
CERIAS Tech Report 2011-07
Private Searching for Single and Conjunctive Keywords on Streaming Data

 by Xun Yi, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Private Searching for Single and Conjunctive Keywords
on Streaming Data

 Xun Yi
 Victoria University
 Melbourne, VIC 8001
 Australia

 Xun.Yi@vu.edu.au

 Elisa Bertino
 Purdue University
 West Lafayette, IN 47907
 USA

 Bertino@cs.purdue.edu

ABSTRACT

Private searching on streaming data allows a user to collect
potentially useful information from huge streaming sources of
data without revealing his or her searching criteria. This technique
can be used for airports, without knowing a classified “possible
terrorists” list, to find if any of hundreds of passenger lists has a
name from the “possible terrorists” list and if so his/hers itinerary.
Current solutions for private searching on streaming data only
support searching for “OR” of keywords or “AND” of two sets of
keywords. In this paper, we extend the types of private queries to
support searching on streaming data for an “OR” of a set of both
single and conjunctive keywords, such as
�� ⋁��⋁…⋁���⋁�	�⋀���⋁�	�⋀���⋁…⋁
	��⋀����, where
��, … , ���	are single keywords and �	�, ���, … , �	�� , 	��� are
unordered conjunctive keywords. Our protocol is built on Boneh
et al.’s result for the evaluation of 2-DNF formulas on ciphertexts.
The size of our encrypted dictionary is 	��|�|� only, which is
much less than |�|�, the size of the encrypted dictionary if
conjunctive keywords �	� , ��� (� = 1,2, … , �) is treated as single
keyword, where we assume 	� , �� ∈ � (� = 1,2, … , �).

1. INTRODUCTION
Private searching on streaming data has been motivated by a
crucial task for the intelligence community, which is to collect
potentially useful information from huge streaming data [17, 18].
For example, in airports one has to find if any of hundreds of
passenger lists has a name from the “possible terrorists” list and if
so his/hers itinerary. Usually, data sources are huge, and it is
impractical to keep all the data for such an analysis. A different
more practical approach is continuously performing on-line
filtering of data streaming from multiple sources, one
document/message/packet at the time. Such an approach allows
one to immediately discard most of the data, while retaining only
a small fraction of potentially useful data.

 In almost all cases, data is categorized as potentially useful
based on certain searching criteria. Keeping these criteria
classified is clearly crucial, as adversaries (like terrorists) could
easily prevent their data from being collected by simply making
sure that their data does not match the data search criteria. A naïve
solution to this problem is to collect all streaming data in a secure
environment, and then filter the information according to
classified search criteria. This approach adds considerable cost in
terms of communication and may result in delay in the delivery of
information or even in the loss of data, if the transfer to the secure
environment is interrupted. Furthermore, it requires considerable

cost of storage to hold this (un-filtered) data in case the transfer to
the classified setting is delayed.

 Obviously, a far more preferable solution is to filter all these
data-streams directly at their sources. A crucial issue is how we
can do this while at the same time keeping secret the searching
criteria, even in the case in which the system managing the data-
streams is compromised by attackers.

 The first solution to this problem, referred to as private
searching on streaming data, was proposed by Ostrovsky and
Skeith [17]. Their protocol is based on the homomorphism of the
cryptosystems [19, 10], which allows one to compute ������ +
���, given ������� and �������, where 	������ is an
encryption of plaintext m with public key !�.

 In the Ostrovsky-Skeith protocol, the public dictionary
� = "#�, #�, … ,#|$|%	of keywords is fixed. To construct a
program for the disjunction of some classified keywords & =
{��, ��, … , �|(|} ⊆ �, the user generates a pair of public and
private keys �!�, +��, and produces an array of ciphertexts
, = {-�, -�, … , -|$|}, one for each keyword #� ∈ �, such that if
#� ∈ &, then -� = ����1�; otherwise, -� = ����0�. In addition,
the user constructs a buffer � with /�	boxes, each of them is
initialized with two ciphertexts (����0�, ����0�), where � is the
upper bound on the number of matching documents the buffer can
accommodate. The array of ciphertexts , and the buffer � are
deployed in a server monitoring the streaming data.

 To perform private searching, the data is segmented into
streaming files 0 = {1�, 1�, … }, each of which is composed of a
number of words, and filtered one at a time. To process a file 1�,
the server computes a product of ciphertexts corresponding to the
keywords found in the file, i.e., 2� = ∏ -456∈78 = ����|1� ∩ &|�,
and :� = 2�78 = ����1� ∙ |1� ∩ &|�, due to the homomorphic
property of the public key cryptosystem. Then the server copies
�2� , :�� into / randomly chosen boxes in the buffer � by
multiplying corresponding ciphertexts. If 1� ∩ & = ∅, this step
will add an encryption of 0 to each box, having no effect on the
corresponding plaintext. If 1� ∩ & ≠ ∅, then the matching file can

be retrieved by computing 1� = $>?�@8�
$>?�A8�, where �B� stands for

decryption with the private key +�.

 If two different matching files are ever added to the same
buffer box, a collision will result and both copies will be lost. To
avoid the loss of matching files, this protocol make the buffer �
sufficiently large so that each matching file can survive in at least
one buffer box. After the content of buffer � is returned to the
user, the user is able to retrieve all matching files.

