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ABSTRACT 

Rhee, Junghwan Ph.D., Purdue University, August 2011. Data-Centric Approaches 
to Kernel Malware Defense. Major Professor: Dongyan Xu. 

An operating system kernel is the core of system software which is responsible for 

the integrity and operations of a conventional computer system. Authors of malicious 

software (malware) have been continuously exploring various attack vectors to tamper 

with the kernel. Traditional malware detection approaches have focused on the code-

centric aspects of malicious programs, such as the injection of unauthorized code 

or the control flow patterns of malware programs. However, in response to these 

malware detection strategies, modern malware is employing advanced techniques such 

as reusing existing code or obfuscating malware code to circumvent detection. 

In this dissertation, we offer a new perspective to malware detection that is differ

ent from the code-centric approaches. We propose the data-centric malware defense 

architecture (DMDA), which models and detects malware behavior by using the prop

erties of the kernel data objects targeted during malware attacks. This architecture 

employs external monitoring wherein the monitor resides outside the monitored kernel 

to ensure tamper-resistance. It consists of two core system components that enable 

inspection of the kernel data properties. 

First, an external monitor has a challenging task in identifying the data object 

information of the monitored kernel. We designed a runtime kernel object mapping 

system which has two novel characteristics: (1) an un-tampered view of data objects 

resistant to memory manipulation and (2) a temporal view capturing the allocation 

context of dynamic memory. We demonstrate the effectiveness of these views by 

detecting a class of malware that hides dynamic data objects. Also, we present our 

analysis of malware attack behavior targeting dynamic kernel objects. 
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Second, in addition to the mapping of kernel objects, we present a new kernel 

malware characterization approach based on kernel memory access patterns. This 

approach generates signatures of malware by extracting recurring data access pat

terns specific to malware attacks. Moreover, each memory pattern in the signature 

represents abstract data behavior; therefore, it can expose common data behavior 

among malware variants. Our experiments demonstrate the effectiveness of these 

signatures in the detection of not only malware with signatures but also malware 

variants that share memory access patterns. 

Our results utilizing these approaches in the defense against kernel rootkits demon

strate that the DMDA can be an effective solution that complements code-centric 

approaches in kernel malware defense. 
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1 INTRODUCTION 

1.1 Problem Statement 

An operating system (OS) kernel is the core of system software that is responsible 

for the integrity and operations of a conventional computer system. It has been 

targeted by malicious software (malware) that operates in kernel mode to implement 

advanced stealthy features, such as backdoors or hidden services, that can elude user

level anti-malware programs. 

Malware tampers with program execution and achieves the attacker’s malicious 

goals with a variety of techniques. Many traditional malicious programs use code 

injection attacks (e.g., buffer overflows and format string bugs), which inject unau

thorized code into the memory and executes malware functions. Various kinds of 

malware, such as computer worms, viruses, exploits, and rootkits, have been using 

this technique to execute malicious logic [1–3]. Many intrusion detection approaches 

have been proposed to detect or prevent this type of malware attack [4–11]. 

In response to these malware defense approaches, malware writers have crafted 

advanced attack vectors that avoid explicit injection of malicious code to elude such 

detection approaches. Return-to-libc attacks [12, 13], return-oriented programming 

[14–16], and jump-oriented programming [17–21] use a combination of existing code 

pieces to compose malicious logic. Also, raw memory devices [22], third-party kernel 

driver code, and program bugs [23–25] provide other vectors to reuse legitimate or 

vulnerable code which are a part of programs for malware attacks. 

Another group of defense approaches has been using the sequence of malware 

code to detect malware [26–30]. These approaches use malware signatures composed 

of malware code sequences, such as instruction sequences or system call patterns, to 

match malware behavior. However, in response to them, malware began to employ 
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techniques to vary malware code execution patterns. Several papers have presented 

code obfuscation [31–34] and code emulation [35] techniques, which can confuse mal

ware detectors and avoid detection. 

These arms-races observed between malware and malware detectors center around 

the properties of malicious code: injection of code and the causal sequences of ma

licious code patterns. Both techniques use primarily code information, ignoring the 

identification and properties of the accessed data objects. 

In general, computer programs are structured as code and data. Therefore, ma

licious attacks are seen as the manipulation of the code and/or data objects of the 

program under attack. Code has been a popular target of attacks, and thus it has 

been intensively studied by existing malware detection approaches. In contrast, there 

has been little focus to date on the data in malware defense research. 

To address the challenges of relying on only code in malware defense, we propose 

new approaches based on the properties of data objects that are targeted in malware 

attacks. These approaches do not require the detection of the injected code or the 

specific sequence of malicious code. Therefore, they are not directly subject to attacks 

targeting the approaches based on code properties. 

These approaches, however, have unique challenges in monitoring data objects: 

the dynamic status of data objects and the difficulty of determining their integrity. 

For instance, many data objects have readable-and-writable content and the locations 

of dynamic objects are assigned at runtime [36]. A monitor observing data objects 

should have a higher level privilege than the monitored program to reliably obtain its 

data memory status. Monitoring kernel data objects is challenging because, in a con

ventional computing environment, an OS kernel directly interacts with the hardware, 

thereby lacking a layer below it on which to build a monitor. 
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1.2 Statement of Thesis 

In this dissertation, we present a novel scheme that addresses these challenges and 

enables OS kernel malware detection approaches based on kernel data properties. The 

monitoring system should be designed in a way that cannot directly be altered by 

potentially malicious code; therefore, we use an external monitor to observe the target 

OS kernel. An external monitor has a challenging task in identifying the data object 

information of the monitored kernel, which is known as a semantic gap [37]. Such 

information should be reconstructed externally in the monitor. We propose the data

centric malware defense architecture (DMDA) which uses data object properties to 

detect kernel malware, which consists of two main components. 

The first component is a kernel object mapping system that externally identifies 

the dynamic kernel objects of the monitored OS kernel at runtime, and our aim is to 

observe memory accesses to kernel data objects. This component is essential because 

it enables an external monitor to recognize the data objects that are targeted by the 

accesses. As well as being an infrastructure to recognize data objects, this system 

provides effective applications such as the detection of data hiding kernel malware 

attacks and the analysis of malware behavior targeting dynamic kernel objects. 

In addition to the kernel data mapping system, we propose a new approach that 

detects malware by matching memory access patterns that specifically occur during 

malware attacks. 

The thesis of this dissertation is as follows: it is possible to detect a class of ker

nel malware that has recurring kernel memory reference patterns specific to malware 

attacks. A software system that detects malware by using these patterns can be con

structed using virtual machine technology without modifying the source code of the 

monitored kernel. Dynamic kernel analysis can produce effective malware signatures 

that can suppress frequent false positives in typical workloads by extracting malware 

memory reference patterns specific to malware attacks. 
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1.3 Contributions 

The contributions of this dissertation are as follows: 

•	 General Data Properties. In this dissertation, we use the general character

istics of data objects in memory operations (e.g., read, write, allocation, and 

deallocation) to characterize kernel malware behavior. We discuss how data 

properties are different from the code properties that are used by existing mal

ware detection approaches. Then, we describe the details of the data properties 

and define a model for kernel memory access patterns with the data properties. 

•	 Runtime Kernel Memory Object Mapping for Malware Detection. 

Our approaches externally inspect kernel data behavior for tamper-resistance 

of the monitor. An external monitor is required to identify kernel objects before 

it uses their properties because of its position. We propose a kernel mapping 

approach with two characteristics that can be effective in malware defense: (1) 

an un-tampered view of the data objects resistant to memory manipulation 

and (2) a temporal view that captures the allocation context of the dynamic 

memory. 

•	 Kernel Malware Detection based on Memory Access Patterns. We 

propose a new approach that detects malware based on recurring kernel mem

ory access patterns specific to malware attacks. As this approach uses the 

properties of data objects, it provides an alternate means to current malware 

defense approaches that rely only on the code properties of malware behavior. 

In addition, this new approach exposes the data access patterns of malware 

attacks in a general form. Therefore, it can be effective at detecting not only 

malware with signatures but also malware variants without signatures based on 

common data access patterns. 
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1.4 Terminology 

This section presents the definitions of the terminology used in this dissertation. 

•	 Malware. We use the definition of Malware from [38]. Malware is malicious 

software that is designed to disrupt or deny operation, gather information that 

leads to loss of privacy or exploitation, gain unauthorized access to system 

resources, and show other abusive behavior. It is a general term for many kinds 

of malicious software, such as computer worms, viruses, spyware, adware, trojan 

horses, and rootkits. 

•	 Rootkit. We adapted the definition of rootkit from [3]. In this book, a rootkit 

is defined as a set of programs and code that allows a permanent or consistent, 

undetectable presence on a computer. This program is used to maintain access 

to an administrator’s privilege in the system. Rootkits have various features to 

accomplish this goal by manipulating system resources. The features that many 

rootkits provide include hiding files, concealing network connections for hidden 

services, hiding processes, and selectively removing system logs. In particular, 

we focus on rootkits that operate in the kernel mode, which are called kernel 

(-level) rootkits. When we use the term “rootkit” in this dissertation, we refer 

to a kernel rootkit. 

•	 Code Injection. Code injection is an attack mechanism to introduce unautho

rized code to the program and move control flow to the new code. A wide range 

of malware is based on this technique. For instance, computer worms, viruses, 

exploits, rootkits, and recently SQL-injection belong to this category [1–3,39]. 

•	 Kernel Object Map. This term represents a map of kernel objects that 

includes both static and dynamic kernel objects. The map includes detailed 

information about kernel data objects such as the address ranges and the types 

http:Rootkit.We
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of kernel objects. This map is used in many approaches that detect and analyze 

kernel malware [40–45]. 

•	 Kernel Memory Mapping. This term represents the process to generate a 

kernel object map. A typical input is a memory snapshot [40–42] or an execution 

of the monitored operating system [43–45]. The output is a kernel object map. 

•	 Virtual Machine. We adapted our definition of a virtual machine from [46]. 

Virtual machine systems are efficient simulators for multiple copies of a ma

chine on themselves. A virtual machine (VM) is the simulated machine. The 

simulator software is called the virtual machine monitor (VMM) or the hy

pervisor. The formal requirements of virtual machine systems were presented 

in [47]. Early systems which used virtual machines include CP-67 and the IBM 

360/67. We use a virtual machine technique to implement a monitoring system 

for operating system kernels. This technique is also called “operating system 

virtualization.” 

1.5 Assumptions 

In this dissertation, we assume that the monitored computer system has a single 

CPU, which has one memory address space in kernel mode; therefore, we use one 

kernel memory map to inspect an operating system kernel and detect kernel malware 

throughout this work. Multi-processor (or multi-core) systems can be supported by 

building kernel object maps depending on the number of kernel memory address 

spaces supported by the CPUs. 

The memory system for multi-processors (or multi-core) can have either a shared 

memory architecture or a distributed memory architecture [48]. In a shared memory 

architecture, all of the CPUs share a single physical memory address space. To sup

port this memory architecture, building one kernel memory object map is necessary, 

similar to a single CPU system. In distributed memory systems, CPUs have their own 
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local memory spaces which operate independently. The security monitor then needs 

to support multiple memory spaces by generating a memory map for each processor. 

We assume the operating system kernel manages dynamic kernel memory with a 

set of kernel memory management functions. If the kernel code uses memory with

out explicit memory allocation and deallocation events (e.g., treat the memory as a 

buffer), it cannot be supported by our approach. 

This dissertation presents our approach, techniques, implementation, and exper

iments in the context of malware defense for operating system kernels. The applica

bility of materials to other system layers is discussed in Section 6.1. 

1.6 Organization 

This dissertation is organized in six chapters. Following this introductory Chapter 

1, we present related approaches in kernel malware defense and analysis in Chapter 

2. The approaches based on data properties are introduced in Chapter 3. Chapter 4 

presents a new mechanism to generate a runtime kernel object map, which becomes 

the basis of our data property-based approaches. In addition to a kernel object map, 

Chapter 5 presents the detection of malware using memory access patterns specific 

to malware. Chapter 6 concludes this dissertation and presents future work. 
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2 RELATED WORK IN MALWARE ATTACKS AND DEFENSE 

In this section, we discuss related work on malware attacks and defense mechanisms. 

2.1 Code Injection Attacks and Code Integrity-based Approaches 

Code injection attacks insert unauthorized code into a program’s memory space 

and transfer the control to the injected code. Various kinds of malware, such as 

computer worms [1], viruses [2, 49], shell code [50], and rootkits [3, 10, 11] use this 

technique to change program behavior with malicious purposes. There are various 

attack vectors to inject code. For instance, kernel rootkits load rootkit code into 

kernel memory space by using kernel drivers or raw memory devices. Then, they 

move the kernel control to the injected code by patching the system call table or 

function pointers. 

This category of malware can be defeated by enforcing the integrity of the pro

gram’s code and only allowing the execution of authorized and un-tampered code. 

There are various mechanisms to achieve this in the user space, in the kernel space, 

and also in the hardware level. 

In the user space, several types of approaches have been developed to detect or 

prevent code injection attacks. Stack overflow was one of most popular attack vectors. 

StackGuard [6] stops stack overflow by placing canary values and detecting the ma

nipulation of return addresses. ProPolice [7] further reorganizes stack frames to make 

buffer overflow difficult. In addition to stack protection, format string vulnerabilities 

and heap vulnerabilities are also addressed by similar approaches [51,52]. 

Another category of approaches prevents attacks by enforcing the non-executable 

page permission, which is generally known as the NX bit. The code pages are supposed 

to be executable, but they are generally not meant to be modified. The data pages 
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can be writable, but their execution should be prevented. The pages containing 

the injected code are enforced to be not executable. Therefore, their execution is 

prevented. Memory pages should have either writable or executable permission (but 

not both) and this characteristic is known as the W X property. Hardware vendors 

have implemented it under various names (XD bit for Intel [53], Enhanced Virus 

Protection for AMD [54], and XN – eXecute Never – bit for ARM [55]). 

For CPUs without this support, non-executable pages can be implemented as 

a software patch in the kernel code. Examples of software-based implementation 

include PAGEEXEC by PaX [56], Exec Shield by Redhat [57], and W∧X by OpenBSD 

[58]. Microsoft Windows supports non-executable pages when hardware support is 

available, and this service is called Data Execution Prevention (DEP) [59]. 

While these approaches are effective for user programs, kernel malware has the 

same privilege with kernel code. Thus, it is capable of directly manipulating kernel 

code and hardware configurations. For this reason, defeating kernel malware requires 

a monitoring mechanism which has a higher privilege than the OS kernel. For in-

stance, many approaches are based on the hardware layer, such as a PCI device [60] 

or a layer comparable to hardware such as a virtual machine monitor [10,11,61]. 

Several intrusion detection approaches have been proposed to defeat kernel mal

ware by checking kernel code integrity. Copilot [60] detects kernel rootkits by deter

mining the manipulation of kernel text and invariant data structures. The state-based 

control flow integrity checking system (SBCFI) detects kernel malware by validating 

kernel components relevant to kernel control flow, such as the kernel text, system call 

table, and function pointers [61]. 

NICKLE [10] and SecVisor [11] proposed a stronger and more effective form of 

kernel code integrity checking. They determine kernel integrity violation by checking 

the execution of injected code at runtime. These approaches prevent kernel malware 

by allowing execution of only authorized and un-tampered kernel code. 
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2.2 Non-Code Injection Attacks and Defense Approaches 

While many malware programs rely on code injection, there is another group 

of malware that does not require the insertion of malicious code for attacks. The 

malware of this class reuses an existing program’s code to elude intrusion detection 

approaches based on code integrity. Following are several attack vectors of this group 

of malware. 

Kernel Memory Devices. Operating systems have kernel memory devices that al

low the read and write capability of raw kernel memory. For example, Linux has sev

eral devices, such as /dev/kmem, /dev/mem, and /dev/kcore; and Microsoft Windows 

has similar devices called \Device\PhysicalMemory and \Device\DebugMemory. These 

devices are intended for kernel debugging, efficient access to video memory, and mem

ory forensic analysis; but if they are misused for malicious purposes, they can be a 

serious threat to the kernel’s integrity. Some kernel rootkits use these devices to 

manipulate kernel memory without using kernel drivers [22]. In the Windows plat

form, several worms (e.g., W32/Myfip.h and W32/Fanbot.A) use raw memory device 

\Device\PhysicalMemory to tamper with kernel memory [62] 

Return-oriented Programming. Return-oriented programming [14, 15] generates 

an attack by combining a large number of short instruction sequences (called gadgets) 

that allow arbitrary computation. This technique is also used to implement kernel 

level malware (e.g., return-oriented rootkits [16]). This type of malware only uses 

existing kernel code and does not violate the W X property. Thus code integrity-

based approaches cannot detect its attacks. Several approaches have been proposed 

to use runtime characteristics during attacks [17–20] to detect this malware. Other 

approaches attempt to remove potential gadgets by removing return instructions [21] 

or potential instruction sequences which can be used as gadgets [63] from the program. 

Jump-oriented Programming. As detection approaches for return-oriented pro

gramming appear [17–21], other instruction sequences, similar to the return gadgets, 

are used for constructing attacks [64–66]. These approaches use instruction sequences 
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that end with jump instructions to connect multiple code pieces and to create mali

cious logic. These approaches show that essentially any instruction sequence whose 

control flow can be manipulated by attackers can be used for attacks. This idea was 

conceptualized as “free-branches” by Kornau et. al. [67]. 

Vulnerable Code in OS Kernel. Most operating system kernels potentially carry 

programming bugs [23–25]. Some of them are found and fixed by developers. How

ever, attackers also find bugs and use them to compromise systems. For instance, 

CVE-2010-3081 describes vulnerable kernel code that has existed since 2008. This 

vulnerability has allowed attackers to gain the administrator privilege in virtually all 

64 bit Linux systems using a simple user program (called a root exploit). This bug 

was patched in Fall 2010. Vulnerable code such as this, being part of legitimate kernel 

code, is difficult to detect for code integrity-based approaches if a malware attack is 

triggered using kernel bugs. 

Third-party Drivers. Kernel drivers are dynamically loaded at runtime. To ensure 

the integrity of a kernel, this driver code should be properly handled. Code integrity

based approaches [10,11] solve this problem by allowing a list of authorized drivers for 

execution (e.g., a white list determined by a system administrator or the drivers signed 

by operating system vendors [68]). These drivers are typically authorized without 

systematic examination of code behavior for safety. Rather, the authorization is 

based on trust in the developers and vendors of operating system (OS) kernels. Many 

hardware vendors ship proprietary drivers without disclosing the source code. In such 

case, the drivers may include potentially vulnerable code or hidden malicious code 

that can be exploited for attacks. The rootkit case of Sony [69] shows one example 

of code from vendors that can have undesired effects. 

