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PREFACE 

My initial foray into the realm of computer and information security came as 

a software engineer for IBM Microelectronics Division (now Server & Technology 

Group). At the time, I was working on a team that implemented shape-processing 

algorithms for semiconductor manufacturing; these algorithms modified the chip de-

signs to pre-correct microscopic errors that were introduced during the manufacturing 

process. This work started with three people as a feature that was nice to have. After 

about 10 years, it became a vital prerequisite for manufacturing, with more than 75 

people working on the project. 

My task was to design an access control system that restricted access to subsets of 

our code based on the person’s job duties. Our team included infrastructure program

mers, algorithm programmers, model designers, contractors, and project managers. 

Our computing environment included a mixture of Linux, AIX, and Windows work

stations and servers, using a combination of multiple file systems. To spice the design 

up a bit more, we had to ensure compliance with corporate alliance partnerships, as 

well as federal legislation like international trade-in-arms (ITAR) regulations. I did 

not know it at the time, but I was implementing my first role-based access control 

(RBAC) project. 

In the intervening decade between that project and this dissertation, I have im

plemented a variety of access control mechanisms using a diverse set of technologies. 

Although security involves a great range of interesting topics, it seems that I always 

return to fascinating topic of access control. With each new technology, there is always 

a new dimension that I have not explored previously; each project reveals a subtle 

difference from the last. Whenever I think I have mastered the topic, I find some new 

insight that I have hitherto missed. As the rest of my career unfolds, I would venture 

to guess that this field will continue to surprise and pique my intellectual curiosity. 
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ABSTRACT 

Kirkpatrick, Michael S. Ph.D., Purdue University, August 2011. Trusted Enforcement 
of Contextual Access Control. Major Professor: Elisa Bertino. 

As computing environments become both mobile and pervasive, the need for ro

bust and flexible access control systems comes to the fore. Instead of relying simply 

on identity-based mechanisms or multi-level classifications, modern information sys

tems must incorporate contextual factors into the access control decision. Examples 

of these factors include the user’s location at the time of the request, the unique 

instance of the hardware device, and the history of previous accesses. 

Designing and implementing such contextual access control mechanisms requires 

addressing a number of interesting challenges. First, one must be able to determine 

when the required policy conditions are satisfied. For instance, in the realm of spa

tially aware access control, the system must be able to validate user’s claims to a 

particular location at a given time. Next, contextual mechanisms must be able to 

detect and react to changes in the environmental conditions, such as when a connec

tion becomes disrupted. Finally, the integrity of the execution environment must be 

ensured, despite the complexity of modern computing systems. 

To address these challenges, we have examined the creation of trusted enforce

ment mechanisms that are built on a combination of secure hardware, cryptographic 

protocols, virtual machine monitors, and randomized execution environments. We 

have developed a number of prototypes using NFC, PUFs, VMMs, and a microker

nel OS to demonstrate the feasibility of our approaches to a number of contextual 

settings. Our experimental evaluation and security analyses demonstrate that robust 

mechanisms can be deployed for a minimal amount of computational expense. 
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1 INTRODUCTION 

The history of computing has been marked by a trend toward smaller, more compact 

devices. Long gone are the days of Colossus and ENIAC, each of which occupied 

rooms. Mainframes gave way to minicomputers, which were surpassed by personal 

computers. Now, laptops, cell phones, and other portable devices dominate the mar

ketplace of user devices. 

As the landscape of computing changed, the field of access control evolved to 

reflect the new realities. When computing required the user’s physical presence at 

the mainframe, restricting access could be accomplished by monitoring and control

ling who could enter the room. Over time, it became necessary to partition users’ 

permissions to different resources within the same computer. This need led to the 

development of such models as DAC, MAC, and DTE. As the complexity of identity-

based access control grew, RBAC became commonplace as a method to reduce the 

maintenance burden for large organizations. 

The computing industry is, once again, facing a paradigm shift in the field of 

access control. In the past decade, portable devices have become powerful and om

nipresent. Corporate executives use their cell phones to send and receive emails. 

Medical workers carry tablet PCs containing patient records from one room to an

other. System administrators are assigned laptops to monitor remote systems from 

home. The diversity of computing environments creates a vast heterogeneity in the 

security assumptions that can be made for these systems. 

In the case of email on smartphones, users frequently have the device store their 

passwords to ensure quick and easy access. As such, a thief can get quick access 

to vital company documents. Hospital laptops contain sensitive data. To ensure 

patient confidentiality, it would be desirable to ensure that this information could 

only be accessed from authorized locations. Public wireless access points may be 
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compromised, and a malicious compromise could threaten the integrity of servers by 

corrupting remote administration requests. 

While existing protection schemes offer a base layer of security for information 

systems, there is growing interest in enhancing these protections by examining the 

context of a request. For instance, a resource manager that can consider the user’s 

physical location, the device being used, or the integrity of the execution environment 

may be capable of providing more robust security guarantees than one capable of only 

validating the credentials presented. In the former case, anomalies in these additional 

characteristics may indicate the presence of an attack. We describe this new approach 

as contextually-dependent access control (CDAC). 

Study in traditional access control schemes has emphasized a separation between 

policy and implementation. This split was acceptable, as mapping the policy to the 

implementation was fairly straightforward. In the case of a DAC-based file system, a 

simple access control matrix could sufficiently express the way that file (object) per

missions were granted to users (subjects). This simple construct was also sufficient 

for more complex systems, such as RBAC or DTE. These systems were not funda

mentally different, but made administration easier by creating hierarchical definitions 

of subjects and objects. Formally, one could capture the essence of an access control 

policy with the following partial function: 

Policy : Subject× Object → Permission 

In contrast, CDAC introduces a new dimension to the domain of this function. 

To complicate matters further, this new dimension is inherently vague and is deter

mined by the application domain. Consequently, the increasing gap between policy 

and implementation makes this dichotomy insufficient for CDAC. Rather, we adopt 

the view of Sandhu et al. [1] to consider PEI models (policy, enforcement, and imple

mentation). In the PEI framework, the enforcement layer consists of architectures, 

protocols, and technological considerations that form a bridge between formal policies 

and the pseudocode of implementation models. 
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Up to this point, the primary focus of work in CDAC research has been the es

tablishing the formalisms to reason about policies. Defining the architectures for 

enforcing these policies has largely been neglected in the research community. How

ever, our work has demonstrated that addressing the challenges that arise from the 

enforcement of CDAC policies is worthy of study in its own right. 

The theme of this work, then, is to examine how to combine cryptographic pro

tocols, hardware technologies, and software techniques to create a root of trust for 

enforcing CDAC policies. Our work has been to explore these questions in a number 

of settings for various contextual factors. In each realm, we have also developed pro

totypes for empirically analyzing the merits of these techniques. In short, the intent 

of this dissertation is to document the feasibility of designing trusted enforcement 

mechanisms for CDAC. 

1.1 Combining Location Constraints with RBAC 

The first setting for our examination of CDAC is to incorporate location con

straints into RBAC. RBAC is widely used in modern enterprise systems, as it eases 

the burden of administration by crafting policies based on roles, rather than identities. 

The increasing usage of mobile devices in enterprise settings, though, presents a new 

challenge as users need access to protected resources from a variety of settings. As 

such, it would be desirable to make a distinction between a VPN established through 

a public (and potentially malicious) wireless hotspot and one intiated from a secured 

office network. 

Prior work on the topic of spatially constrained RBAC focused on augmenting 

policy models to incorporate logical or physical location data. However, existing work 

left a number of interesting challenges open for further consideration. For instance, 

the design of reusable enforcement architectures and protocols has received little 

attention. Addressing this challenge entails overcoming two hurdles. First, the system 

must provide a secure means to authenticate the user’s claim to a particular location. 
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Second, as users are assumed to be mobile, the system must be able to enforce access 

control as the user’s location changes. 

To process a user’s claim to a location, it would be inappropriate for an access 

control system to rely on something like GPS coordinates. GPS does not offer a way 

to determine the veracity of the user’s claim. One could deploy a system where each 

device signs the coordinates, but this design still requires trusting the device. Similar 

to GPS, triangulation techniques in cell phone towers can be used to approximate the 

user’s location, but this again requires trusting the phone. A more desirable approach 

would involve a protocol where the user retrieves a proof of location from a device in 

a fixed location. To ensure the proof is correct, guaranteed proximity to the location 

device is required. We explore the use of near-field communication (NFC) as a means 

to solve this problem. 

After addressing the enforcement challenge, we then return to the policy level 

to introduce a new approach to spatially aware RBAC. In existing models, policies 

are based on the location of the requesting user. While this approach is the most 

intuitive, it is not the only paradigm for considering location information. In some 

settings, it is not the user’s absolute location that matters, but the position relative to 

other users. Our proposed model extension and policy language allow the definition 

of proximity constraints, where the system considers the location of other users during 

the access decision. 

We conclude our study of location constraints by inverting the threat model. 

Specifically, previous work in spatially aware RBAC assumes a one-sided adversarial 

question, where the system is designed to protect sensitive assets from potentially 

malicious users. However, when one considers the reality of malware and insider 

threats, it becomes apparent that the system–especially for the goal of trusted en

forcement–must protect the user, as well. Specifically, an access control mechanism 

that can evaluate the contextual policies without revealing the user’s location or iden

tity would be very advantageous for preventing information leaks. Our work in this 
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chapter provides a formal proof that it is possible to reconcile security with privacy 

in this regard. 

1.2 Physical Contextual Factors 

Although location can be an important factor in contextual access control, it is 

often desirable to consider the physical device itself. For example, consider a network 

of embedded devices responsible for monitoring and controlling aspects of a power 

plant or water treatment facility. Each such device may be assigned to a particular 

domain, and a supervisory system needs to enforce restrictions based on the device’s 

identity. 

In the second section of this dissertation, we adopt the challenge of controlling 

access based on the physical device being used. In our approach, we do not rely on any 

transient property or persistent cryptographic key. Rather, we leverage a hardware 

technology known as physically unclonable functions (PUFs) to authenticate a device 

remotely and securely. We then use the PUF to generate a one-time use symmetric 

key for protecting the data transmitted during the access session. 

We then take this idea of PUF-based key generation a step farther. Specifically, 

we tackle the problem of dynamically generating cryptographic keys in a manner that 

they can only be used once (or a limited, configurable number of times). Although 

a näıve approach would involve writing the application software in such a way that 

the key is deleted, this scheme makes very strong implicit trust assumptions. For 

instance, the OS kernel could interfere, stopping the attempted deletion; a powerful 

adversary with physical access to memory could perform an attack that completely 

bypasses the software. To prevent these threats, we propose PUF ROKs (read-once 

keys) as a hardware design technique that incorporates the key generation and use 

into the processing unit. Consequently, the key never exists in a location that is 

susceptible to attack, and the hardware ensures that the key can only be used once. 
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1.3 Establishing a Resilient and Trusted Execution Environment 

In our concluding section, we shift our focus from the policy and enforcement 

challenges to the execution environment itself. That is, applications cannot enforce 

complex policies with high assurance if an adversary has corrupted either the OS or 

the application code itself. Consequently, we end our discussion with techniques for 

establishing and preserving a trusted execution environment that is resilient against 

common and novel attack vectors. 

We start this section by considering a very powerful adversary. We assume that a 

malicious actor has successfully corrupted the OS kernel in a highly targeted attack 

on a trusted application. The general consensus in the literature is that this adversary 

has “won the game,” and all considerations of execution integrity are discarded. On 

the contrary, we explore techniques for integrating an authentication mechanism into 

a trusted virtual machine monitor (VMM) that executes at a privilege level below the 

OS. The aim of our technique is to detect and repair any damage to the application 

that occurs when the corrupted OS tampers with the application’s memory image. 

Although we have focused on the systems work of designing the recovery mech

anism, this technique has interesting implications for CDAC. Specifically, one could 

couple this approach with attestation to validate the integrity of a remote system 

before granting access to a protected resource. When an attack occurs, the VMM 

would first attempt to repair the memory image; the access control decision would 

then be determined by whether or not the repair is successful and the application’s 

integrity is ensured. 

Finally, we turn to a weaker but more realistic adversarial model for application 

corruption. Specifically, we conclude by examining the threat of library-based attacks, 

primarily return-into-libc and what we call gadget-oriented programming (GOP) at

tacks1 . While memory image randomization has been proposed as a means to stop 

1The latter class has mostly been studied as return-oriented programming (ROP), because the attack 
is based on small pieces of code (gadgets) that end in ret instructions. However, more recent work 
has shown that gadgets can be constructed from other instructions, such as jmp and call. As such, 
the term ROP no longer fully captures the essence of the threat class. 
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Table 1.1
 
Concerns and technological basis for enforcement various CDAC constraints
 

Contextual Factor Primary Concerns Technology 

Spatial awareness Authentication of location, 
continuity of usage, relative 
proximity, location privacy 

NFC, 
cryptography 
(PIR, OT) 

Physical context Distinguish “identical” devices, 
prevent leakage or modeling of 
device properties, avoid 
invasive threats 

PUFs, ZKPK, 
FPGA 

Execution integrity Protection from corrupted OS, 
probabilistic automated 
recovery, buffer overflows 

VMM, DFC, 
randomization, 
microkernel OS 

these attacks, existing solutions suffer from a lack of run-time diversity. Our discus

sion, then, explores a new technique for strengthening defenses against this type of 

software vulnerability. 

1.4 Summary and Document Structure 

Table 1.1 identifies the primary concerns of each contextual factor under consid

eration, as well as the technological basis for our implementations. In the case of 

spatial awareness, it is crucial to validate the user’s claim to a particular location, 

and to react accordingly as the user moves. Our prototype combines NFC cell phone 

technology, which has a tight proximity constraint, with cryptographic protocols to 

achieve our policy goals. In addition, we have extended the basic spatially aware 

RBAC model to consider other users’ location and to protect individuals’ privacy. 

In considering the physical contextual factors, we have combined PUFs with zero

knowledge proofs of knowledge to distinguish physical instances of the same hardware 

device, while mitigating the threat of an attacker emulating the PUF through a model. 

We have also demonstrated a technique for using the PUF to generate one-time use 

cryptographic keys. Finally, we have proposed a VMM-based mechanism to protect 
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the integrity of a trusted application’s memory image, as well as a randomized process 

loader that protects the application against known buffer overflow exploit techniques. 

Coupling the former technique with attestation could allow one to examine and repair 

a remote application before approving its access request. 

The remainder of this work explores these topics in detail. The outline can be 

summarized as follows. We begin with a state-of-the-art summary of related work 

in Chapter 2. We highlight work that forms the basis of our research, as well as 

other approaches with similar aims as ours. In Chapters 3, 4, and 5, we examine 

the enforcement challenges for spatially aware RBAC, including authentication of the 

user’s location and credentials, defining new policy constraints, and protecting the 

user’s privacy. Chapters 6 and 7 consider different contextual factors. In the former, 

we base policy evaluation on the device being used; the latter considers the history 

of accesses, by restricting the number of times that a cryptographic key can be used. 

Finally, our work in Chapters 8 and 9 considers the difficulty of ensuring proper 

execution of the applications that support CDAC, and we conclude in Chapter 10. 
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2 SURVEY OF RELATED WORK AND BACKGROUND MATERIAL 

“If I have seen further than others, it is by standing on the shoulders of giants.” 

This statement, often attributed to Isaac Newton1, captures a fundamental aspect of 

any doctoral thesis. To understand a topic in detail, one must explore the existing 

literature on the subject. Here, we summarize the state-of-the-art relevant to CDAC. 

2.1 Contextual Access Control Models 

The first challenge in CDAC is to define precisely what is considered context. Intu

ition dictates that context should reflect the user’s environmental conditions. Clearly, 

the user’s physical location, represented by GPS coordinates, could be considered an 

example of context. In some settings, the logical location may be more useful; that is, 

the user’s location is described in relative terms, such as “on the third floor,” “in the 

hospital emergency room,” or “in room 217.” The precise GPS coordinates may be 

unnecessary for access control in such settings. As part of our work focuses on loca

tion as a special case to study in detail, we will examine the models for location-based 

CDAC in the next section. 

Another aspect of contextual information for consideration is the trustworthiness 

of the principal. In order to quantify this factor, researchers have focused on the 

calculation of either risk or trust [3–6]. One challenge in this field is to design the 

system to adapt to new information. For example, many risk-based approaches in

volve defining weighting factors for pieces of data. However, it is not clear how a 

system should react when a user presents a new form of credential. Given the uncer

1The aphorism actually predates Newton, as similar quotations have been traced to the Middle Ages. 
For an extensive history of the saying, see On the Shoulders of Giants, by Robert K. Merton [2]. 
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tainty surrounding risk- and trust-based approaches, we do not focus on this direction 

as a form of CDAC. 

2.2 Usage Control, PEI, and XACML 

Our work on spatially aware RBAC was strongly influenced by previous work 

on usage control frameworks, PEI models, and XACML. The UCONABC family of 

models [7–9] describes the various methods for checking access requests. This frame

work describes conventional access control as preA, indicating the access check is 

performed before access is granted and is not performed again. In contrast, onA sys

tems continue to enforce the access constraints while the resource is accessed. These 

continuous checks are important for mobile systems, where a user can move outside 

the permitted region after being granted access to a resource. We incorporate onA 

checks into the design of our architecture. 

To bridge the gap between abstract policies and real implementations, Sandhu et 

al. have proposed the notion of PEI (policy, enforcement, implementation) models [1]. 

That is, the authors created a distinction between policy goals, which are traditionally 

high-level, abstract, and expressed in a formal manner, and enforcement mechanisms, 

which define the architecture, protocols, and technological constraints for creating an 

implementation. While GEO-RBAC describes the high-level policy, our work defines 

the enforcement model for deploying such a system. 

XACML is an open standard for defining the structure of an access control enforce

ment mechanism [10]. One of the important elements of XACML is the separation 

of duties among multiple entities, including the policy decision point (PDP), the pol

icy enforcement point (PEP), and the policy information point (PIP). The PIP is 

responsible for providing relevant information to the PDP in regard to a user’s access 

request. Once the PDP has determined whether or not the access is granted, the 

decision is passed to the PEP, which is responsible for carrying out the decision. For 

example, the PEP may be a server that generates tickets that can be used to access 
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Figure 2.1. Core features of GEO-RBAC 

the data. Part of our architectural work involves identifying the principals that make 

up the PIP, PDP, and PEP for a location-based RBAC system, as well as defining 

the protocols used to enforce the security guarantees. 

2.3 Incorporating Location and Context into Role-Based Access Control 

Role-based access control (RBAC) [11,12] is commonly used to model information 

system protections, including hierarchical designs [13, 14]. Several extensions to the 

basic RBAC model have been proposed, including some that incorporate temporal 

logic [15] and spatial constraints [16–21]. Additional work [22, 23] has focused on se

curing mobile and context-aware systems. These approaches have focused on abstract 

models to represent the spatial and temporal constraints, whereas our work focuses 

on creating an enforcement architecture and an implementation for such a system. 

In particular, our work expands on the GEO-RBAC model by examining the design 

necessary to enforce such constraints. 

GEO-RBAC [18] introduces the concept of spatial roles, combining a traditional 

RBAC role with particular spatial extents. During a single session, a user is mapped 

to one or more spatial roles according to his or her location, as well as any credentials 



12 

required to activate a role. Permissions, linking operations and objects that can be 

acted upon, are assigned to spatial roles. Thus, if a user can activate a particular 

spatial role during a session, he or she can then perform the actions specified by that 

role’s permissions. The core notions of GEO-RBAC are shown in Figure 2.3. 

There are two key novel features to GEO-RBAC. The first is the distinction be

tween role enabling and role activation. When a user enters the region described by 

the spatial role’s extents, we say that the role is enabled. However, the user cannot 

exercise any permissions associated with that role until he chooses to activate it. If 

the role is not activated, the user cannot exercise any of the associated permissions. 

The advantage of this distinction is that mutually exclusive roles can be defined for 

the same spatial region. Both roles can be simultaneously enabled, but only one can 

be activated at a time. 

Another key feature of GEO-RBAC is the concept of role schema. A role schema 

is an abstraction, such as < Doctor, Hospital >, that can be used as a template 

for singular roles. Permissions can be granted to role schemas in order to ease the 

administration of roles. A role instance is then created from a schema using specific 

data. For example, < Chief of Surgery, St. Vincent > can be an instance created 

from the < Doctor, Hospital > schema, as Chief of Surgery is a particular instance 

of Doctor, and St. Vincent is an instance of Hospital. Note that, while permissions 

can be granted to either schemas or instances, only instances can be activated. For 

additional details on GEO-RBAC, we refer the reader to the full paper. 

A number of works have considered the enforcement challenges for spatial and 

contextual access control policies [24]. In Cricket [25], user devices analyze their own 

distance from known beacons within an indoor space; this approach assumes user 

devices make honest location claims in their access requests. The use of near-field 

communication (NFC) [26, 27] and RF-based sensors [28, 29] has received significant 

focus in the literature, while other works have considered techniques to ensure a user’s 

contextual claim is consistent with those of other users in a mobile environment, such 
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as a train [22]. Another approach includes the interposition of an access control engine 

between the user and the location service [30]. 

Our exploration of technologies to support a high level of integrity for location 

information has involved extensive use of NFC. NFC is an RFID-based proximity-

constrained technology that provides contactless communication between a device 

and a reader/writer. However, NFC has a number of advantages over traditional 

RFID mechanisms, such as a very restricted broadcast range that is typically 10 cm 

in radius. This limited range is clearly sufficient to provide evidence of the user’s 

presence in a room or building. Additionally, NFC defines a peer-to-peer mode that 

can be used to read and write data in a single contactless session. While recent work 

has uncovered attack vectors on NFC phones [31, 32], these attacks have focused on 

reading data stored for passive retrieval from an NDEF tag. Our design does not store 

such data, so these attacks are not related to our work. One work that is similar to 

ours is the approach developed by the Grey [27] project at Carnegie Mellon University. 

Grey is a smartphone-based system that is used to control access to secure rooms. 

In contrast to Grey, our aim is to incorporate NFC technology into an access control 

mechanism for information systems, not just to physical spaces. 

Location is not the only factor commonly used as contextual information. Some 

models incorporate the time of the access request [17, 21, 33]. For example, an orga

nization may wish to restrict access to sensitive data to business hours. Additionally, 

more subtle factors can be considered. The user’s previous data access history may 

be required to enforce separation of duty or conflict of interest constraints. Environ

mental factors, such as the presence of a medical emergency or a criminal pursuit, 

may be sufficient to grant an access request that would otherwise be denied. Previ

ous work in CDAC [34, 35] also includes aspects such as velocity or physical world 

conditions. Finally, context-awareness has also been applied to the unique challenges 

of ubiquitous computing in the home [22]. 

Our work on the privacy concerns of spatially aware RBAC is also related to the 

question of privacy-preserving queries in location-based services (LBS) [36] and k
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nearest neighbor queries [37]. However, as our work focuses on access control, the 

security concerns are more stringent. For instance, in most cases of LBS, the use of 

location is to provide local information to the user; if the user provides a location 

that is not accurate, he would receive inaccurate results. In spatial access control, 

however, the service provider must ensure that the user’s location claim is correct. In 

addition, our model also employs RBAC, which requires authentication of the role, 

as well. 

2.4 Physically Unclonable Functions and Device Identification 

The literature of computer security contains a long history of identification schemes 

and authentication protocols [38–42]. Modern research in this area has become more 

focused on addressing issues concerning digital identity management under special

ized circumstances, such as internet banking [43], secure roaming with ID metasys

tems [44], digital identity in federation systems [45], privacy-preservation for location

based services [46], and location-based encryption [47]. These works rely on knowledge 

or possession of a secret, and do not bind the authentication request to a particular 

piece of hardware. 

The origin of PUFs can be traced to attempts to identify hardware devices by 

mismatches in their behavior [48]. The use of PUFs for generating or storing cryp

tographic keys has been proposed in a number of works [49–53]. The AEGIS secure 

processor [54] presents a new design for a RISC processor that incorporates a PUF 

for cryptographic operations. Our work contrasts with these, as we aim to integrate 

the unique PUF behavior directly into an authentication protocol, rather than simply 

providing secure key storage. 

Relative to our work of applying PUFs to authentication and access control, [55] 

and [56] are perhaps the most similar. However, the former focuses on binding soft

ware in a virtual machine environment, whereas the latter focuses on authenticating 
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banking transactions. Our protocols focus on light-weight multifactor authentication 

for distributed settings that require low-power solutions that minimize computation. 

Other types of trusted hardware exist for various purposes. Secure coproces

sors [57] and TPMs can provide secure key storage and remote attestation [58–61]. 

In many cases, the secure storage of TPMs can be used to bind authentication to a 

piece of hardware. However, we are interested in solutions for distributed computing 

that do not rely on TPMs, as TPMs may not be available for the devices used. 

Finally, a new direction for hardware identification has emerged to identify unique 

characteristics of RFID devices [62–64]. These works are similar to previous work on 

PUFs, where they focus on identifying the device. These works do not propose new 

protocols that incorporate the unique behavior directly. 

2.5 Virtual Machine Introspection and Integrity Enforcement 

Authentication of executed code has received a lot of attention in recent years, 

due to novel applications such as outsourcing of services. Flicker [65] uses a trusted 

platform module (TPM) to prove to a remote party that a certain sequence of in

structions is properly executed. An accumulated hash of a block of instructions is 

computed by a trusted hardware module, and the hash is signed with a key that is 

kept in trusted storage. In the Patagonix [66] system, the objective is to prevent 

execution of unauthorized applications. To that extent, the (trusted) OS maintains 

a database of hashes for the code and static data segments of known applications. 

Upon starting a new process, the OS checks if the executable’s hash matches one of 

the values stored in the database, otherwise execution is prohibited. Note that, the 

setting in Patagonix is quite different from ours, since the OS is trusted. Furthermore, 

Patagonix does not address memory corruption that occurs dynamically at runtime. 

Several solutions for secure code execution based on VMMs have been proposed. 

The Terra system [67] provides critical applications with their own virtual machine, 

including an application-specific software stack. However, such a solution may not be 
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scalable, and may limit inter-operability. HookSafe [68] relies on a trusted VMM to 

guarantee the integrity of system call hooks that are used by applications. SecVisor 

[69] virtualizes hardware page protections to ensure the integrity of a commodity OS. 

XOMOS [70] proposes building an OS to rely on a trusted processor architecture to 

provide kernel integrity; the authors emulated the behavior in a trusted VMM, which 

could be used in place of the hardware. Similarly, SecureBit [71] proposes the use 

of external protected memory to defend against buffer overflows; like XOMOS, the 

authors emulated their design in a trusted VMM. These approaches either focus on 

protecting the integrity of the OS or make no attempt to recover after a memory 

corruption is detected. In contrast, our work focuses on creating an environment in 

which the application can be repaired and allowed to continue, even if the underlying 

OS is corrupt. 

A number of other techniques have been proposed for resilient processing. For 

instance, checkpointing [72–74], returns the execution to a known, good state if a 

corruption occurs. Similarly, speculative execution [75, 76] performs a number of 

processing steps, and only commits to the results if they are correct. Some systems 

leverage multicore environments [77–79] and parallel execution [80] in an attempt to 

detect when an application has been corrupted. One such approach [81] will also 

resurrect a corrupted process automatically. CuPIDS [82] uses a physically separate 

co-processor to perform monitoring, similar to VMM-based approaches. Another 

interesting approach is to simply ignore faults that would lead to a crash and continue 

processing [83]. While all of these approaches have their merits, they do not consider 

the case where the OS itself is malicious. 

Closest to our work on VMM-based integrity is the Overshadow [84] system, where 

a VMM prevents a malicious or compromised OS from accessing a protected appli

cation’s memory space. The VMM encrypts the memory image of the application 

right after the corresponding process relinquishes the CPU, and before any other 

(untrusted) code gets the chance to execute. A hash with the digest of the legitimate 

memory contents is stored in trusted storage. However, Overshadow terminates the 



17 

critical application as soon as corruption is detected. In contrast, we do attempt to 

recover the correct memory image and resume execution. Furthermore, the use of 

encryption in Overshadow leads to a more significant performance penalty than our 

approach. However, if encryption is vital to the protection of the application, our 

solution can be immediately extended to encrypt memory contents before encoding. 

In another similar work, NICKLE [85] protects against kernel rootkits by keeping 

a duplicate image of kernel memory in a protected partition of the physical memory. 

Whenever an access to the kernel memory is performed, the running copy is compared 

to the saved copy, and an alarm flag is raised if a mismatch is detected. Similar to 

Overshadow and to our approach, NICKLE also relies on a trusted VMM. Note that, 

NICKLE only protects the kernel, but not applications running in user space, and 

the duplicate image must be created at bootstrap time. Furthermore, duplication 

of memory is not a scalable solution to protect multiple applications. To compli

cate things further, the memory image of applications changes frequently, whereas 

NICKLE only protects the kernel code segment which does not change. 

Finally, ClearView [86] incorporates machine learning techniques into a VMM to 

patch running applications for common vulnerabilities without reboot. ClearView 

requires a learning phase, in which the VMM identifies correlated invariants, i.e., 

actions that are associated with failures. When an invariant is violated, ClearView 

automatically generates a patch for the executing process. ClearView is aimed at 

untrusted applications that may be vulnerable to traditional exploits, such as buffer 

overflows; ClearView does not protect against corruptions that do not lead to ap

plication failures. In contrast, we offer a defensive mechanism to prevent external 

applications and an untrusted OS from corrupting any portion of a trusted applica

tion. That is, our approach can defend against corruptions that violate the integrity 

of the application data without leading to failure, whereas ClearView does not. 

Our mechanism is reminiscent of previous attempts at the complex task of ap

plication recovery. Recovery-oriented computing (ROC), as proposed by Fox and 

Patterson [87], involves designing rapid failure recovery mechanisms into new and 



18 

existing applications. The resulting programs include the ability to “undo” errors by 

returning to a good state. The approach that we adopt in this paper is to detect 

and automatically replace the corrupted application memory pages. As such, our 

work can be seen as a technique for transparently incorporating ROC principles into 

trusted applications. 

Error-correcting codes (or erasure codes) have been extensively used in communi

cation protocols for lossy channels. Maximum distance separable codes (e.g., Ham

ming codes) are optimal in terms of reception efficiency, but incur high encoding and 

decoding complexity (often quadratic to the size of the message). Such codes rely on 

parity checks, or polynomial oversampling. For instance, Reed-Solomon codes [88] 

employ oversampling of polynomials, and are used in broadband technologies (e.g., 

DSL), as well as Blu-ray discs. 

Near-optimal erasure codes trade off some additional redundant storage require

ments, but achieve fast computation time for encoding and decoding. Luby transform 

(LT) [89] and Raptor [90] codes fall in this category. We use LT codes in our imple

mentation of the resilient execution environment for critical applications. Although 

Raptor codes are superior in principle to LT codes, they incur additional implemen

tation complexity that may not be suitable for low-level deployment, such as within 

a VMM. 

2.6 Return-into-libc and Return-oriented Programming Defenses 

Address obfuscation [91] and address-space layout randomization (ASLR) (e.g., 

PaX [92]) are two well-known techniques for defending against library-based attacks. 

Recall that one of the short-comings of ISR (described above) was that the small 

amount of randomization allowed brute-force attacks [93]. The same can be said for 

address obfuscation and ASLR on 32-bit architectures [94]. That is, Shacham et al. 

demonstrated that existing randomization techniques can be defeated by brute-force. 

While their proposed solution is to upgrade to a 64-bit architecture, thus increasing 
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the number of possible randomized addresses, this approach has problems. First, for 

many settings (e.g., embedded devices), upgrading to 64-bit architectures is simply 

not feasible. Second, and more problematically, information leakage can allow an 

attacker to learn the randomized base address of libc [95]. Consequently, simply 

randomizing the base address does not effectively block the attack. 

Another approach for library-based attacks is to detect and terminate the attack 

as it occurs. DROP [96] is a binary monitor implemented as an extension to Val-

grind [97]. DROP detects ret instructions and initiates a dynamic evaluation routine 

based on a statistical analysis of normal program behavior. When a ret instruction 

would end in an address in libc, DROP determines if the current execution routine 

exceeds a candidate gadget length threshold. These thresholds are based on a static 

analysis of normal program behavior. The binary to be run must be compiled with 

DROP enabled. DynIMA [98] combines the memory measurement capabilities of a 

TPM with dynamic taint analysis to monitor the integrity of the process in execution. 

Other approaches store sensitive data, such as return addresses, on a shadow stack 

and validate their integrity before use [99,100]. The disadvantage of these approaches 

is that there is a non-zero performance cost for every checked instruction. Also, with 

the exception of [100], these schemes assume gadgets end in ret instructions, and do 

not consider the more general gadget-oriented programming (i.e., including gadgets 

ending in jmp or call instructions) case. 

Compiler-based solutions [101,102] that create code without ret instructions have 

also been proposed. However, these techniques have the obvious disadvantage that 

they fail to prevent attacks based on jmp instructions. Compiler techniques have also 

been proposed to generate diversity within community of deployed code [103]. That 

is, instead of all users executing the same compiled image (i.e., a monoculture), when 

a user downloads an application from an “app store” model, the compiler generates 

a unique executable, which would stop a single attack from succeeding on all users. 

While we find this approach very promising, it is not universally applicable, and would 

not stop an attacker with a singular target. 
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Perhaps most similar to our approach for stopping library-based attacks is that of 

proactive obfuscation [104]. This approach uses an obfuscating program that applies 

a semantics-preserving transformation to the protected server application. That is, 

the executable image differs each time the obfuscator runs, but the end result of the 

computation is identical. The proactive aspect means that the server is regularly 

taken off-line and replaced with a new obfuscated version, thus limiting the time 

during which a single exploit will work. Our work can be seen as another instance of 

proactive obfuscation. However, our focus is specifically on shared libraries in general 

applications, rather than long-running servers. 
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3 ENFORCING SPATIAL CONTRAINTS FOR MOBILE RBAC SYSTEMS 

Organizations have embraced role-based access control (RBAC) as a way to streamline 

the maintenance of access control policies. As a result of this popularity among 

enterprises, RBAC provides a very attractive foundation for incorporating contextual 

constraints into policies. Perhaps the most common extension is augmenting RBAC 

policies to reflect location constraints. With the increased adoption of mobile devices 

in the workplace, these constraints are becoming increasingly important. In this 

chapter, we will begin our exploration of location-based RBAC policies by considering 

the basic enforcement challenges. Specifically, we will propose a high-level framework 

for authenticating a request made from a mobile device, and we will describe the 

challenge of continuously enforcing the constraint as the user moves. This chapter 

also provides the basis for the subsequent discussions of novel location-based RBAC 

techniques. 

3.1 On the Promise of Location-based RBAC 

Location-constrained RBAC systems can offer robust fine-grained access control 

in a number of application scenarios. One example would be to improve the privacy 

of patient records in a health care system [105]. A limitation of current systems is 

the “bored but curious” employee; such a person may access the record of a celebrity 

undergoing treatment in the same hospital, despite having no valid reason to do 

so. While auditing provides a reactive security measure against such actions, a more 

proactive approach can establish a higher level of protection for user privacy. Incorpo

rating spatial constraints could restrict access to the patient’s record only to workers 

in the ward in which he is being treated, thus stopping the information leakage before 

it occurs. 
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In a government or military setting, secure processing of confidential material 

might require restricting such accesses to a single room or set of rooms. Simplistic, 

but undesirable, solutions could be to require a different set of credentials for use in 

the room or to restrict access to machines permanently stored in that location. A 

more flexible approach would be to permit users to bring in their (employer-assigned) 

mobile devices and present the same credentials they use otherwise. That is, enforce

ment of the spatial constraints would be transparent to the user. 

To authenticate the user’s location initially, we propose a novel proof-of-location 

framework, based on the assumption that a number of location devices are pre-

deployed in known physical positions. A user retrieves the proof, including a times

tamp, which he presents to a resource manager, along with other relevant credentials. 

The resource manager consults with a role manager, and grants a ticket for the re

source if the request is approved.1 We have also developed a prototype implementa

tion of this protocol, where the user retrieves the proof-of-location using a cell phone 

equipped with NFC technology. 

Our motivation for this work derives, in part, from the notion of PEI (policy, 

enforcement, implementation) models, as proposed by Sandhu et al. [1]. That is, the 

authors created a distinction between policy goals, which are traditionally high-level 

and abstract, and enforcement mechanisms, which define a re-usable structure for 

creating implementations. Consequently, we find that, while several location-based 

RBAC policy models exist, the enforcement question has received little attention in 

the literature. This chapter is intended to address the dearth of such architectures. 

3.2 Supporting Policy Models for Location-based RBAC 

Our solution is based on the GEO-RBAC [18] spatially aware RBAC model and 

incorporates elements of the UCONABC family of access control models. The main 

feature of GEO-RBAC is the association of spatial extents with traditional RBAC 

1Note that the resource manager and role manager are both servers, so the request decision is fully 
automated. 
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roles. GEO-RBAC policies can then use these spatial roles in defining fine-grained 

access control permissions. For instance, policies using the spatial role < Manager, 

Room 513 > would require that the user activate the Manager role (assuming the 

user is authorized) and be physically present in room 513. Consequently, a subject 

using the role Manager would be denied access if the request is made from another 

location. 

A key feature of GEO-RBAC is the differentiation of role enabling and role acti

vation. A spatial role is automatically enabled if the user is authorized to activate the 

role and the user is physically present in the requisite location. However, an enabled 

role does not explicitly grant any privileges. Instead, the user must activate the role 

in order to exercise the associated permissions. This differentiation lets GEO-RBAC 

support complex policies, including mutually exclusive roles. It is the user’s specific 

action that determines the role to be applied in a particular instance. 

Another strength of GEO-RBAC is the support for hierarchical policy and role 

definitions. This support simplifies the administrative overhead of the model. For in

stance, an organization can define policies that grant permissions to <Employee,Third 

Floor>, where these permissions would simultaneously apply to a manager in Room 

305 and a salesperson in Room 310, without requiring any redundant policies. 

In this chapter, our interest in UCONABC lies primarily with the notion of con

tinuity of access. Specifically, UCONABC policies include semantics that determine 

how the permissions are applied as the location or other conditions change. That is, 

as the user moves, the relevant policies may change and re-evaluation is necessary. As 

our consideration of UCONABC in this chapter is very limited, we leave the discussion 

of this family of models for later chapters that rely on it more extensively. 

3.3 Architecture 

In this section we describe our architecture. We start by discussing the goals that 

shaped our design, then describe the assumed capabilities of the principals involved. 
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3.3.1 Design Goals 

Our design approach was to keep our architecture as general as possible to provide 

for a diverse selection of implementations. In order to accomplish this approach, we 

defined the following goals for our design. 

Maximize efficiency. The creators of the Grey smartphone-based access control 

system state, as a principle for designing security systems, “Perceived speed and 

convenience are critical to user satisfaction and acceptance.” Consequently, any such 

access control protocol should be as efficient as possible. Our design aims to achieve 

to this goal by minimizing the number of communication steps and cryptographic 

operations for successful completion. 

Separation of server duties. In a spatially aware RBAC system, there are two 

necessary steps to any access request. First, the requesting user2 must be mapped to 

a role. Second, the role and request must be checked against the protected object’s 

set of permissions. We model these distinct steps by designating separate principals 

for each. 

Pseudonymize requests. When a user requests access to a resource, the server 

responsible for protecting the resource has no need for the user’s identity information 

or the location. This server only needs to know what roles the user has activated. 

Only the server that maps the user to a role needs knowledge of the user’s identity. 

We protect this data by encrypting it with a key known only to the user and the 

principal managing the role mappings. 

Continuity of access. In mobile systems, a user could move outside the extents 

of the region for which a role has been defined. At that point, any request that was 

granted according to the user’s original location should be revoked. We enforce this 

2Note that there is some inherent ambiguity in relation to the term “user.” We generally use the 
capitalized term User to refer to the physical device or the device software making the request, while 
the uncapitalized “user” typically refers to the actual person behind the request. In some cases, User 
may consist of multiple physical devices. For example, an NFC-enabled cell phone may be used for 
communication with the location device, while the actual access request is submitted to a resource 
after connecting the phone to a laptop. In such a design, User consists of the combination of the 
phone and the laptop. 
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constraint by using a continuity of access model that requires users to re-confirm their 

locations after a certain period of time. If the user has moved outside the allowed 

region, he will be unable to confirm his location, and his existing permissions will be 

revoked. 

Generalized client design. In our design, we strive to make our system model 

as general and applicable as possible. That is, we desire to minimize any assumptions 

regarding the client’s performance or security capacities. For example, we do not 

assume the user’s mobile device is capable of multiple complex cryptographic opera

tions, nor do we assume specialized hardware security mechanisms. Such assumptions 

would be barriers to adoption. Consequently, we cannot place any reliance on the 

trustworthiness of the client for determining the correct location. If the system were 

based on GPS, for instance, the server could not distinguish between a device that 

reported the true coordinates and a corrupted device that provided false locations. 

3.3.2 Principals 

From a high-level perspective, our design is based on a ticket-granting architecture 

in which a user submits an access request to the resource manager that owns the 

desired resource. If the request is granted, the manager issues a ticket the user can 

submit to the resource for the duration of the session. It is important to note that 

the resource itself is responsible for checking the validity of the ticket. However, as 

ticket validation is not directly related to the enforcement of location constraints, 

we consider such an issue to be outside the scope of this paper. Consequently, our 

architecture does not explicitly model the resource as a separate principal. 

Although our discussion assumes a ticket-granting architecture, our design can 

also be applied when tickets are not involved. That is, if the system is set up so that 

the user issues an access request directly to the desired resource, then the resource 

itself is acting as its own manager. Once the access decision is made, the resource then 
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grants access immediately without the additional step of issuing a ticket. However, 

for the simplicity of discussion, we will continue to refer to a ticket-granting design. 

The following four principals form the core of our architecture. 

•	 User – the principal making the request. This principal generally refers to the 

device used for the request, although one can also interpret it as the person 

making the request in some instances. When a distinction is necessary, we use 

the uncapitalized “user” to refer specifically to the person, whereas User would 

indicate the device. 

•	 Location Device (LD) – the physical device storing location information. We 

assume that LD is installed in a pre-defined location and cannot be moved. For 

example, LD may be installed inside a wall or another immovable structure. 

LD serves as one part of the PIP, as it provides contextual information relevant 

to a request.3 

•	 Resource Manager (RsM) – the resource manager responsible for the requested 

resource. RsM acts as both the PDP. If the policies regarding access to the 

resource grant permission based on User’s currently active roles, then RsM ap

proves the request and generates a ticket. As described previously, the resource 

itself (which is not modeled as a separate principal) acts as the PEP and takes 

responsibility for validating the ticket. 

•	 Role Manager (RoM) – the role manager that maps a user to a set of roles. RoM 

is responsible for evaluating the location claim and the credentials presented. 

It then returns a list of active roles to RsM, which evaluates the request in 

relation to the defined policy. As such, RoM acts as the PIP. Although we 

assume RoM consists of a single, centralized server, we believe our architecture 

3Our design differs slightly from the basic XACML structure in relation to the use of the PIP. 
Normally, the PIP is consulted by the PDP when it receives a request. However, this approach 
would require additional communication overhead, as RoM would have to contact LD, which could 
delay the access decision. Instead, RoM just needs to authenticate the data User gathered from LD. 
Consequently, our approach reduces the number of communication steps required. 
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could be applied to a distributed server, as well. We leave such a consideration 

for future work. 

In practice, there would be multiple location devices and resource managers within 

the system. However, our protocol is designed to focus on a single access request at 

a time. In that view, User contacts a single LD for proof of location, then contacts a 

single RsM to request the access. Consequently, we only mention a single RsM and 

LD in our protocol definitions. 

3.3.3 Communication 

Figure 3.1 models the communication channels that exist in our architecture. 

With the exception of the channel between LD and User, we make no assumptions 

about the underlying network medium. That is, the other connections can be either 

wirless or wired, and we place no restrictions on this choice. However, as our design 

is based on the presumption User is mobile, we require the communication between 

LD and User to guarantee proximity. 

Figure 3.1. Communication channels within a spatially aware RBAC architecture
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It is important to note that proximity is a relative concept, and the required pre

cision would depend on the application. Our primary application scenario requires 

only loose constraints on location, such as User’s presence in a particular room or 

suite. Consequently, absolute precision of the location is not required. Our design 

choice is to use the Near-Field Communication (NFC) technology that is available 

in certain Nokia cell phones. As previously stated, NFC’s limited broadcast range of 

10 cm is certainly adequate for ensuring that User is in the desired room. Further

more, the reader could be placed inside a shielding device to block communication 

attempts from more powerful devices. Another advantage of this technology is that 

NFC supports a peer-to-peer mode that allows User and LD to exchange information 

simultanesouly. This capability is beneficial for the first two steps of our protocol. 

3.3.4 Capability and Storage Requirements 

As we previously described, we assume only a limited amount of computational 

power on the client-side principals, User and LD. Specifically, we assume that LD is 

able to perform a cryptographic hash algorithm, such as SHA-256. User must be able 

to perform symmetric key encryption, which entails the ability to store cryptographic 

keys securely. 

