
CERIAS Tech Report 2011-08
3-Clique Attacks in Online Social Networks

 by Rahul Potharaju, Bogdan Carbunar, Cristina Nita-Rotaru
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

3-Clique Attacks in Online Social Networks

Rahul Potharaju†, Bogdan Carbunar‡, Cristina Nita-Rotaru†

† Department of Computer Science, Purdue University, IN, USA

‡ Pervasive Platforms and Architectures, Motorola Labs, IL, USA

Email: rpothara@purdue.edu, carbunar@motorola.com, crisn@cs.purdue.edu

ABSTRACT
Online Social Networks (OSNs) have become ubiquitous in the past
few years, counting hundreds of millions of people as members. In
this paper we show that the ease of accessing third party informa­
tion by engineering OSN features, makes users vulnerable to infil­
tration attacks. Providing invaluable user context information, such
attacks can become dangerous tools in the hands of spammers and
phishers. Using a set of primitive attacks, we formalize a new infil­
tration attack called the 3-Clique attack. We design an automated
attack system, iFriendU, to demonstrate the effectiveness of these
attacks on more than 10,000 Facebook users. We show that the
3-Clique attack outperforms any existing attack by at least 75% in
the number of users it can befriend. We propose a novel OSN se­
curity framework, called MORPH-x to defend against infiltration
attacks. We show the effectiveness of our solution through exten­
sive simulations on a large Facebook social graph. We prove its
practicality by implementing MORPH-x as a web application and
demonstrate user interest through a user study. We show that our
solution imposes only negligible computing overheads on its users
and succeeds in blocking the studied attacks in 93-98% of the cases.

1. INTRODUCTION
Online Social Networks (OSNs) such as Facebook have become

ubiquitous in the past few years, counting hundreds of millions
of people as members. OSNs allow users to form friendship re­
lationships, join groups, communicate and share information with
friends. Most OSN users are likely to be well behaved. However,
the amount and ease of accessibility of personal information (e.g.,
date of birth, location, status updates) available on such sites is
likely to draw a wide range of users with a malicious intent. Avail­
able information can be used by malicious users to launch spam-
ming and phishing attacks. Most of these attempts have financial
gain as their ultimate goal. Spammers send out mass advertise­
ments to a large number of users in hopes of selling their products.
Phishers, on the other hand, attempt to fraudulently acquire sensi­
tive information from a victim by impersonating a trusted third part
(e.g. a banking corporation). In a study by Gartner [2], about 19%
of all those surveyed reported having clicked on a link in a phishing
email, and 3% admitted to giving up financial or personal informa­
tion. This reasonable yield, despite having little information about
the target victim, suggests that the effect can be more serious when
additional victim information is available.

In this paper, we show that an attacker can obtain such informa­
tion by infiltrating OSNs, using Sybils – fake accounts controlled
by the attacker. To this end, we identify several attacks and for­

malize a novel 3-Clique Attack, to establish and leverage common
context with victims in order to infiltrate even tightly knit commu­
nities. We propose an attack system, called iFriendU, a back-end
driver written in Java to control Mozilla Firefox through Javascript
code injection. We use iFriendU to demonstrate the seriousness of
the 3-Clique attack on more than 10,000 Facebook users over a pe­
riod of 6 months. Our experiments show that the 3-Clique attack
can be easily automated, easy to perform and efficient – up to 78%
of targets fall victims, exceeding by 75% the effectivenss of exist­
ing attacks. Moreover, we show that persistence pays off – repeat­
ing the same attack may turn rejects into accepts and that sharing
more friends with the victim increases the attacker’s success rate.

While public key certificates issued by trusted entities could be
used to mitigate this problem, the tedious and costly registration
process is likely to act as a deterrent to most OSN users. Moreover,
a variety of defenses against Sybil attacks in P2P systems [13, 23,
31, 32] have been proposed in the recent years, relying on the as­
sumption that Sybils cannot establish an arbitrarily large number of
social connections to non-Sybil nodes [25]. One of the conclusions
of the iFriendU-based attack mentioned above is that this assump­
tion does not hold in the context of OSNs thus, rendering these
defenses inapplicable in our context.

Instead, we propose and analyze a defense strategy against infil­
tration attacks in Facebook, that provides user privacy through mul­
tiple lines of defense. MORPH-x, the system implementing our so­
lution, works by inferring trust information between users and their
friends. We classify trust into two classes: direct trust, inferred
directly from a user, and derived trust, inferred through an action
performed by the user, to ensure the flexibility of our defense sys­
tem. MORPH-x is designed to act as a security adviser for a user
to answer the question: “Do I accept this person as my friend?”.
It does this by confining the inviter to a probation list. The in­
viter is removed from this list only when its trust value, as inferred
by MORPH-x, exceeds a certain threshold. Moreover, we propose
several strategies for overcoming cold start problems, where legit­
imate users that do not have enough friends may permanently be
blocked in probation.

We study the defenses provided by our framework and show that
it effectively thwarts the infiltration attacks through extensive sim­
ulations on user data collected from 179,000 Facebook users (in­
cluding 389,000 friendship links). Further, for various MORPH-x
user concentrations, we show that MORPH-x is able to thwart be­
tween 93% (when 10% of all users run MORPH-x) and 98% (when
80% of all users run MORPH-x) of the launched attacks. As a start­
ing point toward proving the feasibility of MORPH-x, we have im­
plemented 1 and stress-tested MORPH-x using 100 PlanetLab [12]
nodes. We show that the MORPH-x client overhead is small: to

1Please visit http://morphx.info to evaluate MORPH-x

http://morphx.info
mailto:crisn@cs.purdue.edu
mailto:carbunar@motorola.com
mailto:rpothara@purdue.edu

process the initial Facebook account information of a user, we re­
quire only 20-40 seconds, even for remote users and during high
system loads.

To understand if users would be interested in a system such as
MORPH-x, we conducted a small-scale user study. We observed
that all the users who participated were enthusiastic about the idea
of tagging their friends. Our results show that the social network
created by Facebook is different from a real-world social network:
people tend to accept many strangers or untrusted people as friends.

The rest of the paper is organized as follows. In Section 2 we
summarize the properties of social networks on which our work
is built and present our attacker model. In Section 3 we present
the attacks and in Section 4 we evaluate their effectiveness using
our attack system, iFriendU. In Section 5 we introduce MORPH-x
and in Section 6 we project its effectiveness and present our imple­
mentation. In Section 7 we discuss related work and conclude in
Section 8.

2. MODEL
We model the OSN as an undirected graph G = (V, E), where

the nodes V represent the registered users and the edges E repre­
sent friend relations. We use e = (u, v) to denote the existence of
a friendship relation e ∈ E between two users u, v ∈ V . Without
loss of generality, we take the particular case of Facebook but it
should be noted that our discussion applies to other OSNs as well.
We emphasize the following properties of the social network:

Ease of Registration. Facebook stores an account for each regis­
tered user. We assume that it is easy for anyone to register a user
account. Registering in today’s OSNs requires the user to solve a
challenge-response CAPTCHA [26] (Completely Automated Pub­
lic Turing test to tell Computers and Humans Apart). Even though
protection schemes like reCAPTCHA (introduced by Ahn et. al [27]
to complement the weaknesses of conventional CAPTCHAs) and
confirmation e-mails may be included, the human costs (money and
time) for registering are insignificant. Note however that such pro­
tection schemes may make it more difficult but not impossible to
massively register accounts.