 Using results by Boneh, Goh, and Nissim [4], Ostrovsky and
Skeith [17, 18] extended the type of queries from an “OR” of
keywords to queries with an “AND” of two sets of keywords
without increasing the program size.

 Their basic idea for searching all documents C such that
�C⋂&� ≠ E�⋀�C⋂&� ≠ E�, where &�, &� are two sets of
“keywords”, is to construct two arrays of ciphertexts ,� =
{-��, -��, … , -|$|� }, where -�� is the encryption of 1 if #� ∈ &� and

otherwise is the encryption of 0, and ,� = {-��, -��, … , -|$|� }, where

-�� is the encryption of 1 if #� ∈ &� and otherwise is the
encryption of 0. To process a document C, the program computes
F� = ∏ -4�56∈G = ���(|C ∩ &�|), F� = ∏ -4�56∈G = ���(|C ∩
&�|) and then F = :(F�, F�), where : is a bilinear map. If
(C⋂&� ≠ E)⋀(C⋂&� ≠ E), then F is an encryption of 1.
Otherwise, F is an encryption of 0.

 In 2006, Bethencourt, Song and Waters proposed a different
method for retrieving matching files from the buffer [1, 2]. Like
the approach by Ostrovsky and Skeith, they use an encrypted
dictionary, and no-matching files have no effect on the contents of
the buffer. However, rather than using one large buffer and
attempting to avoid collisions, they employ three buffers – the
data buffer 0, --buffer ,, and the matching indices buffer H, each
of them has � boxes, and the matching files are then retrieved by
solving a linear system.

 The Bethencourt-Song-Waters protocol is able to process I
files {1�, 1�, … , 1J} of streaming data. For each file 1�, the server
computes 2� 	(:�) as the Ostrovsky-Skeith protocol, and copies
2� 	(:�) randomly over approximately half of the locations across
the buffer ,	(0). A pseudorandom function K(�, L) is used to
determine with probability ½ whether 2� 	(:�) is copied into a
given location L. In addition, the server further copies 2� into a
fixed number of locations in the matching-indices buffer. This is
done by using essentially the standard procedure for updating a
Bloom filter. Specifically, they use � hash functions ℎ�, ℎ�, … ℎ�
to select the � locations. The locations of the matching-indices
buffer H that 2� is multiplied into are taken to be
ℎ�(�), ℎ�(�), … ℎ�(�).
 After the contents of all three buffers are returned, the user
decrypts all buffers at first. For each of the indices � ∈ {1,2, . . , I},
the user computes ℎ�(�), ℎ�(�), … ℎ�(�) and checks the
corresponding locations in the decrypted matching-indices buffer.
If all locations are non-zero, � is added into the list of potential
matching indices. Given the potential matching indices
{O�, O�, … , Oℓ}, the user next determines the values of
{PQ� , PQ� , … , PQℓ}, where PQ8 = |1Qℓ ∩ &|, by solving a system of
linear equations constructed with the decrypted --buffer. As last
step, the user determines the content of the matching files
1Q� , 1Q� , … , 1Qℓ by solving another system of linear equations
constructed with the decrypted data buffer.

Our Contribution: Current solutions for private searching on
streaming data can only search for an “OR” of keywords [17, 18,
1, 2] or for an “AND” of two sets of keywords from streaming
data [17, 18]. Without loss of generality, these queries can be
expressed as either ��⋁��⋁…⋁�|(| or (�� ∨ �� ∨ …∨ �S) 	∧
(�SU� ∨ �SU� ∨ …∨ �|(|). The restricted form of queries
supported by those protocols limits the applications of private
searching on streaming data in practice.

 For example, suppose we wish to find if any list, among
hundreds of passenger lists, has a name from a list of “possible
terrorists” V = {(0�, ��), (0�, ��),… , (0�, ��)} where (0� , ��)
denotes the first name and the last name of a terrorist. If we
perform a query of the form (0�||��)⋁(0�||��)⋁…⋁(0�||��), the
dictionary � for private searching needs to be � × �, where �	 is
the set of all possible names. Such dictionary is too large for
practical use. If we perform a query of the form
(0�⋁0�⋁…⋁0�) ∧ (��⋁�� ∨ …∨ ��), the dictionary � needs to be
2� only, but some innocent passengers, e.g., (0�, ��), will
incorrectly appear in the search results.

 In this paper, we propose a protocol to perform a private query
of the form �� ⋁��⋁…⋁���⋁(�⋀��)⋁(�⋀��)⋁…

⋁
	��⋀���� where ��, … , ���	are single keywords and
(�, ��), … , (�� , 	��) are unordered conjunctive keywords. Our
algorithm is built on Boneh et al.’s result concerning the
evaluation of 2-DNF formulas on ciphertexts. The size of our
encrypted dictionary is 	�(|�|) only, which is much less than
|�|�, the size of the encrypted dictionary if conjunctive keywords
(� , ��) (� = 1,2, … , �) is treated as single keyword, where we
assume 	� , �� ∈ � (� = 1,2, … , �).