On the server side, RsM must be able to perform symmetric key cryptography. 

RoM must be able to do the same, as well as perform the same cryptographic hash 

algorithm as LD. Additionally, RoMmust be able to sign and verify certificates. As no 

other principal actually inspects the certificates used in our protocol, the signatures 

can be implemented using symmetric key cryptography. Doing so would improve the 

efficiency of the protocol. To simplify our implementation, we chose the symmetric 

key approach for the certificates. 

In addition to these capabilities, each principal must store a limited amount of 

data. We summarize these storage requirements as follows. 



29 

Location device. Each device contains a certificate CertLD signed by RoM. The 

certificate contains a unique identifier IDLD and its physical coordinates, CoordsLD. 

The device also contains a password PwdLD. 

User. Like LD, User stores a certificate CertU that was signed by RoM. The 

certificate contains a unique identifier IDU . User also has a password PwdU and 

shares a symmetric key KU with RoM to encrypt its requests. In our design, KU 

is stored in the secure element of the NFC cell phone, which means it can only be 

accessed by a trusted application. Additionally, User has a unique hardware identifier 

HWU . The main purpose of HWU is to bind the current request to User. As we will 

describe in Section 3.6, performing this binding is not a trivial feat. In the protocol, 

HWU is revealed to LD, who binds the identifier to the current request as part of a 

cryptographic hash. 

It is important to note that HWU and KU are associated with the physical device 

User. However, the certificate CertU is associated with the person operating the 

device. If multiple people share the same device (for example, when nurses in a 

health care setting share a laptop), then the device would need a mechanism for 

switching certificates. Similarly, if the battery in one user’s device is almost out of 

power, the user can use a Bluetooth connection or flash storage to transfer his CertU 

to another device. 

Resource manager. Each resource manager is responsible for controlling access 

to a set of resources by granting tickets to users. The manager stores its access control 

policy, RolePerms, that maps permissions for resources to roles. RsM also maintains 

a list, denoted by CrntTix, of valid tickets it has issued. Tickets are removed from 

this list when they become invalid, which can occur when the ticket expires, the user 

deactivates the role, the user activates a conflicting role, or the user moves out of 

the spatial extents of the region associated with the role. Recall that RsM does not 

have knowledge of User’s identity. Instead, RsM generates a unique session identifier 

IDS for each access request, and associates the IDS with the corresponding ticket 

granted. 
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Role manager. The role manager maintains the authoritative RoleMap, which 

maps users to roles and roles to geographic locations. For each User, RoM stores a 

list of ActivatedRoles. RoM also keeps a map, UserResMap, that associates Users 

with RsMs based on requests made. That is, UserResMap stores pairs of the form 

<RsM,IDS> for each User. The utility of this map is evident when considering 

mutually exclusive roles. If User activates a role that conflicts with a previously 

activated role, Role must inform the appropriate RsM that the previous role has 

become de-activated. When a RsM determines that a session has ended, it sends a 

request to RoM to remove the relevant <RsM,IDS> entry from UserResMap. 

RoM also maintains a number of cryptographic keys and tokens. RoM shares 

a unique symmetric key KU with each User. The key is identified by the token 

HWU . RoM also stores a key (or key pair) for signing and verifying certificates. As 

previously described, in our implementation, we used symmetric key encryption for 

the certificates, as no other principal needs to verify the certificate. Finally, RoM 

stores the set of passwords for each user and LD. 

3.3.5 Setup Phase 

Setting up an implementation of our protocol requires a number of steps. First, 

RoM must generate and sign the certificates for each User and LD. For LD, generation 

of the certificate and creation of the password PwdLD must occur before the device 

is installed in its physical location. Consequently, proper controls must be in place 

to prevent a malicious administrator from installing LD in a false location. 

For User, the certificate generation occurs when the user registers with the system. 

The user can create an initial password when registering, and can change the password 

at any time. Next, HWU and KU must be generated and installed in the phone. As 

KU must not be leaked, we install it in the phone’s secure element, which restricts 

access to trusted, signed applications. 
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3.3.6 GEO-RBAC 

As mentioned previously, our work is based on the GEO-RBAC model for spatially 

aware RBAC. Recall that GEO-RBAC makes the distinction between an enabled role 

and an activated role. A spatial role is automatically enabled once a qualified user 

enters the spatial extents. Role activation, however, is performed only in response 

to a specific request by the user. The role must first be enabled before the user can 

request its activation. He must also provide the requisite authorization credentials. 

In our framework, when User submits an access request, he specifies the role to 

activate in order to satisfy the access control policy. To process the request, RoMmust 

compute the appropriate set of activated roles. The algorithm in Figure 1 describes 

the calculation. First, the set of currently active roles is intersected with the currently 

enabled roles. That is, if User has left the spatial extents of a previously active role, 

it is no longer enabled and cannot be considered active. If the requested role is in 

this intersection, that means it is enabled and has previously been activated. If the 

role is not in the intersection, then it is added to the set of activated roles. However, 

as GEO-RBAC supports mutually exclusive roles, the algorithm must remove any 

conflicting roles that have previously been activated. The algorithm then returns the 

set of activated roles for the user. 

Algorithm 1: ComputeActiveRoles
 
Input: r : the activated role ; l : the requesting user’s location 
Output: R : the set of active roles 

R ← current active roles ; 
E ← ∅ ; 
S ← spatial roles ; 
foreach s ∈ S do 

if l inside SpatialExtents(s) then 
E ← E ∪ {s} ; 

R ← R ∩ E; 
if r /∈ R then 

R ← R ∪ {r} − ConflictingRoles(r); 

return R ; 
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3.4 Protocols 

Our architecture requires multiple protocols for granting and maintaining access. 

In this section, we start by describing the protocol for making an initial request, 

and then present the protocol for maintaining continuity of access according to the 

UCONABC model. 

3.4.1 Initial Request 

The initial access protocol, in which the user requests access to a resource, con

sists of the following steps. Graphical representation of this protocol is shown in 

Figure 3.4.1. 

1. [User → LD : HWU ] The user’s device sends its hardware identifier HWU to 

the location device, which binds the proof of location to the requesting device. 

2. [LD → User : CertLD, T , H
∗] Using the hardware identifier received in step 

1, LD generates a timestamp T and computes a cryptographic hash H∗ = 

H(HWU , PwdLD, T ). This binds User to the current location at the time given 

by the timestamp. 

3. [User → RsM : HWU , T , E
∗] User creates an encrypted package E∗ contain

ing the requested role to activate (Role), the hash H∗ that provides proof-of

location, the user’s password PwdU , and the two certificates signed previously 

by RoM. That is, E∗ = EKU (Role,H∗, PwdU , CertU , CertLD). The encryption 

is performed with a symmetric key that is shared between User and RoM. The 

hardware identifier HWU is sent in an unencrypted form to permit RoM to look 

up the corresponding key EKU for decryption. 

4. [RsM → RoM : HWU , T , E
∗ , IDS] RsM forwards the HWU and E

∗ packages 

received from User, along with the timestamp T . In addition, RsM generates a 
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Figure 3.2. Data transferred at each step of our protocol 

session identifier IDS. This identifier allows RoM to create a mapping between 

User and the current request, but without revealing the actual request to RoM. 

5. [RoM → RsM : ActivatedRoles] After receiving the data from RsM in the 

previous step, RoM uses HWU to look up the key associated with User and 

decrypts E∗ . RoM then validates the certificates and checks the user’s password 

PwdU . RoM then looks up the password for LD, and reconstructs H∗ using 

HWU and the given timestamp. If the hashes and the passwords match, RoM 

computes ActivatedRoles by executing Algorithm 1. The resulting list is stored 

and set to RsM. 

6. [RsM → User : T icket] RsM examines the received ActivatedRoles list and 

applies the access control policies. If the policy is satisfied, RsM issues a ticket 

that can be used to access the requested resource. 

There are a couple of key features to our initial protocol that may not be intuitive 

and require justification. First, consider the session identifier IDS. While the use 

of this identifier may not be obvious, it is beneficial for mutually exclusive roles and 

continuity of usage. As such, we will describe its use in the following sections. 
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Next, the need for both steps 3 and 4 requires consideration. One could argue 

that it would be more efficient for User to send the request directly to RoM, rather 

than RsM. One problem with such an approach is that step 3 is sent along with the 

request. That is, step 3 involves additional information that we do not explicitly 

model, as it is dependent on the application scenario. The two steps help to preserve 

pseudonymity, as RsM has knowledge of the request, but not the requester’s identity 

or location; RoM, on the other hand, is aware of the identity, but has no knowledge 

of the request being made. 

An additional advantage of keeping steps 3 and 4 distinct is that it maintains the 

locality of policies in RsM. One resource manager may require strict adherence to a 

time frame and may reject any request where the timestamp is more than a couple of 

seconds old. Another may allow requests if the timestamp shows the user was at the 

location an hour ago. Clearly the latter creates a much looser interpretation of the 

location constraint (i.e., the user only needs to prove that he was in that location, not 

that he still is), but our approach allows the administrators of the resource managers 

the flexibility to implement such a policy. 

More subtly, the preservation of steps 3 and 4 is a defensive mechanism against 

a denial-of-service attack. Recall that we assume a single, centralized RoM, but 

several RsMs distributed throughout the network. If a compromised User sends a 

large number of requests to RoM, that server could become overloaded and the entire 

system could crash. If a number of the RsMs are enabled with mechanisms to detect 

the attack, they could prevent the attack on RoM. 

A second possible criticism of our protocol is the lack of cryptography protecting 

the messages between principals. This choice is deliberate, as our protocol is intended 

as an overlay on top of an existing network infrastructure. That is, we assume that 

system implementers apply cryptographic techniques as necessary. Cryptography 

could be used in step 5 to prevent an attacker from modifying the ActivatedRoles 

in transit. However, in some applications, RoM and RsM may exist on the same 

physical machine, so encryption may be unnecessary. Thus, we only explicitly model 
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the cryptographic mechanisms required to achieve our stated goals. In our implemen

tation, RoM and RsM exist on the same machine, so encrypting steps 4 and 5 was 

unnecessary. 

We also observe that steps 1 and 2 depend on the choice of proximity-enforcing 

technology. That is, some implementation choices would result in step 1 being un

necessary, while others would modify the hash value H∗ . Our implementation choice 

is to use the peer-to-peer mode available in the Nokia NFC technology. This mode 

allows User to send HWU to LD and receive the resulting data all within a single 

contactless connection. For other technology choices, designers may have to modify 

these steps as appropriate. 

3.4.2 Mutually Exclusive Roles 

Our base protocol, as described above, does not fully support mutually exclusive 

roles. While this may be appropriate for some applications, there are others that 

require such support. Assume that ActivatedRolesn denotes User’s current set of 

activated roles. For a new request, RoM computes the new set ActivatedRolesn+1. If 

ActivatedRolesn ⊂ ActivatedRolesn+1, User has activated a previously unused role. 

In some settings, broadcasting ActivatedRolesn+1 may be required to ensure this 

new role does not violate the policy of some RsM, but this message is unnecessary in 

general. However, if ActivatedRolesn �⊂ ActivatedRolesn+1, the newly activated role 

has forced the disabling of a previously used role. As a result, whatever permissions 

User is exercising as a result of the previous role should be revoked. This revocation 

is enabled by IDS. 

Recall that RoM maintains the data structure UserResMap for each User. This 

structure consists of pairs of the form <RsM,IDS>. RoM can use these entries to 

notify the relevant RsM of the updated ActivatedRolesn+1. Specifically, we introduce 

two optional steps to our protocol. 
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4a. [RoM → RsM∗ : ActivatedRolesn+1] RoM sends a broadcast to the list RsM∗ 

consisting of the resource managers with which User currently has an active 

session (according to UserResMap). This message lets these resource managers 

revoke any outstanding tickets, if necessary, according to the policies maintained 

locally by the RsMs. 

4b. [RsM∗ → RoM : Ack] This optional step can be used to enforce strict mutual 

exclusion by requiring that the new request can only be approved after the 

RsMs have had a chance to revoke the necessary tickets. If strict requirements 

are not needed, this step can be omitted. 

3.4.3 Continuity of Access 

In terms of the UCONABC model, our basic protocol defines a preA approach to 

access control. This means that the permissions and credentials are checked only 

before the access is granted. In systems where users are mobile, one could move out 

of the extents of the spatial role after being granted access to a resource. As a result, 

we would like to enforce onA constraints, as well. These constraints require User to 

confirm his position while accessing the resource. 

User can be required to confirm his location in either a proactive or reactive 

manner. As RsM serves as the PDP, it would control which method is applied. In 

the proactive approach, User would initiate the confirmation protocol; to reduce the 

reliance on a person’s memory, the client software would display a reminder. In the 

reactive approach, RsM would connect with User and request confirmation. In either 

approach, the burden on the user should be minimized. 

Once confirmation is required, the previous protocol is modified as follows. 

1. [User → LD : HWU ] This step works as before. 

2. [LD → User : CertLD, T , H
∗] This step works as before. 
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3. [User → RsM : T , E∗] The hardware identifier HWU is unnecessary, as RsM 

has stored this value for the session. In most cases, the intent is simply to re

establish User’s location, the role and User’s credentials are not needed. That 

is, E∗ = EKU (H
∗, CertLD). However, in a more secure setting, the user may be 

required to re-enter his password, and E∗ would be constructed as above. 

4. [RsM → RoM : HWU , T , E
∗] As RsM has stored HWU , it adds the identifier to 

the message to RoM. Doing so prevents a collusion attack in which a different 

User device is used for a false confirmation. The IDS is not needed at this 

point, so it is omitted. 

5. [RoM → RsM : ActivatedRoles] RoM computes the new set of ActivatedRoles 

and sends the updated list to RsM. As there is no new request to activate a role, 

the computation is simply checking whether the existing roles are still enabled 

according to the new location. 

If the updated ActivatedRoles list continues to satisfy RsM’s policy, the access 

is allowed to continue. Depending on the ticket-granting implementation, RsM may 

issue a new ticket, it may contact the resource directly and inform the resource of an 

updated expiration date for the ticket, or not action may be necessary. Similarly, if 

User is unable to confirm his location as required by the RsM’s policy, ActivatedRoles 

would be null, and RsM could begin the process of ticket revocation. In either case, 

the action mechanics are external to the issue of location constraints. As such, we 

consider this topic to be beyond the scope of this paper and leave the question to 

implementation designers. 

In considering continuity of access, step 5 of the protocol becomes much more 

complicated. In Section 3.4.2, we introduced the notion of broadcasting the updated 

ActivatedRoles list to other RsMs before responding to the current request. If User 

has successfully confirmed his location and all activated roles are still enabled, then 

no action is necessary. However, if the confirmation fails, or the ActivatedRoles has 

changed, a number of possibilities arise. 
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If the confirmation fails, a conservative approach would be to inform all RsMs so 

that they can provide an appropriate response. In general, though, we believe such 

an approach is undesirable. Consider the case where the user makes a mistake re

typing his password. Revoking all of this accesses would not be appropriate. Instead, 

a better response would be simply to let the current RsM handle the failure. Other 

RsMs would continue to enforce the continuity of usage according to their own policies, 

and there would be no overhead penalty of false-alarm messages. 

Another possibility is that the confirmation succeeds, but a subset of ActivatedRoles 

have become disabled. That is, the user has confirmed both his location and his iden

tity, so there is no chance of a false-alarm as above. In this case, RoM should broadcast 

the new list to the RsMs in the entries in UserResMap. The RsMs would then have 

the ability to adapt to the change in environment. Unlike the case of mutually ex

clusive roles, though, we do not see an advantage in delaying the confirmation step. 

Thus, after broadcasting the updated ActivatedRoles, RoM immediately informs the 

current RsM of the confirmed roles. 

Note that in this continuity of access model, there is a delay between when User 

leaves the spatial role’s extents and when the role is deactivated. In many cases, 

this would be acceptable. In high-security settings, this delay could be eliminated 

by having explicit entrances and exits for the spatial role. Then, the door can be 

treated as a resource and the role required for access is mutually exclusive with any 

role enabled by the location device within the spatial extents. 

3.5 Implementation and Evaluation 

We have developed a prototype implementation of our architecture using Java. To 

implement RoM and RsM, we have adapted the source code of the GISToolkit [106]. 

This library implements the OpenGIS Geography Markup Language (GML) encoding 

standard [107]. We have extended the library to define spatial regions appropriate 

for modeling a building. Specifically, our extension models floors, rooms, and suites. 
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We have also incorporated XML files to represent the role definitions, spatial role 

extents, and permissions. 

On the client side, we have split the behavior of User into two pieces. The first 

piece consists of a Nokia 6131 NFC-enabled cell phone [108,109]. We use this device 

to connect with an Advanced Card Systems (ACS) NFC reader, model ACR 122 [110], 

which serves as LD. The second piece of User is a Java client application written for 

a more traditional computing device, such as a laptop. The data generated by LD in 

step 2 of our request protocol is transferred from the phone to the laptop manually. 

Implementation ofUser in these two pieces is problematic. First, it is inconvenient. 

More importantly, it breaks the guarantee that the user of the laptop is in the claimed 

location; colluding users could simply communicate the data from LD via some side 

communication channel. Both of these criticisms can be addressed by our vision of 

integrating NFC technology into a custom computing device.4 Access to HWU could 

then be controlled by trusted hardware, such as a Trusted Platform Module (TPM), 

ensuring that the request is bound to a known and trusted device. 

Communication between User, RsM, and RoM is accomplished using traditional 

sockets. Implementing the communication between User and LD was more challeng

ing. On the Nokia 6131 NFC phone, we deployed a MIDlet that transmitted data 

using the Java JSR 257 Contactless Communication API [111]. The ACR122 reader 

was connected via USB to a Windows XP workstation. 

Implementing the behavior of LD required the development of a custom Java ap

plication to communicate with the reader. The ACR122 uses the standard Windows 

CCID interface. While the SDK provides documentation and sample code for tra

ditional smart cards (e.g., only reading or only writing NDEF-formatted tags), this 

approach is undesirable for our design. That is, this basic approach would require 

connecting the phone to the reader twice; the first touch would send data from the 

4While one may object to this solution, we argue that an organization requiring a spatially aware 
RBAC system is likely to have the resources available to design such a device, or contract to a 
company that will do so. 
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phone to reader, and the second touch would be the response. Furthermore, the user 

would have to intervene manually to change the modes between the touches. 

A better approach is to use the peer-to-peer extension of JSR 257, which is sup

ported by both the Nokia 6131 NFC and the ACR122. Although the SDK provided 

by ACS does not contain examples of this functionality, we were able to adapt code 

from the nfcip-java library [112]. Combining the APDUs (instructions for communi

cating with the ACR122) with the basic structure of the ACS SDK, we were able to 

implement the peer-to-peer communication.5 The phone is designated as the initiator 

of the request (as it sends data first), while the reader is then designated as the target. 

Two machines were involved in our performance evaluation. The first test machine 

was running Windows XP on an Intel Pentium M CPU running at 1.60 GHz with 

1.3 GB of memory clocked at 333 MHz. We attached the ACR122 reader to this 

machine via a USB connection to measure the amount of delay experienced by the 

user as a result of the NFC communication. Initiating the peer-to-peer connection 50 

times, we observed an average of 131.4 ms delay from time the request is sent from 

the phone until a response is received. 

Our second machine was used to test the overhead of the back-end server portion 

of our design. This machine was running Ubuntu Linux, version 9.04 (Jaunty Jacka

lope) on an Intel Core 2 Duo CPU running at 2.26 GHz with 3 GB of memory clocked 

at 667 MHz. To eliminate network delay from our measurement, our implementa

tions of User, RsM, and RoM were all executing on this machine, using sockets to 

communicate. We measured the delay from the time that User submitted the request 

to RsM until it received a response. On average, our protocol yielded an overhead of 

24.4 ms. Clearly, the overhead imposed by the local computations of our architecture 

is minimal, and most of the delay users observe would result from normal network 

5One may question why we did not use the nfcip-java library as written. We were unable to get this 
library working with our model of the reader. After contacting the library’s author, we learned that 
the firmware of our model may be incompatible with the library. We are grateful to the author for 
his willingness to help with this problem. 
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communication. As such, we argue that implementing our design for a real spatially 

aware RBAC is certainly feasible. 

3.6 Security Analysis 

In this section, we present an informal security analysis that primarily focuses 

on two threat models. As our primary concern is to secure access to the protected 

resource, we mainly examine the threat from a malicious User. However, we also con

sider the threat posed by RsM, as one of our design goals is to ensure the pseudonymity 

of User. The aim of our security analysis was to address common attacks on au

thentication protocols [113–117]. These attacks include replay, collusion,reflection, 

denial-of-service, and typing. We do not consider eavesdropping and modification, as 

our system is built on the assumption that appropriate cryptographic mechanisms 

are used to protect messages at the lower layers of the network stack. 

Assumptions. Given these threat vectors, we state a number of assumptions. 

First, we assume the integrity of RoM. As no other principal has knowledge of the 

mapping between users and spatial roles, we do not see a defense against a corrupted 

RoM. That is, if a corrupted RoM reports false ActivatedRoles, the attack may be 

detected, but there is no mechanism for correction. Consequently, we assume that 

the ActivatedRoles reported in step 5 is correct. 

Additionally, we assume the coordinates stored in LD’s certificate are correct. 

Note that our assumption does not preclude the chance that a malicious User can 

attempt to use a false certificate. Next, we assume that RsM is acting in good faith 

to protect the resource. If not, RsM could simply issue tickets without regard for the 

protocol. 

Malicious User. In this attack, the primary goal of the attacker is to gain illicit 

access to the protected resource. A secondary goal would be a denial of service for 

others. Our threat model assumes the attacker is computationally bound, i.e., he 
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cannot break the cryptographic hash or encryption primities employed. Under this 

model, our protocol is secure against the following attacks as explained below. 

1. Replay The goal of a replay attack is for User or an eavesdropper to reuse a 

piece of data as part of a false request. Clearly, the CertLD and timestamp T are 

tied to the given request (and the User through the hash H(HWU , PwdLD, T ). 

If the timestamp is modified or a different CertLD is sent, then the hash would 

not match. Similarly, if the hardward identifier HWU is changed in transit, 

again, the hash would not match. Furthermore, HWU is tied to the given User, 

as the symmetric key is only shared between that User and RoM. 

Another advantage of the timestamp T is that it ensures the timely use of the 

location information. That is, User cannot hoard the data received from LD for 

use after moving out of the spatial extents. First, the data may be marked as 

invalid if T is beyond an acceptable time frame. Additionally, T can be used to 

enforce an ordering of the requests. That is, if T1 < T2, but T2 arrives at RoM 

first, the request with T1 would be denied as an expired request. 

2. Collusion There two possibilities for collusion between two users. The first 

attack is for User1 to obtain the proof-of-location from LD, and send the proof 

to User2 via a side channel. This attack is essentially identical to ghost-and-leech 

attacks on RFID readers. As described in Section 3.5, our vision for deployment 

with a custom device would obviate this attack vector, as only known and 

trusted devices can submit requests to RsM. A second possibility for collusion 

would be for User1 to send a valid ticket to User2. Although we generally 

consider the implementation of the ticket-granting service to be beyond the 

scope of this paper, we believe that using remote attestation techniques with a 

TPM could address this threat. 

3. Reflection In a reflection attack, the attacker would engage in a protocol with 

a target to get data that could be reused as part of a request. In our design, 
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the target would have to be another User, as no other principal reveals cre

dentials that the attacker could attempt to reuse. However, in our protocol, 

User only initiates the protocol. That is, a malicious User ′ cannot initiate the 

protocol with a targeted User. Thus, a reflection attack is not applicable in our 

architecture. 

4. Typing For a successful typing attack to occur, there must be more than one 

piece of data of the same type. That is, the attacker tries to get the victim to 

accept one piece of data as another based on the two pieces having the same 

format. In our protocol, there are no instances of two pieces of data having the 

same type. As a result, a typing attack is not possible. 

5. Denial-of-service Our protocol is designed so that all Users must submit their 

requests through a distributed number of RsMs. If User attempts a denial

of-service attack against a particular RsM, he may succeed depending on how 

robust the RsM is against such an attack. However, this attack vector is not the 

result of our design, but is an inherent danger of a networked system. RsM could 

mitigate the damage from these attacks by employing appropriate measures, 

such as blacklisting suspected nodes. 

RoM, as a centralized server, can also be a target for a denial-of-service. How

ever, our assumption is that the RsMs are behaving properly. As a result, RoM 

could send a request to the RsMs to throttle their requests as appropriate. Fur

thermore, if RoM is equipped with software to analyze recent logged requests, 

it could identify a potentially misbehaving User by identifying any HWU iden

tifiers that are associated with an abnormal number of requests. Thus, while 

both of these types of denial-of-service are possible, it is our observation that 

these attacks are not contingent on the design of our architecture, and a number 

of mitigation techniques are possible. 

Malicious RsM. The goal of a malicious (or corrupted) RsM would be to bind 

the user’s identity to the requests. However, the encryption of the CertU ensures that 



44 

RsM is restricted to only the pseudonymized identifier HWU . That is, if the attacker 

discovers which user had possession of a particular User device at a given time, he 

could discover the identity by pairing the user with the associated HWU . Although 

this is a breach of strict confidentiality, our design goal was to provide pseudonymity, 

rather than pure anonymity. That is, without the ability to pair a user with the User 

device, the attacker cannot discover the identity through the request alone. 

3.7 Conclusions 

In this work, we have proposed a novel architecture for enforcing spatial con

straints in an RBAC environment. We identified a number of goals that such an 

architecture should meet, and constructed protocols that accomplish these goals. We 

have demonstreated that our architecture is flexible and can be applied to a number of 

settings with varied security requirements by localizing the policies in the individual 

RsMs. Our design incorporates concepts from the UCONABC usage control model to 

enforce continuous access checks while the user accesses the protected resource. 

We have implemented a prototype of our architecture that provides a proof of 

concept. Our prototype uses a Nokia 6131 NFC cell phone to communicate with a 

ACR122 reader connected to a workstation. We have addressed the challenges we 

encountered in adopting this technology, and described the performance we observed 

in our experimental evaluation. We have also provided an informal analysis of the 

security guarantees of our design. 
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4 PROX-RBAC: A PROXIMITY-BASED SPATIALLY AWARE RBAC 

In the previous chapter, we explored the question of how to enforce location con

straints in spatially aware RBAC models. A common form of restriction is to con

strain the use of roles to specific geographic locations. However, this is not the only 

possible use for spatially aware RBAC policies. Here, we consider the definition of 

policies based on the location of other users, rather than the one making the request. 

In this chapter, we define the syntax and semantics for a proximity-based policy 

language, based on a formal spatial model for indoor environments. 

4.1 The Need for Prox-RBAC 

A major limitation of current approaches to spatially aware RBAC is that they 

focus only on the location of the user issuing the role usage request. However in 

many real situations whether a user can use a role and access the resources for which 

access is granted to the role may depend on the presence or absence of other users. 

As an example, consider a government agency with data classified at multiple levels 

of security. One policy could prohibit access to a sensitive document if there are 

any civilians (i.e., non-governmental employees) present. Another could require the 

presence of a supervisor when a document is signed. Yet another could require that 

the subject is alone (e.g., “for your eyes only” restrictions). 

In this chapter, we address the problem of specifying and enforcing a novel class 

of location constraints, referred to as proximity-based location constraints, for RBAC 

in both static and mobile environments. That is, we want to make decisions about 

granting access to roles by also taking into account the location of other users, possibly 

considering the proximity of those users to the requesting subject. Incorporating 

contextual factors in mobile environments is challenging, as these environments are 
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inherently dynamic. As such, it is important to consider how to monitor and react as 

to changes in users’ locations. This challenge can be described as enforcing continuity 

of usage constraints. Our approach is to adopt the policy language semantics of 

the UCONABC family of access control models [7–9]. This family of models defines 

a number of semantic structures that enable the specification of contextual access 

control policies. 

The focus of this work is to define the Prox-RBAC model and language for specify

ing and enforcing proximity-based location constraints. In Prox-RBAC, administra

tors can write policies that specify either the presence or absence of other users within 

a protected area. Prox-RBAC also makes a distinction between policies that require 

authorization only a single time prior to access and policies that specify conditions 

that must continue to hold for as long as the permission is used. Finally, Prox-RBAC 

is backward compatible; that is, Prox-RBAC can specify existing spatially aware 

RBAC policies, as well as traditional RBAC. 

4.2 Background 

As in the previous chapter, Prox-RBAC builds on the GEO-RBAC spatially aware 

RBAC model, as well as the UCONABC family of models. Although we have already 

discussed the necessary background material for GEO-RBAC, we have not described 

the use of UCONABC to define policy semantics, which is a critical piece of the Prox-

RBAC language. In this section, we provide a brief summary of UCONABC policies 

to facilitate the discussion of Prox-RBAC. 

4.2.1 UCONABC 

UCONABC is a family of access control models that can be used to formalize 

the behavior of a system in terms of authorizations (A), obligations (B), and con

ditions (C), that must be satisfied either before (pre), during (on), or after (post) 

an access occurs. For instance, UCONpreA can be used to formalize an access con
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trol system that requires authorizing the subject before the access is granted. With 

each type of model, there are multiple variations (e.g., UCONpreA , UCONpreA , 
0 1 

and UCONpreA ). For a full description of these details, we refer the reader to the 
3 

UCONABC papers [7–9]. 

Specifying a policy in UCONABC can be done by declaring the functions, relations, 

and other mathematical structures, and then defining the implication that must hold 

if the access is granted. As an example, consider a traditional RBAC system, where 

S, O, A and R denote the sets of subjects, objects, actions, and roles, respectively. 

A permission is an ordered pair (o, a) for o ∈ O, a ∈ A. Subjects are mapped to 

active roles via the ActiveRoles function, while PermittedRoles maps permissions 

with the roles that are to be granted access. As ActiveRoles are user-specific, we also 

declare ATT (S) = {ActiveRoles}, where ATT (S) specifies the set of attributes that 
are associated with subjects. 

To specify that a subject s is authorized to perform action a on object o, the 

semantics of UCONpreA use an invariant allowed(s, o, a) ⇒ P , where P denotes a 
0 

necessary condition for authorization. For instance, in RBAC, the necessary condition 

is that the requester has an active role (∃role ∈ ActiveRoles(s)) that is granted 

the desired permission (∃role ′ ∈ PermittedRoles(o, a), role ≥ role ′ ). Figure 4.1 

illustrates how UCONpreA can specify traditional RBAC policies. 
0 

< role, act, obj > – UCONpreA : 
0 

Perms = {(o, a)|o ∈ O, a ∈ A} 
ActiveRoles : S → 2R 

PermittedRoles : Perms → 2R 

ATT (S) = {ActiveRoles}
allowed(s, o, a)⇒ ∃role ∈ ActiveRoles(s),∃role ′ ∈ PermittedRoles(o, a), role ≥ role ′ 

Figure 4.1. UCONABC semantics for traditional RBAC 

To enforce that certain conditions continue to hold as the access occurs (i.e., conti

nuity of usage constraints), UCONABC defines additional primitive formalisms. First, 

preCON declares a set of conditions that are evaluated, while getPreCON(s, o, a) 



48 

specifies proposition built on these conditions. Then preConChecked can be used in 

the necessary proposition in the allowed(s, o, a) ⇒ P implication. For instance, if 

the subject must be over the age of 18 or accompanied by an adult, we could specify 

this portion of the policy as shown in Figure 4.2. 

UCONpreC : 
0 

preCON = {Over18(s), Accompanied(s)}
getPreCON(s, o, a) = Over18(s)∨, Accompanied(s) 
allowed(s, o, a)⇒ preConChecked(getPreCON(s, o, a))
 

Figure 4.2. UCONABC semantics for mandating adult accompaniment of a minor 

For on-going conditions (i.e., UCONonC), similar structures exist (i.e., onCON 

and getOnCON(s, o, a)). Permission revocation is similar to the allowed(s, o, a) in

variant, but with the opposite logical implication. Specifically, stopped(s, o, a) ⇐ 

¬onConChecked(getOnCON(s, o, a)) declares that the access must be stopped once 

the on-going required condition is no longer true. 

4.3 The Prox-RBAC Language 

In this section we present the syntax and semantics of our proximity constraint 

language. After a short preliminary subsection to introduce some notation, we de

scribe our space model, which is a key element in the definition of the proximity 

constraint model. We then briefly introduce our spatial role model, followed by the 

introduction of the three main constructs of our proximity constraint model. Such 

introduction is followed by the definition of the syntax and semantics of the proximity 

constraint model. 

4.3.1 Preliminaries 

The core Prox-RBAC model, which underlies our language, uses a number of 

primitives that are similar to existing spatially aware RBAC models. As in traditional 
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Figure 4.3. Reference space with PAs marked 

RBAC, we have Subjects (S) that can request permission to perform Actions (A) 
on Objects (O). Let Roles (R) denote the set of roles in the system. When s ∈ S 

requests the privilege to perform a ∈ A on o ∈ O, s must activate a role r ∈ R to 

which the requested permission is granted. 

4.3.2 Space Model 

The first challenge in defining our model is to specify how space is modeled. 

We adopt a spatial model that partitions generic spaces into regions based on secu

rity classifications. We consider the reference space to be a region (not necessarily 

bounded) that is divided into a set of protected areas (PA). A PA is a physically 

bounded region of space, accessible through a limited number of entry points, which 

consists of a physical barrier that requires authorization. Each PA can be arbitrarily 

large and we place no restrictions on the internal structure. For instance, a PA could 

consist of a single room or an entire floor that is made up of distinct but unlocked 

rooms. In the latter case, the subject’s presence in a particular room is irrelevant to 
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the security questions, and we model the floor in its entirety as a PA. Formally, we 

use P to denote the set of PAs in the system under consideration. We write s ∈l pa 
to indicate that the subject s ∈ S is within the spatial extents of pa. We also write 

⊤ ∈ P to model the reference space. 

Definition (Entry Point). Let P be the set of protected areas and G be the set of 

entry points (or guards). Then there exists a function g2p : G → P ×P such that: 

· ∀g ∈ G, ∃x, y ∈ P such that g2p(g) = (x, y) 

· ∀g ∈ G, g2p(g) = (x, y)⇒ x � y=
 

· ∀g ∈ G, g2p(g) = (x, y)⇒ g2p(g) = (y, x)
 

· ∃g ∈ G, g2p(⊤, x) for some x ∈ P
 

Figure 4.3 demonstrates a number of characteristics of our space. The PAs are 

distinguished by shading and lines filling the area. The red dots indicate the entry 

points and are labeled as the guard device gi.j controlling passage between pai and 

paj . Observe that rooms 303A and 303B are both part of pa2, thus indicating that 

PAs do not necessarily have a one-to-one correspondence to the features of the space. 

In addition, suite 300A defines pa3 and consists of the entire space shaded with gray, 

which includes rooms 301, 302, 303A, and 303B. Similarly, pa5 covers the entire floor. 

This illustrates that PAs can be defined hierarchically. Finally, ⊤ defines the entire 

reference space, including all external regions not classified as PAs. 

To represent this constrained space we define an indoor space model [118, 119]. 

Indoor space models present distinguishing features which perfectly match the re

quirements posed by our scenario. A major feature is that those spaces are cellular 

(or symbolic), i.e., they consists of a finite set of named cells or symbolic coordinates 

(e.g., rooms 303A and 303B) [120]. As a consequence, conventional Euclidean dis

tance and spatial network distance are inapplicable [118]. Moreover, indoor spaces 

may present complex topologies. Among the various topologies that one can specify, 

the most relevant are the connectivity between the indoor and outdoor spaces, as well 

as connectivity between cells (i.e., PAs). We choose to define the indoor space model 
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as the triple (P, G,H) where P is the set of names (i.e., PAs in the system under 

consideration), G is the connectivity topology called an accessibility graph, and H is 

the hierarchy of PAs. 

Definition (Accessibility Graph). Let RS be the reference space and let P be the 

set of protected areas in RS. The accessibility graph of RS is an undirected, labeled 

multigraph G = (V,E). Here V = {v⊤, v1, . . . , vn} is the set of vertices with v⊤ cor

responding to ⊤ (which represents RS), and v1, . . . , vn corresponding to the protected 

areas pa1, . . . , pan ∈ P, and E = � is the set of edges denoting {(vi, vj)}[vi,vj ∈V,i=j] 

the entry points. For gi,j ∈ G such that g2p(gi,j) = (pai, paj), we write ei,j ∈ E 

for the corresponding edge in the graph. The function p2v : P → V maps protected 

areas to vertices, where p2v(pi) = vi for 1 ≤ i ≤ n and p2v(⊤) = v⊤. The function 

p2e : (P × P) → E identifies the edge for the entry point, where p2e(pai, paj) = ei,j 

if and only if there exists an edge (p2v(pai), p2v(paj)) ∈ E. 

As noted above, our model incorporates the notion of hierarchies of PAs. For 

instance, access to the third floor of a building may be restricted to a set of users; in 

addition, access to room 305 may be further restricted to an individual user. As such, 

when the user is in room 305, the permissions associated with the third floor should 

still be granted. To begin to model this hierarchy, we introduce the partial order 

vi ⊑ vj to indicate that pai is wholly contained within the region of paj . For instance, 

by mapping the PAs in Figure 4.3 to vertices, we have v1 ⊑ v3 ⊑ v5. Note that, for 

any vi � v⊤, vi ⊑ v⊤ and v⊤ �⊑ vi.= This relation also impacts our previous discussion 

of the user’s location. Specifically, if subject s ∈l pai (for s ∈ S) and vi ⊑ vj, then 

s ∈l paj. This partial order leads to the notion of parent. 

Definition (Parent Tree). The parent of a protected area pai ∈ P, denoted 
Parent(pai), is the smallest PA enclosing pai. That is, Parent(pai) = paj if an only 

if vi ⊑ vj, pai � paj, and there does not exist pak such that vi ⊑ vk ⊑ vj.= If there 
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(a) Accessibility graph (b) Parent tree 

Figure 4.4. Accessibility graph and parent tree for the reference space in Figure 4.3 

is no such enclosing parent of pai, then we write Parent(pai) = ⊤. If Parent(pai) 
= paj, the pai is a child of paj, and we write pai ∈ Children(paj). The parents and 

children form a tree. 

Figure 4.4 shows the accessibility graph and parent tree for the reference space 

in Figure 4.3. One challenge in applying this partial order is that spatial hierarchies 

are not necessarily uniform. For instance, in Figure 4.3, consider rooms 301 and 305, 

which are mapped to vertices v4 and v6, respectively. As both rooms are on the 

third floor and room 301 is part of suite 300A, we have v4 ⊑ v3 ⊑ v5 and v6 ⊑ v5. 

Intuitively, even though v3 (suite 300A) and v6 (room 305) have the same parent, they 

have different characteristics. To accommodate this nonuniformity, each vertex has 

an associated type. That is, we define a function Type : V → τ , where Type(vi) = τj 

indicates that vi has type τj ∈ τ . For instance, floor, suite, or room could be types 

of PAs. 

Finally, we must address the notion of movement in our model. Intuitively, the 

movement of a subject corresponds to the transition of the subject form one PA to 

another. Obviously, such a movement requires the subject’s presence at an entry 
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point. However, we must also have a way to detect that the subject did, in fact, pass 

through the entry point, rather than doubling back into the current space. Conse

quently, we define the notion of movement as follows. 

Definition (Movement). Let RS be the reference space and AG be the accessibil

ity graph for RS. The movement M(s, pai, paj) in AG is the traversal of the edge 

(ei, ej) ∈ E such that subject s is authenticated and authorized to enter paj, and the 

subject’s entry into the new PA is confirmed. 

Key to our definition of movement is the authentication and confirmation of pas

sage. That is, enforcement of Prox-RBAC requires a physical barrier separating PAs, 

as well as deployment of a technology that ensures only authorized personnel can 

pass. Enforcement does not require close monitoring of users’ locations within PAs, 

but maintaining an accurate mapping of users to PAs is critical for security. As we 

will describe in Section 9.5, detecting movement is a challenging issue in deployment 

of spatially aware RBAC systems. 

4.3.3 Spatial Roles 

As in GEO-RBAC, we augment traditional roles with geographic information. 

Specifically, a spatial role is the tuple < r, pa >, where r ∈ R and pa ∈ P ∪ {⊤}. 
The intuition is that a spatial role < r, pa > is enabled for the subject s if s is 

authorized to activate the traditional role r, and s ∈l pa. The spatial role is then 
activated if the user wishes to exercise the privileges associated with the role. 

Permitting continuous access in Prox-RBAC entails addressing the challenge of 

reacting to changes as the user moves. Specifically, it is not obvious how to handle 

role activation when the user moves to a new PA.While one approach would be to 

require re-activation of roles as the user moves, we adopt a different approach to 

streamline the user experience. Consider the movement M(s, pai, paj). During the 
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transition, s �∈l pai and s �∈l paj. However, s ∈l pak, where pak is the least common 

parent. That is, pai ⊑ pak, paj ⊑ pak, and either pai �⊑ pal or paj �⊑ pal for any 

pal ∈ Children(pak). During the transition, the active role < r, pai > will be updated 

to < r, pak >. As a result, the permissions that s currently holds may change. Once 

s has confirmed paj as his new location, the roles will again be updated to < r, paj >. 

4.3.4 Proximity Constraints 

A proximity constraint is a security requirement that is satisfied by the loca

tion of other users. Proximity constraints are built from three primitive constructs: 

relative constraint clauses, continuity of usage constraints, and timeouts. Relative 

constraint clauses define the static presence or absence conditions that must be met. 

However, mobile environments are inherently dynamic. As such, the latter two con

structs are necessary to ensure the relative constraint clause is enforced properly as 

the environment changes. 

A relative constraint clause specifies the proximity requirement of other users 

in the spatial environment. These clauses can be described as either presence con

straints or absence constraints. To formulate these conditions, we adopt an intu

itive syntax that can be illustrated as follows: 

at most 0 civilian in Room305 

The basic structure consists of an optional cardinality qualifier (e.g., at most or 

at least), a nonnegative integer specifying the number of subjects, a role (e.g., civilian), 

and a spatial relationship (e.g., in Room305). The spatial relationship consists of two 

parts: a topological relation and a logical location descriptor that identifies a PA. Let 

RT denote the set of topological relations. In our initial approach, we will only con

sider a small set of relations, name RT = {in, out, adj}. The location descriptor can 
be absolute, as was the case here, or it can take the form of this.space. In this latter 

structure, the space specifies a level in the hierarchy of PAs, while this dictates that 

the location of the subject fulfilling the role in the clause must match that of the 
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requester. For instance, let vi denote Room305, vj denote Room300, and vk denote 

F loor3. Assume the requester is in Room305 and his supervisor is in Room300. Since 

vi ⊑ vk and vj ⊑ vk, the following relative constraint clause would be satisfied: 

at least 1 supervisor in this.f loor 

Some operations may require a significant duration. For instance, reading a sensitive 

document may take several minutes or hours. Furthermore, it may be necessary to 

ensure the relative constraint holds for the entire duration of the permitted session. 

To declare whether the constraint must be checked only at the beginning of the ses

sion or must hold for the duration, we introduce into our language continuity of 

usage qualifiers, called when and while, respectively. Their use is illustrated as 

follows: 

while ( at most 0 civilian in Room305 ) 

A when constraint is evaluated at the access request time; if the constraint is 

satisfied, the permission is granted. A while constraint is repeatedly checked and 

the permission is granted until the constraint is violated. The frequency of the check 

is a system-wide parameter that is dependent on the deployment scenario. That is, 

specifying this parameter requires considering issues such as network latency, size of 

the spatial environment, number and mobility of users. 

In many cases, the desired security guarantees may require satisfying multiple 

relative constraints. To allow for such cases, we permit the use of two basic logical 

connectives: ∨ (logical or) and ∧ (logical and). These logical connectives can be used 

to join relative constraint clauses or continuity of usage constraints. Parentheses may 

be used to specify precedence; otherwise, the clauses are enforced left-to-right. As an 

example, assume that c1 is a while constraint dictating that no civilians are present. 

In addition, either a supervisor or accountant must initially be present (c2 or c3). The 

following constraints are equivalent in expressing this requirement: 

while ( c1 ) ∧ ( when ( c2 ) ∨ when ( c3 ) ) 

while ( c1 ) ∧ when ( c2 ∨ c3 ) 
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One critical issue in enforcing continuity of usage constraints is how to react once a 

while constraint no longer holds. In one scenario, the permission could be suspended 

until the condition is once again satisfied. In others, it may be acceptable to allow 

some leeway, wherein the permission is still granted for a short duration of time, 

even though the condition is technically being violated. For instance, consider a 

proximity constraint that specifies a supervisor must be present to read an accounting 

record. Due to a shift change, one supervisor leaves the room before the next arrives. 

However, the break is short enough that it is acceptable to allow the subject to retain 

the permission during their absences. 

