field. Therefore, the data behavior elements for this

code example are as follows.

(c2, 1, 0, c1, 80) , (c2, 1, 0, c1, 84) , (c3, 0, 0, c1, 120) (c4, 0, 0, c1, 120)

These elements are the access patterns in a benign kernel run. If kernel malware

is active in this kernel, the access patterns can be extended because of the malware

65

behavior. For instance, if kernel rootkits hp and fuuld are active as shown in the

right-hand section of Figure 5.2, there would be additional accesses to the next task

and the prev task fields by the code at c6 and c7. Consequently, the data behavior

profile is extended with the additional elements as follows.

(c6, 1, 0, c1, 80) , (c6, 1, 0, c1, 84) , (c7, 1, 0, c1, 80) , (c7, 1, 0, c1, 84)

Here c6 represents the code of the hp rootkit, which is in the form of a kernel

driver. The code integrity-based rootkit defense approach [10,11] can determine this

access as malicious based on the fact that this driver code is not in the authorized code

list. In contrast, the code at c7 is part of legitimate kernel code, which is indirectly

exploited to overwrite this data structure. This rootkit case does not violate kernel

code integrity; therefore, an approach based on code integrity cannot detect this

attack behavior.

In both cases, malware behavior appears only when the malware runs. Our ap­

proach seeks to capture such behavior specific to the attack to determine the presence

of malware.

5.2.2 Generating a Data Behavior Profile

In this section, we present the process for generating a data behavior profile, which

summarizes the access patterns for all kernel objects accessed in a kernel run. Based

on this information, we generate the signature of malware and inspect a kernel run

for malicious data access patterns. A data behavior profile is generated based on

two underlying functions. First, kernel objects should be identified with their unique

classes. Second, the access patterns on numerous (e.g., tens of thousands in modern

OSes) dynamic data instances should be summarized regarding their classes. We

present two system components to provide these functions.

66

Figure 5.3.: Aggregating	 memory accesses on dynamic kernel objects regarding their
classes (allocation sites) c1 and c2.

The Kernel Memory Mapper

DataGene uses the patterns of memory accesses on kernel objects and requires a

kernel memory mapping mechanism to identify the targets of kernel memory accesses.

LiveDM presented in Chapter 4 provides runtime kernel memory mapping that enables

the identification of a memory access’ target. LiveDM identifies kernel objects by

transparently capturing the allocation and deallocation events of kernel memory. The

generated map maintains the allocation code for each dynamic object as its runtime

identifier. In offline static analysis, this identifier can be automatically translated into

a data type by traversing kernel source code. We implemented the kernel memory

mapper by employing LiveDM’s approach.

The Data Behavior Aggregator

In a kernel execution instance, there exist a varying number of dynamic kernel data

instances. To compare the access patterns of dynamic kernel objects in different kernel

runs, it is necessary to aggregate the memory accesses on such objects regarding their

classes. The allocation code represents the instantiation of a data type at a specific

code position. By using a memory allocation code site as the classifier of dynamic

kernel objects, we can aggregate the access patterns of dynamic instances of the same

type and of a similar usage.

67

�

B
M

5

Figure 5.4.: A diagram of memory access patterns (DBEs). A: a set of frequently
observed DBEs in benign kernel execution, B: a set of DBEs for benign kernel runs,
M : a set of DBEs for malicious runs, S: a set of DBEs specific to malware attacks,

F : a set of potential false positives DBEs.

Figure 5.3 illustrates this aggregation process. When a dynamic kernel object is

allocated in a guest OS kernel, the kernel memory mapper stores its address range

and the allocation code site as the class information in the kernel memory map.

We have a memory mapping layer to aggregate the memory accesses on dynamic

kernel objects regarding their data classes. Whenever kernel code reads or writes

any dynamic kernel object, the VMM intercedes and identifies the targeted object

by using its class information from the kernel memory map. If this memory access

pattern is new, it is recorded in the aggregated memory profile.

5.2.3 Characterizing Malware Data Behavior

In this section we demonstrate how we characterize the behavior of kernel malware

based on data behavior profiles.

DataGene characterizes malware behavior by using recurring memory access pat­

terns specifically observed in malware attacks. Among those patterns, only the pat­

terns that are rare in benign kernel execution should be chosen and it is a challenging

task to differentiate such memory access patterns. This problem is illustrated in

68

B

Figure 5.5.: Controlling kernel execution instances in the signature generation stage
to reduce F . The descriptions for notations are shared with Figure 5.4.

Figure 5.4. The set A represents the DBEs that frequently occur in benign kernel

execution. We seek to derive the set of DBEs specific to malware attacks, S. This

set can be easily derived if A is available. However, obtaining the set A is challenging

because it requires a full understanding of possible computation of the kernel. The

halting problem, which is undecidable, shows the complexity of this problem. Instead,

we derive S by using benign kernel runs (B) and malicious kernel runs (M). Specifi­

cally, a malware signature is generated by subtracting B from M . The resultant set

includes both specific malware behavior (S) and potential false positive cases (F).

Hsin Pan and Eugene H. Spafford [91,92] proposed a new debugging approach that

determines statements involved in program failures and reduces the search domain

containing faults. This approach uses dynamic slicing and a set of heuristics to

determine the minimal set of information to be examined for identifying program

bugs. Our approach is similar to theirs in using multiple execution instances and

extracting the common program execution patterns. By adapting the techniques and

the findings of their approach, we expect future improvement of our approach.

As this methodology is based on dynamic kernel execution, it is difficult to elimi­

nate the potential false positive set F . However, if we reduce F to the set of memory

access patterns rarely triggered, we would be able to avoid frequent false positives in

69

�

�
�

�

�

��

���
��

Figure 5.6.: Kernel execution instances in the detection stage. B ′: a set of DBEs for
benign runs in the detection stage, B ′′: a set of DBEs for benign runs with false

positives, M ′: a set of DBEs for malicious runs in the detection stage. Other
notations are shared with Figure 5.4 and 5.5.

a typical workload. In the signature generation stage, we would be allowed to control

the workload of kernel execution instances. Therefore, we can use several techniques

to reduce the F set. Figure 5.5 shows the configuration we wish to achieve. By en­

larging B and limiting M , we can control a majority of the memory access patterns in

F to be covered by B pruning out frequent benign access patterns from the potential

signature.

Figure 5.6 illustrates the relationships among the sets in the detection stage. M

and B are the kernel runs used to generate the malware signature. M ′ is a tested

malware run, and S will match it because it captures the recurring attack patterns

of the malware. B ′ shows the tested benign kernel runs. We note that B ′ can be

larger than B or it can partially overlap with the B set. However, as far as those sets

do not overlap with F , they will not trigger false positives. This is the goal that we

would like to achieve in our work. Note that if there is a kernel run, B ′′ that has the

patterns of F , it will cause false positives.

Figure 5.7 illustrates a procedure for signature generation and matching. In the

signature generation stage, we use the sets of benign kernel execution and malicious

kernel execution as we control the workload to reduce F . After the signature is

generated, we test false positives using another set of benign kernel execution. If

 e g

 er e

 e t

 e g

 er e

 e t
 e g

 er e

 e t

 e g

 er e

 e t

 a s

 er e

 e t

 a s

 er e

 e t

70

S g at re
�e erat

FP dete ted? mpty set?

N s g at re

y

N

Ref g s g at re
y

N
 a ware?

 e g

 er e

 e t

�ested

 er e

 e t

 a ware
s g at re

 e g

 er e

 e t

 a s

 er e

 e t yIN

Figure 5.7.: A procedure for signature generation and matching

a false positive is detected, the triggering memory access pattern is not specific to

malware patterns and therefore should be eliminated from the signature. This process

can be done systematically by merging the tested benign runs to the set of benign

runs for signature generation and regenerating the signature. If all memory access

patterns are pruned out and the signature turns out to be empty, the malware in

question does not have memory access patterns specific to the malware attack. This

is out of the malware class that we wish to detect and is not covered by the DataGene

system. Once the signature is generated, it is used to detect malware in the tested

kernel execution.

Challenges and Our Solutions

DataGene characterizes malware behavior by using dynamic kernel execution. We

list several challenges caused by our use of dynamic analysis. We also present our

solutions for these challenges:

•	 Variations in the Runtime Kernel Behavior. Generally, the difficulty

in obtaining a complete set of kernel execution paths is a well-known challenge

for an approach based on dynamic execution. If we focus on the data behavior

in benign execution, it is in fact a problem because the runtime kernel behavior

71

is highly dynamic across different runs. However, we focus on the data behavior

specific to malware that consistently appears only when the malware is active.

For instance, in Figure 5.6 even though benign runs (B ′) are highly dynamic, if

they are not overlapped with F they would not trigger false positives.

•	 Irregular Access Patterns on Kernel Stacks. Kernel stacks are ker­

nel objects that have irregular access patterns. Whenever a kernel function is

called or returns, the stack is accessed for various purposes such as return values,

function arguments, and local variables. As the kernel control flow is highly dy­

namic, the set of code sites that access the stack and the accessed offsets within

the stack vary significantly. Also, the contents of kernel stacks are irregular at

different runs. As such, a simple way to handle this problem is to exclude stacks

from our analysis. The kernel memory mapper provides the identifier for kernel

stacks and we solve this problem by removing the information for such dynamic

objects from the analysis.