Friendship and Messaging. Users can establish friendship rela­
tions by extending an invitation. Once an invitation is sent from
a user v to a user u, v’s profile is provided to u. User u may ac­
cept (“Confirm” in Facebook), reject (“Ignore” in Facebook) the
invitation or leave it pending by not giving a response. If and only
if u decides to accept the invitation, is u’s profile shared with v.
Users also have the ability to send messages to other users, even to
non-friends. However, similar to invitations, when a user u sends a
message to a user v, u’s profile is revealed to v.

Account Data:. As mentioned above, each user has an account,
that includes personal profile information, such as name, date of
birth, picture, e-mail and snail mail address but also other items
such as wall postings, tagged pictures and videos.

Default Access Control Settings:. When a user registers an ac­
count it can choose the access permissions to each of its profile’s
components – who can access which fields of the user’s account.
While users have the option of changing the default settings, we
have noticed in our experiments that many users have not used it.

Attacker Model. We model our malicious user as a person who
may be concerned with hiding his or her identity and in addition

is a sensitive information seeker who tries to invade the privacy of
other users. We broadly classify malicious users into imperson­
ators, stalkers, spammers and phishers. An attacker’s goal is to col­
lect private user account information from a social networking site
(Facebook in our case). We assume an attacker may build or use
tools to automate many phases of its attacks. In our model, we also
consider the attacker’s need for anonymity. For this, we assume an
attacker can create and use multiple fake accounts (that do not pro­
vide truthful profile information) and may optionally use hijacked
or public machines. Thus, in this case, a fake profile is defined to
be a profile in which the personal information is vastly missing or
different from that of the person owning the profile. This would
allow the attacker to maintain its anonymity even in the event that
Facebook, upon detecting such stalking activities, would attempt
to correlate the fake account’s identity to the IP address of the ma­
chine used to open the account.

3. INFILTRATION ATTACKS
In this section we identify several attacks that can be launched

against Facebook users and formally derive a new infiltration attack
called the 3-Clique attack. We further demonstrate these attacks in
Section 4.2.

3.1 Building Blocks
Let M be the attacker, using a fake account to hide its identity.

The goal of the attacks is for M to get access to a victim A’s ac­
count data (mainly its profile information). That is, M wants to
change its relationship with A, such that it has access to A’s profile
data. We assume that initially M has no access permissions to A’s
profile data. As we will show in Section 4, if an attack fails, M can
generate a new fake account and perform other refined attacks.

Candid Attack: . M issues a friend invitation to A. If A accepts
it, A and M become friends i.e., A gives explicit rights to M to its
profile. Therefore, M learns A’s profile. In addition, we observed
that A’s profile is revealed even if A reacts to the invitation by
deciding to reply with a question such as “Do I know you?”.

Impersonation Attack:. Deciding the authenticity of profile in­
formation is a hard problem. This attacks leverages on this obser­
vation and is as follows: M chooses a friend F of A and copies its
profile, making it its own. M sends an invite to A with a message
of the format “I have lost my old account and made a new one.
Please accept this request.”. Since this behavior can be legitimate,
A accepts the invite and reveals its profile. A similar attack was
first described in [8].

Chameleon Attack:. Trust is often based on familiarity. This at­
tack builds upon the hypothesis that users tend to accept invitations
more easily when they are sent by people with whom they share
mutual friends. Then, M initially collects the set of friends of A
and issues invitations to everyone or a selected subset (see the 3­
Clique attack discussed next). M then waits for the first of two
events: (i) a desired percentage of invitees issue an accept or (ii)
a pre-determined time interval lapses (two days in our experiments
proved to be sufficient, as shown in Figure 7(b)). M continues with
the candid attack (against its original target, A). At this point M
will have a higher chance of succeeding in becoming A’s friend:
M and A will likely share mutual friends.

3.2 The 3-Clique Attack
Community infiltration in the context of social networks is a type

Figure 1: Attack Map: While the complexity of the attack increases with the attacks in the lower half, the payoff is much higher too. This is evident from the results

presented in Section 4.2

(a) (b)
Figure 2: (a) Infiltrating a network: Node v has the highest δ(v) in G ′ , i.e., the

attacker’s payoff is higher if it establishes a link with v. (b) The 3-Clique Attack:

Infiltration is done in the decreasing order of δ. To establish a link with v (highest

δ value) - recursively link with the n th hop network of v in the increasing order

of Social Closeness to the level above.

of attack2 where an attacker targets individuals who are connected
together in the form of a community. These attacks could be lever­
aged for stealing information that belongs to a group. For instance,
an attacker who wants to join an employee-only community might
have to provide proof of connection with a community member to
gain access to the network. In such a scenario, directly attempting
to establish a link with the target community member will have a
low success rate as will be shown in Section 4. Another instance
where community infiltration can be exploited is when launching
an association fallacy [28] against the entire community. An as­
sociation fallacy is an inductive informal fallacy which asserts that
qualities of one user are inherently qualities of another, merely by
an irrelevant association. For instance, with enough attackers infil­
trating a community, the collective qualities that represent it can be
altered. In scenarios like this, the 3-Clique attack can be used to
infiltrate communities with a higher chance of success. In the fol­
lowing, we formally define the 3-Clique attack which can be used
to launch such association fallacies and demonstrate its seriousness
through a real world experimentation in Section 4.
Definitions: Let a friendship 3-clique Δ = (VΔ, EΔ) of a graph
G = (V,E) denote a subgraph such that VΔ = {u, v, w} ⊂ V and
EΔ = {(u, v), (v, w), (w, u)} ⊂ E. Then, let δ(v) denote the
number of friendship 3-cliques of user v. Let the social closeness

|Fu∩Fv |metric, SC(u, v) =
|Fu| denote the ratio of the mutual friends

of u and v to the total number of friends of u. We define then the
friendship weight of the link between users u and v to be w(A,B) =
SC(A,B)+SC(B,A)

2
. Intuitively, this is taking into account two fac­

2Please note the usage of the word ‘attack’ in our paper. An attack
in the true sense would consist of two steps: 1. Inviting a user
to accept an invitation, 2. Extracting and storing the user’s profile
information with a malicious intent. The tools that we have built
only perform the first step. They do not allow the collection of any
personal information of people that answer the invitation. In fact,
an accepted invitation solely incremented a counter.

tors: what proportion of A’s friends are also B’s friends and what
proportion of B’s friends are also A’s friends.

