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ABSTRACT 

Private searching on streaming data allows a user to collect 
potentially useful information from huge streaming sources of 
data without revealing his or her searching criteria. This technique 
can be used for airports, without knowing a classified “possible 
terrorists” list, to find if any of hundreds of passenger lists has a 
name from the “possible terrorists” list and if so his/hers itinerary. 
Current solutions for private searching on streaming data only 
support searching for “OR” of keywords or “AND” of two sets of 
keywords. In this paper, we extend the types of private queries to 
support searching on streaming data for an “OR” of a set of both 
single and conjunctive keywords, such as 
�� ⋁��⋁…⋁���⋁�	�⋀���⋁�	�⋀���⋁…⋁
	��⋀����, where  
��, … , ���	are single keywords and �	�, ���, … , �	�� , 	��� are 
unordered conjunctive keywords. Our protocol is built on Boneh 
et al.’s result for the evaluation of 2-DNF formulas on ciphertexts. 
The size of our encrypted dictionary is 	��|�|� only, which is 
much less than |�|�, the size of the encrypted dictionary if 
conjunctive keywords �	� , ��� (� = 1,2, … , �) is treated as single 
keyword, where we assume 	� , �� ∈ � (� = 1,2, … , �).  

  

1. INTRODUCTION 
Private searching on streaming data has been motivated by a 
crucial task for the intelligence community, which is to collect 
potentially useful information from huge streaming data [17, 18]. 
For example, in airports one has to find if any of hundreds of 
passenger lists has a name from the “possible terrorists” list and if 
so his/hers itinerary. Usually, data sources are huge, and it is 
impractical to keep all the data for such an analysis. A different 
more practical approach is continuously performing on-line 
filtering of data streaming from multiple sources, one 
document/message/packet at the time. Such an approach allows 
one to immediately discard most of the data, while retaining only 
a small fraction of potentially useful data.  

      In almost all cases, data is categorized as potentially useful 
based on certain searching criteria. Keeping these criteria 
classified is clearly crucial, as adversaries (like terrorists) could 
easily prevent their data from being collected by simply making 
sure that their data does not match the data search criteria. A naïve 
solution to this problem is to collect all streaming data in a secure 
environment, and then filter the information according to 
classified search criteria. This approach adds considerable cost in 
terms of communication and may result in delay in the delivery of 
information or even in the loss of data, if the transfer to the secure 
environment is interrupted. Furthermore, it requires considerable 

cost of storage to hold this (un-filtered) data in case the transfer to 
the classified setting is delayed. 

      Obviously, a far more preferable solution is to filter all these 
data-streams directly at their sources. A crucial issue is how we 
can do this while at the same time keeping secret the searching 
criteria, even in the case in which the system managing the data-
streams is compromised by attackers.  

      The first solution to this problem, referred to as private 
searching on streaming data, was proposed by Ostrovsky and 
Skeith [17]. Their protocol is based on the homomorphism of the 
cryptosystems [19, 10], which allows one to compute ������ +
���, given ������� and �������, where 	������ is an 
encryption of plaintext m with public key !�.  

      In the Ostrovsky-Skeith protocol, the public dictionary 
� = "#�, #�, … ,#|$|%	of keywords is fixed. To construct a 
program for the disjunction of some classified keywords & =
{��, ��, … , �|(|} ⊆ �, the user generates a pair of public and 
private keys �!�, +��, and produces an array of ciphertexts 
, = {-�, -�, … , -|$|}, one for each keyword #� ∈ �, such that if 
#� ∈ &, then -� = ����1�; otherwise, -� = ����0�. In addition, 
the user constructs a buffer � with /�	boxes, each of them is 
initialized with two ciphertexts (����0�, ����0�), where � is the 
upper bound on the number of matching documents the buffer can 
accommodate. The array of ciphertexts , and the buffer � are 
deployed in a server monitoring the streaming data.  

      To perform private searching, the data is segmented into 
streaming files 0 = {1�, 1�, … }, each of which is composed of a 
number of words, and filtered one at a time. To process a file 1�, 
the server computes a product of ciphertexts corresponding to the 
keywords found in the file, i.e., 2� = ∏ -456∈78 = ����|1� ∩ &|�, 
and  :� = 2�78 = ����1� ∙ |1� ∩ &|�, due to the homomorphic 
property of the public key cryptosystem. Then the server copies 
�2� , :�� into / randomly chosen boxes in the buffer � by 
multiplying corresponding ciphertexts. If 1� ∩ & = ∅, this step 
will add an encryption of 0 to each box, having no effect on the 
corresponding plaintext.  If 1� ∩ & ≠ ∅, then the matching file can 

be retrieved by computing 1� = $>?�@8�
$>?�A8�, where �B� stands for 

decryption with the private key +�. 

      If two different matching files are ever added to the same 
buffer box, a collision will result and both copies will be lost. To 
avoid the loss of matching files, this protocol make the buffer � 
sufficiently large so that each matching file can survive in at least 
one buffer box. After the content of buffer � is returned to the 
user, the user is able to retrieve all matching files.   