2.3 Malware Defense Based on Code Behavior Signatures 

There has been a variety of approaches which characterize malware’s behavior 

by using its control flow. Several approaches [26–29] build control flow graphs using 
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system call events, and another approach [30] uses CPU instructions to represent 

malware behavior. While these malware patterns are derived from the events of 

different system layers, they commonly represent the control flow of malware, which 

is a sequence of code with causal dependence. There are two kinds of challenges for 

these approaches. 

First, advanced malware can generate variations in the control flow to avoid detec

tion by these approaches. Several papers describe obfuscation techniques such as dead 

code insertion, code transformation, and instruction substitution [31–34]. Malware 

can obfuscate its code execution while retaining the same algorithm. In addition, 

researchers introduced a new obfuscation technique that hides specific trigger-based 

behavior by encrypting the code dependent on an input [33]. 

Second, malware’s control flow can dynamically vary at runtime and the detection 

mechanism using malware’s code behavior should be able to handle such variations. 

Balzarotti et al. presented a system [26] that uses system-call trace to determine 

analysis-aware malware. In this paper, the authors described several cases where 

the system-call trace can be inconsistent, such as the expiration of timeout and the 

delivery of signals. Their system handles this problem by using a flexible matching 

algorithm. 

2.4 Malware Defense Based on Data Signatures 

Like any other program, malware uses data structures. Some malware has its own 

data structures. Other malware tampers with the data structures that they target to 

make changes in the program’s behavior. There are several approaches that detect 

malware based on the signatures of data structures. 

Laika [70] determined data structures from a program’s memory. As one appli

cation, the authors presented the detection of a botnet program by classifying data 

structures specific to malware. This approach is effective for user space malware be

cause each user program has its private memory space. However, kernel memory is 
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shared by the kernel text and many kernel drivers. Malware’s code and data are part 

of a huge number of legitimate kernel code and data and therein lies the challenge to 

applying this technique to kernel malware detection. 

Dolan-Gavitt et al. proposed an approach that discovers data structures from 

memory snapshots using value constraints [71]. This approach uses value properties, 

such as constants, bitwise AND values, and alignments, to match data structure 

instances. By using a fuzzing technique, they showed the generated value properties 

are reliable to be used as a signature. 

SigGraph is another type of data scanner which uses pointer constraints to match 

data objects [72]. This approach generates a signature with a pointer connection 

graph rooted at the data structure. To detect data structures, it scans memory 

snapshots in a brute-force way as it matches pointer connections. 

These approaches can discover data structures from a memory image in a benign 

scenario. However, if those approaches are targeted for detecting malware, there could 

be the following challenges. First, malware can manipulate the data objects so that 

the data scanners fail to detect them while such objects are being properly used by 

malware code. For example, malicious code can set invalid values or pointers in the 

data structure while the injected malware code properly uses such objects. Second, it 

is possible that some data structures may not have enough constraints to be matched 

by these approaches. For instance, if a kernel data structure is simple, such as a string 

buffer, these approaches do not have specific constraints to match them, leading to 

many false positive cases. 

2.5 Kernel Integrity Checking based on Kernel Memory Mapping 

There have been several approaches [40, 41, 44, 45, 61] that leverage kernel mem

ory mapping to test the integrity of OS kernels and detect kernel malware. These 

approaches identify kernel memory objects by recursively traversing pointers in the 

kernel memory starting from static objects in a similar way to garbage collection mech



14 

Figure 2.1.: Illustration of Figure 2.2.: Data hiding attack via pointer 
type-projection mapping manipulation 

anisms [73, 74]. A kernel object is identified by projecting the address and the type 

of the traversed pointer onto memory; thus, we call this mechanism type-projection 

mapping. For example, in Figure 2.1 the mapping process starts by evaluating the 

pointer fields of the static data object. When the second field of this object is tra

versed, the type X of the pointer is projected onto the memory located in the obtained 

address a1, identifying a data instance of type X. 

The underlying hypothesis of this mapping is that the traversed pointer type 

accurately reflects the type of the projected object. In practice there are several 

cases that this is not true. First, if an object allocated using a specific type is 

later cast to a generic type (e.g., void*), then this mapping scheme cannot properly 

identify this object using that pointer. For instance, in Figure 2.1 the third field 

of the static object cannot be used to identify the Y instance because of its generic 

void* type. Second, in modern OSes many kernel objects are linked using embedded 

list structures that connect the objects using list types. When these pointers are 

traversed, the connected objects are inaccurately identified as list objects. KOP [41] 

addresses these problems by generating an extended type graph using static analysis. 

Some other approaches [40,42] rely on manual annotations. 

When type-projection mapping is used against kernel malware, these problems 

may pose concerns as such inaccuracy can be deliberately introduced by kernel mal

ware. In type-projection mapping, the kernel memory map is based on the content 
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of the kernel memory, which may have been manipulated by kernel malware. This 

property may affect the detection of kernel rootkits that hide kernel objects by di

rectly manipulating pointers. For instance, Fig 2.2 shows a potential malware attack 

case. In this Figure, initially a singly linked circular list is composed of four data 

instances. If malware manipulates connecting pointers as shown in the Figure, the 

third instance will disappear from the linked list. The type-projection mapping does 

not have information to determine this attack because it constructs a map of data 

instances based on memory values. 

To detect such attacks, a detector needs to rely on not only a kernel memory 

map but also additional knowledge that reveals the anomalous status of the hidden 

objects. For this purpose, several approaches [40–42] use data structure invariants. 

For example, KOP [41] detects a process hidden by the FU Rootkit [75] by using 

the invariant that there are two linked lists regarding process information that are 

supposed to match, and one of them is not manipulated by the attack. However, 

a data invariant is specific to semantic usage of a data structure and may not be 

applicable to other data structures. For type-projection mapping, it is challenging to 

detect data hiding attacks that manipulate a simple list structure (such as the kernel 

module list in Linux) without an accompanying invariant. 

In general, we can categorize these approaches into two categories based on whether 

they make use of a static snapshot or dynamic runtime memory trace. 

2.5.1 Static Type-projection Mapping 

This approach uses a memory snapshot to generate a kernel memory map. SBCFI 

[61] constructs a map to systematically detect the violation of persistent control flow 

integrity. Gibraltar [40] extracts data invariants from kernel memory maps to detect 

kernel rootkits. A significant advantage of this approach is the low cost to generate a 

memory snapshot. A memory snapshot can be generated using an external monitor 
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such as a PCI interface [40], a memory dump utility [41], or a VMM [61], and the 

map is generated from the snapshot later. 

The memory snapshot is generated at a specific time instance (asynchronously). 

Its usage is limited for analyzing kernel execution traces where dynamic kernel mem

ory status varies over kernel execution. The same memory address, for example, 

could store different dynamic data objects over a period of time (through a series 

of deallocations and reallocations). The map cannot be used to properly determine 

what data was stored at that address at a specific time. We call this a dynamic data 

identity problem, and it occurs when an asynchronous kernel memory map is used for 

inspection of dynamic memory status in the kernel execution traces. 

2.5.2 Dynamic Type-projection Mapping 

This mapping approach also uses the type-projection mechanism to identify ker

nel objects, but its input is the trace of memory accesses recorded over runtime 

execution instead of a snapshot. By tracking the memory accesses of malware code, 

this approach can identify the list of kernel objects manipulated by the malware. 

PoKeR [44] and Rkprofiler [45] use this approach to profile dynamic attack behavior 

of kernel rootkits in Linux and Windows respectively. 

As a runtime trace is used for input, this approach can overcome the asynchronous 

nature of static type-projection mapping. Unfortunately, current work only focuses on 

the data structures targeted by malware code, and may not capture other events. For 

example, many malware programs call kernel functions during the attack or exploit 

various kernel bugs, and these behaviors may appear to be part of legitimate kernel 

execution. In these cases, dynamic type-projection techniques need to track all mem

ory accesses to accurately identify the kernel objects accessed by legitimate kernel 

execution. As this process is costly (though certainly possible), it is not straight

forward for this approach to expand the coverage of the mapped data to all kernel 

objects. 
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2.6 Kernel Rootkit Profilers 

Kernel rootkit profilers [44, 45] analyze a variety of aspects of rootkit behavior 

such as the memory access targets of malware code or user space impact. These 

approaches derive the types of the attack targets by transitively deriving types of 

kernel objects from static objects based on the rootkit behavior. However, some 

attacks are difficult to be understood based on such assumption because rootkits can 

use various other resources, such as hardware registers, to find the attack targets [76]. 

We demonstrated that there exist at least two real-world rootkits and two proof-of

concept rootkits which can elude PoKeR [44]. 

K-Tracer [77] can analyze the malicious behavior of kernel rootkits in sensitive 

events using dynamic slicing techniques. Its algorithm requires determination of the 

sensitive data so it therefore can be difficult to analyze DKOM attacks [75] whose 

targets may not be predetermined. 
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3 DATA-CENTRIC APPROACHES TO KERNEL MALWARE DEFENSE 

In the previous chapter, we discussed related approaches in malware detection and 

analysis. Many of those approaches characterize malware behavior based on code 

information such as injected code and malicious control flow. We call such approaches 

code-centric approaches because of their reliance on code information. In contrast, 

we propose new approaches based on the properties of data objects and their access 

patterns. Based on their use of data information to characterize malware, we call 

them data-centric approaches. In this chapter, we first will distinguish the differences 

between these two approaches. Then, we will present the details of our approach of 

characterizing malware behavior based on data properties. 

3.1 Code-centric Approaches versus Data-centric Approaches 

3.1.1 Code-centric Malware Defense Approaches 

Code-centric malware defense approaches use the properties of malicious code to 

detect malware. Such approaches are illustrated in Figure 3.1. A square block named 

cx represents a code entity such as a block of CPU instructions or a larger chunk of 

code such as a system call. 

Code injection is a commonly used technique by many malware programs. The 

unauthorized injected code is shown as the shaded square cε. This attack technique 

can be detected by checking the integrity of the authorized code and verifying whether 

only such code is being executed. This methodology is referred to as the approach 

based on code integrity (Section 2.1). 

Malware programs often show specific code sequences during attacks. Several 

malware detection approaches generate malware signatures by using such sequences. 
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Figure 3.1.: Code-centric malware defense approaches 
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Figure 3.2.: Data-centric malware defense approaches 

In Figure 3.1, a code sequence of c1 → c2 → c3 represents a control flow that occurs in 

a normal program status. This flow is shown as a dashed arrow named as CFB. Let us 

assume that a malicious program always executes the sequence of code c4 → c5 → c6 

(CFM ). This control flow can be used to match this malware’s behavior as the 

malware signature (Section 2.3). 

As discussed in Chapter 2, these approaches can be eluded by advanced malware 

techniques. Existing code can be reused to create malicious logic (e.g., use c5 instead 

of c2 to access data). Then code integrity-based approaches are not applicable to 

detect the attacks. Code obfuscation techniques [31–34] can change CFM to another 

flow, c4 ' c3 ' c5 → c6. Then the approaches based on malware code behavior can 

be eluded. 
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3.1.2 Data-centric Malware Defense Approaches 

The effects of code execution are typically reflected to data memory, and such 

data accesses are shown as dotted arrows in Figures 3.1 and 3.2. A code-centric mal

ware defense approach only uses the code information for characterizing the malware 

activity. Therefore, the data information is presented as a cloud in Figure 3.1. 

We want to identify this missing information and use it for kernel malware detec

tion. Specifically, we use the general characteristics of data objects regarding their 

usage, which are called the general data object properties (Section 3.5). This informa

tion characterizes the lifetime events of a data object, which include the allocation, 

the accesses, and the deallocation of an object. These events are expressed as the 

properties of program execution, such as the addresses of the code that invokes mem

ory operations. This information is general from the aspect that any data types of 

data objects have such lifetime events. 

Figure 3.2 presents our malware defense approach based on general data prop

erties. Here the cloud area is clarified because the accessed object d1 is identified. 

To make this information available, we designed a runtime kernel memory mapper 

(Section 4). Malware behavior can be described with more details about what data 

structures are accessed in addition to what code is executed. 

A memory access pattern aB in a benign control flow CFB can be expressed as a 

pair of the accessing code c2 and the accessed data d1, (c2, d1). Here let us assume 

that this is the only access pattern found in the program source code. If another code, 

such as c3, accesses d1, this memory access can be determined as an anomaly. This 

data information can be applied to determine attacks exploiting the existing code. 

Also, in the case where malware obfuscates its control flow CFM , if c5 still accesses 

d1 after the obfuscation, the malware attack would remain detected in this approach. 

In summary, introducing data information improves the details of malware be

havior descriptions. In this dissertation, we propose the data-centric malware defense 

architecture (DMDA), which models and detects malware behavior using the proper
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Figure 3.3.: Design of data-centric malware defense architecture 

ties of kernel data objects. We first present how we can generate the data information 

(e.g., d1 in Figure 3.2). Then we present our new approach to characterize malware 

based on kernel memory access patterns specific to malware attacks. 

3.2 Design 

The design of DMDA is illustrated in Figure 3.3. With the input of the operating 

system kernel information and kernel execution, we first generate a kernel object map 

(Chapter 4). This map is synchronously updated at runtime; thus, it enables us to de

termine the targets of the kernel memory references. Using this map, we can monitor 

and analyze kernel memory access patterns. By comparing benign kernel execution 

and malicious kernel execution compromised by kernel rootkits, we systematically 

extract the memory reference patterns specific to malware attacks. We match these 

memory access patterns as malware signatures to detect kernel rootkits (Chapter 5). 

In the following chapters, we will present each component in detail. 

3.3 Objectives 

In the design of DMDA, we seek to achieve the following objectives. 

• External Monitoring. There is a design choice between internal and external 
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monitoring. Each choice has its advantages and disadvantages, which will be 

discussed in Section 3.4. We place primary emphasis on the tamper-resistance of 

the monitor; therefore, we chose a monitor to be placed outside of the monitored 

kernel. 

•	 Transparent Monitoring. We intend to design a security monitor that does 

not require changes in the source code of the monitored kernel. Many widely-

used modern operating systems are proprietary. Avoiding source code changes 

would facilitate the implementation supporting a wider scope of operating sys

tems. 

•	 Un-tampered Data View. Some kernel rootkits implement stealthy services 

by manipulating pointers in kernel data structures. Therefore, the memory 

content is subject to malware manipulation and should not be trusted. The 

approaches based on memory snapshots [40, 41, 61] may have tampered views 

because the map construction is based on memory status. We derive an un

tampered data view by using memory allocation and deallocation events, instead 

of memory values. 

•	 Temporal Data View. Dynamic memory can represent multiple different 

kernel objects depending on its memory allocation context. If the kernel object 

map is not synchronously updated (temporal) for each allocation event, the 

kernel object information may be outdated. This is particularly important for 

our approach which uses memory reference patterns because it provides accurate 

targets of memory accesses. Related kernel object mapping approaches based 

on periodic memory snapshots [40,41,61] are not suitable for this purpose. 

3.4 Types of Monitoring: Internal versus External 

The location of a malware detector involves several design trade-offs in information 

collection, performance, implementation efforts, and reliability against attacks. 
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3.4.1 Internal Monitors 

An intrusion/malware detection monitor can be embedded inside the monitored 

software (e.g., a user program or an OS kernel). This type of monitor is called 

an internal monitor. Internal sensors [78] and embedded detectors [6, 51] belong to 

internal monitors. As a part of a program, it has the convenience of being able to 

access and evaluate the data structures of the monitored program. The performance 

of these monitors depends on the frequency of the monitored activity and the overhead 

per activity. 

Implementation efforts would differ depending on how the monitoring code is gen

erated. If the code is manually generated, the developer may need to understand 

potentially vulnerable code to decide where the monitoring code should be placed. 

In such cases, the implementation effort would be considered high. Systematic ap

proaches, such as compiler-based methods, could lower the amount of human efforts 

required. 

The reliability of a monitoring activity against potential attacks is an important 

issue for its credibility. Internal monitors are part of the monitored code so potentially 

malicious code therefore has direct access to the monitoring code. Unless there is a 

safety mechanism to ensure the integrity of an embedded monitor, it is exposed to 

potential manipulation by malware. 

3.4.2 External Monitors 

A monitor can be placed outside the monitored software. This type of monitor 

is called an external monitor. The monitors based on an external PCI device [60], 

memory dump programs [40, 41], and a virtual machine monitor (VMM) [10, 37, 42, 

61, 79] belong to the external type monitors group. 

A significant advantage of these monitors is their reliability against potential at

tacks. As the monitor is located outside the monitored software, potential attack 
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code within the monitored program does not have direct access to the monitor. This 

tamper-resistance is essential for trusting the operation of the monitor. 

Being outside the monitored program, this approach inherently has challenges, 

however, in interpreting the internal status of the monitored program. For example, 

when the VMM observes the memory of an OS, the memory status is viewed as raw 

bits and bytes. An external monitor needs to interpret this low level representation 

to high level information to determine an intrusion or infection. This problem is often 

called a semantic gap [37]. 

The overhead of these monitors occurs when the monitor obtains the information 

of the monitored entity. Once the information is grabbed, it can be processed in 

parallel, thus avoiding a slow-down of the monitored program. The implementation 

effort depends on what information is obtained from the monitored program and also 

its interpretation of the extracted data. 

In this dissertation, we emphasize the tamper-resistance of the monitor; there

fore, we implement our system as an external monitor. Specifically, we use a virtual 

machine monitor to inspect operating system kernels. 

3.5 General Data Object Properties and a Model for Kernel Memory Access Patterns 

3.5.1 General Data Object Properties 

Data objects have several usage patterns in their lifetime. Dynamic data objects 

are created (allocated) by some code. The values in the data objects are read or 

overwritten. In the case of dynamic objects, they are destructed (deallocated) after 

their usage. We call the properties of data objects in such usage patterns general 

data object properties. In this section, we present the details of the properties we use 

to monitor OS kernels and detect kernel malware. 

Figure 3.4 illustrates the lifetime of a dynamic data object, which consists of the 

memory operations applied to a data object and the data properties related to the 

operations. Code ca calls a memory allocation function, kmalloc, and a memory 
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Figure 3.4.: A lifetime of a dynamic data object 

block at the address range from d1 to d4 is allocated. This memory is used by read 

and write memory accesses. Code cr reads values from the address d2(= d1 + or). 

Code cw writes some value to the address d3(= d1 + ow). At the end of the lifetime 

of this object, code cf calls a deallocation function, kfree to free this memory. 

In this example, various data object addresses (dx), the accessed offsets (ox), and 

the code addresses (cx) represent how this program handles this object. We describe 

such properties related to memory operations in detail below. 