Algorithm 1 Enhanced Infiltration using 3-Cliques
′1. G = Sample(G)

′2. 3CSet = get3Cliques(G)
3. DO
4. v = popUserWithMax3Cliques(3CSet)

′5. firstHopNet(v) = v.friends() − {x : x ∈ G }
6. Sort(user ∈ firstHopNet(v), w(v, user), DESC))
7. FOREACH friend IN firstHopNet(v) :
8. secondHopNet(v) = friend.friends()
9. Sort(user ∈ SecondHopNet(v), w(friend, user), DESC)
10. inviteAll(SecondHopNet(v))
11. END FOR
12. Schedule(inviteAll(FirstHopNet(v)), T)
13. Schedule(invite(v), 2T)
14. WHILE(len(3CSet) > 0)

′15. PROCEDURE get3Cliques(G = (V, E)) :
16. Setcliques = newSet() :
17. Construct Friends(user) ∀ user ∈ V
18. FOREACH relationship IN E :
19. //relationship consists of user1 , user2

20. usermin = min(|user1.friends()|, |user2.friends()|)
21. FOREACH user IN usermin.friends() :
22. IF(user ∈ (relationship − {usermin}).friends())
23. store {user, user1, user2}
24. END IF
25. END FOR
26. END FOR
27. END PROCEDURE

Attack Description:. The 3-Clique attack is executed using Al­
gorithm 1 and is shown in Fig. 2(b). Let G ′ ∈ G denote a subset
of the OSN, a tightly knit community that the attacker targets (line
1). For each member v ∈ G ′, the attacker computes δ(v) (line
2), the 3-cliques of user v using the method given in (lines 15­
27). Let v be the member of G ′ with the highest δ value (line 4).
The attacker computes the first hop network of v, excluding all the
users in G ′ (line 5). Then, the users in this network are ordered de­
creasingly on the value of their friendship weight to v (line 6). An
invitation is sent to the second hop network of v (friend-of-friend
network) who are again ordered based on their social closeness to
each friend of v (lines 7-11). Then, after a delay period T , the
attacker sends invitations to the first hop network of v (line 12).
The delay is used to allow the invited second hop network mem­
bers to accept the invitations. Finally, after another delay period
T, the attacker invites the target v (line 13). The above process is
repeated for all members of G ′ , in decreasing order of their δ val­
ues. This is based on the observation that users with high δ values
are socially tied to a higher number of groups. Such users may not
only be more willing to accept random invitations but more impor­
tantly, establishing a friend link with them may further influence
other members of G ′ into accepting the attacker’s invitation. An

Figure 3: An architectural overview of iFriendU

extension of the attack is what we call the Relaxed 3-Clique attack
where the attacker can start from the n th hop network of a victim
instead of the 2nd hop network as we demonstrated. However, due
to space constraints, we will not be discussing this attack further
but the attack plan itself is shown in Figure 1.

While this attack is mainly designed for community based infil­
trations, it is easy to use this to infiltrate a single user’s network by
terminating the algorithm after the first iteration.

4. INFILTRATION EVALUATION
In this section, we give a brief overview on the architecture of

iFriendU, our attack system and then describe the results of our
infiltration attempts using this system.

4.1 iFriendU Architectural Overview
Our prototype attack system 3 relies on an attack plan prepared

for each of the attacks discussed in Section 3 and is illustrated in
Figure 3. The crawler component is responsible for crawling the
target social networking site and collecting information on users
as a seed for the attacks. As Facebook allows anyone to view an
arbitrary user’s friends list in most cases, we provided our crawler
with a seed Facebook account using which it recursively crawls the
entire network limited by a depth parameter customizable through
code. We used a 2.4 GHz Intel Pentium 4 with 2 GB RAM to
complete crawling of about 50,000 users in less than 5 hours.

The attack planner relies on the attack plan (see Figure 1), which
is a concise-representation of an attack. For instance, for a 3-Clique
attack, we can specify the order in which the attack execution takes
place using “COM(CLIQUES ASC) − L1(SC DESC) −
L2(SC DESC)” which means, first arrange the the nodes (be­
longing to the target community) based on their 3-Clique value.
For each node in this order, arrange its 1st hop network in the
descending order of the social closeness of each node and so on.
The attack planner also prepares a list of fake accounts (needed to
preserve sender anonymity) and a set of targets listed along with

3While we have performed our experiments on real Facebook users
we note the following. The profiles used in the fake accounts were
blank (no other information except a random name), in order to
avoid user impersonation. Moreover, only one bit of information
has been collected from each user, whether the invitation was ac­
cepted or not. We have not extracted or stored any personal in­
formation from the users involved and we have not asked users to
perform any subsequent actions. Following the experiments, we
have shut down all the fake accounts that we have used in the ex­
periment, making any information no longer accessible. We have
then sent a debriefing message to all the users involved, specifying
that the invitation they have received was part of an experiment,
along with the above points as well as an email address where we
could be contacted for further questions or concerns.

Figure 4: Chameleon Attack: Attempt to obtain as many profiles as possible

from a set of randomly selected victims.

their friends and proceeds to computing the 3-Cliques by interfac­
ing with a backend MySQL database using Algorithm 1.

The plan generated by the attack planner is used as input by
the attack executor. We have implemented the attack executor as a
backend driver using Java for Firefox. The attack executor launches
the browser with itself as the proxy server and then injects JavaScript
to execute the attack plan. The attack executor uses fake accounts
to send friend invitations to the target accounts included in the plan.
If during its operation the attack executor encounters a CAPTCHA,
it hands it off to the CAPTCHA Handler which uses automated
CAPTCHA solvers (e.g., CaptchaBuster [4]) to solve the them.
If all attempts fail, the component sends us an email requesting
a manual inspection of the CAPTCHA.
Inter-invitation Timing At this point, it is important to mention
that the attack executor waits for a specific time interval between
sending friend requests. The reason for waiting between sending
successive invites is that Facebook suspends the account if it sends
too many invites. Figure 7(a) shows the results of our experiment
when changing the inter-invitation delay time from a few hundred
ms to 100s. The y-axis shows the number of invites successfully
sent before being banned by Facebook. Note that this number
grows quickly but saturates. Our conjecture is that Facebook for­
bids an account to send more invites when its number of pending
invites (sent but not yet answered) exceeds a given value (between
400-500). Because our experiments were designed around sending
1000s of invitations, we extended the attack executor to adapt its
sending rate depending on its current state. For the first 500 in­
vites, we chose the inter-invite delay randomly between 1 and 15s.
For the next 500 invites, we increased the upper limit of the de­
lay to 60s. For the remaining invites, the upper delay limit was
further increased to 100s. We were then able to consistently send
more than 1500 invites from an account in only a few hours. Note
that a fake account can only be used to send a limited number of
invites, since the number of pending invites will at some point ex­
ceeds Facebook’s limit.

On a related note, since the fake accounts used by the attack ex­
ecutor need to be validated, we setup our own mail server. Both the
attack planner and attack executor interface with the mail server
for creating accounts as required or for confirming friend requests
from other users.

4.2 Infiltration Results
We have launched the following attacks on the Facebook net­

work. As part of the 3-Clique attack, we collected a relationship
graph with 178,000 Facebook users and 339,000 friendship rela­
tions to aid us in computing the 3-Cliques of each user.
Chameleon Attack: We illustrate the Chameleon attack we imple­
mented, using Figure 4. In the first stage, we selected a random set
of 1577 Facebook accounts from our crawled data and launched a
candid attack using a fake account. Figure 5(a) shows the result of

 9 9
 900 Accepted Accepted Accepted

8 8Pending Pending Pending800
Ignored Ignored Ignored7 7

 700

 600
 6 6

 5 5500
 4 4400

T
o

ta
l

n
u

m
b

er
 o

f
p

eo
p

le

300

 200 T
o

ta
l

n
u

m
b

er
 o

f
p

eo
p

le

3

 2

T
o

ta
l

n
u

m
b

er
 o

f
p

eo
p

le

3

 2

 1 1100

 0 0 0
 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

Profile Number Profile Number Profile Number

(a) (b) (c)
Figure 5: (a) Chameleon Attack Evaluation: Results from the first stage of invitations to the 1577 users (b) Chameleon Attack Evaluation: Results from the second

stage of invitations to the 72 users (c) 3-Clique Attack Evaluation: Last stage of the 3-Clique attack against the 150, 3-clique members of the 72 target users.

this experiment two weeks after sending the invites: 742 users ac­
cepted the invitations, 309 rejected it and 526 were still undecided
(pending). From the 309 users who rejected us, we selected a ran­
dom set of 72 users and sent invitations to all their friends. In order
to avoid detection by Facebook, we refrained from sending mass
invitations to the friends of these 72 users. Instead, we attached
them to 9 different fake accounts, each dealing with 8 out of the
72 users: each fake account is responsible for sending invitations
to the friends of 8 of the 72 targeted users (∼ 1600 invites per fake
account).