      Using results by Boneh, Goh, and Nissim [4], Ostrovsky and 
Skeith [17, 18] extended the type of queries from an “OR” of  
keywords to queries with an “AND” of two sets of keywords 
without increasing the program size.  

      Their basic idea for searching all documents C such that 
�C⋂&� ≠ E�⋀�C⋂&� ≠ E�, where &�, &� are two sets of 
“keywords”, is to construct two arrays of ciphertexts ,� =
{-��, -��, … , -|$|� }, where -�� is the encryption of 1 if #� ∈ &� and 

otherwise is the encryption of 0, and ,� = {-��, -��, … , -|$|� }, where 

-�� is the encryption of 1 if #� ∈ &� and otherwise is the 
encryption of 0. To process a document C,  the program computes 
F� = ∏ -4�56∈G = ���(|C ∩ &�|), F� = ∏ -4�56∈G = ���(|C ∩
&�|) and then F = :(F�, F�), where : is a bilinear map. If 
(C⋂&� ≠ E)⋀(C⋂&� ≠ E), then F is an encryption of 1. 
Otherwise, F is an encryption of 0.  

      In 2006, Bethencourt, Song and Waters proposed a different 
method for retrieving matching files from the buffer [1, 2]. Like 
the approach by Ostrovsky and Skeith, they use an encrypted 
dictionary, and no-matching files have no effect on the contents of 
the buffer. However, rather than using one large buffer and 
attempting to avoid collisions, they employ three buffers – the 
data buffer 0, --buffer ,, and the matching indices buffer H, each 
of them has � boxes, and the matching files are then retrieved by 
solving a linear system.  

      The Bethencourt-Song-Waters protocol is able to process I 
files {1�, 1�, … , 1J} of streaming data. For each file 1�, the server 
computes 2� 	(:�) as the Ostrovsky-Skeith protocol, and copies 
2� 	(:�) randomly over approximately half of the locations across 
the buffer ,	(0). A pseudorandom function K(�, L) is used to 
determine with probability ½ whether 2� 	(:�) is copied into a 
given location L.  In addition, the server further copies 2� into a 
fixed number of locations in the matching-indices buffer. This is 
done by using essentially the standard procedure for updating a 
Bloom filter. Specifically, they use � hash functions ℎ�, ℎ�, … ℎ� 
to select the � locations. The locations of the matching-indices 
buffer H that 2� is multiplied into are taken to be 
ℎ�(�), ℎ�(�), … ℎ�(�).     
      After the contents of all three buffers are returned, the user 
decrypts all buffers at first. For each of the indices � ∈ {1,2, . . , I}, 
the user computes ℎ�(�), ℎ�(�), … ℎ�(�) and checks the 
corresponding locations in the decrypted matching-indices buffer. 
If all locations are non-zero, � is added into the list of potential 
matching indices. Given the potential matching indices 
{O�, O�, … , Oℓ}, the user next determines the values of 
{PQ� , PQ� , … , PQℓ}, where PQ8 = |1Qℓ ∩ &|, by solving a system of 
linear equations constructed with the decrypted --buffer. As last 
step, the user determines the content of the matching files 
1Q� , 1Q� , … , 1Qℓ by solving another system of linear equations 
constructed with the decrypted data buffer.  

Our Contribution: Current solutions for private searching on 
streaming data can only search for an “OR” of keywords [17, 18, 
1, 2] or for an “AND” of two sets of keywords from streaming 
data [17, 18]. Without loss of generality, these queries can be 
expressed as either ��⋁��⋁…⋁�|(| or (�� ∨ �� ∨ …∨ �S) 	∧
(�SU� ∨ �SU� ∨ …∨ �|(|). The restricted form of queries 
supported by those protocols limits the applications of private 
searching on streaming data in practice.  

       For example, suppose we wish to find if any list, among 
hundreds of passenger lists, has a name from a list of “possible 
terrorists” V = {(0�, ��), (0�, ��),… , (0�, ��)} where (0� , ��) 
denotes the first name and the last name of a terrorist. If we 
perform a query of the form  (0�||��)⋁(0�||��)⋁…⋁(0�||��), the 
dictionary � for private searching needs to be  � × �, where �	 is 
the set of all possible names. Such dictionary is too large for 
practical use. If we perform a query of the form 
(0�⋁0�⋁…⋁0�) ∧ (��⋁�� ∨ …∨ ��), the dictionary � needs to be  
2� only, but some innocent passengers, e.g., (0�, ��), will 
incorrectly appear in the search results.  