•	 Varying Offsets in Arrays. Some data structures (e.g., arrays and buffers)

have a range of space, a part of which can be used at runtime. For example, the

accessed offsets of a buffer can be different depending on the data contained in

it. This problem is handled by using multiple instances of kernel execution. If

the accessed offset of memory is different in each execution, it is not used for a

malware signature because it may not be used in another run. Only the data

behavior that occurs in a consistent pattern when malware is active becomes

the candidate for the signature.

Characterizing Malicious Data Behavior

To reliably characterize the data behavior of kernel malware in dynamic execution,

we use multiple kernel runs in the signature generation stage. DM,j is a data behavior

profile for a malicious kernel run j with malware M . DB,k represents a data behavior

profile for a benign kernel execution k. We apply the set operations on n malicious

�

72

AOkernelOrun MalwareOattack

BootOOS ShutdownOOS

BenignOpatterns MalwareOpatterns

Time

Figure 5.8.: Using a single kernel run for both of benign and malware memory
access patterns

kernel runs and m benign runs as follows. The generated signature is called a data

behavior signature for the malware M and shown as SM .

SM = DM,j − DB,k (5.1)
j∈[1,n] k∈[1,m]

This formula represents that SM is the set of data behavior that consistently

appears in n malware runs. However, this is also a set of behaviors specific to the

attacks that rarely appears in m benign runs. The underlying observation from this

formula is that kernel malware will consistently perform malicious operations during

attacks so we extract malware behavior by taking the intersection of malicious runs.

Such behavior should not occur in benign runs. Therefore, we subtract the union of

benign runs from the derived malware behavior.

When we generate kernel execution runs with kernel malware, we use the cumula­

tive memory access patterns before the attack as the benign kernel run and consider

only the new patterns after the attack as the malware kernel run (shown in Figure

5.8). This technique prunes out significant benign access patterns from the malicious

kernel run.

False positives may occur if a part of a signature is observed in a new tested benign

run. The cause of this problem is not unknown kernel behavior, but rather a part of

a signature not being properly pruned out in the signature generation. By exercising

a variety of workloads in multiple kernel execution instances, we expect that such

73

potential behavior for this error can be significantly reduced from such constraints so

that it does not cause frequent false positives in a typical workload.

Generalizing Malware Code Identity

DataGene aims at matching the variants of the rootkits whose signatures are avail­

able. For example, DataGene can be used to inspect suspicious data activity in the

execution of new signed drivers (which may include hidden malicious code), the execu­

tion of an unknown driver (which may be malware or its variant), or kernel execution

(where legitimate kernel code can be exploited indirectly for attacks).

To cover variants of malicious code, DataGene does not use specific identification

of kernel drivers. When we generate signatures, we generalize the information specific

to kernel drivers, thus allowing signatures to be tested against any driver from new

signed drivers to new driver-based rootkits. Specifically, when the signature for a

driver-based rootkit is generated, all code sites in this malicious driver are substituted

by a single anonymous code site, ε. Some rootkits allocate memory and place their

code on it, and any code site in such memory is also generalized as ε. In this process,

we also generalize all benign kernel modules in the same way and subtract their

memory access patterns from the candidates for the signature to collect only the

behavior specific to the malware.

We preserve the code sites in the kernel text. The malware exploiting legitimate

kernel code (e.g., the rootkits using memory devices or return-oriented rootkits) is

handled by specific access patterns of legitimate code that are not observed in benign

runs. In addition, when we match a malware signature with the data behavior profile

of a kernel run, we generalize the driver code in the tested run similarly for comparison.

Matching a Malware Signature with a Kernel Run

The likelihood that a malware program M is present in a tested run r is determined

by deriving a set of data behavior elements in SM which belong to the data behavior

74

Algorithm 1 Derive the intersection of SM and Dr.
1: function CheckSignature(SM , Dr)
2: I ← ∅
3: for each e in SM do
4: for each e ′ in Dr do
5: if CompareElements(e, e ′)= 1 then
6: I ← I ∪ {e}
7: end if
8: end for
9: end for

10: return I
11: end function
12: function CompareElements(e, e ′)

′ ′ ′ 13: if e.c �= e .c ∨ e.o �= e .o ∨ e.m �= e .m ∨ e.i �= e ′ i then
14: return 0
15: end if
16: if e.f is an offset then
17: if e ′ .f is an offset then
18: if e.f = e ′ .f then
19: return 1
20: end if
21: else ⊲ e ′ .f is a range of offsets.
22: if e.f ∈ e ′ .f then
23: return 1
24: end if
25: end if
26: else ⊲ e.f is a range of offsets.
27: if e ′ .f is a range of offsets then
28: if e.f ⊂ e ′ .f then
29: return 1
30: end if
31: end if
32: end if
33: return 0
34: end function

profile, Dr. This set I corresponds to the intersection of SM and Dr
2 (i.e., I = {i|i ∈

SM ∧ i ∈ Dr}); however, this set may not be symmetric for SM and Dr because we

allow two representations (i.e., an offset and a range of offsets) for the f field of a

data behavior element. Algorithm 1 presents how this set I is generated.

Specifically, a data behavior signature SM and a data behavior profile Dr consist

of data behavior elements for all of the static and dynamic data structures. The

CheckSignature function in Algorithm 1 compares each element of SM and Dr,

and returns the set of common elements, I. Two for-loops at lines 3 and 4 generate

2The data behavior signature (SM) is a data behavior profile (i.e., a set of data behavior elements)
because it is derived by the intersection and union of data behavior profiles.

75

a pair of elements each from SM and Dr, and those elements are compared by calling

the CompareElements function at line 5.

To consider the two compared elements e and e ′ as identical, their c, o, m, and

i fields first should be equal. Next, their offset fields (e.f and e ′ .f) are compared.

Because the offset field can be either of an offset or a range of offsets, there are several

cases shown in lines 16-33. If e.f is an offset, it can match either an offset or a range

of offsets. If both e.f and e ′ .f are an offset, their values should be identical. If e.f is

an offset and e ′ .f is a range, they can match if e.f belongs to e ′ .f ’s range. If e.f is a

range of offsets, it can only match a range of offsets that includes e.f .

5.3 Implementation

DataGene generates the patterns of kernel memory accesses transparently without

making changes in the source code of the OS. To implement this feature, we employ

virtualization techniques. We used the QEMU [86] virtualizer with the KQEMU

optimizer for our implementation. The host machine has 3.2Ghz Pentium D CPU

and 2GB RAM. The guest machine is configured with 256MB RAM and the Redhat

8 operating system. This experimental platform is chosen for the convenience of

implementation. However, our mechanism is generic and applicable to other operating

systems and virtual machine platforms.

We implement the kernel memory mapper and the data aggregator in the VMM.

The kernel memory mapper tracks kernel memory allocation and deallocation calls

and captures dynamic kernel objects at runtime similar to [43]. When there is a

request to the VMM, a data behavior profile can be dumped into a file anytime

during the execution of the guest OS. For the purpose of generating a signature,

dumping the profile once the OS is completely shutdown is preferred to capture most

data behavior. However, to detect kernel malware, the data behavior profile can be

periodically generated and compared with the signature while the OS is running.

76

In the benign runs, we performed various workload from daily commands to

non-trivial application benchmarks. The tested workload includes kernel compila­

tion, Apache webserver, UnixBench (Byte Magazine Unix Benchmark suite), nbench

(BYTEmark Native Mode Benchmark), mysql database, thttp webserver, find, gzip,

ssh, scp, lsmod, ps, top, and ls utilities. Some workloads were executed for several

hours to allow any background administrative operation to be performed. We also

used the workload of benign module loading and simple operations of the /dev/kmem

device (e.g., open and close without overwriting kernel memory).

Among the memory accesses for kernel modules, we exclude the accesses to a ker­

nel module by the same module which correspond to the accesses to a module’s local

variables. This information is not used to generalize the internal module activity.

However, the accesses across modules are used after generalizing the accessing code

information. In addition, the kernel data structure module having the administrative

information regarding a kernel module is mapped to the head of each module’s mem­

ory. We treat this part of memory as a separate data structure from the remaining

module code or data.

5.4 Evaluation

In this section we evaluate the effectiveness of our data behavior signatures. First,

we extract the signatures of three classic rootkits and match them with benign and

malicious kernel runs. Second, we compare the signatures of all of the tested kernel

rootkits to determine common data behavior across different rootkits and how such

common behavior can be effective in detecting the variants of rootkits. Third, we list

specific data elements that are shared by rootkit signatures, which provide an in-depth

understanding of the attack operations that are common across kernel rootkits.

77

Table 5.1: Details of data behavior profiles for benign kernel runs. CL: # of classes,

RS: # of read sites, WS: # of write sites.

Benchmark
Properties of a DBP

Dynamic Objects Static Objects
CL RS WS CL RS WS

boot&shutdown 200 9372 3732 15800 27287 3070
kernel compile 200 9260 3740 15800 30357 5895

apache 204 10205 4087 15800 27496 3121
find 200 9008 3614 15800 27087 2977

scp+gzip 201 10364 4205 15800 32471 6486
unixbench 201 9122 3679 15800 27222 3032

nbench 200 9028 3621 15800 27155 3009
mysql 201 9265 3736 15800 27142 3006
thttpd 206 10551 4212 15800 27442 3110
utils 201 10671 4186 15800 27840 3815

long 1 223 23934 5176 15800 31353 6837
long 2 207 11365 4503 15800 29749 4632
long 3 206 10976 4342 15800 29609 4605
long 4 204 10857 4301 15800 29556 4617
long 5 204 10978 4332 15800 29687 4617

Union 221 13918 5608 15800 39283 11449

78

Table 5.2: Details of malicious and benign kernel DBPs (D) and generated
signatures (S). CL: # of classes, RS: # of read sites, WS: # of write sites.