Finally, we use these 9 accounts to complete the chameleon at­
tack, by launching a subsequent candid attack against the 8 users
attached to each of the nine fake accounts. Figure 5(b) shows the
result of the chameleon attack, again grouped by associated fake

Figure 6: MORPH-x Architecture
account. In total, about 41.7% of the users fell for the attack while
32.8% sustained it. The rest of the 25% were still undecided. Iron­
ically, when we re-sent invitations to the people who rejected us three categories: the accounts that accepted, rejected or decided to
one week later, several have accepted us which indicates that per- keep it pending. In the active and rejected groups, most accounts
sistence pays off. This is due to a Facebook security glitch that we have between 50 and 450 friends. The pending group is more inter-
discovered: flagging a user as unknown has no effect. That is, even esting, since most users have fewer than 200 friends. In particular,
after being rejected, an attacker can re-send the invite any number there are almost 600 users with less than 10 friends. One explana­
of times and it will always be shown as a fresh invite to the victim. tion for this distribution is that some of the accounts that have nei­
3-Cliques Attack: We have run Algorithm 1 on the relationship ther accepted nor rejected our invitations may be inactive. These
graph collected from Facebook (178,000 users and 339,000 friend- users have tested Facebook briefly but are not active.
ship relations) and discovered 679,000 3-cliques in less than five
minutes (had a similar performance on a different dataset as well [24]). 5. MORPH-X SYSTEM DESIGN
Note that the large number of 3-cliques follows from the small We now introduce MORPH-x, a system designed to defend against
world property of OSNs [29]. To test our 3-Cliques attack, we the social networking attacks previously described. The goal of
targeted the same 72 users used in the chameleon attack but after a MORPH-x is to protect rational users, that lack the tools or time
period of 60 days. Each of the 72 users has the value δ smaller than to analyze each decision, against cyber stalkers, while minimally
500. This is typical for Facebook users, who usually have fewer impacting the experience of honest social network users.
than 130 friends. In fact, the total number of 3-clique friends for Solution Overview Figure 4.2 shows the architecture of our sys­
these 72 users was 150 (note that some users participated in multi- tem. The client component runs inside a user’s account (for in­
ple 3-Cliques). stance, a user installed Facebook application). We also provide a

We executed the steps specified in the 3-Cliques attack descrip- trusted third-party server to facilitate user account persistence and
tion (see Section 3 against these 150 users (which form the target infer trust relationships.
community G‘). Figure 5(c) shows the result of the Chameleon Our system is built around the notion of trust, which runs the
attack, again grouped by associated fake account. The acceptance decision making process. The fact that a user A trusts a user B
rate was 79%. This shows that the 3-Clique attack is 75% more in some respect informally means that A believes that B will be-
efficient than the Chameleon attack. have in a certain way - perform (or not) some action in specific
Additional Statistics Following our Chameleon and 3-Clique at- circumstances [30]. The definition of trust is inherently subjective,
tacks, we have monitored several variables. First, we have mea- and it might not even be feasible to obtain the ground truth so, as a
sured the number of invites accepted per day, following the begin- first step, we classify trust into two classes: direct trust and derived
ning of each invite. Figure 7(b) shows our results for 4 out of the 9 trust. We say there is a direct trust relationship between users A
fake accounts used to send invites. Most invites are being accepted and B, if A has a strong reason (knowing B personally or from
in the first three days after the beginning of the experiment. social gathering etc.) to trust B. A derived trust relationship, on

Another metric of interest is the distribution of the number of the other hand, is learnt through an explicit training process that
friends per Facebook account. Figure 7(c) shows the average over extracts user feedback regarding trust in its friends.
the 10000 different accounts targeted in our experiments, split over Overall, MORPH-x works as follows. Whenever user A receives

 1000 600

 900

 800

 500

 400

#
 I

n
v

it
es 700

 600

 300

inter-invitation delay

0 20 40 60 80 100
0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1 2 3 4 5 6 7 8 9

T
o

ta
l

A
cc

ep
te

d
 U

se
rs

Days Since Invite

Profile 1
Profile 2
Profile 3
Profile 4

N
u

m
b

er
 o

f
U

se
rs

accepted
ignored
pending

200
 500

 100
400

 300 0
 0 200 400 600 800 1000

Inter request time (sec) Total Number of Friends

(a) (b) (c)
Figure 7: Attack Statistics: (a) Capping invitations as a function of inter-invitation delay times (b) Accept rate timeline (c) Friend count distributions of accepted,

rejected and pending user accounts

an invitation from B, A’s client attempts first to infer whether a
direct trust relationship exists between A and B. It then places B
into the probation list of A, where B is denied access to A’s profile.
We use the indirect trust metric to decide when B can be removed
from the probation list and promoted to a full friend status, where it
is provided with access to A’s profile. In the following we describe
in detail each of the notions introduced above.

5.1 Inferring Direct Trust
MORPH-x takes advantage of the social component of the de­

sign space, where users can be asked to provide personal feedback
on other participants. In particular we ask users context verification
questions, used to prove the existence of bilateral relationships i.e.,
prove that a private context is shared with a friend. The Context Ver­
ifier component of user A generates and sends B a question regard­
ing common context it should have with A (for instance, the place
it has met A or details of a discussion it had with A). MORPH-x
stores a pre-defined set of contextual questions. It allows each user
to choose its preferred questions from the set at install time.

When B answers the context verification question, A’s MORPH-
x client generates two questions for A: (i) how much it trusts B
and (ii) whether the answer to the contextual question correct. For
the first question, the client displays a list of trust buttons each
named with a keyword ranging from “No Way!” (not trusted) to
“Of course” (very trusted). The user is asked to label B with one
of the trust button labels (see Section 5.3 for more details on this
question). If A labels B with “Of course” and considers the answer
to the contextual question to be correct, the client simply accepts B
as a friend. Otherwise, it places B into A’s probation list (see next).
This approach allows a user that is sure of her friends to bypass the
defense mechanisms offered by MORPH-x.

Note that if A and B use smartphones and meet in person, they
can use SPATE [15] to exchange authenticated data (e.g., public
keys) and later use it to authenticate friend invitations [18]. SPATE
authenticated users can immediately by accepted as friends, by­
passing MORPH-x.

