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ABSTRACT 
As mobile computing devices are becoming increasingly dominant 
in enterprise and government organizations, the need for fine-grained 
access control in these environments continues to grow. Specif
ically, advanced forms of access control can be deployed to en
sure authorized users can access sensitive resources only when in 
trusted locations. One technique that has been proposed is to aug
ment role-based access control (RBAC) with spatial constraints. In 
such a system, an authorized user must be in a designated location 
in order to exercise the privileges associated with a role. In this 
work, we extend spatially aware RBAC systems by defining the 
notion of proximity-based RBAC. In our approach, access control 
decisions are not based solely on the requesting user’s location. In
stead, we also consider the location of other users in the system. For 
instance, a policy in a government application could prevent access 
to a sensitive document if any civilians are present. We introduce 
our spatial model and the notion of proximity constraints. We de
fine the syntax and semantics for the Prox-RBAC language, which 
can be used to specify these policy constraints. We introduce our 
enforcement architecture, including the protocols and algorithms 
for enforcing Prox-RBAC policies, and give a proof of functional 
correctness. Finally, we describe our work toward a Prox-RBAC 
prototype and present an informal security analysis. 
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1. INTRODUCTION 
Role-based access control (RBAC) has been widely adopted as 

a way to streamline the maintenance of access control policies. As 
the deployment of mobile devices in these settings has increased, 
researchers have explored techniques for augmenting RBAC with 
contextual information. Perhaps the most common extension of 
RBAC is to incorporate the location constraints [9, 17, 14, 1, 20]. 
A common form of restriction is to constrain the use of roles to 
specific geographic locations. Suppose for example that an organi
zation has a role Manager and this role is constrained to the loca
tion Office. A user wishing to use this role must not only have the 
authorization to use this role, but also be in his office when using 
the role. Consequently, the user would be prevented from using the 
role and the permissions granted to the role from other locations. 

A major limitation of current approaches to spatially aware RBAC 
is that they focus only on the location of the user issuing the role 
usage request. However in many real situations whether a user can 
use a role and access the resources for which access is granted to 
the role may depend on the presence or absence of other users. 
As an example, consider a government agency with data classified 
at multiple levels of security. One policy could prohibit access to a 
sensitive document if there are any civilians (i.e., non-governmental 
employees) present. Another could require the presence of a super
visor when a document is signed. Yet another could require that the 
subject is alone (e.g., “for your eyes only” restrictions). 

In this paper, we address the problem of specifying and enforc
ing a novel class of location constraints, referred to as proximity-
based location constraints, for RBAC for both static and mobile 
environments. That is, we want to make decisions about granting 
access to roles by also taking into account the location of other 
users, possibly considering the proximity of those users to the re
questing subject. Incorporating contextual factors in mobile envi
ronments is challenging, as these environments are inherently dy
namic. As such, it is important to consider how to monitor and react 
to changes in users’ locations. This challenge can be described as 
enforcing continuity of usage constraints. Our approach is to adopt 
the policy language semantics of the UCONABC family of access 
control models [25, 18]. This family of models defines a number 
of semantic structures that enable the specification of contextual 
access control policies. 

To illustrate the integration of continuity of usage with proximity-
based constraints, consider the movement of a user from one pro
tected region to another. For this user, it would be desirable to 
preserve the existing permissions in use if possible. However, the 
movement may involve entering a region in which a spatial role 
is not permitted to be used. Consequently, the movement would 
trigger a policy re-evaluation, revoking permissions as needed. In 
addition, the movement may impact another user by violating a 
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condition of the latter’s policy constraints. Another challenge is to 
bind the user to the device making the request, as well as the lo
cation. That is, it would be undesirable for the user to download 
sensitive data to a device, then proceed to allow another user to 
leave with the device (and the data). 

To address these challenges, we propose Prox-RBAC, which con
sists of a model, policy language, and enforcement architecture 
for specifying and enforcing proximity-based location constraints. 
In Prox-RBAC, administrators can write policies that specify ei
ther the presence or absence of other users within a protected area. 
Prox-RBAC also makes a distinction between policies that require 
authorization only a single time prior to access and policies that 
specify conditions that must continue to hold for as long as the per
mission is used. Finally, Prox-RBAC is backward compatible; that 
is, Prox-RBAC can specify existing spatially aware RBAC policies, 
as well as traditional RBAC. Thus, the contributions of this work 
can be summarized as follows. 