Allocation and Deallocation. A dynamic object is allocated when a memory 

allocation function is called. The address of the code that invokes a memory allocation 

function is referred to as an allocation call site. This event is the start of the lifetime 

of the allocated object. A deallocation event is the end of the lifetime of a dynamic 

object. Similarly, the code address that calls a memory deallocation function is 

referred to as a deallocation call site. Figure 3.4 illustrates the lifetime of a dynamic 

data object, and these events are presented respectively as allocation and free. 

Identification of Objects. When we identify data objects, we use the term, class, 

to represent the identification of static and dynamic objects in a unified way. In 

the case of static data objects, their data types and the address ranges are statically 
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Figure 3.5.: Identification of dynamic data objects 

assigned. This information is available in symbol tables (e.g., System.map in Linux). 

By assigning a specific number to each object, we can uniquely identify its type and 

address range. We call this unique number a class for a static object. 

Identifying dynamic objects is more complicated for two reasons [36]. First, the 

number of instances dynamically varies at runtime. Second, most dynamic memory 

functions in unmodified operating systems do not maintain the type information for 

each object. To derive the type information of dynamic objects, we introduce a 

technique that infers data types using allocation call sites in Section 4. For dynamic 

objects, an allocation call site is used as a class. 

An allocation call site can be translated to a data type, but more precisely it is a 

sub-class of a data type with the origin information where the objects are instantiated. 

Figure 3.5 illustrates this relationship. A data type X is defined in x.h. Two allocation 

sites instantiate the data objects of this data type. The objects of type X allocated 

at x1.c:10 have the a fields set as 80. Another group of objects of type X allocated 
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at x2.c:70 have their b fields set as 7. Although these objects have the same type, 

their usages can be different depending on their origins, namely, the allocation sites. 

This information enables finding the source of the data objects. It can be helpful to 

analyze program bugs related to the heap memory; and, in malware analysis, it also 

can provide understanding about the specific targets of malware attacks. 

Data Fields. Non-primitive data structures typically consist of multiple data fields 

which are located at specific offsets in data structures. When a reference monitor in

spects memory accesses, the offsets can be simple and efficient representations of data 

fields. Also, by using type definitions, offsets can be converted to field information. 

Memory Access Code. During computation, memory values are loaded to a CPU 

and the computed values are stored back to the memory. Such reads and writes are 

the fundamental operations that a CPU accesses memory. In program execution, 

the set of code that accesses data objects represents how the objects are used in the 

program. We call the code that reads memory values a read access site. Similarly, 

the code that writes to memory is called a write access site. 

3.5.2 A Model for Kernel Memory Access Patterns 

To characterize kernel malware behavior and detect its attacks, we use kernel 

memory access patterns. In this section, we briefly describe a formal representation of 

data access patterns, which are composed of general data object properties. Chapter 

5 will present more details along with a running example. 
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We call a memory access pattern a data behavior element (DBE), which is defined 

as a quintuple (5-tuple) of the general object properties illustrated in Figure 3.6: 

(c, o, m, i, f) (3.1) 

c represents the information of the accessing code, and o shows whether this access 

is a read (o = 0) or a write (o = 1). m and i represent the information about the 

accessed data object. If this object is static, m is 1 and i is the serial number that we 

assigned based on the information generated in the compile time. If it is a dynamic 

object, m is 0 and an allocation call site is used for i to represent the type of this 

object. This information can infer its data type using debugging information and 

source code analysis as described in Section 4.2.2. Finally, f shows the offset, which 

represents the accessed field within the data object. By using the type definition, it 

can be translated to a field symbol. 

A DBE describes a single memory access pattern. An operating system kernel 

instantiates tens of thousands of kernel objects from hundreds of kernel data types. 

These runtime objects are read and overwritten by thousands of code sites in the 

kernel. We collect a set of such kernel memory access patterns to represent the 

runtime data access behavior of an operating system kernel. We call this set of DBEs 

a data behavior profile (DBP), which is defined for an instance of the kernel execution 

that starts from its booting and ends at its shutdown. 

3.5.3 A Conceptual View of General Data Object Properties 

The general data object properties show how kernel data objects are used in a 

kernel. Therefore, the behavior of the kernel can be organized in a view centered by 

kernel data information. Figure 3.7 presents this perspective in conceptual views of 

the general data object properties. A rounded box represents the data objects of a 

specific class. 
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Figure 3.7.: Conceptual views of the general data object properties 

The case of dynamic objects is shown in the left side of Figure 3.7. An allocation 

event becomes the start of its lifetime. The end of its lifetime is defined by its 

deallocation event(s) which is shown as a deallocation site(s). The case of static 

objects is shown in the right side of Figure 3.7. Note that, in this case, allocation and 

deallocation information is removed because static objects are determined at compile 

time. 

At runtime, these objects are used via read and write accesses. On top of the 

boxes, a set of write access sites and the overwritten field offsets are shown. Similarly, 

under the boxes, a set of read access sites and the read fields are presented. This 

information is common in both dynamic and static objects. 

In this chapter, we have presented the general data object properties and our 

model of kernel memory access patterns. This information is the foundation of our 

approaches, and the behavior of the benign kernel execution and kernel malware will 

be modeled in terms of this information. In the remainder of this dissertation, we 

present how to generate a runtime map of kernel data objects which enables the 

general data object properties in Section 4. On top of this system component, we 

present how to detect a class of malware which has specific memory access patterns 

based on the general data object properties in Section 5. 
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4 KERNEL MALWARE DETECTION AND ANALYSIS WITH UN-TAMPERED 

AND TEMPORAL VIEWS OF KERNEL OBJECTS 

DMDA uses the properties of kernel data objects for malware detection. Because it 

employs external monitoring, the identification of data objects should be extracted 

from the kernel and reconstructed in the monitor. In this chapter, we will introduce 

a runtime kernel memory mapping mechanism and demonstrate its effectiveness. 

4.1 Introduction 

Dynamic kernel memory is where the majority of kernel data resides. Operating 

system (OS) kernels frequently allocate and deallocate numerous dynamic objects of 

various types. As a result of the complexity of identifying such objects at runtime, 

dynamic kernel memory is a source of many kernel security and reliability problems. 

For instance, an increasing amount of kernel malware targets dynamic kernel objects 

[42, 44,75,80]; and many kernel bugs are caused by dynamic memory errors [23–25]. 

Advanced kernel malware uses stealthy techniques such as directly manipulating 

kernel data (i.e., DKOM [75]) or overwriting function pointers (i.e., KOH [80]) located 

in dynamic kernel memory. This allows attacks such as process hiding and kernel-

level control flow hijacking. These anomalous kernel behaviors are difficult to analyze 

because they involve manipulating kernel objects that are dynamically allocated and 

deallocated at runtime; unlike persistent kernel code or static kernel data that are 

easier to locate, monitor, and protect. 

To detect these attacks, some existing approaches use kernel memory mapping 

based on the contents of runtime memory snapshots [40, 41, 61] or memory access 

traces [44, 45]. These approaches commonly identify a kernel object by projecting 

the type and address of a pointer onto the memory. However, such a technique may 
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not always be accurate – for example, when an object is type cast to a generic type 

or when an embedded list structure is used as part of larger data types. In benign 

kernel execution, such inaccuracy can be corrected [41]; but it becomes a problem 

in malware analysis as the memory contents may have been manipulated by kernel 

malware. For example, a DKOM attack to hide a process may modify the next task 

and prev task pointers in the process list. This causes the process to disappear 

from the OS view as well as from the kernel memory map. To detect this attack, 

some existing approaches rely on data invariants such as that the list used for process 

scheduling should match the process list. However, not every data structure has an 

invariant. Additionally, the kernel memory map generated from a snapshot [40,41,61] 

reflects kernel memory status at a specific time instance. Therefore, the map is of 

limited usage in analyzing kernel execution. Some mapping approaches are based 

on logging malware memory accesses [44,45] and thus provide temporal information. 

However they only cover objects accessed by the malware code and cannot properly 

handle certain attack patterns because of assumptions in its mapping algorithm [76]. 

In this chapter, we present a new kernel memory mapping scheme called allocation-

driven mapping that complements the existing approaches. Our scheme identifies 

dynamic kernel objects by capturing their allocations and does not rely on the runtime 

content of kernel memory to construct the kernel object map. As such, the map is 

resistant to attacks that manipulate the kernel memory. On top of our scheme, 

we build a hidden kernel object detector that uses the un-tampered view of kernel 

memory to detect DKOM data hiding attacks without requiring kernel object-specific 

invariants. In addition, our scheme keeps track of each kernel object’s life time. This 

temporal property is useful in the analysis of kernel/kernel malware execution. We 

also build a temporal malware behavior monitor that systematically analyzes the 

impact of kernel malware attacks via dynamic kernel memory using a kernel execution 

trace. We address a challenge in the use of kernel memory mapping for temporal 

analysis of kernel execution: A dynamic memory address may correspond to different 

kernel objects at different times because of the runtime allocation and deallocation 
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events. This problem can be handled by allocation-driven mapping. The lifetime of 

a dynamic kernel object naturally narrows the scope of a kernel malware analysis. 

The contributions of this chapter are summarized as follows: 

•	 We present a new kernel memory mapping scheme called allocation-driven map

ping that has the following properties desirable for kernel malware analysis: un

tampered identification of kernel objects and temporal status of kernel objects. 

•	 We implement allocation-driven mapping at the virtual machine monitor (VMM) 

level. The identification and tracking of kernel objects take place in the VMM 

without modification to the guest OS. 

•	 We develop a hidden kernel object detector that can detect DKOM data hiding 

attacks without requiring data invariants. The detector works by comparing 

the status of the un-tampered kernel map with that of kernel memory. 

•	 We develop a malware behavior monitor that uses a temporal view of kernel 

objects in the analysis of kernel execution traces. The lifetimes of dynamic 

kernel objects in the view guide the analysis to the events triggered by the 

objects manipulated by the malware. 

We have implemented a prototype of allocation-driven mapping called LiveDM 

(Live Dynamic kernel memory Map). It supports three off-the-shelf Linux distri

butions. LiveDM is designed for use in non-production scenarios such as honeypot 

monitoring, kernel malware profiling, and kernel debugging. 

4.2 Design of LiveDM 

In this section, we first introduce the allocation-driven mapping scheme, based on 

which our LiveDM system is implemented. We then present key enabling techniques 

to implement LiveDM. 
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Figure 4.1.: Overview of LiveDM. 

4.2.1 Allocation-driven Mapping Scheme 

Allocation-driven mapping is a kernel memory mapping scheme that generates a 

kernel object map by capturing the kernel object allocation and deallocation events 

of the monitored OS kernel. LiveDM uses a VMM to track the execution of the 

running kernel. Figure 4.1 illustrates how LiveDM works. Whenever a kernel object 

is allocated or deallocated, LiveDM will intercede and capture its address range and 

the information to derive the data type of the object subject to the event (details in 

Section 4.2.2) to update the kernel object map. 

First, this approach does not rely on any content of the kernel memory which 

can potentially be manipulated by kernel malware. Therefore, the kernel object map 

provides an un-tampered view of kernel memory wherein the identification of kernel 

data is not affected by the manipulation of memory contents by kernel malware. This 

tamper-resistant property is especially effective to detect sophisticated kernel attacks 

that directly manipulate kernel memory to hide kernel objects. For instance, in the 

type-projection mapping if the pointer fields of the static objects are nullified, dynamic 

objects cannot be identified because those objects cannot be reached by recursively 

scanning pointers in the memory. In practice, there can be multiple pointer references 

to a dynamic object. However, malware can completely isolate an object to be hidden 

by tampering with all pointers pointing to the object. The address of the hidden 
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object can be safely stored in a non-pointer storage (e.g., int or char) to avoid being 

discovered by the type-projection mapping algorithm while it can be used to recover 

the object when necessary. Many malicious programs carefully control their activities 

to avoid detection and prolong their stealthy operations, and it is a viable option to 

suspend a data object in this way temporarily and activate it again when needed [81]. 

In the allocation-driven mapping approach, however, this attack will not be effec

tive. As shown in Figure 4.1, each dynamic object is recognized upon its allocation. 

Therefore the identification of dynamic objects is reliably obtained and protected 

against the manipulation of memory contents. The key observation is that allocation-

driven mapping captures the liveness status of the allocated dynamic kernel objects. 

For malware writers, this property makes it significantly more difficult to manipulate 

this view. In Section 4.5, we show how this mapping can be used to automatically de

tect DKOM data hiding attacks without using any data invariant specific to a kernel 

data structure. 

Second, LiveDM reflects a temporal status of dynamic kernel objects because it 

captures their allocation and deallocation events. This property enables the use of 

the kernel object map in temporal malware analysis where temporal information, 

such as kernel control flow and dynamically changing data status, can be inspected 

to understand complicated kernel malware behavior. 

In Section 2.5.1, we pointed out that a dynamic data identity problem can occur 

when a snapshot-based kernel memory map is used for dynamic analysis. Allocation

driven mapping provides a solution to this problem by accurately tracking all alloca

tion and deallocation events. This means that even if an object is deallocated and its 

memory reused for a different object, LiveDM will be able to properly track it. 

Third, allocation-driven mapping does not suffer from the casting problem that 

occurs when an object is cast to a generic pointer because it does not evaluate pointers 

to construct the kernel object map. For instance, a general pointer such as a void 

pointer does not hinder the identification of the data instance that is pointed to by 

the pointer because this object is determined by capturing its allocation. However, 
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we note that another kind of casting can pose a problem: If an object is allocated 

using a generic type and it is cast to a specific type later, allocation-driven mapping 

will detect the earlier generic type. However, our study in Section 4.4 shows that this 

behavior is unusual in Linux kernels. 

There are a number of challenges in implementing the LiveDM system based on 

allocation-driven mapping. For example, kernel memory allocation functions do not 

provide a simple way to determine the type of the object being allocated.1 One so

lution is to use static analysis to rewrite the kernel code to deliver the allocation 

types to the VMM, but this would require the construction of a new type-enabled 

kernel, which is not readily applicable to off-the-shelf systems. Instead, we use a 

technique that derives data types by using runtime context (i.e., call stack informa

tion). Specifically, this technique systematically captures code positions for memory 

allocation calls by using virtual machine techniques (Section 4.2.2) and translates 

them into data types so that OS kernels can be transparently supported without any 

change in the source code. 

4.2.2 Techniques of LiveDM 

We employ a number of techniques to implement allocation-driven mapping. At 

the conceptual level, LiveDM works as follows. First, a set of kernel functions (such 

as kmalloc) are designated as kernel memory allocation functions. If one of these 

functions is called, we say that an allocation event has occurred. Next, whenever this 

event occurs at runtime, the VMM intercedes and captures the allocated memory 

address range and the code location calling the memory allocation function. This code 

location is referred to as an allocation call site and we use it as a unique identifier for 

the allocated object’s type at runtime. Finally, the source code around each allocation 

call site is analyzed offline to determine the type of the kernel object being allocated. 

1Kernel level memory allocation functions are similar to user level ones. The function kmalloc, for 
example, does not take a type but a size to allocate memory. 
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Runtime Kernel Object Map Generation 

At runtime, LiveDM captures all allocation and deallocation events by interceding 

whenever one of the allocation/deallocation functions is called. There are three things 

that need to be determined at runtime: (1) the call site, (2) the address of the object 

allocated or deallocated, and (3) the size of the allocated object. 

To determine the call site, LiveDM uses the return address of the call to the 

allocation function. In the instruction stream, the return address is the address of 

the instruction after the call instruction. The captured call site is stored in the kernel 

object map so that the type can be determined during offline source code analysis. 

The address and size of objects being allocated or deallocated can be derived from 

the arguments and return value. For an allocation function, the size is typically given 

as a function argument and the memory address as the return value. For a deallo

cation function, the address is typically given as a function argument. These values 

can be determined by the VMM by leveraging function call conventions. 2 Function 

arguments are delivered through the stack or registers, and LiveDM captures them by 

inspecting these locations at the entry of memory allocation/deallocation calls. To 

capture the return value, we need to determine where the return value is stored and 

when it is stored there. Integers up to 32-bits as well as 32-bit pointers are delivered 

via the EAX register and all values that we would like to capture are either of those 

types. The return value is available in this register when the allocation function re

turns to the caller. To capture the return values at the correct time the VMM uses 

a virtual stack. When a memory allocation function is called, the return address is 

extracted and pushed on to this stack. When the address of the code to be executed 

matches the return address on the stack, the VMM intercedes and captures the return 

value from the EAX register. 

2A function call convention is a scheme to pass function arguments and a return value. We use the 
conventions for the x86 architecture and the gcc compiler [82]. 
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Figure 4.2.: A high level view of static code analysis 

(a) Case 1 (b) Case 2 

(c) Case 3 

Figure 4.3.: Static code analysis. C: a call site, A: an assignment, D: a variable 
declaration, T: a type definition, R: a return, and F: a function declaration. 

Dynamic Data Type Inference 

The object type information related to kernel memory allocation events is deter

mined using static analysis of the kernel source code offline. Figure 4.2 illustrates a 

high level view of our method. First, the allocation call site (C) of a dynamic object 

is mapped to the source code fork.c:610 using debugging information found in the 

kernel binary. This code assigns the address of the allocated memory to a pointer 

variable at the left-hand side (LHS) of the assignment statement (A). As this vari

able’s type can represent the type of the allocated memory, it is derived by traversing 
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the declaration of this pointer (D) and the definition of its type (T). Specifically, 

during the compilation of kernel source code, a parser sets the dependencies among 

the internal representations (IRs) of such code elements. Therefore, the type can be 

found by following the dependencies of the generated IRs. 

For type resolution, we enumerate several patterns in the allocation code as shown 

in Figure 4.3(a), 4.3(b), and 4.3(c). Case 1 is the typical pattern (C→A→D→T) as 

just explained. In Case 2, the definition (D) and allocation (A) occur in the same line. 

The handling of this case is similar to that of Case 1. Case 3, however, is unlike the 

first two cases. The pattern in Case 3 does not use a variable to handle the allocated 

memory address, rather it directly returns the value generated from the allocation 

call. When a call site (C) is converted to a return statement (R), we determine the 

type of the allocated memory using the type of the returning function (F). In Figure 

4.3(c), this pattern is presented as C→R→F→T. 

Prior to static code analysis, we generate the set of information about these code 

elements to be traversed (i.e., C, A, D, R, F, and T) by compiling the kernel source 

code with the compiler that we instrumented (Section 4.3). 

4.3 Implementation 

Allocation-driven mapping is general enough to work with an OS that follows 

the standard function call conventions (e.g., Linux, Windows, etc.). Our prototype, 

LiveDM, supports three off-the-shelf Linux OSes of different kernel versions: Fedora 

Core 6 (Linux 2.6.18), Debian Sarge (Linux 2.6.8), and Redhat 8 (Linux 2.4.18). 