      In this paper, we propose a protocol to perform a private query 
of the form �� ⋁��⋁…⋁���⋁(	�⋀��)⋁(	�⋀��)⋁…           

⋁
	��⋀���� where  ��, … , ���	are single keywords and 
(	�, ��), … , (	�� , 	��) are unordered conjunctive keywords. Our 
algorithm is built on Boneh et al.’s result concerning the  
evaluation of 2-DNF formulas on ciphertexts. The size of our 
encrypted dictionary is 	�(|�|) only, which is much less than 
|�|�, the size of the encrypted dictionary if conjunctive keywords 
(	� , ��) (� = 1,2, … , �) is treated as single keyword, where we 
assume 	� , �� ∈ � (� = 1,2, … , �).  

      Following up the intuition of the Ostrovsky-Skeith protocol 
[17, 18], our basic idea is to create a program that conditionally 
and obviously performs encryptions of a document based on the 
matching of keyword criteria, and then writes these encryptions to 
random locations in a buffer, using homomorphic properties of the 
encryption scheme. By “conditionally”, we mean that if a 
document matches the query, our private searching protocol will 
generate an encryption of the document itself. Otherwise, it will 
generate an encryption of the identity element. The key idea is 
that the encryption of the identity element that the protocol 
computes if the document does not match the secret criteria will 
be indistinguishable from the encryption of the matching 
document. Both matching and non-matching documents appear to 
be treated precisely in the same way. Any party which observes 
the execution is unable to learn if the search condition is satisfied, 
as the protocol is executed as a straight-line code (i.e., all 
branches that the protocol executes are independent of the search 
criteria), so that the conditions are never known unless the 
underlying encryption scheme is broken.  

      Like the Ostrovsky-Skeith protocol for a query with an 
“AND” of two sets of keywords [17, 18], our protocol is also 
based on the results of Boneh, Goh and Nissim [4]. Unlike their 
protocol, our protocol supports private searches for both single 
and conjunctive keywords.     

      

2. PRELIMINARIES 
In this section, we briefly review the results of Boneh, Goh and 
Nissim in evaluating 2-DNF formulas on ciphertext. [4]. 

2.1 Bilinear Group 
We use the following notations: 

1. X and X� are two (multiplicative) cyclic groups of finite 
order P. 

2. K is a generator of X. 



3. : is a bilinear map ::	X	�X�. In other words, for all 
Z, F ∈ X and [, \ ∈ ℤ,  we have :�Z^ , F_� = :�Z, F�^_. 
We also requires that :�K, K� is a generator of X�. 

      We say that X	is a bilinear group if a group X� and a bilinear 
map as above exist. 

 

2.2 A Homomorphic Public Key System 
 

The system resembles the Paillier [19] and the Okomoto-
Uchiyama [16] encryption schemes. The three algorithms making 
up the system is described as follows: 

Key Generation `abcad�e�: Given a security parameter f ∈
ℤU, run g�f� to obtain a tuple �h�, h�, X, X�, :�. Let i = h�h�. 
Pick two random generators K, Z j←X and set ℎ = Zl�. Then ℎ is a 
random generator of the subgroup of X of order h�. The public 
key is m& = �i,X, X�, :, K, ℎ�.  The private key �& = h�.  
Encryption ndopbqr�s`,t�: Assume the message space 
consists of integers in the set {0,1, … , u} with u < h�. We encrypt 
bits in which case u = 1. To encrypt a message � using the 

public key m&, pick a random 	w j← {0,1, …i} and compute 

, = Kxℎy ∈ X 

 Output , as the ciphertext.  

Decryption zaopbqr�{`, |�: To decrypt a ciphertext , using 
the private key �& = h�, observe that  

,l� = �Kxℎy�l� = �Kl��x 

      Let K} = Kl�. To recover �, it suffices to compute the discrete 
log of ,l� base K}. Since 0 ≤ � ≤ u, this takes expected time 
O(√u) using Pollard’s lambda method [14]. 

      Note that decryption in this system takes polynomial time in 
the size of the message space u. Therefore, the system can only be 
used encrypt short messages.  

 

2.3 Homomorphic Properties 
 

The system is clearly additively homomorphic. Let m& =
�i, X, X�, :, K, ℎ� be a public key. Given encryptions ,�, ,� ∈ X� 
of messages ��, �� ∈ {0,1, … , u} respectively, anyone can create 
a uniformly distributed encryption of �� +��	��2	i by 
computing the product , = ,�,�ℎy for a random w in 
{0,1, … ,i − 1}. 
      More importantly, anyone can multiply two encrypted 
messages once using the bilinear map. Let K� = :�K, K� and 
ℎ� = :�K, ℎ�, then K�is of order P and ℎ	� is of order h�. There is  
some (unknown) O ∈ ℤ such that ℎ = KQl�. Suppose that we are 
given two ciphertexts ,� = Kx�ℎy� ∈ X and ,� = Kx�ℎy� ∈ X. 
To build an encryption of the product ����	��2	i, (1) pick a 
random  w ∈ ℤ�, and (2) let , = :�,�, ,��ℎ�y ∈ X�. Then 

, = :�,�, ,��ℎ�y 
= :�Kx�ℎy� , Kx�ℎy��ℎ�y 
= :�Kx�UQl�y� , Kx�UQl�y��ℎ�y 
= :�K, K��x�UQl�y���x�UQl�y��ℎ�y 

= :�K, K�x�x�UQl��x�y�Ux�y�UQl�y�y��ℎ�y 
= :�K, K�x�x�ℎ��yUx�y�Ux�y�UQl�y�y�� 

where  w +��w� +��w� + Oh�w�w� is distributed uniformly in ℤ� 
as required. Thus ,	is a uniformly distributed encryption of 
����	��2	P, but in X� rather than X. We note that the system is 
still additively homomorphic in X�.  
 