 Following up the intuition of the Ostrovsky-Skeith protocol
[17, 18], our basic idea is to create a program that conditionally
and obviously performs encryptions of a document based on the
matching of keyword criteria, and then writes these encryptions to
random locations in a buffer, using homomorphic properties of the
encryption scheme. By “conditionally”, we mean that if a
document matches the query, our private searching protocol will
generate an encryption of the document itself. Otherwise, it will
generate an encryption of the identity element. The key idea is
that the encryption of the identity element that the protocol
computes if the document does not match the secret criteria will
be indistinguishable from the encryption of the matching
document. Both matching and non-matching documents appear to
be treated precisely in the same way. Any party which observes
the execution is unable to learn if the search condition is satisfied,
as the protocol is executed as a straight-line code (i.e., all
branches that the protocol executes are independent of the search
criteria), so that the conditions are never known unless the
underlying encryption scheme is broken.

 Like the Ostrovsky-Skeith protocol for a query with an
“AND” of two sets of keywords [17, 18], our protocol is also
based on the results of Boneh, Goh and Nissim [4]. Unlike their
protocol, our protocol supports private searches for both single
and conjunctive keywords.

2. PRELIMINARIES
In this section, we briefly review the results of Boneh, Goh and
Nissim in evaluating 2-DNF formulas on ciphertext. [4].

2.1 Bilinear Group
We use the following notations:

1. X and X� are two (multiplicative) cyclic groups of finite
order P.

2. K is a generator of X.

3. : is a bilinear map ::	X	�X�. In other words, for all
Z, F ∈ X and [, \ ∈ ℤ, we have :�Z^ , F_� = :�Z, F�^_.
We also requires that :�K, K� is a generator of X�.

 We say that X	is a bilinear group if a group X� and a bilinear
map as above exist.

2.2 A Homomorphic Public Key System

The system resembles the Paillier [19] and the Okomoto-
Uchiyama [16] encryption schemes. The three algorithms making
up the system is described as follows:

Key Generation `abcad�e�: Given a security parameter f ∈
ℤU, run g�f� to obtain a tuple �h�, h�, X, X�, :�. Let i = h�h�.
Pick two random generators K, Z j←X and set ℎ = Zl�. Then ℎ is a
random generator of the subgroup of X of order h�. The public
key is m& = �i,X, X�, :, K, ℎ�. The private key �& = h�.
Encryption ndopbqr�s`,t�: Assume the message space
consists of integers in the set {0,1, … , u} with u < h�. We encrypt
bits in which case u = 1. To encrypt a message � using the

public key m&, pick a random 	w j← {0,1, …i} and compute

, = Kxℎy ∈ X

 Output , as the ciphertext.

Decryption zaopbqr�{`, |�: To decrypt a ciphertext , using
the private key �& = h�, observe that

,l� = �Kxℎy�l� = �Kl��x

 Let K} = Kl�. To recover �, it suffices to compute the discrete
log of ,l� base K}. Since 0 ≤ � ≤ u, this takes expected time
O(√u) using Pollard’s lambda method [14].

 Note that decryption in this system takes polynomial time in
the size of the message space u. Therefore, the system can only be
used encrypt short messages.

2.3 Homomorphic Properties

The system is clearly additively homomorphic. Let m& =
�i, X, X�, :, K, ℎ� be a public key. Given encryptions ,�, ,� ∈ X�
of messages ��, �� ∈ {0,1, … , u} respectively, anyone can create
a uniformly distributed encryption of �� +��	��2	i by
computing the product , = ,�,�ℎy for a random w in
{0,1, … ,i − 1}.
 More importantly, anyone can multiply two encrypted
messages once using the bilinear map. Let K� = :�K, K� and
ℎ� = :�K, ℎ�, then K�is of order P and ℎ	� is of order h�. There is
some (unknown) O ∈ ℤ such that ℎ = KQl�. Suppose that we are
given two ciphertexts ,� = Kx�ℎy� ∈ X and ,� = Kx�ℎy� ∈ X.
To build an encryption of the product ����	��2	i, (1) pick a
random w ∈ ℤ�, and (2) let , = :�,�, ,��ℎ�y ∈ X�. Then

, = :�,�, ,��ℎ�y
= :�Kx�ℎy� , Kx�ℎy��ℎ�y
= :�Kx�UQl�y� , Kx�UQl�y��ℎ�y
= :�K, K��x�UQl�y���x�UQl�y��ℎ�y

= :�K, K�x�x�UQl��x�y�Ux�y�UQl�y�y��ℎ�y
= :�K, K�x�x�ℎ��yUx�y�Ux�y�UQl�y�y��

where w +��w� +��w� + Oh�w�w� is distributed uniformly in ℤ�
as required. Thus ,	is a uniformly distributed encryption of
����	��2	P, but in X� rather than X. We note that the system is
still additively homomorphic in X�.

3. OUR PROTOCOLS

3.1 System Model
We consider a system model as shown in Fig. 1, where a user
wants to retrieve the documents (or messages) that include a set of
unordered conjunctive keywords from streaming data sources.