DBP (D) /
Signature (S)

Dynamic Objects Static Objects
CL RS WS CL RS WS

a
d
o
r
e

 0
.
3
8

Dadore0.38,1

Dadore0.38,2

Dadore0.38,3

Dadore0.38,4

Dadore0.38,5

201
201
201
201
201

9148
9114
9143
9149
9127

3663
3654
3668
3663
3660

15800
15800
15800
15800
15800

27189
27141
27133
27166
27135

3005
2998
2989
2996
2992 �

Dadore0.38 �
Dbenign

193
221

8716
13918

3296
5608

15800
15800

21333
39283

2518
11449

Sadore0.38 2 1 2 1 1 1

S
u
c
K
I
T

DSucKIT,1

DSucKIT,2

DSucKIT,3

DSucKIT,4

DSucKIT,5

201
201
201
201
201

9086
9091
9092
9099
9101

3645
3653
3655
3665
3651

15800
15800
15800
15800
15800

31786
31757
31781
31754
31761

3012
2993
3003
2995
2987 �

DSucKIT �
Dbenign

193
221

8720
13918

3303
5608

15800
15800

22564
39283

2515
11449

SSucKIT 5 13 8 1192 1212 6

m
o
d
h
i
d
e

Dmodhide,1

Dmodhide,2

Dmodhide,3

Dmodhide,4

Dmodhide,5

200
200
200
200
200

8987
8999
8985
9013
8985

3620
3613
3605
3616
3613

15800
15800
15800
15800
15800

27100
27145
27101
27096
27092

2983
2997
2985
2988
2984 �

Dmodhide �
Dbenign

192
221

8608
13918

3276
5608

15800
15800

21306
39283

2517
11449

Smodhide 1 0 1 0 0 0

Table 5.3: Details of the signatures for adore 0.38, SucKIT, and modhide rootkits.
CL: # of classes, RS: # of read sites, RD: # of number of read data behavior

elements, WS: # of write sites, WD: # of write data behavior elements.

Rootkit Dynamic Objects Static Objects Total
DBE Name CL RS RD WS WD CL RS RD WS WD

adore 2 1 5 2 14 1 1 8 1 7 35
SucKIT 5 13 29 8 12 1192 1212 11963 6 6 12010
modhide 1 0 0 1 1 0 0 0 0 0 1

79

5.4.1 Malware Signature Generation

When a data behavior signature is generated, the information specific to the ma­

licious code is generalized in large. Therefore, we hypothesize that data behavior sig­

natures may be effective not only to detect the malware whose signature is available,

but also to determine the presence of related malware. To validate this hypothesis,

we generated the signatures of three representative rootkits, and tested benign kernel

runs and malicious kernel runs with 16 rootkits.

To generate malware signatures, we chose three rootkits: adore 0.38, SucKIT,

and modhide. The adore rootkit has been studied in several rootkit defense ap­

proaches [10, 44, 60, 61]. This rootkit has several versions with differences in features

and we chose an old version, 0.38, for the signature to evaluate its effectiveness to­

ward newer rootkit versions (0.53 and 1.56). SucKIT is known for its attack vector, the

/dev/kmem device, that avoids the conventional driver-based mechanism [22]. Sev­

eral other rootkits followed this trend, using this device while having different goals.

modhide is a rootkit packaged with the adore rootkits to hide them from the list of

kernel modules.

To generate each malware signature, we used five malicious kernel runs with rootk­

its and 15 benign runs. Table 5.1 presents the details of data behavior elements of

benign kernel execution instances. The first column shows the name of benchmark.

The benchmarks named as long x run a mix of listed benchmarks for several hours.

The next three columns show information about the dynamic objects, such as the

number of classes for dynamic kernel objects, the number of code sites that read the

dynamic kernel objects, and the number of code sites overwriting the dynamic kernel

objects. The next three columns have similar information for the static kernel objects.

As static objects (kernel functions and static data structures) are known at compile

time, the number of classes for the static objects has the same value in different runs.

These numbers represent a variety of data access behavior of the operating system

kernel.

http:versions(0.53

80

Table 5.2 shows the record of malicious kernel execution instances where kernel

rootkits are running. In each rootkit category (e.g., adore 0.38) the information

about malicious DBPs are listed first in the top five rows. Then the information

regarding the intersection of such DBPs is shown. Next, the union of benign DBPs

is presented. In the following row, details of the derived rootkit signature are shown.

Table 5.3 presents the details of three rootkit signatures. Three data behavior

signatures of the adore, SucKIT, and modhide rootkits have 35, 12010, and 1 data

behavior elements (DBEs), respectively. SucKIT has a significantly higher number

of elements because it scans kernel memory to collect information about the attack

targets (e.g., the system-call table), and this behavior is observed as reading numerous

static objects with a variety of offsets. The modhide rootkit simply manipulates the

kernel module list; thus, it has a few elements.

5.4.2 False Positive Analysis

To evaluate the false positives of the generated signatures, we compare the sig­

natures with new benign kernel execution instances. Table 5.4 shows the result of

this experiment. This table has the same set of benchmarks and the same format as

Table 5.1. In these kernel runs, we generated an additional variety in the workload

(e.g., an additional run) so that such kernel runs contain more code paths and data

operations beyond the kernel runs used for generating signatures. This additional

runtime variation results in more code sites for memory accesses (i.e., higher numbers

in # of read code sites and # of write code sites).

In this experiment, no false positive cases were found, which confirms that our

signature generation procedure captures a reasonably close set of the data behavior

specific to the kernel rootkits and that the tested runs did not contain any data

behavior that appears in the signatures.

81

Table 5.4: Benign kernel runs tested for false positives. A: Sadore0.38, S: SSucKIT , M :

Smodhide. CL: # of classes, RS: # of read sites, WS: # of write sites.

Benchmark
Properties of a DBP Signature

Match Dynamic Objects Static Objects
CL RS WS CL RS WS A S M

boot&shutdown 200 9391 3743 15800 27310 3079 0 0 0
kernel compile 201 9766 3903 15800 31813 7646 0 0 0

apache 204 10249 4108 15800 27507 3126 0 0 0
find 200 9448 3756 15800 27318 3076 0 0 0

scp+gzip 201 10774 4233 15800 36909 8132 0 0 0
unixbench 201 9520 3799 15800 27353 3087 0 0 0

nbench 200 9460 3758 15800 27333 3084 0 0 0
mysql 201 9731 3890 15800 27378 3095 0 0 0
thttpd 206 10942 4356 15800 27720 3237 0 0 0
utils 202 10723 4225 15800 27866 3203 0 0 0

long 1 223 12610 4980 15800 30151 4707 0 0 0
long 2 223 12636 4911 15800 30172 4714 0 0 0
long 3 223 12635 4925 15800 30156 4710 0 0 0
long 4 223 13087 5285 15800 31053 6968 0 0 0
long 5 223 13118 5281 15800 33776 8025 0 0 0

http:Sadore0.38

82

Table 5.5: The number of matched data behavior elements between three rootkit signatures and the kernel runs with 16
kernel rootkits (average of 5 runs). (AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng 1.56, FL: fuuld, HL: hide lkm, SK:

SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH: modhide, MH1: modhide1)

Signature (SM) # of matched DBEs between SM and the kernel runs with the rootkits shown below (|I|).
M |SM | AD1 AD2 AD3 FL HL SK ST hp kbdv3 knark LF Rial CL kis MH MH1

AD1 35 35 30 14 0 0 2 2 2 5 20 3 4 0 2 0 0
SK 12010 2 1 1 16 16 12010 11983 0 0 1 0 0 0 16 0 0
MH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Detected
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

of effective SM 2 2 2 1 1 2 2 1 1 2 1 1 1 2 1 1

83

5.4.3 Detecting Rootkits using Data Behavior Signatures

Malicious kernel runs were next tested by using three signatures to determine

any running malware based on the similarity of the data access patterns between

the compared signature and the kernel run. We tested a total of 80 kernel runs

of 16 rootkits having a variety of targets and attack vectors. For instance, seven

rootkits (fuuld, hide lkm, hp, linuxfu, cleaner, modhide, and modhide1) directly

manipulate kernel objects (DKOM [75]). Four rootkits (fuuld, hide lkm, SucKIT,

and superkit) manipulate kernel memory by using the /dev/kmem memory device,

among which two rootkits (fuuld and hide lkm) directly manipulate only kernel data

and do not violate kernel code integrity. Therefore, they are not detected by code

integrity-based defense systems [10,11].

Table 5.5 presents the number of matched data behavior elements between signa­

tures and kernel runs with rootkits (I). Two left-hand columns show the information

about signatures: the name (M) of the rootkit used for the signature and the size

of the signature (|SM |). The remaining 16 columns present the number of data be­

havior elements common in the compared signature (based on the rootkit in the row

heading) and the kernel run (where the rootkit in the column heading is active). The

presented numbers are the averages of five kernel runs. However, the numbers are

consistent in the runs with the same rootkit.