3. OUR PROTOCOLS 

3.1 System Model 
We consider a system model as shown in Fig. 1, where a user 
wants to retrieve the documents (or messages) that include a set of 
unordered conjunctive keywords from streaming data sources.  

 

 

 

 

       

 

 

 

 

 

 

 

 

Fig. 1 System Model 

 

      First of all, the user prepares a filtering program with the set 
of single keywords, ��, … , ���	 and unordered conjunctive 
keywords, �	�, ���, … , �	�� , 	���, and deploys the program at 
each public data source.  The program processes a document at a 
time, and only encrypts and stores in its storage the document 
which satisfies the condition. 	�� ⋁��⋁…⋁���⋁�	�⋀���⋁     
�	�⋀���⋁…⋁
	��⋀����. After a certain time period, the 
program sends its storage content back to the user. Finally, the 
user decrypts the contents of the storage and obtains the matching 
documents.   

      The program is executed at a public data source and may fall 
into an adversary’s hand. If this happens, we require that the 
adversary cannot obtain any classified keywords from the 
program. 

 

3.2 Private Searching for Conjunctive 
Keywords with Space Efficiency 
 

We first formally define our private searching protocol for 
conjunctive keywords. The protocol is efficient in terms of the 
size of the encrypted dictionary.  It is composed of the algorithms: 
the key generation algorithm (Key-Gen), the filter generation 
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algorithm (Filter-Gen), the buffer decryption algorithm (Buffer-
Decrypt) defined as follows: 

Key-Gen(�) 

It executes the key generation algorithm of the Boneh, Goh and 
Nissim system to produce the public key m& = �i, X, X�, :, K, ℎ�, 
where K is a generator, i = h�h�, and ℎ	is a random element of 
order h�. The private key is �& = h�. We make the additional 
assumption that |�| < h�.  
Filter-Gen(�,�, m&,�, /) 

This algorithm constructs and outputs a private filter program 0 
for the query � = (	�⋀��)⋁(	�⋀��)⋁…⋁(	�⋀��), which 
searches for all documents C satisfying �. Assume that the public 
dictionary is � = "#�, #�, … , #|$|%	. 0 contains the following 
data: 

• A buffer �(/) of size 2/�, indexed by blocks with the 
size of an element of X� times the document size, with 
every position initialized to the encryption of the 
identity element of X�, where � is the upper bound on 
the number of matching documents we wish to save in 
the buffer �(/). 

• P arrays of ciphertexts ,4 = {-�4 , -�4 , … , -|$|4 } (L =
1, 2, … , P), each corresponding to one conjunctive 

keyword (	4 , �4), where -�4 is the encryption of 1 if 
#� ∈ {	4 , �4} and otherwise the encryption of 0. Each 
array of ciphertext contains two encryptions of 1 and 
|�| − 2 encryptions of 0. 

 

      0 then proceeds with the following steps upon receiving an 
input document C.  

1. It constructs a set of temporary collections ,�4 = {-�4 ∈
,4|#� ∈ C⋂�} for  L = 1, 2, … , P. 

2. To process a word #S in C⋂�, it computes 
 

FS =� :(-S4 ,� -�4��S,�86∈��6
)

�

4��
∈ X� 

 
where : is a bilinear map. If there exists a word 
#� ∈ C⋂� and � > � such that (#S⋀	#�) ∈
(	�⋀��)⋁(	�⋀��)⋁…, ⋁(	�⋀��) then FS is an 
encryption of 1 in X�. Otherwise, FS is an encryption of 
0.  

3. It computes F = ∏ FS5�∈G⋂$ . If the document C 
satisfies the condition (	�⋀��)⋁(	�⋀��)⋁…                 
⋁(	�⋀��), then F is an encryption of a positive integer 
in X�. Otherwise, F is an encryption of 0.  

4. It performs a bitwise encryption of C using encryption 
of 0 in X� for 0’s and using F to encrypt 1’s to create a 
vector of X� elements.  

5. It chooses / random locations in �, takes the encryption 
of Step 4, and position-wise multiplies these two vectors 
storing the result back in � at the same location.  

 

Buffer-Decrypt(�, �&) 

It decrypts � one block at a time using the decryption algorithm of 
the BGN system, interpreting the non-identity elements of X� as 
1’s and 0’s as 0, outputting the non-zero, valid documents.  