Fig. 1 System Model

 First of all, the user prepares a filtering program with the set
of single keywords, ��, … , ���	 and unordered conjunctive
keywords, �	�, ���, … , �	�� , 	���, and deploys the program at
each public data source. The program processes a document at a
time, and only encrypts and stores in its storage the document
which satisfies the condition. 	�� ⋁��⋁…⋁���⋁�	�⋀���⋁
�	�⋀���⋁…⋁
	��⋀����. After a certain time period, the
program sends its storage content back to the user. Finally, the
user decrypts the contents of the storage and obtains the matching
documents.

 The program is executed at a public data source and may fall
into an adversary’s hand. If this happens, we require that the
adversary cannot obtain any classified keywords from the
program.

3.2 Private Searching for Conjunctive
Keywords with Space Efficiency

We first formally define our private searching protocol for
conjunctive keywords. The protocol is efficient in terms of the
size of the encrypted dictionary. It is composed of the algorithms:
the key generation algorithm (Key-Gen), the filter generation

…C�,�, C�,�	
Filter �
C�,4�, �
C�,��…

	

 Storage

...

��C�,4�
�
C�,��

Decrypt

……

C�,4
C�,�

��, … , ���
�	�, ���

	�� , ����
……

Classified Environment

Open Network Site �

algorithm (Filter-Gen), the buffer decryption algorithm (Buffer-
Decrypt) defined as follows:

Key-Gen(�)

It executes the key generation algorithm of the Boneh, Goh and
Nissim system to produce the public key m& = �i, X, X�, :, K, ℎ�,
where K is a generator, i = h�h�, and ℎ	is a random element of
order h�. The private key is �& = h�. We make the additional
assumption that |�| < h�.
Filter-Gen(�,�, m&,�, /)

This algorithm constructs and outputs a private filter program 0
for the query � = (�⋀��)⋁(�⋀��)⋁…⋁(�⋀��), which
searches for all documents C satisfying �. Assume that the public
dictionary is � = "#�, #�, … , #|$|%	. 0 contains the following
data:

• A buffer �(/) of size 2/�, indexed by blocks with the
size of an element of X� times the document size, with
every position initialized to the encryption of the
identity element of X�, where � is the upper bound on
the number of matching documents we wish to save in
the buffer �(/).

• P arrays of ciphertexts ,4 = {-�4 , -�4 , … , -|$|4 } (L =
1, 2, … , P), each corresponding to one conjunctive

keyword (4 , �4), where -�4 is the encryption of 1 if
#� ∈ {	4 , �4} and otherwise the encryption of 0. Each
array of ciphertext contains two encryptions of 1 and
|�| − 2 encryptions of 0.

 0 then proceeds with the following steps upon receiving an
input document C.

1. It constructs a set of temporary collections ,�4 = {-�4 ∈
,4|#� ∈ C⋂�} for L = 1, 2, … , P.

2. To process a word #S in C⋂�, it computes

FS =� :(-S4 ,� -�4��S,�86∈��6
)

�

4��
∈ X�

where : is a bilinear map. If there exists a word
#� ∈ C⋂� and � > � such that (#S⋀	#�) ∈
(�⋀��)⋁(�⋀��)⋁…, ⋁(�⋀��) then FS is an
encryption of 1 in X�. Otherwise, FS is an encryption of
0.

3. It computes F = ∏ FS5�∈G⋂$. If the document C
satisfies the condition (�⋀��)⋁(�⋀��)⋁…
⋁(�⋀��), then F is an encryption of a positive integer
in X�. Otherwise, F is an encryption of 0.

4. It performs a bitwise encryption of C using encryption
of 0 in X� for 0’s and using F to encrypt 1’s to create a
vector of X� elements.

5. It chooses / random locations in �, takes the encryption
of Step 4, and position-wise multiplies these two vectors
storing the result back in � at the same location.

Buffer-Decrypt(�, �&)

It decrypts � one block at a time using the decryption algorithm of
the BGN system, interpreting the non-identity elements of X� as
1’s and 0’s as 0, outputting the non-zero, valid documents.

Correctness of the Private Filter

We show the correctness of our protocol with the following two
facts:

• In our protocol, non-matching documents are stored
with negligible probability. In fact, they are stored with
probability 0 since clearly (i) if #S	in Step 2 does not
match with any classified keywords 	� , ��, …, 	� , 	� ,

then -S4 	is the encryption of 0 and thus FS is the
encryption of 0; (ii) if #S does match with a classified
keyword, e.g., 	�, but �� ∉ C − {#S}, then FS is the
encryption of 0 as well. So, the buffer contents will be
unaffected by the program executing on input a non-
matching document C.

• In our protocol, all matching documents are saved with
overwhelming probability. Clearly, if a document C
satisfies (�⋀��)⋁(�⋀��)⋁…⋁(�⋀��), e.g.,
C	satisfies (�⋀��), when the program processes
#S = 	� and �� ∈ C − {#S}, then FS is an encryption
of 1. Therefore, F is an encryption of a positive integer.
Following up the “colour-survival” game [17, 18] for
placing the matching document in the buffer, all
documents will be saved with overwhelming
probability in /.

Remark: In [18], the color-survival game is introduced and a
Lemma is proved as follows.