•	 We introduce the notion of proximity constraints and provide 
a formal definition of these constraints. 

•	 We specify the syntax and semantics of Prox-RBAC, a lan
guage for expressing proximity constraints in a spatial RBAC 
system. 

•	 We propose the integration of proximity constraints with con
tinuity of usage within the context of a constrained indoor 
space model. 

•	 We define an enforcement architecture, including the speci
fication of a cryptographic protocol and algorithms for Prox-
RBAC. 

2. BACKGROUND 
Prox-RBAC builds on the GEO-RBAC spatially aware RBAC 

model. In addition, we use the UCONABC family of models to 
define the semantics of the Prox-RBAC language. In this section, 
we provide a brief summary of these existing works. 

2.1 GEO-RBAC 
Prox-RBAC is defined as an extension of GEO-RBAC, a spa

tially aware RBAC model. In GEO-RBAC, traditional RBAC roles 
are augmented to incorporate the subject’s location. Policies can 
use these spatial roles in defining fine-grained access control per
missions. For instance, policies using the spatial role < Manager, 
Room 513 > would require that the user activate the Manager 
role (assuming the user is authorized) and be physically present in 
room 513. Consequently, a subject using the role Manager would 
be denied access if the request is made from another location. 

A key feature of GEO-RBAC that we use in Prox-RBAC is the 
differentiation of role enabling and role activation. A spatial role 
is automatically enabled if the user is authorized to activate the role 
and the user is physically present in the requisite location. How
ever, an enabled role does not explicitly grant any privileges. In-
stead, the user must activate the role in order to exercise the associ
ated permissions. This differentiation allows for mutually exclusive 
roles and hierarchical roles to be defined on the same space. It is 
the user’s specific action the determines the role applied. 

2.2	 UCONABC 

UCONABC is a family of access control models that can be used 
to formalize the behavior of a system in terms of authorizations 
(A), obligations (B), and conditions (C), that must be satisfied ei
ther before (pre), during (on), or after (post) an access occurs. For 

instance, UCONpreA can be used to formalize an access control 
system that requires authorizing the subject before the access is 
granted. With each type of model, there are multiple variations 
(e.g., UCONpreA , UCONpreA , and UCONpreA ). For a full 
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description of these details, we refer the reader to the UCONABC 

paper [25, 18]. 
Specifying a policy in UCONABC can be done by declaring the 

functions, relations, and other mathematical structures, and then 
defining the implication that must hold if the access is granted. As 
an example, consider a traditional RBAC system, where S , O, A 
and R denote the sets of subjects, objects, actions, and roles, re
spectively. A permission is an ordered pair (o, a) for o ← O, a ← 
A. Subjects are mapped to active roles via the ActiveRoles func
tion, while P ermittedRoles maps permissions with the roles that 
are to be granted access. As ActiveRoles are user-specific, we 
also declare AT T (S) = {ActiveRoles}, where AT T (S) speci
fies the set of attributes that are associated with subjects. 

To specify that a subject s is authorized to perform action a on 
object o, UCONpreA uses an invariant allowed(s, o, a) ≥ P , 

0 

where P denotes a necessary condition for authorization. For in
stance, in RBAC, the necessary condition is that the requester has 
an active role (⇒role ← ActiveRoles(s)) that is granted the de
sired permission (⇒role' ← P ermittedRoles(o, a), role ∗ role'). 
The following example illustrates how UCONpreA can specify 

0 

traditional RBAC policies. 

< role, act, obj > – UCONpreA : 
0 

P erms = {(o, a)|o ↔ O, a ↔ A}
 
ActiveRoles : S ≤ 2R
 

P ermittedRoles : P erms ≤ 2R
 

AT T (S) = {ActiveRoles}

allowed(s, o, a) → ∈role ↔ ActiveRoles(s),
 
∈role' ↔ P ermittedRoles(o, a), role > role' 

To enforce that certain conditions continue to hold as the access 
occurs (i.e., continuity of usage constraints), UCONABC defines 
additional primitive formalisms. First, preCON declares a set of 
conditions that are evaluated, while getP reCON(s, o, a) specifies 
proposition built on these conditions. Then preConChecked can 
be used in the necessary proposition in the allowed(s, o, a) ≥ P 
implication. For instance, if the subject must be over the age of 18 
or accompanied by an adult, we could specify this portion of the 
policy as: 

preCON = {Over18(s), Accompanied(s)}
getP reCON(s, o, a) = Over18(s) ⊥ Accompanied(s) 
allowed(s, o, a) → preConChecked(getP reCON(s, o, a)) 