Correctness of the Private Filter  

We show the correctness of our protocol with the following two 
facts:  

• In our protocol, non-matching documents are stored 
with negligible probability. In fact, they are stored with 
probability 0 since clearly (i) if #S	in Step 2 does not 
match with any classified keywords 	� , ��, …, 	� , 	� , 

then -S4 	is the encryption of 0 and thus  FS is the 
encryption of 0; (ii) if #S does match with a classified 
keyword, e.g., 	�, but �� ∉ C − {#S}, then FS is the 
encryption of 0 as well. So, the buffer contents will be 
unaffected by the program executing on input a non-
matching document C.  
 

• In our protocol, all matching documents are saved with 
overwhelming probability. Clearly, if a document C 
satisfies (	�⋀��)⋁(	�⋀��)⋁…⋁(	�⋀��), e.g., 
C	satisfies (	�⋀��), when the program processes  
#S = 	� and �� ∈ C − {#S}, then FS is an encryption 
of 1. Therefore, F is an encryption of a positive integer. 
Following up the “colour-survival” game [17, 18] for 
placing the matching document in the buffer, all 
documents will be saved with overwhelming 
probability in /. 
 

Remark: In [18], the color-survival game is introduced and a 
Lemma is proved as follows. 

Color-survival game: Let �,/ ∈ �U, and suppose we have m 
different colors, call them {-���w�}���x and / balls of each color.  
We throw the /� balls uniformly at random into 2/� bins, call 
them {\�P�}�����x. We say that a ball “survives” in \�P4 , if no other 
ball (of any color) lands in \�P4. We say that -���w� “survives” if 
at least one ball of color colori survives. We say that the game 
succeeds if all � colors survive, otherwise we say that it fails. 

Lemma.  The probability that the color-survival game fails is 
negligible in /. 

 

3.3 Private Searching for Single and 
Conjunctive Keywords with Space Efficiency 
 

Based on our protocol for conjunctive keywords, we now formally 
present our private searching protocol for both single and 
conjunctive keywords, which is also composed of three 
algorithms: the key generation algorithm (Key-Gen), the filter 
generation algorithm (Filter-Gen), the buffer decryption 
algorithm (Buffer-Decrypt) as follows: 

 

Key-Gen(�) 

It is the same as the algorithm (Key-Gen) described in section 
3.2. 

Filter-Gen(�, �, m&,�, /) 

This algorithm constructs and outputs a private filter program 0 
for the query � = ��⋁ ��⋁…⋁���⋁(	�⋀��)⋁(	�⋀��)⋁…⋁  


	��⋀����, which searches for all documents C satisfying �.  



Assume that the public dictionary is � = "#� , #�, … , #|$|%	. 0 
contains the following data: 

• A buffer ��/� of size 2/�, indexed by blocks with the 
size of an element of X� times the document size, with 
every position initialized to the encryption of the 
identity element of X�. 

• P� arrays of ciphertexts ,4 = {-�4 , -�4 , … , -|$|4 } (L =
1, 2, … , P�), each corresponding to one conjunctive 

keyword �	4 , �4�, where -�4 is the encryption of 1 if 
#� ∈ {	4 , �4}  and otherwise the encryption of 0.  

• One array of ciphertexts ,4 = {-�4 , -�4 , … , -|$|4 } (L = P� +
1), corresponding to single keywords ��, ��	, … , ���, 
where -�4 is the encryption of 1 if #� ∈ 	 {�� , ��	, … , ���} 
and otherwise the encryption of 0. 

• P� + 1 ciphertexts 24 	�L = 1, 2, … , P� + 1�, each 
corresponding to one array of ciphertexts ,4, where 24  is 
the encryption of 1 if L = P� +1 and otherwise the 
encryption of 0.  

 

      0 then proceeds with the following steps upon receiving an 
input document C.  

1. It construct a set of temporary collections ,�4 = {-�4 ∈,4|#� ∈ C⋂�} for  L = 1, 2, … , P� + 1. 
2. To process a word #S in C⋂�, it computes  

 

FS =� :�-S4 , 24� -�4��S,�86∈��6
�

��U�

4��
∈ X� 

 
where : is a bilinear map. If #S ∈ ��, … , ��� or there 
exists a word #� ∈ C⋂� and � > � such that 
�#S⋀	#�� ∈ {�	�⋀���, �	�⋀���, …, �	��⋀���� then FS 
is an encryption of 1 in X�. Otherwise, FS is an 
encryption of 0.  

3. It computes F = ∏ FS5�∈G⋂$ . If the document C 
satisfies the condition �� ⋁��⋁…⋁���⋁�	�⋀���⋁ 
�	�⋀���⋁…⋁
	��⋀����, then F is an encryption of 
positive integer in X�. Otherwise, F is an encryption of 
0.  

4. It performs s bitwise encryption of C using encryption 
of 0 in X� for 0’s and using F to encrypt 1’s to create a 
vector of X� elements.  