Color-survival game: Let �,/ ∈ �U, and suppose we have m
different colors, call them {-���w�}���x and / balls of each color.
We throw the /� balls uniformly at random into 2/� bins, call
them {\�P�}�����x. We say that a ball “survives” in \�P4 , if no other
ball (of any color) lands in \�P4. We say that -���w� “survives” if
at least one ball of color colori survives. We say that the game
succeeds if all � colors survive, otherwise we say that it fails.

Lemma. The probability that the color-survival game fails is
negligible in /.

3.3 Private Searching for Single and
Conjunctive Keywords with Space Efficiency

Based on our protocol for conjunctive keywords, we now formally
present our private searching protocol for both single and
conjunctive keywords, which is also composed of three
algorithms: the key generation algorithm (Key-Gen), the filter
generation algorithm (Filter-Gen), the buffer decryption
algorithm (Buffer-Decrypt) as follows:

Key-Gen(�)

It is the same as the algorithm (Key-Gen) described in section
3.2.

Filter-Gen(�, �, m&,�, /)

This algorithm constructs and outputs a private filter program 0
for the query � = ��⋁ ��⋁…⋁���⋁(�⋀��)⋁(�⋀��)⋁…⋁

	��⋀����, which searches for all documents C satisfying �.

Assume that the public dictionary is � = "#� , #�, … , #|$|%	. 0
contains the following data:

• A buffer ��/� of size 2/�, indexed by blocks with the
size of an element of X� times the document size, with
every position initialized to the encryption of the
identity element of X�.

• P� arrays of ciphertexts ,4 = {-�4 , -�4 , … , -|$|4 } (L =
1, 2, … , P�), each corresponding to one conjunctive

keyword �	4 , �4�, where -�4 is the encryption of 1 if
#� ∈ {	4 , �4} and otherwise the encryption of 0.

• One array of ciphertexts ,4 = {-�4 , -�4 , … , -|$|4 } (L = P� +
1), corresponding to single keywords ��, ��	, … , ���,
where -�4 is the encryption of 1 if #� ∈ 	 {�� , ��	, … , ���}
and otherwise the encryption of 0.

• P� + 1 ciphertexts 24 	�L = 1, 2, … , P� + 1�, each
corresponding to one array of ciphertexts ,4, where 24 is
the encryption of 1 if L = P� +1 and otherwise the
encryption of 0.

 0 then proceeds with the following steps upon receiving an
input document C.

1. It construct a set of temporary collections ,�4 = {-�4 ∈,4|#� ∈ C⋂�} for L = 1, 2, … , P� + 1.
2. To process a word #S in C⋂�, it computes

FS =� :�-S4 , 24� -�4��S,�86∈��6
�

��U�

4��
∈ X�

where : is a bilinear map. If #S ∈ ��, … , ��� or there
exists a word #� ∈ C⋂� and � > � such that
�#S⋀	#�� ∈ {�	�⋀���, �	�⋀���, …, �	��⋀���� then FS
is an encryption of 1 in X�. Otherwise, FS is an
encryption of 0.

3. It computes F = ∏ FS5�∈G⋂$. If the document C
satisfies the condition �� ⋁��⋁…⋁���⋁�	�⋀���⋁
�	�⋀���⋁…⋁
	��⋀����, then F is an encryption of
positive integer in X�. Otherwise, F is an encryption of
0.

4. It performs s bitwise encryption of C using encryption
of 0 in X� for 0’s and using F to encrypt 1’s to create a
vector of X� elements.

5. It chooses / random locations in �, takes the
encryption of Step 4, and position-wise multiplies these
two vectors storing the result back in � at the same
location.

Buffer-Decrypt(�, �&)

Same as described in section 3.2.

Correctness of Private Filter

Same as described in section 3.2.

3.4 Private Searching for Single and
Conjunctive Keywords with Computation
Efficiency

The protocols described in sections 3.2 and 3.3 are efficient in
terms of the size of the encrypted dictionary. However, they
require the computation of a large number of pairing. We now
formally define our private searching protocol for both single and
conjunctive keywords, which requires computing of lower number
of pairings. The protocol is also composed of key generation
algorithm (Key-Gen), filter generation algorithm (Filter-Gen),
buffer decryption algorithm (Buffer-Decrypt) as follows:

Key-Gen(�)

It is the same as the algorithm (Key-Gen) described in section
3.2.

Filter-Gen(�, �, m&,�, /)

This algorithm constructs and outputs a private filter program 0
for the query � = ��⋁ ��⋁…⋁���⋁�	�⋀���⋁�	�⋀���⋁…⋁

	��⋀����, which searches for all documents C satisfying �.
Assume that the public dictionary is � = "#�, #�, … , #|$|%	. 0
contains the following data:

• A buffer ��/� of size 2/�, indexed by blocks with the
size of an element of X� times the document size, with
every position initialized to the encryption of the
identity element of X�.

• P� arrays of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4}
�L = 1, 2, … , P�), where -��,4 is the encryption of 1 if
#� = 	4 and otherwise the encryption of 0. Each array
of ciphertext contains one encryptions of 1 and |�| − 1
encryptions of 0.