For on-going conditions (i.e., UCONonC), similar structures ex
ist (i.e., onCON and getOnCON(s, o, a)). Specifying permis
sion revocation is similar to the allowed(s, o, a) invariant. Specifi
cally, stopped(s, o, a) ⊆¬onConChecked(getOnCON(s, o, a)) 
declares that the access must be stopped once the on-going required 
condition is no longer true. 

3. THE PROX-RBAC LANGUAGE 
In this section we present the syntax and semantics of our prox

imity constraint language. After a short preliminary subsection to 
introduce some notation, we describe our space model, which is a 
key element in the definition of the proximity constraint model. We 
then briefly introduce our spatial role model, followed by the in
troduction of the three main constructs of our proximity constraint 
model. Such introduction is followed by the definition of the syntax 
and semantics of the proximity constraint model. 
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3.1 Preliminaries 
The core Prox-RBAC model, which underlies our language, uses 

a number of primitives that are similar to existing spatially aware 
RBAC models. As in traditional RBAC, we have Subjects (S) that 
can request permission to perform Actions (A) on Objects (O). 
Let Roles (R) denote the set of roles in the system. When s ← S 
requests the privilege to perform a ← A on o ← O, s must activate 
a role r ← R to which the requested permission is granted. 

3.2 Space Model 
The first challenge in defining our model is to specify how space 

is modeled. We adopt a spatial model that subdivides generic spaces 
into regions based on security classifications. We consider the ref
erence space ∈ to be a region that is divided into a set of protected 
areas (PA). A PA is a physically bounded region of space, acces
sible through a limited number of entry points, which consists of 
a physical barrier that requires authorization. Each PA can be arbi
trarily large and we place no restrictions on the internal structure. 
For instance, a PA could consist of a single room or an entire floor 
that is made up of distinct but unlocked rooms. In the latter case, 
the subject’s presence in a particular room is irrelevant to the secu
rity questions, and we model the floor in its entirety as a PA. An 
entry point is a one-way walking device which connects one PA to 
another PA. Should the passage be in both directions, two distinct 
entry points are needed, one for each direction. 

Figure 1 demonstrates a number of characteristics of our space. 
The PAs are distinguished by shading and lines filling the area. The 
red dots indicate the entry points and are labeled as the guard de
vice ei,j controlling passage from pai to paj . Observe that rooms 
103A and 103B are both part of pa2, thus indicating that PAs do 
not necessarily have a one-to-one correspondence to the features 
of the space. In addition, suite 100A defines pa3 and consists of 
the entire space shaded with gray, which includes rooms 101, 102, 
103A, and 103B. Similarly, pa5 covers the entire floor. This illus
trates that PAs can be defined hierarchically. Finally, paO defines 
the outdoor space. 

To represent this constrained space we define an indoor space 
model [16, 15]. Indoor space models present distinguishing fea
tures which perfectly match the requirements posed by our sce
nario. A major feature is that those spaces are cellular (or sym
bolic), i.e., they consist of a finite set of named cells or symbolic 
coordinates (e.g., rooms 103A and 103B) [3]. Moreover, indoor 
spaces may present complex topologies. Among the various topolo
gies that one can specify, the most relevant are the connectivity 
between the indoor and outdoor spaces, as well as connectivity be
tween cells (i.e., PAs). We choose to define the indoor space model 
as the tuple (P, E , G, H) where P is the set of PAs, E the set of 
entry points, G the connectivity topology referred to as accessibil
ity graph, and H the hierarchy of PAs. This space model allows us 
to introduce the notion of accessibility graph for a specific subject, 
defining the subspace in which the subject is authorized to move. 

3.2.1 Hierarchy of PAs 
As noted above, our model incorporates the notion of hierarchy 

of PAs. For instance, access to the first floor of a building may be 
restricted to a set of users; in addition, access to room 105 may be 
further restricted to an individual user. As such, when the user is 
in room 105, the permissions associated with the first floor should 
still be granted. 