If the rootkit used for the signature and the rootkit in the tested run are identical,

the entire signature was matched giving |I| = |SM |. For example, the signatures of

adore 0.38, SucKIT, and modhide rootkits fully match the kernel runs with those

rootkits (shown in italics). We consider that a tested run includes a potential malware

running if one or more signatures have a matched element with the kernel run. In our

experiments, all kernel runs with rootkits shared elements with one or more signatures

(shown in the row at the bottom of the table), leading to the detection of 16 kernel

rootkits.

84

5.4.4 Similarities among Data Behavior Signatures

In the previous section we demonstrated that a variety of rootkits can be detected

by using the signatures of a few classic rootkits because they have common data access

patterns. In this section we quantitatively measure the similarities in data behavior

across rootkits by generating and comparing the signatures of the tested rootkits.

We first generated the signatures of 16 kernel rootkits by applying the set opera­

tions (Section 5.2.3) on five malicious kernel runs with rootkits and 15 benign kernel

runs. Then we calculated the similarities among signatures by applying Algorithm 1

on the combinations of 16 rootkit signatures. Table 5.6 lists the number of common

data behavior elements in such combinations. For a pair of rootkits M1 in the row

heading and M2 in the column heading, the cross section of the corresponding row

and column shows the number of data behavior elements common in two signatures

of M1 and M2. This number may not be symmetric for M1 and M2 because a data

behavior element can have two representations for its f field (an offset or a range

of offsets). If M1 and M2 are the same rootkit, the number of elements is shown in

italics.

For the rootkit M2 in the column heading, if positive numbers are listed in the

column, the signatures of the rootkits (in the row headings) can be used to determine

M2. The number of such signatures (except SM2 itself) is presented at the second

bottom row (# of effective SM). The maximum size of such signatures is shown in

the bottom row (Max |effective SM |). In our experiments, a rootkit shares its data

behavior with 2∼10 of other rootkits (more than six rootkits in average). The rootkits

show similar data behavior not only among close variants (e.g., different versions of

adore rootkits) but also across the rootkits having different attack mechanisms (e.g.,

SucKIT shows similarities with driver-based rootkits such as knark or kis).

The similarities of data behavior across rootkits are visualized in Figure 5.9. A

node represents a rootkit signature and an arrow shows the similarity between two

signatures using three different arrow types. An arrow from a node M1 to a node M2

85

Table 5.6: The number of common data behavior elements in the combination of rootkit signatures. (AD1: adore 0.38, AD2:
adore 0.53, AD3: adore-ng 1.56, FL: fuuld, HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH:

modhide, MH1: modhide1)

M |SM | AD1 AD2 AD3 FL HL SK ST hp kbdv3 knark LF Rial CL kis MH MH1
AD1 35 35 30 14 0 0 2 2 2 5 20 3 4 0 2 0 0
AD2 46 30 46 24 0 0 1 1 2 5 19 2 4 0 2 0 0
AD3 97 14 24 97 0 0 1 1 2 4 9 6 0 2 2 0 0
FL 19 0 0 0 19 13 16 16 0 0 0 0 0 0 0 0 0
HL 3406 0 0 0 13 3406 13 13 0 0 0 0 0 0 0 0 0
SK 12010 2 1 1 16 13 12010 11983 0 0 1 0 0 0 16 0 0
ST 11998 2 1 1 16 13 11983 11998 0 0 1 0 0 0 1 0 0
hp 17 2 2 2 0 0 0 0 17 0 1 5 0 0 1 0 0

kbdv3 16 5 5 4 0 0 0 0 0 16 4 0 0 0 0 0 0
knark 67 20 19 9 0 0 1 1 1 4 67 1 4 0 2 0 0
LF 24 3 2 6 0 0 0 0 5 0 1 24 0 0 1 0 0
Rial 46 4 4 0 0 0 0 0 0 0 4 0 46 0 0 0 2
CL 3 0 0 2 0 0 0 0 0 0 0 0 0 3 0 1 1
kis 31203 2 2 2 0 0 16 1 1 0 2 1 0 0 31203 0 2
MH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
MH1 6 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 6
of effective SM 10 10 10 3 3 8 8 6 4 10 6 4 3 9 2 4
Max |effective SM | 30 30 24 16 13 11983 11983 5 5 20 6 4 2 16 1 2

86

adore 0.38

adore 0.53

adore-ng 1.56
SucKIT superkit

hp

kbdv3

knark

linuxfu

Rial

kis

cleaner

fuuld
hide_lkm

modhide1
modhide

Figure 5.9.: Similarities among the data behavior of rootkits. Types of arrows (|I|: # of the matched elements): thin solid
(0 < |I| < 5), thick dashed (5 <= |I| < 25), and thick solid (|I| >= 25).

87

means that the signature M1 can be used to determine the rootkit of the signature

M2. This figure illustrates that several groups of rootkits have strong similarities.

The family of adore rootkits (i.e., adore 0.38, adore 0.53, and adore-ng 1.56)

are strongly related in general. The adore-ng 1.56 is connected to other versions

with less strong connections, thick dashed arrows, because in newer adore versions

(bigger than 1.0 whose name is changed to adore-ng), the internal attack vector is

substantially changed to use dynamic objects instead of static objects. A group of

rootkits using the /dev/kmem memory device (i.e., SucKIT, hide lkm, fuuld, and

superkit) have a strong relationship to one another. The SucKIT and the superkit

are especially connected by using thick solid arrows because they share a majority

of data behavior. Some rootkits have relationships with different kinds of rootkits.

For example, the kis rootkit is connected to driver-based rootkits such as the adore

rootkits and the knark rootkit; but, it is also closely related to /dev/kmem based

rootkits such as the SucKIT.

As seen in Figure 5.9, the data behavior is not only common in the family of

rootkits or similar kinds, but also is available across different kinds of rootkits. The

signatures of these related rootkits can be interchangeably used to detect one another.

5.4.5 Extracting Common Data Behavior Elements

In this section we demonstrate the details of common rootkit attacks which are

systematically extracted based on the similarities in rootkits’ data behaviors. The

data behavior elements (DBEs) from the signatures of all experimented rootkits are

ranked with the order of the appearance in rootkits’ signatures (N). The top DBEs

are presented in Table 5.7 after being classified into several categories.

The first three columns present the information regarding rootkits which share

data behavior elements. The number N and the names of rootkits whose signatures

share a DBE are listed. A short description of the element is provided in the next

column by considering the information of the DBE.

88

Table 5.7: Top common data behavior elements among the signatures of 16 rootkits. (AD1: adore 0.38, AD2: adore 0.53,
AD3: adore-ng 1.56, FL: fuuld, HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH: modhide, MH1:

modhide1)

Rootkits Accessing code Accessed data
N Rootkits with common behavior Rootkit behavior Code (c) o m Data class (i) Field,Offset (f)
7 AD1, AD2, AD3, hp, knark, LF, kis Reading a process’s ID ε R D task struct pid
6 AD1, AD2, AD3, SK, ST, knark Reading a process’s flag ε R D task struct flags
5 AD1, AD2, AD3, kbdv3, knark Privilege escalation ε W D task struct uid, euid, gid, egid
5 AD1, AD2, AD3, hp, LF Listing processes ε R D task struct next task
4 AD1, SK, ST, kis Setting an address space ε W D task struct addr limit
4 AD1, AD2, AD3, knark Privilege escalation ε W D task struct suid, fsuid, fsgid
3 AD1, AD2, AD3 Privilege escalation ε W D task struct cap effective
3 AD1, AD2, AD3 Privilege escalation ε W D task struct cap inheritable
3 AD1, AD2, AD3 Privilege escalation ε W D task struct cap permitted
3 AD1, AD2, kbdv3 Reading a user’s ID ε R D task struct uid
3 AD1, AD3, LF Reading a process’ name ε R D task struct comm
2 hp, LF Hiding a process ε W D task struct next task, prev task
4
4
3

FL, HL, SK, ST
FL, HL, SK, ST
FL, SK, ST

Manipulation via /dev/kmem
Manipulation via /dev/kmem
Manipulation via /dev/kmem

read kmem, write kmem
memory lseek
do write mem

R,W
W

R,W

D
D
D

file
file
file

f pos
f pos
f pos

3
2

CL, MH, MH1
kis, MH1

Hiding a kernel module
Hiding a kernel module

ε
ε

W
W

D
S

module
module list

next
0

4 AD1, AD2, knark, Rial Hijacking a system call ε W S sys call table # 141
3 AD1, AD2, knark Hijacking a system call ε W S sys call table # 2,37,120,220
3 AD1, AD2, Rial Hijacking a system call ε W S sys call table # 6
2 Rial, MH1 Hijacking a system call ε W S sys call table # 5
2 knark, Rial Hijacking a system call ε W S sys call table # 3
2 SK, ST Hijacking a system call ε W S sys call table # 59
2 SK, ST Hijacking a system call generic copy from user W S sys call table # 59
2 AD1, AD2 Hijacking a system call ε W S sys call table # 39
2 AD2, AD3 Hijacking a hook ε W S proc root inode operations lookup

89

The next five columns present the contents of data behavior elements: the access­

ing code (c); the kind of memory access (o) such as a read (R: o = 0) or a write (W:

o = 1); the kind of accessed memory (m) such as a dynamic object (D: m = 0) or a

static object (S: m = 1); the accessed memory’s class (i), which is converted to a data

type for dynamic data or a variable name for static data; and the accessed offset(s)

(f). The offset is converted to a field name if it corresponds to a specific field. If

the accessed object is the system-call table, a system-call number (#) is presented by

dividing the offset by the size of a pointer.