LiveDM can be implemented on any software virtualization system, such as VMware 

(Workstation and Player) [83], VirtualBox [84], and Parallels [85]. We choose the 

QEMU [86] with KQEMU optimizer for implementation convenience. 

In the kernel source code, many wrappers are used for kernel memory management, 

some of which are defined as macros or inline functions and others as regular functions. 

Macros and inline functions are resolved as the core memory function calls at compile 

http:andRedhat8(Linux2.4.18
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time by a preprocessor; thus, their call sites are captured in the same way as core 

functions. However, in the case of regular wrapper functions, the call sites will belong 

to the wrapper code. 

To solve this problem, we take two approaches. If a wrapper is used only a few 

times, we consider that the type from the wrapper can indirectly imply the type used 

in the wrapper’s caller because of its limited use. If a wrapper is widely used in many 

places (e.g., kmem cache alloc – a slab allocator), we treat it as a memory allocation 

function. Commodity OSes, which have mature code quality, have a well defined set 

of memory wrapper functions that the kernel and driver code commonly use. In our 

experience, capturing such wrappers, in addition to the core memory functions, can 

cover the majority of the memory allocation and deallocation operations. 

We categorize the captured functions into four classes: (1) page allocation/free 

functions, (2) kmalloc/kfree functions, (3) kmem cache alloc/free functions (slab 

allocators), and (4) vmalloc/vfree functions (contiguous memory allocators). These 

sets include the well defined wrapper functions as well as the core memory functions. 

In our prototype, we capture about 20 functions in each guest kernel. The memory 

functions of an OS kernel can be determined from its design specification (e.g., the 

Linux Kernel API) or kernel source code. 

Automatic translation of a call site to a data type requires a kernel binary that is 

compiled with a debugging flag (e.g., -g to gcc) and whose symbols are not stripped. 

Modern OSes, such as Ubuntu, Fedora, and Windows, generate kernel binaries of this 

form. Upon distribution, typically the stripped kernel binaries are shipped; however, 

unstripped binaries (or symbol information in Windows) are optionally provided for 

kernel debugging purposes. The experimented kernels of Debian Sarge and Redhat 

8 are not compiled with this debugging flag. Therefore, we compiled the distributed 

source code and generated the debug-enabled kernels. These kernels share the same 

source code with the distributed kernels, but the offset of the compiled binary code 

can be slightly different because of the additional debugging information. 
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Figure 4.4.: The usage of dynamic kernel objects during the booting stage (OS: 
Redhat 8). 

For static analysis we use a gcc [82] compiler (version 3.2.3) that we instrumented 

to generate internal representations for the source code of the experimented kernels. 

We place hooks in the parser to extract the abstract syntax trees for the code elements 

necessary in the static code analysis. 

4.4 Evaluation 

In this section, we evaluate the basic functionality of LiveDM with respect to 

the identification of kernel objects, casting code patterns, and the performance of 

allocation-driven mapping. The guest systems are configured with 256MB RAM and 

the host machine has a 3.2Ghz Pentium D CPU and 2GB of RAM. 

4.4.1 Runtime Tracking of Dynamic Kernel Objects 

LiveDM synchronously identifies dynamic kernel objects on their allocations and 

deallocations. Therefore unlike other kernel memory mapping approaches that sample 

memory status, LiveDM can continuously track changes in kernel memory status. 
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Figure 4.5.: The usage of dynamic kernel objects during the booting stage (OS: 
Debian Sarge). 

Figure 4.6.: LiveDM identifies kernel objects and generates a kernel object map at 
runtime.(OS: Redhat 8) 

Figure 4.4 and 4.5 present the statistics of runtime dynamic kernel objects during 

the booting stage in two Linux operating systems. Figure 4.6 illustrates the GUI 

interface of our prototype implementation. The black screen at the top shows the 
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Table 4.1: A list of core dynamic kernel objects and the source code elements used 
to derive their data types in static analysis. (OS: Debian Sarge). 

Call Site Declaration Data Type Case #Objects 
T
as

k
/S

ig kernel/fork.c:248 
kernel/fork.c:801 
fs/exec.c:601 
kernel/fork.c:819 

kernel/fork.c:243 
kernel/fork.c:795 
fs/exec.c:587 
kernel/fork.c:813 

task struct 
sighand struct 
sighand struct 
signal struct 

1 
1 
1 
1 

66 
63 
1 
66 

arch/i386/mm/pgtable.c:229 arch/i386/mm/pgtable.c:229 pgd t 2 54 
kernel/fork.c:433 kernel/fork.c:431 mm struct 1 47 

M
em

or
y
 kernel/fork.c:559 

kernel/fork.c:314 
mm/mmap.c:923 
mm/mmap.c:1526 

kernel/fork.c:526 
kernel/fork.c:271 
mm/mmap.c:748 
mm/mmap.c:1521 

mm struct 
vm area struct 
vm area struct 
vm area struct 

1 
1 
1 
1 

7 
149 
1004 

5 
mm/mmap.c:1722 mm/mmap.c:1657 vm area struct 1 48 
fs/exec.c:402 fs/exec.c:342 vm area struct 1 47 
kernel/fork.c:677 kernel/fork.c:654 files struct 1 54 
kernel/fork.c:597 kernel/fork.c:597 fs struct 2 53 
fs/file table.c:76 fs/file table.c:69 file 1 531 

F
il
e 

sy
st

em
 fs/buffer.c:3062 

fs/block dev.c:232 
fs/dcache.c:692 
fs/inode.c:112 
fs/namespace.c:55 

fs/buffer.c:3062 
fs/block dev.c:232 
fs/dcache.c:689 
fs/inode.c:107 
fs/namespace.c:55 

buffer head 
bdev inode 
dentry 
inode 
vfsmount 

2 
2 
1 
1 
2 

828 
5 

4203 
1209 
16 

fs/proc/inode.c:93 fs/proc/inode.c:90 proc inode 1 237 
drivers/block/ll rw blk.c:1405 drivers/block/ll rw blk.c:1405 request queue t 2 18 
drivers/block/ll rw blk.c:2950 drivers/block/ll rw blk.c:2945 io context 1 10 

N
et

w
or

k
 

net/socket.c:279 
net/core/sock.c:617 
net/core/dst.c:125 
net/core/neighbour.c:265 
net/ipv4/tcp ipv4.c:134 
net/ipv4/fib hash.c:586 

net/socket.c:278 
net/core/sock.c:613 
net/core.dst.c:119 
net/core/neighbour.c:254 
net/ipv4/tcp ipv4.c:133 
net/ipv4/fib hash.c:461 

socket alloc 
sock 
dst entry 
neighbour 
tcp bind bucket 
fib node 

1 
1 
1 
1 
2 
1 

12 
3 
5 
1 
4 
9 

guest operating system. The kernel object map is illustrated below this screen. The 

statistics of active kernel objects are shown in the left pane. 

4.4.2 Identifying Dynamic Kernel Objects 

To demonstrate the ability of LiveDM to inspect the runtime status of an OS 

kernel, we present a list of important kernel data structures captured during the 

execution of Debian Sarge OS in Table 4.1. These data structures manage the key OS 

status such as process information, memory mapping of each process, and the status 

of file systems and network which are often targeted by kernel malware and kernel 

bugs [23–25,42,44,60,61,87]. Kernel objects are recognized using allocation call sites 

shown in column Call Site during runtime. Using static analysis, this information 
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is translated into the data types shown in column Data Type by traversing the 

allocation code and the declaration of a pointer variable or a function shown in column 

Declaration. Column Case shows the kind of the allocation code pattern described 

in Section 4.2.2. The number of the identified objects for each type in the inspected 

runtime status is presented in column #Objects. At that time instance, LiveDM 

identified total of 29488 dynamic kernel objects with their data types derived from 

231 allocation code positions. 

To evaluate the accuracy of the identified kernel objects, we build a reference 

kernel where we modify kernel memory functions to generate a log of dynamic kernel 

objects and run this kernel in LiveDM. We observe that the dynamic objects from the 

log accurately match the live dynamic kernel objects captured by LiveDM. To check 

the type derivation accuracy, we manually translate the captured call sites to data 

types by traversing kernel source code as done by related approaches [41, 70]. The 

derived types at the allocation code match the results from our automatic static code 

analysis. 

4.4.3 Code Patterns Casting Objects from Generic Types to Specific Types 

In Section 4.2.1, we discussed that allocation-driven mapping has no problem 

handling the situation where a specific type is cast to a generic type, but casting 

from generic types to specific types can be a problem. To estimate how often this 

type of casting occurs, we manually checked all allocation code positions where the 

types of kernel objects are derived for the inspected status. We checked for the code 

pattern that memory is allocated using a generic pointer and then the address is cast 

to the pointer of a more specific type. Note that this pattern does not include the 

use of generic pointers for generic purposes. For example, the use of void or integer 

pointers for bit fields or buffers is a valid use of generic pointers. Another valid use 

is kernel memory functions that internally handle pre-typed memory using generic 

pointers to redefine it to various types. We found 25 objects from 10 allocation code 

http:LiveDM.We
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Figure 4.7.: Performance of LiveDM for Linux 2.4 (OS: Redhat 8) 

positions (e.g., tty register driver and vc allocate) exhibiting this behavior at 

runtime. Such objects are not part of the core data structures shown in Table 4.1, 

and they account for only 0.085% of all objects. Hence we consider them as non

significant corner cases. As the code positions where this casting occurs are available 

to LiveDM, we believe that the identification of this behavior and the derivation of 

a specific type can be automated by performing static analysis on the code after the 

allocation code. 

4.4.4 Performance of Allocation-driven Mapping 

As LiveDM is mainly targeted for non-production environments such as honeypots 

and kernel debugging systems, performance is not a primary concern. Still, we would 

like to provide a general idea of the cost of allocation-driven mapping. To measure the 

overhead to generate a kernel object map at runtime, we ran three benchmarks: com

piling the kernel source code, UnixBench (Byte Magazine Unix Benchmark 5.1.2), and 

nbench (BYTEmark* Native Mode Benchmark version 2). The normalized runtime 

overhead of our implementation is presented in Figure 4.7 and Figure 4.8. Compared 

to unmodified QEMU, our prototype incurs (in the worst case) 41.77% overhead for 
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Figure 4.8.: Performance of LiveDM for Linux 2.6 (OS: Debian Sarge) 

Redhat 8 (Linux 2.4) and 125.47% overhead for Debian Sarge (Linux 2.6). For CPU 

intensive workload such as nbench, the overhead is near zero because the VMM rarely 

intervenes. However, applications that use kernel services requiring dynamic kernel 

memory have higher overhead. As a specific example, compiling the Linux kernel 

exhibited an overhead of 29% for Redhat 8 and 115.69% for Debian Sarge. It is 

important to note that these numbers measure overhead when compared to an un

modified VMM. Software based virtualization will add additional overhead as well. 

For the purpose of inspecting fine-grained kernel behavior in non-production envi

ronments, we consider this overhead acceptable. The effects of overhead can even be 

minimized in a production environment by using decoupled analysis [88]. 

4.5 Hidden Kernel Object Detector 

One problem with static type-projection approaches is that they are not able to 

detect dynamic kernel object manipulation without some sort of data invariant. In 

this section we present a hidden kernel object detector built on top of LiveDM that 

does not suffer from this limitation. 

http:and125.47
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(a) Temporal live status of kernel modules based on 
allocation-driven mapping. 

(b) Live set (L) and scanned set (S) for kernel mod
ules at t1, t2, and t3. 

Figure 4.9.: Illustration of the kernel module hiding attack by cleaner rootkit. 
Note that the choice of t1, t2, and t3 is for the convenience of showing data status 

and irrelevant to the detection. This attack is detected based on the difference 
between L and S. 

4.5.1 Leveraging the Un-tampered View 

Some advanced DKOM-based kernel rootkits hide kernel objects by simply remov

ing all references to them from the kernel’s dynamic memory. We model the behavior 

of this type of DKOM data hiding attack as a data anomaly in a list. If a dynamic 

kernel object does not appear in a kernel object list, then it is orphaned and hence 

an anomaly. As described in Section 4.2.1, allocation-driven mapping provides an 

un-tampered view of the kernel objects not affected by manipulation of the actual 



47 

kernel memory content. Therefore, if a kernel object appears in the LiveDM-generated 

kernel object map but cannot be found by traversing the kernel memory, then that 

object has been hidden. More formally, for a set of dynamic kernel objects of a given 

data type, a live set L is the set of objects found in the kernel object map. A scanned 

set S is the set of kernel objects found by traversing the kernel memory as in the 

related approaches [40,41,61]. If L and S do not match, then a data anomaly will be 

reported. 

This process is illustrated in the example of the cleaner rootkit that hides the 

adore-ng rootkit module (Figure 4.9). Figure 4.9(a) presents the timeline of this 

attack using the lifetime of kernel modules. Figure 4.9(b) illustrates the detailed 

status of kernel modules and corresponding L and S at three key moments. Kernel 

modules are organized as a linked list starting from a static pointer variable. When 

the cleaner module is loaded after the adore-ng module, it modifies the linked list 

to bypass the adore-ng module entry (shown at t2). Therefore, when the cleaner 

module is unloaded, the adore-ng module disappears from the module list (t3). At 

this point in time the scanned set S based on static type-projection mapping has 

lost the hidden module, but the live set L keeps the view of all kernel modules alive. 

Therefore, the monitor can detect a hidden kernel module because of the condition, 

|L| � |S|.= 

4.5.2 Detecting DKOM Data Hiding Attacks 

There are two dynamic kernel data lists which are favored by rootkits as attack 

targets: the kernel module list and the process control block (PCB) list.3 However 

other linked list-based data structures can be similarly supported as well. The basic 

procedure is to generate the live set L and periodically generate and compare with 

the scanned set S. We tested 8 real-world rootkits and 2 of our own rootkits (linuxfu 

and fuuld) previously used in [44, 76, 89], and these rootkits commonly hide kernel 

3A process control block (PCB) is a kernel data structure containing administrative information for 
a particular process. Its data type in Linux is task struct. 
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Table 4.2: DKOM data hiding rootkit attacks that are automatically detected by comparing LiveDM-generated view (L) 
and kernel memory view (S). 

Rootkit 
Name 

|L| - |S| Manipulated Data Operating 
System 

Attack 
Vector Type Field 

hide lkm # of hidden modules module next Redhat 8 /dev/kmem 
fuuld # of hidden PCBs task struct next task, prev task Redhat 8 /dev/kmem 
cleaner # of hidden modules module next Redhat 8 LKM 
modhide # of hidden modules module next Redhat 8 LKM 
hp 1.0.0 # of hidden PCBs task struct next task, prev task Redhat 8 LKM 
linuxfu # of hidden PCBs task struct next task, prev task Redhat 8 LKM 
modhide1 1 (rootkit self-hiding) module next Redhat 8 LKM 

kis 0.9 (server) 1 (rootkit self-hiding) module next Redhat 8 LKM 
adore-ng-2.6 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM 
ENYELKM 1.1 1 (rootkit self-hiding) module list.next, list.prev Debian Sarge LKM 
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objects by directly manipulating the pointers of such objects. LiveDM successfully 

detected all these attacks based on the data anomaly from kernel memory maps and 

the results are shown in Table 4.2. 

In the experiments, we focus on a specific attack mechanism – data hiding via 

DKOM – rather than the attack vectors – how to overwrite kernel memory – or 

other attack features of rootkits for the following reason. There are various attack 

vectors including the ones that existing approaches cannot handle and they can be 

easily utilized. Specifically, we acknowledge that the rootkits based on a loadable 

kernel module (LKM) can be detected by code integrity approaches [10, 11] with 

the white listing scheme of kernel modules. However, there exist alternate attack 

vectors such as /dev/mem, /dev/kmem devices, return-oriented techniques [14, 16], 

kernel bugs, and unproven code in third-party kernel drivers that can elude existing 

kernel rootkit detection and prevention approaches. We present the DKOM data 

hiding cases of LKM-based rootkits as part of our results because these rootkits can 

be easily converted to make use of these alternate attack vectors. 

We also include results for two other rootkits that make use of these advanced 

attack techniques. hide lkm and fuuld in Table 4.2 respectively hide kernel modules 

and processes without any kernel code integrity violation (via /dev/kmem) purely 

based on DKOM, and current rootkit defense approaches cannot properly detect 

these attacks. However, our monitor effectively detects all DKOM data hiding attacks 

regardless of attack vectors by leveraging the LiveDM-generated kernel object map. 

Allocation-driven mapping can uncover the hidden object even in more adversarial 

scenarios. For example, if a simple linked list having no data invariant is directly 

manipulated without violating kernel code integrity, LiveDM will still be able to detect 

such an attack and uncover the specific hidden object. 

In the experiments that detect rootkit attacks, we generate and compare L and 

S sets every 10 seconds. When a data anomaly occurs, the check is repeated in 1 

second. (The repeated check ensures that a kernel data structure was not simply in 
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Figure 4.10.: LiveDM detects process hiding rootkit attacks and pinpoints hidden 
processes. 

an inconsistent state during the first scan.) If the anomaly persists, then we consider 

it as a true positive. 

To ensure that the detected cases are not caused by memory leaks, we generated 

the hash values for the memory corresponding to the hidden objects after the violation 

of the lifetime invariant is detected. The hash values for the hidden modules and PCBs 

are being changed which confirm that the detected cases are not memory leaks. 

With these monitoring policies, we successfully detected all tested DKOM hiding 

attacks without any false positives or false negatives. 

We note that while this section focuses on data hiding attacks based on DKOM, 

data hiding attacks without manipulating data (such as rootkit code that filters sys

tem call results) may also be detected using the LiveDM system. Instead of comparing 

the un-tampered LiveDM-generated view with the scanned view of kernel memory, one 

could simply compare the un-tampered view with the user-level view of the system. 

Figure 4.10 and 4.11 demonstrate how our prototype implementation detects data 

hiding rootkit attacks. Figure 4.10 demonstrates the attack of hp rootkit. This rootkit 

hides two processes, crond and sshd. LiveDM systematically detects such hidden 

http:Figure4.10
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Figure 4.11.: LiveDM detects kernel driver hiding rootkit attacks and pinpoints 
hidden drivers. 

processes and pinpoints them in the list of processes at the left pane and in the map 

of processes. Similarly Figure 4.11 shows the detection of modhide rootkit attacks. 

Two kernel drivers, ip tables and ne2k-pci, are hidden via pointer manipulation. 

Those hidden drivers are successfully detected by LiveDM and shown in the driver 

list and in the map of kernel drivers. 