To model this hierarchy, we introduce the partial order ∪ be
tween PAs such that pai ∪ paj (i.e., pai is-part-of paj ) means: i) 
any subject present in pai is also present in paj ; ii) pai can be only 
entered if the subject is present in paj ; iii) if pai is part of both paj 

Figure 1: Reference space with PAs marked 

and pak then either pak ∪ paj or paj ∪ pak.1 Note that the mean
ing of the partial order relation is not simply of spatial containment. 
That motivates the second condition which explicitly requires the 
two PAs to be connected through an entry point. For instance, con
sider a room (Room 204) whose only entrance is a private stairwell 
from a room on the first floor; since this room is not reachable from 
any other part of the second floor, Room 204 ⇐∪ F loor 2. The 
third condition states that the partial order takes the form of a tree 
where the root is the reference space and the leaves are the PAs 
which do not contain further PAs. Note that, as ∪ is a partial or
der, if pai ∪ paj it cannot happen that paj ∪ pai, for i ⇐= j. 
Therefore, the number of subjects in paj is equal or greater than 
the sum of the subjects in the children of paj . This partial order 
leads naturally to the notion of type; for instance, if pai is of the 
room type and paj is the floor type, it is possible that pai ∪ paj , 
but it cannot happen that paj ∪ pai. In addition, we write s ←l pa 
to express the user’s location at the finest granularity. That is, if 
s ←l pai, then ⇐ ⇐⇒paj with paj ∪ pai and i = j such that s ←l paj . 
Figure 2(b) illustrates the hierarchy corresponding to Figure 1. 

3.2.2 Accessibility graph 
The accessibility graph represents the relationship of connectiv

ity among PAs through a directed multigraph (multidigraph). Fig
ure 2 shows the accessibility graph for the space in Figure 1. The 
accessibility graph consists of a set V of vertices each representing 
either the outdoor space or a PA, and a multiset A < V × V of 
edges, one for each entry point connecting one PA to another PA. 
The direction of edges reflects the direction of entrypoints. Edges 
are labelled with the corresponding entrypoints, i.e., ei,j (or ei,j

k , 
for some k > 0 in case of multiple entry points from pai to paj ). 
If there is a path between the two vertex representing pai and paj 

respectively, we say that paj is reachable from pai. If the path 
consists of a unique edge then paj is directly reachable. Main en
trance and main exit are the vertices that are directly reachable 
from paO and from which paO can be directly reached, respec
tively. The graph G is assumed to connected. Moreover, for the 
accessibility graph to be consistent with the hierarchy of PA, the 
following properties must hold. 

Properties (Accessibility Graph) 
•	 Every PA must be directly reachable from either the parent 

or sibling in the hierarchy of PA. This follows from the fact 

1To simplify the model, in our context, PAs can only overlap if 
one is wholly contained within the other. However, one could ex
tend the model to allow overlapping PAs, at the cost of increased 
complexity of the hierarchical processing. 
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(a) Accessibility graph (b) Hierarchy of PAs 

Figure 2: Accessibility graph and hierarchy of PAs for Figure 1 

that a PA can be only entered if the subject is present in the 
parent PA. 

•	 The main entrances must correspond to the PAs at the highest 
level in the hierarchy of PA. This follows from the fact that 
otherwise a PA could be entered from a PA which is different 
from the parent or sibling, against the definition of hierarchy 
of PAs. 

•	 The graph also does not contains loops (i.e., edges do not 
start from and end to the same vertex). 

3.2.3 Accessibility graph for a subject 
Intuitively, the entrance of a subject into a PA corresponds to 

the transition from one vertex to an adjacent vertex in the acces
sibility graph. Key to our definition of the security system is the 
authentication and confirmation of passage. That is, enforcement 
of Prox-RBAC requires a physical barrier separating PAs, as well as 
deployment of a technology that ensures only authorized personnel 
can pass. Detecting such a movement requires the subject’s pres
ence at an entry point. However, we must also have a way to detect 
that the subject did, in fact, pass through the entry point, rather than 
doubling back into the current space. As we will describe in Sec
tion 4.4, ensuring the trustworthiness of position is a challenging 
issue in deployment of spatially aware RBAC systems. 