• P� arrays of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4}
�L = 1, 2, … , P�), where -��,4 is the encryption of 1 if
#� = �4 and otherwise the encryption of 0. Each array
of ciphertext contains one encryptions of 1 and |�| − 1
encryptions of 0.

• One array of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4}
(L = P� + 1), corresponding to the single keywords

�� , ��	, … , ���, where -��,4 is the encryption of 1 if
#� ∈ 	 {��, ��	, … , ���} and otherwise the encryption of 0.

• One array of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4}
(L = P� + 1), where -��,4 is the encryption of 0.

• P� + 1 ciphertexts 24 	�L = 1, 2, … , P� + 1�, each
corresponding to two arrays of ciphertexts ,�,4 and ,�,4,
where 24 is the encryption of 1 if L = P� +1 and
otherwise the encryption of 0.

 0 then proceeds with the following steps upon receiving an
input document C.

1. It constructs a set of temporary collections ,��,4 =
{-��,4 ∈ ,�,4|#� ∈ C⋂�} for L = 1, 2, … , P� + 1 and

,��,4 = {-��,4 ∈ ,�,4|#� ∈ C⋂�} for L = 1, 2, … , P� + 1.
2. It computes

F =� :�� -��,4�8�,6∈���,6
, 24� -��,4�8�,6∈���,6

�
��U�

4��
∈ X�

where : is a bilinear map. If the document C satisfies
the condition �� ⋁��⋁…⋁���⋁�	�⋀���⋁�	�⋀���
⋁…⋁
	��⋀����, then F is an encryption of positive
integer in X�. Otherwise, F is an encryption of 0.

3. It bitwise encrypts C using encryption of 0 in X� for 0’s
and using F to encrypt 1’s to create a vector of X�
elements.

4. It chooses / random locations in �, takes the
encryption of Step 4, and position-wise multiplies
these two vectors storing the result back in � at the
same location.

Buffer-Decrypt(�, �&)

Same as described in section 3.2.

Correctness of Private Filter

Same as described in section 3.2.

Remark: Our protocol with computation efficiency can be
modified to support more general queries. For example, � =
�� ⋁�� ⋁[�	�� ⋁	���⋀���� ⋁���⋁����]⋁�	�∧���. For this
query, the protocol constructs the array of ciphertexts ,�,� =
{-��,�, -��,�, … , -|$|�,�}, where -��,� is the encryption of 1 if #� ∈
{	��, 	��} and otherwise the encryption of 0; and the array of
ciphertexts ,�,� = {-��,�, -��,�, … , -|$|�,�}, where -��,� is the encryption

of 1 if #� ∈ {��� , ���, ���} and otherwise the encryption of 0.

4. SECURITY ANALYSIS

4.1 Security Model
A security model for private searching on streaming data has been
built by Ostrovsky and Skeith in [17, 18] as follows.

 We consider a universe of words � = {0,1}∗, and a dictionary
� ⊂ � with |�| < ∞. We think of a document as an ordered,
finite sequence of words in �, however, it will often be
convenient to look at the set of distinct words in a document. We
define a set of keywords to be any subset & ⊂ �. Finally, we
define a stream of documents � simply to be any sequence of
documents.

 We think of a query type, � as a class of logic expression in
∧,∨, ∼ with a number of binary variables. Given a query type, one
can input keywords & ⊂ � where & = {��}���Q and create a
function, call �(: � → {0,1}, that takes the documents, and returns
1 if and only if a document matches the criteria. �((C) is
computed simply by evaluating � on inputs of the form �� ∈ C,
We call �((C) a query over keyword &.

Definition 4.1 For a query �(on a set of keywords &, and for a
document C, we say that C matches query �(if and only if
�((C)=1.

Definition 4.2 For a fixed query type �, a private filter consists of
the following three probabilistic polynomial time algorithms:

1. `abcad(�): It takes a security parameter � and
generate public key m& and private key �&.

2. ���rapcad(�, �(, m&,�, /): It takes a dictionary �, a
query �(∈ � for the set of keywords &, and generate a
search program 0. 0 searches any document stream
�	(processing one document at a time and updating a
buffer �) and collects up to � documents that match �(
in �, outputting an encrypted buffer B that contains the
query results, where |�| = �(/) throughout the
execution.

3. ���rapzaopbqr(�, �&): It decrypts an encrypted
buffer �, produced by 0 as above, using the private key
�& and produces output �∗, a collection of the matching
documents from �.

Definition 4.3 (Correctness of a Private Filter) Let 0 =
���rapcad(�, �(, m&,�, /) and (m&, �&) = `abcad(�),
� = 0(�) and �∗ = ���rapzaopbqr(�, �&). We say a private
filter is correct if the following condition holds:

• If |{C ∈ �|�((C) = 1}| ≤ �, then

mw[�∗ = {C ∈ �|�((C) = 1}] > 1 − P:K(/)	
• If |{C ∈ �|�((C) = 1}| > �, then

mw[(�∗ ⊂ {C ∈ �|�((C) = 1)⋁��∗ =⊥�}] > 1 − P:K�/�	
where ⊥ is a special symbol denoting buffer overflow, and the
probabilities are taken over all coin-tosses of 0, ���rapcad and
`abcad.