4.6 Temporal Kernel Malware Analysis 

Kernel rootkit analysis approaches based on dynamic type-projection are able to 

perform temporal analysis of a running rootkit. One problem with these approaches, 

however, is that they are only able to track malware actions that occur from injected 

rootkit code. If a rootkit modifies memory indirectly through other means such as 

legitimate kernel functions or kernel bugs, these approaches are unable to follow the 

attack. Allocation-driven mapping does not share this weakness. To further illustrate 

the strength of allocation-driven mapping, we built a temporal malware behavior 
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monitor (called a temporal monitor or a monitor below for brevity) that uses a kernel 

object map in temporal analysis of a kernel execution trace. 

In this section, we highlight two features that allocation-driven mapping newly 

provides. First, allocation-driven mapping enables the use of a kernel object map 

covering all kernel objects in temporal analysis ; therefore for any given dynamic kernel 

object we can inspect how it is being used in the dynamic kernel execution trace 

regardless of the accessing code (either legitimate or malicious), which is difficult for 

both static and dynamic type-projection approaches. Second, the data lifetime in 

allocation-driven mapping lets the monitor avoid the dynamic data identity problem 

(Section 2.5.1) which can be faced by an asynchronous memory map. 

4.6.1 Systematic Visualization of Malware Influence via Dynamic Kernel Memory 

Our monitor systematically inspects and visualizes the influence of kernel malware 

attacks targeting dynamic kernel memory. To analyze this dynamic attack behavior, 

we generate a full system trace including the kernel object map status, the executed 

code, and the memory accesses during the experiments of kernel rootkits. When a 

kernel rootkit attack is launched, if it violates kernel code integrity, the rootkit code 

is identified by using our previous work, NICKLE [10]. Then the temporal monitor 

systematically identifies all targets of rootkit memory writes by searching the kernel 

object map. If the attack does not violate code integrity, the proposed technique in 

the previous section or any other approach can be used to detect the dynamic object 

under attack. The identified objects then become the causes of malware behavior and 

their effects are systematically visualized by searching the original and the modified 

kernel control flow triggered by such objects. For each object targeted by the rootkit, 

there are typically multiple behaviors using its value. Among those, this monitor 

samples a pair of behaviors caused by the same code, the latest one before the attack 

and the earliest one after the attack, and presents them for a comparison. 
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Table 4.3: The list of kernel objects manipulated by adore-ng rootkit. (OS: Redhat 
8). 

Runtime Identification Offline Data Type Interpretation 
Call Site Offset Type / Object (Static, Module object) Field 
fork.c:610 
fork.c:610 
fork.c:610 
fork.c:610 
fork.c:610 
fork.c:610 
generic.c:436 

0x4,12c,130 
0x134,138,13c 
0x140,144,148 
0x1d0 
0x1d4 
0x1d8 
0x20 

task struct (Case (1)) 
task struct (Case (1)) 
task struct (Case (1)) 
task struct (Case (1)) 
task struct (Case (1)) 
task struct (Case (1)) 
proc dir entry (Case (2)) 

flags,uid,euid 
suid,fsuid,gid 
egid,sgid,fsgid 
cap effective 
cap inheritable 
cap permitted 
get info 

(Static object) 
(Static object) 
(Static object) 

proc root inode operations 
proc root operations 
unix dgram ops 

lookup 
readdir 
recvmsg 

(Module object) 
(Module object) 

ext3 dir operations 
ext3 file operations 

readdir 
write 

Figure 4.12.: Kernel control flow (top) and the usage of dynamic memory (below) at 
the addresses of T3 (Case (1)) and P1 (Case (2)) manipulated by the adore-ng 

rootkit. Time is in billions of kernel instructions. 

As a running example in this section, we will present the analysis of the attacks 

by the adore-ng rootkit. This rootkit is chosen because of its advanced malware 

behavior triggered by dynamic objects; and other rootkits can be analyzed in a similar 

way. Table 4.3 lists the kernel objects that the adore-ng rootkit tampers with. In 

particular, we focus on two specific attack cases using dynamic objects: (1) The first 

case is the manipulation of a PCB (T3) for privilege escalation and (2) the second case 

is the manipulation of a function pointer in a dynamic proc dir entry object (P1) 

to hijack kernel control flow. Figure 4.12 presents a detailed view of kernel control 

flow and the usage of the targeted dynamic kernel memory in the attacks. The X axis 

shows the execution time, and kernel control flow is shown at top part of this figure. 
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The space below shows the temporal usage of dynamic memory at the addresses of T3 

and P1 before and after rootkit attacks. Thick horizontal lines represent the lifetime 

of kernel objects which are temporally allocated at such addresses. + and × symbols 

below such lines show the read and write accesses on corresponding objects. The 

aforementioned analysis process is illustrated as solid arrows. From the times when 

T3 and P1 are manipulated (shown as dotted circles), the monitor scans the execution 

trace backward and forward to find the code execution that consumes the values read 

from such objects (i.e., + symbols). 

4.6.2 Selecting Semantically Relevant Kernel Behavior Using Data Lifetime 

Our monitor inspects dynamic memory states in the temporal execution trace and 

as such we face the dynamic data identity problem described in Section 4.2.1. The core 

of the problem is that one memory address may correspond with multiple objects over 

a period of time. This problem can be solved if the lifetime of the inspected object 

is available because the monitor can filter out irrelevant kernel behaviors triggered 

by other kernel objects that share the same memory address. For example, in Figure 

4.12, we observe the memory for T3 is used for four other PCBs (i.e., T1, T2, T4, 

and T5) as well in the history of kernel execution. Simply relying on the memory 

address to analyze the trace can lead to finding kernel behavior for all five PCBs. 

However, the monitor limits the inspected time range to the lifetime of T3 and select 

only semantically relevant behaviors to T3. Consequently it can provide a reliable 

inspection of runtime behavior only relevant to attacks. 

Other kernel memory mapping approaches commonly cannot handle this problem 

properly. In static type-projection, when two kernel objects from different snapshots 

are given we cannot determine whether they represent the same data instance or 

not, even though their status is identical because such objects may or may not be 

different data instances depending on whether memory allocation/deallocation events 

occur between the generation of such snapshots. Dynamic type-projection mapping 
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(a) The original data view at t2. 

(b) The manipulated data view at t3. 

Figure 4.13.: Kernel data view before and after the adore-ng rootkit attack. 

is only based on malware instructions, and thus does not have information about 

allocation and deallocation events which occur during legitimate kernel execution. 

4.6.3 Case (1): Privilege Escalation Using Direct Memory Manipulation 

To demonstrate the effectiveness of our temporal monitor we will discuss two 

specific attacks employed by adore-ng. The first is a privilege escalation attack that 

works by modifying the user and group ID fields of the PCB. The PCB is represented 

by T3 in Figure 4.12. To present the changed kernel behavior from the manipulation 

of T3, the temporal monitor finds the latest use of T3 before the attack (at t2) and the 

earliest use of it after the attack (at t3). The data views at such times are presented 
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in Figure 4.13(a) and 4.13(b) as 2-dimensional memory maps where a kernel memory 

address is represented as the combination of the address in the Y axis and the offset in 

the X axis. These views present kernel objects relevant to this attack before and after 

the attack. The manipulated PCB is marked with “Case (1)” in the views and the 

values of its fields are shown in the box on the right side of each view (PCB status). 

These values reveal a stealthy rootkit behavior that changes the identity of a user 

process by directly patching its PCB (DKOM). Before the attack (Figure 4.13(a)), 

the PCB has the credentials of an ordinary user whose user ID is 500. However, 

after the attack, Figure 4.13(b) shows the credentials of the root user. This direct 

transition of its status between two accounts is abnormal in conventional operating 

system environments. su or sudo allow privileged operations by forking a process 

to retain the original identity. Hence we determine that this is a case of privilege 

escalation that illegally enables root privileges for an ordinary user. 

4.6.4 Case (2): Dynamic Kernel Object Hooking 

The next adore-ng attack hijacks kernel code execution by modifying a function 

pointer and this attack is referred to as Kernel Object Hooking (KOH) [80]. This 

behavior is observed when the influence of a manipulated function pointer in P1 

(see Figure 4.12) is inspected. To select only the behaviors caused by this object, the 

monitor guides the analysis to the lifetime of P1. The temporal monitor detects several 

behaviors caused by reading this object and two samples are chosen among those to 

illustrate the change of kernel behavior by comparison: the latest original behavior 

before the attack (at t1) and the earliest changed behavior after the attack (at t4). 

The monitor generates two kernel control flow graphs at these samples, each for a 

period of 4000 instructions. Figure 4.14(a) and 4.14(b) present how this manipulated 

function pointer affects runtime kernel behavior. The Y axis presents kernel code; 

thus, the fluctuating graphs show various code executed at the corresponding time of 

X axis. A hook-invoking function (proc file read) reads the function pointer and 
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(a) The original control flow at t1. 

(b) The hijacked control flow at t4. 

Figure 4.14.: Kernel control flow view before and after the adore-ng rootkit attack. 

calls the hook code pointed to by it. Before the rootkit attack, the control flow jumps 

to a legitimate kernel function tcp get info which calls sprintf after that as shown 

in Figure 4.14(a). However, after the hook is hijacked, the control flow is redirected 

to the rootkit code which calls kmalloc to allocate its own memory, then comes back 

to the original function (Figure 4.14(b)). 
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4.7 Summary 

In this chapter, we presented allocation-driven mapping, a kernel memory mapping 

scheme, and its implementation – LiveDM. By capturing the kernel objects’ allocation 

and deallocation events, our scheme provides an un-tampered view of kernel objects 

that will not be affected by kernel malware’s manipulation of kernel memory content. 

The LiveDM-generated kernel object map accurately reflects the status of dynamic 

kernel memory and tracks the lifetimes of dynamic kernel objects. This temporal 

property is highly desirable in temporal kernel execution analysis where both kernel 

control flow and dynamic memory status can be analyzed in an integrated fashion. 

We have demonstrated the effectiveness of the LiveDM system by developing a hidden 

kernel object detector and a temporal malware behavior monitor and applying them 

to a corpus of kernel rootkits. 

http:LiveDM.By
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5 CHARACTERIZING KERNEL MALWARE BEHAVIOR WITH KERNEL 

DATA ACCESS PATTERNS 

In this chapter, we demonstrate the second component of DMDA, characterization 

of kernel malware behavior with kernel data access patterns. Based on the kernel 

object mapping system presented in the previous chapter, the memory access patterns 

specific to malware attacks are determined and matched to detect the kernel malware. 

Moreover we analyze common malware behavior in terms of memory access patterns 

to determine the applicability of our approach to malware variants. 

5.1 Introduction 

Characterizing malware behavior is a non-trivial research problem and there have 

been many approaches to address its challenges. A large body of work uses malware’s 

control flow patterns, such as instruction sequences or system-call sequences, to detect 

or analyze malware [26–30]. In response to such approaches, malware often employs 

various obfuscation techniques to confuse malware analyzers [31–34]. Meanwhile, 

these approaches face challenges arising from execution dynamics, such as dynamic 

code paths and the impact of other system components (e.g., network latency and 

signals), which can cause variations in the characterized malware patterns. The 

situation is more complicated in the kernel space because operating system (OS) 

kernels have a highly dynamic workload, including interrupts, the coordination of 

user processes, and the management of low level resources (e.g., page tables). 

For detection and prevention of kernel malware, there is another collection of work 

called the code integrity-based approach [10, 11]. This approach allows only autho

rized code for execution and considers any code outside the white list as malicious. 

Therefore, this approach is effective for kernel rootkits that introduce new code to 
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kernel space. However, other advanced rootkits perform the attacks by exploiting 

only legitimate kernel code (e.g., the usage of memory devices [22], kernel bugs, and 

return-oriented programming [90]); and such attacks are not properly handled by this 

approach. In addition, this approach authorizes kernel driver code based on policies 

trusting OS developers or venders without systematic examination of the code. For 

example, existing code integrity-based approaches [10, 11] allow the kernel text and 

a list of benign kernel modules included in the OS distributions. These policies do 

not provide safety from hidden malicious code inside the authorized code. Thus the 

capability of examining kernel drivers for potentially malicious behavior regardless of 

such policies is desirable. 

In this chapter, we introduce an alternative approach that characterizes kernel 

malware behavior by using its data access patterns. We assume that when kernel 

malware tampers with core kernel data, there exist kernel data access patterns spe

cific to the attacks. As such, we could take a subset of data access patterns that 

consistently appears in multiple kernel execution instances only when the malware 

is active and generate a malware signature using the subset.1 These patterns under 

constraints neither include malware’s temporal control flow information, nor the code

specific information about the malware. Therefore, this approach is less susceptible 

to obfuscation and more effective for matching malware variants. 

To evaluate the effectiveness of our approach, we generated the signatures of three 

classic rootkits and matched them with benign kernel runs and malicious kernel runs 

where the rootkits are active. This experiment detects the presence of 16 kernel 

rootkits that have a variety of attack goals and mechanisms without triggering any 

false positives in typical benign workload. We further analyzed the data behavior of 

these rootkits and found that a majority of them exhibit shared behaviors. We argue 

that such common behavior can be used to effectively detect malware variants (e.g., 

polymorphic rootkits, different versions, and similar rootkits). 

The contributions of this chapter are as follows: 

1We use the terms “a kernel execution instance” and “a kernel run,” to represent an instance of the 
OS kernel execution, which starts from its booting and ends at its shutdown. 
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•	 We present a complementary approach that characterizes kernel malware be

havior by using its data access patterns specific to the attacks. This approach 

can be applied to detect kernel rootkits that do not violate kernel code integrity. 

•	 This approach can automatically construct malware signatures by using a binary

only malware program. Malware behavior is extracted by capturing a subset of 

kernel behavior that consistently appears across kernel execution instances only 

when the malware is active. 

•	 This signature uses data behavior with generalized code information and does 

not involve control flow of malware code execution. Hence it can detect the 

variants of kernel malware by exposing similar data behavior across kernel mal

ware. 

We have implemented a prototype called DataGene based on our approach. Data-

Gene is mainly designed for non-production systems such as a honeypot and a malware 

analysis system. For instance, when a new proprietary driver is deployed, DataGene 

can inspect it for potential hidden malicious behavior similar to the behavior observed 

in existing kernel malware. If a newly distributed kernel malware sample shares any 

data behavior with existing kernel malware, DataGene can detect it and extract its 

data behavior. It can be further used to detect this malware and its variants. In 

addition, DataGene can detect challenging kernel rootkits that do not violate ker

nel code integrity. Therefore, this data-centric approach can complement the code 

integrity-based approach in the defense against kernel malware. 

5.2 Design of DataGene 

In this section, we present the design of DataGene that characterizes the behavior 

of kernel malware and determines its presence based on data access patterns. As 

DataGene uses information regarding memory accesses, our design employs virtual 
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Figure 5.1.: Overview of DataGene. 

machine techniques to capture the accesses. The overview of DataGene is presented 

in Figure 5.1, and the components of this system are as follows. 

As a basic unit to represent the kernel’s data behavior, DataGene generates a 

summary of the access patterns for all kernel objects accessed in a kernel execution 

instance. To identify dynamic kernel memory objects, this process takes advantage of 

a kernel memory mapping process (shown as The Kernel Memory Mapper in Figure 

5.1). For each access on kernel memory in the guest OS, the virtual machine monitor 

(VMM) intercedes and records the information of the kernel memory access, such 

as the accessing code, the accessed memory type, and the accessed offset (The Data 

Behavior Aggregator). 

To determine the malware behavior, the memory access patterns for two kinds 

of kernel execution instances are generated: benign kernel runs and malicious kernel 

runs where kernel malware is active. By taking the difference between the two sets of 

memory access patterns, we extract the data behavior specific to the kernel malware 

and generate its signature (Data Behavior Signature). To detect kernel malware, the 

generated signature is compared to the memory access patterns of a tested kernel 

execution instance (Checking Kernel Execution). 
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5.2.1 Data Behavior Profile Approach 

In this section, we present basic terminologies that represent the memory access 

patterns of kernel execution. 

Definition 5.2.1 (Data Behavior Element) A data behavior element (DBE) rep

resents a pattern of a memory access. It is defined as a quintuple, (c, o, m, i, f ): 

the address of the code that accesses memory (c), the kind (read or write) of memory 

access (o), the kind (static or dynamic) of the accessed memory (m), the class of the 

accessed memory (i), and the accessed offset(s) (f) inside the memory of the class i. 

c is the address of the kernel code that reads or writes kernel memory. o represents 

the kind of memory access which is 0 for a memory read and 1 for a memory write. 

The kind of accessed memory, m, is 0 for a dynamic object and 1 for a static 

object. The class i is defined differently, depending on m. Static objects are known 

at compile time; therefore, we are able to assign unique numbers as their identifiers. 

A class of a static object can represent either a static data object or a kernel function 

in the kernel text. In the case of dynamic kernel objects, there are multiple memory 

instances for the same data type at runtime. Dynamic kernel objects allocated by 

the same code correspond to the data instances of the specific data type used in the 

allocation code. Thus, we aggregate the access patterns of dynamic kernel objects 

that share the allocation code. The address of this code (called an allocation code 

site) is used as a unique class for such objects. 

f is an offset, or a range of offsets, accessed by the code at c. We allow a range 

of offsets because if this object is an array, the accessed offsets can vary for the same 

accessing code. Handling them as separate data behavior elements can cause a high 

number of elements with slightly different offsets for the same accessing code. To 

avoid this problem, we use a threshold to convert a list of elements whose offsets are 

different (but with the same accessing code) to an element with an offset range. 

Definition 5.2.2 (Kernel Execution Instance) A kernel execution instance or a 

kernel run is an instance of the OS kernel execution. 
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Figure 5.2.: An example of kernel code in benign and malicious kernel runs. 

Definition 5.2.3 (Data Behavior Profile) For a kernel execution instance r, a 

data behavior profile (DBP) is defined as a set of memory access patterns (DBEs) 

observed and it is denoted as Dr. 

A data behavior profile represents a set of data behavior elements observed in a 

kernel execution instance. It is a summary of all observed kernel-mode memory access 

patterns in the kernel run. 

Figure 5.2 presents kernel code showing the examples of data behavior elements. 

The rounded box in the middle of Figure 5.2 shows a dynamic kernel object allocated 

by the code at the address c1. This figure shows how this object is accessed by several 

code sites in kernel execution. Two fields, next task (offset 80) and prev task (offset 

84), are written by the code at c2. The code at c3 reads the pid field (offset 120) and 

another code at c4 reads this field. Therefore, the data behavior elements for this 

code example are as follows. 