Besides passage confirmation, the other aspect of concern that 
we consider here regards the authentication of passage. Subjects, in 
general, are not allowed to enter every PA. We denote with AuthPA(s) 
the set of PAs that the subject s is authorized to enter. For this set to 
be consistently defined, every PA in the set must be reachable from 
the outdoor space and, vice versa, the outdoor space must be reach-
able from any PA in the set. It can be shown that these requirements 
are met if the following conditions are satisfied. 

Properties (Authorized PAs) 
•	 If pa ← AuthPA(s), then the parent of pa must also be in 

AuthPA(s). 

•	 If pa ← AuthPA(s) and pa is only reachable from one or 
more siblings in the hierarchy, then all these siblings must 
also be in AuthPA(s). 

The subgraph with vertices that are the authorized PAs and edges 
that are the subset of edges which connect the authorized PAs is 
itself an accessibility graph, namely it represents the accessibility 
graph of the subject. Therefore, because every PA of the set can be 

reached through the parent or a sibling, when the subject is at an 
entry point ei,j , the system can refer to the accessibility graph of 
the subject to determine whether the subject is authorized to enter 
the target PA. 

3.3 Spatial Roles 
As in GEO-RBAC, we augment traditional roles with geographic 

information. Specifically, a spatial role is the tuple < r, pa >, 
where r ← R and pa ← P ∃ {∈}, where ∈ denotes the reference 
space. A spatial role < r, pa > is enabled for the subject s if s has 
activated the traditional role r, and, in addition, one of these two 
conditions is satisfied: a) s ←l pa; ii) s ←l pai and pai ∪ pa. Note 
that if subject s has been assigned role < r, pa > with pa ← P , 
then s must be authorized to enter pa, i.e., pa ← AuthPA(s), oth
erwise the role would have never been enabled. The spatial role is 
then activated if the user wishes to exercise the privileges associ
ated with the role. If user s has activated role < r, pa >, we write 
< r, pa >← ActiveRoles(s). 

While role activation in Prox-RBAC seems intuitive, subtle chal
lenges arise when users are permitted to maintain contintuous ac
cess across PA boundaries. To be precise, consider a user who 
moves from pai to paj and what should happen to < r, pai >← 
ActiveRoles(s). In order to streamline the user experience, Prox-
RBAC keeps the roles active, but updates the location from pai to 
paj . That is, if < r, pai >← ActiveRoles(s) prior to the tran
sition, then < r, paj >← ActiveRoles(s) after. Additionally, if 
s ⇐← pai after the transition (i.e., paj ⇐∪ pai), then < r, paj > ⇐← 
ActiveRoles(s). One exception to this automatic activation of 
< r, paj > occurs when mutually exclusive roles are defined. 
Specifically, if < r, paj > would conflict with another activated 

'role < r , paj >, then both are deactivated in the transition.2 

Although it would be desirable to treat the movement as atomic, 
we find this insufficient to provide strong location guarantees. For 
instance, a user could initiate the movement with an entry point, 
then wait for several seconds before actually passing through the 
doorway. Thus, our access control policies must account for the 
time between authorization and the actual passage between the PAs. 
As such, the transition triggers a movement event, during which 
the user’s location is identified as s ←l pak, where pak is the least 
common ancestor, the smallest PA that contains both the old and 
new PAs. That is, pai ∪ pak, paj ∪ pak, and either pai ⇐∪ pal or 
paj ⇐∪ pal for any pal ← Children(pak), where Children(pak) 
is defined by the hierarchy of PAs. In addition, permissions cur
rently in use will be revoked during the movement event only if the 
permission is not granted for < r, paj > and paj ⇐∪ pai. Other
wise, the permissions are retained. 

3.4	 Continuous Proximity Constraints 
A proximity constraint is a security requirement that is satis

fied by the location of other users. If the constraint must be con
tinuously evaluated for the duration of the user’s access session, 
then we call the constraint continuous. Proximity constraints are 
built from three primitive constructs: relative constraint clauses, 
continuity of usage constraints, and timeouts. Relative constraint 
clauses define the static presence or absence conditions that must 
be met. However, mobile environments are inherently dynamic. As 
such, the latter two constructs are necessary to ensure the relative 
constraint clause is enforced properly as the environment changes. 

A relative constraint clause specifies the proximity requirement 
of other users in the spatial environment. These clauses can be 
described as either presence constraints or absence constraints. 
2The deactivation does not occur if < r, paj > would conflict with 
a role < r ' , paj > that is enabled but not currently activated. 