In some cases, it is acceptable for proximity constraints to be violated for a brief 

duration. For instance, if the policy specifies the presence of a supervisor, it would 

be undesirable for the employee to lose permissions while the supervisor leaves for 

a short break. Consequently, every proximity constraint that includes at least one 

while clause must end with a timeout constraint, which takes the following form: 

while ( clause ) timeout t 

Here, t ∈ N0 specifies the maximum amount of time for which the permission is 

granted once the while constraint fails. While the simplest approach is to use a 

single time unit for all timeout constraints, a straightforward augmentation of our 

language could allow t to specify the units, as well. If t = 0, then the permission is 

immediately revoked. If the condition is once again satisfied before the time limit has 

been reached, the permission is automatically extended as if the condition held for 

the entire duration. 

4.3.5 Prox-RBAC Syntax 

To formalize this syntax,1 let C denote the set of basic relative constraint clauses 
with no Boolean connectives. Formally, we can write c =< q, n, r, rt, p >, where q is 

1For the sake of simplicity, we omit from our grammars any parentheses that can be used to indi
cate Boolean formulas. We feel that including them in the specification needlessly complicates the 
discussion and distracts the reader from the most relevant topics. 
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a cardinality qualifier, n ∈ N0, r ∈ R, rt ∈ RT , and p ∈ P. C∗, then, denotes the set 
of clauses that can be constructed from a Boolean formula of basic clauses. That is, 

for c ∈ C∗ , c =< c0, b1, c1, . . . , bn, cn > for bi ∈ {∨,∧} for 1 ≤ i ≤ n and cj ∈ C for 
0 ≤ j ≤ n. This produces the following grammar for constraint clauses: 

C ::= C ∨ C 

| C ∧ C 

| Q n role topo pa 

Q ::= at most 

| at least 

| ǫ 

Now, letW denote the set of continuity of usage constraints. That is, while ( ci ) ∈ 

W and when ( cj ) ∈ W if ci, cj ∈ C∗ . Given that timeouts can only apply to while 

constraints, we create a distinguished set Wwhile ⊆ W that consists exclusively of the 

constraints while ( ci ), where ci ∈ C∗ . As before, let W∗ denote the set of Boolean 

conjunctions and disjunctions that can be formed from any combination of continuity 

of usage constraints.2 As above, for any w ∈ W∗ , w can be written as the tuple 

w =< w0, b1, w1, . . . , bn, wn >, where bi ∈ {∨,∧} for 1 ≤ i ≤ n and wj ∈ W for 

0 ≤ j ≤ n. This leads to the following grammar rules: 

W ::= W ∧ W 

| W ∨ W 

| while C 

| when C 

Finally, let T denote the set of timeouts (i.e., timeout t, where t may specify the 

time unit if permitted by the system designers). In addition, ǫ ∈ T . Then a proximity 

2Observe that negations are not necessary in our language. First, negations would only be applicable 
in joining relative constraint clauses (i.e., statements such as not while ( c ) would be awkward). 
Second, the at most and at least qualifiers are clear opposites (e.g., at most 0 is the negation of 
at least 1). Thus, our language can express negations without introducing an explicit Boolean 
operator. 
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constraint can be written as < w, t >∈ W∗ ×T . If w =< w0, b1, w1, . . . , bn, wn >, then 

t = ǫ if wi �∈ Wwhile for 0 ≤ i ≤ n (i.e., w consists exclusively of when constraints). 

We write Φ = (W∗ × T )∪ {⊥} to denote the set of all possible proximity constraints. 

That is, ⊥ denotes the absence of a proximity constraint, which allows for traditional 

spatially aware policies. 

4.3.6 Prox-RBAC Policies and Semantics 

A Prox-RBAC policy is a tuple of the form < sr, a, o, ϕ >, where sr ∈ R×{P ∪ 

{⊤}}, a ∈ A, o ∈ O, and ϕ ∈ Φ. In this section, we present the formal semantics for 

Prox-RBAC in terms of the UCONABC family of core models. Prox-RBAC employs 

UCONAC semantics, as we require authorizations (A) and conditions (C), but not 

obligations (B). In all of the semantic specifications below, ≥ can denote either the 

dominance relation on the partially ordered set of roles R or the traditional inequality 

on integers. The notation 2S refers to the power set of the set S. 

We start with the simplest case, in which ϕ = ⊥. That is, there is no proximity 

constraint enforced, and the policy indicates a spatially aware RBAC role as defined 

in existing works. We can write these semantics formally as a UCONpreA policy, as 
0 

shown in Figure 4.5. 

< role, act, obj,⊥ > – UCONpreA : 
0 

role =< r, pa >, r ∈ R, pa ∈ P 
Perms = {(o, a)|o ∈ O, a ∈ A} 
ActiveRoles : S → 2R 

EnabledRoles : P → 2R 

PermittedRoles : Perms → 2R 

ATT (S) = {ActiveRoles}
allowed(s, o, a)⇒ ∃ r ∈ EnabledRoles(pa), s ∈l pa ∧ r ∈ ActiveRoles(s) ∧ 

′ ′ ∃ r ∈ PermittedRoles(o, a), r ≥ r 

Figure 4.5. Prox-RBAC semantics for policies with no proximity constraint
 

http:obligations(B).In
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These semantics state that, if s is allowed to perform a on o, there must be a 

traditional RBAC role r that is enabled by entering pa, s is physically present there, 

and s has activated the role. In addition, r must dominate r ′ , which is a traditional 

RBAC role that is permitted to perform a on o. Obviously, it may be the case that 

r = r ′ . However, when hierarchical roles are created, r ≥ r ′ implies that activating r 

inherits all of the permissions associated with r ′ . As this is UCONpreA , this policy 
0 

is checked only once prior to granting access. Finally, note that the same semantics 

can be applied for traditional RBAC policies, as well. In that case, pa = ⊤, which 
indicates that role activation can occur anywhere. Thus, Prox-RBAC semantics are 

flexible enough to accommodate more traditional policies. 

To define the semantics for when and while constraints, we must define a number 

of helper functions, which are listed in Table 4.1. TopoSat defines the conditions 

under which topological relations are satisfied. in is satisfied if the subject is inside 

the PA, while out is satisfied if the subject is not in the PA. adj is satisfied if the 

subject is in an adjacent PA. This function is used in the context of the Sat function, 

which finds a set of subjects that have r as an active role and satisfy the topological 

relation. AtMostSat and AtLeastSat are intuitive variations. 

Building on these functions, we can define what it means to satisfy a relative 

constraint clause c ∈ C∗ . Recall that c can either be a simple clause (c ∈ C)), or 
it can be a complex clause that is created from disjuctions and/or conjunctions of 

simple clauses. That is, c =< c0, b1, c1, . . . , bn, cn >, where ci is a simple clause and 

bi is a Boolean connective. Let ci.q denote the quantifier (i.e., at least, at most, or 

ǫ) for the simple clause ci. Similarly, let ci.n, ci.r, ci.rt, and ci.p denote the remaining 

portions of the clause. If we let B denote the set of Boolean clauses of the form < p0, 

b1, p1, . . . , bn, pn >, where pi ∈ {true, false} for 0 ≤ i ≤ n and bj ∈ {∧,∨} for 
1 ≤ j ≤ n, we can define the ConToBool function to convert a relative constraint 

clause to a Boolean clause. 

The last component we need for relative constraint clause satisfcation is SubThis, 

which is a function for handling the this keyword. Specifically, SubThis will traverse 

http:ci.n,ci.r,ci.rt
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Table 4.1
 
Helper functions for evaluating Prox-RBAC semantics
 

TopoSat : S × RT × P → {true, false}
TopoSat(s, rt, p) = true if and only if one of these hold: 

rt = in and ∃p ′ ∈ P (s ∈l p ′ ∧ p2v(p ′ ) ⊑ p2v(p)) 
rt = out and ∃p ′ ∈ P (s ∈l p ′ ∧ p2v(p ′ ) �⊑ p2v(p)) 
rt = adj and ∃p ′ ∈ P (s ∈l p ′ ∧ (p2v(p ′ ), p2v(p)) ∈ E) 

Sat : (N0)× R × RT × P → {true, false}
Sat(n, r, rt, p) = true if and only if ∃S ′ ⊆ S, |S ′ | = n 
∀s ∈ S ′ ∃role ∈ ActiveRoles(s) such that 
(r = role ∧ TopoSat(s, rt, p)) 

AtMostSat : (N0)× R × RT × P → {true, false}
AtMostSat(n, r, rt, p) = true if and only if ∀S ′ ⊆ S, |S ′ | ≤ n 

whenever ∀s ∈ S ′ ∃role ∈ ActiveRoles(s) such that 
(r = role ∧ TopoSat(s, rt, p)) 

AtLeastSat : (N0)× R × RT × P → {true, false}
AtLeastSat(n, r, rt, p) = true if and only if ∃S ′ ⊆ S, |S ′ | ≥ n 
∀s ∈ S ′ ∃role ∈ ActiveRoles(s) such that 
(r = role ∧ TopoSat(s, rt, p)) 

SubT his : C × P → C 
SubT his(c, pa) =< c ′ 0, b1, c 

′ 
1, . . . , bn, c 

′ 
n >, where 

∀i, 0 ≤ i ≤ n, 
if ci.p = this.τj ∧ CastType(pa, τj) = pa ′ , then c ′ i.p = pa ′ 

else c ′ i.p = ci.p 

ConToBool : C → B 
ConToBool(c) =< p0, b1, p1, . . . , bn, pn >, where 
∀i, 0 ≤ i ≤ n, pi = true if and only 
[ (ci.q = at least ∧ AtLeastSat(ci.n, ci.r, ci.rt, ci.p)) ∨ 
(ci.q = at most ∧ AtMostSat(ci.n, ci.r, ci.rt, ci.p)) ∨ 
(ci.q = ǫ ∧ Sat(ci.n, ci.r, ci.rt, ci.p)) ] 

ConSat : C × P → {true, false}
ConSat(c, pa) = BoolSat(ConToBool(SubT his(c, pa))) 

WToBool : W∗ × P → B 
WToBool(w, pa) =< p0, b1, p1, . . . , bn, pn >, where 
∀i, 0 ≤ i ≤ n, pi = ConSat(wi.c, pa) 

WToW hileOnly : W∗ → W∗ 

WToW hileOnly(< w0, b1, w1, . . . , bn, wn >= ǫ if 
wi �∈ Wwhile for 0 ≤ i ≤ n 

WToW hileOnly(< w0, b1, w1, . . . , bn, wn >) = 
< w ′ 0, b1, w 

′ 
1, . . . , bm, w ′ m >, where 

(m ≤ n ∧ for 0 ≤ i, k ≤ n, 0 ≤ j, j ≤ m 
( (wi ∈ Wwhile ⇒ ∃w ′ j = wi) ∧ 

(w ′ j ∈ Wwhile) ∧ 
((wi = w ′ j ∧ wk = w ′ l ∧ i ≤ k)⇒ j ≤ l) ∧ 
(wi ∈ Wwhile ⇒ (∃b ′ j = bi ⇐ ∃w ′ l, l < j)) ∧ 
((bi = b ′ j ∧ bk = b ′ l ∧ i ≤ k)⇒ j ≤ l) ) 
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the clause c, replacing this.τj with pa, assuming Type(pa) = τj . If Type(pa) < 

τj , then the parent tree is traversed until the appropriate type is found. We use 

CastType(pa, τj) to denote the (unspecified) function that handles this traversal. Note 

that pa starts at the finest granularity, so Type(pa) �� τj .= Now, let BoolSat : B → 

{true, false} denote a function that evaluates a Boolean clause. We can assemble all 

of these components to define relative constraint clause satisfaction with the ConSat 

function, where pa is the subject’s PA. 

We are now ready to specify semantics for proximity constraints consisting exclu

sively of when constraints. Let c =< w, ǫ >, where w =< w0, b1, w1, . . . , bn, wn >, 

wi ∈ W, and wi �∈ Wwhile for 0 ≤ i ≤ n. Let wi.c denote the relative constraint clause 

for the when clause wi. Similar to ConToBool, we introduce WToBool to convert a 

set of when or while constraints to a Boolean formula. Using this formula, we can 

specify the semantics for when constraints as a UCONpreC policy, meaning that 
0 

the condition and authorization are checked only prior to authorization, as shown in 

Figure 4.6. 

< role, act, obj, when > – UCONpreC : 
0 

WToBool : W∗ × P → B 
BoolSat : B → {true, false}
Loc : S → P 
role =< r, pa >, r ∈ R, pa ∈ P 
Perms = {(o, a)|o ∈ O, a ∈ A} 
ActiveRoles : S → 2R 

EnabledRoles : P → 2R 

PermittedRoles : Perms → 2R 

ATT (S) = {ActiveRoles}
preCON = {BoolSat(WToBool(when,Loc(s)))}
getPreCON(s, o, a) = BoolSat(WToBool(when,Loc(s))) 
allowed(s, o, a)⇒ preConChecked(getPreCON(s, o, a)) ∧ 

(∃ r ∈ EnabledRoles(pa), s ∈l pa ∧ r ∈ ActiveRoles(s) ∧ 
′ ∃ r ∈ PermittedRoles(o, a), r ≥ r ′ ) 

Figure 4.6. Prox-RBAC semantics for policies with when constraints
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While constraints with a timeout of 0 (i.e., immediate revocation) are very similar 

to when constraints, with the exception that a subset of the conditions are repeat

edly checked as the permission is exercised. To model this behavior, we introduce the 

WToWhileOnly function that converts a sequence of when and while constraints to 

the corresponding list that only contains while constraints. If there were no while 

constraints, WToWhileOnly would return ǫ, indicating there are no on-going con

ditions to enforce. Using this function, Figure 4.7 specifies the semantics of a while 

constraint with immediate revocation as UCONpreC . 
0
onC0 

< role, act, obj, while > – UCONpreC : 
0onC0 

WToWhileOnly : W∗ →W∗ 

WToBool : W∗ × P → B 
BoolSat : B → {true, false}
Location : S → P 
role =< r, pa >, r ∈ R, pa ∈ P 
Perms = {(o, a)|o ∈ O, a ∈ A} 
ActiveRoles : S → 2R 

EnabledRoles : P → 2R 

PermittedRoles : Perms → 2R 

ATT (S) = {ActiveRoles}
preCON = {BoolSat(WToBool(while, Loc(s)))}
getPreCON(s, o, a) = BoolSat(WToBool(while, Loc(s))) 
onCON = {BoolSat(WToBool(WToWhileOnly(while), Loc(s)))}
getOnCON(s, o, a) = BoolSat(WToBool(WToWhileOnly(while), Loc(s))) 
allowed(s, o, a)⇒ 

preConChecked(getPreCON(s, o, a))∧ 
(∃ r ∈ EnabledRoles(pa), s ∈l pa ∧ r ∈ ActiveRoles(s) ∧ 

′ ∃ r ∈ PermittedRoles(o, a), r ≥ r ′ )
 
stopped(s, o, a)⇐ ¬onConChecked(getOnCON(s, o, a))
 

Figure 4.7. Prox-RBAC semantics for when constraints with immediate revocation 

The final type of constraint to consider is a while constraint with a timeout t > 0. 

Unfortunately, UCON does not define the necessary semantic structure. Specifically, 

for authorizations (UCONonA) and obligations (UCONonB), the family defines proce

dures for modifying the attributes of the subject during access. However, UCONonC 

does not have such a procedure. Thus, UCONonC offers no way to update the sub
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< role, act, obj, while, time > – UCONpreC : 
0onC0 

CurentT ime ∈ R is the current system time 
PermExp : S → E 
UpdateExp : E × O ×A× Z+ × Z+ → E 
FindExp : E × O ×A → Z+ 

WToWhileOnly : W∗ →W∗ 

WToBool : W∗ × P → B 
BoolSat : B → {true, false}
Location : S → P 
Perms = {(o, a)|o ∈ O, a ∈ A} 
ActiveRoles : S → 2R 

EnabledRoles : P → 2R 

PermittedRoles : Perms → 2R 

ATT (S) = {ActiveRoles, PermExp}
preCON = {BoolSat(WToBool(while, Loc(s)))}
getPreCON(s, o, a) = BoolSat(WToBool(while, Loc(s))) 
onCON = {BoolSat(WToBool(WToWhileOnly(while), Loc(s)))}
getOnCON(s, o, a) = 

( BoolSat(WToBool(WToWhileOnly(while), Loc(s))) ∨ 
CurrentT ime ≤ FindExp(PermExp(s), o, a) ) 

allowed(s, o, a)⇒ 
preConChecked(getPreCON(s, o, a))∧ 
(∃ r ∈ EnabledRoles(pa), s ∈l pa ∧ r ∈ ActiveRoles(s) ∧ 

′ ∃ r ∈ PermittedRoles(o, a), r ≥ r ′ ) 
onUpdate(PermExp(s)) : PermExp(s) = 

UpdateExp(PermExp(s), o, a, t, time) if 
BoolSat(WToBool(WToWhileOnly(while), Loc(s))) 

stopped(s, o, a)⇐ ¬onConChecked(getOnCON(s, o, a)) 

Figure 4.8. Prox-RBAC semantics for while constraints with later expiration 

ject’s attributes to capture the last time the condition was true. As this procedure 

does not exist, we cannot specify the semantics for while with timeout using the 

UCONABC model, strictly speaking. However, it is straightforward to adapt the 

onUpdate(ATT (s)) procedure from other portions of UCONABC for these purposes. 

To start, we introduce E to denote the data structures containing expiration times 

for permissions. That is, PermExp(s) will return e ∈ E . The simplest form of e 

would be a 2-dimensional array O ×A, where (o, a) would store the expiration time 

for exercising a ∈ A on o ∈ O. As such, we use the notation e[o, a] for this value, 
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though we formalize this behavior with the FindExp function. The UpdateExp 

function takes such a data structure, and updates only the e[o, a] entry to be tc + te, 

the sum of the current system time and the expiration time. All other entries remain 

unchanged. 

Using these functions, we extend the UCONpreC model to express while 
0
onC0 

constraints with a timeout using the following semantics. Our extension is to intro

duce the onUpdate(ATT (s)) procedure to update the subject’s PermExp attribute 

as the access occurs. During access, if the condition holds (i.e., the while clause is 

satisfied), then the expiration is updated accordingly. The permission is revoked only 

if the condition fails and the current time is greater than the expiration time. The 

semantics are shown in Figure 4.8. 

4.4 Enforcement Architecture 

Our architectural design couples a centralized authorization server with distributed, 

asynchronous clients. These clients can be either stationary (e.g., workstations) or 

mobile devices (e.g., laptops). In either case, accessing sensitive data requires a physi

cal connection to a fixed-location device, such as an near-field communication (NFC) 

or magnetic stripe reader. In addition, each entry point requires a fixed-location 

reader in each PA. The following section defines the assumed properties of each such 

principal. 

4.4.1 Principals 

The principals for enforcing Prox-RBAC are as follows. 

•	 Authorization Server (AS) – the centralized server that acts as the policy deci
sion point (PDP). The AS maintains a mapping of all user’s locations, relative 

to a PA. The AS also maintains all access control policies. 
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•	 Guard – a fixed-location reader at an entry point. The guard is responsible 

for controlling a physical barrier, such as a locked door. We denote the guard 

that is physically located in pai and controls access to paj as gi,j. Each guard 

is provided a certificate Cert(gi,j), which is signed by the AS and contains 

a public key pk(gi,j) and coordinates cdt(gi,j). Every guard is equipped with 

three types of communication technologies. First, there is a network connection 

(either wired or over encrypted wireless) that allows for communication with 

the AS. Second, guards gi,j and gj,i have a physical link that allows direct 

communication for synchronizing control over the entry between the two PAs. 

Third, each guard employs a technology that requires close physical proximity 

for communication. For instance, guards could be a card reader or could use 

NFC. 

•	 Client – a trusted computing device for accessing sensitive data. The client acts 

as the policy enforcement point, revoking privileges according to the decision of 

the AS. As clients may be mobile, they are identified solely by an identifier and 

denoted ci. Each client has a network connection to communicate with the AS. 

Also, each client must be equipped with a trusted computing component (TCC), 

such as a TPM. That is, if an application is granted access to sensitive data, the 

data will be encrypted with a symmetric key that is bound to that application. 

To transfer the symmetric key between the client and the AS, the TCC can 

generate a public-private key pair, denoted pk(ci) and sk(ci) respectively. To 

guarantee the provenance of these keys, the TCC is equipped with a persistent 

key, such as the Endorsement Key in a TPM, that is used for signing certificates 

Cert(ci) that distribute pk(ci). We assume that the AS is able to authenticate all 

such certificates. Additionally, we assume unauthorized software is prevented 

from accessing sensitive data, and remote attestation techniques are used to 

ensure that the software on the client matches a pre-approved configuration. 
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Table 4.2
 
Cryptographic primitives
 

Prove(·) – an interactive zero-knowledge proof of knowledge protocol. 
Enck(·) – a (t, ǫ)-secure symmetric key cipher that is resilient against 
probabilistic polynomial-time (PPT) adversaries. 

Encpk(p)(·) – encryption using the public key of p that provides 
indistinguishability against chosen-ciphertext attacks (IND-CCA). 

H(·) – a collision-resistent hash function. 
Signsk(p)(·) – digitally sign a message using the private key of p, such 

that the signature scheme provides IND-CCA security. 

Commit(c, ·) – compute a commitment c, such that the commitment 
scheme provides unconditional hiding and computational binding. 

Open(c, ·) – open the commitment c by revealing the data necessary 
for an honest verifier. 

Auth(·) – perform an interactive authentication protocol to establish the 
subject identity. 

•	 Location Device – a fixed-location reader distributed in a PA. These devices are 

used to authenticate the location of the user at the time of an access request. 

Since these devices have fixed locations, each is denoted ldi,j to indicate the j
th 

location device in pai. As with guards, location devices employ a proximity-

based communication technology and possess a certificate Cert(ldi,j) that is 

signed by the AS. These certificates contain coordinates cdt(ldi,j), as well as a 

public commitment cmt(sv(ldi,j)) where sv(ldi,j) is a secret value stored on ldi,j. 

In order to bind the client to a location, it must have a physical connection to 

a location device. 

•	 User – the human user requesting access. Each user (subject) s will have an 

identifier ids, a password pwds and a proximity-connection device that is used 

for communicating with the guards and location devices. This device will store 

a certificate, signed by the AS, that contains data required to prove knowledge 

of a secret value sv(s), which is stored on the device. 
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4.4.2 Protocols 

Proper enforcement of Prox-RBAC requires a high-level of assurance that the 

system has an accurate map of users’ locations. To accomplish this goal, we propose 

the following protocols that authenticate all requests and movements. These protocols 

utilize a number of cryptographic primitives. Our convention is to use pk(p) and sk(p) 

to refer to the public and secret keys, respectively, of principal p when an asymmetric 

cipher is required, while k denotes a private symmetric key. Using these conventions, 

our primitives are listed in Table 4.2. 

Our first protocol, Read(s, o, r, ci, ldj,k), is shown in Table 4.3. It is initiated by 

a subject s ∈ S to request read permission on object o ∈ O, while using role r on 
client ci at location ldj,k. The protocol starts by s using his proximity device to prove 

knowledge of sv(s) to ldj,k and entering ids, pwds, and r into the client via a trusted 

path. The client presents a signed version of ids to ldj,k via the physical connection, 

and ldj,k responds with a commitment c, binding ids to ci at timestamp T with a nonce 

n. Note that only ldj,k is able to open this commitment. ci signs the commitment, 

sending the result to the AS. The AS and ci then enter an authentication protocol 

that confirms the identity of ids and his authorization to enter r. 

Assuming the authentication of s is successful, the AS returns a signed version of 

the commitment c, encrypted in a manner that is only readable by ci. ci decrypts 

the signed commitment, and forwards the result to ldj,k, who confirms the signature 

of the AS (thus indicating that the AS received the commitment intact). ldj,k opens 

the commitment and encrypts the result with the public key of the AS. ci forwards 

the encrypted packet and the name of the object o requested, and the AS returns the 

encrypted object with a key bound to ci. 

Informally, we can identify a number of strengths of this protocol. First, the 

commitment scheme, the encrypted version of the opening, and the required physical 

connection between ci and ldj,k ensure that the AS has a strong assurance that s is, 

in fact, at the location of ldj,k at time T . Next, the use of a TCC for ci binds the 
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Table 4.3
 
Protocol for requesting read access
 

Read(s, o, r, ci, ldj,k) – Subject s activates role r and requests read 
privilege on object o, using client ci at location device ldj,k. 

(1) s → ldj,k Prove(sv(s)) 
(2) s → ci ids, pwds, r 
(3) ci → ldj,k Signsk(ci)(ids), Cert(ci) 

(4) ldj,k → ci Commit(c,H(n, ids, T, pk(ci), sv(ldj,k))) 
(5) ci → AS Signsk(ci)(c), Cert(ci) 

(6) ci ↔ AS Auth(ids, pwds, r) 
(7) AS → ci Encpk(ci)(k),Enck(Signsk(AS)(c, pk(ci)) 

(8) ci → ldj,k Signsk(AS)(c, pk(ci)) 

(9) ldj,k → ci Cert(ldj,k),Encpk(AS)(k 
′ ), 

Enck′ (Open(c,H(n, ids, T, pk(ci), sv(ldj,k)))) 
(10) ci → AS o, Cert(ldj,k),Encpk(AS)(k 

′ ), 

Enck′ (Open(c,H(n, ids, T, pk(ci), sv(ldj,k)))) 
(11) AS → ci Enck(o) 

object to the trusted client, whose integrity is assumed to be intact (as confirmed 

using remote attestation). Finally, the use of multifactor authentication strengthens 

the identification of the requester. 

The Read protocol could be extended in a straightforward manner to support 

write privileges, as well. Steps (1) – (10) are the same as above. In step (11), only 

Encpk(ci)(k 
′ ) is sent to ci. In an additional step, ci sends Enck′ (o 

′ ,Signsk(ci)(o 
′ )), where 

o ′ is the modified version of the object. 

The next three protocols are used to enforce the continuity of usage constraints. 

Specifically, Close(·) is used by the client (on behalf of the user) to end the session 

voluntarily. Revoke(·) is initiated by the AS to terminate the session involuntarily, 

perhaps due to a violation of a proximity constraint. As the acknowledgment cannot 

be sent until the permission session has been terminated, a delay between these 

messages is to be expected. And Renew(·) is executed during the session as a sort of 
“ping” protocol. That is, Renew(·) is used to check that the connection to the AS is 
intact. In all three cases, ci and the AS trivially exchange signed messages. As such, 

we will omit them for brevity. 
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Table 4.4
 
Protocol for movement M(s, pai, paj)
 

Move(s, pai, paj) – Subject s requests move from pai to paj. 

(1) s → gi,j 
(2) gi,j ↔ gj,i 
(3) gi,j → AS 
(4) AS → gi,j 
(5) gi,j → AS 
(6) AS → gi,j 
(7) gi,j ↔ gj,i 
(8) s → gj,i 
(9) gj,i ↔ gi,j 
(10) gj,i → AS 
(11) AS → gj,i 
(12) gj,i → AS 

Prove(sv(s)) 
SyncEntry() 
Commit(c,H(n, ids, T, sv(gi,j)) 
Signsk(AS)(c) 

Open(c,H(n, ids, T, pk(ci))) 
Signsk(AS)(grant(s, entry, open)) 

OpenEntry() 
Prove(sv(s)) 
LockEntry() 
Commit(c ′ ,H(n ′ , ids, T 

′ , sv(gj,i)) 
Signsk(AS)(c 

′ ) 

Open(c ′ ,H(n ′ , ids, T 
′ , pk(ci))) 

The final protocol, Move(s, pai, paj), is shown in Table 4.4 and is executed when 

a subject s ∈ S is moving from pai to paj. The protocol uses three additional 

primitives (SyncEntry(), OpenEntry(), and LockEntry()) that are executed between a 

synchronous, direct connection between the two guards gi,j and gj,i to control access 

to the entry between the PAs. 

The protocol starts by s using his proximity device to prove knowledge of sv(s). 

After claiming control of the door (SyncEntry()), gi,j sends a commitment c to the AS, 

who signs and returns the commitment. After confirming the signature, gi,j opens 

the commitment. If access is granted, the AS replies with a signed message indicating 

so. The door is unlocked, s passes through the entry, then uses his proximity device 

to connect with gj,i (indicating the move is complete). The door is then locked, and 

gj,i uses the commitment scheme to prove to the AS that the subject is now in paj . 

Note that this protocol requires an honest s to re-authenticate with the guard on 

the other side of the entry. The purpose of these steps is to ensure that s passed 

through the entry. This portion of the protocol could be omitted if other techniques 

(e.g., video monitoring or motion sensors) are used to guarantee such passage. Also, 

note that we are implicitly conflating the subject s and his proximity device. That 
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is, we are not explicitly authenticating the person using the device. We find this 

approach acceptable, because, in our experience, institutions that are likely to deploy 

Prox-RBAC often strictly enforce badging procedures. That is, such groups currently 

require all individuals to swipe a badge at doors to protected areas, and use monitoring 

and auditing techniques to ensure employees adhere to these policies. If stronger 

assurances are desired, the protocol could be extended to require the user’s password 

in addition to proving sv(s). 

4.4.3 Algorithms 

In this section, we will describe the most important algorithms in our enforce

ment architecture that handle policy evaluation and movements. The algorithms 

themselves are listed in the appendix. We consider a number of primitive procedures 

(e.g., role activation, Boolean evaluation, and the WToWhileOnly function) to be 

very straightforward and efficient, and omit them for brevity. The first algorithm, 

Request, occurs between steps 10 and 11 of the Read protocol (or in the correspond

ing location of a Write protocol). This algorithm starts by calling EvalPolicies, 

explained below. If the request is approved, then the policies that are satisfied are 

checked for on-going conditions (i.e., while clauses). These policies are then added 

to Ongoing(s), a list maintained by the AS that maps on-going conditions to object 

accesses for the subject s. 

To expedite analysis of constraint satisfaction, we start the EvalPolicies algo

rithm by counting all of the instances of active roles. To ensure the hierarchy of 

PAs is captured, we traverse the Parent function (defined by the partial order ⊑), 
mapping the roles accordingly. Note that we do not traverse the hierarchy defined 

by traditional RBAC roles, as we have not formally modeled this hierarchy. It is 

straightforward to add this traversal after line 8. 

To complete theEvalPolicies algorithm, we must look at the process to determine 

if a constraint has been satisfied. The Eval algorithm handles this. The first part of 
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Algorithm 2: Request
 
Input: s : the requesting subject ; o : the requested object ; ci : the client ; a : the 

requested action 
Output: approved or denied 
if Activate(s, r, Loc(s)) = failure then 

return denied ; 
pol ← Policies[o][a] ;
 
polpre ← EvalPolicies(s, pol) ;
 
if polpre = ∅ then
 

return denied ; 
polon ← ∅ ;
 
foreach p =< sr, a, o, ϕ >∈ polpre, ϕ =< w, t > do
 

whileFound ← false ; 
if w � ⊥ then = 

for i = 0 to n do 
/* w =< w0, b1, w1, . . . , bn, wn > */ 
if w0 ∈ Wwhile then
 

whileFound ← true ;
 

if whileFound = true then 
polon = polon ∪ WToWhileOnly(p) ; 

Ongoing(s) = Ongoing(s) ∪ {< o, ci, polon >} ; 
return approve ; 

the algorithm checks to see if the constraint uses the this keyword. If so, the parent 

tree will be traversed upward, starting at the subject’s PA, until the referent PA is 

found (i.e., this PA has a type that matches the constraint). Next, we find the list 

of PAs that can satisfy the constraint. ParentSubtree(p) returns the subtree of the 

parent tree rooted at p, while Neighbors(p2v(p)) returns the list of PAs that share 

an entry with p. That is, paj ∈ Neighbors(p2v(p)) if and only if there is an edge 

(p2v(paj), p2v(p)) ∈ E. Finally, we count the number of role instances in the list of 

PAs, and compare the result with the constraint. 

To analyze the efficiency of these algorithms, we first observe that |paList| = P ≥ 

|τ | in the worst case. So Eval is O(n), where n = |P|. To analyze EvalPolicies, 
we can assume |Φ| > |S|. Furthermore, let us assume that there is at least one 

when or while constraint for every role. Given these assumptions, we can see that 

the execution time of EvalPolicies is dominated by lines 9 and onward. Now, let 
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Algorithm 3: EvalPolicies
 

Input: s : the requesting subject ; P (o, a) : the set of matching policies 
Output: satisfied : the set of policies that have been satisfied 

′ foreach s ∈ S do 
′ if s � s= then 

foreach role =< r, pa > in ActiveRoles(s ′ ) do 
′ pa ← pa ; 

repeat 
count[pa ′ ][r]← count[pa ′ ][r] + 1 ; 

′ pa ← Parent(pa ′ ) ; 
′ until pa � ⊤ ;= 

foreach p =< sr, a, o, ϕ >∈ P (o, a), sr =< rp, pap >,ϕ =< w, t > do 
permitted← false ; 
foreach role =< rs, pas > in ActiveRoles(s) do 

if rs ≥ rp and p2v(pas) ⊑ p2v(pap) then 
permitted ← true ; 

if permitted = true then 
if w = ⊥ then 

satisfied ← satisfied ∪ {p} ; 
else
 

for i = 0 to n do
 
for j = 0 to m do
 

csatj ← Eval(cj , count, Loc(s)) ; 

wsati ← BoolEval(csat0, bc1, csat1, . . . , bcm, csatm) ; 

if BoolEval(wsat0, bw1, wsat1, . . . , bwm, wsatm) then 
satisfied ← satisfied ∪ {p} ; 

return satisfied ; 

n = max{|Φ|, n ′ , m, |P|}, where n ′ is the maximum number of when or while con

straints in all policies and m is the maximum number of proximity constraints. Then 

EvalPolicies has a worst case execution time of O(n4). It is important to stress, 

though, that this is a theoretical upper bound. In practice, n ′ and m will both be 

small to be manageable. As such, in practical deployments, we can replace these 

values with a constant. Consequently, the realistic complexity would be O(n2). 

If a policy is satisfied for a permission, and the policy contains at least one while 

constraint, the policy is added to Ongoing(s) with all when constraints removed. At 

a regular interval (defined by the system designers), the AS will traverse this list and 
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Algorithm 4: Eval
 
Input: c : the constraint to be satisfied ; count : the m × n matrix representing the 

number of roles active in each PA ; pas : the subject’s location 
Output: true or false 
/* c =< c.q, c.n, c.r, c.rt , c.p >, where c.q ∈ {at least, at most, ǫ}, 

c.n ∈ N0, c.r ∈ R, c.rt ∈ RT , c.p ∈ P */ 
comp ← Quantifier2Inequality(c.q) ; 
total ← 0 ; 
if c.p = this.τ then 

p← pas ;
 
while Type(p) � τ do
=
 

p← Parent(p) ;
 

else 
p← c.p ; 

if c.rt = in then 
paList← ParentSubtree(p) ; 

else if c.rt = out then 
paList← P − ParentSubtree(p) ; 

else 
/* c.rt = adj */ 
paList← Neighbors(p2v(p)) ; 

′ foreach p in paList do 
total ← total + count[p ′ ][c.r] ; 

return total comp c.n ; 

check that the conditions continue to hold. Note that, as long as any of the policies 

are satisfied, the subject retains access. Once all conditions have been violated, the 

AS will traverse the policy list for that object and initiate the Revoke protocol with 

the associated client. The timeout that is sent will be the minimum of the timeouts 

specified by the on-going policies. At the end of the algorithm, only the policies that 

are still satisfied are retained in Ongoing(s). 

There are two algorithms for handling the movement M(s, vi, vj). The first, 

Move5−6, occurs between steps 5 and 6 of the Move protocol. We start by checking 

if the subject is authorized (which can be specified using RBAC or identity-based 

policies). We then update the subject’s roles to be linked to the least common parent 

of both paj and the PA associated with the role. Once the ActiveRoles(s)3 list is 

3Astute readers may note that ActiveRoles(s) in our algorithms returns spatial roles < r, pa >, 
whereas ActiveRoles(s) in our semantics returns only the traditional RBAC role r. This incompat
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updated, the on-going checks are re-evaluated, and the system marks that s has a 

pending move (which blocks further activations and requests). The second protocol 

Move12 occurs after step 12 of the protocol. It simply sets Loc(s) to be paj, then 

updates ActiveRoles(s) in a manner similar to Move5−6 by replacing the common 

parent with paj . 

Algorithm 5: Move5−6 

Input: s : the subject moving ; pai : the old PA ; paj : the new PA 
Output: permission to pass through the entry or ǫ 
if Authorized(s, paj) = false then 

return ǫ ; 
roles ← ∅ ; 
foreach role =< r, pa > in ActiveRoles(s) do 

if paj �⊑ pa then 
′ pa ← LeastCommonParent(pa, paj) ; 

′ roles ← roles ∪ {< r, pa >} ; 
else 

roles ← roles ∪ role ; 

ActiveRoles(s)← roles ; 
CheckOngoing(s) ; 
PendingMove(s, pai, paj) ; 
return grant(s, ei,j , open) ; 

4.4.4 Functional Correctness 

To illustrate the correctness of our work, we will offer two basic proofs that high

light the most important characteristics. First, we will prove that our algorithms 

satisfy the < role, act, obj, when > semantics as a UCONpreC policy. From there, 
0 

the proofs for while policies are similar. Next, we will prove that our architecture 

correctly handles the movement M(s, pai, paj). 

ibility is trivial, but allowed us to specify the semantics more cleanly. Furthermore, the semantic 
definitions still captured the binding of roles to PAs in a way that matches the algorithms. 
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Algorithm 6: CheckOngoing
 
Input: s : the subject with the permissions 
polon ← ∅ ; 
foreach on =< o, ci, polpre > in Ongoing(s) do 

polpost ← EvalPolicies(s, polpre) ; 
if polpost = ∅ then 

timeout ←∞ ; 
foreach p =< sr, a, o, ϕ >∈ polpre, ϕ =< w, t > do 

if t = ǫ then 
timeout = 0 ; 

else if t < timeout then 
timeout = t ; 

Revoke(o, ci, timeout) ; 
else 

polon ← polon ∪ {< o, ci, polpost >} ; 

Lemma 1. The architecture enforces < role, act, obj, when > policies as defined by 

the UCONpreC semantics. 
0 

Proof. Assume Request(s, o, ci, a, r) returns approve. Note that this can only occur 

at the end of the Read protocol, which ensures that the subject’s identity and loca

tion are correct. By lines 1 and 2 of the algorithm, the role activation succeeds. Next, 

the request is approved only if lines 3 and 4 return a non-empty set of policies that are 

satisfied. By exploring EvalPolicies, we see that policies are only satisfied if there is 

an active role that is authorized (lines 11–13), and the specified constraints are met 

(lines 14–23). Clearly, the constraint evaluation corresponds to preConChecked(·), 
while the active role check corresponds to the remainder of the consequence of the 

implication. Thus, the consequence is true, and the implication holds. Therefore, the 

semantics are enforced correctly. D 
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Lemma 2. The architecture correctly handles M(s, pai, paj) events. 

Proof. Recall that M(s, pai, paj) requires authentication of the subject, authoriza

tion to pass through a physical barrier (e.g., to open a locked door), and confirmation 

that the subject entered the new PA. Authentication occurs in steps 1–5 of the Move 

protocol and receiving authorization occurs in line 13 of the Move5−6 algorithm. 

Lines 6–12 of the Move protocol and the entirety of the Move12 algorithm combine 

to provide confirmation. D 

4.5 Prototype Implementation 

We have developed a proof-of-concept prototype of Prox-RBAC to measure the 

performance of the cryptographic protocols and the enforcement algorithms. To in

stantiave the Prove construct, we employed the Feige-Fiat-Shamir identification proto

col [41], which uses a zero-knowledge proof, and we use a Pedersen commitment [121] 

for the Commit and Open primitives. For Auth, we simply used a salted hash of a pass

word. We used SHA-256, AES-256, 1024-bit RSA, and SHA-1 with DSA for the Hash, 

Enck, Encpk(c), and Signk primitives, respectively. We implemented our prototype in 

Java 1.6.0 20, relying on standard cryptographic implementations when possible. For 

the Pedersen commitment and the Feige-Fiat-Shamir protocols, we used a custom 

implementation that employed the BigInteger class. Our test machine consisted of 

a 2.26GHz Intel R 2 Duo CPU with 3GB of 667MHz memory, running on � CoreTM 

Ubuntu 10.04 (“Lucid Lynx”) with version 2.6.32 of the Linux kernel. Based on 500 

iterations, the most expensive of the cryptographic operations are the Pedersen com

mitment (average of 17.7 ms to generate and 20.2 ms to confirm) and RSA (5.7 ms 

to encrypt, but 30.2 ms to decrypt). Other than the DSA signature (9.8 ms average), 

all other computations required less than 1 ms on average to complete. The average 

time for the complete Read protocol (including the policy evaluation algorithms) was 

approximately 89.4 ms. 

http:version2.6.32
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Moving toward a practical deployment with location sensing is more challenging. 

We have performed preliminary work toward using an Advanced Card Systems (ACS) 

NFC reader, model ACR 122 [110] to communicate with a Nokia 6131 NFC-enabled 

cell phone [108,109]. Communication between the ACR 122 and the Nokia 6131 uses 

the peer-to-peer extension to the Java JSR 257 Contactless Communication API [111]. 

Our software employs the NFCIP library developed by Kooman [112], which uses 

the Java smartcardio libraries. One difficulty we had with this implementation is 

that the BigInteger class does not exist in the Java ME distribution. Consequently, 

deploying a protocol such as the Feige-Fiat-Shamir scheme requires developing one’s 

own solution for large integers. However, based on our experiments, we observe that 

the average computation time for generating the Feige-Fiat-Shamir proof is less than 

the amount of time to perform the AES encryption in the protocol. Thus, we find 

such a deployment to be feasible. 

4.6 Security Analysis 

We can perform a security analysis of our architecture and implementation by fo

cusing on two aspects. First, we can analyze attacks on the protocols and algorithms 

that originate from a malicious principal or from external adversaries; we present 

an informal analysis, including a description of the assumed motivation and abili

ties of the attacker. Second, we can analyze attacks that arise from our prototype 

implementation design choices. 

In analyzing our protocols, we start with a corrupt subject. Such an adversary is 

essentially limited to denial-of-service attacks, barring stolen credentials. Now, if we 

consider a corrupt client4, denial-of-service is trivial, because it can simply refuse to 

process requests. For threats to confidentiality, the client can store the user’s password 

or it can hoard a commitment/open from the location device. However, the former 

is of limited use, as the client cannot initiate a request for a commitment from the 

4Recall that we assumed trusted computing technologies were in place to ensure the client is not 
corrupt. However, this analysis assumes these technologies are not used. 
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location device; furthermore, future commitments are bound to the user’s identity. In 

the latter case, storing the commitment/open is of no use, as the commitment scheme 

incorporates a timestamp and is assumed to be computationally binding (i.e., the 

client, which has limited computational resources, cannot extract useful information). 

Finally, regarding integrity threats, all information that passes through the client is 

either encrypted or signed, thus ensuring that illicit modifications will be detected. 

The biggest threat to our implementation is the use of the portable cell phones 

as the proximity device. Specifically, we chose to rely solely on the secret stored on 

the phone for authentication in the Move protocol. However, note that our particular 

cell phone, the Nokia NFC 6131, has a secure element that can protect sensitive 

information. Consequently, the user may be required to enter a PIN before accessing 

the secure element before initiating the Move. Observe also that known attacks on 

NFC and RFID technologies are not applicable. That is, our implementation uses the 

NFC peer-to-peer mode, which requires active computation by both of the devices. 

Thus, attacks that target secrets stored on passive RFID devices inherently fail, as 

there are no such persistent secrets that are revelaed in the clear in our protocols. 

4.7 Conclusions 

In this chapter, we have extended the notion of spatially aware RBAC to incor

porate proximity constraints, which specify policy requirements that are based on 

the locations of other users in the environment. We have introduced our spatial 

model, primarily consisting of an accessibility graph that is based on existing work 

on graph-based indoor space models. We have also defined the syntax and semantics 

for the Prox-RBAC language for specifying these constraints. In addition to the for

malization of our model and language, we have defined an enforcement architecture, 

including protocols and algorithms. We have offered preliminary results that prove 

the architecture correctly meets the semantic definitions. We have also described 

our initial work toward developing a prototype Prox-RBAC system, and closed with 
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an informal security analysis. Based on these results, we find that it is feasible to 

construct a usable and efficient proximity-based RBAC system. 
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5 PRIVACY-PRESERVING ENFORCEMENT OF SPATIALLY AWARE RBAC 

Up to this point, our threat model for spatially aware RBAC implicitly trusted the 

back-end service providers, and our primary focus for enforcement was authentication 

of the user and the user’s environment. In this chapter, we consider a different 

challenge within the same realm of location-based access control. Specifically, we now 

consider how to protect the user’s privacy from threats originating from the service 

providers. Given that our goal for this chapter is to ensure both privacy and security, 

which can often be conflicting goals, our discussion here will be significantly more 

rigorous and formal in order to make a clear delineation of the security guarantees 

of our design. Consequently, this chapter shows that it is possible to reconcile these 

goals. 