5. It chooses / random locations in �, takes the 
encryption of Step 4, and position-wise multiplies these 
two vectors storing the result back in � at the same 
location.  

 

Buffer-Decrypt(�, �&) 

Same as described in section 3.2. 

Correctness of Private Filter  

Same as described in section 3.2. 

 

3.4 Private Searching for Single and 
Conjunctive Keywords with Computation 
Efficiency 
 

The protocols described in sections 3.2 and 3.3 are efficient in 
terms of the size of the encrypted dictionary. However, they 
require the computation of a large number of pairing. We now 
formally define our private searching protocol for both single and 
conjunctive keywords, which requires computing of lower number 
of pairings. The protocol is also composed of key generation 
algorithm (Key-Gen), filter generation algorithm (Filter-Gen), 
buffer decryption algorithm (Buffer-Decrypt) as follows: 

Key-Gen(�) 

It is the same as the algorithm (Key-Gen) described in section 
3.2. 

Filter-Gen(�, �, m&,�, /) 

This algorithm constructs and outputs a private filter program 0 
for the query � = ��⋁ ��⋁…⋁���⋁�	�⋀���⋁�	�⋀���⋁…⋁  


	��⋀����, which searches for all documents C satisfying �.  
Assume that the public dictionary is � = "#�, #�, … , #|$|%	. 0 
contains the following data: 

• A buffer ��/� of size 2/�, indexed by blocks with the 
size of an element of X� times the document size, with 
every position initialized to the encryption of the 
identity element of X�. 

• P� arrays of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4}  
�L = 1, 2, … , P�), where -��,4 is the encryption of 1 if 
#� = 	4 and otherwise the encryption of 0. Each array 
of ciphertext contains one encryptions of 1 and |�| − 1 
encryptions of 0. 

• P� arrays of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4}  
�L = 1, 2, … , P�), where -��,4 is the encryption of 1 if 
#� = �4 and otherwise the encryption of 0. Each array 
of ciphertext contains one encryptions of 1 and |�| − 1 
encryptions of 0. 

• One array of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4} 
(L = P� + 1), corresponding to the single keywords 

�� , ��	, … , ���, where -��,4 is the encryption of 1 if 
#� ∈ 	 {��, ��	, … , ���} and otherwise the encryption of 0. 

• One array of ciphertexts ,�,4 = {-��,4 , -��,4 , … , -|$|�,4} 
(L = P� + 1), where -��,4 is the encryption of 0. 

• P� + 1 ciphertexts 24 	�L = 1, 2, … , P� + 1�, each 
corresponding to two arrays of ciphertexts ,�,4 and ,�,4, 
where 24 is the encryption of 1 if L = P� +1 and 
otherwise the encryption of 0.  

 

      0 then proceeds with the following steps upon receiving an 
input document C.  

1. It constructs a set of temporary collections ,��,4 =
{-��,4 ∈ ,�,4|#� ∈ C⋂�} for  L = 1, 2, … , P� + 1 and 

,��,4 = {-��,4 ∈ ,�,4|#� ∈ C⋂�} for L = 1, 2, … , P� + 1. 
2. It computes  



 

F =� :�� -��,4�8�,6∈���,6
, 24� -��,4�8�,6∈���,6

�
��U�

4��
∈ X� 

 
where : is a bilinear map. If the document C satisfies 
the condition �� ⋁��⋁…⋁���⋁�	�⋀���⋁�	�⋀��� 
⋁…⋁
	��⋀����, then F is an encryption of positive 
integer in X�. Otherwise, F is an encryption of 0.  

3. It bitwise encrypts C using encryption of 0 in X� for 0’s 
and using F to encrypt 1’s to create a vector of X� 
elements.  

4. It chooses / random locations in �, takes the 
encryption of Step 4, and position-wise multiplies  
these two vectors storing the result back in � at the 
same location.  

 

Buffer-Decrypt(�, �&) 

Same as described in section 3.2. 

Correctness of Private Filter  

Same as described in section 3.2. 

Remark: Our protocol with computation efficiency can be 
modified to support more general queries. For example, � =
�� ⋁�� ⋁[�	�� ⋁	���⋀���� ⋁���⋁����]⋁�	�∧���. For this 
query, the protocol constructs the array of ciphertexts ,�,� =
{-��,�, -��,�, … , -|$|�,�}, where -��,� is the encryption of 1 if #� ∈
{	��, 	��} and otherwise the encryption of 0; and the array of 
ciphertexts ,�,� = {-��,�, -��,�, … , -|$|�,�}, where -��,� is the encryption 

of 1 if #� ∈ {��� , ���, ���} and otherwise the encryption of 0.  

 

4. SECURITY ANALYSIS 

4.1 Security Model 
A security model for private searching on streaming data has been 
built by Ostrovsky and Skeith in [17, 18] as follows.  