To formulate these conditions, we adopt an intuitive syntax that can 
be illustrated as follows: 

at_most 0 civilian in Room 105 

The basic structure consists of an optional cardinality qualifier (e.g., 
at_most or at_least), a nonnegative integer specifying the num
ber of subjects, a role (e.g., civilian), and a spatial relationship 
(e.g., in Room 105). The spatial relationship consists of two parts: 
a topological relation and a logical location descriptor that identi
fies a PA. Let RT denote the set of topological relations. In our ini
tial approach, we will only consider a small set of relations, namely 
RT = {in, out, adj}. The location descriptor can be absolute, as 
was the case here, or it can take the form of this.type. In this latter 
structure, the type specifies a level in the hierarchy of PAs, while 
this dictates that the location of the subject fulfilling the role in the 
clause must match that of the requester. For instance, let vi denote 
Room 105, vj denote Room 100, and vk denote F loor 1. Assume 
the requester is in Room 105 and his supervisor is in Room 100. 
Since vi ∪ vk and vj ∪ vk, the following relative constraint clause 
would be satisfied: 

at_least 1 supervisor in this.floor 

Some operations may require a significant duration. For instance, 
reading a sensitive document may take several minutes or hours. 
Furthermore, it may be necessary to ensure the relative constraint 
holds for the entire duration of the permitted session. To declare 
whether the constraint must be checked only at the beginning of 
the session or must hold for the duration, we introduce into our 
language continuity of usage qualifiers, called when and while, 
respectively. Their use is illustrated as follows: 

while ( at_most 0 civilian in Room 105 ) 

A when constraint is evaluated at the access request time; if the 
constraint is satisfied, the permission is granted. A while con
straint is repeatedly checked and the permission is granted until the 
constraint is violated. The frequency of the check is a system-wide 
parameter that is dependent on the deployment scenario. That is, 
specifying this parameter requires considering issues such as net
work latency, size of the spatial environment, number and mobility 
of users. 

In many cases, the desired security guarantees may require sat
isfying multiple relative constraints. To allow for such cases, we 
permit the use of two basic logical connectives: ⊥ (logical or) and 
/ (logical and). These logical connectives can be used to join rela
tive constraint clauses or continuity of usage constraints. Parenthe
ses may be used to specify precedence; otherwise, the clauses are 
enforced left-to-right. As an example, assume that c1 is a while 
constraint dictating that no civilians are present. In addition, either 
a supervisor or accountant must initially be present (c2 or c3). The 
following constraints are equivalent in expressing this requirement: 

while ( c1 ) / ( when ( c2 ) ⊥ when ( c3 ) ) 
while ( c1 ) / when ( c2 ⊥ c3 ) 

One critical issue in enforcing continuity of usage constraints is 
how to react once a while constraint no longer holds. In one sce
nario, the permission could be suspended until the condition is once 
again satisfied. In others, it may be acceptable to allow some lee
way, wherein the permission is still granted for a short duration of 
time, even though the condition is technically being violated. For 
instance, consider a proximity constraint that specifies a supervisor 
must be present to read an accounting record. Due to a shift change, 
one supervisor leaves the room before the next arrives. However, 
the break is short enough that it is acceptable to allow the subject 
to retain the permission during their absences. 

In some cases, it is acceptable for proximity constraints to be 
violated for a brief duration. For instance, if the policy specifies the 
presence of a supervisor, it would be undesirable for the employee 
to lose permissions while the supervisor leaves for a short break. 
Consequently, every proximity constraint that includes at least one 
while clause must end with a timeout constraint, which takes the 
following form: 

while ( clause ) timeout t 

Here, t ← N0 specifies the maximum amount of time for which 
the permission is granted once the while constraint fails. While 
the simplest approach is to use a single time unit for all timeout 
constraints, a straightforward augmentation of our language could 
allow t to specify the units, as well. If t = 0, then the permission is 
immediately revoked. If the condition is once again satisfied before 
the time limit has been reached, the permission is automatically 
extended as if the condition held for the entire duration. 