Shadow Accounts.. The context verification question cannot be
sent directly from A’s account – this would automatically reveal
A’s profile to B, (see Section 2) 4. To prevent this, we define the
concept of a shadow account. For all practical purposes shadow ac­
counts are fake accounts, whose profile information is impersonal
– does not reveal sensitive information. However, unlike attackers
our server does mention that these accounts are associated with our
service. The MORPH-x server maintains a set of shadow accounts

S = {S1, .., Sn}. Then, the question previously generated by A’s
Context Verification component is sent from a randomly selected
shadow account Sr ∈ S.

5.2 Probation List
If A decides to accept B as a friend (following the interaction

with the Context Verifier), A’s answers to the contextual questions
are extracted and used to perform the following actions. If A does
not know B or if it marks B’s answers to contextual questions as
false, the MORPH-x client advises the user to reject the invitation.
Otherwise, the client records A’s answers on B’s context on the
server and inserts B into a probation list. Let P (T) denote the pro­
bation list of T and let users in P (A) be called probation friends.
Users in P (A) cannot access the profile information of A – B’s in­
vitation is left pending. Only when the derived trust of B exceeds a
pre-defined value, is B promoted to the friend list of A i.e. A is ad­
vised to accept the invitation. In the following we propose several
probation list promotion criteria.

5.3 Inferring Derived Trust
While MORPH-x cannot protect against friends accepted before

its installation, it can learn from them and use that information to
thwart new attacks. Our approach consists of defining an Aggregate
Trust Criterion The aggregate trust a user A has in a user B, is
based on the social closeness metric of two users (first defined for
the 3-Cliques attack (see Section 3)):

|F (A) ∩ F (B)|
SC(A, B) = (1)

|F (A)|

The pure use of the social closeness metric in computing trust
values is vulnerable to attacks: If B manages to infiltrate a large
percentage of A’s friends, it accumulates large trust values and may
easily be promoted out of the probation list. To counter this effect,
we use the following process to evaluate the trustworthiness of the
social closeness metric:

Training Process - Objective Opinion. We introduce the notion
of Objective Opinion, OO(A, B), that a user A has in its friend
B. The Objective Opinion is computed using a training process
i.e., through user feedback. We achieve this by deploying a game-
like interface, based on the observation (see Burnham et. al [9])
that humans have a subconscious friend-or-foe mental approach for
evaluating another person.

The training process consists of asking A several types of ques­
tions. For a first question type, the game selects between 5 to 10
random friends and displays their photos tagged with their names

In the experiments described in Section 4 we have seen that a few hundred out of
and a list of trust buttons, each named with a keyword ranging from the 10,000 users to which we have sent invites have sent us a “Hello” message back,

without accepting the invitation – unwittingly revealing their profiles. “No Way!” (not trusted) to “Of course” (very trusted). A is then in­

4

structed to click on a trust button that best describes the current
friend – effectively labeling each friend with a trust value. The
trust values range from -1 to 1, where the only negative value (-1)
is given to the least trusted label (“No Way”). If user A has not
labeled a friend B, we use the default value OO(A, B) = 0. All
other trust values are distributed uniformly in the interval (0, 1]. If
t is the number of trust levels, then the trust values are multiples of
1 (1 2 , , ..., 1).
t t t

When enough (or all) friends have been labeled, the system pro­
ceeds to ask other types of questions as well. For instance, it
selects 2 already labeled friends, the anchors A1 and A2, with
OO(A, A1) = 1/t and OO(A, A2) = 1/2. It then selects one un­
labeled friend, F , displays the photos of the chosen friends, tagged
with their names and asks A to sort them according to their trust­
worthiness (see the MORPX-x site [7] for the user interface). It
then uses the anchors and the relative ranking provided by A to pro­
vide tentative trust values for the unlabeled friends. That is, if unla­
beled friend F is ranked below A1, set OO(A, F) = −1. If above
A1 but below A2, OO(A, F) = 2/t. If above A2, OO(A, F) =
1/2 + 1/t. In Section 6.2 we provide a detailed description of the
how this system has been implemented.

Aggregate Trust Criterion. We now show how the Social Close­
ness and the Objective Opinion criteria are aggregated to infer the
derived trust of a user A in another user B. If A and B are friends,
we define AT (A,B) = SC(A, B) × OO(A, B). Note that if A
has not labeled B in the training process, AT (A,B) = 0. More­
over, if A does not trust B, A(T, B) is negative and smaller for
higher values of SC(A, B). This enforces our intuition, that if A
has many mutual friends with B but does not trust B, it means that
B may be an infiltrator or one who has been accepted as a friend
due to social obligation. While this discovery comes too late for A
(its profile has already been leaked to B) we use this information
to protect other users from B.

Specifically, if A and B are not friends, we define the aggregate
trust of A and B through their mutual friends. For a mutual friend
U , the aggregate trust of A and B is defined to be the product of
AT (A,U) and AT (U,B). Then, the aggregate trust of A in B is
defined as the sum of the aggregate trusts over all mutual friends of
A and B:

X

AT (A, B) = AT (A, U) × AT (U, B) (2)
U∈F (A)∩F (B)

B is promoted from P(A) when AT(A,B) exceeds a threshold value,
TAT . Note that if A and B have no mutual friends, AT (A,B) = 0.
Moreover, if as mentioned before, A does not trust one of its friends
U but it has many common friends with U (U is an infiltrator), the
value AT (A,U) will be negative and large in absolute value. Then,
AT (A,U) will negate the trust U has in B. Note that it is difficult
for an infiltrator U to use this information to play the system. This
is because U cannot guess the aggregate trust AT (A,U) – it does
not have access to A’s opinion.

Handling Cold Starts. The use of the probation list associated
with trust levels may introduce a cold start problem: legitimate
users, that do not have enough friends and thus have a low trust
level, may be blocked in the probation lists of all the users they
invite. We propose the use of challenges and Merkle puzzles [16]
to address this problem. Specifically, a probation friend B, whose
trust level does not increase for a pre-defined, system wide param­
eter, can request the user A, in whose probation list it is blocked, to
provide it with computation challenges. For this purpose, A gen­
erates Merkle puzzles and sends them to B. If B can solve the

puzzles correctly, A increases B’s trust level.
An example Merkle puzzle is decrypting an AES cyphertext, en­

crypted with a small key, while the other bits of the key are fixed
and pre-agreed upon. Another Merkle puzzle is inverting a small
cryptographic hash value (e.g., given y, find an x such that the last
b bits of H(x) and y coincide). Such puzzles assume that B has to
perform a brute force attack, thus consume a quantifiable amount of
CPU cycles. For instance, a 1.6GHz processor, using an OpenSSL
implementation, takes 3.6 hours to break a 35 bit AES key and 116
hours to break a 40 bit key. The same processor takes 11.6 hours to
invert a 35 bit SHA-1 hash and 373.3 hours to break 40 bit hashes.
The trust level increment should be a function of the difficulty of
the solved Merkle puzzle. Long, resource consuming puzzles may
discourage their use. We propose instead the use of multiple shorter
(1-2 hours) puzzles, each with a smaller trust increment.

This approach is efficient against spammers, as we consider solv­
ing many Merkle puzzles to be infeasible. While spammers may
consider outsourcing puzzles (e.g., volunteer computing projects
or Amazon’s mechanical turk), the investment involved may easily
exceed the benefits. More information about this is provided on the
MORPH-x project page [7].