5.1 User Privacy in the Organization 

As we have already seen, GEO-RBAC has a large number of applications, in 

both military and civilian applications. Consider a military application, where phys

ical presence in a secured room is required for a principal to access a confidential 

document. Such a protection model can prevent military personnel from uninten

tionally exposing secrets in an environment where principals without the appropriate 

clearance are present. Alternatively, a policy may state that strictly confidential doc

uments must only be accessed in a room that has been checked thoroughly to ensure 

there are no unauthorized surveillance devices present. GEO-RBAC addresses these 

access control needs and supports permission manipulation at a fine granularity. 

Civilian applications also benefit from authorization models and enforcement 

systems for location-based access control. For instance, medical personnel are of

ten provided with mobile devices that allow them to access medical records of pa
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Figure 5.1. Overview of privacy-preserving GEO-RBAC
 

tients.However, these devices may be stolen by a malicious adversary who may be 

able to break the device password and access the records of high-profile patients 

(e.g., politicians, celebrities). Furthermore, some employees may not be trustwor

thy, and may attempt to access the record of such patients in a fraudulent manner. 

Enforcing that records can only be accessed within the perimeter of the healthcare 

provider, where physical surveillance and auditing mechanisms are in place to prevent 

unauthorized access, can prevent such detrimental leaks of sensitive medical records. 

While the challenge of creating GEO-RBAC enforcement focuses primarily on 

authenticating the user’s credentials and location claim, it would be desirable not 

to require disclosure of the requesting user’s logical location or physical coordinates. 

Previous work [36] has acknowledged the severe privacy threats that may occur as a 

result of disclosing fine-grained location information with high frequency. This prob

lem becomes even more serious in a decentralized, loosely coupled environment, such 

as cloud computing, where services (e.g., data storage) are outsourced to an external 

provider. Thus, it is no longer the case that all components involved in the autho

rization process can be fully trusted to protect the privacy of the principals. For 

instance, private companies compete today for services of hosting data from health-

care providers. Even though authorization and auditing mechanisms may prevent 

unauthorized disclosure of sensitive records or to reduce the impact of a leak, similar 
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protection mechanisms for the privacy of the requesting principals’ locations do not 

exist. 

Even when a centralized authorization infrastructure exists, and all GEO-RBAC 

components reside within the administrative control of a single organization, it is 

possible that a rogue administrator collects and uses principals’ location for malicious 

purposes (e.g., stalking, blackmail). Furthermore, the presence of malware at the 

service provider can also be a threat to users. Therefore, we argue that privacy-

preserving access control enforcement is an important desideratum that should be 

supported by future GEO-RBAC systems. 

In this chapter, we propose a framework for privacy-preserving GEO-RBAC (Priv-

GEO-RBAC) that allows enforcement of location-based authorization without the 

need for the policy enforcement point (PEP) to learn the identity attributes or phys

ical coordinates of the requesting users. Our approach relies on a combination of 

cryptographic techniques and separation of functionality among several distinct com

ponents. The trust assumption in our model is significantly reduced to one single 

component, which generates all cryptographic secrets required for evaluation. This 

trusted component does not participate in the on-line operations of the PEP, and 

therefore can be effectively shielded from attacks. The protocols we define ensure 

that the other components that participate in the on-line enforcement cannot learn 

the user’s identity, role, or location, even under very powerful malicious assumptions. 

Our work shows that it is possible to reconcile security and privacy. Our approach 

supports fine-grained access control based on roles and spatial location while at the 

same time preserving the privacy of users whose accesses are enforced. 

There are clear parallels between our work and access control mechanisms built on 

attribute-based encryption [122,123]. That is, location and role are used as attributes 

for policy evaluation. However, existing attribute-based schemes are built on the 

premise that attributes (e.g., a driver’s license number or date of birth) are fairly 

persistent for a user, and the user simply needs a credential that certifies the fact. In 

GEO-RBAC, roles and locations are inherently transient. While one user may activate 
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a role for a short time, he will eventually be replaced by another user; additionally, 

users are inherently assumed to be mobile. Given the high frequency of attribute 

changes, temporary credentials that are dynamically and automatically generated 

are mandatory for usability. We refer to this problem as attribute-based access control 

with transient credentials. 

Figure 5.1 gives an overview of the proposed approach: in an off-line phase 

(Fig. 5.1(a)), executed only when the policies or the set of roles change, a trusted 

Identity Authority (IA) takes as input the set of all roles and locations (as we discuss 

later in Section 5.2, we use a discrete location space model) and encodes them using 

a secret mapping that never leaves the IA. The encoded roles locations and policies 

are then delivered to the Role Authority (RA), Location Authority (LA) and Ser

vice Provider (SP), respectively. The SP stores the protected objects and ultimately 

makes the decision of whether to grant access or not. Based on the encoded values, 

the RA, LA and SP are not able to link real roles or locations with the access request. 

To ensure freshness of user credentials (thus preventing users from caching tokens 

for former locations) and to prevent replay attacks, we incorporate a time-based 

code generation approach that causes the credentials to expire. In the on-line phase 

(Fig. 5.1(b)), the user initiates a role session with the RA, acquiring a role token, then 

presents the role token to a Location Device (LD), acquiring a location token that is 

bound to the role token (steps 1 and 2). The LD could be an RF-based sensor or a 

card reader present at the entrance to a room. The user then sends the credentials 

(which do not reveal the role and location) to the SP (step 3), who subsequently 

performs an oblivious transfer and a private information retrieval1 with the RA and 

LA respectively, thus retrieving data to evaluate the access control policy (steps 4-5). 

The private retrieval steps are necessary in order to protect the access pattern of the 

principals: the RA and the LA do not learn anything about the encrypted credentials 

that are being used in the current access. In step 6 the SP evaluates the access 

1We provide an overview of the OT and PIR protocols in Section 5.2 
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condition on ciphertext credentials only, and if the condition is satisfied, it grants 

access in step 7. 

5.2 Background Material 

As in the previous chapters, Priv-GEO-RBAC is built on the foundation of GEO-

RBAC and UCONABC . As we have already discussed these models, we will omit 

repetition of these topics here. In addition, our space model is a simplified version as 

that defined in the previous chapter, and we will simply include a brief summary of it 

here. However, our cryptographic protocols depend on private information retrieval 

(PIR) and oblivious transfer (OT), and we provide an overview of these topics to 

provide the necessary background for the remainder of this chapter. 

5.2.1 Space Model Summary 

As described in the previous chapter, we rely on a partitioned reference space, as 

shown in Figure 4.3 in the previous chapter. That is, we assume policies are defined on 

a bounded and discrete geographical space with non-overlapping, hierarchical spatial 

regions. Furthermore, we assume that the user’s movement between distinct areas 

is controlled, and the user must present physical access credentials (e.g., a magnetic 

card) to a device that guards the entries between the protected areas. In addition, to 

ensure freshness of reported user locations, we employ a time-slice-based expiration 

mechanism of credentials, that dictates that the user must re-acquire a token from the 

LD in the enclosing area at a regular time interval. In practice, this is implemented by 

having the LDs and the SP share pseudo-random sequence of codes, with the help of a 

common random number generator seed. Combined with the forced re-authentication 

upon exiting, the expiration mechanism ensures that the user’s location and path are 

constantly available for access control enforcement. 



85 

5.2.2 PIR and OT 

Both Private Information Retrieval (PIR) and Oblivious Transfer (OT) protocols 

allow a user to fetch the value of a data item i from a server that owns an ordered 

set of data items x1 . . . xn of length n, without the server learning the value of i. 

However, they have some different requirements with respect to the communication 

complexity of the protocol, as well as the number of redundant items retrieved. 

For simplicity, we consider the case where each data item is a bit, and hence 

the dataset is a bit string. A trivial solution is for the user to download the entire 

bit-string, but such an approach has communication cost Θ(n). A non-trivial PIR 

protocol has two requirements: (P1) protect user privacy, i.e., keep the value of i 

secret from the server, and (P2) incur sub-linear (i.e., o(n)) communication cost. 

Chor et al. [124, 125] were the first to introduce the PIR concept, and they showed 

that in an information-theoretic setting, there is no non-trivial solution with a single 

server. The same authors propose a scheme with K ≥ 4 non-colluding servers with 
log log K 

O(n1/ log KK log K) communication cost. This bound was improved to O(n K log K ) 

in [126]. More recently, Yekhanin [127] showed that if infinitely many Mersenne primes 

1/ log log n)exist, then there is a three-server PIR protocol with O(n communication 

complexity. 

In practice, the assumption of multiple non-colluding servers may not often be 

met. Computational PIR (cPIR) is concerned with finding efficient single-server so

lutions that are robust against adversaries with polynomially-bounded computation 

capabilities. The seminal work of Kushilevitz and Ostrovski [128] proposed the first 

cPIR protocol that relies on the Quadratic Residuosity Assumption (QRA) and has 

O(nǫ) communication cost for arbitrarily small ǫ > 0. The bound was improved by 

Cachin et al. [129] who proposed a poly-logarithmic communication protocol that 

relies on the φ-hiding assumption (φHA). More efficient solutions have been proposed 

for a slight variation of PIR, namely Private Block Retrieval (PBR). In PBR, the user 

retrieves a block of bits, rather than a single bit. Lipmaa [130] introduced a O(log2 n) 
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communication protocol, whereas Chang [131] proposed a solution with O(logn) com

munication complexity based on the Paillier [132] cryptosystem. Finally, Gentry et 

al. [133] introduced a constant-rate, communication-efficient PBR protocol that can 

be used under several distinct intractability assumptions, including φHA. 

OT is a closely-related concept to PIR, and was originally introduced in [134]. 

OT, also referred to as 1-out-of-n transfer, has two requirements: (O1) the server 

should not learn the value of i, and (O2) the client should not learn the value of any 

bit other than the ith bit. Note that, OT does not specify any condition on efficiency, 

as opposed to requirement (P2) of PIR. In fact, several OT protocols, e.g., [135], have 

Θ(n) communication complexity. The underlying idea behind OT is to encrypt each 

data item with a different encryption key, for a total of n keys. Then, the client is 

allowed to retrieve bit-by-bit the encryption key of element i, using for each bit of 

the key a 1-out-of-2 protocol that works as follows: assume that the server has two 

messages m0 and m1, and the client has a bit b ∈ {0, 1}. The client wishes to learn 
message mb without letting the server find b, whereas the server wants to ensure that 

the client only learns one of the two messages. The following steps are performed: 

1. The server chooses a public-key encryption algorithm (E,D), where the cipher

text space is the entire space of m-bit values, and two random m-bit values x0 

and x1. Then it sends the client E, x0 and x1. 

2. The client chooses a random value c and sends q = E(c)⊕ xb to the server. 

3. The server computes c0 = D(q⊕x0), c1 = D(q⊕x1), d0 = m0 ⊕c0, d1 = m1 ⊕c1, 
and sends d0, d1 to the client. 

4. The client computes mb = db ⊕ c. 

At the end of the protocol, the user is able to decrypt only the data item at 

position i in the set of items. 



87 

5.3 Proposed Framework 

5.3.1 Preliminaries 

• R denotes the set of traditional RBAC roles. 

• L denotes the set of locations defined by a protected area PA. 

• O denotes the set of objects to be protected. 

•	 A denotes the set of actions that can be performed on objects. 

• S denotes the set of subjects that can make requests. 

Our assumption is that |A| ≪ |R| ≪ |L|, implying that there are very few possible 

actions, a moderate number of roles, and many locations. As |A| and |S| do not 
directly impact our protocol design, we place no assumptions on the size of these 

sets. 

5.3.2 Principals 

Let P denote the set of all possible principals, defined as follows. 

•	 Client (C) – the principal representing the subject making the request. For 

each such C, there is a unique subject s ∈ S, but not necessarily vice versa. 
For instance, the same user may simultaneously initiate sessions with multiple 

devices (e.g., a smartphone and a laptop); we treat these sessions independently 

as multiple clients. In our framework, we will refer to the client’s public key 

pk(C), which could be linked to either the user or the device according to the 

needs of the deployed system.2 

2Observe that using the same key for multiple sessions (e.g., if the user creates sessions on multiple 
devices with the same public key), this could be a privacy concern, as these sessions are linkable. A 
straightforward solution would be to prohibit users from using the same key for multiple sessions. 
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•	 Location device (LD) – a small, proximity-based embedded device that iden

tifies a protected area. In practice, as protected areas may be large, we assume 

each location l ∈ L would have multiple such devices for ease-of-use. However, 

we treat these devices collectively as a single principal LD. 

•	 Role authority (RA) – a centralized RBAC server that is tasked with au

thenticating users, as well as creating and maintaining session identifiers. 

•	 Location authority (LA) – a centralized server that maintains information 

on the set of LDs. 

•	 Service provider (SP) – a server that controls access to a protected resource. 

We assume that there are multiple such servers, and the client knows which SP 

to contact when retrieving a desired service. 

•	 Identity authority (IA) – a trusted third-party server that establishes and 

maintains information on the identities of all users and location devices. IA also 

is responsible for encoding policies for each SP, however it does not maintain 

this information after the setup phase of our framework. Moreover, IA is not 

involved in any of the run-time protocols, and only exists as a trusted entity for 

establishing identity credentials. 

5.3.3 Cryptographic primitives & notation 

Let (Gen,Enc,Dec) denote an encryption scheme that provides indistinguishable 

encryptions under chosen plaintext attacks (IND-CPA-secure)3 such that Gen(1n) 

denotes a probabilistic key generation algorithm, Enck(·) denotes encryption using the 

key k, while Deck(·) denotes the corresponding decryption routine. As key generation 

3We stress here the importance that encryption must be IND-CPA-secure. Specifically, IND-CPA 
provides a probabilistic guarantee that encrypting the same message with the same key multiple 
times produces distinct ciphertexts. Consequently, given c1 ← Enck(m1) and c2 ← Enck(m2), an 

?
observer cannot determine m1 = m2 without decrypting the messages, even if the encryption key k 
is known. See [136] for further discussion. 
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and encryption are probabilistic, we adopt the standard convention to denote whether 

or not assignment is deterministic: 

k ← Gen(1n) c ← Enck(m) m := Deck(c) 

Our convention is to use the same notation, regardless of whether symmetric or public 

key encryption is used, as the context clearly identifies which is needed. We denote the 

public key of principal p as pk(p), whereas symmetric keys are written as Ki. In the 

case of Gen, 1n is a security parameter for the key generation. One final requirement 

of the public key encryption used in our scheme is that it must be commutative, thus 

allowing out-of-order decryptions. For instance, El Gamal [137] is one such scheme. 

Thus, given c ← Encpk(A)(Encpk(B)(m)), 

m := Decpk(A)(Decpk(B)(c)) = Decpk(B)(Decpk(A)(c)) 

In addition to encryption, we denote a collision-resistant hash function as H(·), 
and Auth(·) denotes an interactive authentication protocol. The details of Auth(·) are 
tangential to our scheme and may be selected as desired; the arguments indicate the 

entity to authenticate. We also deploy two privacy-preserving schemes, as described in 

Section 5.2. We denote oblivious transfer as OT(i), where i indicates the index of the 

record to be retrieved. Similarly, PIR(i, X(i)) denotes private information retrieval 

for the index i and the items X(i). 

Our protocol relies on subtle facets of the RSA assumption that warrant explicit 

discussion. Recall that the RSA assumption states that, given N = pq (p and q are 

large primes), e coprime with φ(N), and some y, it is intractable to find x such that 

xe ≡ y mod N . The critical point for our scheme is that this relies on the difficulty of 

computing multiplicative inverses modulo φ(N) when φ(N) is unknown. Otherwise, 

the RSA assumption would crumble, as one could efficiently compute d such that 

−1 mod φ(N)) d e)d ed 1 mod φ(N) ≡ xed ≡ 1 mod φ(N) (i.e., d = e and y = (x = x = x

mod N . Thus, the RSA assumption implies that computing multiplicative inverses 

modulo φ(N) is intractable when the factorization of N is unknown. This implica

tion has a direct impact on our notation. Specifically, when we write something of 
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the form ιx
−1 
, all operations in the exponent are evaluated modulo φ(N), while the 

exponentiation is performed modulo N . That is, x−1 is the multiplicative inverse 

of x modulo φ(N) (which requires knowledge of φ(N) to compute). To make the 

distinction clear, the following equivalence holds, and we generally omit the modular 

exponentiation notation: 

−1 −1mod φ(N) ιxιx = mod N 

5.3.4 Identity establishment 

Our role and location authentication scheme relies on cryptographic properties of 

the group Z∗ 
N such that the RSA assumption is satisfied.4 The value N is made public 

to all principals of our framework. IA selects a number of unique role identifiers as 

follows. First, ι ∈ Z∗ serves as the basis of our identification scheme. Next, IA selects N √ 
ρ ∈ Z∗ such that N ≤ ρ ≤ φ(N). IA provides RA with ι, ρ, and φ(N), so that RA N 

can compute multiplicative inverses as needed. IA also ensures that RA knows the 

mapping from ρ to the corresponding RBAC role. These values must be kept secret 

to RA. 

IA then creates location identifiers λ ∈ Z∗ subject to the same constraint that N √ 
N ≤ λ ≤ φ(N). This size constraint ensures that ρλ ≥ N , which strengthens the 

security guarantees of our scheme. In crafting the λ values, we place one additional 

restriction: IA must ensure there are no colliding pairs of products ρλ. That is, for 

ρ, ρ, λ,a λa with ρ = ρ and λ � λ, IA ensures that (ρλ) =� = � λ). If such a collision a a (ρaa

occurs, IA discards one of the values and selects a new element from Z∗ Once all N . 

values are created, IA provides LA with ι−1 mod φ(N), the λ values, and the mapping 

to the corresponding locations. 

Finally, IA maintains a persistent mapping for actions to values α ∈ Z∗ , also N√ 
subject to the constraint N ≤ α ≤ φ(N). The mapping of α to actions is kept 

private to IA. Observe that the values ρ and λ do not have any particular sensitivity, 

4Recall that Z∗ 
N = {a ∈ {1, . . . , N − 1} | gcd(a,N) = 1}. This ensures that all such z ∈ Z∗ 

N have 
unique multiplicative inverses. 
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unless the mappings from the values to the corresponding roles and locations are 

known. However, if SP knows these values, it provides linkability between policies 

and requests. In order to minimize this threat, one of the goals of our scheme is to 

reduce the likelihood that SP is able to form such correlations. We will explore this 

discussion more in Section 5.4. 

5.3.5 Priv-GEO-RBAC Policies 

In Priv-GEO-RBAC, for the object o ∈ O, service providers define a single object 
policy Po such that Po =< po.1, . . . , po.n >, where 

po.i = < r, l, a > for some r ∈ R, l ∈ L, a ∈ A 

The policy semantics are based on a white-list, meaning the presence of a policy po.i 

grants the permission for role r to perform action a on o while in location l. Absence 

of such a policy indicates denial of the request. For notation, po.i[r] denotes the role, 

po.i[l] denotes the location, and po.i[a] denotes the action. 

When SP establishes or changes the policy for an object o, SP contacts IA to 
√ 

encode the policies. IA first creates a new object identifier δ ∈ Z∗ such that N ≤N 

δ ≤ N . As with ρλ, IA ensures that, for all actions, there are no colliding products 

αδ = δ when α � α or δ � δ. Now, consider the policy po.i =< r, l, a >. IA finds the = =αaa a a

identifiers ρ, λ, α ∈ Z∗ for the role, location, and action. The policy is then encoded N 

as the tuple 

po.i = < (ρλ)−1(αδ) mod φ(N), ιαδ mod N > 

where the (ρλ)−1 denotes the multiplicative inverse of (ρλ) modulo φ(N). 

Note the following properties of this encoding. First, as there are no colliding 

products αδ, there will be no object-action pairs that have the same encoded policies, 

even if the role-location pairs are the same. This prevents SP from linking encoded 

policies. Next, without knowledge of φ(N), SP cannot compute the multiplicative 

mod φ(N) mod φ(N)inverse ((ρλ)−1(αδ))−1 = (ρλ)(αδ)−1 . If SP could compute this 

value, it would have: 
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(ιαδ)(ρλ)(αδ)
−1 ≡ ιρλ mod N 

which would clearly allow linkability for any encoded policy with the same role-

location pair. However, this calculation requires knowledge of φ(N), which SP lacks. 

Finally, given the assumption that α and δ are large and SP has no knowledge of α, δ, 

or ι, SP cannot link policies across different objects or actions. 

IA returns the encoded object policy Po that consists of the array < po.1, . . . , � >po.n 

in a random order. This shuffling prevents SP from determining po.i ≡ 
? 
po.i. Observe, 

though, that all encoded policies relating to the same action on the same object 

share the value ιαδ . Consequently, SP is able to group the encoded policies according 

to the action. Based on this grouping, we can refer to the policy group � =<Po.a 

� > for the object Note that, as SP has no knowledge po.a.1, . . . , p�o.a.m o and action a.
 

of ρ, λ, ι, or δ, it can only see the policies as distinct pairs of large integers.
 

5.3.6 Protocols 

In this section, we define the protocols of our framework. In these definitions, we 

only explicitly identify encryptions that are required to prevent one of the legitimate 

principals from learning a protected value. For instance, Protocol 1 sends the sym

metric key Kc in the clear, as both RA and C are authorized to know this key; on the 

other hand, Protocol Q sends multiple pieces of data encrypted with a public key to 

prevent one of the principals from learning the encrypted value. Consequently, system 

deployments should consider the security threats of the underlying communications 

channel and add cryptographic protections (including MACs) as needed. 

Protocol for RBAC session creation. Figure 5.2 shows Protocol 1, which 

used to create a new RBAC session. After authenticating the user (and the user’s 

authority to activate role r ∈ R), RA generates a number of session parameters as 

follows. The value x ∈ Z∗ is a random positive integer, b denotes a nonce used in N 

the Auth(·) scheme (known to both RA and C), and pwdc is the user’s password.
5 

5If the particular instantiation of Auth(·) does not require a nonce b, RA can generate one for C. 
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Protocol 1 – creating a new role session
 
1) [C ↔ RA] Auth(C, r, b) 

ιγιρx −1[RA] σr := < ιγ(ιρ)x = , x mod φ(N) >
 
[RA] Kr ← Gen(1n)
 
[RA] Kc ← Gen(1n)
 
[RA] record := EncKr (σr I Kc I valid)
 
[RA] τr ← Encpk(RA)(ir I Kr I H(b I pwdc))
 

2) [RA → C] τr,Kc 

Protocol 2 – retrieving a proof-of-location
 
1) [C → LD] τr 

[LD] sig := H(d I codel[T ] I τr) 
[LD] τl ← Encpk(LA)(il I d I exp I T I sig) 

2) [LD → C] τl 

Figure 5.2. Protocols for retrieving tokens τr and τl 

RA creates a new record in its session database with a commitment token σr, and 

marks the record with a boolean value valid. Unless the system allows simultaneous 

activation of multiple roles, RA invalidates all other records for this user by flipping 

the corresponding boolean value in those records. We refer to τr as the role token. 

The rationale for encrypting the record with the key Kr is to ensure that the infor

mation can only be accessed by a SP with the corresponding role token. Alternative 

approaches [138] have been proposed to integrate access control with OT, but en

crypting the record is sufficient for our framework. The other key Kc is generated to 

ensure the object can be accessed only by the legitimate C. 

Astute readers will note the similarity in structure between ιγιρx and the Pedersen 

commitment scheme [121]. In the Pedersen commitment, for a cyclic group generated 

by g, the prover aims to commit to h = gx, where x is unknown. To do so, the 

prover first generates gsht for random values s and t. Later, the prover reveals s and 

t. This scheme is proven to be perfectly hiding of the exponent x. While our goals 

our different (e.g., we do not require information theoretic security), this structure 

ensures that, for any two role sessions with the same ρ, ιγιρx � f � x.= ιγιρx, when x = a
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Furthermore, the obfuscating factor ιγ ensures that knowledge of x−1 and x�−1 are 

insufficient to determine if the ρ and ρ values are equivalent in two distinct sessions. a
Protocol for retriving a proof-of-location. When the user wishes to make 

a request, he must retrieve a proof-of-location from a LD for the corresponding pro

tected area. This proof must bind the user session to the location at a particular 

time. As such, LD will generate the following data, where d denotes a nonce, exp 

is an expiration time, il is the index for LD in the location database, codel[T ] is the 

value of a rolling passcode (i.e., it repeatedly changes after a set time interval) at 

timestamp T , and τl is the location token. Additionally, note that the location to

ken τl is dependent on the role token τr, thus binding the role session to the location. 

The protocol for retrieving the proof-of-location proceeds as follows. 

Protocol for policy enforcement. Figure 5.3 shows Protocol Q. Once C has 

the role and location tokens, C initiates Protocol Q with the relevant SP to request 

access to perform action a ∈ A on object o ∈ O. For simplicity, we will assume 

the action is read. 6 C sends the tokens to SP. SP gets RA and LA to perform a 

blind decryption (i.e., RA and LA do not learn the decrypted messages). Using this 

information, SP authenticates C with a traditional password, retrieves role session 

information from RA using OT, and retrieves location information from LA using 

PIR. Finally, SP evaluates the encoded policies based on the data retrieved from 

RA and LA. The evaluation procedure ensures that SP only learns if a policy is 

satisfied; for a single request, SP cannot determine the user’s identity, location, or 

role. Section 5.4 examines these properties in detail. In the following definition of Q, 
√ 

z denotes a nonce, while m ∈ Z∗ is selected at random from N ≤ m ≤ N − 1. N 

The first important point to emphasize in this protocol is the blinded decryption 

in step 3. That is, τr ← Encpk(RA)(·), so esr ← Encpk(SP )(Encpk(RA)(·)). By decrypting 
this message blindly, RA is sending the following to SP: 

6It is straightforward to add support for write actions by appending MACs as necessary. Note, 
though, that using a persistent secret key to generate the MAC will allow SP to link writes. Instead, 
τr should be augmented with a session public key, and Protocol 1 should send the corresponding 
session private key to C. 
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Protocol Q – requesting access to a protected resource 
1) [C → SP ] τr, τl, o, a 
2) [SP → RA] esr ← Encpk(SP )(τr) 
3) [RA → SP ] es := Decsk(RA)(esr) 

[SP ] (ir I Kr I H(b I pwdc)) := Decsk(SP )(es) 
4) [SP → C] z ∈ {0, 1}∗ 
5) [C → SP ] h := H(z I H(b I pwdc)) 
6) [SP ↔ RA] eOT := OT(ir) 

[SP ] (σr I Kc I valid) := DecKr (eOT ) 
7) [SP → LA] τl 
8) [LA → SP ] es 

′ := Decsk(LA)(τl) 
[SP ] (il I d I exp I T I sig) := Decsk(SP )(es

′ ) 
9) [SP ↔ LA] (λ I codel[T ]) := PIR(il, X(il)) 

ι−λm 10) [SP → RA]
ι−λmγ 11) [RA → SP ] (ι−λm)γ = 

[SP ] v := Eval(σr, λ, ιlmg, exp, sig) 
12) [SP → C] eo ← EncKc ([o]) 

Figure 5.3. Access control enforcement protocol 

es := Decsk(RA)(esr) 

= Decsk(RA)(Encpk(SP )(Encpk(RA)(·))) 
= Decsk(RA)(Encpk(RA)(Encpk(SP )(·))) 
= Encpk(SP )(·) 

which can then be decrypted by SP. However, the IND-CPA encryption by SP ensures 

that RA cannot determine the original encrypted message, so RA fails to learn which 

role session is being used. Step 8 uses the same technique for locations. 

The need for two separate privacy-preserving schemes, OT and PIR, may not 

be intuitive. This choice was deliberate, as the needs of the respective portions of 

the protocol are different. First, the role session information is more sensitive, as 

it includes the key Kc used to communicate with the user. As such, it is important 

that the SP only retrieves the records for that session. PIR cannot provide this 

guarantee. Second, the location database contains more information than is required 

by the protocol. Specifically, each record contains additional information about the 

protected area. PIR allows SP to retrieve only the relevant data. Also, the passcode 
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codel[T ] is only good for a short period of time before it expires. As such, SP would 

have a very short window of opportunity to exploit knowledge of the passcode for 

other LDs. Furthermore, this leak is not a security threat, as we will show in our 

security analysis. Thus, PIR is the correct choice for retrieving this data from LA. 

The evaluation procedure consists of checking that the location token has not 

expired (i.e., current time is prior to exp), validating the location signature sig, and 

evaluating the policy set Po.a. To validate sig, SP does a straightforward comparison: 

sig = 
? 
H(d I codel[T ] I τr) 

To prevent network lag from preventing the code to match, a straightforward adap

tation would be for codel[T ] to denote multiple, consecutive codes. Evaluating the 

policy set requires performing a number of calculations. Given the importance of this 

evaluation to our protocol, we will describe and evaluate this procedure in detail in 

the following section. 

5.3.7 Functional correctness 

In this section, we focus on the functional correctness of the policy evaluation. 

That is, we show that SP can evaluate the encoded policies correctly, given the 

role and location information encoded by σr and λ. Consider a request for object 

o ∈ O, identified by δ ∈ Z∗ 
N , where the action a ∈ A is identified by α. Recall that 

this uniquely identifies the set � =< � po.a.n >. In addition, SP retrieved Po.a po.a.1, . . . , �

σr :=< ιγιρx, x−1 mod φ(N) > from RA during the OT step of the protocol, and 

SP retrieved λ from LA during the PIR. Next, SP selected a nonce m ∈ Z∗ , and N

mod φ(N)used λ and ι−1 to calculate ι−λm mod N . SP sent this value to RA, who 

responded with ι−λmγ , where γ is the persistent obfuscator used by RA. As γ is large, 

it is intractable for SP to compute the discrete logarithm and learn γ. Similarly, RA 

cannot determine λ or m. Now, consider an encoded policy p�o.a.i ∈ �, which we Po.a

denote as < s, ιαδ >. In order to evalute p�o.a.i, SP performs the following calculations: 
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1. (ιγιρx)λm ιγλmιρxλm = 

2. ι−λmγ · ιγλmιρxλm ≡ ι0+ρxλm mod φ(N) ιρxλm = 

−1 1−ρxλm ρxλmsx ρλms mod φ(N)s x ≡3. ((ι ) ) ι ι

proofs, we refer to this test as the policy equation. 

a

= 

4. ιρλms ? 
(ιαδ)m= 

The policy is satisfied if and only if the equality holds. For clarity in the following 

Theorem 1. Under the assumption that all parties behave honestly, the policy equa

tion is satisfied if and only if the access control policy po.i is satisfied. 

Proof. There are two cases to consider. First, assume po.i is satisfied, given the 

credentials used in the protocol. In that case, s = (ρλ)−1(αδ) (i.e., the role identified 

by ρ and the location identified by λ match those in the request). Observe that 

(ιρλms)(ρλ)
−1 (αδ) ιρλm(ρλ)−1 (αδ)=
 

(ι(ρλ)(ρλ)
−1 
)mαδ
 = 

mod φ(N))mαδ ≡ (ι1 

= ιmαδ 

The equivalence follows from Euler’s theorem, which states that ιφ(N) = 1 if ι and N 

are coprime. Consequently, the policy equation holds: 

ιρλms ≡ ιmαδ (ιαδ)mmod N = 

Therefore, if the credentials satisfy the original policy, then the policy equation holds. 

Now, consider the other implication. We must show that, if the policy equation holds, 

then the original policy is satisfied. We will proceed with a proof by contradiction. 

Assume the policy equation holds, but the credentials presented do not satisfy the 

ρ 

aa

policy. Since the policy is not satisfied, s = (

ρλ)−1 ρ 

� ρ, λa = λ,
 

or both. Assume
 = ρ but λa = λ. Then
 aρ 

(ρλ)( =
 (ρ
 a

aρλa)−1(αδ), where either

−1)(λλ−1) ≡ (ρρ −1) mod φ(N)
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Observe that the policy equation will only hold if ιρρf
−1 

= ι, which can only occur if 

−1 −1ρ ρaaρ
 ≡ 1 mod φ(N). However, this requires that
 is the inverse of ρ, meaning
 

ρ 

holds, then

a = ρ, which contradicts our assumption. Thus, if λa = λ and the policy equation
 

ρ ρ 

then λa = λ. Thus, if the policy equation holds and one of the credentials is correct, 

then the other must be correct, contradicting the assumption that the policy is not 

ρ 

a

a

a ρ. By the same rationale, if
 ρ and the policy equation holds,
 =
 =
 

satisfied. Now, assume
 �= ρ and a �λ = λ. If the policy equation holds, then
 

a

ρλa)−1 ≡ 1 mod φ(N) 

ρλa)−1 is the inverse of (ρλ), implying (ρλa)
itly prohibited such a collision of products. That is, IA is prevented from creating 

such a pair. Thus, if the policy equation holds, then the credentials provided must 

a

be correct. D 

5.4 Security Analysis 

In this section, we present an analysis of our protocol in two ways. First, we 

a

consider the security of our framework under the Dolev-Yao adversarial model [139]. 

Under this model, an adversary A is capable of sending and receiving messages, de

crypting messages with known keys, storing data, and generating new data. The 

goals of such an adversary include impersonating a legitimate participant and learn

ing information for a future attack. Second, we evaluate the privacy guarantees of 

our framework against honest but rational participants. Adversaries in this model 

participate honestly unless they are able to gain by deviating. Specifically, the par

ticipant gains something if he learns information of value about another participant. 

We start with some preliminary definitions and notation. 

(ρλ)(


This implies (
 = (ρλ). However, we explic
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Table 5.1
 
PCL specification of roles for Q, including the sets indicating prior
 
knowledge (φ) and plaintext knowledge gained (θ) during run R of Q.
 

ServAcc ≡ (RA,LA)[ 

receive aC,�SP , (τr, τl, o, read); 

esr ← enc τr, pk(SP ); 

send �SP ,�RA, esr; 

receive �RA,�SP , es; 

(ir I Kr I h ′ ) := dec es, sk(SP ); 

new z; 
send �SP , aC, z; 

receive aC,�SP , h; 

receive �RA,�SP , eOT := OT (ir); 
(σr I Kc I valid) := dec eOT ,Kr; 
esl ← enc τl, pk(SP ); 

send �SP ,LA, esl; 

receive LA,�SP , e ′ s; 

(il I d I exp I T I sig) := dec e ′ s, sk(SP ); 

receive LA,�SP , (λ I codel[T ]) 
:= PIR(il,X(il)); 

new m; 
ιlm := ι−λm; 

send �SP ,�RA, ιlm; 

receive �RA,�SP , ιlmg; 

v := eval σr, λ,m, ιlmg , �po.a.i, exp, sig 

eo ← enc [o],Kc; 

send �SP , aC, eo; 
]SP () 

InitAcc ≡ (SP, τr, τl, o, read, b, pwdc)[ 
send aC,�SP , (τr, τl, o, read); 

receive �SP , aC, z; 

y := hash(b I pwdc); 
h := hash(z I y); 
send aC,�SP , h; 

receive �SP , aC, eo; 

[o] := dec eo,Kc 

]C([o]) 

AuthRole ≡ ()[ 
receive �SP ,�RA, esr; 
es := dec esr, sk(RA); 

send �RA,�SP , es; 

send �RA,�SP ,OT (·); 
receive �SP ,�RA, ιlm; 

ιlmg := (ιlm)γ ; 

send �RA,�SP , ιlmg; 
]RA() 

AuthLoc ≡ ()[ 
receive �SP ,LA, esl; 

e ′ s := dec esl, sk(LA); 
send LA,�SP , e ′ s; 

send LA,�SP ,PIR (·); 
]LA() 

θC 
def 
= {τr, τl,Kc, pwdc, b, o, a} φC,R 

def 
= {z, y, h, eo, [o]} 

θSP 
def 
= { �Po.a, ι

−1 mod phi(N)} φSP,R 
def 
= {τr, τl, o, a, ir ,Kr, h 

′ , z, 
h, σr,Kc, valid, il, d, exp, T, λ, 
sig,m, ι−λm, ι−λmγ , ιρxλm, ιρλm , 
s, ιαδ , ιαδmcodel[T ], v, eo} 

θRA 
def 
= {ι, ρ, γ, φ(N), x, σr ,Kr,Kc, valid, τr , } φRA,R 

def 
= {ι−λm, ι−λmγ} 

θLA 
def 
= φLA,R 

def 
= ∅{λ, il, d, exp, sig, codel [T ], τl} 

5.4.1 Definitions & notation 

A function f is negligible if, for any constant c, there exists a constant N such 

that ∀ n > N, f(n) < n−c . We write negl to indicate a negligible function. Given 
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two values x and y, x = 
? 
y is conventional notation to refer to the question of the 

equivalence of x and y. We also write {x = 
? 
y}P to indicate that a principal P is able 

to correctly answer the question. In our formalization and our proofs, we frequently 

refer to the knowledge that a principal has. For brevity, we omit IND-CPA-secure 

a

messages from this knowledge, as 

? 
m}P | Has(P, {EncK(m),EncK(m), K,m})] ? 

m}P | Has(P, ∅)] aaPr[{m
 =
 − Pr[{m
 =
 

≤ negl(n) 

That is, the ciphertexts reveal no useful information to P , even if P knows the key 

used for both and one of the plaintexts. Similarly, we omit the details of messages 

exchanged in PIR and OT, as the privacy of those schemes is demonstrated in existing 

work. 

Table 5.1 shows the translation of Protocol Q into protocol composition logic 

(PCL) behaviors7 that indicate the actions taken by an honest participant. Due to 

space constraints, we will not provide an overview of PCL, and refer the reader to the 

work of Datta et al. [140]. Using this specification, we can model the knowledge gained 

by each participant in a formal manner. That is, we write Has(P, θP ) to indicate that 

P knows the value of all variables in the set θP . To describe the knowledge gained by 

P during run R of Q, we use the proposition 

Has(P, θP ) [R]P Has(P, φP,R) 

Our convention is to use θ for prior knowledge, while φ includes information gained 

during the execution. For simplicity, we assume θP ⊆ φP,R (P does not forget the data 

in θP ) and generally omit this notation for brevity. Table 5.1 formalizes these sets for 

honest parties in Q. Note that, also for the sake of brevity, we omit public data and 

private keys from these sets. That is, public keys and the group Z∗ are known to all N 

parties at all times, while private keys are known only to the corresponding principal. 

7The proper PCL terminology for what we call “behaviors” is “roles,” which is problematic when 
discussing a protocol used for RBAC enforcement. 
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The first concern if our protocol is whether or not an eavesdropping adversary A 

can impersonate one of the principals by observing the execution by honest partici

pants. To model intrusion, we start by defining the following impersonation experi

ment: 

The impersonation experiment ImpP A,Q: 

1. All parties execute run R of Q, with A taking on the role of principal P . 

2. Honest participants abort R if they have a suspicion of A has impersonated an 

honest principal. 

3. All participants Pa honestly reveal φP ,R.f

4. Upon request, each participant Pa will decrypt any message eK if K ∈ θ .Pf

5. The experiment outputs 1 if and only if no honest participant can demonstrate 

A has attempted to impersonate P . Otherwise, the output is 0. 

We say impersonation of P by A fails if, for a sufficiently large positive integer n: 

Pr[ImpP = 1] ≤ 
1
+ negl(n)A,Q n 

That is, ImpP = 1 iffA can execute the behavior of P without detection by any other A,Q 

principals.8 The parameter 1/n is used to account for A performing an extraordinary 

feat (e.g., forging a cryptographic hash or encrypted message by blindly guessing). 

Additionally, the accusation of impersonation must be made prior to revealing φP ,R.f

Our other concern in this chapter is what information the protocol reveals to 

honest participants about C. To evaluate this goal, we define an additional experiment 

as follows: 

8Clearly, we are not considering external factors such as IP addresses in the determination of ImpP 
A,Q, 

as our focus is on the protocol. 

http:aboutC.To
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The privacy-preservation experiment PrivC 
A,Q: 

1. All parties execute Q, yielding the knowledge sets in Table 5.1. Let u denote 
the user’s identity, r denote the role used, and l denote the user’s location. 

2. A guesses user u, role r, or location al.a a

3. The experiment outputs 1 if and only if u = u, r = r, or l = l. Otherwise, the aa a
output is 0. 

We say a protocol preserves the privacy of the client C against the adversary 

A if, 

Pr[PrivC 
A,Q = 1 | Has(A, φA,R)] − Pr[PrivC = 1 | Has(A, ∅)] ≤ negl(n)A,Q 

That is, the adversary’s chance of guessing the role, location, or identity of the 

user is negligibly different than blindly guessing. 

5.4.2 Security against intruders 

In this section, we consider security under the Dolev-Yao adversarial model. That 

is, A observes all data transmitted, can send and receives messages, store and retrieve 

data, and decrypt messages with known keys. We assume A begins with only public 

knowledge. As such, θA = ∅. Recall that our protocol is built on the assumption 

that underlying channels are encrypted, and we omitted this fact from the protocol 

definition for brevity and clarity. As such, A can only see the encrypted versions of 

data transmitted. 

Lemma 1. Consider an eavesdropping adversary A observing run R of Q. Given 

θA = ∅, the information gained by A (excluding OT and PIR) consists of the follow

ing pieces of data: 

φA,R = {(τr, τl, o, a), esr, es, z, h, esl, e s′ , ι−λm, ι−λmγ , eo} 

Proof. Follows from inspection. D
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Lemma 2. Consider adversary A attempting to execute run R ′ of Q. Impersonation 

of RA by an eavesdropping adversary A fails. 

Proof. By eavesdropping on R, the following proposition holds by Lemma 1: 

Has(A, ∅) [R]A Has(A, φA,R) 

In run R ′ , A would receive esr. As A cannot determine if esr = 
? 
esr, if C denotes the 

set of ciphertexts, 

? 1 
τraPr[{τr }A | Has(A, φA,R ∪ {esr}) ≤ + negl(n)=
 |C|
 

That is, A cannot determine if the role tokens are the same. Consequently, A has two
 

options. If A believes τr τr

Consider the former option. If τr 

a , it can replay es; otherwise, it can generate a random =
 

a

1? 

es. τr

it will only match the h ′ retrieved by SP’s decryption of es if hash(ab I pwdc) = 

hash(b I pwdc), and, if H denotes the set of possible hash outputs, 

Pr[¬{A = RA}C ] ≤ + negl(n)|H| 

indicating that C will be able to identify the impersonation with all but trivial prob

a = , when C generates hash(ab I pwdc),
 guess


ι−λm)γ, at the end of the protocol, A must compute (�ability. Alternatively, if τr aτr
without knowledge of γ. Consequently, A must guess and 

Pr[¬{A = 
? 
RA}SP ] = Pr[Has(A, {� ι−λm}) ∧ ¬Has(A, {γ})] ι−λmγ}) | Has(A, {�

1 ≤ + negl(n)|Z∗ |N

=
 

Thus, if A replays es, impersonation fails. Alternatively, if A believes τr =� aτr
and a random �ι−λmγ , which is unlikely as shown above. 

, it
 

would generate a random
 aes 
Thus, for a large n, 

1 
Pr[ImpRA = 1] = Pr[¬{A = 

? 
RA}C ∧ ¬{A = 

? 
RA}SP ] ≤ + negl(n) DA,Q n 
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Lemma 3. Consider adversary A attempting to execute run R ′ of Q. Impersonation 

of LA by an eavesdropping adversary A fails. 

Proof. As in the proof of Lemma 2, A has the choice of replaying e ′ s or generating a 

random ea′ . We have already seen that the latter course fails with near certainty. In s

the former option, similar to before, 

? 1 
Pr[{τl = τl}A | Has(A, φA,R ∪ {esl}) ≤ + negl(n)a |C| 

If τl � τl, then the signature required for verification will not match. That is, = a
?

Pr[ImpLA = 1] = Pr[sig = sig]A,Q 

1 
= Pr[hash(d I codel[T ] I τr) = hash(daI codel[T ] I τr)] ≤ + negl(n)a |H| 

Thus, impersonation of LA by A fails. D 

Lemma 4. Consider adversary A attempting to execute run R ′ of Q. Impersonation 

of C by an eavesdropping adversary A fails. 

Proof. As before, by eavesdropping on R, the following proposition holds by Lemma 

1: 

Has(A, ∅) [R]A Has(A, φA,R) ⊃ Has(A, {h}) 

Note that h = hash(z I y), where z ∈ φA,R and y = hash(b I pwdc) �∈ φA,R. Further

more, pwdc �∈ φA,R. As such, given the assumption that the hash function is collision 

resistant, A must resort to guessing ah, and 
1 

Pr[ImpA(C) = 1] =Pr[Has(A, {ah})] ≤ + negl(n)|H| 
Thus, impersonation of C by A fails. D 

Lemma 5. Consider adversary A attempting to execute run R ′ of Q. Impersonation 

of SP by an eavesdropping adversary A fails. 
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Proof. If A believes that the object
 =
 o and the action
 a, then the simplest
 o a = 

strategy is to bypass Protocol Q and simply return eo to C. Note, though, that 

A must send something to RA and LA under the terms of ImpSP A,Q (otherwise, the 

impersonation would immediately be detected). It turns out that A can fool both 

RA and LA by sending random data, as neither principal ever sees a structured 

message in Q. However, impersonation still fails, as, letting n = |O| · |A|, 

a

1 
a)] ≤a

a

Pr[¬{A = SP}C ] Pr[(o
 = o) ∧ (a = a + negl(n) D=
 
n
 

a

Lemma 6. Attempting to impersonate any principal yields no information useful for 

future attacks. 