      We consider a universe of words � = {0,1}∗, and a dictionary 
� ⊂ � with |�| < ∞. We think of a document as an ordered, 
finite sequence of words in �, however, it will often be 
convenient to look at the set of distinct words in a document. We 
define a set of keywords to be any subset & ⊂ �. Finally, we 
define a stream of documents � simply to be any sequence of 
documents. 

      We think of a query type, � as a class of logic expression in 
∧,∨, ∼ with a number of binary variables. Given a query type, one 
can input keywords & ⊂ � where & = {��}���Q  and create a 
function, call �(: � → {0,1}, that takes the documents, and returns 
1 if and only if a document matches the criteria.  �((C) is 
computed simply by evaluating � on inputs of the form �� ∈ C, 
We call �((C) a query over keyword &. 

Definition 4.1 For a query �( on a set of keywords &, and for a 
document C, we say that C matches query �( if and only if 
�((C)=1. 

Definition 4.2 For a fixed query type �, a private filter consists of 
the following three probabilistic polynomial time algorithms: 

1. `abcad(�): It takes a security parameter � and 
generate public key m& and private key �&. 

2. ���rapcad(�, �(, m&,�, /): It takes a dictionary �, a 
query �( ∈ � for the set of keywords &, and generate a 
search program 0. 0 searches any document stream 
�	(processing one document at a time and updating a 
buffer �) and collects up to � documents that match �( 
in �, outputting an encrypted buffer B that contains the 
query results, where |�| = �(/) throughout the 
execution. 

3.  ���rapzaopbqr(�, �&): It decrypts an encrypted 
buffer �, produced by 0 as above, using the private key 
�& and produces output �∗, a collection of the matching 
documents from �. 

Definition 4.3 (Correctness of a Private Filter) Let 0 =
���rapcad(�, �(, m&,�, /) and (m&, �&) = `abcad(�), 
� = 0(�) and �∗ = ���rapzaopbqr(�, �&). We say a private 
filter is correct if the following condition holds: 

• If |{C ∈ �|�((C) = 1}| ≤ �, then 

mw[�∗ = {C ∈ �|�((C) = 1}] > 1 − P:K(/)	
• If |{C ∈ �|�((C) = 1}| > �, then 

mw[(�∗ ⊂ {C ∈ �|�((C) = 1)⋁��∗ =⊥�}] > 1 − P:K�/�	
where ⊥ is a special symbol denoting buffer overflow, and the 
probabilities are taken over all coin-tosses of 0, ���rapcad and 
`abcad.  

Definition 4.4 (Privacy) Fix a dictionary �. Consider the 
following game between an adversary 	, and a challenger ,. The 
game consists of the following steps.  

1. , first runs ̀ abcad��� to obtain m& and �& and then 
sends m& to 	.  

2. 	 chooses two queries for two sets of keywords, 
��(� , ��(� , with &�, &� ⊂ � and sends them to ,.  

3. , chooses a random bit \ ∈ {0,1} and executes 
���rapcad��, �_(� , m&,�, /� to create 0_, the 
filtering program for the query �_(�, and then sends 
0_	back to 	.  

4. 	�0_� can experiment with the code of 0_in an arbitrary 
way, and finally outputs \  ∈ {0,1}. 

      The adversary wins the game if \’ = \ and loses otherwise. 
We define the adversary 	’s advantage in this game to be 

	2F¢��� = £Pr�\ = \ � − 12£ 
      We say that a private filter is semantically secure if for any 
adversary PPT 	, we have that 	2F¢��� is a negligible function, 
where the probability is taken over coin-tosses of the challenger 
and the adversary. 

 

4.2 Security Analysis 
 

Our protocol is based on the Boneh-Goh-Nissim public key 
system [4], which builds its security on a subgroup 



indistinguishability assumption, related to the difficulty of 
computing discrete logs in the groups X, X�.  
Theorem 4.5 Assume the Boneh-Goh-Nissim public key system 
is semantically secure, then our private searching protocols for 
single and conjunctive keywords is semantically secure according 
to Definition 4.4. 

Proof: Denote by ℇ the encryption algorithm of the Boneh-Goh-
Nissim public key system. Suppose that there exists an adversary 
	 that can gain a non-negligible advantage § in our semantic game 
from Definition 4.4.  Then 	 could be used to gain an advantage 
in breaking the semantic security of the Boneh-Goh-Nissim public 
key system as follows:  

      At first, we initiate the semantic security game for the Boneh-
Goh-Nissim public key system with a challenger ,. , will send us 
with the public key m& = �P, X, X�, :, K, ℎ�, where P = h�h�, K is 
a random generator of X, ℎ = Zl�, and : is bilinear map.  

      Next, we initiate the private filter semantic security game with 
an adversary 	. 	 will give us two queries ��, ��in � for some 
sets of single and conjunctive keywords &�, &�, respectively.  

      Assume the private filters for �� , �� are 0�, 0�, respectively, 
and the sequences of the Boolean plaintexts corresponding to the 
ciphertexts in 0�, 	0� are C�, 	C�, respectively. If the lengths of the 
two sequences are not equal, 0s are appended.   