•	 Attacks on Process Control Blocks (PCBs). The first category at

the top of Table 5.7 lists the data behavior that targets the PCBs (type:

task struct in Linux). This is a core data structure that maintains adminis­

trative information about processes. Therefore it is a major target of rootkits,

that manipulate such information.

Table 5.7 shows that seven rootkits read the process ID numbers in PCBs dur­

ing attacks. The flags of the processes are accessed by six rootkits. Several

rootkits, such as the family of adore rootkits, the kbdv3 rootkit, and the knark

rootkit, provide a back-door that gives root privileges for an ordinary user. The

hp and linuxfu rootkits show an attack pattern that manipulates the point­

ers connecting PCBs. This behavior can hide PCBs from the view inside the

operating system.

•	 Attacks using /dev/kmem. The second category shows the rootkit

behavior that manipulates kernel memory by using a memory device (e.g.,

/dev/kmem). This device allows a user program to read and write kernel mem­

ory, putting the kernel integrity at risk. The kernel runs compromised by fuuld,

hide lkm, SucKIT, and superkit rootkits commonly show specific data be­

havior that the kernel functions related to memory devices access file kernel

objects.

90

Table 5.8: Configuration of benchmarks

Name Version Command
Kernel compile
UnixBench
nbench
bzip2
find

2.4.18
5.1.2
Version 2
1.0.2
4.1.7

time make
./Run -i 1
time nbench
time tar cvfj linux.tbz2 linux-2.4.18
time find /etc | xargs grep noexist

•	 Attacks on the Kernel Module List. The next category lists rootkit

attacks on the kernel module list. The next pointer field of module objects are

written by the cleaner, modhide, and modhide1 rootkits. The module objects

constitute the list of kernel modules and they are connected by this pointer

field. The rootkit attacks that hide a module appear as direct manipulation of

this field.

•	 Attacks on Static Kernel Objects. The last category is the manipula­

tion of static kernel objects. Several rootkits hijack system-calls by replacing

the system-call table entries with the addresses of malicious functions. This

behavior is captured by the manipulation of the system-call table by several

code sites, depending on the attack vector. In the case of driver-based rootkits,

such behavior is captured as access by the generalized rootkit code, ε. The

rootkits based on memory devices (e.g., /dev/kmem) use legitimate kernel code

for manipulation (e.g., generic copy from user).

5.4.6 Monitoring Performance

We evaluated the performance of DataGene compared to the unmodified QEMU

and the LiveDM system. We performed five benchmarks, and their configurations are

presented in Table 5.8. In kernel compile, nbench, bzip2, and find benchmarks, we

used the total runtime measured for the workload. UnixBench has several internal

benchmarks in the benchmarking process. Therefore, the total benchmarking time

91

Figure 5.10.: Performance comparison of unmodified QEMU, LiveDM, and

DataGene (OS: Redhat 8)

does not represent performance properly. We used the performance index from the

report of the benchmark instead of its total execution time.

Figure 5.10 presents the performance overhead of unmodified QEMU, LiveDM,

and DataGene. All performance numbers are normalized to the results of unmodified

QEMU, and a lower number represents faster execution.

DataGene has two stages of operations: signature generation and malware de­

tection. In the current implementation, DataGene intercedes on every kernel mode

memory access. Therefore, DataGene has higher performance overhead than LiveDM,

which intercedes only when the kernel executes kernel memory allocation and deallo­

cation code. For the signature generation stage, this overhead is necessary to observe

the entire malware behavior and to generate its signature. However, in the detection

stage, it is necessary to monitor the memory accesses only to the kernel objects listed

in a given malware signature. Malware typically has a limited number of malicious

actions. Therefore the monitoring performance can be further optimized by reducing

the monitoring scope. The presented result corresponds to a conservative performance

http:Figure5.10

92

analysis of complicated malware behavior that may access any kernel objects because

DataGene inspects all kernel mode memory accesses in the current experiments.

Kernel compile, UnixBench, and find benchmarks intensively use system resources

such as file systems, pipes, and processes. Such activities invoke kernel services such

as system calls and page fault handling, which indirectly trigger kernel-level memory

activities. The nbench benchmark involves only user-level CPU workload and there­

fore does not cause kernel level memory accesses nor trigger kernel level services.

Both LiveDM and DataGene do not have additional overhead for this case. bzip2

benchmark involves both file system access and user-level computation. Therefore it

caused lower overhead compared to kernel compile, UnixBench, and find benchmarks.

5.5 Summary

In this chapter, we presented a new approach to characterize the behavior of

kernel malware by using kernel data access patterns specific to the malware. We also

demonstrated the effectiveness of our implementation, DataGene, in the evaluation of

kernel rootkit detection.

Kernel malware signatures are constructed by using benign kernel runs and mali­

cious kernel runs. Our experiments show that the signatures of three classic rootkits

can effectively detect the kernel runs compromised by 16 kernel rootkits without

triggering false positives in typical benign workloads.

We further analyzed the similarities of the signatures for 16 rootkits. Each sig­

nature shares similar access patterns with 2∼10 other rootkit signatures, which are

effectively exposed by DataGene, enabling the use of memory access patterns. In ad­

dition, we presented the details of common data behavior, which provide an in-depth

understanding of the attack behavior of kernel rootkits.

93

6 CONCLUSIONS

Many malware detection mechanisms rely on the properties of malware code such

as the injection of unauthorized code [6–11] and the patterns of malicious code se­

quences [26–30]. While these approaches are effective for classic malware, emerg­

ing malicious programs are introducing advanced techniques such as return/jump­

oriented programming [14–21], code obfuscation [31–34], and code emulation [35] to

elude those malware detection mechanisms. In this dissertation, we have presented

a new approach for detecting kernel malware based on the properties of kernel data

objects.

In Chapter 3, we first discussed the code-centric approaches based on the proper­

ties of malicious code. We then introduced data-centric malware defense architecture

that models and detects kernel malware using the properties of data objects. This

architecture is composed of two components: a runtime kernel object mapping system

that enables the monitor to use the properties of data objects and a kernel malware

detection approach based on the kernel memory access patterns.

In Chapter 4, we presented a runtime kernel object mapping approach which uses

virtualization technology. This approach identifies kernel objects by capturing the

execution of the kernel memory allocation and deallocation functions. It generates

a view of kernel objects that is un-tampered by manipulating pointer connections,

unlike related approaches based on memory snapshots. We demonstrated its effec­

tiveness via detection of 10 kernel rootkits that hide kernel data objects. In addition,

we presented the effectiveness of its temporal view by analyzing malware attacks that

target dynamic kernel objects.

In Chapter 5, we demonstrated the detection a class of malware that has recurring

kernel memory access patterns specific to malware attacks. We implemented a proto­

type system, DataGene, using the QEMU virtual machine monitor and demonstrated

94

its effectiveness against 16 kernel rootkits. We used dynamic kernel execution anal­

ysis to generate malware signatures which do not trigger false positives for typical

server workload such as web-servers, databases, kernel compiling, and utilities. Our

experiments demonstrated that this approach effectively exposes the similarity of at­

tack behavior among rootkits. Using the signatures of three kernel rootkits, we could

detect not only the rootkits with signatures but also the other 13 kernel rootkits that

share kernel memory access patterns in their attacks. The cross-comparisons among

the 16 rootkit signatures showed that each rootkit shared memory access patterns

with 2∼10 other rootkits.

6.1 Discussion and Limitations

As LiveDM operates in the VMM beneath the hardware interface, we assume that

kernel malware cannot directly access LiveDM code or data. However, it can exhibit

potentially obfuscating behavior to confuse the view seen by LiveDM. Here we describe

several scenarios in which malware can affect LiveDM and our counter-strategies to

detect them.

First, malware can implement its own custom memory allocators to bypass LiveDM

observation. This attack behavior can be detected based on the observation that any

memory allocator must use internal kernel data structures to manage memory regions

or its memory may be accidentally re-allocated by a legitimate memory allocator.

Therefore, we can detect unverified memory allocations by comparing the resource

usage described in the kernel data structures with the amount of memory being

tracked by LiveDM. Any deviation may indicate the presence of a custom memory

allocator.

In a different attack strategy, malware could manipulate valid kernel control flow

and jump into the body of a memory allocator without entering the function from

the beginning. This behavior can be detected by extending LiveDM to verify that

the function was entered properly. For example, the VMM can set a flag when a

95

memory allocation function is entered and verify the flag before the function returns

by interceding before the return instruction(s) of the function. If the flag was not set

prior to the check, the VMM detects a suspicious memory allocation.

DataGene is a signature-based approach that detects known and unknown rootkits

based on kernel data access patterns similar to the signatures of previously analyzed

rootkits. If a rootkit’s attack behavior is not similar to any behavior in existing

signatures or it does not involve kernel data accesses, such malware is out of coverage

of DataGene because such behavior does not match the DataGene’s signature.

Many existing rootkits that share the attack goals often exhibit similar data access

patterns because essentially these malicious programs generate a false view by ma­

nipulating legitimate kernel data structures relevant to the goals. Our approach can

detect rootkits by focusing on the common attack targets described in the malware

signatures even though such rootkits have different functionalities.

Obfuscating data access patterns involves comparatively more sophistication than

code obfuscation because malware requires to use alternate legal code to access ker­

nel data beyond the diversification of malware’s own code patterns. These attack

attempts can be detected by employing the defense approaches against control flow

anomaly.