(c2, 1, 0, c1, 80) , (c2, 1, 0, c1, 84) , (c3, 0, 0, c1, 120) (c4, 0, 0, c1, 120) 

These elements are the access patterns in a benign kernel run. If kernel malware 

is active in this kernel, the access patterns can be extended because of the malware 
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behavior. For instance, if kernel rootkits hp and fuuld are active as shown in the 

right-hand section of Figure 5.2, there would be additional accesses to the next task 

and the prev task fields by the code at c6 and c7. Consequently, the data behavior 

profile is extended with the additional elements as follows. 

(c6, 1, 0, c1, 80) , (c6, 1, 0, c1, 84) , (c7, 1, 0, c1, 80) , (c7, 1, 0, c1, 84) 

Here c6 represents the code of the hp rootkit, which is in the form of a kernel 

driver. The code integrity-based rootkit defense approach [10,11] can determine this 

access as malicious based on the fact that this driver code is not in the authorized code 

list. In contrast, the code at c7 is part of legitimate kernel code, which is indirectly 

exploited to overwrite this data structure. This rootkit case does not violate kernel 

code integrity; therefore, an approach based on code integrity cannot detect this 

attack behavior. 

In both cases, malware behavior appears only when the malware runs. Our ap

proach seeks to capture such behavior specific to the attack to determine the presence 

of malware. 

5.2.2 Generating a Data Behavior Profile 

In this section, we present the process for generating a data behavior profile, which 

summarizes the access patterns for all kernel objects accessed in a kernel run. Based 

on this information, we generate the signature of malware and inspect a kernel run 

for malicious data access patterns. A data behavior profile is generated based on 

two underlying functions. First, kernel objects should be identified with their unique 

classes. Second, the access patterns on numerous (e.g., tens of thousands in modern 

OSes) dynamic data instances should be summarized regarding their classes. We 

present two system components to provide these functions. 
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Figure 5.3.: Aggregating	 memory accesses on dynamic kernel objects regarding their 
classes (allocation sites) c1 and c2. 

The Kernel Memory Mapper 

DataGene uses the patterns of memory accesses on kernel objects and requires a 

kernel memory mapping mechanism to identify the targets of kernel memory accesses. 

LiveDM presented in Chapter 4 provides runtime kernel memory mapping that enables 

the identification of a memory access’ target. LiveDM identifies kernel objects by 

transparently capturing the allocation and deallocation events of kernel memory. The 

generated map maintains the allocation code for each dynamic object as its runtime 

identifier. In offline static analysis, this identifier can be automatically translated into 

a data type by traversing kernel source code. We implemented the kernel memory 

mapper by employing LiveDM’s approach. 

The Data Behavior Aggregator 

In a kernel execution instance, there exist a varying number of dynamic kernel data 

instances. To compare the access patterns of dynamic kernel objects in different kernel 

runs, it is necessary to aggregate the memory accesses on such objects regarding their 

classes. The allocation code represents the instantiation of a data type at a specific 

code position. By using a memory allocation code site as the classifier of dynamic 

kernel objects, we can aggregate the access patterns of dynamic instances of the same 

type and of a similar usage. 
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Figure 5.4.: A diagram of memory access patterns (DBEs). A: a set of frequently 
observed DBEs in benign kernel execution, B: a set of DBEs for benign kernel runs, 
M : a set of DBEs for malicious runs, S: a set of DBEs specific to malware attacks, 

F : a set of potential false positives DBEs. 

Figure 5.3 illustrates this aggregation process. When a dynamic kernel object is 

allocated in a guest OS kernel, the kernel memory mapper stores its address range 

and the allocation code site as the class information in the kernel memory map. 

We have a memory mapping layer to aggregate the memory accesses on dynamic 

kernel objects regarding their data classes. Whenever kernel code reads or writes 

any dynamic kernel object, the VMM intercedes and identifies the targeted object 

by using its class information from the kernel memory map. If this memory access 

pattern is new, it is recorded in the aggregated memory profile. 

5.2.3 Characterizing Malware Data Behavior 

In this section we demonstrate how we characterize the behavior of kernel malware 

based on data behavior profiles. 

DataGene characterizes malware behavior by using recurring memory access pat

terns specifically observed in malware attacks. Among those patterns, only the pat

terns that are rare in benign kernel execution should be chosen and it is a challenging 

task to differentiate such memory access patterns. This problem is illustrated in 
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Figure 5.5.: Controlling kernel execution instances in the signature generation stage 
to reduce F . The descriptions for notations are shared with Figure 5.4. 

Figure 5.4. The set A represents the DBEs that frequently occur in benign kernel 

execution. We seek to derive the set of DBEs specific to malware attacks, S. This 

set can be easily derived if A is available. However, obtaining the set A is challenging 

because it requires a full understanding of possible computation of the kernel. The 

halting problem, which is undecidable, shows the complexity of this problem. Instead, 

we derive S by using benign kernel runs (B) and malicious kernel runs (M). Specifi

cally, a malware signature is generated by subtracting B from M . The resultant set 

includes both specific malware behavior (S) and potential false positive cases (F ). 

Hsin Pan and Eugene H. Spafford [91,92] proposed a new debugging approach that 

determines statements involved in program failures and reduces the search domain 

containing faults. This approach uses dynamic slicing and a set of heuristics to 

determine the minimal set of information to be examined for identifying program 

bugs. Our approach is similar to theirs in using multiple execution instances and 

extracting the common program execution patterns. By adapting the techniques and 

the findings of their approach, we expect future improvement of our approach. 

As this methodology is based on dynamic kernel execution, it is difficult to elimi

nate the potential false positive set F . However, if we reduce F to the set of memory 

access patterns rarely triggered, we would be able to avoid frequent false positives in 
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Figure 5.6.: Kernel execution instances in the detection stage. B ′: a set of DBEs for 
benign runs in the detection stage, B ′′: a set of DBEs for benign runs with false 

positives, M ′: a set of DBEs for malicious runs in the detection stage. Other 
notations are shared with Figure 5.4 and 5.5. 

a typical workload. In the signature generation stage, we would be allowed to control 

the workload of kernel execution instances. Therefore, we can use several techniques 

to reduce the F set. Figure 5.5 shows the configuration we wish to achieve. By en

larging B and limiting M , we can control a majority of the memory access patterns in 

F to be covered by B pruning out frequent benign access patterns from the potential 

signature. 

Figure 5.6 illustrates the relationships among the sets in the detection stage. M 

and B are the kernel runs used to generate the malware signature. M ′ is a tested 

malware run, and S will match it because it captures the recurring attack patterns 

of the malware. B ′ shows the tested benign kernel runs. We note that B ′ can be 

larger than B or it can partially overlap with the B set. However, as far as those sets 

do not overlap with F , they will not trigger false positives. This is the goal that we 

would like to achieve in our work. Note that if there is a kernel run, B ′′ that has the 

patterns of F , it will cause false positives. 

Figure 5.7 illustrates a procedure for signature generation and matching. In the 

signature generation stage, we use the sets of benign kernel execution and malicious 

kernel execution as we control the workload to reduce F . After the signature is 

generated, we test false positives using another set of benign kernel execution. If 
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Figure 5.7.: A procedure for signature generation and matching 

a false positive is detected, the triggering memory access pattern is not specific to 

malware patterns and therefore should be eliminated from the signature. This process 

can be done systematically by merging the tested benign runs to the set of benign 

runs for signature generation and regenerating the signature. If all memory access 

patterns are pruned out and the signature turns out to be empty, the malware in 

question does not have memory access patterns specific to the malware attack. This 

is out of the malware class that we wish to detect and is not covered by the DataGene 

system. Once the signature is generated, it is used to detect malware in the tested 

kernel execution. 

Challenges and Our Solutions 

DataGene characterizes malware behavior by using dynamic kernel execution. We 

list several challenges caused by our use of dynamic analysis. We also present our 

solutions for these challenges: 

•	 Variations in the Runtime Kernel Behavior. Generally, the difficulty 

in obtaining a complete set of kernel execution paths is a well-known challenge 

for an approach based on dynamic execution. If we focus on the data behavior 

in benign execution, it is in fact a problem because the runtime kernel behavior 
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is highly dynamic across different runs. However, we focus on the data behavior 

specific to malware that consistently appears only when the malware is active. 

For instance, in Figure 5.6 even though benign runs (B ′) are highly dynamic, if 

they are not overlapped with F they would not trigger false positives. 

•	 Irregular Access Patterns on Kernel Stacks. Kernel stacks are ker

nel objects that have irregular access patterns. Whenever a kernel function is 

called or returns, the stack is accessed for various purposes such as return values, 

function arguments, and local variables. As the kernel control flow is highly dy

namic, the set of code sites that access the stack and the accessed offsets within 

the stack vary significantly. Also, the contents of kernel stacks are irregular at 

different runs. As such, a simple way to handle this problem is to exclude stacks 

from our analysis. The kernel memory mapper provides the identifier for kernel 

stacks and we solve this problem by removing the information for such dynamic 

objects from the analysis. 

•	 Varying Offsets in Arrays. Some data structures (e.g., arrays and buffers) 

have a range of space, a part of which can be used at runtime. For example, the 

accessed offsets of a buffer can be different depending on the data contained in 

it. This problem is handled by using multiple instances of kernel execution. If 

the accessed offset of memory is different in each execution, it is not used for a 

malware signature because it may not be used in another run. Only the data 

behavior that occurs in a consistent pattern when malware is active becomes 

the candidate for the signature. 

Characterizing Malicious Data Behavior 

To reliably characterize the data behavior of kernel malware in dynamic execution, 

we use multiple kernel runs in the signature generation stage. DM,j is a data behavior 

profile for a malicious kernel run j with malware M . DB,k represents a data behavior 

profile for a benign kernel execution k. We apply the set operations on n malicious 
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Figure 5.8.: Using a single kernel run for both of benign and malware memory 
access patterns 

kernel runs and m benign runs as follows. The generated signature is called a data 

behavior signature for the malware M and shown as SM . 

SM = DM,j − DB,k (5.1) 
j∈[1,n] k∈[1,m] 

This formula represents that SM is the set of data behavior that consistently 

appears in n malware runs. However, this is also a set of behaviors specific to the 

attacks that rarely appears in m benign runs. The underlying observation from this 

formula is that kernel malware will consistently perform malicious operations during 

attacks so we extract malware behavior by taking the intersection of malicious runs. 

Such behavior should not occur in benign runs. Therefore, we subtract the union of 

benign runs from the derived malware behavior. 

When we generate kernel execution runs with kernel malware, we use the cumula

tive memory access patterns before the attack as the benign kernel run and consider 

only the new patterns after the attack as the malware kernel run (shown in Figure 

5.8). This technique prunes out significant benign access patterns from the malicious 

kernel run. 

False positives may occur if a part of a signature is observed in a new tested benign 

run. The cause of this problem is not unknown kernel behavior, but rather a part of 

a signature not being properly pruned out in the signature generation. By exercising 

a variety of workloads in multiple kernel execution instances, we expect that such 
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potential behavior for this error can be significantly reduced from such constraints so 

that it does not cause frequent false positives in a typical workload. 

Generalizing Malware Code Identity 

DataGene aims at matching the variants of the rootkits whose signatures are avail

able. For example, DataGene can be used to inspect suspicious data activity in the 

execution of new signed drivers (which may include hidden malicious code), the execu

tion of an unknown driver (which may be malware or its variant), or kernel execution 

(where legitimate kernel code can be exploited indirectly for attacks). 

To cover variants of malicious code, DataGene does not use specific identification 

of kernel drivers. When we generate signatures, we generalize the information specific 

to kernel drivers, thus allowing signatures to be tested against any driver from new 

signed drivers to new driver-based rootkits. Specifically, when the signature for a 

driver-based rootkit is generated, all code sites in this malicious driver are substituted 

by a single anonymous code site, ε. Some rootkits allocate memory and place their 

code on it, and any code site in such memory is also generalized as ε. In this process, 

we also generalize all benign kernel modules in the same way and subtract their 

memory access patterns from the candidates for the signature to collect only the 

behavior specific to the malware. 

We preserve the code sites in the kernel text. The malware exploiting legitimate 

kernel code (e.g., the rootkits using memory devices or return-oriented rootkits) is 

handled by specific access patterns of legitimate code that are not observed in benign 

runs. In addition, when we match a malware signature with the data behavior profile 

of a kernel run, we generalize the driver code in the tested run similarly for comparison. 

Matching a Malware Signature with a Kernel Run 

The likelihood that a malware program M is present in a tested run r is determined 

by deriving a set of data behavior elements in SM which belong to the data behavior 
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Algorithm 1 Derive the intersection of SM and Dr. 
1: function CheckSignature(SM , Dr) 
2: I ← ∅ 
3: for each e in SM do 
4: for each e ′ in Dr do 
5: if CompareElements(e, e ′)= 1 then 
6: I ← I ∪ {e}
7: end if 
8: end for 
9: end for 

10: return I 
11: end function 
12: function CompareElements(e, e ′) 

′ ′ ′ 13: if e.c �= e .c ∨ e.o �= e .o ∨ e.m �= e .m ∨ e.i �= e ′ i then 
14: return 0 
15: end if 
16: if e.f is an offset then 
17: if e ′ .f is an offset then 
18: if e.f = e ′ .f then 
19: return 1 
20: end if 
21: else ⊲ e ′ .f is a range of offsets. 
22: if e.f ∈ e ′ .f then 
23: return 1 
24: end if 
25: end if 
26: else ⊲ e.f is a range of offsets. 
27: if e ′ .f is a range of offsets then 
28: if e.f ⊂ e ′ .f then 
29: return 1 
30: end if 
31: end if 
32: end if 
33: return 0 
34: end function 

profile, Dr. This set I corresponds to the intersection of SM and Dr 
2 (i.e., I = {i|i ∈ 

SM ∧ i ∈ Dr}); however, this set may not be symmetric for SM and Dr because we 

allow two representations (i.e., an offset and a range of offsets) for the f field of a 

data behavior element. Algorithm 1 presents how this set I is generated. 

Specifically, a data behavior signature SM and a data behavior profile Dr consist 

of data behavior elements for all of the static and dynamic data structures. The 

CheckSignature function in Algorithm 1 compares each element of SM and Dr, 

and returns the set of common elements, I. Two for-loops at lines 3 and 4 generate 

2The data behavior signature (SM ) is a data behavior profile (i.e., a set of data behavior elements) 
because it is derived by the intersection and union of data behavior profiles. 
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a pair of elements each from SM and Dr, and those elements are compared by calling 

the CompareElements function at line 5. 

To consider the two compared elements e and e ′ as identical, their c, o, m, and 

i fields first should be equal. Next, their offset fields (e.f and e ′ .f) are compared. 

Because the offset field can be either of an offset or a range of offsets, there are several 

cases shown in lines 16-33. If e.f is an offset, it can match either an offset or a range 

of offsets. If both e.f and e ′ .f are an offset, their values should be identical. If e.f is 

an offset and e ′ .f is a range, they can match if e.f belongs to e ′ .f ’s range. If e.f is a 

range of offsets, it can only match a range of offsets that includes e.f . 

5.3 Implementation 

DataGene generates the patterns of kernel memory accesses transparently without 

making changes in the source code of the OS. To implement this feature, we employ 

virtualization techniques. We used the QEMU [86] virtualizer with the KQEMU 

optimizer for our implementation. The host machine has 3.2Ghz Pentium D CPU 

and 2GB RAM. The guest machine is configured with 256MB RAM and the Redhat 

8 operating system. This experimental platform is chosen for the convenience of 

implementation. However, our mechanism is generic and applicable to other operating 

systems and virtual machine platforms. 

We implement the kernel memory mapper and the data aggregator in the VMM. 

The kernel memory mapper tracks kernel memory allocation and deallocation calls 

and captures dynamic kernel objects at runtime similar to [43]. When there is a 

request to the VMM, a data behavior profile can be dumped into a file anytime 

during the execution of the guest OS. For the purpose of generating a signature, 

dumping the profile once the OS is completely shutdown is preferred to capture most 

data behavior. However, to detect kernel malware, the data behavior profile can be 

periodically generated and compared with the signature while the OS is running. 
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In the benign runs, we performed various workload from daily commands to 

non-trivial application benchmarks. The tested workload includes kernel compila

tion, Apache webserver, UnixBench (Byte Magazine Unix Benchmark suite), nbench 

(BYTEmark Native Mode Benchmark), mysql database, thttp webserver, find, gzip, 

ssh, scp, lsmod, ps, top, and ls utilities. Some workloads were executed for several 

hours to allow any background administrative operation to be performed. We also 

used the workload of benign module loading and simple operations of the /dev/kmem 

device (e.g., open and close without overwriting kernel memory). 

Among the memory accesses for kernel modules, we exclude the accesses to a ker

nel module by the same module which correspond to the accesses to a module’s local 

variables. This information is not used to generalize the internal module activity. 

However, the accesses across modules are used after generalizing the accessing code 

information. In addition, the kernel data structure module having the administrative 

information regarding a kernel module is mapped to the head of each module’s mem

ory. We treat this part of memory as a separate data structure from the remaining 

module code or data. 

5.4 Evaluation 

In this section we evaluate the effectiveness of our data behavior signatures. First, 

we extract the signatures of three classic rootkits and match them with benign and 

malicious kernel runs. Second, we compare the signatures of all of the tested kernel 

rootkits to determine common data behavior across different rootkits and how such 

common behavior can be effective in detecting the variants of rootkits. Third, we list 

specific data elements that are shared by rootkit signatures, which provide an in-depth 

understanding of the attack operations that are common across kernel rootkits. 
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Table 5.1: Details of data behavior profiles for benign kernel runs. CL: # of classes,
 
RS: # of read sites, WS: # of write sites.
 

Benchmark 
Properties of a DBP 

Dynamic Objects Static Objects 
CL RS WS CL RS WS 

boot&shutdown 200 9372 3732 15800 27287 3070 
kernel compile 200 9260 3740 15800 30357 5895 

apache 204 10205 4087 15800 27496 3121 
find 200 9008 3614 15800 27087 2977 

scp+gzip 201 10364 4205 15800 32471 6486 
unixbench 201 9122 3679 15800 27222 3032 

nbench 200 9028 3621 15800 27155 3009 
mysql 201 9265 3736 15800 27142 3006 
thttpd 206 10551 4212 15800 27442 3110 
utils 201 10671 4186 15800 27840 3815 

long 1 223 23934 5176 15800 31353 6837 
long 2 207 11365 4503 15800 29749 4632 
long 3 206 10976 4342 15800 29609 4605 
long 4 204 10857 4301 15800 29556 4617 
long 5 204 10978 4332 15800 29687 4617 

Union 221 13918 5608 15800 39283 11449 
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Table 5.2: Details of malicious and benign kernel DBPs (D) and generated 
signatures (S). CL: # of classes, RS: # of read sites, WS: # of write sites. 