Definition 4.4 (Privacy) Fix a dictionary �. Consider the
following game between an adversary 	, and a challenger ,. The
game consists of the following steps.

1. , first runs ̀ abcad��� to obtain m& and �& and then
sends m& to 	.

2. 	 chooses two queries for two sets of keywords,
��(� , ��(� , with &�, &� ⊂ � and sends them to ,.

3. , chooses a random bit \ ∈ {0,1} and executes
���rapcad��, �_(� , m&,�, /� to create 0_, the
filtering program for the query �_(�, and then sends
0_	back to 	.

4. 	�0_� can experiment with the code of 0_in an arbitrary
way, and finally outputs \ ∈ {0,1}.

 The adversary wins the game if \’ = \ and loses otherwise.
We define the adversary 	’s advantage in this game to be

	2F¢��� = £Pr�\ = \ � − 12£
 We say that a private filter is semantically secure if for any
adversary PPT 	, we have that 	2F¢��� is a negligible function,
where the probability is taken over coin-tosses of the challenger
and the adversary.

4.2 Security Analysis

Our protocol is based on the Boneh-Goh-Nissim public key
system [4], which builds its security on a subgroup

indistinguishability assumption, related to the difficulty of
computing discrete logs in the groups X, X�.
Theorem 4.5 Assume the Boneh-Goh-Nissim public key system
is semantically secure, then our private searching protocols for
single and conjunctive keywords is semantically secure according
to Definition 4.4.

Proof: Denote by ℇ the encryption algorithm of the Boneh-Goh-
Nissim public key system. Suppose that there exists an adversary
	 that can gain a non-negligible advantage § in our semantic game
from Definition 4.4. Then 	 could be used to gain an advantage
in breaking the semantic security of the Boneh-Goh-Nissim public
key system as follows:

 At first, we initiate the semantic security game for the Boneh-
Goh-Nissim public key system with a challenger ,. , will send us
with the public key m& = �P, X, X�, :, K, ℎ�, where P = h�h�, K is
a random generator of X, ℎ = Zl�, and : is bilinear map.

 Next, we initiate the private filter semantic security game with
an adversary 	. 	 will give us two queries ��, ��in � for some
sets of single and conjunctive keywords &�, &�, respectively.

 Assume the private filters for �� , �� are 0�, 0�, respectively,
and the sequences of the Boolean plaintexts corresponding to the
ciphertexts in 0�, 	0� are C�, 	C�, respectively. If the lengths of the
two sequences are not equal, 0s are appended.

 After sending C�	and C� to the challenger ,, , replies us with
the encryptions of all Boolean plaintexts in one of these two
sequences, denoted as -_ = ℰ�C_�, where \ ∈ {0,1}.
 Now we give this private filter composed by -_ back to 	.
The private filter is equivalent to either 0� or 0�. 	 returns a guess
\’. We use 	’s guess as our guess. As our behavior is
indistinguishable from an actual challenger, 	 will guess
\	correctly with probability ½+	§, and hence we have obtained a
non-negligible advantage in the semantic security game for the
Boneh-Goh-Nissim public key system, a contradiction to our
assumption. Therefore, our system is secure according to
Definition 4.4.

5. PERFORMANCE ANALYSIS

Three protocols are described in section 3. The first protocol
described in section 3.2, denoted as Protocol I, can be used to
search conjunctive keywords only. The protocols described in
sections 3.3 and 3.3, denoted as Protocol II and Protocol III,
respectively, are able to search for both single and conjunctive
keywords.

 Protocol I is a special case of Protocol II. Both of them aim to
achieve space efficiency in terms of the size of encrypted
dictionary.

 For a query � = �	�⋀���⋁(�⋀��)⋁…⋁
	��⋀����, the
size of encrypted dictionary required in Protocol I is P�|�|. For a
query � = �� ⋁��⋁…⋁���⋁(�⋀��)⋁(�⋀��)⋁…⋁

	��⋀����, the size of encrypted dictionary in Protocol II is
(P� + 1)|�|, independent of the number of single keywords P�.

 However, both Protocol I and Protocol II require to compute a
large number of pairings :, which is even more expensive than
computing modular exponentiation for large modulo. To process
a document C, the number of pairing computation required in
Protocol I is P�|C|, and the number of pairing computation
required in Protocol II is (P� + 1)|C|.
 Protocol III aims to achieve computation efficiency by
reducing the number of pairing computation required. However, it
requires a longer encrypted dictionary. For a query � =
�� ⋁��⋁…⋁���⋁(�⋀��)⋁(�⋀��)⋁…⋁
	��⋀����, the
number of pairing computation required to process a document
C	in Protocol III is P� + 1 only, independent of both the size of
the document |C| and the number of single keywords P�. But the
size of the encrypted dictionary required in Protocol III is
2(P� + 1)|�|.
A performance comparison of the three protocols is shown as in
Tab. 1.