In the environment whose typical workload can be determined, it is possible to

produce malware signatures that can avoid frequent false alarms as presented in

our experiments. However, if this technique is further directed towards a production

environment where a diversity of workload could be generated, false alarms may occur

because of the foundation of our technique on dynamic execution.

This dissertation focuses on malware detection and analysis targeting operating

system kernels. However, some of methodologies can be applied to user level appli­

cations with changes in the implementation details.

In the case of a user program, dynamic memory is managed by external system

components. For example, malloc and free functions are part of C library, which

internally uses system calls to map and unmap memory pages into the memory space

96

of the program. Therefore, the information about user level data objects can be

obtained by intercepting these memory management interfaces. Memory accesses to

dynamic objects can be intercepted by using several techniques. The page tables for

the process can be used to intercept memory accesses by setting page permissions as

read-only. Similar to gdb, debugging registers also can be used.

User level programs have underlying system software layers that include the C

library, system calls, and the kernel code. Such layers have higher privileges than the

monitored user program; therefore, they are suitable for implementing a monitor with

protection from the monitored program. Compared to kernel level data monitoring,

user level monitoring offers more convenience in the implementation because of these

underlying layers.

Our approach provides advanced detection and analysis of kernel malware activi­

ties based on the information regarding kernel data objects. It is primarily designed

for malware analysis environments such as honeypots and malware profilers. In the

current implementation, the advanced features based on data properties incur non­

trivial performance overhead from fine-grained monitoring of kernel level memory

accesses. There are several approaches to address this concern and improve the cur­

rent implementation.

AfterSight [88] is a research prototype from VMware that decouples dynamic

program analysis from a production run by using virtual machine record and replay

technology. A light-weight log is generated from a production virtual machine. Then

security checks are applied to another virtual machine that replays the recorded log

in the backend. As expensive security inspection is performed on the replay machine,

it does not affect the production run. If this technique is leveraged, our approach can

be applied to environments that require production level performance.

In addition, hardware virtualization can be used to build a more efficient imple­

mentation of our approach. By setting the page permission for the inspected kernel

memory as read-only, the VMM can intercept the memory accesses to the monitored

97

kernel data objects. By reducing the scope of interceptions to the data objects listed

in the signature, we can further optimize the monitoring performance.

DataGene uses kernel mode memory access patterns to detect kernel malware.

Therefore, its monitoring efficiency varies, depending on the kernel mode workload.

As presented in Section 5.4.6, if the workload is mostly CPU bound, it could incur

trivial overhead. However, if an application intensively uses kernel services such as

system calls, such events can indirectly trigger kernel mode memory accesses and

incur non-trivial overhead. Malware may attempt to exploit this characteristic to

lower application performance and cause denial of service attacks.

In this dissertation we highlighted the handling of dynamic kernel objects because

monitoring dynamic memory has more challenges than monitoring static objects. For

instance, the addresses of dynamic objects are determined at runtime and the number

of runtime instances varies.

Compared to dynamic kernel objects, static objects have memory addresses that

are predetermined at the compilation time. The manipulation of static objects is

observed as write accesses to their unique addresses. If such memory access patterns

are observed specifically during malware execution, they are extracted as malware

signatures. For example, system call hijacking is implemented as the manipulation of

the system call table that is a static object. The manipulation of this object by other

than the legitimate initialization code is rare in benign execution. Thus, this attack

pattern is automatically extracted as a signature.

If the manipulated memory is executed and used in a different way from the

overwritten memory, DataGene can extract it as malicious behavior. If the overwritten

memory corresponds to a data object before an attack, its execution is specific to

the attack because the memory is not executed in the benign run. Typically, the

overwritten code by malware exhibits memory access behavior different from the

original code. Otherwise the attacker could have reused the original code.

If the injected code accesses the data objects in the same way with the overwrit­

ten code, this access pattern is not specific to this malware; and this attack behavior

98

therefore does not belong to our malware behavior criteria and can evade our ap­

proach. While this is a possible attack scenario, it can be detected if our approach

is deployed with code integrity checking or control flow integrity checking. These ap­

proaches detect any manipulation of code which is not meant to be modified in typ­

ical cases (except self-modifying code or dynamic recompilation). The combination

of these code-centric approaches and our data-centric approaches places significant

constraints on the capability of attackers. The attacker can be effectively limited not

only in what can be executed (i.e., the integrity of code), but also in what can be

accessed (i.e., the integrity of the memory access targets by the code).

Another attack mechanism towards our approach is to avoid a recurring pattern.

Our approach assumes that the malware mechanism in the signature occurs when the

malware is active. However, it is not necessarily true for all malware. Malware can

have adaptive adversary behavior. For example, malware can have logic that activates

or deactivates malicious behavior at certain conditions (e.g., holidays or when there

is no user logged in). In general, it is a challenging problem to understand the hidden

malicious logic that can be a combination of a variety of system variables and formulas.

One potential strategy to detect this type of malware is to expose the hidden behavior

by setting various configurations of system variables in the signature generation stage.

The search space of such combinations would be a significant challenge.

Our approach is based on kernel memory access patterns. As an extreme case

against our approach, malware can be constructed by only using arithmetic instruc­

tions and the accesses to registers. This malware can achieve some computations.

However, this attack strategy will be significantly limited in making changes in kernel

behavior as most existing kernel malware does.

6.2 Conclusions

In this dissertation, we presented an approach to detect a class of malware using

recurring memory access patterns that are specific to malware attacks.

99

The data-centric malware defense architecture (DMDA) is effective at detecting

this class of malware without causing a high number of false positive cases. This is

because many kernel rootkit attacks exhibit kernel data access patterns specific to

their attacks to change legitimate kernel behavior and such memory access patterns

are rare in benign kernel execution. In experiments with 16 kernel rootkits, we could

generate a non-empty set of recurring memory access patterns specific to rootkit

attacks for 16 rootkits. These patterns successfully match the presence of rootkit

execution.

In our experiments, the signatures managed to avoid triggering false positives in

15 typical workloads, such as production applications and utility programs. We con­

tend that our signature derivation process can produce reasonably effective malware

signatures after successfully pruning out frequent benign memory access patterns

from signature candidates. However, it does not guarantee that these signatures do

not trigger false positive cases in other workloads because it is a challenging task to

inspect all possible benign memory access patterns in an OS kernel. The generated

malware signatures usually have a limited size because typical kernel malware inter­

acts with the OS in a limited number of ways. Therefore, if a false positive error is

triggered, it is feasible that a human expert who understands OS kernel code would

manually inspect the case and confirm the malware behavior.

This approach does not use code-centric properties such as the injection of unau­

thorized code or malicious control flow patterns to detect malware. In the experi­

ments, our prototype could successfully detect kernel rootkits that do not inject code

into kernel memory for attacks. Therefore, this data-centric approach can comple­

ment code-centric approaches by not depending on solely code information.

The data access patterns in our approach are of a general form that can match

other malware if it targets similar kernel data objects. Our experiments have demon­

strated that the generated signatures are effective in matching not only the rootkits of

the signatures, but also malware variants that share data access patterns. This char­

100

acteristic demonstrates the potential of this approach to detect new malware based

on the similarity of the data access behavior.

6.3 Future Work

In this section we present future work to improve our current results or to apply

our techniques to new areas.

•	 Improving Performance via Hardware Virtualization. Our approach

requires information regarding data objects in the OS kernel, which caused

non-trivial performance overhead in the current implementation. With the in­

troduction of hardware virtualization techniques, we are interested in developing

a new prototype with improved monitoring performance. Major hardware vir­

tualization technologies provide page-table virtualization (a.k.a. nested page

tables) to improve the performance of hardware virtualization. For instance,

Intel’s VT [93] provides Extended Page Tables (EPT) [94]. A similar technique

in AMD virtualization technology (AMD-V [95]) is referred to as Rapid Vir­

tualization Indexing (RVI) [96]. These features can be utilized to implement

a reference checking mechanism of kernel memory accesses in an environment

where guest operating systems are executed natively.

•	 Kernel Debugging and Vulnerability Assessment. Our approach pro­

vides in-depth information about data objects at runtime. It could be used

to validate kernel operations and identify kernel vulnerabilities related to ker­

nel memory. For instance, the information on heap objects previously was not

available for an external monitor; therefore, validating a proper memory access

to kernel heap memory was a challenging task. With the identification of kernel

objects including heap objects, our system can check proper memory accesses

and inspect memory-related vulnerabilities (e.g., kernel heap overflow).

LIST OF REFERENCES

101

LIST OF REFERENCES

[1] Eugene H. Spafford. The Internet Worm Program: An Analysis. Computer
Communication Review, 19, 1989.

[2] Fred Cohen. Computer Viruses: Theory and Experiments. Computers & Secu­
rity, 6:22–35, February 1987.

[3] Greg Hoglund and James Butler. Rootkits: Subverting the Windows Kernel.
Addison-Wesley Professional, 2005.

[4] James P. Anderson. Computer Security Technology Planning Study, Volume I.
Technical Report ESD-TR-73-51, ESD/AFSC, October 1972.

[5] James P. Anderson Co. Computer Security Threat Monitoring and Surveillance.
Technical Report Contract 79F296400, February 1980.

[6] Crispin Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic Adaptive Detection and Prevention of Buffer-Overflow At­
tacks. In Proceedings of the 7th USENIX Security Conference, pages 63–78,
January 1998.

[7] H. Etoh. GCC Extension for Protecting Applications From Stack-smashing
Attacks. http://www.trl.ibm.com/projects/security/ssp/. Accessed May
2011.