Proof. In the case of ImpA(RA) or ImpA(LA), note that φA,R′ = {esr, ι−λm} or {esl}, 
respectively. Without the corresponding secret key, A cannot decrypt the messages 

esr and {esl}. Additionally, the IND-CPA security ensures that A cannot determine 

if this data decrypts identically as future such messages. Next, with no knowledge of 

ι, ι−1 , a m, ι−λm is meaningless. Furthermore, m is a nonce, so �a ι−λm provides no λ, or


useful information. Now, consider ImpA(C). Observe that, in the middle of run R ′ , 

aaz] z}) 

Based on this information, A must be able to compute ah, which we showed above was 
unlikely. Consequently, SP will detect the impersonation attempt when validating the 

hash and abort the protocol. Thus, with all but trivial probability, 

Has(A, φA,R) [receive SP, aC, Has(A, φA,R ∪ {

Has(A, φA,R) [R 
′ ] Has(A, φA,R ∪ {az}) 

which contains no information useful for future attacks. If the hash guess is successful, 

the only additional information received by A is
 Again, this is based on an IND-


a

a

aa

eo. 

CPA-secure encryption, and is not useful. Now consider ImpA(SP ). We can formalize 

the maximum information learned by A as 

es, r}){(τr, τl, o, a), esr, z,ah,�eOT , esl, ae
 ′ codel[T ],λ, �s,
a
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Again, most of the data (including τr and τl) is IND-CPA-secure or nonces, and pro

vide no useful information for future attacks. The only pieces of data that could 

potentially be used for future attacks are aλ and codel[T ]. Since il �∈ φA,R′ , λa is simply 

a randomly selected location identifier λ ∈ Z∗ , which is public data. On the other N

hand, �codel[T ] is sensitive, as this could be used to forge the signature used in Pro

tocol 2 by the LD. However, these are rolling codes and only valid for a short time 

frame, limiting the potential use by A. Furthermore, forging the corresponding τla
requires il ∈ φA,R′ , which is not the case. Consequently, this knowledge is useless for 

a future impersonation attack. D 

Theorem 2. Protocol Q is secure against impersonation attacks under the Dolev-

Yao adversarial model. 

Proof. Follows directly from Lemmas 1-6. D 

5.4.3 Preservation of client privacy 

Before proceeding with the following lemmas, we emphasize here that our defi

nition of privacy preservation focuses on the information exchanged in a single run 

of the protocol. As such, we do not consider attacks based on inference over time. 

That is, background knowledge of the unencoded policies may allow an adversary 

to aggregate the information gained from a significant number of access requests to 

break the privacy guarantees of our framework. At this time, we cannot determine 

whether there exists a computationally feasible approach that would mitigate this 

threat and leave such questions open for future consideration. 

Lemma 7. Q preserves the privacy of C against RA. 
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Proof. Recall φRA,R = {ι−λm} with λ and m as large values unknown to RA. 

Additionally, the mapping from λ to locations is unknown to RA. Thus, for a randomly 

selected al and λa, 
Pr[{l = 

? 
l}RA | Has(RA, φRA,R)] − Pr[{l = 

? 
l}RA | Has(RA, ∅)] a a

≤ Pr[{λ = 
? 
λ}RA | Has(RA, {ι−λm}) ∧ ¬Has(RA, {λ,m})] a

−Pr[{l = 
? 
l}RA | Has(RA, ∅)] a

≤ negl(n) 

Similarly, for role r and a random role r, as encryption is IND-CPA-secure, 
? 

a
?

Pr[{r = r}RA | Has(RA, φRA,R)] − Pr[{r = r}RA | Has(RA, ∅)] a a
= Pr[{τr = 

? 
τr}RA | Has(RA, {esr, esr)] − Pr[{τr = 

? 
τr}RA | Has(RA, ∅)] ≤ negl(n)a a

As RA cannot determine the role session, it cannot determine the user either. Thus, 

Q preserves the privacy of C against RA. D 

Lemma 8. Q preserves the privacy of C against LA. 

Proof. Recall φLA,R = ∅. Then, trivially, 
Pr[PrivC = − Pr[PrivC = 1 | Has(LA, ∅)] = 0 ≤ negl(n) DLA,Q 1 | Has(LA, φLA,R)] LA,Q 

Lemma 9. Q preserves the privacy of C against colluding principals RA and LA. 

Proof. Let A denote the adversary resulting from the collusion of RA and LA. Then, 

φA,R = φRA,R ∪ φLA,R = φRA,R 

Observe that A now has (from prior and learned knowledge), ι, γ, and φ(N), but PIR 

ensures that A does not have λ. Furthermore, even with ι and φ(N), the intractability 

of the discrete logarithm prevents A from learning λm from ι−λm . In addition, OT 

prevents A from learning the role token (and, as a result, the role and user) used. 

Consequently, pooling the knowledge of RA and LA is of no use, and 

Pr[PrivC = − Pr[PrivC = 1 | Has(A, ∅)] ≤ negl(n) DA,Q 1 | Has(A, φRA,R ∪ φLA,R)] A,Q 
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Lemma 10. Given the policy encoding scheme, SP can statically link two policies 

with the same role-location values with probability only negligibly better than guess

ing. 

Proof. Observe that, as a result of the RSA assumption, SP cannot compute 

((ρλ)−1(αδ))−1 mod φ(N), as the factorization of N is unknown to SP. This de

fense prevents linkability of policies across objects or actions. Consider the following 

three policies: 

po.i = < (ρλ)−1(αδ), ιαδ > po.j = < (ρλ)−1(αδa), ιαδf > 

po.k = < (ρλa)−1(αδa), ιαδf >� a

Without knowledge of φ(N), SP cannot compute the multiplicative inverses and link 

po.i with po.j . Furthermore, without knowledge of any of the factors or ι, SP cannot 

distinguish between po.j and � Thus, po.k given knowledge of po.i. 
? ?

Pr[{po.i[r] = po.j[r]}SP ∨ {po.i[l] = po.j [l]}SP | Has(SP, {po.i, po.j})] −
 

Pr[{po.i[r] = 
? 
po.j[r]}SP ∨ {po.i[l] = 

? 
po.j [l]}SP | Has(SP, ∅)] ≤ negl(n) D
 

Lemma 11. Q preserves the privacy of C against SP for a single access request. 

Proof. As λ ∈ φSP,R, SP learns a small amount of information about C. However, 

without the mapping from λ to locations (known only to LA), for a randomly selected 

l,a

Pr[{l = 
? 
l}SP | Has(SP, φSP,R)] − Pr[{l = 

? 
l}SP | Has(SP, ∅)] ≤ negl(n)a a

Similarly, SP does not have the mapping from ρ to roles. Furthermore, ρ �∈ φSP,R. 

Hence, 

Pr[{r = 
? 
r}SP | Has(SP, φSP,R)] − Pr[{r = 

? 
r}SP | Has(SP, ∅)] ≤ negl(n)a a

Finally, consider an encoded policy 

po.i =< (ρλ)−1(αδ), ιαδ > 
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As ρ, α, δ, ι, φ(N) �∈ φSP,R, SP cannot determine if this was the policy satisfied, even 

if it knows (by organizing the storage of policies) that ιαδ indicates the object-action 

pair. Consequently, SP cannot trace φSP,R back to the original, unencoded po.i that 

was satisfied. Thus, 

Pr[PrivC = − Pr[PrivC = DSP,Q 1 | Has(SP, φSP,R)] 1 | Has(SP, ∅)] ≤ negl(n)SP,Q 

Lemma 12. Given runs R and R ′ of Q made with location tokens τl and τl, SP can a
link the requests if the location is identical. 

Proof. SP always sees λ in the clear, so the claim trivially holds when λ is identical. D 

Corollary 12.1. Location linkage threats can be mitigated by administrative action. 

Proof. At regular intervals, IA can regenerate the λ values as λ ′ . IA can provide 

LA with an updated mapping from λ ′ to location. Simultaneously, IA can regenerate 

the encoded policies po.i, sending the updated versions to each SP. While this process 

requires significant work on the part of IA, the policy regeneration can be performed 

offline before the update takes effect. Thus, IA can mitigate the threat of location 

linkage over time. D 

Lemma 13. Given runs R and R ′ such that ρ = ρ and λ = λ, where ρ, λ are used aa
in R and ρ, λa are used in R ′ , there is a strategy by which SP can link these requests, a
but it is probabilistically detectable by RA.
 

Proof. Assume λ = λ. If SP repeats the value m, then φSP,R ∪ φSP,R′ contains ιρλm
 a
ρλm and ιf . Consequently, it is trivial for SP to determine if ρ = ρ. Thus, by repeating a

m when λ is the same, SP can state with absolute certainty that both requests used 

the same role and location. However, ι−λm ∈ φRA,R ∩ φRA,R′ . Consequently, RA can 



110 

state with absolute certainty that −λm = −λa
m, though this does not necessarily 

indicate the m values are identically. However, if c denotes the cardinality of the 

a

congruence class [
m] 

Pr[−λm = −λa

a mod φ(N), 

c 
m | only m is random] = 

As this probability is small, such an equivalence is a likely indication of a repeated 

m, providing RA with a strong probabilistic guess that SP is not acting honestly. 

Corollary 13.1. Collusion by multiple SPs is detectable by RA. 

a

Proof. Follows from Lemma 13, under the premise that R and R ′ (and additional 

such runs) are runs by the distinct, colluding SPs. Other than λ (which is not useful 

a

without the ability to map it to a location or a policy), the runs reveal no useful data 

unless m is identical. As such, RA can detect the repeated m value. D 

Lemma 14. Assuming RA prevents reuse of m for the same locations, with the 

exception of location, Q preserves the privacy of C against SP, even over time. 

Proof. First, note that repeated runs of Q from the same location l will repeat

edly reveal λ to SP. Consider the sequence of runs R1, . . . , Rn that satisfy policies 

p1, . . . , pn, where λ is identical in all runs. If there is only a single location that sat

isfies p1, . . . , pn, then SP can determine this location. However, from Lemmas 11-13 

and Corollary 13.1, SP can only link the roles used in requests by repeating m for 

the same location value λ. Also, RA can detect this attempt with near certain prob

ability (and a negligible false positive rate). As such, if RA prevents reuse (either by 

blacklisting corrupt SPs or by rejecting and requesting a new m), then SP can only 

determine that the location used in multiple requests were the same. Consequently, if 

we modify the privacy-preserving experiment to eliminate the discussion of location, 

Pr[PrivC = 1 | Has(SP,� 
φSP,Ri )] − Pr[PrivC = 1 | Has(SP, ∅)] ≤ negl(n) DSP,Q SP,Q 

|Z∗ |N
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Lemma 15. Q fails to preserve the privacy of C against an adversary A that consists 

of SP who colludes with either RA or LA. 

Proof. If SP colludes with RA, SP could simply send τr to RA, who decrypts the 

token to determine ir, the index of the role session. RA can then retrieve σr, and use 

this information to find the corresponding ιρ, which RA can use to uniquely identify 

the role. Thus, A is guaranteed to correctly state r = r, and a

Pr[PrivC = 1] = 1A,Q 

If SP colludes with LA, SP can send τl to LA with similar results. Therefore, Q fails 

to preserve the privacy of C against an adversary A. 

Theorem 3. Assuming SP does not collude with RA or LA, Q preserves the privacy 

of C against SP, RA, and LA. 

Proof. The claim follows from above.	 D 

5.5 Summary of Protocol Properties 

In the setting of formal proofs, it is easy to lose sight of the big picture of the 

proposed scheme. While the previous section presents a number of formal proofs for 

properties of our framework, we can summarize these in more natural language as 

follows. 

•	 RA fails to learn which user, role, or location is involved in the request. For 
multiple distinct requests, RA is prevented from determining if the user, role, 

or location is the same in both. 

•	 Similarly, LA fails to learn which user, role, or location is involved in the request. 

For multiple distinct requests, LA is prevented from determining if the user, role, 

or location is the same in both. 
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•	 Encrypted storage of role session records ensures that SP can only retrieve 
information for which it has an authentic τr. 

•	 The policy encoding scheme ensures that SP cannot perform a static analy

sis to link encoded policies that have common characteristics (e.g., same role, 

location). 

•	 Protocol Q protects the user’s location information in the short term. Over 

time, SP may be able to determine the location by linking policies. How

ever, without additional information, SP cannot link this to a particular user. 

Furthermore, IA can mitigate this threat by updating the λ values at regular 

intervals. 

•	 Unless SP colludes with RA or LA, Q protects the privacy of the user’s identity 

and role use, even over time. 

5.6 Conclusions 

In this chapter, we proposed a privacy-preserving framework for evaluating spa

tially aware RBAC policies. We defined an architecture with reasonable computation 

assumptions, and specified protocols for evaluating the requests. We formally mod

eled the main request protocol using PCL. Using this formal model, we proved that 

our framework is secure against external attacks, and we also proved that our pro

tocols preserve the privacy of users for individual requests. In addition, assuming 

regular system maintenance is applied, the protocols can even protect users’ privacy 

over time. Finally, we highlighted the similarities and differences between our scheme 

and attribute-based encryption, with the main difference being that our scheme re

quires transient credentials that are possessed by users for a single request at a time 

before reuse by others. In contrast, attribute-based encryption uses static credentials 

that persist for a single user. 
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6 ENFORCING PHYSICALLY RESTRICTED ACCESS CONTROL FOR 

REMOTE FILES 

In the previous chapters, we focused on the issue of enforcing spatial constraints in 

an RBAC setting. Although our work answered a number of interesting questions, 

there was an extensive body of works that defined the formal underpinnings of these 

systems. In this chapter and the next, we embark on an exploration into a new field 

that lacks such a theoretical framework. Specifically, we consider the enforcement of 

access control policies, where the contextual factor is the device being used, rather 

than the user’s location. To accomplish this goal, we integrate the physical properties 

of a device directly into the access control framework. Our exploration involves 

adapting cryptographic protocols to use the unique properties of physically unclonable 

functions (PUFs). 

6.1 Motivation for Physically Restricted Access Control 

Controlled remote access to protected resources is a critical element in security 

for distributed computing systems. Often, some resources are considered more sensi

tive than others, and require greater levels of protection. Recent advances in access 

control [17,18,34] provide means to tighten the security controls by considering users’ 

contextual factors. While these techniques offer more fine-grained control than tradi

tional identity-based approaches, we desire an even stronger guarantee: Our goal is 

to provide a means by which access is granted only to known, trusted devices. 

To achieve our aim, we had to address two separate issues. First, we required the 

ability to identify a device uniquely. That is, our scheme must be able to distinguish 

between two devices with software that is configured identically. Second, we had to 

establish a mechanism for encrypting the data for access by only the identified device. 
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A näıve approach to this problem would be to apply authentication mechanisms at 

the network and transport layers, for instance Challenge-Handshake Authentication 

Protocol (CHAP), Transport Layer Security (TLS), or Internet Protocol Security 

(IPsec). However, these solutions fail to provide our desired security guarantees in 

three ways. First, they differentiate based on stored data, e.g., cryptographic keys. If 

this data is leaked, these solutions can be broken. Our approach, however, does not 

rely on the security of data stored on the client. Second, these approaches are too 

coarse-grained, granting or denying access below the application layer. That is, our 

solution allows a server program to selectively grant access to subsets of data based 

on the unique hardware of the remote device. Existing approaches cannot provide 

this flexibility. 

A final shortcoming of these basic approaches is that they can be completely by

passed by improper management and insider threats, which remain a real and under

estimated problem [141–146] Interestingly, in a recent report [147], the most common 

cause (48%) of data breaches was privilege misuse, which includes improper network 

configuration and malicious insider threats. In our approach, access control decisions 

are based on the physical properties of the remote devices themselves, and are not 

dependent upon network configuration settings. While this does not completely elim

inate insider threats, our solution does offer a higher level of defense against such 

insider threats. 

Alternatively, one could rely on a public key infrastructure (PKI) using trusted 

platform modules (TPMs). While these approaches will work in traditional computing 

environments, our interests extend to environments for which TPMs are not available 

or PKI is considered to be too expensive. Specifically, we desire a solution that could 

also be deployed in low-power embedded systems. In these scenarios, the computing 

power required for modular exponentiation can quickly exhaust the device’s resources. 

Furthermore, PKI schemes that are based on stored keys can be attacked by extracting 

the key; a presentation at BlackHat 2010 demonstrated how to do so [148]. Our 

approach relies on a cryptographic scheme that offers similar guarantees as PKI, but 
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with less computation required. In addition, our solution does not use persistently 

stored keys, thus reducing the attack surface. 

Our solution [149, 150] is based on the use of physically unclonable functions 

(PUFs) [52, 53]. PUFs rely on the fact that it is physically impossible to manufac

ture two identical devices. For example, two application-specific integrated circuits 

(ASICs) can be manufactured on the same silicon wafer, using the same design. 

However, a circuit in one ASIC may execute faster than the equivalent circuit in the 

other, because the wire length in the first is a nanometer shorter than the second. 

Such variations are too small to control and can only be observed during execution. 

PUFs quantify these variations as challenge-response pairs, denoted (C,R), that are 

unique to each particular hardware instance. A robust PUF is unpredictable, yet 

consistent for a single device. It is also unforgeable, as the physical variations that 

determine the PUF are too small to control. 

Previous works on PUFs have focused on two areas. First, PUFs can be used to 

store cryptographic keys in a secure manner. Given a PUF pairing (C,R) and a key 

K, the device stores X = R ⊕ K. In this case, R acts as a one-time pad, and X is 

a meaningless string of bits that can be stored in plaintext on a hard-drive. When 

the key is needed at a later time, the device again executes the PUF to get R and 

recovers the key as K = R⊕ X. The second use of PUFs is to generate cryptographic 

keys directly by mapping R to, for example, a point on an elliptic curve. In such a 

usage, the PUF does not have to store any data. 

The advantages of employing PUFs for key generation and storage are subtle, and 

may be missed at first glance. First, note that no cryptographic keys are explicitly 

stored; the only data above that is ever stored is the value X, which is a random, 

meaningless bit string that reveals no information regarding the key K. A second 

advantage, which follows from the first, is that any key exists only at run-time. 

Furthermore, if the PUF is integrated into the processor itself, then the keys never 

even exist in main memory. Thus, PUFs offer very strong protections of cryptographic 

keys. 
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While these previous works assume a traditional cryptographic scheme is in place, 

we propose a new and unique direction for PUF research. That is, we propose incor

porating the randomness of the PUF directly into an application-layer access request 

protocol. Our light-weight multifactor authentication mechanism, coupled with a dy

namic key generation scheme, provides a novel technique for enforcing access control 

restrictions based on the device used. 

6.2 Threat Model 

In describing our threat model, we start with the central server S. We first note 

that the adversary’s goal is to gain access to sensitive data stored on S. We place no 

restrictions on what constitutes this data; we simply note that a server application 

running on S is responsible for the access control decisions. Next, we assume that 

S is trusted and secure. While this may seem like a strong assumption to make, we 

stress that it is the data stored on S that is important. That is, if an adversary can 

compromise S, there is no need to attack our protocols, as he has already “won.” 

Regarding the client devices C, we assume that the organization has the authority 

to tightly control the software running on each device. While this is a daunting task 

for traditional computing, recall that we are also highly motivated by the concerns 

of embedded distributed applications. Embedded devices do not require the complex 

code base that exists in a traditional workstation; thus, satisfying this requirement 

is easier. Furthermore, our protocols will still apply in traditional schemes, too. 

Specifically, remote attestation techniques can be used to ensure that only known, 

trusted software is running. 

Our main adversaries, then, are the users. We consider two classes of users as 

threats. First, client users have full access to the device, with the exception of in

stalling software. That is, these users can read any data stored on the device. How

ever, they cannot extract the data from memory to external storage. Also note, in 

the case of embedded systems, there might not actually be a user, as the devices may 
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be executing autonomously. If there is a human user, he will have a password, and 

we assume it is protected. 

The other class of users that pose a threat, whether malicious or not, are ad

ministrators. While administrators may have access to the data on S directly, our 

assumption is that the goal of a malicious administrator is to enable access to an un

trusted device, thereby bypassing the physical restrictions. This adversary has access 

to all secret data stored on S. 

Finally, we also consider network-based attackers, such as eavesdroppers. In all 

cases, we apply standard cryptographic assumptions. Specifically, we assume that 

adversaries are limited to probabilistic, polynomial-time attacks. 

6.3 PUFs 

The fundamental idea of PUFs is to create a random pairing between a challenge 

input C and a response R. The random behavior is based on the premise that no two 

instances of a hardware design can be identical. That is, one can create a PUF by 

designing a piece of hardware such that the design is intentionally non-deterministic. 

The physical properties of the actual hardware instance resolve the non-determinism 

when it is manufactured. For example, the length of a wire in one device may be 

a couple of nanometers longer than the corresponding wire in another device; such 

differences are too small to be controlled and arise as natural by-products of the 

physical world. 

While there are several types of PUFs, in this work we focus on PUFs derived 

from ring oscillators (ROs). Figure 6.1 shows a sample 1-bit RO PUF. A RO consists 

of a circular circuit containing an odd number of not-gates; this produces a circuit 

that oscillates between producing a 1 and 0 as output. In a 1-bit PUF, the output 

of two ROs pass through a pair of multiplexors (MUX) into a pair of counters that 

count the number of fluctuations between the 0 and 1 output. The PUF result is 1 if 
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Figure 6.1. A sample 1-bit PUF based on ring oscillators
 

the counter on top holds a greater value, and 0 otherwise. The role of the challenge 

in a 1-bit RO PUF is to flip the MUX. 

Clearly, it is not desirable to have such a one-to-one corresponence for larger PUFs. 

As such, for larger output bit strings it is better to have a pool of ROs, and randomly 

select pairs for comparison based on the challenge. In [54], the authors evaluate the 

entropy resulting from random pairings of ROs, and show that N ROs can be used 

to produce log2(N !) bits. For example, 35 ROs can be used to create 133 bits. Thus, 

a small number of ROs can be used to exhibit good random behavior. Another way 

to introduce entropy into the PUF behavior is to apply a cryptographic hash to the 

output. Given a strong hash function, changing a single bit of the PUF challenge, 

which yields a single flipped PUF bit, will produce a very different output. 

The interesting properties of PUFs arise from the fact that it is virtually impossible 

for two ROs to operate at the same frequency. Specifically, miniscule variations in 

the wire width or length can cause one RO to oscillate at a faster speed than the 

other. As these variations are persistent, one of the oscillators will consistently be 

faster. Thus, the behavior of PUFs based on ROs depends on the physical instance 

of the device. Also, if the PUF is large enough, the behavior is unique. Furthermore, 

as these variations can be neither predicted nor controlled, they cannot be cloned. 

With the exception of our implementation description in Section 7.4, we will 

assume an idealized PUF in our protocol design. That is, given a challenge-response 
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pair < Ci, Ri > and another challenge Cj � Ci, one cannot predict the value of Rj .= 

Consequently, our results apply to any PUF that meets this ideal, rather than just 

RO-based PUFs. 

6.4 Physically Restricted Access Control 

In this section, we start by defining our notion of physically restricted access 

control. Next, we offer a high-level protocol and formal analysis for achieving this 

goal. We then present a more concrete example of this protocol that is derived from 

the Feige-Fiat-Shamir identification scheme. 

We assume that the protected resources consist of files on a central server and 

subjects request access to these files remotely. For a file access request by a subject 

from a given device, the access control system checks whether the subject is allowed 

to access the file from the device; if this is the case, the server encrypts the file with 

a dynamically generated key and sends the resulting data to the device. 

We thus assume an access control model based on a number of sets. Let S denote 

the set of subjects, D the set of trusted devices, F the set of protected files, and R 

the set of privileges. For simplicity, we assume R = {read, write}. A permission 

can be written as the tuple < s, f, r >, such that s ∈ S, f ∈ F , and r ∈ R. Thus 
P ⊆ S × F × R defines the set of authorized permissions subject to the physical 

restrictions. Let PUFd : C → R be the PUF for a trusted device d ∈ D. 
We define physically restricted access control to be the restriction of an access 

request < s, d, f, r >, subject to the following conditions: 

•	 The identity of s is authenticated. 

•	 < s, f, r >∈ P. 

•	 d ∈ D, and the authentication is performed implicitly by the ability of d to 

demonstrate a one-time proof of knowledge of PUFd. 
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•	 A dynamic encryption key kPUF based on the proof of PUFd is used to bind the 

request to the device. 

An important element of this definition is the notion of hardware binding of the 

cryptographic key. That is, the key kPUF is generated dynamically and relies on the 

physical properties of the hardware itself (i.e., the PUF). Consequently, kPUF is never 

explicitly stored on the requesting device. This dynamic key generation is in contrast 

to traditional key management, in which keys are generated a priori. This approach 

simplifies the administration work, while reducing the threat of a rogue administrator 

transferring keys to an untrusted device. 

One possible criticism to our definition is that it does not consider what happens 

to the contents of the file after decryption. That is, if the device d is malicious 

(or is infected with malicious software), it could simply broadcast the contents after 

decryption. We counter this objection by noting that remote attestation techniques 

could be applied to ensure that only trusted applications are running on the device. 

Hence, we assume either the device is free of malware, or the server can detect the 

malware and abort. 

In addition to such software attacks, an attacker with physical access and sufficient 

technical skill could read the contents directly from the device’s memory. However, 

such an attack exists regardless of the access control methodology applied. As such, 

we consider such threats beyond the scope of our work. 

6.4.1 Protocols 

Our protocols rely on a number of cryptographic primitives. Let H denote a 

collision-resistant hash function, while Enck(m) denotes the symmetric key encryption 

of a message m with the key k, using a cipher that is secure against probabilistic 

polynomial time (PPT) known ciphertext attacks. Define Auth(·) to be a robust 
authentication scheme that is resilient against PPT adversaries. Gen(·) denotes a 
pseudorandom key generator based on the provided seed value. 
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Table 6.1
 
Protocols for enforcing physically restricted access control
 

Request(adm,m) – Administrator adm requests m challenges to enable a new device. 

– S performs Auth(adm) 
– S responds with C1, . . . , Cm, parameters prms, and a nonce n 

Enroll(adm, pwd,C1, . . . , Cm, prms) – C (after receiving data provided by adm) 
sends a commitment of the PUF to S. 

– S performs Auth(adm) 
– C generates otk ← Gen(pwd, n,C1, . . . , Cm) 
– C provides Encotk(Commit(< C1, R1 >, . . . , < Cm, Rm >)) 
– S responds with H(Commit(< C1, R1 >, . . . , < Cm, Rm >)) 

Access(user, file, action) – Subject user requests action for file, which is encrypted 
with key chal and transferred. If action = read, S sends the file. Otherwise, C 
sends it. 

– S performs Auth(user) and issues Chal (T ), where T ⊂ P(C1, . . . , Cm) 
– S responds with a nonce z 
– S verifies that user is permitted to perform action on file 
– Generate and transfer Encchal(c), where p← Prove(T ) and chal ← Gen(p, z, pwd) 

Let Commit(·) denote a commitment scheme that ensures confidentiality against 

PPT adversaries. Chal(·) and Prove(·), then, indicate a random challenge and the 

corresponding zero-knowledge proof of the secret value bound to the commitment. 

Furthermore, we assume that any PPT adversary A has negligible probability of 

guessing Prove(·) without access to the committed secret value. Assuming C denotes 

the PUF-enabled client (also called the device) and S indicates the server, the table 

in Table 6.1 gives the formal definition of our protocols. 

Given these formalisms, we now explain the intuition behind each protocol. In 

Request(adm,m), an administrator adm requests a set of m challenges to be used 

with a new (unspecified) device.1 S authenticates adm and creates a database entry 

of the form < adm, n, C1, . . . , Cm >, binding those challenges and the nonce to that 

administrator. Hence, only that administrator is authorized to use that particular set 

1In general, we assume Ci ← Gen(1n) ∀ 1 ≤ i ≤ m; that is, each challenge is the result of a 
pseudorandom generator with a security parameter 1n . However, in some applications, it may be 
desirable for S to define the challenges predictably. As such, we are intentionally vague on the 
selection of C1, . . . , Cm. 
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of challenges. We use prms to indicate any parameters needed for the commitment 

and proof scheme. For instance, in our implementation prms consists of a modulus. 

For Enroll(adm, pwd, C1, . . . , Cm, prms), we are assuming a trusted path from adm 

to C. That is, no eavesdropper learns the administrator’s password, and all data are 

entered correctly. Based on this assumption, adm provides the inputs to C, which 

initiates an enrollment protocol that starts with authenticating adm. C uses a pseudo

random generator to produce a one-time-use key otk derived from the administrator’s 

password pwd, the nonce n, and the challenges. S can retrieve the nonce and chal

lenges from its database, thus recreating the key on its end. C uses otk to encrypt 

a commitment of the PUF challenge-response pairs. S acknowledges receipt of the 

values with a hash of the commitment. 

Finally, Access(user, file, action) defines the access request protocol. As before, S 

authenticates the user making the request, and selects a random set T of the challenges 

C1, . . . , Cm. After receiving Chal(T ), C executes the PUF to get the responses Ri for 

each Ci ∈ T . The corresponding zero-knowledge proof p← Prove(T ) is derived from 

these responses. S uses p and the user’s password pwd as inputs to a pseudorandom 

generator to produce a one-time-use key k. S encrypts the file contents c with this 

key, returning the encrypted file to C. Hence, the intuition behind this protocol is 

that the file can only be decrypted by that user with that particular PUF-enabled 

device. 

We note that there is one important consideration regarding our definition of 

Access(user, file, action). Unlike the previous protocols, this protocol will be executed 

repeatedly. However, there are only 2m subsets of P(C1, . . . , Cm). After all subsets 

are exhausted for a single user, the necessary proof will be reused. However, this 

repetition is acceptable, as the proof is never made public. Instead, the proof is 

used as an input to the key generation. Furthermore, assuming the nonce z is never 

repeated, the keys generated will always be different, even if p← Prove(T ) is reused. 

In designing our protocols, we envisioned both traditional computing and embed

ded applications. In the embedded scenario, there may not be a human user making 
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the request Access(user, file, action). A straightforward variant of our protocol could 

accommodate this situation by eliminating Auth(user) from that protocol. Then, S 

must make the access control decision based on the device making the request, not 

the user doing so. Though this flexibility is a nice feature of our design, we will not 

investigate the security claims of this variant in this paper. 

6.4.2 Security Analysis 

Here, we present our formal analysis of the security properties of our protocols. 

We start with three lemmas, and complete our analysis with a theorem that our ap

proach satisfies our definition of physically restricted access control. 

Lemma 1. A PPT adversary A can enable an untrusted device with only negligible 

probability. 

Proof. Based on our assumption that Auth(·) is resilient against PPT adversaries, 
S will abort the Request(·) and Enroll(·) protocols, except with negligible probability. 

Even with a transcript of Request(·), A must be able to forge the Encotk(·) message 

to enable an untrusted device. However, with no knowledge of pwd, this feat is also 

infeasible, by our assumptions of Enck(·). Therefore, A has only negligible probability 

of completing the Enroll(·) protocol and enabling an untrusted device. D 

Lemma 2. An honest client C can validate its enrollment with the legitimate S, 

except with negligible probability. 

Proof. Similar to Lemma 1, a PPT adversary A has negligible probability of forging 

H(Commit(< C1, R1 >, . . . , < Cm, Rm >)). Hence, if C receives such a hash, it has 

high assurance that the hash originated from the legitimate S and the enrollment 

succeeded. D 
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Lemma 3. A PPT adversary A with transcripts of Request(·) and Enroll(·) can model 

the PUF with only negligible probability. 

Proof. In order for A to learn the commitments of the PUF behavior, A must ei

ther decrypt Encotk(Commit(< C1, R1 >, . . . , < Cm, Rm >)) or find a preimage of 

H(Commit(< C1, R1 >, . . . , < Cm, Rm >)). However, based on our assumptions re

garding Enck(·) and H(·), both actions are infeasible. Thus, these protocols do not 
leak enough information for a PPT adversary A to model the PUF. D 

Informally, these lemmas demonstrate that the Request(·) and Enroll(·) protocols 
guarantee integrity and confidentiality against PPT adversaries. That is, by viewing 

a transcript of both protocols, A fails to learn the administrator’s pwd or the PUF 

challenge-response pairs. Furthermore, any tampering by A will be detected by ei

ther S or C. Also, A cannot launch a man-in-the-middle attack against Enroll(·), as 
doing so requires knowledge pwd. Applying these lemmas, we propose the following 

theorem. 

Theorem 1. The Access(·) protocol enforces physically restricted access control un
der the PPT adversarial model. 

Proof. By Lemma 1, we are guaranteed that only trusted devices will be able to 

produce p ← Prove(T ). Lemma 2 ensures that trusted devices receive confirmation 

if their enrollment is successful; as such, if the confirmation is not received, proper 

mitigation can be performed. By Lemma 3, we are guaranteed that PPT adversaries 

cannot possess a model of the PUF behavior by observing a transcript of the Request(·) 
and Enroll(·) protocols. We explicitly model the authentication of user, check that 

user is authorized to perform action on file, and the device is implicitly authenticated 

by generating a one-time proof of knowledge of the PUF behavior. Furthermore, the 

one-time key chal ← Gen(p, z, pwd) exists only at run-time, is never transmitted, is 
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bound to the hardware of the requesting (trusted) device (by the use of the PUF), 

and is used to encrypt data transferred between C and S. The probability of a 

PPT adversary generating chal is negligible, so the encryption successfully enforces 

the access control policy. Therefore, by definition, the Access(·) protocol enforces 
physically restricted access control under the PPT adversarial model. D 

6.5 Implementation 

In this section, we describe our implementation of a PUF-based access control 

mechanism based on our protocols described above. We start by describing our pro

tocol instantiation and our implementation of a PUF using ring oscillators, which is 

the same method used in [54]. We also describe the use of Reed-Solomon codes to 

ensure the PUF produces a consistent result that can be used for authentication, and 

detail our minimal storage requirements. 

6.5.1 Protocol Instantiation 

The underlying premise of our protocol instantiation is the Feige-Fiat-Shamir 

identification scheme. Our choice of hash function was SHA-1, although a better 

choice would be SHA-256, which offers more protection against preimage attacks and 

is collision-resistant. Our choice of symmetric key cryptography was AES which also 

provides the security against PPT adversaries that we require. 

Our Auth(·) primitive uses the hash function and a nonce n in a challenge-response 

protocol. Specifically, S generates n, and the user must respond with H(H(pwd), n). 

Note that both hashes are necessary, as our implementation of S protects the secrecy 

of user passwords by storing H(pwd), not the passwords themselves. Furthermore, as 

the response requires knowledge of both n and the password (in the form of H(pwd)), 

this challenge-response pair preserves the secrecy of pwd from PPT adversaries. Fig

ure 6.2(a) shows our implementation of Request(adm,m), in which an administrator 
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(a) Request(adm,m): Requesting a set of m	 (b) Enroll(adm, pwd,C1, . . . , Cm, prms): 
challenges	 Generating the Feige-Fiat-Shamir PUF 

commitments. 

(c) Access(user, file, action): Using Feige-Fiat-Shamir and 
the PUF to generate a one-time-use key to encrypt the file. 

Figure 6.2. Physically restricted access control protocols. All multi
plications are modulo N . 

A requests a new set of challenges from the server S. The parameter N returned in 

step 4 is used as a modulus in the other protocols. 

Our Enroll(adm, pwd, C1, . . . , Cm, prms) implementation is shown in Figure 6.2(b). 

Our Commit(·) primitive consists of the pairs (C1, R1
2), . . . , (Cm, R

2 ), where the mulm

tiplication is modulus N . The security of this commitment relies on the intractability 

of computing Ri by observing Ri 
2 (mod N). That is, even if a PPT adversary gains 

access to the committed values stored on S, he can compute the modular square roots 

with only negligible probability, and the confidentiality of the PUF is assured. As we 

will explain in Section 6.5.4, we used the mcrypt utility to generate the cryptographic 

keys, thus providing the functionality of the Gen(·) primitive. 

Our instantiation of Access(user, file, action) is shown in Figure 6.2(c). As we 

mentioned previously, our choice of Chal(·) and Prove(·) is based on the Feige-Fiat-
Shamir identification scheme. The first step of this scheme is for the prover (C) to 
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generate a random r and send x ≡ +/- r2 (mod N).2 The user is then authenticated 

using a nonce and a cryptographic hash. Given the challenge set T ⊂ P(C1, . . . , Cm) 

(where P denotes the power set), C executes the PUF for each Ci ∈ T . That is, C 

computes y ≡ r · � 
Ri

pi (mod N), where pi = 1 if Ci ∈ T and pi = 0 otherwise. Thus, 

the proof p ← Prove(T ) is the value +/- y2 (mod N). As both parties also know 

H(pwd) and the nonce z, and they can compute +/- y2 (mod N), they can use the 

proof to generate chal ← Gen(p, z, pwd) as required by the protocol. 

There is an important subtlety here that should be noted. Under the traditional 

Feige-Fiat-Shamir scheme, the prover sends y and the verifier must compare both y2 

(mod N) and −y2 (mod N) with the product of x and the committed values. That is, 

it would seem that C and S would have to attempt the encryption and/or decryption 

twice. However, this is not the case. S always uses x · � 
Ri

pi (which includes the 

correct sign). As the decision of whether or not to flip the sign of x was made by C, 

C clearly knows whether the proof should be y2 (mod N) or −y2 (mod N). Hence, 

the encryption and decryption only need to be attempted once by each party. 

In addition, readers who are familiar with existing work in generating crypto

graphic keys from biometrics [151] may object to our use of the responses as the se

crets. In that work, the authors create a secure key K and compute Θlock = K⊕ Θref , 

where Θref denotes the reference biometric sample. To authenticate a sample Θsam 

at a later point, the system applies the bit mask Θlock in an attempt to recover the 

key K. 
In our approach, this bit mask is unnecessary for two reasons. First, unlike bio

metric data, the PUF responses exist only at run-time and are never made public. 

In contrast, biometric data, such as fingerprints, are always present and can be har

vested. Thus, PUF responses are more private and, consequently, more protected. 

Second, revoking a biometric is impossible; however, it must be possible to revoke the 

associated key. The bit mask makes this possible. In our scheme, though, revocation 

22Randomly flipping the sign of r (mod N) ensures that the scheme is a zero-knowledge proof of 
knowledge. 
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of a PUF response Ri is simple: S stops using the associated challenge Ci. Hence, 

applying the bit mask to the PUF response is unnecessary for our scheme. 

6.5.2 PUF Creation 

We used the Xilinx Spartan-3 FPGA to implement a PUF. To simplify the cir

cuitry, we created independent pairs of ROs, each forming a 1-bit PUF. To ensure 

that we could count a high number of oscillations, we implemented a 64-bit counter 

to receive the data from each multiplexor. Each oscillator consisted of a series of nine 

inverter gates. Our experiments with fewer gates resulted in the oscillator running at 

too high of a frequency, but nine gates offered good, consistent behavior. 

We controlled the PUF execution time by incrementing a small counter until it 

overflowed. The Spartan-3 uses a 50 MHz clock, so a 16-bit counter overflows in 

approximately 1 ms. We also increased the counter size to 20 bits, which required 21 

ms to overflow. We did not notice any observable difference in the consistency; hence, 

a 16-bit counter offers sufficient time for the oscillators to demonstrate quantifiably 

different behavior. 

Our design is based on a 128-bit PUF. However, in our experiments, we needed to 

create a state machine to write the PUF result out to a serial port. The extra space for 

the state machine would not fit on the Spartan-3. As such, we reduced the PUF size 

to 64 bits for experimental evaluation. In future designs, all work will be performed 

on the device itself, the state machine will not be needed, and accommodating 128-bit 

PUFs (and larger) will certainly be feasible. 

From the perspective of space on the device, the limiting factor is the usage of 

the look-up tables (LUTs). Implementing a 128-bit PUF on the Spartan-3 occupies 

39% of the available input LUTs and 78% of slices. However, as more ROs are added, 

the number of slices grows only slightly, while the usage of the LUTs increases more 

quickly. Implementing two independent 128-bit PUFs on the same device would 

occupy 78% of the LUTs and 99% of slices. Note, though, that these numbers are 
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based on our simplistic PUF design, which consists of 128 pairs of independent 1-bit 

ROs. More advanced designs [54] select random pairs from a pool of ROs; in such 

an approach, a 128-bit output can be produced from 35 ROs, whereas our approach 

would use 256 (128 pairs). 

By implementing the full PUF as independent 1-bit PUFs, there is a direct corre

lation between each bit of the challenge and each bit of the response. That is, flipping 

only a single bit of input would result in only a single bit difference in the output. 

To counteract this correlation, we take a hash of the PUF output. As a result of the 

properties of cryptographic hash functions, a single bit difference in the PUF output 

will produce a very different hash result. This hash step prevents an attacker from 

using the one-to-one mapping to model the PUF. 

6.5.3 Error Correction 

PUFs are designed to be generally non-deterministic in their behavior. The phys

ical properties of the device itself resolves this non-determinism to create a consistent 

and predictable challenge-response pattern. However, variations in the response are 

inevitable. For instance, if two ring oscillators operate at nearly identical frequencies, 

the PUF may alternate between identifying each as the “faster” oscillator. Reed-

Solomon codes [152] correct these variations up to a pre-defined threshold. 

Reed-Solomon codes are linear block codes that append blocks of data with parity 

bits that can be used to detect and correct errors in the block. To guarantee that we 

can correct up to 16 bits of output for a 128-bit PUF, we use a RS(255,223) code. Note 

that this code operates on an array of bytes, rather than bits. To accommodate this, 

we encode each PUF output bit into a separate byte. Alternatively, we could have 

compacted eight bits at a time into a single byte for a more compact representation. 

In fact, doing so is necessary for implementations that use larger sizes of PUF output. 

For our current work, though, we find this encoding to be acceptable, even if it is not 

optimal. 
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RS(255,223) reads a block of 223 input symbols and can correct up to 16 errors. 

After converting the PUF output to a string of bytes, we pad the end of the string 

with 0s. The encoding produces a syndrome of 32 bytes that must be stored. When 

the PUF is executed at a later point, the response is again converted to a string 

of bytes and padded, and these 32 bytes are appended. The array of bytes is then 

decoded, correcting up to 16 errors introduced by the noisy output of the PUF. 

While Reed-Solomon codes can correct errors in a data block, they operate under 

the assumption that the original data is correct. In the case of PUFs, it is also possible 

that the original data varies from the normal behavior observed at later times. To 

counteract this initial bias, during the enrollment process, we execute the PUF three 

times, not once. For each bit, we do a simple majority vote. That is, the “official” 

PUF result is the result of the consensus of the three executions. 

6.5.4 Client-Server Implementation 

We implemented our protocols as a custom client-server prototype. Both applica

tions use a custom-built package for performing arbitrary-length arithmetic operations 

for large numbers. All hash operations use the SHA-1 implementation by Devine [153]. 

We incorporated the Reed-Solomon code library created by Rockliff [154]. Recall that, 

in our protocols, we use symmetric key encryption in a number of steps; the sym

metric keys are generated from a shared secret. In all cases, we wrote the secret to 

a file, used the Linux utility mcrypt (which reads the file and generates a strong key 

from the data), and immediately destroyed the file using shred. The cryptographic 

algorithm used was 128-bit AES (Rijndael). To minimize the possibility of leaking 

the key by writing the shared secret to a file, we used setuid to run server under a 

dedicated uid, and restricted read access to the file before writing the secret. 
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(a) Truncated, linear scale (b) Logarithmic scale 

Figure 6.3. Average client-side computation time for steps 3 and 4 of 
the Access protocol. 

6.5.5 Storage Requirements 

The storage requirements of our solution for both C and S are minimal. C must 

store N , the challenges Ci, and an error-correcting syndrome for each challenge. As we 

detailed above, N and Ci are each 128 bits, or 16 bytes in length. Each syndrome (one 

per challenge) is 32 bytes in length. Thus, the total storage for C in our prototype is 

48m + 16 bytes. For 16 challenges, then, the storage requirement is under 1 KB. 

S also must store a minimal amount of data. S stores N and the Ri 
2 (mod N) 

commitments, each of which are 128 bits (16 bytes) in size. In addition, S stores a 

hash of each user’s password. If SHA-1 is used, that hash is 20 bytes. If a denotes the 

number of devices enabled and b denotes the number of authorized users, the total 

storage requirement for our system is (16m + 16)a + 20b bytes of data. E.g., given 

100 users, S can enable 1000 devices with 16 challenges each for less than 268 KB of 

storage. 
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(a) Truncated, linear scale (b) Logarithmic scale 

Figure 6.4. Average server-side computation time for steps 3 and 4 of 
the Access protocol. 

6.6 Experimental Evaluation 

We now present the experimental evaluation of of our prototype. Our evaluation 

goals focused on two areas. First, we strove to demonstrate that RO-based PUFs are 

both non-deterministic and consistent. That is, different physical instantiations of 

the same PUF design produce different behavior, but repeating the PUF execution 

on the same input and hardware produce results that can be reliably quantified as 

the same binary string. Our second area of evaluation was on the performance of 

our client-server prototype. In that portion, we show that our design offers better 

performance than using traditional PKI to distribute symmetric encryption keys. 