DBP (D) / 
Signature (S) 

Dynamic Objects Static Objects 
CL RS WS CL RS WS 
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Dadore0.38,1 

Dadore0.38,2 

Dadore0.38,3 

Dadore0.38,4 

Dadore0.38,5 

201 
201 
201 
201 
201 

9148 
9114 
9143 
9149 
9127 

3663 
3654 
3668 
3663 
3660 

15800 
15800 
15800 
15800 
15800 

27189 
27141 
27133 
27166 
27135 

3005 
2998 
2989 
2996 
2992 � 

Dadore0.38 � 
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193 
221 

8716 
13918 

3296 
5608 

15800 
15800 

21333 
39283 

2518 
11449 
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DSucKIT,1 

DSucKIT,2 

DSucKIT,3 

DSucKIT,4 

DSucKIT,5 

201 
201 
201 
201 
201 

9086 
9091 
9092 
9099 
9101 

3645 
3653 
3655 
3665 
3651 

15800 
15800 
15800 
15800 
15800 

31786 
31757 
31781 
31754 
31761 

3012 
2993 
3003 
2995 
2987 � 

DSucKIT � 
Dbenign 

193 
221 

8720 
13918 

3303 
5608 

15800 
15800 

22564 
39283 

2515 
11449 

SSucKIT 5 13 8 1192 1212 6 

m
o
d
h
i
d
e

 

Dmodhide,1 

Dmodhide,2 

Dmodhide,3 

Dmodhide,4 

Dmodhide,5 

200 
200 
200 
200 
200 

8987 
8999 
8985 
9013 
8985 

3620 
3613 
3605 
3616 
3613 

15800 
15800 
15800 
15800 
15800 

27100 
27145 
27101 
27096 
27092 

2983 
2997 
2985 
2988 
2984 � 

Dmodhide � 
Dbenign 

192 
221 

8608 
13918 

3276 
5608 

15800 
15800 

21306 
39283 

2517 
11449 

Smodhide 1 0 1 0 0 0 

Table 5.3: Details of the signatures for adore 0.38, SucKIT, and modhide rootkits. 
CL: # of classes, RS: # of read sites, RD: # of number of read data behavior 

elements, WS: # of write sites, WD: # of write data behavior elements. 

Rootkit Dynamic Objects Static Objects Total 
DBE Name CL RS RD WS WD CL RS RD WS WD 

adore 2 1 5 2 14 1 1 8 1 7 35 
SucKIT 5 13 29 8 12 1192 1212 11963 6 6 12010 
modhide 1 0 0 1 1 0 0 0 0 0 1 
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5.4.1 Malware Signature Generation 

When a data behavior signature is generated, the information specific to the ma

licious code is generalized in large. Therefore, we hypothesize that data behavior sig

natures may be effective not only to detect the malware whose signature is available, 

but also to determine the presence of related malware. To validate this hypothesis, 

we generated the signatures of three representative rootkits, and tested benign kernel 

runs and malicious kernel runs with 16 rootkits. 

To generate malware signatures, we chose three rootkits: adore 0.38, SucKIT, 

and modhide. The adore rootkit has been studied in several rootkit defense ap

proaches [10, 44, 60, 61]. This rootkit has several versions with differences in features 

and we chose an old version, 0.38, for the signature to evaluate its effectiveness to

ward newer rootkit versions (0.53 and 1.56). SucKIT is known for its attack vector, the 

/dev/kmem device, that avoids the conventional driver-based mechanism [22]. Sev

eral other rootkits followed this trend, using this device while having different goals. 

modhide is a rootkit packaged with the adore rootkits to hide them from the list of 

kernel modules. 

To generate each malware signature, we used five malicious kernel runs with rootk

its and 15 benign runs. Table 5.1 presents the details of data behavior elements of 

benign kernel execution instances. The first column shows the name of benchmark. 

The benchmarks named as long x run a mix of listed benchmarks for several hours. 

The next three columns show information about the dynamic objects, such as the 

number of classes for dynamic kernel objects, the number of code sites that read the 

dynamic kernel objects, and the number of code sites overwriting the dynamic kernel 

objects. The next three columns have similar information for the static kernel objects. 

As static objects (kernel functions and static data structures) are known at compile 

time, the number of classes for the static objects has the same value in different runs. 

These numbers represent a variety of data access behavior of the operating system 

kernel. 

http:versions(0.53


80 

Table 5.2 shows the record of malicious kernel execution instances where kernel 

rootkits are running. In each rootkit category (e.g., adore 0.38) the information 

about malicious DBPs are listed first in the top five rows. Then the information 

regarding the intersection of such DBPs is shown. Next, the union of benign DBPs 

is presented. In the following row, details of the derived rootkit signature are shown. 

Table 5.3 presents the details of three rootkit signatures. Three data behavior 

signatures of the adore, SucKIT, and modhide rootkits have 35, 12010, and 1 data 

behavior elements (DBEs), respectively. SucKIT has a significantly higher number 

of elements because it scans kernel memory to collect information about the attack 

targets (e.g., the system-call table), and this behavior is observed as reading numerous 

static objects with a variety of offsets. The modhide rootkit simply manipulates the 

kernel module list; thus, it has a few elements. 

5.4.2 False Positive Analysis 

To evaluate the false positives of the generated signatures, we compare the sig

natures with new benign kernel execution instances. Table 5.4 shows the result of 

this experiment. This table has the same set of benchmarks and the same format as 

Table 5.1. In these kernel runs, we generated an additional variety in the workload 

(e.g., an additional run) so that such kernel runs contain more code paths and data 

operations beyond the kernel runs used for generating signatures. This additional 

runtime variation results in more code sites for memory accesses (i.e., higher numbers 

in # of read code sites and # of write code sites). 

In this experiment, no false positive cases were found, which confirms that our 

signature generation procedure captures a reasonably close set of the data behavior 

specific to the kernel rootkits and that the tested runs did not contain any data 

behavior that appears in the signatures. 
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Table 5.4: Benign kernel runs tested for false positives. A: Sadore0.38, S: SSucKIT , M :
 
Smodhide. CL: # of classes, RS: # of read sites, WS: # of write sites.
 

Benchmark 
Properties of a DBP Signature 

Match Dynamic Objects Static Objects 
CL RS WS CL RS WS A S M 

boot&shutdown 200 9391 3743 15800 27310 3079 0 0 0 
kernel compile 201 9766 3903 15800 31813 7646 0 0 0 

apache 204 10249 4108 15800 27507 3126 0 0 0 
find 200 9448 3756 15800 27318 3076 0 0 0 

scp+gzip 201 10774 4233 15800 36909 8132 0 0 0 
unixbench 201 9520 3799 15800 27353 3087 0 0 0 

nbench 200 9460 3758 15800 27333 3084 0 0 0 
mysql 201 9731 3890 15800 27378 3095 0 0 0 
thttpd 206 10942 4356 15800 27720 3237 0 0 0 
utils 202 10723 4225 15800 27866 3203 0 0 0 

long 1 223 12610 4980 15800 30151 4707 0 0 0 
long 2 223 12636 4911 15800 30172 4714 0 0 0 
long 3 223 12635 4925 15800 30156 4710 0 0 0 
long 4 223 13087 5285 15800 31053 6968 0 0 0 
long 5 223 13118 5281 15800 33776 8025 0 0 0 

http:Sadore0.38


82 

Table 5.5: The number of matched data behavior elements between three rootkit signatures and the kernel runs with 16 
kernel rootkits (average of 5 runs). (AD1: adore 0.38, AD2: adore 0.53, AD3: adore-ng 1.56, FL: fuuld, HL: hide lkm, SK: 

SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH: modhide, MH1: modhide1 ) 

Signature (SM ) # of matched DBEs between SM and the kernel runs with the rootkits shown below (|I|). 
M |SM | AD1 AD2 AD3 FL HL SK ST hp kbdv3 knark LF Rial CL kis MH MH1 

AD1 35 35 30 14 0 0 2 2 2 5 20 3 4 0 2 0 0 
SK 12010 2 1 1 16 16 12010 11983 0 0 1 0 0 0 16 0 0 
MH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

Detected 
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 

# of effective SM 2 2 2 1 1 2 2 1 1 2 1 1 1 2 1 1 
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5.4.3 Detecting Rootkits using Data Behavior Signatures 

Malicious kernel runs were next tested by using three signatures to determine 

any running malware based on the similarity of the data access patterns between 

the compared signature and the kernel run. We tested a total of 80 kernel runs 

of 16 rootkits having a variety of targets and attack vectors. For instance, seven 

rootkits (fuuld, hide lkm, hp, linuxfu, cleaner, modhide, and modhide1) directly 

manipulate kernel objects (DKOM [75]). Four rootkits (fuuld, hide lkm, SucKIT, 

and superkit) manipulate kernel memory by using the /dev/kmem memory device, 

among which two rootkits (fuuld and hide lkm) directly manipulate only kernel data 

and do not violate kernel code integrity. Therefore, they are not detected by code 

integrity-based defense systems [10,11]. 

Table 5.5 presents the number of matched data behavior elements between signa

tures and kernel runs with rootkits (I). Two left-hand columns show the information 

about signatures: the name (M) of the rootkit used for the signature and the size 

of the signature (|SM |). The remaining 16 columns present the number of data be

havior elements common in the compared signature (based on the rootkit in the row 

heading) and the kernel run (where the rootkit in the column heading is active). The 

presented numbers are the averages of five kernel runs. However, the numbers are 

consistent in the runs with the same rootkit. 

If the rootkit used for the signature and the rootkit in the tested run are identical, 

the entire signature was matched giving |I| = |SM |. For example, the signatures of 

adore 0.38, SucKIT, and modhide rootkits fully match the kernel runs with those 

rootkits (shown in italics). We consider that a tested run includes a potential malware 

running if one or more signatures have a matched element with the kernel run. In our 

experiments, all kernel runs with rootkits shared elements with one or more signatures 

(shown in the row at the bottom of the table), leading to the detection of 16 kernel 

rootkits. 
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5.4.4 Similarities among Data Behavior Signatures 

In the previous section we demonstrated that a variety of rootkits can be detected 

by using the signatures of a few classic rootkits because they have common data access 

patterns. In this section we quantitatively measure the similarities in data behavior 

across rootkits by generating and comparing the signatures of the tested rootkits. 

We first generated the signatures of 16 kernel rootkits by applying the set opera

tions (Section 5.2.3) on five malicious kernel runs with rootkits and 15 benign kernel 

runs. Then we calculated the similarities among signatures by applying Algorithm 1 

on the combinations of 16 rootkit signatures. Table 5.6 lists the number of common 

data behavior elements in such combinations. For a pair of rootkits M1 in the row 

heading and M2 in the column heading, the cross section of the corresponding row 

and column shows the number of data behavior elements common in two signatures 

of M1 and M2. This number may not be symmetric for M1 and M2 because a data 

behavior element can have two representations for its f field (an offset or a range 

of offsets). If M1 and M2 are the same rootkit, the number of elements is shown in 

italics. 

For the rootkit M2 in the column heading, if positive numbers are listed in the 

column, the signatures of the rootkits (in the row headings) can be used to determine 

M2. The number of such signatures (except SM2 itself) is presented at the second 

bottom row (# of effective SM ). The maximum size of such signatures is shown in 

the bottom row (Max |effective SM |). In our experiments, a rootkit shares its data 

behavior with 2∼10 of other rootkits (more than six rootkits in average). The rootkits 

show similar data behavior not only among close variants (e.g., different versions of 

adore rootkits) but also across the rootkits having different attack mechanisms (e.g., 

SucKIT shows similarities with driver-based rootkits such as knark or kis). 

The similarities of data behavior across rootkits are visualized in Figure 5.9. A 

node represents a rootkit signature and an arrow shows the similarity between two 

signatures using three different arrow types. An arrow from a node M1 to a node M2 
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Table 5.6: The number of common data behavior elements in the combination of rootkit signatures. (AD1: adore 0.38, AD2: 
adore 0.53, AD3: adore-ng 1.56, FL: fuuld, HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH: 

modhide, MH1: modhide1 ) 

M |SM | AD1 AD2 AD3 FL HL SK ST hp kbdv3 knark LF Rial CL kis MH MH1 
AD1 35 35 30 14 0 0 2 2 2 5 20 3 4 0 2 0 0 
AD2 46 30 46 24 0 0 1 1 2 5 19 2 4 0 2 0 0 
AD3 97 14 24 97 0 0 1 1 2 4 9 6 0 2 2 0 0 
FL 19 0 0 0 19 13 16 16 0 0 0 0 0 0 0 0 0 
HL 3406 0 0 0 13 3406 13 13 0 0 0 0 0 0 0 0 0 
SK 12010 2 1 1 16 13 12010 11983 0 0 1 0 0 0 16 0 0 
ST 11998 2 1 1 16 13 11983 11998 0 0 1 0 0 0 1 0 0 
hp 17 2 2 2 0 0 0 0 17 0 1 5 0 0 1 0 0 

kbdv3 16 5 5 4 0 0 0 0 0 16 4 0 0 0 0 0 0 
knark 67 20 19 9 0 0 1 1 1 4 67 1 4 0 2 0 0 
LF 24 3 2 6 0 0 0 0 5 0 1 24 0 0 1 0 0 
Rial 46 4 4 0 0 0 0 0 0 0 4 0 46 0 0 0 2 
CL 3 0 0 2 0 0 0 0 0 0 0 0 0 3 0 1 1 
kis 31203 2 2 2 0 0 16 1 1 0 2 1 0 0 31203 0 2 
MH 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 
MH1 6 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 6 
# of effective SM 10 10 10 3 3 8 8 6 4 10 6 4 3 9 2 4 
Max |effective SM | 30 30 24 16 13 11983 11983 5 5 20 6 4 2 16 1 2 
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adore 0.38 

adore 0.53 

adore-ng 1.56 
SucKIT superkit 

hp 

kbdv3 

knark 

linuxfu 

Rial 

kis 

cleaner 

fuuld
hide_lkm 

modhide1 
modhide 

Figure 5.9.: Similarities among the data behavior of rootkits. Types of arrows (|I|: # of the matched elements): thin solid 
(0 < |I| < 5), thick dashed (5 <= |I| < 25), and thick solid (|I| >= 25). 



87 

means that the signature M1 can be used to determine the rootkit of the signature 

M2. This figure illustrates that several groups of rootkits have strong similarities. 

The family of adore rootkits (i.e., adore 0.38, adore 0.53, and adore-ng 1.56) 

are strongly related in general. The adore-ng 1.56 is connected to other versions 

with less strong connections, thick dashed arrows, because in newer adore versions 

(bigger than 1.0 whose name is changed to adore-ng), the internal attack vector is 

substantially changed to use dynamic objects instead of static objects. A group of 

rootkits using the /dev/kmem memory device (i.e., SucKIT, hide lkm, fuuld, and 

superkit) have a strong relationship to one another. The SucKIT and the superkit 

are especially connected by using thick solid arrows because they share a majority 

of data behavior. Some rootkits have relationships with different kinds of rootkits. 

For example, the kis rootkit is connected to driver-based rootkits such as the adore 

rootkits and the knark rootkit; but, it is also closely related to /dev/kmem based 

rootkits such as the SucKIT. 

As seen in Figure 5.9, the data behavior is not only common in the family of 

rootkits or similar kinds, but also is available across different kinds of rootkits. The 

signatures of these related rootkits can be interchangeably used to detect one another. 

5.4.5 Extracting Common Data Behavior Elements 

In this section we demonstrate the details of common rootkit attacks which are 

systematically extracted based on the similarities in rootkits’ data behaviors. The 

data behavior elements (DBEs) from the signatures of all experimented rootkits are 

ranked with the order of the appearance in rootkits’ signatures (N). The top DBEs 

are presented in Table 5.7 after being classified into several categories. 

The first three columns present the information regarding rootkits which share 

data behavior elements. The number N and the names of rootkits whose signatures 

share a DBE are listed. A short description of the element is provided in the next 

column by considering the information of the DBE. 
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Table 5.7: Top common data behavior elements among the signatures of 16 rootkits. ( AD1: adore 0.38, AD2: adore 0.53, 
AD3: adore-ng 1.56, FL: fuuld, HL: hide lkm, SK: SucKIT, ST: superkit, LF: linuxfu, CL: cleaner, MH: modhide, MH1: 

modhide1 ) 

Rootkits Accessing code Accessed data 
N Rootkits with common behavior Rootkit behavior Code (c) o m Data class (i) Field,Offset (f) 
7 AD1, AD2, AD3, hp, knark, LF, kis Reading a process’s ID ε R D task struct pid 
6 AD1, AD2, AD3, SK, ST, knark Reading a process’s flag ε R D task struct flags 
5 AD1, AD2, AD3, kbdv3, knark Privilege escalation ε W D task struct uid, euid, gid, egid 
5 AD1, AD2, AD3, hp, LF Listing processes ε R D task struct next task 
4 AD1, SK, ST, kis Setting an address space ε W D task struct addr limit 
4 AD1, AD2, AD3, knark Privilege escalation ε W D task struct suid, fsuid, fsgid 
3 AD1, AD2, AD3 Privilege escalation ε W D task struct cap effective 
3 AD1, AD2, AD3 Privilege escalation ε W D task struct cap inheritable 
3 AD1, AD2, AD3 Privilege escalation ε W D task struct cap permitted 
3 AD1, AD2, kbdv3 Reading a user’s ID ε R D task struct uid 
3 AD1, AD3, LF Reading a process’ name ε R D task struct comm 
2 hp, LF Hiding a process ε W D task struct next task, prev task 
4 
4 
3 

FL, HL, SK, ST 
FL, HL, SK, ST 
FL, SK, ST 

Manipulation via /dev/kmem 
Manipulation via /dev/kmem 
Manipulation via /dev/kmem 

read kmem, write kmem 
memory lseek 
do write mem 

R,W 
W 

R,W 

D 
D 
D 

file 
file 
file 

f pos 
f pos 
f pos 

3 
2 

CL, MH, MH1 
kis, MH1 

Hiding a kernel module 
Hiding a kernel module 

ε 
ε 

W 
W 

D 
S 

module 
module list 

next 
0 

4 AD1, AD2, knark, Rial Hijacking a system call ε W S sys call table # 141 
3 AD1, AD2, knark Hijacking a system call ε W S sys call table # 2,37,120,220 
3 AD1, AD2, Rial Hijacking a system call ε W S sys call table # 6 
2 Rial, MH1 Hijacking a system call ε W S sys call table # 5 
2 knark, Rial Hijacking a system call ε W S sys call table # 3 
2 SK, ST Hijacking a system call ε W S sys call table # 59 
2 SK, ST Hijacking a system call generic copy from user W S sys call table # 59 
2 AD1, AD2 Hijacking a system call ε W S sys call table # 39 
2 AD2, AD3 Hijacking a hook ε W S proc root inode operations lookup 
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The next five columns present the contents of data behavior elements: the access

ing code (c); the kind of memory access (o) such as a read (R: o = 0) or a write (W: 

o = 1); the kind of accessed memory (m) such as a dynamic object (D: m = 0) or a 

static object (S: m = 1); the accessed memory’s class (i), which is converted to a data 

type for dynamic data or a variable name for static data; and the accessed offset(s) 

(f). The offset is converted to a field name if it corresponds to a specific field. If 

the accessed object is the system-call table, a system-call number (#) is presented by 

dividing the offset by the size of a pointer. 