[8] Vendicator. Stack Shield: A “Stack Smashing” Technique Protection Tool
for Linux. http://www.angelfire.com/sk/stackshield/info.html. Accessed
May 2011.

[9] Ryan Riley, Xuxian Jiang, and Dongyan Xu. An Architectural Approach to
Preventing Code Injection Attacks. In IEEE Transactions on Dependable and
Secure Computing (TDSC), 2009.

[10] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-Transparent Prevention of
Kernel Rootkits with VMM-based Memory Shadowing. In Proceedings of 11th
International Symposium on Recent Advances in Intrusion Detection (RAID’08),
2008.

[11] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A Tiny Hy­
pervisor to Provide Lifetime Kernel Code Integrity for Commodity OSes. In Pro­
ceedings of 21st Symposium on Operating Systems Principles (SOSP’07). ACM,
2007.

[12] c0ntex. Bypassing Non-executable-stack During Exploitation Using Return-to­
libc. Phrack Magazine.

http://www.angelfire.com/sk/stackshield/info.html
http://www.trl.ibm.com/projects/security/ssp

102

[13] Nergal. The Advanced Return-into-lib(c) Exploits: PaX Case Study. Phrack,
11(58). Article 4.

[14] Hovav Shacham. The Geometry of Innocent Flesh on the Bone: Return-into-libc
without Function Calls (on the x86). In Proceedings of the 14th ACM Conference
on Computer and Communications Security (CCS’07), pages 552–561. ACM,
2007.

[15] Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When Good
Instructions Go Bad: Generalizing Return-Oriented Programming to RISC. In
Proceedings of CCS 2008, pages 27–38. ACM Press, October 2008.

[16] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In Proceedings of the
18th USENIX Security Symposium (Security’09), 2009.

[17] Ping Chen, Hai Xiao, Xiaobin Shen, Xinchun Yin, Bing Mao, and Li Xie. DROP:
Detecting Return-Oriented Programming Malicious Code. In Proceedings of the
5th International Conference on Information Systems Security (ICISS ’09), 2009.

[18] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Dynamic Integrity
Measurement and Attestation: Towards Defense against Return-oriented Pro­
gramming Attacks. In Proceedings of the 2009 ACM Workshop on Scalable
Trusted Computing (STC’09), 2009.

[19] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending Embed­
ded Systems against Control Flow Attacks. In Proceedings of the First ACM
Workshop on Secure Execution of Untrusted Code (SECUCODE’09), 2009.

[20] M. W. Lucas Davi and Ahmad-Reza Sadeghi. Ropdefender: A Detection Tool to
Defend against Return-oriented Programming Attacks. 2010. Technical Report
HGI-TR-2010-001.

[21] Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating
Return-oriented Rootkits with ”Return-Less” Kernels. In Proceedings of the 5th
European Conference on Computer Systems (EUROSYS’10), 2010.

[22] Phrack Magazine. Linux On-the-fly Kernel Patching without LKM. http://
www.phrack.com/issues.html?issue=58&id=7. Accessed May 2011.

[23] MITRE Corporation. Common Vulnerabilities and Exposures. http://cve.
mitre.org/. Accessed May 2011.

[24] The Month of Kernel Bugs (MoKB) Archive. http://projects.info-pull.
com/mokb/. Accessed May 2011.

[25] US-CERT. Vulnerability Notes Database. http://www.kb.cert.org/vuls/.
Accessed May 2011.

[26] Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel, En-
gin Kirda, and Giovanni Vigna. Efficient Detection of Split Personalities in Mal­
ware. In Proceedings of the 17th Annual Network and Distributed System Security
Symposium (NDSS’10), 2010.

http://www.kb.cert.org/vuls
http://projects.info-pull
http:mitre.org
http://cve
www.phrack.com/issues.html?issue=58&id=7

103

[27]	 Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauscheck, Christopher
Kruegel, and Engin Kirda. Scalable, Behavior-Based Malware Clustering. In
Proceedings of the 16th Symposium on Network and Distributed System Security
(NDSS’09), 2009.

[28] Mihai Christodorescu, Christopher Kruegel, and Somesh Jha. Mining Specifi­
cations of Malicious Behavior. In Proceedings of the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE’07), pages 5–14, New
York, NY, USA, 2007. ACM Press.

[29] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, Engin Kirda,
Xiaoyong Zhou, and XiaoFeng Wang. Effective and Efficient Malware Detection
at the End Host. In Proceedings of the 18th Usenix Security Symposium (Secu­
rity’09), 2009.

[30] Christopher Kruegel, William Robertson, and Giovanni Vigna. Detecting Kernel-
Level Rootkits Through Binary Analysis. In Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC’04), pages 91–100, Wash­
ington, DC, USA, 2004. IEEE Computer Society.

[31] Mihai Christodorescu and Somesh Jha. Static Analysis of Executables to Detect
Malicious Patterns. In Proceedings of the 12th USENIX Security Symposium (Se­
curity’03), pages 169–186. USENIX Association, USENIX Association, August
2003.

[32] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing Cheap,
Resilient, and Stealthy Opaque Constructs. In Proceedings of the Principles of
Programming Languages 1998 (POPL’98), San Diego, CA, January 1998.

[33] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Impeding Mal­
ware Analysis Using Conditional Code Obfuscation. In Proceedings of the 15th
Annual Network and Distributed System Security Symposium (NDSS’08), 2008.

[34] Chenxi Wang, Jonathan Hill, John C. Knight, and Jack W. Davidson. Protec­
tion of Software-Based Survivability Mechanisms. In Proceedings of the 2001
International Conference on Dependable Systems and Networks (DSN’01), pages
193–202, Washington, DC, USA, 2001. IEEE Computer Society.

[35] Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Automatic
Reverse Engineering of Malware Emulators. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, 2009.

[36] Junghwan Rhee, R. Riley, Dongyan Xu, and Xuxian Jiang. Defeating Dynamic
Data Kernel Rootkit Attacks via VMM-Based Guest-Transparent Monitoring.
In Proceedings of the International Conference on Availability, Reliability and
Security (ARES’09), 2009.

[37] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy Malware Detection
through VMM-based “Out-of-the-Box” Semantic View Reconstruction. In Pro­
ceedings of the 14th ACM Conference on Computer and Communications Secu­
rity, October 2007.

104

[38] Troy Nash. An Undirected Attack against Critical Infrastructure. Tech­
nical report. http://www.us-cert.gov/control_systems/pdf/undirected_
attack0905.pdf. Accessed May 2011.

[39] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A Classification of
SQL-injection Attacks and Countermeasures. In Proceedings of the International
Symposium on Secure Software Engineering, 2006.

[40] Arati Baliga, Vinod Ganapathy, and Liviu Iftode. Automatic Inference and
Enforcement of Kernel Data Structure Invariants. In Proceedings of the 24th
Annual Computer Security Applications Conference (ACSAC’08), pages 77–86,
2008.

[41] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and
Xuxian Jiang. Mapping Kernel Objects to Enable Systematic Integrity Checking.
In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS’09), 2009.

[42] Nick L. Petroni, Jr., Timothy Fraser, AAron Walters, and William A. Arbaugh.
An Architecture for Specification-Based Detection of Semantic Integrity Viola­
tions in Kernel Dynamic Data. In Proceedings of the 15th Conference on USENIX
Security Symposium (USENIX-SS’06), 2006.

[43]	 Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. Kernel Malware
Analysis with Un-tampered and Temporal Views of Dynamic Kernel Memory. In
Proceedings of the 13th International Symposium of Recent Advances in Intrusion
Detection (RAID 2010), Ottawa, Canada, September 2010.

[44] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Multi-Aspect Profiling of Kernel
Rootkit Behavior. In Proceedings of the 4th European Conference on Computer
Systems (Eurosys’09), April 2009.

[45] Chaoting Xuan, John A. Copeland, and Raheem A. Beyah. Toward Reveal­
ing Kernel Malware Behavior in Virtual Execution Environments. In Proceed­
ings of 12th International Symposium on Recent Advances in Intrusion Detection
(RAID’09), pages 304–325, 2009.

[46] Robert P. Goldberg. Survey of Virtual Machine Research. IEEE Computer,
7(6):34–45, 1974.

[47] Gerald J. Popek and Robert P. Goldberg. Formal Requirements for Virtualizable
Third Generation Architectures. Communications of the ACM, 17:412–421, July
1974.

[48] Blaise Barney. Introduction to Parallel Computing. https://computing.llnl.
gov/tutorials/parallel_comp/. Accessed May 2011.

[49] Thomas M. Chen and Jean marc Robert. The Evolution of Viruses and Worms.
In Statistical Methods in Computer, 2004.

[50]	 Aleph One. Smashing The Stack for Fun and Profit. Phrack, 7(49). Article 14.

[51] Crispin Cowan, Matt Barringer, Steve Beattie, Greg Kroah-Hartman, Mike
Frantzen, and Jamie Lokier. FormatGuard: Automatic Protection from Printf
Format String Vulnerabilities. In Proceedings of the 10th USENIX Security Sym­
posium, 2001.

https://computing.llnl
http:ViewsofDynamicKernelMemory.In
http:tionsinKernelDynamicData.In
http://www.us-cert.gov/control_systems/pdf/undirected

105

[52] Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. PointguardTM:
Protecting Pointers From Buffer Overflow Vulnerabilities. In Proceedings of the
12th Conference on USENIX Security Symposium, 2003.