The output from the PUF, implemented using a Xilinx Spartan-3 FPGA, is trans

ferred to a client application via serial cable, although in deployed settings all opera

tions would occur on the same device. All client and server operations were executed 

on a system with a 2.26GHz Intel R� CoreTM 2 Duo CPU with 3GB of 667MHz mem

ory. The OS used was Ubuntu 9.04, with version 2.6.28-15 of the Linux kernel. 
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6.6.1 PUF Consistency 

As noted in Section 7.4, we implemented a 64-bit PUF and wrote the serialized 

output to a workstation via cable. In our experiments, we observed an average of 

0.2 bits that differed from the “official” PUF result. The maximum difference that 

we observed was 5 bits. Clearly, the use of Reed-Solomon codes that can correct up 

to 16 error bits at each iteration will be able to provide consistent output from the 

PUF, even if we double the size of the PUF to 128 bits. Furthermore, note that 

changes in environmental conditions, such as different temperatures, will affect the 

absolute speeds at which the ROs oscillate. However, the PUF result is based on the 

relative speeds; that is, increasing the temperature will slow both ROs in a pair down, 

but is unlikely to change which of the two oscillates faster. Consequently, the PUF 

shows very consistent behavior that can be used to build a reliable authentication 

mechanism. 

6.6.2 Client/Server Performance 

To evaluate the performance of our client and server implementations, we exe

cuted a series of automated file requests, given several different files sizes. In these 

experiments, we emulated the PUF in software. As noted in Section 6.5.2, we can 

control the PUF execution time; overflowing a 16-bit counter adds only 1 ms to the 

client computation time. Figures 6.3 and 6.4 report the amount of time for computing 

key portions of the Access protocol for some of the file sizes that we measured. 

In these figures, “Generate Proof” (shown in blue) refers to the time to authenti

cate the user by generating or checking the hash H(H(pwd), z) and the proof y sent 

in step 3. “Generate Key” (shown in green) refers to the amount of time required 

to create the 128-bit AES key needed to encrypt or decrypt the file, Echal(file). The 

AES computation is shown in orange. 

Figures 6.3 and 6.4 are shown on both a (truncated) linear scale and a logarithmic 

scale. The key observation of these figures is that the two primary functions of our 
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protocol, plotted as “Generate Key” and “Generate Proof,” are fairly constant and 

minimal. The client side operations take approximately 14 ms on average, which is the 

same length of time as decrypting a 6-byte piece of data with AES (12 ms on average). 

The server burden is even less, requiring approximately 2 ms for each protocol stage 

and 9 ms to encrypt the file. As the file size increases, the AES encryption clearly 

becomes the limiting factor, as it increases approximately linearly with the file size, 

while our protocol overhead remains constant. 

Comparing the performance of our approach with traditional PKI (specifically, 

RSA) required addressing a number of factors. First, the intractability assumption 

behind our approach (as described in the next section) states that finding the modular 

square root is at least as hard as factoring the product of primes, assuming the product 

and the modular square are the same size. That is, computing Ri from a 128-bit Ri 
2 is 

only as difficult as breaking a 128-bit RSA key, which is quite a weak claim. Thus, we 

needed to increase the size of the PUF output. Note, though, that the PUF execution 

time does not change. The only additional performance overhead is the extra time 

required to do the modular multiplication on larger numbers. 

The other disparity between our approach and RSA is that the result of an RSA 

decryption would give you the key itself. In our approach, we would be left with 

a 1024-, 2048-, or 4096-bit value that would have to be converted into an AES key. 

However, based on our experiments with mcrypt, we observed only negligible overhead 

to convert this PUF output value into a key. Thus, this extra work had no measurable 

impact on our performance. 

Figure 6.5 shows the difference in performance between our PUF-based key gen

eration and using RSA to encrypt an AES key. The RSA modular exponentiation 

requires approximately four times the computation time as our client-side PUF-based 

key generation. Thus, our approach offers a clear performance advantage, which may 

be very beneficial for low-power embedded devices. 
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6.7 Discussion 

We start this section with a brief discussion on PUF and RSA key sizes. We then 

focus on possible attack models for our design. 

6.7.1 On Key Sizes 

In the previous section, we showed the performance difference between our 128

bit PUF-based client-server architecture and various sizes of RSA keys. However, 

comparing the security guarantees of our system with the use of PKI to distribute 

symmetric keys is somewhat challenging. Revealing Ri 
2 while assuming Ri to be secure 

relies on the assumption that computing modular square roots is intractable. [155] 

shows that this computation is at least as difficult as factoring the product of primes, 

provided the numbers are all large. Intuitively, though, computing a 128-bit modular 

square root is only as hard as factoring a 128-bit RSA key, which is quite a weak 

claim. We counter this criticism of our design with the following justifications. 

First, attacking the Ri values in this manner can only occur at S. That is, the Ri 
2 

values are never transmitted in the clear where an attacker can eavesdrop. In RSA, 

though, public keys are used to encrypt the symmetric keys before transmitting them 

across the network. Transmitting keys in this manner creates an attack surface that 

our approach avoids. 

Second, the PUF could be repeatedly polled to produce a larger output bit string. 

That is, appending 8 responses for a 128-bit PUF will create a 1024-bit bit string. 

Additionally, we showed that increasing the size yields a minimal performance cost 

when compared with common RSA key sizes. Consequently, we do not consider 

criticisms based on the key size to detract from the soundness of our overall design. 
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Figure 6.5. Large PUF computation compared with RSA-based mod
ular exponentiation 

6.7.2 Additional Threats & Attacks 

In Section 6.4.2, we provided a formal analysis of our protocol. Here, we expand 

on this analysis with an informal discussion of the remaining threats to our design. 

First, recall that our protocol is built on the assumption that C is a trusted device. 

As such, we do not consider attacks in which C leaks secure data received through a 

legitimate access request. The presence of malware on C makes this a very realistic 

concern. However, we consider this threat beyond the scope of our work, and focus 

on what can be accomplished under the assumption that the C is trusted. 

A common flaw in authentication protocols is vulnerability to a replay attack. 

Consider a PPT adversary A with a transcript of of Access(user, file, action), as 

shown in Figure 6.2(c). If either z or T were different, the replay attempt would fail. 

Additionally, even if both z and T are the same, A would learn nothing new. That 

is, under the PPT assumption, A cannot decrypt Echal(file). The only threat in this 

scenario would be if the session involved uploading the file from C to S. In this case, 

A could force S to revert the status of file to an earlier version. However, this can 
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only happen if both z and T are identical. Assuming a large range of values for these 

variables, this attack can succeed with only negligible probability. 

Now consider a stronger adversary A that has learned the pairs (Ci, Ri
2) for a 

particular device. Under the PPT model, such an adversary can only have learned 

these values by successfully attacking S. Clearly, if A can bypass S ’s protection of 

the pairs, he can also directly access all of the files on the system. Hence, the only 

remaining motivation of such an attacker is to try to model the PUF by learning the 

PUF responses. 

The defenses against such an adversary rely on a number of factors. First, even if 

we set aside the PPT model and assume that the adversary has somehow learned the 

key used to encrypt Echal(file) and the inputs to Gen(p, z, pwd). Note that this p is 

exactly the proof generated in the Feige-Fiat-Shamir identification scheme, which is 

known to be zero-knowledge. Hence, observing additional sessions provides no new 

information regarding the values of Ri. 

Thus, A can only model the PUF by computing the modular square roots. Return

ing to the PPT model, such an attack can succeed with only negligible probability, as 

computing modular square roots is at least as difficult as factoring a large product of 

primes for composite values of N [155]. Admittedly, in our prototype, we used only 

128-bit values (which is quite weak), but we demonstrated that it would be straight

forward to increase the PUF output to larger sizes with minimal overhead. Hence, a 

PPT adversary could not model the PUF, even with possession of the pairs (Ci, Ri
2). 

Finally, consider the case of a malicious administrator. Insider threats are very dif

ficult to prevent in general, as these attackers have been granted permissions because 

they were deemed trustworthy. In our approach, there is no inherent mechanism for 

preventing a malicious administrator from enabling untrusted devices. One simple 

defense would be to apply separation-of-duty, thus requiring multiple administrators 

to input the same challenges to each device.3 Another approach would be to require 

3Of course, this does nothing against colluding administrators! 
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a supervisor to approve the enrollment request. Incorporating such defense-in-depth 

techniques would strengthen our scheme against these threats. 

6.8 Conclusions 

In this work, we have proposed a novel mechanism that uses PUFs to bind an 

access request to a trusted physical device. In contrast to previous work, we do 

not use the PUF to generate or store a cryptographic key. Rather, we incorporate 

the PUF challenge-response mechanism directly into our authentication and access 

request protocols. Furthermore, our approach avoids expensive computation, such 

as the modular exponentiation used in public key cryptography. As a result, our 

PUF-based mechanism can be used in settings where PKI or TPMs are either not 

available or require too much performance overhead. We have presented the details 

of our implementation. Our empirical results show that PUFs can be used to create 

a light-weight multifactor authentication that successfully binds an access request to 

a physical device. 
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7 PUF ROKS : A HARDWARE APPROACH TO READ-ONCE KEYS 

In the previous chapter, we focused on the issue of defining policy restrictions based 

on the device used and authenticating the device based on its hardware characteris

tics. This chapter uses the PUF to enforce a different type of access control policy, 

specifically a limit on the number of times that a cryptographic key can be used. We 

start by discussing the notion of “read-once keys” as proposed in the cryptographic 

literature. We then examine how a PUF can be used to create a hardware mechanism 

for creating such key usage restrictions, and describe our work on such a prototype. 

7.1 Read-once Keys 

The term read-once keys (ROKs) describes the abstract notion that a crypto

graphic key can be read and used for encryption and decryption only once. While it 

seems intuitive that a trusted piece of software could be designed that deletes a key 

right after using it, such a scheme näıvely depends on the proper execution of the 

program. This approach could be easily circumvented by running the code within a 

debugging environment that halts execution of the code before the deletion occurs. 

That is, the notion of a ROK entails a stronger protection method wherein the process 

of reading the key results in its immediate destruction. 

ROKs could be applied in a number of interesting scenarios. One application 

could be to create one-time programs [156], which could be beneficial for protecting 

the intellectual property of a piece of software. A potential client could download 

a fully functional one-time program for evaluation before committing to a purchase. 

A similar application would be self-destructing email. In that case, the sender could 

encrypt a message with a ROK; the message would then be destroyed immediately 

after the recipient reads the message. More generally, there is considerable interest 
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in self-destructing data, both commercially [157] and academically [158]. In addition, 

the use of trusted hardware tokens have been proposed for applications including 

program obfuscation [159], monotonic counters [160], oblivious transfer [161], and 

generalized secure computation [162]. ROKs can provide the required functionality 

for these applications. 

Another interesting application of PUF ROKs is to defend against physical at

tacks on cryptographic protocols. For example, consider fault injection attacks on 

RSA [163–167]. In these attacks, the algorithm is repeatedly executed with the same 

key, using a controlled fault injection technique that will yield detectable differences 

in the output. After enough such iterations, the attacker is able to recover the key in 

full. Similarly, “freezing” is another class of physical attack that can extract a key if 

it was ever stored in an accessible part of memory [168]. PUF ROKs offer a unique 

defense against all of these attacks because repeated execution with the same key 

cannot occur, and the key is never actually present in addressable physical memory. 

The ability to generate ROKs in a controlled manner could also lead to an ex

tension where keys can be generated and used a multiple, but limited, number of 

times. For example, consider the use of ROKs to encrypt a public key pk. If an iden

tical ROK can be generated twice, the owner of pk could first use the key to create 

eROK(pk) (indicating the encryption of pk under with the ROK). Later, an authorized 

party could create the ROK a second time to decrypt the key. Such a scheme could 

be used to delegate the authority to cryptographically sign documents. 

In a sense, a ROK is an example of a program obfuscator. An obfuscator O 

takes a program P as input and returns O(P), which is functionally identical to 
P but indecipherable. A ROK, then, involves an obfuscator that makes only the 

key indecipherable. While ROKs are promising ideals, the disheartening fact is that 

program obfuscators–of which ROKs are one example–cannot be created through 

algorithmic processes alone [169]. Instead, trusted hardware is required to guarantee 

the immediate destruction of the key [156]. However, we are aware of no work that 
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has specifically undertaken the task of designing and creating such trusted hardware 

for the purpose of generating a ROK. 

In this chapter, we examine the creation of ROKs using physically unclonable 

functions (PUFs) [52,53]. A PUF takes an input challenge Ci ∈ C, where C denotes 

the set of all such possible challenges. The PUF then produces a response Ri ∈ R, 

where R is the set of possible responses. The function that maps each Ci to Ri is 

based on the intrinsic randomness that exists in hardware and cannot be controlled. As 

such, an ideal PUF creates a mathematical function unique to each physical instance 

of a hardware design; even if the same design is used for two devices, it is physically 

impossible to make their PUFs behave identically. 

Our insight for the design of such “PUF ROKs” [170, 171] is to incorporate the 

PUF in a feedback loop for a system-on-chip (SoC) design.1 That is, our design 

is for the PUF to reside on the same chip as the processor core that performs the 

encryption. This integration of the PUF and the processor core protects the secrecy 

of the key. An attempt to read the key from memory (given physical access) will fail, 

because the key never exists in addressable memory. Also, attempts to learn the key 

from bus communication will be difficult or impossible, as each key is used to encrypt 

only a single message, and the key is never transmitted across the bus. 

The unpredictable nature of PUFs provides a high probability that each iteration 

of a ROK generation will produce a unique, seemingly random key. Yet, to ensure 

that a key can be generated to perform both encryption and decryption, the PUF 

must be initialized repeatedly to some state, thus providing the same sequence of 

keys. To accomplish this, Alice could provide an initial seed to produce a sequence 

of keys that are used to encrypt a set of secrets. Alice could then reset the seed value 

before making the device available to Bob. Bob, then, could use the PUF to recreate 

the keys in order, decrypting the secrets. As Bob has no knowledge of the seed value, 

he is unable to reset the device and cannot recreate the key just used. 

1Our design could also be made to work for application-specific integrated circuits (ASICs), but we 
limit our discussion to SoC designs for simplicity. 
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Astute readers will note the similarities between our approach and using a chain 

of cryptographic hashes to generate keys. That is, given a seed x0, the keys would be 

H(x0), H(H(x0)), etc., where H denotes a cryptographic hash function. The insight of 

our approach is that a PUF, as a trusted piece of hardware, can provide a hardware

based implementation that is analogous to a hash function, but is more secure than 

software implementations of such algorithms. 

7.2 ROK Formalisms 

Our formal notion of a ROK is based on an adaptation of Turing machines. Specif

ically, define the machine T to be 

T =< Q, q0, δ,Γ, ι > 

where Q is the set of possible states, q0 is the initial state, δ defines the transition 

from one state to another based on processing the symbols Γ, given input ι. Readers 

familiar with Turing machines will note that ι is new. In essence, we are dividing 

the traditional input symbols into code (Γ) and data (ι). For the sake of simplicity, 

we assume that ι only consists of messages to be encrypted or decrypted and ignore 

other types of input data. Thus, the definition of δ is determined by the execution 

of instructions γ1, γ2, . . . , γi, where consuming γi ∈ Γ results in the transition from 

state qi to qi+1. Based on this formalism, we propose the following primitives. 

•	 The encrypt primitive Enc(γi, qi, m) encrypts the message m ∈ ι given the 

instruction γi and the state qi. The system then transitions to qi+1 and produces 

the returned value as e(m) as a side effect. 

•	 The decrypt primitive Dec(γj , qj, e) decrypts the ciphertext e ∈ ι given the 

instruction γj and the state qj. If the decryption is successful, the primitive re

turns m. Otherwise, the return value is denoted ∅. The system then transitions 

to qj+1. 



143 

Informally, γi and qi describe the current instruction and the contents of memory 

for a single execution of a program, and capture the state of the system just before 

executing the encrypt or decrypt primitive. That is, if the execution of the program 

is suspended for a brief time, γi, qi would describe a snapshot of the stack, the value 

stored in the instruction pointer (IP) register, the values of all dynamically allocated 

variables (i.e., those on the heap), etc. In short, it would contain the full software 

image for that process for that precise moment in time. Once the program is re

sumed, the symbol γi would be consumed, and the system would transition to state 

qi+1. Given these primitives, we present the following definition. 

Definition: A read-once key (ROK) is a cryptographic key K subject to the fol

lowing conditions: 

•	 Each execution of Enc(γi, qi, m) generates a new K and yields a transition to a 

unique qi+1. 

•	 The first execution of Dec(γj , qj , e) returns m and transitions to qj+1. All sub

sequent executions return ∅ and transitions to qj′ +1, even when executing the 

machine < Q, q0, δ,Γ, ι > with e, except with negligible probability. 

•	 The probability of successfully decrypting e without the primitive Dec(γj , qj, e) 

is less than or equal to a security parameter ǫ (0 < ǫ < 1), even when given 

identical initial states. ǫ must be no smaller than the probability of a successful 

attack on the cryptographic algorithms themselves. 

What these definitions say is that the ROK Turing machine is non-deterministic. 

Specifically, during the first execution of a program2 that encrypts a message m, δ 

will define a transition from qi to qi+1 based on the primitive Enc(γi, qi, m). However, 

the second time, the key will be different, and the state transition will be from qi to 

2Observe that the program doing the encryption is separate from the one doing the decryption. If 
the encryption and decryption occurred in the same program, the decryption would succeed, as the 
key would have just been dynamically generated. In contrast, when the programs are distinct, only 
the first execution of the decryption program will succeed. 
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q ′ Similarly, the first execution of a program that decrypts e(m) will traverse the i+1. 

states q0, . . . , qj , qj+1, where qj+1 is the state that results from a successful decryption. 

However, returning the machine to its initial state q0, using the same instructions 

Γ, the state traversal will be q0, . . . , qj, q 
′ � qj+1, because the decryption fails. = j+1 

Thus, ROKs incorporate some unpredictable element that does not exist in traditional 

Turing machines: the history of prior machine executions. That is, for any given 

machine T , only the first execution (assuming either the encrypt or decrypt primitive 

is executed) will use the transitions defined by δ. The second (and subsequent) 

executions will use δ ′ , as the state after the primitive is invoked will differ. 

Clearly, these definitions capture the intuitive notion of a ROK. The key K is 

generated in an on-demand fashion in order to encrypt a message. Later, K can be 

used to decrypt the message, but only once. After the first decryption, the key is 

obliterated in some manner. Specifically, even if the contents of memory are returned 

to match the program state γj, qj as it existed before the first call to Dec(γj , qj , e), the 

decryption will fail. The intuition here is that a special-purpose hardware structure 

must provide this self-destructing property. 

Observe that an adversary A may opt to attack the cryptographic algorithms 

themselves. In such an attack, the number of times the key K can be read by an 

authorized party is irrelevant: A is never authorized. If the cryptographic scheme is 

sufficiently weak, A may succeed in recovering the message (or the key itself). The 

ROK property offers no additional security against such an attack. That is, we are 

making no special claims of cryptographic prowess. For this reason, we require that ǫ 

be no smaller than the probability of a successful attack on the cryptographic scheme 

employed. 

What is unique about our technique is that we are offering a means to limit 

the usage of a key by an authorized party. Clearly, with sufficient motivation, this 

authorized party may become an adversary himself, attempting to recover the key 

K and subvert the system. The parameter ǫ offers a means to specify the system’s 

defense against such an insider threat. For the most sensitive data, an implementation 
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of our design could require a very low level of ǫ, making the probability of subverting 

the ROK property equal to the probability of a brute-force attack on the cryptographic 

algorithm. In applications that are less sensitive (i.e., the ROK property is desirable, 

but not critically important), ǫ could be larger. In short, ǫ captures the flexibility 

to adjust the security guarantees of the ROK according to desired implementation 

characteristics. We will explore this idea more in Sections 7.3 and 7.5. 

7.3 PUF ROKs 

In this section, we propose the use of PUFs to generate ROKs, which we call PUF 

ROKs. Like previous work [49], our design is based on the idea of using the PUF 

output to generate a transient key dynamically. We start this section by describing the 

basic hardware architecture for creating a PUF ROK component. We then proceed to 

prove formally that this architecture captures the desired ROK characteristics. This 

section concludes with descriptions of how PUF ROKs can be used in both symmetric 

key and public key cryptography. 

7.3.1 PUF ROK Overview 

The high-level view of our hardware architecture for generating PUF ROKs con

sists of a number of components. We formally define these components and their 

functional connections as follows. 

•	 The processor core (PC) executes the desired application. The PC has ac
cess to volatile random access memory (RAM) for implementing the typical 

C-language execution constructs, such as a stack and heap. The PC contains 

an interface to a physically distinct crypto core (CC). 

•	 The CC is a stand-alone hardware component that provides cryptographic ser

vices to the PC. The CC provides the following service interface to the PC: 
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–	 Init(x0) : an initialization routine that takes an input x0 as a seed value 

for the PUF. There is no return value. 

–	 Enc(m) : an encryption primitive that takes a message m as input and 

returns the encrypted value e(m). 

–	 Dec(e(m)) : a decryption primitive that takes a ciphertext as input. Given 

e(m) repeatedly, this service returns the plaintext m only on the first 

execution. Subsequent calls to this service for e(m) return ∅. 

•	 The CC has a unidirectional interface with a register (Reg). Whenever the 

CC’s Init(x0) service is invoked, the CC writes x0 (or a value derived from x0, 

if so desired) into Reg. 

•	 The CC can poll the PUF. When this occurs, the value stored in Reg is used 

as the PUF challenge. The response is then fed into an error correction unit 

(ECU). After performing mode-specific functions, the ECU returns a sanitized 

PUF output to the CC, while simultaneously overwriting the contents of Reg. 

When decrypting, the write back to Reg is contingent on feedback from CC. 

That is, Reg would only be overwritten during Dec(e(m)) if the decryption was 

successful. 

Figure 7.1 shows a high-level view of a SoC implementation of our PUF ROK 

design. The key insight of this approach is the the PUF-ECU-Reg portion form a 

feedback loop. The PUF uses the values stored in the Reg as its input challenge Ci. 

The raw response Ri is run through an error correction routine to produce Ri
′ , which 

is written back into the Reg. The cleaned response is also reported to the CC for use 

in the cryptographic operations. 

The operation of the ECU depends on the cryptographic primitive invoked. In 

the case of encryption, the key K is just being created. As such, there are no errors 

to correct. Instead, the ECU uses the raw PUF output as the “correct” value and 

generates a small amount of error-correcting data. This data is stored in a local cache 
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Figure 7.1. Components for a SoC PUF ROK design 

that is accessible only to the ECU itself. Later, when decryption occurs, this data 

is used to correct any transient bit errors that may have occurred during the PUF 

execution. Observe that, as the error correction occurs before the response is stored 

in the Reg, this design structure ensures that the challenge inputs are correct. 

The security parameter ǫ is used to specify the size of x0. Specifically, to meet the 

security guarantees dictated by the ROK formalism, x0 must be at least ⌈− log2 ǫ⌉ 
bits3 in length, with each bit distributed uniformly. For completeness, we assume 

that x0 has a length of at least one bit (for the cases when ǫ > 1/2). Our subsequent 

analysis holds, but including this fact in later proofs adds unnecessary mess to the 

notation. As such, we will omit this fact and implicitly assume that x0 is at least one 

bit in length. 

In this architecture, we make two simplifying assumptions. First, we assume that 

the challenges and responses are the same length. We also assume that Reg consists of 

a small storage cache of the same size.4 In implementations where these assumptions 

do not hold, additional hardware components may be required. 

3Recall that 0 < ǫ < 1. As a result, log2 ǫ < 0, so ⌈− log2 ǫ⌉ is a nonnegative integer. 
4Depending on the size of the PUF output, Reg may correspond to an array of hardware registers. 
E.g., if the PUF output is 256 bits and the hardware registers store only 32 bits each, then Reg 
consists of eight physical registers. 
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7.3.2 System Details 

Our architecture, as previously proposed, seems rather limited in use. Primarily, 

keys must be used for decryption in the same order as they are created. For example, 

consider the case where two messages m1 and m2 are encrypted. The first encryption 

would generate K1 and the second creates K2. To switch to decrypt mode, the Init(x0) 

primitive would be required to return the Reg to its original state. The implication 

of this design is that the user must perform Dec(e(m1)) before Dec(e(m2)). 

An intuitive solution would be to pass a counter n along with the Dec(e(M)) 

invocation, indicating that the PUF must be polled n times before the appropriate 

key would be reached. Hence, to decrypt the second message first, the invocation 

would be Dec(e(m2), 2). This solution is problematic, though. Specifically, once 

Dec(e(m1), 2) is invoked, the contents of Reg would no longer contain x0, and there 

would be no way for Dec(e(m1), 1) to generate K1. 

A similar problem is that any switch between encryption and decryption would 

require resetting the contents of Reg and polling the PUF multiple times. For in

stance, assume the user has encrypted three messages m1, m2, and m3. The PUF 

ROK would have generated keys K1,K2, and K3. To decrypt e(m1), Init(x0) restores 

the Reg to its initial state, and Dec(e(m1)) is invoked. After the decryption, Reg is 

storing R1. In order to encrypt message m4, the PUF would need to be polled two 

more times to ensure that key K4 is generated. This can become very complicated to 

maintain. 

To address these problems, we expand the details of our design as shown in Fig

ure 7.2. In this figure, we partition the high-level Reg into distinct registers for 

processing the challenge input for encryption (EncReg) and for decryption (DecReg), 

as well as one that stores the seed value (SeedReg). We also introduce an error-

correcting cache (EC Cache). The intuition in this design is that the ECU will store 

n error-correcting codes that can be accessed in arbitrary order. Once the first k codes 
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have been used, they can be replaced. When this happens, the ECU synchronizes 

with the SeedReg (as indicated by the Sync line). 

Figure 7.2. Extension components for out-of-order PUF ROKS 

The operation of our PUF ROK architecture can be illustrated by the following 

example. Assume n = 4. A sample work flow could be as follows: 

1. The user initializes the system with Init(x0). 

2. Three messages, m1, m2, and m3 are encrypted. The keys K1,K2, and K3 are 

derived from the PUF responses R1, R2, and R3, respectively. The ECU stores 

error correcting codes EC1, EC2, and EC3 in its cache. 

3. Message m2 is decrypted by invoking Dec(e(m2), 2). The contents of SeedReg 

are copied into DecReg, and the PUF is polled twice to generate R2 and the 

corresponding K2. The ECU marks EC2 as invalid, assuming the decryption is 

successful. 

4. Message m4 is encrypted, using R4 and K4. EC4 is generated and stored in the 

cache. 

5. Message m1 is decrypted by Dec(e(m1), 1). At this point, as both EC1 and EC2 

have become invalid, the ECU initiates the Sync action. 

6. During the Sync, the ECU takes control of the PUF feedback loop. The PUF 

is polled twice, using the contents of SeedReg as the challenge input (x0). As 

a result, responses R1 and R2 are generated, and R2 is ultimately stored in 
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SeedReg. As a result of Sync, the part of EC Cache that was used to store EC1 

and EC2 is now marked as available. 

7. To encrypt m5, Enc(m5) is invoked like normal, using the contents of EncReg as 

the challenge input. The corresponding EC5 is then stored in one of the newly 

available slots in EC Cache. 

While this approach addresses the complication of using keys out of order, a 

simple extension makes the design even more powerful. Consider the case where a 

key is needed n times, rather than just once. E.g., if Alice needs Bob to encrypt 10 

messages on her behalf, she could either use 10 ROKs or she could employ, for lack 

of a better term, a read-10-times-key. The extension above, with the integrated EC 

Cache, could accommodate this request by storing the ECi codes 10 times. The codes 

would then become invalid after all 10 slots in the EC Cache have been marked as 

such. 

7.3.3 Formal Proof of PUF ROK 

While it may seem intuitive that our architectural design captures the essence of 

a ROK, we present the following formal proof to illustrate the use of the security 

parameter ǫ. In this theorem, we use the notation |s| to denote the length of the bit 
string s. To simplify the proof, we elide the details discussed in Section 7.3.2, and 

simply use the high-level architectural terms from Section 7.3.1. 

Theorem. Assuming an ideal PUF and adequate error correction are employed, the 

PUF ROK architectural design successfully enforces the ROK criteria. 

Proof. To demonstrate the claim, we must show that all three properties of ROKs 

hold. Clearly, our definitions of the Enc(m) and Dec(e(m)) services provided by the 

CC match those of the ROK definition. However, to see that the first two ROK 

properties hold, we must consider the interaction of the components. When the 
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Enc(m) service is invoked, the contents of Reg are used as input to the PUF and 

replaced with the output. This output is also used to generate the key K. Thus, the 
first property holds. 

To switch the PUF ROK to decrypt mode, the seed x0 must again be written 

to Reg. This action must be done by the encrypting party. After this is done, 

the Dec(e(m)) primitive will involve polling the PUF, thus using x0 as the PUF’s 

input challenge once again. The ECU ensures that the new PUF result matches 

the previous output, and the decryption key K will be identical to that used for 

encryption. However, the new PUF result also replaces x0 in the Reg. Hence, as 

the PUF is assumed to be ideal, the first execution of Dec(e(m)) will produce the 

correct key K. Any future execution of Dec(e(m)) will, with near certainty, produce 

an incorrect key; the CC will then return ∅. Thus, the ideal PUF assumption ensures 

that the second criterion holds. 

To complete the proof, we must show that our design satisfies the third criterion, 

which is that the probability of bypassing the restriction on the Dec(γj , qj, e) primitive 

is less than or equal to ǫ. There are three ways this could occur. First, the adversary A 

could succeed in an attack on the cryptographic scheme itself. However, by definition, 

the probability of this occurring is guaranteed to be no more than ǫ, and the third 

criterion would hold. The second possibility would be for the ECU to produce the key 

K erroneously. However, this violates our assumption that adequate error correction 

is employed. Hence, this case cannot occur. 

The third case is for a later execution of the PUF to produce x0 as a result. That 

is, there must exist some j such that the contents of Reg would be the sequence 

x0, R1, R2, R3, . . . , Rj = x0 

Recall that we assumed (m ≥ 1) 

|Cj| = |Rj | = |R ′ | = |x0| = m ≥ ⌈− log2 ǫ⌉j
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Then the probability that any Rj = x0 would be 1/2
m, which gives us 

1 1 1 1 
P (Rj = x0) = ≤ ≤ = = ǫ 

2m 2⌈− log2 ǫ⌉ 2log2 ǫ
−1 ǫ−1 

That is, the probability that any polling of the PUF will produce an output that 

matches the seed x0 is less than the security parameter ǫ. Hence, the third required 

property of ROKs also holds. Thus, the PUF ROK architecture successfully imple

ments the ROK requirements under the ideal PUF assumption. D 

7.3.4 Symmetric Key PUF ROKs 

The functionality of the CC depends on the cryptographic application. In the 

preceding discussion, we were focusing on a symmetric key application, in essence. 

However, there are a few more details regarding the operation of the CC that we must 

address here. 

As noted above, in symmetric key cryptographic applications, the PC issues the 

command Enc(m), where m indicates the message to be encrypted. The CC then 

issues the command Init(x0), which writes the value x0 into the Reg. The PUF then 

uses x0 as C1 and generates R1, which is passed to the ECU. The ECU then generates 

the necessary error-correcting codes EC1 to ensure the key is later recoverable, even 

if the noisy output of the PUF produces a small number of bit errors. 

Next, to guarantee a strong key from R1, the CC applies a cryptographic hash. 

That is, to generate a 256-bit AES key, the CC computes K1 =H(R1), where H is 

the SHA-256 hash function. While an ideal PUF is assumed to produce random 

mappings, we employ the hash function in this way to add to the entropy of the 

system. That is, if Ri and Rj (the responses produced by two different PUF pollings) 

differ by only a single bit, H(Ri) and H(Rj) will have a Hamming distance of 128 bits 

on average. As a result, even if an attacker is able to recover the key just by observing 

the plaintext and ciphertext, the hash prevents modeling the PUF, as doing so would 

require the attack to create a pre-image of the hash. 
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Once the CC has polled the PUF and generated the key, the encrypted message 

e(m) is provided to the PC. Later, when the recipient wishes to decrypt the message 

(which can only be done once), the PC issues the command Dec(e(m)) to the CC. 

The CC then resets the Reg with Init(x0), and polls the PUF to recreate the key. The 

decrypted message, then, is returned to the PC. 

For the sake of completeness, observe that we have never detailed how x0 is de

termined. One approach, which depends only on the device itself, would be to take 

the timestamp ts when the PC invokes the Init primitive, and uses x0 = H(ts). In 

another approach, the PC could use a user’s password, and hash it similarly. Thus, 

the seed value can be determined in multiple ways. 

7.3.5 Public Key PUF ROKs 

Now consider the case of public key cryptography. In this setting, we start with 

the assumption that the CC contains the necessary parameters for the public key 

computations. For instance, if the RSA cryptosystem is used, the CC knows (or can 

create) the two large prime numbers p and q such that n = pq. 5 The goal, then, 

is to generate a pair (pk, sk), where pk denotes a public key and sk denotes the 

corresponding private key. 

In contrast to the symmetric key approach, the CC does not need to generate the 

ROK twice. As such, the Init(x0) function is optional. However, the CC still polls 

the PUF to generate the pair of keys. The challenge with using a PUF to create a 

public key pair, though, is how to generate a bit string that is long enough. A strong 

RSA key, for example, is at least 2048 bits long. But creating a 2048-bit PUF output 

would require a prohibitively large circuit design. 

Instead, our approach is for the CC to buffer a series of PUF results. For instance, 

if the PUF produces a 256-bit output, the CC could use Ri as bits 0-255, Ri+1 as bits 

5Readers familiar with the properties of RSA will observe that it is necessary for the CC to create 
and store the primes p and q securely. Such functionality is common in existing cryptographic 
processors, such as a TPM. Consequently, we assume that the CC is designed to ensure the secrecy 
of p and q is preserved, and omit further discussion of this matter. 
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255-511, and so forth. Once the CC has polled the PUF to get a sufficient number 

of random bits, the next challenge is to convert this bit string into a strong key. For 

simplicity, we assume the use of RSA. 

Let e denote the candidate key that the CC has received from the PUF. In order to 

use e as an RSA key, e must be coprime to φ(n) = (p1)(q1). By applying the Euclidean 

algorithm, the CC can compute the greatest common divisor g = gcd(e, φ(n)). If 

g = 1, e and φ(n) are coprime, and e can be used as is. Otherwise, e ′ = e/g can 

be used. The secret key sk, then becomes e or e ′ as appropriate. To compute the 

public key pk, the CC computes the modular multiplicative inverse of sk by using the 

extended Euclidean algorithm. That is, the CC computes d such that sk · d ≡ 1 (mod 

φ(n)). This value d then becomes the public key pk. Given this key pair (pk, sk), the 

PUF ROK can be used by the PC in multiple ways. First, the PC could issue the 

command Sign(m) to the CC, requesting a cryptographic signature. After generating 

(pk, sk), the CC uses sk to sign m, returning the signature and the public key pk to 

PC. pk can then be used by a third party to verify the signature. 

Alternatively, the PC could issue the command Gen, which tells the CC to generate 

the key pair. Instead of using the keys immediately, the CC stores sk and returns 

pk to the PC. A third party wishing to send an encrypted message to the PC could 

use pk as needed. Then, the PC would issue Dec(m) to have the CC decrypt the 

message. While this violates the spirit of the ROK principle (as sk would need stored 

somewhere), sk could simply be thrown away during the Gen procedure. Later, when 

the decryption occurs, the sk would be recreated, making the public key PUF ROK 

work similarly to the symmetric key version. 

Finally, consider the case where the third party needs assurance that the public 

key pk did, in fact, origin from the PUF ROK. This can be accomplished if the CC 

contains a persistent public key pair, similar to the Endorsement Key (EK) stored 

in a Trusted Platform Module (TPM). In addition to providing the pk to the PC, 

the CC could also return SignEK(pk), denoting the signature of the pk under this 

persistent key. This technique provides the necessary assurance, as the persistent key 

http:thePUF.In
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is bound to the CC. However, this requires a key management infrastructure similar 

to existing TPM-based attestation schemes. 

7.3.6 Practicality and Applications 

One obvious objection to PUF ROKs is that they assume shared access to the 

resource. In many instances, this assumption does not hold. However, as we will 

describe in Section 7.4, we have implemented a proof-of-concept PUF ROK on a 

small portable device that measures 44 × 60 mm. Based on this experience, we find 

that it would be quite reasonable to integrate PUF ROK functionality into devices 

similar to USB thumb drives. Clearly, such a device could be passed between users 

who are generally in close proximity. 

For remote users, a more complicated structure would be needed. Specifically, 

a PUF ROK for remote use would function in a manner similar to a TPM. That 

is, Bob’s TPM-like PUF ROK would generate a public key that Alice would use 

for encryption. Later, Bob’s device would generate the corresponding private key to 

decrypt the message. Clearly, Alice would need assurance that the public key actually 

came from a PUF ROK. Unfortunately, there is no easy solution to this. Instead, we 

find the most straightforward approach to be exactly that used by TPMs. That is, 

the PUF ROK device would require a certificate created by the manufacturer, storing 

a persistent private key generated by the manufacturer. This key would then be used 

to sign all PUF ROKs from that device, and Alice could confirm the signature with 

the manufacturer’s public key. 

In short, our PUF ROK device infrastructure for remote users would mirror TPM 

behavior. However, there is one major exception: The device is trusted to enforce the 

behavior that the PUF ROK can only be used once. This behavior does not exist in 

TPMs. However, PUF ROKs could clearly be integrated into any custom SoC design 

that is functionally similar to a TPM. 
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Now consider the applications of PUF ROKs. Goldwasser et al. [156] proposed 

a technique for one-time programs, based on the assumption that the application 

is encrypted under a one-time use key. Closely related to one-time programs are 

delegated signatures. If Alice has a persistent key skA, she could encrypt this key 

with the PUF ROK as e(skA). Bob would then provide this encrypted key to the 

PUF ROK, which decrypts it and uses the decrypted key to sign a single document 

on Alice’s behalf. 

PUF ROKs could also be used to generate self-destructing messages. If Alice has 

a portable PUF ROK device, she could use it to generate Enc(m). After receiving 

the message, Bob could use the device to decrypt the message. Once this is done, 

repeated attempts to decrypt the message would fail, as the Reg would no longer 

store the necessary challenge input. 

Finally, consider the scenario of usage control. In this case, Bob has a public key 

PUF ROK device that contains the TPM-like endorsement key EK. Bob could use 

the device to retrieve the signed pk, which he sends to Alice. Alice, after confirming 

the signature, uses the key to encrypt the protected resource, sending the result to 

Bob. Bob can then use the sk stored on the PUF ROK to access the resource. Once 

the CC uses sk, this key is no longer accessible, and access to the resource is revoked. 

7.4 Implementation 

To demonstrate a proof-of-concept for our PUF ROK design, we developed a 

prototype implementation. As the design requires a combination of hardware and 

software, we desired a platform that would be advantageous for both pieces of de

velopment. Our solution was to use the KNJN Saxo-L development board [172]. 

This board features an Altera Cyclone EP1C3T100 field-programmable gate array 

(FPGA) alongside an NXP LPC2132 ARM processor. The FPGA and ARM are 

directly connected via a Serial Peripheral Interface (SPI). The board also offers a 

USB-2 adaptor, in addition to the JTAG adaptor that is commonly used for FPGA 
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development. In addition, the form factor of the board measures 44× 60 mm, making 

it highly portable. 

In our prototype development, we chose to use the FPGA only for components 

that require a hardware implementation. Specifically, we implemented a small PUF 

and register on the FPGA to capture the essence of the feedback loop. All other 

portions, including the error-correcting unit (ECU) and the crypto core (CC) were 

implemented in software on the ARM processor. Figure 7.3 shows the high-level 

layout of our implementation on the KNJN board. 

Figure 7.3. Basic hardware layout of a PUF ROK implemented on 
the KNJN Saxo-L development board 

Our PUF design consisted of 32 1-bit ring oscillator PUFs, as shown in Figure 6.1. 

Each of these circuits consisted of a ring oscillator constructed from 37 inverting gates. 

In our experiments, we found that using fewer than 37 gates yielded less consistency 

in the PUF behavior. That is, smaller PUFs increase the number of bit errors that 

must be corrected. The output from the ring oscillators was linked to 20-bit counters 

that were controlled by a 16-bit timer. The timer was synchronized with a 24 MHz 

clock, indicating that the timer would expire (as a result of an overflow) after 2.73 

ms. When the timer expires, the values in the counters are compared, producing a 1 

or 0 depending on which counter had the higher value. This design used 2060 of the 

2910 (71%) logic cells available on the FPGA. Each execution of the PUF produced 

http:after2.73
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32 bits of output. Consequently, to generate larger keys, the ARM processor polled 

the PUF multiple times, caching the result until the key size was met. 

To put the performance of the PUF into perspective, we compared the execution 

time with measurements [173] reported by NXP, the device manufacturer. Some of 

NXP’s measurements are reported in Figure 7.1. As each PUF execution (producing 

32 bits of output) requires 2.73 ms to overflow the timer, it is slower than encrypting 

one kB of data in AES. Observe, though, that larger PUFs would still only require 2.73 

ms. Consequently, the overhead of executing the PUF can remain small, especially 

as large amounts of data are encrypted or decrypted. 

Table 7.1 
NXP cryptographic measurements 

Symmetric 
Algorithm 
AES-CBC 
AES-ECB 
3DES-CBC 
3DES-ECB 

Time RSA 
(ms/kB) Operation 
1.21 1024-bit encrypt 
1.14 1024-bit decrypt 
3.07 2048-bit encrypt 
3.00 2048-bit decrypt 

Time 
(s) 
0.01 
0.27 
0.05 
2.13 

The comparison the RSA encryption and decryption is stark. Observe that the 

2.73 ms required to execute the PUF is 27.3% of the time to perform a 1024-bit 

encryption in RSA. As the key size increases (assuming the PUF size is increased 

accordingly so that only one polling is needed), the PUF execution time becomes 

0.13% overhead for 2048-bit RSA decryption. Thus, the performance impact of polling 

the PUF during key generation is minimal.6 

Regardless of the size of the PUF used, one challenge that is unavoidable is random 

inconsistencies in the PUF output. Specifically, a small number of bit errors will 

inevitably occur as a result of the randomness inherent to PUFs. To counteract this 

6Obviously, there is additional work required to convert the PUF output into a usable key. However, 
the precise timing of this work is implementation-dependent, and the algorithms typically employed 
are significantly more efficient than the modular exponentiation. As such, we focus solely on the 
PUF measurement in our analysis. 

http:largerPUFswouldstillonlyrequire2.73
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behavior, we employed Reed-Solomon (RS) error-correcting codes [174]. Specifically, 

we adapted the Rockliff’s implementation [154] in our prototype. 

RS(n, k) codes operate as follows. A string of k symbols, each m bits in length, is 

concatenated with an n − k syndrome, where n = 2m − 1. Based on this syndrome, 

when the input is used again, the codes can correct up to (n−k)/2 corrupted symbols. 

In our implementation, we used RS(15, 9) codes, as the PUF output each time was 

32 bits. Observe that m = 4 in this code, so this k = 9 is a sufficient size, as there 

would be nine 4-bit symbols (a total of 32 bits). Furthermore, when the PUF is polled 

later, this code can account for three corrupted symbols (potentially up to 12 bits in 

the PUF). However, in our experiments, the average Hamming distance between the 

original PUF response and later responses was 0.1, with a maximum of two bit errors 

that occurred in one execution. Clearly, this code is sufficient for our implementation. 

In our implementation, we adapted the PolarSSL cryptographic library [175] for 

execution on the ARM processor. This open source library is designed to be small 

enough for use in embedded devices. The LPC2132 model offers only 16 kB of RAM 

and 64 kB of Flash memory. As this is quite a small amount of storage space, 

the library actually would not fit in the device’s available memory. Specifically, the 

library contains a number of I/O functions that are not suited for our implementation. 

Consequently, we customized the code by removing this unused functionality and were 

able to make the code fit within the confines of the device. 

Based on the experience of building this prototype, we offer the following insights 

for creating production-quality PUF ROKs. First, employing both an FPGA and 

an ARM processor adds to the complexity of the system design. As an alternative 

approach, one could leverage ARM softcore designs and place them within the FPGA 

itself. This would simplify the circuitry on the board itself. 

Additionally, our current design is not optimal for produc- tion-quality PUFs. 

Specifically, it creates a one-to-one correlation between a single bit in the input chal

lenge Ci and the corresponding response bit in Ri. As such, if Ci and Cj differ by 

only a single flipped bit, then Ri and Rj will also differ by only the same flipped bit. 
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To prevent this correlation and produce behavior that more closely resembles an ideal 

PUF, the circuit design should randomly select pairs from a pool of ring oscillators, 

rather than having persistent pairs. As this issue was addressed in [54], interested 

readers should consult that work for more information. 