5.4 Defenses Against Attacks
We now provide an intuition as to why MORPH-x is able to de­

fend against the attacks described in Section 3. In Section 6 we use
extensive simulations to validate this intuition. In the following we
use M to denote the attacker and we assume that its target A has
installed our MORPH-x client.

Candid Attack: . M is accepted as a friend by A only if it is able
to generate a correct answer for the context verification question
(it needs to know something personal about A which A needs to
confirm) and M trusts A. Otherwise, A stays under probation until
enough trusted friends of A vouch for M . Thus, to infiltrate A, M
has to succeed infiltrating and becoming trusted by enough of A’s
trusted friends (see defense against Chameleon attack below).
Impersonation Attack: Even though M copies A’s profile, when
contacting one of A’s friends, F (also running MORPH-x), F will
label M using M ’s user id, which is a unique identifier assigned
by Facebook to a user. Even if M and A have the same profile
(including user name) their user ids are different. Trust labels are
assigned to user ids and not to usernames. Then, F will treat M as
just another (random) invitation and not as its friend A.
Chameleon Attack: M needs enough friends of A to accept it
as a friend, acknowledge context shared with it and label it with a
sufficiently high trust level. Note that all the untrusted friends of
A that trust M and all the trusted friends of A that do not trust M
will contribute with a negative value to the aggregate trust of A in
M . M does not have access to and cannot control the level of trust
A has in her friends.
3-Cliques Attack: M needs to infiltrate enough 2-hop friends of a
target community member A for it to be promoted into the friend
list of enough friends of A for it to be promoted in the friend list
of A. If only A runs a MORPH-x client, then the defense pro­
ceeds as for the Chameleon attack (see above). However, if several
of A’s friends and of its 2-hop friends have MORPH-x installed,
M ’s chances of infiltration are further reduced. If M is unable to
infiltrate those nodes, the aggregate trust of A in M will be even
smaller.

6. MORPH-X AS A REAL TOOL
To gain a better understanding on the performance of our sys­

tem we have evaluated its following aspects (i) Effectiveness: How

 0.08 60

0.07 50

 0.06 40

 0.05 30

 0.04 20

 0.03 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n
 F

u
n
ct

io
n

10% Morph-X Users
30% Morph-X Users
50% Morph-X Users
80% Morph-X Users

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n
 F

u
n
ct

io
n

10% Morph-X Users
30% Morph-X Users
50% Morph-X Users
80% Morph-X Users

9
0
%

 A
tt

ac
k
 B

lo
ck

in
g
 T

h
re

sh
o
ld

%
 o

f
u
se

rs
 c

o
m

p
ro

m
is

ed

10 30 50 80

Strategy-1
Strategy-2

No-Protection

0.02 0
 10 20 30 40 50 60 70 80

Accepted Friends/Total Friends Ratio Trust Percentage of Morph-x Users % of Morph-X users

(b) (c) (d)
Figure 8: (a) CDF of Trust(T,I) in MORPH-x using the Social Closeness criterion when launching a 3-Clique attack against 2100 users. (b) CDF of Trust(T,A) in

MORPH-x using the Aggregated Trust criterion when launching a 3-Clique attack against 2100 users. (c) Evolution of TAT for MORPH-x users employing Aggregate

Trust promotion criterion to block 90% of the attacks for various MORPH-x user concentrations. The decrease is sub-linear, with TAT as small as 0.02 when 80% of the

users run MORPH-x. (d) Comparison of the effectiveness of 2 MORPH-x strategies with non-MORPH-x users in blocking 3-Clique attacks.

fast can MORPH-x thwart attacks and how long does it take to
build trust values for a user’s friends?, (ii) Computational Feasi­
bility: Can MORPH-x handle a large number of users efficiently?,
(iii) Practicality: How difficult is it to implement MORPH-x as
a real-world system?, (iv) Deployment: How easy is it to deploy
MORPH-x into the real world social networks? In this section,
we use simulations to study effectiveness and an implementation
to evaluate computational feasibility and practicality. We also pro­
vide preliminary results from a small scale deployment of a subset
of MORPH-x.

6.1 Effectiveness
The effectiveness of our system is a function of its user base.

Since a large scale deployment requires significant marketing ef­
forts and is outside the scope of this paper, in this section we focus
on simulating the effectiveness of MORPH-x in blocking the at­
tacks discussed in Section 3. We have evaluated MORPH-x using
data collected from Facebook, consisting of 179,000 Facebook user
accounts and 389,000 friendships links amongst them. The simu­
lations have been performed using our custom built social-network
simulator whose features include modeling user behavior, friend­
ship links, the ability to send invitations and the ability to install
protection systems on user accounts.

In the following, we use a Sybil attacker to launch a 3-Cliques
attack against 2100 randomly selected users. We consider three
types of strategies: (i) users that run MORPH-x, implementing the
Social Closeness promotion policy (see Section 5.3), (ii) users that
run MORPH-x with the Aggregate Trust Criterion promotion pol­
icy (see Section 5.3) and (iii) classic Facebook users. We define the
concentration of MORPH-x users to be the percentage of users that
run MORPH-x, out of the population considered. Both MORPH-x
promotion strategies use a threshold value as the condition for pro­
motion: TSC is the threshold for the social closeness criterion and
TAT is the threshold for the aggregate trust criterion.

Our first endeavor was to investigate the dependence of TSC and
TAT on the concentration of MORPH-x users as well as to learn
values for the threshold that thwart a high percentage of the attacks.
Figure 8(a) shows the CDF for the Trust value, when between 10­
80% of users run MORPH-x with the Social Closeness criterion.
Note that to block 90% of the attacks, the TSC value should exceed
70% i.e., a user should promote a new inviter as a friend only when
it shares with it at least 70% of its friends.

Figure 8(b) shows the CDF of the Aggregate Trust metric for var­
ious concentrations of MORPH-x users. Since we cannot simulate
the output of the training process, we set the default trust to 1. Note
that even for a 10% MORPH-x user concentration, a trust value
of 0.08 is sufficient to block 90% of the attacks (against MORPH-
x users). Figure 8(c) shows the value of the threshold that blocks
90% of the attacks, when the attacks are launched against concen­
trations of MORPH-x users ranging from 10% to 80%. Note that

when 80% of users run MORPH-x, a TAT value as small as 0.02
is sufficient to block 90% of the attacks. This is because higher
MORPH-x user concentrations among a user’s friends are more ef­
ficient in blocking attacks. Note that MORPH-x users can detect
which of their neighbors are also running MORPH-x. This infor­
mation can be used to locally set a threshold value that provides a
desired level of protection.

Figure 8(d) compares the effectiveness of the three strategies, for
different MORPH-x user concentrations, in blocking the launched
3-Clique attack. For the MORPH-x users running the social close­
ness promotion criterion, we use a TSC value of 60%. For the
MORPH-x users running the aggregate trust criterion, we set the
TAT threshold to 0.08. Note that both MORPH-x strategies are
much more effective than current Facebook strategy: only up to
16% of the attacks succeed for the first MORPH-x strategy, while
only up to 7% of the attacks succeed for the second MORPH-x
strategy. This comes in contrast with the current status, where users
have no protection system installed, where around 40% of attacks
succeed. Note that as the MORPH-x user density increases, the
attack success rate decreases significantly: when 80% of the users
run MORPH-x’s second strategy, only 2% of the attacks succeed.