•	 Attacks on Process Control Blocks (PCBs). The first category at 

the top of Table 5.7 lists the data behavior that targets the PCBs (type: 

task struct in Linux). This is a core data structure that maintains adminis

trative information about processes. Therefore it is a major target of rootkits, 

that manipulate such information. 

Table 5.7 shows that seven rootkits read the process ID numbers in PCBs dur

ing attacks. The flags of the processes are accessed by six rootkits. Several 

rootkits, such as the family of adore rootkits, the kbdv3 rootkit, and the knark 

rootkit, provide a back-door that gives root privileges for an ordinary user. The 

hp and linuxfu rootkits show an attack pattern that manipulates the point

ers connecting PCBs. This behavior can hide PCBs from the view inside the 

operating system. 

•	 Attacks using /dev/kmem. The second category shows the rootkit 

behavior that manipulates kernel memory by using a memory device (e.g., 

/dev/kmem). This device allows a user program to read and write kernel mem

ory, putting the kernel integrity at risk. The kernel runs compromised by fuuld, 

hide lkm, SucKIT, and superkit rootkits commonly show specific data be

havior that the kernel functions related to memory devices access file kernel 

objects. 
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Table 5.8: Configuration of benchmarks 

Name Version Command 
Kernel compile 
UnixBench 
nbench 
bzip2 
find 

2.4.18 
5.1.2 
Version 2 
1.0.2 
4.1.7 

time make 
./Run -i 1 
time nbench 
time tar cvfj linux.tbz2 linux-2.4.18 
time find /etc | xargs grep noexist 

•	 Attacks on the Kernel Module List. The next category lists rootkit 

attacks on the kernel module list. The next pointer field of module objects are 

written by the cleaner, modhide, and modhide1 rootkits. The module objects 

constitute the list of kernel modules and they are connected by this pointer 

field. The rootkit attacks that hide a module appear as direct manipulation of 

this field. 

•	 Attacks on Static Kernel Objects. The last category is the manipula

tion of static kernel objects. Several rootkits hijack system-calls by replacing 

the system-call table entries with the addresses of malicious functions. This 

behavior is captured by the manipulation of the system-call table by several 

code sites, depending on the attack vector. In the case of driver-based rootkits, 

such behavior is captured as access by the generalized rootkit code, ε. The 

rootkits based on memory devices (e.g., /dev/kmem) use legitimate kernel code 

for manipulation (e.g., generic copy from user). 

5.4.6 Monitoring Performance 

We evaluated the performance of DataGene compared to the unmodified QEMU 

and the LiveDM system. We performed five benchmarks, and their configurations are 

presented in Table 5.8. In kernel compile, nbench, bzip2, and find benchmarks, we 

used the total runtime measured for the workload. UnixBench has several internal 

benchmarks in the benchmarking process. Therefore, the total benchmarking time 



91 

Figure 5.10.: Performance comparison of unmodified QEMU, LiveDM, and
 
DataGene (OS: Redhat 8)
 

does not represent performance properly. We used the performance index from the 

report of the benchmark instead of its total execution time. 

Figure 5.10 presents the performance overhead of unmodified QEMU, LiveDM, 

and DataGene. All performance numbers are normalized to the results of unmodified 

QEMU, and a lower number represents faster execution. 

DataGene has two stages of operations: signature generation and malware de

tection. In the current implementation, DataGene intercedes on every kernel mode 

memory access. Therefore, DataGene has higher performance overhead than LiveDM, 

which intercedes only when the kernel executes kernel memory allocation and deallo

cation code. For the signature generation stage, this overhead is necessary to observe 

the entire malware behavior and to generate its signature. However, in the detection 

stage, it is necessary to monitor the memory accesses only to the kernel objects listed 

in a given malware signature. Malware typically has a limited number of malicious 

actions. Therefore the monitoring performance can be further optimized by reducing 

the monitoring scope. The presented result corresponds to a conservative performance 

http:Figure5.10
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analysis of complicated malware behavior that may access any kernel objects because 

DataGene inspects all kernel mode memory accesses in the current experiments. 

Kernel compile, UnixBench, and find benchmarks intensively use system resources 

such as file systems, pipes, and processes. Such activities invoke kernel services such 

as system calls and page fault handling, which indirectly trigger kernel-level memory 

activities. The nbench benchmark involves only user-level CPU workload and there

fore does not cause kernel level memory accesses nor trigger kernel level services. 

Both LiveDM and DataGene do not have additional overhead for this case. bzip2 

benchmark involves both file system access and user-level computation. Therefore it 

caused lower overhead compared to kernel compile, UnixBench, and find benchmarks. 

5.5 Summary 

In this chapter, we presented a new approach to characterize the behavior of 

kernel malware by using kernel data access patterns specific to the malware. We also 

demonstrated the effectiveness of our implementation, DataGene, in the evaluation of 

kernel rootkit detection. 

Kernel malware signatures are constructed by using benign kernel runs and mali

cious kernel runs. Our experiments show that the signatures of three classic rootkits 

can effectively detect the kernel runs compromised by 16 kernel rootkits without 

triggering false positives in typical benign workloads. 

We further analyzed the similarities of the signatures for 16 rootkits. Each sig

nature shares similar access patterns with 2∼10 other rootkit signatures, which are 

effectively exposed by DataGene, enabling the use of memory access patterns. In ad

dition, we presented the details of common data behavior, which provide an in-depth 

understanding of the attack behavior of kernel rootkits. 
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6 CONCLUSIONS 

Many malware detection mechanisms rely on the properties of malware code such 

as the injection of unauthorized code [6–11] and the patterns of malicious code se

quences [26–30]. While these approaches are effective for classic malware, emerg

ing malicious programs are introducing advanced techniques such as return/jump

oriented programming [14–21], code obfuscation [31–34], and code emulation [35] to 

elude those malware detection mechanisms. In this dissertation, we have presented 

a new approach for detecting kernel malware based on the properties of kernel data 

objects. 

In Chapter 3, we first discussed the code-centric approaches based on the proper

ties of malicious code. We then introduced data-centric malware defense architecture 

that models and detects kernel malware using the properties of data objects. This 

architecture is composed of two components: a runtime kernel object mapping system 

that enables the monitor to use the properties of data objects and a kernel malware 

detection approach based on the kernel memory access patterns. 

In Chapter 4, we presented a runtime kernel object mapping approach which uses 

virtualization technology. This approach identifies kernel objects by capturing the 

execution of the kernel memory allocation and deallocation functions. It generates 

a view of kernel objects that is un-tampered by manipulating pointer connections, 

unlike related approaches based on memory snapshots. We demonstrated its effec

tiveness via detection of 10 kernel rootkits that hide kernel data objects. In addition, 

we presented the effectiveness of its temporal view by analyzing malware attacks that 

target dynamic kernel objects. 

In Chapter 5, we demonstrated the detection a class of malware that has recurring 

kernel memory access patterns specific to malware attacks. We implemented a proto

type system, DataGene, using the QEMU virtual machine monitor and demonstrated 
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its effectiveness against 16 kernel rootkits. We used dynamic kernel execution anal

ysis to generate malware signatures which do not trigger false positives for typical 

server workload such as web-servers, databases, kernel compiling, and utilities. Our 

experiments demonstrated that this approach effectively exposes the similarity of at

tack behavior among rootkits. Using the signatures of three kernel rootkits, we could 

detect not only the rootkits with signatures but also the other 13 kernel rootkits that 

share kernel memory access patterns in their attacks. The cross-comparisons among 

the 16 rootkit signatures showed that each rootkit shared memory access patterns 

with 2∼10 other rootkits. 

6.1 Discussion and Limitations 

As LiveDM operates in the VMM beneath the hardware interface, we assume that 

kernel malware cannot directly access LiveDM code or data. However, it can exhibit 

potentially obfuscating behavior to confuse the view seen by LiveDM. Here we describe 

several scenarios in which malware can affect LiveDM and our counter-strategies to 

detect them. 

First, malware can implement its own custom memory allocators to bypass LiveDM 

observation. This attack behavior can be detected based on the observation that any 

memory allocator must use internal kernel data structures to manage memory regions 

or its memory may be accidentally re-allocated by a legitimate memory allocator. 

Therefore, we can detect unverified memory allocations by comparing the resource 

usage described in the kernel data structures with the amount of memory being 

tracked by LiveDM. Any deviation may indicate the presence of a custom memory 

allocator. 

In a different attack strategy, malware could manipulate valid kernel control flow 

and jump into the body of a memory allocator without entering the function from 

the beginning. This behavior can be detected by extending LiveDM to verify that 

the function was entered properly. For example, the VMM can set a flag when a 
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memory allocation function is entered and verify the flag before the function returns 

by interceding before the return instruction(s) of the function. If the flag was not set 

prior to the check, the VMM detects a suspicious memory allocation. 

DataGene is a signature-based approach that detects known and unknown rootkits 

based on kernel data access patterns similar to the signatures of previously analyzed 

rootkits. If a rootkit’s attack behavior is not similar to any behavior in existing 

signatures or it does not involve kernel data accesses, such malware is out of coverage 

of DataGene because such behavior does not match the DataGene’s signature. 

Many existing rootkits that share the attack goals often exhibit similar data access 

patterns because essentially these malicious programs generate a false view by ma

nipulating legitimate kernel data structures relevant to the goals. Our approach can 

detect rootkits by focusing on the common attack targets described in the malware 

signatures even though such rootkits have different functionalities. 

Obfuscating data access patterns involves comparatively more sophistication than 

code obfuscation because malware requires to use alternate legal code to access ker

nel data beyond the diversification of malware’s own code patterns. These attack 

attempts can be detected by employing the defense approaches against control flow 

anomaly. 

In the environment whose typical workload can be determined, it is possible to 

produce malware signatures that can avoid frequent false alarms as presented in 

our experiments. However, if this technique is further directed towards a production 

environment where a diversity of workload could be generated, false alarms may occur 

because of the foundation of our technique on dynamic execution. 

This dissertation focuses on malware detection and analysis targeting operating 

system kernels. However, some of methodologies can be applied to user level appli

cations with changes in the implementation details. 

In the case of a user program, dynamic memory is managed by external system 

components. For example, malloc and free functions are part of C library, which 

internally uses system calls to map and unmap memory pages into the memory space 
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of the program. Therefore, the information about user level data objects can be 

obtained by intercepting these memory management interfaces. Memory accesses to 

dynamic objects can be intercepted by using several techniques. The page tables for 

the process can be used to intercept memory accesses by setting page permissions as 

read-only. Similar to gdb, debugging registers also can be used. 

User level programs have underlying system software layers that include the C 

library, system calls, and the kernel code. Such layers have higher privileges than the 

monitored user program; therefore, they are suitable for implementing a monitor with 

protection from the monitored program. Compared to kernel level data monitoring, 

user level monitoring offers more convenience in the implementation because of these 

underlying layers. 

Our approach provides advanced detection and analysis of kernel malware activi

ties based on the information regarding kernel data objects. It is primarily designed 

for malware analysis environments such as honeypots and malware profilers. In the 

current implementation, the advanced features based on data properties incur non

trivial performance overhead from fine-grained monitoring of kernel level memory 

accesses. There are several approaches to address this concern and improve the cur

rent implementation. 

AfterSight [88] is a research prototype from VMware that decouples dynamic 

program analysis from a production run by using virtual machine record and replay 

technology. A light-weight log is generated from a production virtual machine. Then 

security checks are applied to another virtual machine that replays the recorded log 

in the backend. As expensive security inspection is performed on the replay machine, 

it does not affect the production run. If this technique is leveraged, our approach can 

be applied to environments that require production level performance. 

In addition, hardware virtualization can be used to build a more efficient imple

mentation of our approach. By setting the page permission for the inspected kernel 

memory as read-only, the VMM can intercept the memory accesses to the monitored 
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kernel data objects. By reducing the scope of interceptions to the data objects listed 

in the signature, we can further optimize the monitoring performance. 

DataGene uses kernel mode memory access patterns to detect kernel malware. 

Therefore, its monitoring efficiency varies, depending on the kernel mode workload. 

As presented in Section 5.4.6, if the workload is mostly CPU bound, it could incur 

trivial overhead. However, if an application intensively uses kernel services such as 

system calls, such events can indirectly trigger kernel mode memory accesses and 

incur non-trivial overhead. Malware may attempt to exploit this characteristic to 

lower application performance and cause denial of service attacks. 

In this dissertation we highlighted the handling of dynamic kernel objects because 

monitoring dynamic memory has more challenges than monitoring static objects. For 

instance, the addresses of dynamic objects are determined at runtime and the number 

of runtime instances varies. 

Compared to dynamic kernel objects, static objects have memory addresses that 

are predetermined at the compilation time. The manipulation of static objects is 

observed as write accesses to their unique addresses. If such memory access patterns 

are observed specifically during malware execution, they are extracted as malware 

signatures. For example, system call hijacking is implemented as the manipulation of 

the system call table that is a static object. The manipulation of this object by other 

than the legitimate initialization code is rare in benign execution. Thus, this attack 

pattern is automatically extracted as a signature. 

If the manipulated memory is executed and used in a different way from the 

overwritten memory, DataGene can extract it as malicious behavior. If the overwritten 

memory corresponds to a data object before an attack, its execution is specific to 

the attack because the memory is not executed in the benign run. Typically, the 

overwritten code by malware exhibits memory access behavior different from the 

original code. Otherwise the attacker could have reused the original code. 

If the injected code accesses the data objects in the same way with the overwrit

ten code, this access pattern is not specific to this malware; and this attack behavior 
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therefore does not belong to our malware behavior criteria and can evade our ap

proach. While this is a possible attack scenario, it can be detected if our approach 

is deployed with code integrity checking or control flow integrity checking. These ap

proaches detect any manipulation of code which is not meant to be modified in typ

ical cases (except self-modifying code or dynamic recompilation). The combination 

of these code-centric approaches and our data-centric approaches places significant 

constraints on the capability of attackers. The attacker can be effectively limited not 

only in what can be executed (i.e., the integrity of code), but also in what can be 

accessed (i.e., the integrity of the memory access targets by the code). 

Another attack mechanism towards our approach is to avoid a recurring pattern. 

Our approach assumes that the malware mechanism in the signature occurs when the 

malware is active. However, it is not necessarily true for all malware. Malware can 

have adaptive adversary behavior. For example, malware can have logic that activates 

or deactivates malicious behavior at certain conditions (e.g., holidays or when there 

is no user logged in). In general, it is a challenging problem to understand the hidden 

malicious logic that can be a combination of a variety of system variables and formulas. 

One potential strategy to detect this type of malware is to expose the hidden behavior 

by setting various configurations of system variables in the signature generation stage. 

The search space of such combinations would be a significant challenge. 

Our approach is based on kernel memory access patterns. As an extreme case 

against our approach, malware can be constructed by only using arithmetic instruc

tions and the accesses to registers. This malware can achieve some computations. 

However, this attack strategy will be significantly limited in making changes in kernel 

behavior as most existing kernel malware does. 

6.2 Conclusions 

In this dissertation, we presented an approach to detect a class of malware using 

recurring memory access patterns that are specific to malware attacks. 
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The data-centric malware defense architecture (DMDA) is effective at detecting 

this class of malware without causing a high number of false positive cases. This is 

because many kernel rootkit attacks exhibit kernel data access patterns specific to 

their attacks to change legitimate kernel behavior and such memory access patterns 

are rare in benign kernel execution. In experiments with 16 kernel rootkits, we could 

generate a non-empty set of recurring memory access patterns specific to rootkit 

attacks for 16 rootkits. These patterns successfully match the presence of rootkit 

execution. 

In our experiments, the signatures managed to avoid triggering false positives in 

15 typical workloads, such as production applications and utility programs. We con

tend that our signature derivation process can produce reasonably effective malware 

signatures after successfully pruning out frequent benign memory access patterns 

from signature candidates. However, it does not guarantee that these signatures do 

not trigger false positive cases in other workloads because it is a challenging task to 

inspect all possible benign memory access patterns in an OS kernel. The generated 

malware signatures usually have a limited size because typical kernel malware inter

acts with the OS in a limited number of ways. Therefore, if a false positive error is 

triggered, it is feasible that a human expert who understands OS kernel code would 

manually inspect the case and confirm the malware behavior. 

This approach does not use code-centric properties such as the injection of unau

thorized code or malicious control flow patterns to detect malware. In the experi

ments, our prototype could successfully detect kernel rootkits that do not inject code 

into kernel memory for attacks. Therefore, this data-centric approach can comple

ment code-centric approaches by not depending on solely code information. 

The data access patterns in our approach are of a general form that can match 

other malware if it targets similar kernel data objects. Our experiments have demon

strated that the generated signatures are effective in matching not only the rootkits of 

the signatures, but also malware variants that share data access patterns. This char
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acteristic demonstrates the potential of this approach to detect new malware based 

on the similarity of the data access behavior. 

6.3 Future Work 

In this section we present future work to improve our current results or to apply 

our techniques to new areas. 

•	 Improving Performance via Hardware Virtualization. Our approach 

requires information regarding data objects in the OS kernel, which caused 

non-trivial performance overhead in the current implementation. With the in

troduction of hardware virtualization techniques, we are interested in developing 

a new prototype with improved monitoring performance. Major hardware vir

tualization technologies provide page-table virtualization (a.k.a. nested page 

tables) to improve the performance of hardware virtualization. For instance, 

Intel’s VT [93] provides Extended Page Tables (EPT) [94]. A similar technique 

in AMD virtualization technology (AMD-V [95]) is referred to as Rapid Vir

tualization Indexing (RVI) [96]. These features can be utilized to implement 

a reference checking mechanism of kernel memory accesses in an environment 

where guest operating systems are executed natively. 

•	 Kernel Debugging and Vulnerability Assessment. Our approach pro

vides in-depth information about data objects at runtime. It could be used 

to validate kernel operations and identify kernel vulnerabilities related to ker

nel memory. For instance, the information on heap objects previously was not 

available for an external monitor; therefore, validating a proper memory access 

to kernel heap memory was a challenging task. With the identification of kernel 

objects including heap objects, our system can check proper memory accesses 

and inspect memory-related vulnerabilities (e.g., kernel heap overflow). 
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