Finally, our work used a resource-limited development board. Specifically, 2910 

logic cells is considerably smaller than most FPGAs (e.g., the Xilinx Spartan-3E has 

10,476). Also, recall that the amount of memory available was too small to hold a 

cryptographic library that is intended for embedded devices. Consequently, we feel 

confident that our architecture could be easily adapted to larger devices, even as if 

the size of the PUF is increased to produce larger keys. 

7.5 Security Analysis 

For our security analysis, we consider the case of a probabilistic polynomial-time 

(PPT) attacker A, with two goals. First, the goal of A is to recover just the key 

used to encrypt or decrypt a single message. The second goal considered is to model 

the PUF, which would enable the attacker to emulate the PUF ROK in software, 

thereby negating the hardware ROK guarantee. Initially, in both cases, we assume 

the adversary is capable of (at most) eavesdropping on bus communication. That 

is, the adversary is unable to observe communication between the cores in the SoC 

design. 

Under this model, A is able to observe the data passing between the PC and 

memory, or between the PC and a network. Observe, though, that these messages 

consist exclusively of the plaintext m and the encrypted e(m). Thus, the attack is a 

known-plaintext attack. However, this information offers no additional knowledge to 

A. Even if A managed to reconstruct the key K (with negligible probability under 

the PPT model), this key is never used again. 

The only use of reconstructing K in this manner is to attempt to reverse engineer 

the behavior of the PUF. However, recall that our design involved hashing the PUF 
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output when creating the keys. Consequently, K = H(Ri), where H is a robust 

cryptographic hash function. As a result, A again has only a negligible probability of 

reconstructing Ri. Yet, we can take this analysis even further, because Ri by itself is 

useless. That is, A would also need to know the corresponding Ci (or Ri+1) to begin 

to model the PUF. Thus, A would have to accomplish a minimum of four feats, each 

of which has only a negligible probability of occurring. Thus, we do not find such an 

attack to be feasible. 

To continue the analysis, we loosen our assumed restrictions and grant A the 

ability to probe inside the SoC and observe all data transferred between the cores. 

Clearly, such an adversary would succeed, as the data passed between the PUF and the 

CC occurs in the open. However, this attack model is so extreme that only the most 

dedicated and motivated adversaries would undertake such a task. Similarly, users 

who are faced with such powerful adversaries are likely to have extensive resources 

themselves. Thus, these users are likely to shield the processor using known tamper-

resistance techniques, and we find this threat to be minimal. 

Moving away from the PPT model, we can return to the discussion of fault injec

tion [163–167] and freezing [168] attacks. Fault injection attacks fail to threaten the 

confidentiality of the system, because these attacks are based on repeatedly inducing 

the fault with the same key. However, PUF ROKs can only be used once. At best, 

a fault injection would become a denial-of-service, as the key would not correctly 

enrypt or decrypt the message. Freezing attacks are similarly unsuccessful, because 

they operate on the assumption that the key existed in addressable memory at some 

point. However, that is not the case with PUF ROKs. These keys are generated 

dynamically and are never explicitly stored outside the processor itself. Thus, PUF 

ROKs offer robust defenses against these physical attacks. 

One final class of attacks to consider is power analysis [176]. Simple power analy

sis (SPA) involves monitoring the system’s power fluctuation to differentiate between 

portions of cryptographic algorithms. This information leakage can reveal how long, 

for instance, a modular exponentiation takes, which reveals information about the key 
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itself. Differential power analysis (DPA) observes the power fluctuations over time 

by repeatedly executing the cryptographic algorithm with the targeted key. Ironically, 

DPA is considered harder to defend against than SPA. And yet, PUF ROKs are im

mune to DPA (since repeated execution is not allowed) while vulnerable to SPA. Even 

though SPA is a potential threat, known techniques can prevent these attacks [177]. 

7.6 Conclusion 

In conclusion, this work presents a novel hardware-based approach to generating 

read-once keys (ROKs). Our underlying strategy is to integrate a PUF with a register 

to create a feedback loop. The result is that no data required for the PUF ROK ever 

exists outside of the processor itself. In addition, the feedback loop continuously 

overwrites the contents of the register, thereby destroying the key immediately upon 

use. As such, the design successfully captures the notion of a ROK. 

In this work, we have defined a ROK in terms similar to a Turing machine. We 

presented our architectural design and proved that it matches the formalism. We 

described applications of PUF ROKs and addressed concerns regarding their practi

cality and usability. We presented details of our prototype design and shared insights 

regarding future production-quality implementations. We presented a security anal

ysis of PUF ROKs under the PPT adversary model, and we also demonstrated that 

PUF ROKs are resilient against even more powerful adversaries with the ability to 

perform physical attacks on the device. In summary, we have demonstrated that PUF 

ROKs are both feasible and secure. 
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8 RESILIENT AUTHENTICATED EXECUTION OF CRITICAL 

APPLICATIONS IN UNTRUSTED ENVIRONMENTS 

Up to this point, our focus has been on the challenges of defining contextual access 

control constraints and how to authenticate the necessary factors. In the next two 

chapters, we shift our focus to a more fundamental concern: the integrity of the exe

cution environment. That is, we start with the observation that trusted enforcement 

of contextual policies depends on correct execution of the supporting application. In 

this chapter, we will explore how to provide execution integrity under the assumption 

that the OS kernel has become compromised. 

8.1 The Necessity of Authenticated Execution 

It is intuitive that execution integrity is necessary for proper enforcement of con

textual access control. Specifically, corrupting the memory image of a trusted appli

cation can allow an adversary to bypass the security mechanisms. For instance, an 

adversary with control of the OS kernel could simply modify the value of a variable 

in memory, producing an unintended control flow sequence. Thus, policy models and 

authentication protocols are meaningless if the attacker can corrupt the application’s 

execution environment. 

A number of techniques exist for providing assurance of the application’s integrity 

before execution. One can take a cryptographic hash of the program file on disk, and 

compare the result with a previously known value. Coupling this approach with attes

tation techniques can provide guarantees even for remote systems. These techniques 

have an inherent limitation, though, as they can only be used prior to executing the 

application. That is, once the program is running in memory, a corrupted OS or 
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another vulnerable program could modify the program image, leading to unintended 

or catastrophic results. 

In this chapter, we provide a novel approach for protecting the application’s in

tegrity while it is executing on a system. Our technique involves encoding the memory 

image into a protected space controlled by a trusted VMM. Previous attempts for pro

viding such an integrity check have one major drawback: If corruption is detected, 

the application is terminated. In some instances for critical applications, termination 

is undesirable. Our work, in contrast, provides a recovery mechanism that allows the 

VMM to repair the memory image and continue running. In the setting of CDAC, 

this technique could allow a server to consider the integrity of a remote application 

before granting access to a trusted resource. 

Several classes of applications, such as military, health or infrastructure moni

toring software, are highly critical; compromising their correct execution may have 

dire consequences. Typically, such applications originate at trustworthy sources, and 

they undergo a thorough testing process, possibly including formal verification. Con

sequently, it is reasonable to consider these programs to be trusted and free of ex

ploitable vulnerabilities. To ensure that the code executes correctly, it is vital to pro

vide strong guarantees that the critical application is isolated from untrusted code. 

However, modern computing practices tend to make such isolation impossible. 

Specifically, trusted software frequently runs on top of a commercial off-the-shelf 

(COTS) operating system (OS). Such COTS systems tend to be very complex and 

proprietary, preventing a rigorous security evaluation and formal analysis. Further

more, the presence of legacy applications on the same machine may make secure 

alternatives infeasible. Proper isolation of the trusted processes, then, relies on the 

integrity and correctness of the OS. However, security vulnerabilities in the untrusted 

applications and/or the COTS OS destroy the guarantees of isolation and may lead 

to compromise of the trusted code. 

Memory corruption attacks are among the most frequently occurring security vi

olations, accounting for 70% of the total number of CERT advisories between 2000 
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and 2003 [178]. A common approach is for an attacker to provide malformed input 

to an application to change its execution. Such attacks can be especially devastating 

if the target is the OS itself. As today’s attacks predominantly employ these tactics, 

the security literature has primarily focused on protecting an application from exter

nal sources and/or protecting the OS from compromise. However, recent high-profile 

attacks suggest that future adversaries may be very sophisticated, well funded, and 

state-backed, and may have very precise targets. For instance, Stuxnet combined mul

tiple exploits in order to disrupt the proper execution of a particular programmable 

logic controller (PLC) [179]; the worm was harmless to machines that did not have 

this PLC installed. 

To reflect this changing threat model, our work is based on a very powerful adver

sarial model, in which we assume that the OS has already been compromised. That 

is, the attacker has already “won the game,” according to traditional security threat 

models. However, we assume that the adversary’s goal is to leverage the OS privileges 

in order to modify the memory image of the critical application. For instance, if the 

critical application computes missile trajectories for a military operation, the adver

sary’s goal may be simply to skew the results. Our goal, then, is twofold. First, we 

aim to identify such corruption whenever it occurs. Second, if the damage is reason

ably small, we desire to repair the memory image dynamically, allowing the process 

to continue normal execution. 

Application recovery is a complex task and may take place at different levels. 

Recovery-oriented computing (ROC) [87] involves designing rapid failure recovery 

mechanisms into new and existing applications. The resulting programs include the 

ability to “undo” errors by returning to a good state. The approach that we adopt in 

this paper is to use a trusted virtual machine monitor (VMM) to detect and repair the 

corrupted application memory pages. As such, our work can be seen as a technique for 

transparently incorporating ROC into the execution environment without modifying 

the original application code. 
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Existing research has already acknowledged the importance of protecting critical 

applications against an untrusted and/or compromised execution environment. Like 

ours, a common approach is to employ a trusted VMM that mediates interactions 

between the OS and the critical application, and restricts the kernel’s access with 

respect to the memory space of the protected application. These VMM-based solu

tions generally fall into two broad categories: memory authentication and memory 

duplication approaches. 

•	 Memory Authentication. In this category, a trusted component (e.g., the VMM) 

applies cryptographic techniques to validate the integrity of the application’s 

memory image during execution. For instance, Terra [67] provides trusted ap

plications with isolated virtual machines, and uses cryptographic hashes of the 

software image to allow remote attestation to a third party. The hashes, along 

with a summary of the hardware and software layers running on the virtual 

machine, are signed with a private key stored in tamper-resistant hardware. 

Overshadow [84] provides both confidentiality and integrity of critical applica

tions by encrypting the memory image. As the program executes, the VMM 

authenticates and decrypts pages as they are referenced. 

•	 Memory Duplication. NICKLE [85] protects the OS from rootkits by securely 

storing a cloned image of the kernel. At boot time, the trusted VMM creates a 

copy of the kernel in a portion of memory that is inaccessible to the guest OS. 

As the system runs, only instructions retrieved from this copy are permitted 

to execute in kernel mode. That is, if a rootkit has been installed after the 

system boots, it cannot execute, as its instructions do not exist in the protected 

space. While NICKLE protects the OS at run-time, it cannot protect critical 

applications if the original kernel image is malicious. 

Observe that these approaches primarily focus on detection of memory corruption. 

Memory authentication mechanisms terminate the protected application if corruption 
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is detected. Similarly, memory duplication techniques detect and prevent the intro

duction of malicious kernel code, but do not protect application code. Furthermore, 

for critical applications, detection of corruption alone is inadequate, as disruption of 

the execution may have disastrous consequences. That is, the attacker still wins, even 

if the corrupted process is terminated. 

To ensure critical application recovery, memory authentication must be combined 

with mechanisms for application checkpointing [180]. Such mechanisms allow the 

critical application to be re-instated to a valid configuration saved previously. Fig

ure 8.1(a) illustrates alternatives for checkpointing: the memory image can be saved 

to protected local storage, or to a remote server if there are concerns that even the lo

cal storage may be compromised. However, checkpointing has two drawbacks. First, 

saving the memory image to an external system (either local or remote) incurs consid

erable overhead, therefore can only be done with limited frequency, otherwise most of 

the CPU time will have to be spent on checkpointing, rather than performing useful 

computation. Second, the granularity of recovery is coarse, as correct execution can 

only be resumed from the previously-saved checkpoint. However, between the time 

the last checkpoint was created and the attack is staged, the critical application per

formed more computation. The results of such computation are lost in the recovery 

process. The limited frequency of checkpointing (identified as the first drawback) only 

exacerbates the problem: the lower the frequency, the more significant the portions 

of the critical application execution that must be rolled-back. 

We address these limitations through a novel framework for resilient execution of 

critical applications running in untrusted environments. Specifically, we propose and 

evaluate an on-line recovery mechanism that provides better performance and finer 

granularity compared to checkpointing. To meet these goals, we rely on a combina

tion of memory image authentication and duplication. Figure 8.1(b) illustrates the 

functionality of the proposed approach: when corruption is detected, an on-line mem

ory image reconstruction procedure is initiated, which aims at restoring the correct 

image based on a small amount of redundant information which is kept in protected 
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(a) Application Checkpointing (b) On-line recovery does not require execution 
roll-back 

Figure 8.1. Overview of proposed approach for on-line critical application recovery 

storage, outside the reach of the OS or other untrusted software components. If re

construction succeeds, then the application will continue with the exact same image 

that existed before the attack, without the need to roll back execution. Hence, the 

granularity of the recovery is optimal. If on-line reconstruction fails, then the system 

reverts back to the checkpointing procedure. However, as we show experimentally in 

Section 8.5, the success rate of on-line reconstruction is high under reasonable cor

ruption attacks, resulting in a practical and efficient framework for achieving critical 

application availability. 

For the memory duplication portion of our scheme, we have evaluated three ap

proaches. First, the näıve approach simply clones the application memory image in 

its entirety. While efficient in terms of speed, the space requirements of this ap

proach may be prohibitive. Second, we employ error correcting digital fountain codes 

(DFC) [181], which have been proposed for reliable communication over unreliable 

network channels. We focus on LT codes, a DFC instantiation, which take a message 

consisting of K blocks and encode the data into N > K blocks. LT codes provide a 

probabilistic guarantee of reconstructing the original message if a small number of the 

N blocks are corrupted. Our LT approach is efficient in space, requiring less than 25% 

extra storage, but reconstruction must be done at every page reference. Our third 

approach, which provides a balance between the first two, is to use Reed-Solomon 
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codes [88], which append an array of data with a small number of parity bits for 

error correction. While Reed-Solomon encoding and decoding is significantly slower 

than the same procedures for LT codes, these procedures must only be executed when 

corruption occurs, producing better aggregate performance. 

8.2 Error Correcting Codes 

Our system employs error correcting codes to recover corrupted memory images. 

We consider two codes: Reed-Solomon (RS) [88] which is a parity-checksum based 

code, as well as LT codes [89], a digital fountain rateless code. 

RS codes rely on interpolation of polynomials in a finite field, and for each block 

of k symbols of input generates n > k symbols of output. The resulting RS(n, k) code 

can correct up to t symbol errors, where t = (n − k)/2. In our setting, each symbol 

is a byte of data. A common setting is RS(255, 223) which can correct 16 bytes for 

each block of 223 bytes using a 32-bytes checksum. The checksum of a message, also 

referred to as a syndrome, is obtained by multiplying the k-byte message, interpreted 

as the coefficients of a k-degree polynomial, with x(n−k) and computing the remainder 

modulo a generator polynomial g of degree 2t. Decoding is equivalent to computing 

the roots of a n-degree polynomial. The RS code is rather compute-intensive, but has 

the advantage that in absence of errors, the original message can be accessed directly, 

as opposed to fountain codes that are discussed next. 

Digital Fountain Codes (DFC) have been designed for error correction in packet-

switched communication networks, such as the Internet. In packet switched networks, 

data losses typically occur at the packet level, i.e., a packet is either correctly received, 

or it is entirely dropped (forwarding routers may decide to drop a packet along the 

transmission path if certain error-detection checksums fail). In this setting, hav

ing self-contained redundant information within each packet may not be an effective 

solution. The idea behind DFC is to re-encode the message to be sent, such that 

redundant error-correcting information is shared by multiple packets. Specifically, 
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given K payload packets, DFC provide mechanisms that may generate a potentially 

infinite sequence of packets, and any N > K such packets (where N is only slightly 

larger than K) are sufficient to re-construct the original message. Each transformed 

message is obtained by performing an exclusive-or operation on a sub-set of the orig

inal K packets. Due to their property that an infinite number of packets may be 

generated, such codes are called rateless. The term “fountain” is an analogy that 

captures the fact that the receiver needs to collect a number of any N packets to 

recover the message, similarly to collecting drops of water from under a fountain. We 

present the details of LT codes operation in the next section. The advantage of LT 

codes over RS codes is the faster encoding and decoding time. However, decoding has 

to be performed even if there are no errors, since the original message (i.e., memory 

block) is not available in direct form. 

8.2.1 LT Codes 

Figure 8.2 shows an example of block encoding in digital fountain codes (DFC). 

There are a total of three original message blocks (K = 3), which are encoded into 

four blocks (N = 4). Each original block Mi contributes to one or more of the encoded 

blocks. The functionality of the DFC is given by the mapping of original-to-encoded 

blocks, which can be specified as a bipartite graph G with K+N nodes, corresponding 

to the K original blocks and the N encoded blocks. The graph G contains an edge 

(i, j), 1 ≤ i ≤ K, 1 ≤ j ≤ N , if the original block i contributed to the contents of 

encoded block j. With this notation, each encoded block can be expressed as 

Bj = 
E 

Mi 

(i,j)∈G 

The graph G could be chosen purely at random, e.g., for each encoded block j 

choose an in-degree dj uniformly between 1 and K, and then set Bj as the exclusive-or 

of dj blocks Mi chosen uniformly at random. However, as shown in [181], even if the 
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probability of successful reconstruction of such a scheme may be good for N slightly 

larger than K, the average in-degree of encoded blocks is K/2, which determines high 

encoding cost. We employ an efficient DFC instance called LT codes [89]. LT codes 

use a sparse graph for which the in-degree of an encoded block is chosen at random 

from a robust soliton distribution. As a result, the average degree d̄ of the graph 

G is much less than K/2. Next, we detail how message encoding and decoding is 

performed. 

Figure 8.2. Digital Fountain Codes: Block Encoding 

8.2.2 Block Encoding 

The main operation of encoding is finding the in-degree dj for each encoded block 

Bj . Once dj is determined, the actual source blocks are randomly chosen from the 

original K message blocks. To find dj, we first define the ideal soliton distribution, 

which has the form [181]: 

1 , d = 1 
ρ(d) = K 

1 , otherwise 
d·(d−1) 
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Let 0 < c < 1 be an arbitrary constant, and denote by δ the desired probability for 

successfully recovering blocks. Define 

√ K 
S = c · K · ln 

δ 

and let  
S 1 K · , d = 1, 2, . . . , − 1
K d S

 
S Kτ(d) = · log S , d = 
K δ S 

K 


0 , d > 

S 

Then, the robust soliton distribution [181] of degree d is given by
 

ρ(d) + τ(d)
 
µ(d) = �

d (ρ(d) + µ(d)) 

where the denominator is a normalizing factor that ensures that the probability is 

bounded in the interval [0, 1]. Algorithm 7 shows the pseudocode for encoding the 

contents of an application’s memory image. 

Algorithm 7: EncodeMemoryImage
 

Input: M1, . . . ,MK : original memory blocks ; N : the number of encoded (i.e., 
output) memory blocks 

Output: B1, . . . , BN : the encoded blocks 

for j := 1 to N do 
/* choose in-degree for encoded block j */ ;
 
choose dj randomly from distribution µ(d);
 
B ← 0 ;
 
for i := 1 to dj do
 

choose M uniformly at random from M1, . . . ,MK ; 
B ← B ⊕ M ; 

Bj ← B ; 



173 

8.2.3 Block Decoding 

The algorithm for decoding inspects the graph G to find an encoded block that 

has in-degree equal to 1. Due to the fact that in-degrees are drawn from a robust 

soliton distribution, such a block exists with high probability. Denote such a block 

by B ′ . It immediately results that there exists i with 1 ≤ i ≤ K such that Mi = B ′ . 

Next, the algorithm performs an exclusive-or between B ′ and all encoded blocks that 

have Mi as one of their input blocks, i.e., all Bj such that (i, j) ∈ G. The in-degree 

of all blocks Bj is decreased by 1. 

The algorithm then continues recursively on the modified set of encoded blocks, 

by finding another block B ′′ with in-degree 1. The process continues until either (i) 

all blocks have been recovered, or (ii) no encoded block of degree 1 can be found. 

In the former case, the decoding is successful, whereas the latter case signifies that 

decoding failed. However, due to the distribution of block degrees, the probability 

of successful decoding is high. In practice, the success probability of the decoding is 

1− δ, where δ is a small positive constant depending on K and N [181]. 

Algorithm 8 shows the pseudocode for decoding the contents of an application’s 

memory image. 

Algorithm 8: DecodeMemoryImage
 
Input: B1, . . . , BN : encoded memory blocks ; K : the number of original blocks to 

be recovered 
Output: M1, . . . ,MK : the decoded blocks 

for i := 1 to K do 
if (� ∃ j such that in degree(Bj) = 1) then 

abort with error ; 
else 

find the unique s such that (s, j) ∈ G ; 
Ms ← Bj ; 
foreach k, 1 ≤ k ≤ N such that (s, k) ∈ G do 

Bk ← Bk ⊕ Ms ; 
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8.3 System Overview 

Our system design consists of using a VMM to incorporate error-correcting codes 

into the x86 memory architecture. The goal of our design is to protect the code 

and data for applications executing within an untrusted OS environment. That is, 

we aim to provide a robust defensive mechanism that protects the application even 

if the OS kernel has been corrupted. As described in Section 2.5, existing work in 

this area that has been designed to protect application data has provided only a 

detect-and-terminate approach. Our goal is more ambitious, as we want to provide a 

probabilistic guarantee that the application can recover from memory corruption and 

continue processing. 

8.3.1 Architecture and Approach 

Figure 8.3 shows a high-level view of our system. The guest OS executes within 

an untrusted zone (indicated in red) that consists of an emulated memory that is es

tablished by the trusted VMM. The guest OS has complete control over the emulated 

memory, as well as the corresponding swap file. Our goal is to execute trusted guest 

applications within this untrusted zone by leveraging the VMM. 

Before the guest OS boots, the VMM establishes a segment of protected physical 

memory that is beyond the reach of the guest OS. When a guest application runs, the 

VMM allocates a portion of this memory to store verification and reconstruction data 

(e.g., hashes, redundant blocks) that is specific to that application. As the system 

runs, it alternates between user mode, in which the application executes, and kernel 

mode, in which the guest OS has control of the system. 

Our basic approach is to use the VMM to detect these mode switches and perform 

some additional work. When the switch is from user mode to kernel mode, we take a 

snapshot of the application and encode the application to generate some redundant 

data. Later, when the mode switches back from kernel mode to user mode, we check 
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the integrity of the application’s memory image and, if necessary, use the redundant 

data to repair any corruption that has occurred. 

As a part of the encoding process, the VMM generates a small amount of ran

domized initialization data before the guest OS boots. As this data is inaccessible 

to the guest OS or applications, and is randomized at run-time, it thwarts static 

attack strategies. Also, while our proof-of-concept implementation uses a VMM that 

executes within a host OS, our architecture also applies to cases when there is no 

host OS, and the VMM executes on bare hardware. This is how Xen, for example, 

operates. The advantage of eliminating the host OS is that it reduces the trusted 

code base. 

Figure 8.3. VMM-based System Architecture 

An important aspect of Figure 8.3 is the delineation of the trust barrier. As 

the untrusted guest OS has full access to the emulated memory space, we make the 

explicit assumption that everything inside the dotted line is untrusted. Furthermore, 

the guest OS has access to external devices, such as a hard drive. This access has a 

direct implication on our system design, as the guest OS may swap a page of emulated 

memory to the hard drive in response to a page fault. However, as we will explain in 

the next section, the VMM can detect the presence of such an interrupt and monitor 

the corresponding write. In this way, the VMM can continue to monitor the contents 

of memory, even if they get swapped out to disk. The arrows in the figure indicate 
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that it is the guest OS that controls which emulated pages of memory are swapped 

out. 

8.3.2 Attack Model 

The aim of our system is to provide a resilient execution environment for trusted 

guest applications. That is, we assume the protected application has undergone ex

tensive analysis, possibly including formal methods, to verify that the code is immune 

from common vulnerabilities, such as buffer overflows. As such, we do not consider 

any attacks exploiting the application itself. However, the rest of the virtual environ

ment, including the guest OS and other guest applications, is generally untrusted. In 

Section 8.4, we describe minor exceptions to this assumption. We consider the under

lying host OS (if there is one, which is not true for VMMs like Xen) and the VMM 

to be trusted (assumptions that are common in the literature on virtualization-based 

security). 

As a description of a sample attack, consider a trusted application running on a 

guest platform that also has a vulnerable network-facing application, such as an email 

client. Our model is that an attacker exploits a vulnerability in the untrusted appli

cation to inject code in the OS. The injected code then corrupts that application’s 

page tables to point to the trusted application, and then modifies the trusted ap

plication’s memory contents. Thus, the memory corruption originates from a source 

outside of the trusted application. We also assume that the attacker corrupts only 

a small portion of the trusted application. This is consistent with scenarios where 

attackers aim to remain stealthy, while causing the application to deviate from the 

correct execution flow. 

8.4 System Details 

Our goal is to recover from memory corruption attacks by applying error-correcting 

codes to the contents of memory. When an application is running in user mode, the 
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CPU has a Current Privilege Level (CPL) of 3; when the OS kernel takes over, the 

CPL switches to 0. Inside the VMM, we detect whenever the CPL switches from user 

mode to kernel mode (i.e., the CPL switches from 3 to 0). When this occurs, we 

take, in essence, a snapshot of the current application memory image. If the kernel 

is malicious and then corrupts the contents of memory, we attempt to repair the 

damage by restoring the snapshot when the application continues processing. Before 

describing the details of how our solution works, we provide a small amount of relevant 

background material describing the x86 memory layout. 

8.4.1 x86 Memory Layout 

Figure 8.4 illustrates the key components of the x86 memory layout and virtual 

memory addressing techniques for two applications1 . The virtual memory space of 

each application is divided into a sequence of pages, typically 4KB each. When an 

application references a virtual memory address, the virtual page must be translated 

into a frame in physical memory. This translation process is handled by the hardware 

memory mapping unit (MMU). 

The address of the frame is primarily found using two techniques. First, a trans

lation lookaside buffer (TLB), which resides in high-speed cache, may contain the 

frame address if the page has been recently accessed. If the TLB does not contain 

the address, then a page walk is initiated. In a page walk, the control register CR3 

is used to locate the page directory (PD in the figure), which is an array of entries 

for locating page tables (PT in the figure). Depending on the page size, one or more 

page tables will be traversed. Finally, the physical address for the frame will be found 

as an entry in the page table. For increased performance, any frame, including the 

page directory and page tables, may be stored in a high-speed cache. 

1Technically, we should make a distinction between the application, which is a user-level abstraction, 
and the process, which is a unique OS-level thread of execution. Moreover, an application may consist 
of multiple processes. However, since our discussion centers on the idea of a trusted application, we 
will primarily use that term. 
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Figure 8.4. Overview of the x86 memory layout, including page tables 
and page directories 

Figure 8.5. Key events as execution progresses. Unlabeled time in 
gray indicates VMM execution. 

Figure 8.4 does not show how demand paging influences memory, though. In 

demand paging, if a page has not been previously accessed, then there is no corre

sponding physical frame. Rather, when the first access occurs, a page fault causes 

the OS kernel to load the data from a backing store, typically a hard drive. Once 

the frame is loaded and the page tables have been updated, the application continues 

executing as expected. 
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In our solution, we have integrated LT and Reed-Solomon codes into the physical 

memory access of the VMM, and we have accomplished this using a technique sim

ilar to demand paging. Specifically, we decode a frame corresponding to user-mode 

applications only when the application actually references that page. When control 

of the CPU is taken away from the application, we then encode all referenced frames 

and store checksums to ensure the integrity of each frame. We also store redundant 

information to help recovery. After the encoding, the OS kernel executes. If the kernel 

attempts to corrupt the application in any way, our decoding techniques can detect 

the tampering. Furthermore, we provide probabilistic guarantees that our techniques 

can repair the memory image even if corruption has occurred. Note that our tech

niques are operating directly on the frames themselves, regardless of whether they 

are stored in main memory or in a cache. 

8.4.2 Memory Encoding and Decoding 

Figure 8.5 shows a sampling of some key events during execution of our VMM-

based protection mechanism. In a multitasking system, user mode applications exe

cute for small periods of time, called quantums. The quantum ends when a hardware 

interrupt occurs or the application issues a system call, which is a request for a service 

from the OS kernel. When this occurs, the CPU performs a mode switch from user 

mode (CPL 3) to kernel mode (CPL 0). As this switch occurs in hardware, the VMM 

is able to detect the switch and interrupt processing. Another mode switch also oc

curs when returning to user mode. The events at times t4 and t7, denoted md sw, 

correspond to mode switches. When the OS kernel itself is executing, it may issue 

a context switch (ctx sw), as indicated at times t5 and t6. In a context switch, the 

kernel performs a number of tasks, including updating the CR3 register for a different 

application. The gray time periods in Figure 8.5 correspond to the execution of the 

VMM. 
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The influence of demand paging on our design becomes clear when considering 

the events at times t1, t2, t3, and t8. When a quantum begins (at a mode switch from 

CPL 0 to 3), the application’s memory image is in an encoded form. However, we 

only decode a frame when it is first accessed. So, at time t1, application A performs a 

write to page p1 (which we assume is the first reference to p1 for illustration). When 

the frame is located, the VMM interrupts processing to decode the frame. Then, at 

time t2, the VMM does not have to do any work, as p1 is already decoded. At time 

t3, p2 must be decoded. 

When the mode switch occurs at time t4, the VMM must encode all pages that 

have been decoded during the previous quantum. In this figure, that means p1 and 

p2 must be encoded. The system will then continue processing as usual until the 

mode switch at t7. Just like before, we do nothing immediately. However, at t8, the 

frame for page p2 must again be decoded, because it has not previously been accessed 

during this quantum. 

The advantages of our approach are twofold. First, by performing the decoding 

on-demand, we significantly reduce the overhead our system imposes, as we will show 

experimentally in Section 8.5. Second, by performing the encoding of frames at the 

mode switches, we are ensuring that no kernel instruction will execute before encoding 

occurs. Thus, if the kernel has become corrupted, the VMM successfully protects the 

application from attack. We implemented two versions of our design, with LT codes 

and Reed-Solomon codes respectively. We provide the details next. 

8.4.3 LT Codes-based Approach 

Algorithm 9 describes the encoding process using LT codes. Each frame is parti

tioned (routine Partition) by interpreting it as a sequential array of K blocks of equal 

size. These blocks are encoded (routine Encode) into N > K blocks according to a 

bipartite graph (see Appendix 8.2.1). The first K encoded blocks are copied back 

into the frame in memory, whereas the remaining N − K are stored in the VMM 



181 

protected space. The VMM also stores the hash of each of the first K blocks, as well 

as the hash of the original decoded frame. 

The VMM stores a global array of data structures, denoted as StoredData. Each 

data structure stores the extra N−K blocks plus the hashes of the K blocks stored in 

OS-accessible memory. The structure EncodingData consists of EncodingData.blocks 

(the array of N − K extra blocks), EncodingData.blockhash (the array of hashes for 

the K blocks in memory), and EncodingData.hash (the hash of the entire frame). Its 

counterpart DecodingData is used for decoding in Algorithm 10 (the Decode routine 

is presented in Appendix 8.2.1). 

Algorithm 9: EncodeMemoryImageWithLT
 
Input: ReferencedFrames: an array containing the frame numbers referenced 

during the quantum 

i ← 0 ;
 
while (i < ReferencedFrames.length) do
 

FrameNumber ← ReferencedFrames[i];
 
Frame ← GetPhysicalFrame(FrameNumber);
 
EncodingData.hash ← Hash(Frame) ;
 
KBlocks ← Partition(Frame);
 
NBlocks ← Encode(KBlocks);
 
for j := 0 to K − 1 do
 

EncodingData.blockhash[j] ← Hash(NBlocks[j]); 
write NBlocks[j] to Frame ; 

for j := K to N − 1 do 
EncodingData.blocks[j − K]← NBlocks[j]; 

StoredData[FrameNumber]← EncodingData ; 
i ← i+ 1 ; 

8.4.4 Reed-Solomon Codes-based Approach 

The other implementation of our approach was to use Reed-Solomon codes. The 

disadvantage of Reed-Solomon codes is that the encoding and decoding process takes 

longer (see Section 8.5). However, Reed-Solomon allows us to keep the contents of 

main memory intact. Specifically, a Reed-Solomon code takes an array of k symbols, 

and appends it with n − k symbols, called the syndrome. At decoding time, Reed
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Algorithm 10: DecodeSingleReferencedPageWithLT
 
Input: FrameNumber: the index of the frame to be decoded 

Frame ← GetPhysicalFrame(FrameNumber);
 
NBlocks ← Partition(Frame);
 
DecodingData ← StoredData[FrameNumber];
 
DecodeBlocks ← ∅;
 
for i := 0 to K − 1 do
 

if Hash(NBlocks[i]) = DecodingData.blockhash[i] then 
append NBlocks[i] to DecodeBlocks ; 

for i := 0 to N − K − 1 do 
append DecodingData.blocks[i] to DecodeBlocks; 

KBlocks ← Decode(DecodeBlocks); 
write KBlocks to Frame; 
if DecodingData.hash � Hash(Frame) then = 

abort with error; 

Solomon can then correct up to (n − k)/2 corrupted symbols to recover the original 

data. As such, we only need to store the syndrome, and we do not need to write 

anything back to main memory. 

The fact that main memory is not modified during the encoding process allows 

for an optimization: If the page was only referenced for read operations (i.e., it has 

not been modified), then we do not have to perform the encoding of that frame. 

Furthermore, we only need to store a single hash for the entire frame. At decoding 

time, if the hash of the frame matches the stored value, there is no need to decode. 

These optimizations make the Reed-Solomon approach very advantageous when most 

memory accesses are simply read operations. 

There is one other important consideration for the Reed-Solomon implementation 

that did not arise in the LT code version. Specifically, we do not want to partition 

the page simply into an array of arrays. If we were to do so, the adversary would 

only need to corrupt ⌈(n − k)/2⌉ + 1 consecutive bytes to successfully corrupt the 

frame. That is, when the Reed-Solomon parameters are (255, 223), corrupting 17 

bytes would be sufficient for a successful attack (see Section 8.2). 
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To mitigate this threat, the VMM generates a random mapping for bytes within 

a frame at run-time. For a 4KB frame, each byte is assigned a random value from 

0 up to ⌈4096/k⌉ − 1, where this value indicates one of the arrays. So, if (255, 223) 

codes are used, there are ⌈4096/223⌉ = 19 arrays, and each byte would be assigned 

to one of the 19 arrays. However, the randomization ensures that the first 18 arrays 

will each have 223 bytes assigned to them. The last array will get the remaining 82 

bytes, and will be padded with 0 to also have length 223. Hence, when encoding 

or decoding, the Partition and Departition functions loop through the 4096 bytes of 

the frame, copying each byte to the corresponding array. Figure 8.6 illustrates the 

randomized mapping for the (255, 223) encoding. As we will show later in Section 8.5, 

this randomization reduces the attack success rate. The attacker must now corrupt 

305 bytes under the (255, 223) parameters to guarantee success. Specifically, there 

are 19 arrays, and each can tolerate 16 corrupt symbols; 305 corrupt bytes guarantees 

that at least one array has 17 corrupt symbols. 

Figure 8.6. Randomized mapping of bytes in a page to 19 arrays for 
Reed-Solomon (255,223) encoding. Each Arrays[i] has 223 entries. 
Since Arrays[18] only receives 82 bytes from the page, that array is 
padded with values of 0 to get a length of 223 bytes. 

Algorithm 11 shows the algorithm for encoding the referenced frames under the 

Reed-Solomon approach. As before, StoredData is an array of data structures stored 

in the protected VMM space. In this case, StoredData consists of a single SHA-1 
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value StoredData.hash, an array of syndromes StoredData.syndromes, and a flag 

to indicate the page has been modified2 . When the mode switch occurs, the VMM 

checks to see if the page has been modified by checking the flag. If the page has not 

been modified, there is no encoding that is needed. If the flag indicates a write has 

occurred, we hash the page to see if the write actually changed the contents (i.e., it 

did not write a value that matched what was already stored). Only if the page has 

actually modified do we partition the frame and create the syndromes. 

Algorithm 11: EncodeMemoryImageWithRS
 
Input: ReferencedFrames: an array containing the frame numbers referenced 

during the quantum 

i ← 0 ;
 
while (i < ReferencedFrames.length) do
 

FrameNumber ← ReferencedFrames[i] 
Frame ← GetPhysicalFrame(FrameNumber) 
EncodingData ← StoredData[FrameNumber] 
if EncodingData.f lag = 0 then 

return ; 
h ← Hash(Frame); 
if EncodingData.hash = h then 

return ; 
EncodingData.hash ← h;
 
Arrays ← Partition(Frame);
 
pad Arrays[Arrays.length− 1] with 0 for correct length ;
 
for j := 0 to Arrays.length do
 

EncodingData.syndrome ← Encode(Arrays[j]); 
i ← i+ 1 ;
 

Algorithm 12 describes the algorithm for decoding the frame under the Reed-

Solomon approach. Note the optimization in lines 3-5: If the page’s hash matches 

the stored hash value, then there is no need to do any decoding. 

2We could actually use the dirty bit in the corresponding page table entry for this purpose, but that 
would require doing a page walk. Hence, we chose to sacrifice a small amount of space to optimize 
for speed. 
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Algorithm 12: DecodeSingleReferencedPageWithRS
 
Input: FrameNumber: the index of the frame to be decoded 

Frame ← GetPhysicalFrame(FrameNumber); 
DecodingData ← StoredData[FrameNumber]; 
if DecodingData.hash = Hash(Frame) then 

return ; 
Arrays ← Partition(Frame); 
pad Arrays[Arrays.length− 1] with 0 for correct length ; 
for i := 0 to Arrays.length do 

append DecodingData.syndrome[i] to Arrays[i]; 
Decoded ← Decode(Arrays[i]); 
Departition(Decoded); 

if DecodingData.hash � Hash(Frame) then = 
abort with error ; 

8.4.5 Storage of Recovery Information 

Figure 9.1(d) shows the structure of data storage for a single page under both 

schemes. In the LT approach, we assume K = 16 and N = 18. The column on the 

left shows the original contents of memory. When the data is encoded, the contents 

of physical memory are then overwritten with the encoded blocks. The additional 

two blocks are also stored in the VMM, along with the hashes of the blocks stored in 

physical memory. A hash of the original (unencoded) data is stored for an integrity 

check. In this figure, we do not show the encoding graph3 (120 bytes), as all pages 

share the same graph. 

In the Reed-Solomon scheme, we assume the parameters are (255, 223). To gen

erate the encoding data, the original frame (on the left) is partitioned into 19 arrays 

of 223 bytes each. The last array consists of 82 bytes from the frame, followed by a 

padding of 141 bytes with the value 0. For each array, we generate and store a 32-byte 

syndrome. The one-byte flag is used to indicate that the page has been modified, and 

the hash of the original (unencoded) data is stored for an integrity check. In this 

figure, we do not show the page-to-array mapping, which is simply an array of 4096 

bytes. 

3For details about the encoding graph concept, please see Appendix 8.2.1. 
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Figure 8.7. Decoded memory, intermediate and stored data for LT 
(top) and Reed-Solomon (bottom). 

8.4.6 Implementation Challenges 

Integrating memory encoding into a real system requires addressing a number 

of issues. First, the VMM must become aware of the OS paging procedure. That 

is, when the guest OS kernel responds to a page fault, it may choose to swap an 

application page to disk. Once the data is on the disk, it is beyond the protection of 

our memory encoding scheme and subject to attack. However, as page faults trigger 

a hardware interrupt, the VMM can detect this occurrence and monitor for the OS 

initiating the transfer of a page to the backing store. Later, when that same data 

is swapped back into memory (as the result of another page fault), the VMM can 

update its data structures to map the encoding data to the new frame. If the data 

was corrupted while on disk, the hash will not match when the frame is later decoded. 



187 

The next concern is the preservation of state values contained in CPU registers. 

Specifically, when a mode switch occurs, the registers are storing the current values 

of some application variables. If the kernel initiates a context switch, it pushes those 

values onto the application’s stack for preservation. When another context switch 

occurs to return to the original application, these values are popped off the stack and 

restored to the registers. If the OS is corrupt, it could modify the values stored in the 

registers before the mode switch returns control to the application. To prevent this, 

the VMM, in essence, duplicates the context switch work. We use the value stored in 

the CR3, which is unique to each application4, to locate a storage place for the state 

data. 

The last, and most critical challenge, is the distinction between legitimate page 

modifications and possible attacks from the kernel. Specifically, the main purpose of 

the OS kernel is to provide user-mode applications with access to hardware resources, 

such as the network card or hard drive. This access is granted through the system call 

interface. In order for the application to receive the requested data, the kernel must 

be able to write to a memory location in the application’s memory space, including 

the stack. That means that, when the mode switch returns control to the application, 

the hash of those frames will not be correct. 

To accommodate this, two techniques are required. First, the frame storing the 

top of the stack will not be encoded. Rather, the VMM will monitor that frame to 

ensure that the only changes made are appropriate for responding to a system call 

(e.g., the memory storing the index of the desired system call will be popped by the 

kernel). Second, we must reserve a sequence of pages in the virtual address space that 

will not be encoded. The kernel can write data to these pages, then the application 

can copy the data to an appropriate location, such as its heap. These two techniques 

allow the kernel to perform legitimate memory writes, while preventing full access to 

the memory space. 

4In theory, the CR3 could change if the application’s page directory is swapped out. This happens 
rarely in practice, though. To be thorough, the VMM, which is aware of the page directories, can 
track this and react accordingly. 
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8.4.7 Threat Analysis 

Our stated goal is to protect trusted guest applications from memory corruption 

attacks launched by the guest OS or other guest applications. We provide this pro

tection through the combination of the encoding scheme and verifying the integrity 

of encoded blocks with a cryptographic hash function. While our design offers a ro

bust layer of protection, we have identified a number of remaining threats. First, our 

system must trust the software that exists outside the trust boundary (Figure 8.3). 

Specifically, the VMM must be considered trusted. Also, if a host OS exists below the 

VMM, it must also be trusted. This also means that if the host OS swaps a frame out 

to disk, an attacker with full access to the disk could potentially attack the system. 

Thus, eliminating the host OS (i.e., using a VMM that runs on bare hardware) helps 

to reduce the assumption of trust. 

Corruption attacks. In order for an attacker to corrupt a guest application 

successfully, he would first have to construct a collision under the hash algorithm. 

To complicate that search, the collision must be the same size as the encoded block 

(in the LT approach) or the full page (in the Reed-Solomon approach). If, at any 

point, the required hash does not match, that portion of memory may be discarded. 

Furthermore, if the final page does not hash correctly (i.e., our decoding failed), the 

system will simply abort. While the use of SHA-1 makes finding a collision difficult 

(that is, nearly impossible in practice), the run-time randomization of the LT encoding 

graph and the Reed-Solomon partition map make the attack even more difficult. As 

these data structures are inaccessible to the guest OS and applications, the attacker 

would have to resort to guessing. Thus, we find successful corruption attacks from 

other guest applications to be extremely implausible, though possible in theory. 

Denial of service. While our system assumes that the guest OS may be compro

mised, we are assuming that it is still somewhat functional. That is, if the attackers 

goal is merely to shut down the system, she could corrupt the OS beyond repair. This 

attack is outside our scope, as we focus on scenarios where the attacker’s goal is to 
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keep the system working in a compromised fashion. A more subtle attack could aim 

to prevent the OS from scheduling the trusted application. To defend against this 

attack, we suggest deploying a technique similar to a watchdog timer. That is, the 

application may send a report to an external monitor at least once within a certain 

time period. If the application has not been running, the fact that the monitor does 

not receive the report will indicate that this attack has occurred. At that point, ex

ternal administration would be required to restart or repair the system. To prevent 

the guest OS from forging such reports, cryptographic techniques can be applied to 

network data, as described below. 

VMM exploits. A software VMM is subject to vulnerabilities just like any 

other piece of code. Obviously, if the adversary can corrupt the VMM, then our 

system offers no guarantees of security. However, a number of projects have made 

great strides toward protecting the VMM from corruption [65,182,183]. As such, we 

simply rely on an assumption of trust in the VMM. 

Application vulnerabilities. Our design assumes that the protected application 

is vulnerability-free. Clearly, such an assumption cannot be made in general, as 

buffer overflows and other vulnerabilities remain a common problem. However, many 

environments require trusted applications that have undergone formal analysis and 

verification. Our design offers these applications a resilient execution environment 

that protects the application from external threats. 

Corrupted network data. If the critical application sends or receives data 

across a network interface, the guest OS kernel has an opportunity to modify this data 

in transit. Specifically, access to the network card is set up by the OS via a system 

call. In the case of verifying received data, a public key could be hard-coded into 

the application without incurring a significant threat. Securing private or symmetric 

keys, though, is not possible in our current approach, as the guest OS has full access 

to read that application’s memory space and would be able to forge messages easily. 