6.2 Practicality
MORPH-x plays two roles - to allow users to run the training

process, and to act as a security advisor when a user receives a
friend invitation. We now focus on the former, i.e. our experiences
in designing the training process. We implemented MORPH-x as a
Facebook Connect [5] application using Facebook’s Graph API [6]
which presents a consistent view of the Facebook social graph. A
Connect application has the primary advantage of being flexible - it
is not a Facebook application but rather a social-plugin that makes
it a standalone website. As it stands currently, MORPH-x was built
using PHP (back-end) and HTML5+CSS3+Javascript (front-end),
allowing it to work on Mozilla Firefox and Google Chrome. A
snapshot of an early implementation of the system is shown in Fig­
ure 9 and can be accessed through the MORPH-x website [7].

Using an application key provided by Facebook, MORPH-x uses
the OAuth 2.0 protocol [1] to allow user authentication and autho­
rization. Once the user is authenticated, instructions are provided
on how to assign trust values to his friends. This is performed
through an interface (shown in Figure 9) that enables the’ user to
quickly tag a friend (2-4 seconds per friend). We currently pro­
vide two training mechanisms: (i) Tag-O-Rama, which lets the
user assign absolute trust labels to her friends by clicking on one of
the buttons under each friend (see Section 5.3), and (ii) Stack-O-
Rama, which lets the user sort her friends based on a drag-and-drop
mechanism. For Tag-O-Rama, the labels on the buttons and their
associated objective opinion values are “Of course” (1), “Kind of”
(2/3), “I am not sure” (1/3) and “No way!” (-1). 0 was used for
the objective value when the user did not tag a friend. In addi­

tion, the interface displays the social closeness for each displayed
friend, through a graphical meter which we call the Trust-O-Meter,
situated on the right for easy reference. The described system is
fully operational on an Intel Core 2 Duo processor with 2048 MB
RAM and can be accessed through the URI given in [7].

Our on-going work includes designing an intuitive security ad­
visor interface for MORPH-x. Specifically, we are addressing the
challenge of designing an interface that imposes minimum restric­
tions on the user without compromising on the defense it offers.
We would also like to emphasize that we are working on a client-
only solution as opposed to MORPH-x’s client-server architecture
to address any scalability issues that may arise. We are doing this
by off-loading the computational overhead of getting user informa­
tion etc. to the client itself and storing data locally. Since it is well
beyond the scope of this paper to describe these implementation
details comprehensively, we have chosen to concentrate our efforts
only on the client-server architecture of MORPH-x instead.

6.3 Computational Feasibility
We have used 100 PlanetLab [12] nodes, spread all over the

world, to simultaneously access the MORPH-x website. Our goal
was to evaluate the performance of MORPH-x under stress. Fig­
ure 10(a) shows the result of this experiment for three cases where
the user logs in (i) for the first time, (ii) for the second time with
its browser cache disabled, (iii) for the second time with browser
cache enabled. The response time is higher the first time a user
loads MORPH-x, requiring between 20-40 seconds. We emphasize
that these values are measured when 100 users distributed all over
the world simultaneously login for the first time. The large varia­
tion is due to variations in the per-user number of friends that need
to be loaded from the user’s account, to variations in Facebook’s in­
stantaneous load and to the latencies experienced by remote users.
However, for subsequent logins, the response time is significantly
reduced to 3-5 seconds.

As a next step, we have studied the performance overhead in­
curred by the server-side modules when building and maintaining
probation lists – using the (more expensive) Aggregate Trust cri­
terion. Figure 10(b) shows the time taken for this operation, as
a function of the number of user accounts (ranging from 100 to
50,000, collected from Facebook servers when a new user installs
MORPH-x). Even for 50,000 users, maintaining the probation list
takes only around 30 seconds. Note that the probation lists need
to be (iteratively) updated only when a new friendship relation, in­
volving one of the maintained users, is established. Given that this
operation is not time sensitive, friendship updates can be batched,
allowing the probation list update process to be performed only at
fixed intervals.

6.4 Deployment
We have conducted a small-scale user study to gauge the user

reaction to a system like MORPH-x. We primarily advertised by
word-of-mouth and email. In total, 22 out of the 30 people we
contacted agreed to participate in this study. The task of the user in
this experiment is to use the training mechanism of MORPH-x to
tag their friends. 70% of the people had more than 200 friends and
were enthusiastic about tagging them despite the long lists. 10%
suggested that we provide them either with more trust labels or less
ambiguous ones because they had trouble mainly with the “I’m not
sure” label. For this reason, we re-ran the pilot study on all the
users using a new set of labels “Maybe Yes” instead of “Kind Of”,
“Maybe No” instead of “I’m not sure”. The results of this study are
shown in Figure 10(c) for a subset of the users. The implications
are two-fold:
(i) Disjunction: Participants had a long list of friends that they

Figure 9: Implementation of MORPH-x

did not trust. This we observed irrespective of the set of labels we
used. In fact, in our second run, this became even more clearer as
the list of untrusted friends got transferred into the “Maybe Not”
category. This result could be hinting that the friend circle projected
by Facebook is quite different from the real life network. The more
surprising result is assignment of the “No Way!” label to a number
of friends despite finding them in the friendlist.
(ii) Feasibility: Even a simple tagging mechanism can be used to
build trust values. Most users were enthusiastic about the user study
despite having no incentives for completing the study. Thus, with
the correct tagging mechanism, this clearly shows the role that a
system such as MORPH-x can play in today’s OSNs in acting as a
user’s own personal security advisor.

7. RELATED WORK
Recently, OSNs have started being rigorously studied by the sci­

entific community. Bilge et al. [8], study solutions for collect­
ing personal user profiles from various OSNs, including Facebook.
They conjecture and prove that people are more willing to accept
friend requests from people they already know. They devise an im­
personation attack which they test on 700 users. While no defense
mechanisms were proposed, in our work we design MORPH-x,
whose goal is to defend against a suite of profile collection attacks,
including impersonation attacks (see Section 6) Jagatic et al. [14]
conducted a phishing study to establish a baseline for individual
phishing attacks. The percentage of victims who disclosed their
personal information to a phishing site underscores the need for de­
veloping phishing prevention techniques. In our work, we establish
a baseline for passive invitations where only an offer to establish
friendship is sent to a user without an actual message thus empha­
sizing the success rate achievable through simple random actions..

Tootoonchian et al. [22] propose Lockr, a system for improving
the privacy of social networks. It achieves this by using the concept
of a social attestation, which is a credential proving a social rela­
tionship. Lockr further uses zero knowledge proofs to prevent re­
use of such credentials and various secure multi-party protocols to
allow users to connect only if certain (private) conditions are satis­
fied. MORPH-x does not attempt to nor hide personal information
from OSN sites, but prevents unauthorized users from accessing
personal content, while retaining Facebook’s main features.