Protocols Size of Encrypted
Dictionary

Number of Pairing
Computation

Protocol I P�|�| P�|C⋂�|
Protocol II (P� + 1)|�| (P� + 1)|C⋂�|
Protocol III 2(P� + 1)|�| P� + 1

Tab. 1 Performance Comparison

If the size of the document C is small (e.g., the document is a list
of keywords only) and the size of dictionary is large, Protocol II
will be a better option.

6. RELATED WORK

Private searching on streaming data is related to searching on
encrypted data [20, 3, 11, 4, 5], where the original file is
encrypted by a public key of the user. Searching on encrypted data
requires that given a keyword by the user, the server is able to tell
whether an encrypted file contains the keyword or not, but learns
nothing else about the original file. Private searching on streaming
data requires that the original data is in the clear, but the output of
searching is encrypted. Essentially, private searching on streaming
data and searching on encrypted data are different.

 Private searching on streaming data is also closely related to
Single-database Private Information Retrieval (PIR) [7, 12, 6, 9,
8] and oblivious transfer [15,13], which allows a user to retrieve a
record from a database without the owner of that database being
able to determine which record was selected, and with the
communication cost less than the database size. There are
important differences between private searching on streaming data
and single-database PIR. In the streaming model, the size of the
query must be independent of the stream, as the stream is assumed
to be an arbitrarily large set of data and we do not know the size
of the stream when compiling the query. In contrast, in all PIR
protocols, when creating the PIR query, the user of the PIR
protocol must know the upper bound on the database size. In
addition, the PIR protocol allows one to search a single keyword
in the database and return a single result. If one wants to query

data based on an “OR” of several keywords, then several PIR
queries must be created and sent to the database. Private searching
on streaming data allows us efficiently to query the data based on
an “OR” of a set of keywords.

7. CONCLUSION
In this paper, we have presented three protocols, which support
private searches of single and conjunctive keywords on streaming
data. Our approach adds a new type of query into private
searching on streaming data.

A problem with our solution is that the number of conjunctive
keywords in the private filter is closely related to the number of
arrays of ciphertexts in the encrypted dictionary. Our future work
will investigate how to hide the number of conjunctive keywords
in the private filter.

8. REFERENCES

[1] Bethencourt J., Song D. and Water B. 2006. New
construction and practical applications for private streaming
searching, in Proc. IEEE Symposium on Security and Privacy
(SP’06).

[2] Bethencourt J., Song D., and Water B. 2009. New techniques
for private stream searching, ACM Transactions on
Information and System Security, 12(3), 16:1-32.

[3] Boneh D., Crescenzo G., Ostrovsky R. and Persiano G. 2004.
Public encryption with keyword search, in Proc.
Eurocrypt’04, 506-522.

[4] Boneh D., Goh. E and Nissim K. 2005. Evaluating 2-DNF
formulas on ciphertext, in Proc. TCC’05, 325-341.

[5] Boneh D., Waters B. 2007. Conjunctive, Subset, and Range
Queries on Encrypted Data. In Proc. TCC’07, 535-554

[6] Cachin C., Micali S., Stadler M. 1999. Computationally
private information retrieval with polylogarithmic
communication. In Proc of EUROCRYPT’99, 402-414

[7] Chor B., Coldreich O., Kushilevitz E. and Sudan M. 1995.
Private information retrieval, in Proc. 36th Annual IEEE
Symposium on Foundations of Computer Science
(FOCS’95).

[8] Chang Y. C. 2004. Single database private information
retrieval with logarithmic communication, in Proc.
ACISP’04, 50-61.

[9] Crescenzo G. D., Malkin T., Ostrovsky R. 2000. Single-
database private information retrieval implies oblivious
transfer. In Proc Eurocrypt’00.

[10] Damgård I. and Jurik M. 2001. A generalisation, a
simplification and some applications of Paillier's
probabilistic public-key system, in Proc. PKC’01, 119-136

[11] Golle P., Staddon J., and Waters B. 2004. Secure conjunctive
keyword search over encrypted data. In Proc. ACNS’04, 31-
45.

[12] Kushilevitz E. and Ostrovsky R. 1997. Replication is not
needed: single database, computational-private information
retrieval, in Proc. 36th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’97), 364-373.

[13] Lipmaa H. 2005. An oblivious transfer protocol with log-
squared communication, in Proc. ISC’05.

[14] Menezes A., Van Oorschot P. and Vanstone S. 1997.
Handbook of Applied Cryptography, CRC Press.

[15] Naor M., and Pinkas. B. 1999. Oblivious transfer and
polynomial evaluation, in Proc. STOC’99.

[16] Okamoto T. and Uchiyama S. 1998. A new public-key
cryptosystem as secure as factoring. In Proc Eurocrypt’98,
308-318.

[17] Ostrovsky R. and Skeith W. 2005. Private searching on
streaming data, in Proc. Crypto’05, 223-240.

[18] Ostrovsky R. and Skeith W. 2007. Private searching on
streaming data, Journal of Cryptology, 20(4), 397-430.

[19] Paillier P. 1999. Public key cryptosystems based on
composite degree residue classes, in Proc. Eurocrypt’99,
223-238.

[20] Song D. X., Wagner D., Perrig A. 2000. Practical techniques
for searches on encrypted data. In Proc. IEEE Symposium on
Security and Privacy 2000, 44-55.