Instead, for applications that require secret keys, we propose combining our approach 
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on top of existing solutions, such as Overshadow [84]5 or a virtual Trusted Platform 

Module [59]. By utilizing other protection mechanisms, the application could have 

secured access to a secret key as needed. 

8.4.8 Fail-safe recovery 

Recall that our goal was to detect corruption in all cases and to provide a mech

anism to repair the application dynamically without interrupting service. Clearly, 

our use of cryptographic hash functions to authenticate the integrity of each mem

ory page before it is accessed accomplishes the former6 . We have also proposed a 

scheme that provides a probabilistic guarantee of the latter. That is, our system, as 

described above, may not be able to recover transparently, especially if the amount 

of corruption within a single page is large. 

Observe that, if the recovery fails, the VMM is immediately aware of the failure, 

and knows exactly which page in the application’s linear address space is corrupted. 

As the trusted component, the VMM would have full access to replace the memory 

image as necessary. If the corrupted page consists of code or read-only data, the VMM 

can extract the relevant portion of the application from a protected local storage that 

is inaccessible to the guest OS. This procedure would allow the application to continue 

processing as before. 

The more problematic failure is if the corrupted page contains data that has 

been modified at run-time. Clearly, the VMM has insufficient information to initiate 

a transparent local recovery. Instead, the VMM would initiate a remote recovery 

protocol with a trusted server. Note that this communication channel would not be 

threatened by the guest OS, as the VMM would have direct control of the network 

interface. The VMM would then re-instate the memory image saved at the last 

5Recall that Overshadow ensures confidentiality and integrity by encrypting the memory image. 
However, our goals are integrity and availability, the latter of which is not addressed by Overshadow. 
As such, we see our schemes as complementary, and believe they could be combined for even greater 
protection. 
6As of this writing, collision attacks in SHA-1 are not practical. If this threat is a concern, one could 
upgrade the hash function to SHA-256 or other stronger functions. 

http:arenotpractical.If
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checkpoint, as shown in Figure 8.1(a). Note that, in that case part of the execution 

must be rolled back. 

8.5 Implementation & Evaluation 

To provide a proof-of-concept, we have implemented a preliminary prototype to 

measure the performance impact of our system design. We have modified the source 

code for version 0.9.0 of the QEMU hardware emulator [184]. We adapted the LT code 

library developed by Uyeda et al. [185], as well as the Reed-Solomon implementation 

by Rockliff7 . Whenever an operation triggers a mode switch (i.e., the CPL switches 

from 3 to 0), we make a call to a custom procedure that encodes the recently referenced 

pages as described in Section 8.4. Our implementation also detects when a page is first 

referenced during a quantum. When that occurs, we perform the decoding algorithm 

as described above. 

8.5.1 Performance Overhead 

Our test platform consisted of a 2.26GHz Intel R� CoreTM 2 Duo CPU with 3GB of 

667MHz memory, running Ubuntu 10.04 (Lucid Lynx), with version 2.6.32-29 of the 

Linux kernel as the host OS. Our VMM was an adaptation of QEMU version 0.9.0, 

and the guest virtual machine was running Redhat 9 with version 2.6.20 of the Linux 

kernel on 128MB of emulated physical memory. 

Our baseline result is the näıve implementation, in which the entire memory image 

is cloned in the protected space. For the baseline implementation, we could have 

simply copied the memory image from the clone without any integrity check. However, 

we opted to perform the SHA-1 calculation in the baseline. Doing so allows us to 

identify how much overhead occurs as a result of the hash, and how much occurs as 

a result of the encoding/decoding schemes. 

7Rockliff’s Reed-Solomon code software can be downloaded at http://www.eccpage.com/ 

http:http://www.eccpage.com
http:version2.6.20
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For both the baseline and the Reed-Solomon cases, we strove to ensure that 

we measured the difference that would result between doing a full frame encod

ing/decoding as compared to one that did not require encoding/decoding. Recall 

that if the page has not been modified (i.e., the current hash matches the previous), 

then no additional work is required. To measure the difference, we used a ratio that 

ensured approximately 1% of all pages referenced required the full processing. The 

remaining 99% required only the initial SHA-1 hash calculation. 

Figure 8.1 summarizes the performance impact for the nbench benchmark suite [186]. 

Clearly, incorporating any additional work into the mode switch significantly increases 

the overhead relative to a normal mode switch. This is expected, as a normal mode 

switch only requires about 3.2µs (as illustrated in the “without encoding” line of the 

table). However, when the total time for encoding and decoding is considered relative 

to the amount of time spent executing user mode applications (which significantly 

dominates the total system processing time), the performance impact of our system 

is quite reasonable. Our LT implementation imposes approximately an 10.4% perfor

mance overhead, relative to the total computational time. The Reed-Solomon version 

entails a more reasonable 3.8% overhead. Observe that most of the Reed-Solomon 

aggregate overhead is a result of the SHA-1 integrity calculations. This can be seen 

in the baseline, which incurs a 3.5% overhead just doing the hash and copying the 

page with no encoding. 

One should also observe that, while the Reed-Solomon impact is lower than the 

LT version, the better performance is a direct result of the fact that we only need 

to perform the Reed-Solomon computation on rare occasions. If an encoding or 

decoding is required, the Reed-Solomon implementation is significantly slower. Hence, 

as the frequency of attacked pages increases, LT codes will eventually offer better 

performance than Reed-Solomon. Additionally, note that the Reed-Solomon and 

baseline “per skipped” encoding and decoding are approximately equal. This is to 

be expected, as both approaches are doing the same work (i.e., computing the hash 

integrity check and nothing else). 
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Table 8.1 
Summary of the performance impact for incorporating encoding into 
mode switches and performing on-demand frame decoding. All mea
sured times are reported in microseconds. 

Metric Baseline LT RS 

Time per mode switch 

without encoding 

90.988 

3.161 

270.333 

3.232 

108.678 

3.174 

Time per encoded frame 

per full 

per skipped 

24.644 

50.627 

24.623 

40.913 

n/a 

n/a 

30.051 

483.745 

24.064 

Time per decoded frame 

per full 

per skipped 

25.785 

35.543 

25.845 

35.640 

n/a 

n/a 

26.044 

228.646 

25.401 

Overhead relative to 

user mode time 

total time 

4.1 % 

3.5 % 

11.8 % 

10.4 % 

4.6 % 

3.8 % 

The other factor that influences the performance impact is the number of pages 

referenced during a single quantum. As this ratio increases, the amount of time spent 

decoding and encoding pages increases. However, the principle of locality tells us 

that, in a given time frame, most memory references will be from approximately the 

same region. That is, the number of pages referenced per quantum is typically small. 

In the case of nbench, we typically observed around 4 page decodings per mode switch. 

This ratio appears to be typical, based on other tests we ran. The maximum ratio 

of decodings per mode switch that we encountered was around 6 pages, which we 

observed in a custom application that generated random memory references. Thus, 

the numbers reported for nbench seem to be representative of typical applications. 

Hence, unless the system requires tight real-time guarantees in response to interrupts 

(which could be affected by the delay in mode switch processing), the performance 

impact of our approach is quite reasonable. 
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8.5.2 Recovery Success & Memory Overhead 

Recall that LT codes provide only a probabilistic guarantee of data recovery. 

Figure 8.2 summarizes the success rates for K = 16 and various sizes of N . As our 

system is designed so that only 16 of the encoded blocks are to be stored in physical 

memory, we limit our evaluation to cases where some of these 16 blocks are corrupted. 

The results shown are the result of executing the LT encoding on a random block of 

4096 bytes and randomly selecting blocks to discard. For each number of discarded 

blocks, we executed the encoding and decoding 10,000 times. 

Table 8.2
 
Rate of successful data recovery for LT codes for K = 16 and various sizes of N
 

Number of Rate of successful data recovery 
discarded blocks N = 18 N = 19 N = 20 

0 100.00 % 100.00 % 100.00 % 
1 66.83 % 80.83 % 88.42 % 
2 23.24 % 44.27 % 63.85 % 
3 0.00 % 13.28 % 32.85 % 
4 0.00 % 0.00 % 9.14 % 
5 0.00 % 0.00 % 0.00 % 

For N = 18, it is encouraging that we have more than a 50% chance of successful 

recovery for up to two corrupted blocks. As N increases, so do the chances of recovery. 

For N = 20, three blocks can be corrupted while still providing more than a 30% 

chance of recovery. The trade-off, though, is that N = 18 requires less than 20% 

memory overhead (as shown in Figure 8.3), while N = 20 would require approximately 

32% memory overhead (to accommodate for the two additional blocks). 

Our choice of K = 16 required consideration. Figure 8.3 summarizes the extra 

memory required to store the hashes and extra encoded blocks for various sizes of 

K. (For completeness, we note that the storage of the encoding graph (120 bytes) 

is trivial, since it is shared for all frames.) As shown in the figure, using fewer than 

K = 16 blocks would increase the memory overhead to more than 20%. On the other 
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hand, using more than 16 blocks would increase the performance overhead, as the 

VMM would be required to spend more time computing the hashes of each block. 

Thus, K = 16 offers a balance that minimizes both the memory and performance 

overhead. 

Table 8.3 
LT storage overhead per page (in bytes) for various sizes of K, as
suming N = K + 2. 

Value 
of K 

Hash 
overhead 

Extra 
blocks 

Total 
overhead 

Percent 
of memory 

8 
16 
32 

180 
340 
660 

1024 
512 
256 

1204 
852 
916 

29.39 % 
20.80 % 
22.36 % 

To evaluate the probability of successful recovery with Reed-Solomon codes, we 

performed a probabilistic analysis, where the attacker randomly selects and corrupts 

a number of bytes. To simplify the analysis, we used a generating function based on 

the following polynomial: 

 
4096 

(n−k)/2 
 k 



P (z) = 
� 

z
  

 j 
j=0 

When this polynomial is expanded, the ratio of the coefficient of zi to the sum 

of all coefficients provides an approximation of the probability that, given a random 

choice of i bytes, the attacker has successfully picked more than (n − k)/2 from one 

of the arrays. That is, this ratio is the probability that the attacker has successfully 

corrupted the page beyond our recovery technique. Using this technique, Figure 8.4 

shows the cumulative probability that our approach can successfully recover given 

various parameters for k and the number of bytes corrupted. For instance, using 

Reed-Solomon(255,223), if the attacker corrupts less than 150 bytes in a single frame, 

our system can repair the damage with a probability of 52.78%. 
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Table 8.4 
Rate of successful data recovery for Reed-Solomon(255,k) codes. Val
ues marked with a * are not exactly 100% or 0%, but the difference is 
negligible (less than 1 in 1,000,000). The dashed lines show cut-offs 
that correspond to block sizes in the LT scheme (e.g., 250 bytes in 
the Reed-Solomon scheme roughly correspond to one corrupted LT 
block). 

Maximum number of 
corrupted bytes 

Rate of successful data recovery 
k = 223 k = 207 k = 191 

50 100.00 %* 100.00 %* 100.00 %* 
100 99.27 % 100.00 %* 100.00 %* 
150 52.78 % 99.75 % 100.00 %* 
200 1.12 % 88.88 % 99.97 % 
250 0.00 %* 37.33 % 98.88 % 

300 0.00 %* 3.01 % 87.47 % 
350 0.00 % 0.02 % 51.33 % 
400 0.00 % 0.00 %* 13.98 % 
450 0.00 % 0.00 %* 1.34 % 
500 0.00 % 0.00 % 0.03 % 

550 0.00 % 0.00 % 0.00 %* 
700 0.00 % 0.00 % 0.00 %* 

Figure 8.5 summarizes the storage overhead per page for the Reed-Solomon ver

sion. Note that n = 255 is the only feasible first parameter, as n = 2m − 1, where 

m is the number of bits in each symbol. Accommodating m � 8 would require too = 

many bit manipulations to provide a feasible approach. For the second parameter, 

we consider k values of 223, 207, and 191, which allow for the correction of 16, 24, 

and 32 byte corruptions (per array), respectively. Obviously, as k decreases, we can 

provide better probability for successful recovery. However, only k = 223 allows us 

to keep the memory overhead below 20%. 

8.6 Conclusion 

The current state of modern computer systems requires the execution of trusted 

applications in untrusted environments. In this work, we have proposed a novel 



197 

Table 8.5
 
Reed-Solomon overhead (in bytes) per page.
 

(n, k) Hash 
Syn
drome Flag 

Total 
overhead 

Percent 
of memory 

(255,223) 
(255,207) 
(255,191) 

20 
20 
20 

608 
960 
1408 

1 
1 
1 

629 
981 
1429 

15.36 % 
23.95 % 
34.89 % 

approach for protecting applications from such attacks by incorporating efficient en

coding of memory contents during the context switch procedure. In our approach, 

when the context switches from guest application A to B, the VMM encodes A’s 

memory image, then decodes B’s image after performing an integrity check. Unlike 

previous schemes, ours is unique in the sense that only ours offers the possibility that 

the corrupted application can be repaired and allowed to continue execution. 

We presented both the design and a prototype implementation. Our empirical 

results show that both the memory and performance overhead imposed by our design 

is reasonable. One possible direction for future work would be to offer a more fine-

grained approach to memory protection. For instance, it may be desirable to protect 

only critical portions, therefore reducing execution and protected storage overhead. 

Another direction would be to define the protocols and program analysis techniques 

for remote application recovery, as discussed in Section 8.4.8. Next, other types of 

encoding schemes could be explored. For instance, Raptor codes offer faster per

formance, but greater implementation complexity, and would be a good choice for 

additional evaluation. Finally, other VMM-based protection mechanisms offer addi

tional protections that our scheme does not address. For example, Overshadow also 

provides confidentiality for the application. We view our scheme as complementary 

to these other solutions, and believe that combining them would create a very strong 

protection mechanism. Quantifying the costs involved in such a scheme would be an 

important step in evaluating such a system. 



198 

9 MINIMIZATION AND RANDOMIZATION AS DEFENSE AGAINST 

LIBRARY ATTACKS 

In this chapter, we continue the discussion of execution integrity. While the preced

ing chapter began with a very powerful adversarial assumption, we consider a more 

modest and commonplace threat in this chapter. Specifically, we consider attacks on 

shared library code, such as return-into-libc and return-oriented programming. While 

code randomization has been used as a defense against these attacks, the way it has 

been applied is insufficient. In this discussion, we revisit the topic by proposing a 

fine-grained approach to randomization that overcomes the shortcomings of existing 

defenses. 

9.1 The Lack of Sufficient Defense Against Library-based Attacks 

The history of malware defense shows a clear pattern as an arms race between 

attackers and defenders. Attackers propose new techniques and defenders respond by 

finding methods to stymie exploits. While these defensive tools are being deployed, 

creative attackers find ways to bypass the schemes. Consider the history of buffer 

overflows [187, 188] and string format vulnerabilities [189]. The evolution of these 

attacks started with basic stack smashing then extended to other forms of corruption, 

such as heap-based code injection. At every step of the way, defenders found ways 

to violate an invariant of the attack behavior [91, 92, 190, 191]. For instance, canary 

words, instruction set randomization, and base address randomization either stopped 

attacks, or made crafting exploits more difficult. Attackers then responded with 

techniques to bypass the defenses [93, 192]. 

While earlier exploits involved the injection of malicious code, the recent trend 

has been to manipulate code that already exists, primarily in shared libraries such as 



199 

libc. In a basic return-into-libc attack [193], for instance, a buffer overflow corrupts 

the return address to jump to a libc function, such as system. This type of attack 

then evolved into return-oriented programming (ROP) [194]. In ROP, the attacker 

identifies small sequences of binary instructions that end in a ret instruction. By 

placing a sequence of carefully crafted return addresses on the stack, the attacker 

can use these gadgets to perform arbitrary computation. These attacks continued to 

evolve, with newer techniques using gadgets that end in jmp or call instructions [195]. 

Early solutions to the problem of library-based exploits focused on the introduc

tion of randomness into the memory image of a process. Specifically, by randomizing 

the start address of the code segment or mapped library, a single exploit packet would 

not be effective on all running instances of an application. That is, two different run

ning instances would have a different base address, so the addresses that an attacker 

needed to jump to in one instance would not be the same as the addresses in the 

other instance. Although randomization initially seemed promising, these solutions 

suffered by the small amount of randomization possible [94]. For instance, there were 

only 216 possible start addresses for 32-bit machines. Consequently, successful brute-

force attacks were feasible. The solution proposed by many researchers was simply 

upgrade to 64-bit architectures. 

We find the notion that upgrading is the only solution to be unsatisfactory. First, 

there are many cases where it is not feasible. Specifically, embedded systems often 

have strict requirements for simplicity and power consumption. Using 64-bit archi

tectures is simply not an option. Second, expecting the world’s entire 32-bit user 

community to immediately upgrade is extremely näıve. The problem is not just the 

cost of hardware. Rather, upgrading the hardware for mission-critical systems, for 

example, requires a significant amount of planning, evaluation, and documentation. 

It is impractical to demand enterprises to undertake this process in response to an 

attack vector that, at the time of this writing, is dwarfed by other threats. In short, 

we see no reason to think that 32-bit systems will be retired any time soon, despite 

the existence of attacks in the wild. Third, and most problematic, upgrading does 
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not necessariliy solve the problem. Recent work has demonstrated that an attacker 

can use information leakage to discover the randomization parameters, thus negating 

the promised benefits [95]. 

Rather than abandoning the idea of randomization on 32-bit architectures, we 

propose to re-examine the granularity at which it is performed. We start with the 

observation that applications rarely, if ever, use the full code base of shared libraries. 

Rather, for any two applications, there is a strong likelihood that the subset of libc 

code needed is different. Consequently, mapping only the library functions needed 

for a process will produce a different memory image for each application. Second, the 

amount of possible randomization generated can be further increased by permuting 

the code blocks within the library. For instance, if an application uses 500 of the 

code symbols in libc, there are 500! ≈ 23767 possible permutations of the code blocks, 

which obviously exceeds the 216 base addresses by leaps and bounds. 

This minimize-and-randomize approach has many benefits. First, as stated above, 

the number of possible randomized results clearly makes brute-force approaches in

feasible. Next, and more subtly, the code required for an attack may not exist in 

memory. If none of the code that makes up the system library function, for instance, 

is required for an application, it is simply not mapped into memory; consequently, 

there is no way for a return-into-libc exploit to jump to it. Finally, our scheme offers 

an alternative to approaches that dynamically monitor critical data like return ad

dresses. Although these schemes are effective, they distribute the performance cost 

throughout the execution life-time of the process. In our solution, the entire per

formance cost is paid once during process setup, and is quite reasonable; after the 

execution begins, the code runs as originally designed. 

With any solution, there are always costs that must also be considered. In our pro

posed scheme, there is a performance impact when the process begins. In Section 9.4 

we describe techniques for minimizing this impact. Another cost of our solution is 

reduced sharing among processes. As every process will have a different image of libc 

in memory, then the pages for this code can not be shared; this increases the total 
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memory consumption for applications. We note, though, that this impact could be 

reduced for multiple processes of the same application. That is, one could randomize 

the library only if no instances of the application are running; if another process for 

the application already exists, the loader could reuse the randomized pages. Clearly, 

reusing pages in this way decreases the randomization, but may be an acceptable 

trade-off. Thus, fine-grained randomization is a mixed blessing, as we are trading off 

increased memory consumption for safety through diversity. 

Finally, there is still a potential attack vector with our scheme. Specifically, once 

the library is randomized, the addresses are stored statically in the global offset table 

(GOT). Thus, there is a clear source of information leakage. However, we note that, 

with high probability, the attacker would have to read significant portions of the GOT 

at run-time, prior to crafting the attack payload. While such a feat is not impossible, 

we intuit that it is significantly more difficult than existing strategies. 

9.2 Background 

The focus of our work is on attacks that use existing code stored in shared li

braries. In this section, we start with a brief summary of these attack techniques. 

Figure 9.1 shows the evolution of buffer overflow attacks. After describing the evolu

tion of attacks, we then summarize critical enabling factors that guide our defensive 

technique design. 

9.2.1 Library-based attacks 

Return-into-libc [193] attacks are a special class of stack-based exploits.1 While 

buffer overflows traditionally used the corrupted return address to jump to an address 

on the heap (where injected code was placed), return-into-libc attacks jumped to 

existing code in the libc shared library. Frequently, the address of choice was the 

1Note that return-into-libc attacks are not limited to just stack-based buffer overflows. That is, an 
attacker can corrupt a data pointer on the heap and use it to modify the return address without an 
explicit overflow on the stack. 
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(c) Return-into-libc 
attack 

(d) ROP attack (a) Original layout (b) Injected code over
flow 

Figure 9.1. Evolution of buffer overflow attacks, from stack-smashing 
with injected code to gadget-oriented programming 

location of the system function, which allowed the attacker to perform an arbitrary 

system call or spawn a shell. As return-into-libc exploits involve corrupting a return 

address to jump to a known location in libc for malicious purposes, they can be seen 

as a special case of return-oriented programming (ROP). 

In ROP exploits, an attacker crafts a sequence of gadgets that are present in ex

isting code to perform arbitrary computation. A gadget is a small sequence of binary 

code that ends in a ret instruction. By carefully crafting a sequence of addresses on 

the software stack, an attacker can manipulate the ret instruction semantics to jump 

to arbitrary addresses that correspond to the beginning of gadgets. Doing so allows 

the attacker to perform arbitrary computation. These techniques work in both word-

aligned architectures like RISC [196] and unaligned CISC architectures [194]. ROP 

techniques can be used to create rootkits [197], can inject code into Harvard architec

tures [198], and have been used to perform privilege escalation in Android [199]. Initi

ating a ROP attack is made even easier by the availability of architecture-independent 

algorithms to automate gadget creation [200]. 



203 

While researchers were exploring defenses against return-oriented attacks, similar 

techniques can manipulate other instructions, such as jmp and their variants [195,201, 

202]. While the semantics of the gadgets differ from ROP techniques, jump-oriented 

techniques are built on the same premise: By stringing together a sequence of small 

gadgets, the attacker can perform arbitrary computation without code injection. To 

simplify the discussion, we generalize these techniques under the term gadget-oriented 

programming (GOP).2 Note, though, that return-into-libc attacks do not use gadgets. 

Consequently, we use the collective term library-based attacks to refer to all of these 

techniques. 

While GOP techniques are primarily studied for their applications in malware and 

execution corruption, other interesting applications have also been explored. Specifi

cally, GOP can be used to create platform-independent programs [203] (PIP). A PIP 

is a binary image that will execute without error on two or more architectures with

out modification. One useful scenario for PIPs is program steganography. That is, 

a PIP could be created and explicitly identified as a Windows x86 .exe file, while 

the intended (secret) computation is achieved by running the program on an ARM 

platform. 

9.2.2 Attack behavior summary 

Based on our survey of library-based attacks and defenses, we have identified 

a number of distinct characteristics and requirements for a successful exploit. We 

argue that a defensive technique that undermines these invariants will present a ro

bust protection mechanism against these threats. We summarize the fundamental 

assumptions and enabling factors as follows. 

•	 If an application requires access to a single function in a shared library, then 
the full code base of the library is mapped into the process memory image. 

2Such a general term has the advantage that, if someone proposes a similar technique based on, say, 
call instructions, a new name is not necessary. 
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•	 The relative offsets of code within the mapped library are constant. That is, if 

an attacker knows the base address of the mapped library, then the location of 

all gadgets and symbols is deterministic. 

•	 The same sequence of gadgets can be reused for exploits in different applications. 

That is, once an attacker has identified an exploitable vulnerability in multiple 

applications, writing the same payload of return addresses to the stack will 

produce the same attack behavior. 

The first of these factors is a problem of over-provisioning of access. That is, the 

coarse granularity of shared library loading is inadequate for enforcing the principle 

of least privilege within the library. Consequently, an attacker that can exploit an 

application vulnerability has more access to the library than is necessary. By mini

mizing the mapped image to only the required functionality, the loader enforces least 

privilege for code more accurately. 

The second factor contributes to the weakness of ASLR on 64-bit architectures. 

Recall that information leakage allows an attacker to learn the randomized base ad

dress at run-time [95]. As a result, once this address is known, the attacker can 

construct a library-based attack using the known relative offsets. Shuffling the code 

within the library at run-time raises the bar significantly. Instead of learning a single 

address, the attacker would have to locate the GOT (which may be in a random

ized location) and read its contents at run-time prior to constructing the stack-based 

payload. Thus, fine-grained randomization is a substantial advance in the protection 

mechanism. 

The third factor, which follows from the first two, illustrates an additional pro

tective feature of Marlin. With very high probability, any two given applications 

will require a different subset of symbols in the shared library. As such, the gadgets 

available in the process image for one application may not be present in the memory 

image of the other application. Consequently, the attacker would have to ensure that 

the vulnerable application actually used the symbols containing the desired gadgets. 
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In addition, the run-time shuffling of the symbols would prevent multiple instances 

of the same program from having the same library layout. Specifically, there are n! 

possible permutations for n symbols, making a brute-force attack on the randomiza

tions infeasible. Thus, a defensive technique that prohibits this factor would require 

an attacker to construct a new exploit for every instance of every application. 

9.3 libc Analysis 

In designing our solution, we performed an empirical analysis of the usage of the 

libc library by 51 popular applications, which are listed in the Appendix. To better 

understand typical libc usage in a variety of settings, we selected applications from 

a broad range of categories (e.g., network applications, language interpreters, virtual 

machine monitors, media applications). Our analysis is based solely on the binary 

executable, so we considered both open- and closed-source software. All software 

packages were downloaded for Ubuntu 10.04 (“Lucid Lynx”) for version 2.6.32 of the 

Linux kernel. 

To analyze an application’s libc usage, we performed an any-path evaluation, be

ginning with the set of dynamically mapped symbols in the program’s ELF symbol 

table, retrieved with the objdump utility. That is, we maintained a working set of 

symbols to evaluate, where the set was initialized with the application’s required sym

bols. We processed each symbol by traversing the corresponding binary instructions 

in a disassembled version of libc. If we encountered any variation of a ret, jmp, or 

Table 9.1 
Statistics concerning lines of assembly code, symbols, and branching 
instructions (ret, jmp, call) in libc 

LOC Symbols Returns Jumps Calls 
Total 
Min 
Average 
Std Dev 

276,970 
131,653 
145,498 
13,350 

2171 
360 
450 
75 

3472 
1013 
1188 
159 

39,085 
19,172 
20,985 
1782 

12,828 
4762 
5423 
626 

http:version2.6.32
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Figure 9.2. Number of libc symbols used by popular applications
 

Figure 9.3. Number of lines of libc assembly code used by popular applications
 

Figure 9.4. Number of returns in libc code used by popular applications
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Figure 9.5. Number of jumps in libc code used by popular applications
 

Figure 9.6. Number of calls in libc code used by popular applications
 

Figure 9.7. Histogram of non-minimum symbols used by popular applications
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call instruction, we added the target symbol to the working set. We proceeded in 

this manner until we reached the least fixed point of symbol references, indicating 

that we had traversed all libc instructions that could possibly be reached from the 

symbols in the application’s symbol table. 

In our static analysis, we discovered that there is a significant minimum threshold 

of libc code that must be mapped for all applications. Specifically, all processes created 

from ELF executables jump to the libc start main symbol, which indicates the 

start of the program. From this single symbol, every application reaches 360 of the 

2171 function symbols in libc. Figure 9.1 shows the total and minimum libc code base, 

as well as some basic statistics about the applications we surveyed. In Figures 9.2-9.6, 

the minimum values are labeled and marked with dotted line for reference. 

There are some interesting lessons to take from Figure 9.1. First, the minimum 

of 360 symbols ensures that, if the entire library is permuted at run-time, there is no 

shortage of randomization. That is, in contrast with the 216 possible layouts that can 

be generated by randomizing the segment base address (e.g., as in PaX), shuffling 

the library guarantees a minimum of 360! ≈ 22543 possible permutations. Second, the 

average application requires only 90 additional symbols and introduces only 175 ret, 

1813 jmp, and 661 call instructions, when compared with the minimum. That is, if 

the attacker is restricted to constructing gadgets only from the additional code base, 

the number of gadgets in memory may be too small to achieve the desired behavior. 

Finally, note that minimizing the libc code according to the application’s needed 

functionality has a drastic effect on the attack surface. On average, the lines of code 

(i.e., assembly instructions) and branching instructions are significantly smaller than 

the full library size. In other words, mapping the full library gives the attacker access 

to a significant amount of unused code for gadget construction. 

Figure 9.2 shows the number of libc symbols used by a subset of the applications 

we surveyed. For each application, the darker region on the left indicates the number 

of symbols explicitly identified by performing objdump on the executable; the ligher 

region on the right denotes the total number of symbols reached through our any-path 
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analysis. Figure 9.3 shows the total number of libc lines of code that are required for 

each application. This figure shows that most applications only require about half the 

code that exists in libc. Furthermore, observe that most of this code is the minimum 

(i.e., the code reachable from libc start main entry point. 

Figures 9.4, 9.5, and 9.6 show the reduced attack surface for gadget construction. 

Specifically, the number of ret instructions is cut down to a third, from 3472 in libc 

down to an average of 1188 (see Figure 9.1). Similarly, jmp and call instructions are 

cut to about half, from 39,085 to 20,985 and from 12,828 to 5423, respectively. 

Finally, Figure 9.7 shows an interesting result, the frequency of non-minimal sym

bol usage among the 51 applications surveyed. That is, setting aside the 360 symbols 

derived from libc start main, we calculated how many of the applications used 

each of the remaining symbols. For instance, there were 133 symbols that were used 

by only one application, while there was only one symbol used by 39 applications. 

Furthermore, 426 (72.2%) of the symbols in libc were used by 10 or fewer applica

tions, while 522 (88.5%) of the symbols were used by 20 or fewer applications. In 

other words, there is significant variation in the non-minimal symbols that are used 

by applications. Consequently, the probability of any two applications using exactly 

the same set of symbols is very small; we observed only a single pair of applications 

(gs and OpenOffice) that used the exact same set of symbols, which happened to be 

the minimal set. 

9.4 Marlin 

In this section, we describe the design of Marlin, our defense against library-based 

attacks. Marlin is, primarily, a customized loader augmented with application control

flow analysis. We start this section by describing the basic design of Marlin. We then 

describe optimizations that help to reduce the performance impact of Marlin. 
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9.4.1 Control-flow analysis 

As in Section 9.3, any-path control-flow binary analysis lies at the heart of Mar

lin. To prevent unnecessary computation, Marlin generates and stores the resulting 

control-flow graph. Then, when an application is run, Marlin’s loader reads the ELF 

header information and creates a starting set of the dynamically mapped symbols, 

as well as the 360 minimal symbols (which are reached from libc start main and 

used by all processes). Marlin then examines the control-flow graph to determine 

the set of reachable symbols. A straightforward performance optimization would be 

to perform this analysis once for each application, storing the result in a database 

maintained by the loader. The database would only need updated when the library 

or application code change. 

9.4.2 Code randomization 

The control-flow analysis produces, at run-time, the complete set of shared library 

symbols required by the new process. Marlin then generates a random permutation 

of this set of symbols. The resulting permutation determines the order in which the 

mmap system calls are issued, which changes the order of the mapped symbols in 

memory. The drastically increased number of mmap calls is the primary performance 

hit incurred by Marlin. However, as we will show in Section 9.5, these calls are very 

efficient, and the cumulative performance impact is reasonable. 

One may object that we are not providing a full accounting of the performance 

impact of Marlin’s library randomization. Specifically, by shuffling the library, Marlin 

may have an impact on the principle of locality by increasing the distance between 

code that would normally be in close proximity. As such, it is conceivable that Marlin 

would induce a larger number of page faults, thereby incurring a hidden performance 

penalty. However, functions tend to be self-contained units and it is not apparent 

how large the impact would be, as hardware and system configuration also influence 
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the page fault rate. At this point, we have not been able to quantify this effect, and 

leave this issue open for future consideration. 

9.4.3 Minimum code optimization 

Recall that there are 360 libc symbols (derived from the libc start main sym

bol) that are used by all programs. One optimization of Marlin is to eliminate these 

symbols from the main pool of permuted libc symbols. That is, since applications use 

an average of 450 libc symbols, we generate a set of the 90 addition symbols. Observe 

that this produces 90! ≈ 2459 possible permutations at run-time, which far exceeds 

the 216 possible randomizations introduced by ASLR. 

The handling of the 360 minimum symbols requires careful consideration. Recall 

from Figure 9.1 that this set contains 1013 ret, 19,172 jmp, and 4762 call instruc

tions. While we have not examined these instructions in detail, our intuition is that 

this code base is sufficiently large to generate enough gadgets for an attack. As such, 

if we were to leave these symbols as a single block that remains identical, the security 

guarantees provided by Marlin would be weakened. On the other hand, it would 

be very desirable to make this set re-usable across multiple processes to reduce the 

memory cost and performance impact of Marlin. 

As a middle ground, our approach is to generate a single permutation of the 

minimum symbol set at run-time, mapping this block of symbols to a contiguous 

page-aligned portion of memory.3 The pages that correspond to this block can then be 

shared by running processes as needed. Observe that this approach produces 360! ≈ 

22543 permutations, one of which is selected randomly at system boot. Consequently, 

the probability that any two running systems will share the same permutation of the 

360 minimum symbols is negligible. As such, the ability to apply the same exploit 

payload on multiple systems would be virtually eliminated. 

3To prevent this sharing from become a vulnerability, Marlin can regenerate the minimum symbol 
set permutation at regular intervals during execution. That is, running processes would continue to 
use the previous permutation, but new processes would use a different memory image. 
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9.4.4 Application pre-processing 

The impact of the non-minimal code randomization can be reduced even further 

by taking the permutation generation off-line. To do so, each application will have 

a dedicated file containing the next instance’s permutation. When a new process is 

created, the loader sends a signal to a trusted daemon process that runs with low 

priority. This process then shuffles the application’s library map accordingly. 

9.5 Prototype Implementation 

We have implemented a preliminary Marlin prototype as a proof-of-concept. Our 

implementation is built on version 11.02 of the Genode OS framework, running on top 

of the L4Ka::Pistachio microkernel. We opted for this software stack, as our desire 

for absolute minimization is more consistent with the microkernel philosophy. We 

modified the Genode shared library loader (ldso) and built a QEMU virtual machine 

instance. 

[init -> test-lib] "FunctionA" in "binary" ==> 00019180
 
in "testlib.lib.so"
 

[init -> test-lib] reloc jmpslot: *00323cd8=00019180
 
[init -> test-lib] FunctionA: 35
 
[init -> test-lib] &FunctionA: 0031b7e0
 
[init -> test-lib] &FunctionB: 00019190
 
[init -> test-lib] FunctionB: 800
 

Figure 9.8. Output from mapping both library functions 

Figures 9.8 and 9.9 show the output from a stack-smashing attack with and with

out Marlin. To clearly illustrate the functionality and protection, we generated a sam

ple shared library (testlib.lib.so) that consisted of only two functions (FunctionA 

and FunctionB). The first line of Figure 9.8 shows the entire library being mapped 

(without Marlin) at memory address 0x00019180. The next line shows the use of a 

jump table for the dynamic mapping. That is, while the actual library code begins at 

http:testlib.lib.so
http:isbuiltonversion11.02
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0x00019180, 0x00323cd8 is the address of the GOT entry that points to FunctionA. 

The third line shows the output of calling FunctionA (it just prints 35). 

The next two lines show addresses for FunctionA and FunctionB, but may seem 

misleading. While the GOT stores the addresses of the dynamically linked functions, 

another table is required. Specifically, the procedure linkage table (PLT) stores a 

sequence of small dispatch routines for dynamically linked functions. In this case, 

0x0031b7e0 stores the location of a wrapper routine that finds and jumps to the 

address of FunctionA in the GOT. On the other hand, 0x00019190 is the address of 

the code for FunctionB, which we compute directly without using the PLT. Finally, 

our exploit corrupts the stack to place the address of FunctionB where the return 

address is stored. As a result, when the ret instruction is executed, control jumps to 

0x00019190 and FunctionB executes, producing the last line of output (FunctionB 

just prints 800). 

[init -> test-lib] "FunctionA" in "binary" ==> 00019180
 
in "testlib.lib.so"
 

[init -> test-lib] reloc jmpslot: *00323cd8=00019180
 
[init -> test-lib] FunctionA: 35
 
[init -> test-lib] &FunctionA: 0031b7e0
 
[init -> test-lib] &FunctionB: 00019190
 
attempted write at read-only memory (WRITE pf addr=0001919c
 

pf ip=00019190 from 601 (raw 01804002))
 

Figure 9.9. Output from mapping both library functions 

Figure 9.9 shows the same exploit, but with Marlin enabled for an application 

that only requires FunctionA. That is, FunctionB is not mapped into memory. In 

this figure, one can see that the last line of Figure 9.8 (showing the execution of 

FunctionB) is not produced. Instead, an error message is generated, as the address 

where FunctionB should be contains whatever random data was previously stored 

in that memory location. That is, the attacker can no longer use the address of 

FunctionB for an attack. 

http:testlib.lib.so
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To evaluate the overhead of our prototype, recall that the primary performance 

impact of Marlin is an increase in the number of mmap calls made by ldso. Our 

test machine consisted of a 2.4 GHz Core 2 Duo CPU with 4 GB of DDR2 memory, 

running Mac OS X 10.6. Our Marlin prototype ran as a QEMU 0.13.0 virtual machine 

instance with 130 MB of memory. The original Genode loader took an average of 

0.2639 seconds to run, with an average execution time of 0.0057 seconds per mmap 

call. Recall that Figure 9.1 showed the average application required 450 libc symbols. 

Based on this data, we can extrapolate that the average overhead induced by Marlin 

would be adding 2.565 seconds to each application’s startup time, which is essentially 

an increased order of magnitude for the loader execution time. 

While this performance impact may be cumbersome, we counter objections with 

three points. First, this overhead is a one-time cost for each process. Once the process 

is created, execution proceeds like normal, with no additional penalty at run-time. 

Second, these measurements were taken within a virtualization environment, implying 

that the performance overhead on native hardware would be significantly reduced. 

Finally, in Section 9.4.3, we described an optimization wherein the 360 required libc 

symbols are mapped once and shared by all processes. Consequently, a new process 

would only need to map 90 additional symbols, incurring a 0.513 second overhead to 

startup time. Based on the significantly increased randomization that Marlin creates, 

we argue that a one-time penalty of half a second is clearly a reasonable performance 

impact for a robust defense against library-based attacks. 

9.6 Discussion 

When we first discussed the idea of this work to other security researchers, the 

consensus seemed to be that it was unnecessary. Specifically, the problem with ASLR 

was simply the small number of possible 32-bit base address randomizations, and 

upgrading to 64-bit architectures was the solution. However, as shown in [95], the 

security of this solution is not guaranteed. Consequently, our goal for this work was 
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to re-open the discussion of how to randomize application memory images to defend 

against library-based attacks. 

In designing our solution, we analyzed how much of libc is actually required for an 

application. We found that there is a substantial portion (360 symbols, representing 

131,653 lines of assembly code) that is required for all applications. However, this 

corresponds only to 16.6% of the symbols and 47.5% of the code, and mapping the 

entire library was equivalent to over-provisioning access for potential exploit. Other 

than this minimum code base, the actual usage of libc code varies greatly by real 

applications. Consequently, we wanted to use this diversity as a new foundation for 

run-time library randomization. We subsequently showed that fine-grained random

ization of libraries produces an extremely large number of possible permutations, 

effectively making brute-force de-randomization impossible. 

As we mentioned previously, once the randomized mapping has been generated, 

there is still the possibility that an attacker could de-randomize the addresses by 

reading the GOT. That is, we did not want to fall victim to the same attack described 

in [95]. We argue that we have done so. Specifically, in that work, the attacker 

only needed to determine a single piece of data: the randomized base adress. This 

information, coupled with background knowledge of the structure of libc, allows an 

attacker to determine the location of the system function or construct a chain of 

gadgets. 

With Marlin, however, the attacker must locate and traverse the GOT. Next, the 

exploit payload must be capable of combining the information gathered from this 

traversal with the location of gadgets or the coveted system function. However, this 

implies that the payload is already more powerful than existing exploits. Specifically, 

in a current attack, the payload is simply a piece of data used for a buffer overflow; on 

the other hand, the payload in an attack on Marlin must be able to read the GOT data 

and branch accordingly (i.e., if this entry is system, do X, else continue searching). 

Alternatively, if the application is a server, the attacker could use one exploit to 

leak the data, perform the analysis off-line, and craft the resulting buffer overflow 
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payload accordingly. While we do not see that this is a feasible attack strategy, we 

err on the side of caution and do not claim that this threat vector is impossible. 

Instead, we simply argue that Marlin’s run-time shuffling of dynamically mapped 

library symbols significantly increases the amount of randomization and, therefore, 

the security guarantees over current approaches. 

Finally, astute readers may note that we have neglected one important issue when 

it comes to GOP attacks: The number of gadgets available for an attack is determined 

by the size of the exposed code base. That is, the use of libc and other shared libraries 

is simply a matter of convenience, not a requirement; an attacker could simply use 

the application’s binary image itself as the source of gadget code. As a means of 

comparison, our compiled version of libc is 1.3MB while our compiled version of 

Chromium is 46.4MB. Our intuition is that the Chromium code base is sufficiently 

large for a would-be attacker. Thus, our current solution does not entirely solve the 

problem of GOP attacks. As such, we argue that future work in this area should 

consider how to randomize the application binary image, as well. 

9.7 Conclusions 

In this work, we have revisited the idea of randomization as defense against library

based attacks. Specifically, as a defense against return-into-libc and return-oriented or 

jump-oriented programming (i.e., gadget-oriented programming) attacks, we propose 

a fine-grained approach to shared libary randomization. Furthermore, we fully incor

porate the principle of least privilege by mapping only the portions of the library that 

are required for the specific application. We have described the static analysis and 

dynamic mapping features underlying Marlin. In addition, we have demonstrated a 

proof-of-concept prototype, including an illustration that our approach makes the suc

cess of these attacks unlikely. We have shown that the cost of our defensive technique 

occurs as a single performance hit when the application boots; once the application 

is running, no additional overhead is incurred. Based on the results of our analysis 
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and implementation, we argue that fine-grained library mapping is both feasible and 

practical as a defense against these pernicious library-based attack techniques. 
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9.8 Applications Surveyed
 

Application Version Application Version
 

Acroread 9.3.2 Amazon MP3 Downloader 1.0.9 

Apache 2.2.14 Bash 4.1.5 

Bluetooth 4.60 Brasero 2.30.2 

Chromium 10.0.648.205 Cups 1.4.3 

Dhclient 3.1.3 Dropbox 0.6.7 

Eclipse 3.5.2 Empathy 2.30.3 

Evolution 2.28.3 Firefox 3.6.16 

Gcc 4.4.3 Gimp 2.6.8 

Git 1.7.0.4 Gnome-terminal 2.30.2 

Grip 3.3.1 Gs 8.71 

Gtkpod 0.99.14 Gzip 1.3.12 

Java 1.6.0 20 Lame 3.98.2 

Last.fm 1.5.4 libc 2.11.01 

Make 3.81 Mencoder 4.4.3 

Mono 2.4.4 Mplayer 1.0 

OpenOffice 3.2.0 OpenSSH 5.3p1 

PdfTeX 1.40.10-2.2 Perl 5.10.1 

Python 2.6.5 Qemu 0.12.3 

Sha1sum 7.4 Skype 2.1.0.81 

Smbclient 3.4.7 Subversion 1.6.6 

Sudo 1.7.2p1 Tar 1.22 

Thunderbird 3.1.8 Totem 2.30.2 

Truecrypt 6.3a Vim 7.2 

VirtualBox 4.0.0 Vlc 1.0.6 

Transmission 1.93 Wine 1.2.2 

Wireshark 1.2.7 Xine 0.99.6 
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10 SUMMARY 

Establishing a trusted basis for CDAC requires addressing a number of challenges 

related to the enforcement mechanisms used. First, one must define the contextual 

factors that are relevant; additionally, one must specify what level of authentication is 

necessary to say that the contextual claim is trustworthy. Next, one needs to examine 

the relevant technologies and policy goals of the CDAC deployment. Finally, the 

architectures, protocols, and execution environments must be proposed and analyzed. 

In this work, we have explored the design of multiple CDAC enforcement mecha

nisms for a variety of settings. We have demonstrated how to apply NFC technology 

to the problem of spatially aware RBAC, and shown how to consider other user’s 

locations and to respect individual privacy concerns. Our work on PUFs has shown 

the feasibility of identifying the unique hardware instance prior to considering the 

access request, and established a hardware guarantee to restrict the number of times 

a cryptographic key can be used. Finally, have also designed novel approaches to 

ensuring the integrity of a trusted application by detecting memory corruption, as 

well as potentially repairing the application without interrupting the execution. 

In examining these scenarios and evaluating our implementation work, it is clear 

that existing technologies make the deployment of CDAC systems possible. The 

proper combination of hardware, cryptography, and software can provide a highly 

assured root of trust that ensures the CDAC policies are enforced correctly. Further

more, these guarantees hold even in the presence of malicious adversaries, including 

rogue trusted insiders. 
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