Caverlee and Webb [11] conducted a large scale study on MyS­
pace, where they discovered interesting patterns, such as high ac­
count abandonment rates, language/location correlations and inter­
estingly, that privacy is becoming a concern factor even and mostly
for younger users. Nazir et al. [17] conducted a similar study on
Facebook, through the development and deployment of three appli­
cations that gained significant popularity. The focus of their study
is on behavior within a community – in their case, the communities

 20

 30

 40

 50

 40000

 35000

 80
30000

 25000

 20000

M
il

li
se

co
n
d
s

60

 15000 40

First Time
Second Time w/o Cache

Second Time w Cache

0 10 20 30 40 50 60 70 80 90 100

Max, Average, Min values

10 100 1000 10000 100000

N
um

be
r

of
 f

ri
en

ds

User1 2 3 4 5 6 7 8 9

R
es

po
ns

e
T

im
e

(s
ec

)

1000010
 205000

 0
 0

PlanetLab Node Total number of friends
0

(a) (b) (c)
Figure 10: (a) Implementation Evaluation: Overhead of client state collection step, function of number of friends. (b) Implementation Evaluation: Server Side

Probation list maintenance overhead. (c) MORPH-x average load times (across 10 runs) as observed from 100 PlanetLab nodes spread across the world. (d) Pilot study of

a subset of users who participated in evaluating MORPH-x

adopting their applications.
Another MySpace study was conducted by Webb et al. [3], to

study social spamming. The concept of social honeypots is intro­
duced, which are MySpace accounts created specifically for attract­
ing spam. The results show that social spammers exhibit temporal
and geographic patterns, which may be used to automatically de­
tect and even eliminate them. Caverlee et al. [10] continue this
work with the proposal of a trust establishment solution for social
networks. Trust between two users is defined to be a factor of the
quality of the interaction between the two users. MORPH-x differs
in that is uses a concept that fits the social network model: a game-
like Facebook application that collects direct user feedback on the
trustworthiness of friends.

Singh et al. [20] study a Facebook privacy issue based on the
observation that Facebook applications have unrestricted access to
the accounts of the users that install them, leaving users vulnera­
ble. They propose a framework for developing social networking
applications that preserves user privacy by enforcing a complete
mediation of all communications between applications and exter­
nal entities. In our work we focus on preventing different types
of Facebook privacy leaks e.g., Facebook community exploration,
sending massive invites and so on (see Section 3 for a list of attacks
we propose and consider in our work).

Sirivianos et al. [21] proposed FaceTrust, a system relying on so­
cial tagging as a mechanism for establishing the credibility of users
and the trustfulness of their assertions. While our work could use
the mechanisms proposed in [21], we note that it is unclear whether
users would indeed take advantage of such mechanisms and what
incentives could be provided for them to be truthful (e.g., for them
to say that indeed a friend is lying). Baden et al. [19] proposed
BondBreaker, a Facebook game where users can establish “bonds”
by asking questions and “break” existing bonds by guessing the an­
swer. This approach is similar to the direct trust mechanism used
by our context verification component. Note however that since
for many question types the answer space is small, this approach is
vulnerable to Sybil attacks: Sybil accounts attempt to answer ques­
tions randomly until one guesses the correct answer. This motivates
the use of a probation list with different associated promotion cri­
teria.

8. CONCLUSION
In this paper we propose and study privacy attacks that can be de­

ployed against online social network users and introduced a novel
3-Clique attack for community infiltrations. Through an extensive
implementation we show that such attacks are very efficient in ex­
tracting user information that can be very valuable to spammers
and phishers. We design and implement MORPH-x, a solution
for protecting this information and sharing it only with trustwor­
thy friends. We show that MORPH-x imposes small computational

9. REFERENCES
[1] Oauth 2.0 protocol. http:

//tools.ietf.org/html/draft-ietf-oauth-v2-10.
[2] Gartner study finds significant increase in e-mail phishing attacks.

http://www.gartner.com/press_releases/asset\
_71087_11.html, April 2004.

[3] Social Honeypots: Making Friends with a Spammer Near You. In

Proceedings of the 5th CEAS, 2008.

[4] Captcha buster. http://captchabuster.com, 2010.
[5] Facebook connect. http:

//developers.facebook.com/docs/guides/web, 2010.
[6] Facebook Graph API.

http://developers.facebook.com/docs/api, 2010.

[7] Morph-x implementation. http://morphx.info, 2010.
[8] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda. All Your Contacts are

Belong to Us: Automated Identity Theft Attacks on Social Networks.
In Proceedings of WWW, 2009.

[9] T. Burnham, K. McCabe, and V. Smith. Friend-or-foe intentionality
priming in an extensive form trust game. Journal of Economic
Behavior & Organization, 2000.

[10] J. Caverlee, L. Liu, and S. Webb. Socialtrust: tamper-resilient trust
establishment in online communities. In Procs. of JCDL, 2008.

[11] J. Caverlee and S. Webb. A large-scale study of MySpace:
Observations and implications for online social networks. In
Proceedings of the AAAI, 2008.

[12] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: An Overlay Testbed for
Broad-Coverage Services. SIGCOMM CCRev., 2003.

[13] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using
social networks. In Proceedings of NDSS, 2009.

[14] T. Jagatic, N. Johnson, M. Jakobsson, and F. Menczer. Social
phishing. Communications of the ACM, 2007.

[15] Y. Lin, A. Studer, Y. Chen, H. Hsiao, L. Kuo, J. McCune, K. Wang,
M. Krohn, A. Perrig, B. Yang, et al. Spate: Small-group pki-less
authenticated trust establishment. IEEE Transactions on Mobile
Computing, 2010.

[16] R. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21(4):299, 1978.

[17] A. Nazir, S. Raza, and C.-N. Chuah. Unveiling facebook: a
measurement study of social network based applications. In
Proceedings of IMC, 2008.

[18] A. Perrig. Private communication.
[19] B. B. Randy Baden, Neil Spring. Identifying close friends on the

internet. In Hotnets, 2009.
[20] K. Singh, S. Bhola, and W. Lee. xBook: Redesigning Privacy Control

in Social Networking Platforms. In Proceedings of 18th USENIX
Security Symposium, 2009.

[21] M. Sirivianos, K. Kim, and X. Yang. Facetrust: assessing the
credibility of online personas via social networks. In Proceedings of
HotSec, pages 2–2, 2009.

[22] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman. Lockr:
Better Privacy for Social Networks. In Proc. of ACM CoNEXT, 2009.

[23] N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online
content voting. In Proceedings of NSDI, 2009.

overheads and efficiently defends against the attacks identified. [24] B. Viswanath, A. Mislove, M.Cha, and K. Gummadi. On the

http://morphx.info
http://developers.facebook.com/docs/api
http:http://captchabuster.com
http://www.gartner.com/press_releases/asset

Evolution of User Interaction in Facebook. In Procs. of WSON, 2009.
[25] B. Viswanath, A. Post, K. P. Gummadi, and A. Mislove. An analysis

of social network-based sybil defenses. In Procs. of SIGCOMM,
2010.

[26] L. Von Ahn, M. Blum, and J. Langford. CAPTCHA project. 2006.
[27] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum.

recaptcha: Human-based character recognition via web security
measures. Science, 321(5895):1465, 2008.

[28] D. Walton. Ad hominem arguments. University Alabama Press, 1998.
[29] D. Watts and S. Strogatz. Small world. Nature, 1998.
[30] R. Yahalom, B. Klein, and T. Beth. Trust relationships in secure

systems-a distributed authentication perspective. In Proceedings of
IEEE SnP, 2002.

[31] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A
near-optimal social network defense against sybil attacks. In In
Procs. of the IEEE SnP, 2008.

[32] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard:
Defending against sybil attacks via social networks. SIGCOMM
CCRev., 2006.