[53] Intel. Execute Disable Bit and Enterprise Security. http://www.intel.com/
technology/xdbit/index.htm. Accessed May 2011.

[54] AMD. AMD Technologies: Enhanced Virus Protection (EVP). http:
//www.amd.com/us/products/technologies/enhanced-virus-protection/
Pages/enhanced-virus-protection.aspx. Accessed May 2011.

[55] ARM. Instruction Set Architectures. http://www.arm.com/products/
processors/technologies/instruction-set-architectures.php. Accessed
May 2011.

[56] PAX PAGEEXEC Documentation. http://pax.grsecurity.net/docs/
pageexec.txt. Accessed May 2011.

[57] Arjan van de Ven. New Security Enhancements in Red Hat Enterprise Linux
v.3, Update 3. August 2004. http://www.redhat.com/f/pdf/rhel/WHP0006US_
Execshield.pdf. Accessed May 2011.

[58] OpenBSD. The OpenBSD 3.3 Release. May 2003. http://www.openbsd.org/
33.html. Accessed May 2011.

[59] A Detailed Description of the Data Execution Prevention (DEP) Feature in Win­
dows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Windows
Server 2003. http://support.microsoft.com/kb/875352. Accessed May 2011.

[60] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. Copilot–A Coprocessor­
based Kernel Runtime Integrity Monitor. In Proceedings of the 13th USENIX
Security Symposium, August 2004.

[61] Nick L. Petroni and Michael Hicks. Automated Detection of Persistent Kernel
Control-Flow Attacks. In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS’07), 2007.

[62] Elia Florio. When Malware Meets Rootkits. http://www.symantec.com/
avcenter/reference/when.malware.meets.rootkits.pdf. Accessed May
2011.

[63] Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and Engin
Kirda. G-Free: Defeating Return-oriented Programming through Gadget-less
Binaries. In Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC’10), 2010.

[64] Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. Return-oriented Programming without
Returns. In Proceedings of the 17th ACM Conference on Computer and Com­
munications Security (CCS’10), 2010.

[65] Ping Chen, Xiao Xing, Bing Mao, and Li Xie. Return-Oriented Rootkit without
Returns (on the x86). In Information and Communications Security (ICICS’10),
2010.

http:http://www.symantec.com
http://support.microsoft.com/kb/875352
http:http://www.openbsd.org
http://www.redhat.com/f/pdf/rhel/WHP0006US
http://pax.grsecurity.net/docs
http://www.arm.com/products
www.amd.com/us/products/technologies/enhanced-virus-protection
http:http://www.intel.com

106

[66]	 Ping Chen, Xiao Xing, Bing Mao, Li Xie, Xiaobin Shen, and Xinchun Yin. Au­
tomatic Construction of Jump-oriented Programming Shellcode (on the x86). In
Proceedings of the 6th ACM Symposium on Information, Computer and Com­
munications Security (ASIACCS’11), 2011.

[67] Tim Kornau. Return Oriented Programming for the ARM Architecture. 2010.
Master’s Thesis. Ruhr-Universität Bochum.

[68] Microsoft. Driver Signing for Windows. http://technet.microsoft.com/
en-us/library/cc784714.aspx. Accessed May 2011.

[69] Deirdre Mulligan and Aaron K. Perzanowski. The Magnificence of the Disaster:
Reconstructing the Sony BMG Rootkit Incident. 2008.

[70] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. Digging for
Data Structures. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, 2008.

[71] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Gif­
fin. Robust Signatures for Kernel Data Structures. In Proceedings of the 16th
ACM Conference on Computer and Communications Security (CCS’09), 2009.

[72] Zhiqiang Lin and Junghwan Rhee and Xiangyu Zhang and Dongyan Xu and Xux­
ian Jiang. SigGraph: Brute Force Scanning of Kernel Data Structure Instances
Using Graph-based Signatures. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium (NDSS’11), San Diego, CA, February
2011.

[73] Hans-Juergen Boehm and Mark Weiser. Garbage Collection in an Uncooperative
Environment. Software, Practice and Experience, 1988. John Wiley & Sons, Inc.

[74] Marina Polishchuk, Ben Liblit, and Chloë W. Schulze. Dynamic Heap Type
Inference for Program Understanding and Debugging. In Proceedings of the 34th
Annual Symposium on Principles of Programming Languages. ACM, 2007.

[75] Jamie Butler. DKOM (Direct Kernel Object Manipulation). http://
www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf. Ac­
cessed May 2011.

[76] Junghwan Rhee and Dongyan Xu. LiveDM: Temporal Mapping of Dynamic
Kernel Memory for Dynamic Kernel Malware Analysis and Debugging. Technical
Report CERIAS TR 2010-02, Purdue University, West Lafayette, Indiana, 2010.

[77] Andrea Lanzi, Monirul Sharif, and Wenke Lee. K-Tracer: A System for Extract­
ing Kernel Malware Behavior. In Proceedings of the 16th Annual Network and
Distributed System Security Symposium (NDSS’09), 2009.

[78] Diego Zamboni. Using Internal Sensors for Computer Intrusion Detection. PhD
thesis, Purdue University, West Lafayette, Indiana, 1995.

[79] Xuxian Jiang and Xinyuan Wang. “Out-of-the-Box” Monitoring of VM-based
High-interaction Honeypots. In Proceedings of Recent Advances in Intrusion
Detection, pages 198–218, September 2007.

www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf
http:andDebugging.In
http:http://technet.microsoft.com

107

[80] Greg Hoglund. Kernel Object Hooking Rootkits (KOH Rootkits). http://www.
rootkit.com/newsread.php?newsid=501. Accessed November 2008.

[81] Jinpeng Wei, Bryan D. Payne, Jonathon Giffin, and Calton Pu. Soft-Timer
Driven Transient Kernel Control Flow Attacks and Defense. In Proceedings of
the 24th Annual Computer Security Applications Conference (ACSAC’08), De­
cember 2008.

[82] Free Software Foundation. The GNU Compiler Collection. http://gcc.gnu.
org/. Accessed May 2011.

[83] VMware. VMware Workstation, Multiple Operating Systems Including Linux
on Windows. http://www.vmware.com/products/ws/. Accessed May 2011.

[84]	 Innotek. Virtualbox. http://www.virtualbox.org/. Accessed May 2011.

[85]	 Parallels. Parallels. http://www.parallels.com/. Accessed May 2011.

[86] Fabrice Bellard. QEMU: A Fast and Portable Dynamic Translator. In Proceedings
of the USENIX Annual Technical Conference, FREENIX Track, pages 41–46,
2005.

[87] Nick L. Petroni, AAron Walters, Timothy Fraser, and William A. Arbaugh.
FATKit: A Framework for the Extraction and Analysis of Digital Forensic Data
from Volatile System Memory. In Digital Investigation Journal 3(4):197-210,
2006.

[88] Jim Chow, Tal Garfinkel, and Peter M. Chen. Decoupling Dynamic Program
Analysis from Execution in Virtual Environments. In Proceedings of 2008
USENIX Annual Technical Conference (USENIX’08), 2008.

[89] Zhiqiang Lin, Ryan D. Riley, and Dongyan Xu. Polymorphing Software by Ran­
domizing Data Structure Layout. In Proceedings of the 6th International Con­
ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’09), 2009.

[90] Ralf Hund, Thorsten Holz, and Felix C. Freiling. Return-Oriented Rootkits:
Bypassing Kernel Code Integrity Protection Mechanisms. In Proceedings of the
18th USENIX Security Symposium (Security’09), 2009.

[91] Hsin Pan and Eugene H. Spafford. Towards Automatic Localization of Software
Faults. In Proceedings of the 10th Pacific Northwest Software Quality Conference,
Oct 1992.

[92] Hsin Pan and Eugene H. Spafford. Heuristics for Automatic Localization of
Software Faults. Technical Report SERC-TR-116-P, Purdue University, 1992.

[93]	 Intel. Intel�VT. R http://www.intel.com/technology/virtualization. Ac­
cessed May 2011.

R[94]	 Intel. Intel�Virtualization Technology: Hardware Support for Efficient Pro­
cessor Virtualization. http://download.intel.com/technology/itj/2006/
v10i3/v10-i3-art01.pdf. Accessed May 2011.

http://download.intel.com/technology/itj/2006
http:http://www.parallels.com
http:http://www.virtualbox.org
http://www.vmware.com/products/ws
http://gcc.gnu
http://www

108

[95] AMD. AMD-VTM . http://sites.amd.com/us/business/it-solutions/
virtualization/Pages/amd-v.aspx. Accessed May 2011.

[96] AMD. White Paper: AMD-VTMNested Paging. http://developer.amd.com/
assets/NPT-WP-1%201-final-TM.pdf. Accessed May 2011.

http:http://developer.amd.com
http://sites.amd.com/us/business/it-solutions

VITA

109

VITA

Junghwan Rhee obtained a B.E. degree from Korea University in 2003 and a M.S.

degree from the University of Texas at Austin in 2005. He also pursued a Ph.D.

degree in the Department of Computer Science at Purdue University under the di­

rection of Professor Dongyan Xu. He is also affiliated with CERIAS, the Center for

Education and Research in Information Assurance and Security. His research efforts

focus on operating system security, malware analysis, virtualization, and cloud com­

puting, specifically in the areas of kernel malware defense, virtualized infrastructure

management, and reliability of distributed systems. In the Fall of 2011 he joined NEC

Laboratories America at Princeton, New Jersey as a Research Staff Member.