      After sending C�	and C� to the challenger ,, , replies us with 
the encryptions of all Boolean plaintexts in one of these two 
sequences, denoted as -_ = ℰ�C_�, where \ ∈ {0,1}.  
      Now we give this private filter composed by  -_ back to 	. 
The private filter is equivalent to either 0� or 0�. 	 returns a guess 
\’. We use 	’s guess as our guess. As our behavior is 
indistinguishable from an actual challenger, 	 will guess 
\	correctly with probability ½+	§, and hence we have obtained a 
non-negligible advantage in the semantic security game for the 
Boneh-Goh-Nissim public key system, a contradiction to our 
assumption. Therefore, our system is secure according to 
Definition 4.4. 

 

5. PERFORMANCE ANALYSIS 
 

Three protocols are described in section 3. The first protocol 
described in section 3.2, denoted as Protocol I, can be used to 
search conjunctive keywords only. The protocols described in 
sections 3.3 and 3.3, denoted as Protocol II and Protocol III, 
respectively, are able to search for both single and conjunctive 
keywords.     

      Protocol I is a special case of Protocol II. Both of them aim to 
achieve space efficiency in terms of the size of encrypted 
dictionary.  

      For a query � = �	�⋀���⋁(	�⋀��)⋁…⋁
	��⋀����, the 
size of encrypted dictionary required in Protocol I is  P�|�|.  For a 
query � = �� ⋁��⋁…⋁���⋁(	�⋀��)⋁(	�⋀��)⋁…⋁  


	��⋀����, the size of encrypted dictionary in Protocol II is 
(P� + 1)|�|, independent of the number of single keywords P�.  

      However, both Protocol I and Protocol II require to compute a 
large number of pairings :, which is even more expensive than 
computing modular exponentiation for large modulo.  To process 
a document C, the number of pairing computation required in 
Protocol I is P�|C|, and the number of pairing computation 
required in Protocol II is (P� + 1)|C|.   
      Protocol III aims to achieve computation efficiency by 
reducing the number of pairing computation required. However, it 
requires a longer encrypted dictionary. For a query � =
�� ⋁��⋁…⋁���⋁(	�⋀��)⋁(	�⋀��)⋁…⋁  
	��⋀����, the 
number of pairing computation required to process a document 
C	in Protocol III is P� + 1 only, independent of both the size of 
the document |C| and the number of single keywords P�. But the 
size of the encrypted dictionary required in Protocol III is 
2(P� + 1)|�|.  
A performance comparison of the three protocols is shown as in 
Tab. 1. 

Protocols Size of Encrypted 
Dictionary   

Number of Pairing 
Computation  

Protocol I P�|�| P�|C⋂�| 
Protocol II (P� + 1)|�| (P� + 1)|C⋂�| 
Protocol III 2(P� + 1)|�| P� + 1 

 

Tab. 1 Performance Comparison 

If the size of the document C is small (e.g., the document is a list 
of keywords only) and the size of dictionary is large, Protocol II 
will be a better option.  

 

6. RELATED WORK 
 

Private searching on streaming data is related to searching on 
encrypted data [20, 3, 11, 4, 5], where the original file is 
encrypted by a public key of the user. Searching on encrypted data 
requires that given a keyword by the user, the server is able to tell 
whether an encrypted file contains the keyword or not, but learns 
nothing else about the original file. Private searching on streaming 
data requires that the original data is in the clear, but the output of 
searching is encrypted. Essentially, private searching on streaming 
data and searching on encrypted data are different. 

      Private searching on streaming data is also closely related to 
Single-database Private Information Retrieval (PIR) [7, 12, 6, 9, 
8] and oblivious transfer [15,13], which allows a user to retrieve a 
record from a database without the owner of that database being 
able to determine which record was selected, and with the 
communication cost less than the database size. There are 
important differences between private searching on streaming data 
and single-database PIR. In the streaming model, the size of the 
query must be independent of the stream, as the stream is assumed 
to be an arbitrarily large set of data and we do not know the size 
of the stream when compiling the query. In contrast, in all PIR 
protocols, when creating the PIR query, the user of the PIR 
protocol must know the upper bound on the database size.  In 
addition, the PIR protocol allows one to search a single keyword 
in the database and return a single result. If one wants to query 



data based on an “OR” of several keywords, then several PIR 
queries must be created and sent to the database. Private searching 
on streaming data allows us efficiently to query the data based on 
an “OR” of a set of keywords.   

 

7. CONCLUSION 
In this paper, we have presented three protocols, which support 
private searches of single and conjunctive keywords on streaming 
data. Our approach adds a new type of query into private 
searching on streaming data. 

A problem with our solution is that the number of conjunctive 
keywords in the private filter is closely related to the number of 
arrays of ciphertexts in the encrypted dictionary. Our future work 
will investigate how to hide the number of conjunctive keywords 
in the private filter.    
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