3.5 Prox-RBAC Syntax 
To formalize this syntax,3 let C denote the set of basic relative 

constraint clauses with no Boolean connectives. Formally, we can 
write c =< q, n, r, rt, p >, where q is a cardinality qualifier, 
n ← N0, r ← R, rt ← RT , and p ← P . C*, then, denotes the 
set of clauses that can be constructed from a Boolean formula of 
basic clauses. This produces the following grammar for constraint 
clauses: 
C :: − C ⊥ C 
| C / C 
| Q n role topo pa 

Q :: − at_most | at_least | E 

Now, let W denote the set of continuity of usage constraints. 
That is, while ( c ) ← W and when ( c ) ← W if c ← C*. Given 
that timeouts can only apply to while constraints, we create a dis
tinguished set Wwhile < W that consists exclusively of the con
straints while ( c ), where c ← C*. As before, let W* denote the set 
of Boolean conjunctions and disjunctions that can be formed from 
any combination of continuity of usage constraints.4 This leads to 
the following rules: 
W	 :: − W ⊥ W
 

| W / W
 
| when ( C )
 
| while ( C )
 

Finally, let T denote the set of timeouts written as timeout t, 
where t denotes a finite unit of time, and let E ← T . We write 
< = (W* × T ) ∃ {.} to denote the set of all possible proximity 
constraints, where . denotes the absence of a proximity constraint, 
which allows for traditional spatially aware policies. 

3.6	 Prox-RBAC Policies and Semantics 
A Prox-RBAC policy is a tuple of the form < sr, a, o, ' >, 

where sr ← R × {P ∃ {∈}}, a ← A, o ← O, and ' ← <. 
In this section, we present the formal semantics for Prox-RBAC 
3For the sake of simplicity, we omit from our grammars any paren
theses that can be used to indicate Boolean formulas. We feel that 
including them in the specification needlessly complicates the dis
cussion and distracts the reader from the most relevant topics. 
4Observe that negations are not necessary in our language. First, 
negations would only be applicable in joining relative constraint 
clauses (i.e., statements such as not while ( c ) would be 
awkward). Second, the at_most and at_least qualifiers are 
clear opposites when the numbers are adjusted accordingly (e.g., 
at_most 0 is the negation of at_least 1). Thus, our language can 
express negations without introducing an explicit Boolean operator. 



in terms of the UCONABC family of core models. Prox-RBAC 
employs UCONAC semantics, as we require authorizations (A) 
and conditions (C), but not obligations (B). In all of the semantic 
specifications below, ∗ can denote either the dominance relation 
on the partially ordered set of roles R or the traditional inequality 
on integers. The notation 2S refers to the power set of the set S. 

We start with the simplest case, in which ' = .. That is, there 
is no proximity constraint enforced, and the policy indicates a spa
tially aware RBAC role as defined in existing works. We can write 
these semantics formally as a UCONpreA policy. 

0 

< role, act, obj, ∀ > – UCONpreA : 
0 

role =< r, pa >, r ↔ R, pa ↔ P 
P erms = {(o, a)|o ↔ O, a ↔ A} 
ActiveRoles : S ≤ 2R 

EnabledRoles : P ≤ 2R 

P ermittedRoles : P erms ≤ 2R 

AT T (S) = {ActiveRoles}
allowed(s, o, a) → ∈ r ↔ EnabledRoles(pa), 

s ↔l pa ∅ r ↔ ActiveRoles(s) ∅ 
' ' ∈ r ↔ P ermittedRoles(o, a), r > r 

These semantics state that, if s is allowed to perform a on o, 
there must be a traditional RBAC role r that is enabled by entering 
pa, s is physically present there, and s has activated the role. In 
addition, r must dominate r ', which is a traditional RBAC role that 
is permitted to perform a on o. Obviously, it may be the case that 
r = r ' . However, when hierarchical roles are created, r ∗ r ' 

implies that activating r inherits all of the permissions associated 
with r '. As this is UCONpreA , this policy is checked only once 

0 

prior to granting access. Finally, note that the same semantics can 
be applied for traditional RBAC policies, which can be expressed 
with pa = ∈, indicating that role activation can occur anywhere. 
Thus, Prox-RBAC semantics are flexible enough to accommodate 
more traditional policies. 

To define the semantics for when and while constraints, we 
must define a number of helper functions, which are listed in Fig
ure 3. T opoSat defines the conditions under which topological 
relations are satisfied. Observe that in and out are not simply sat
isfied by containment. Instead, Prox-RBAC considers the PA de
scribing the subject’s location at the finest granularity. As an illus
tration, recall the example in Section 3.2.1 in which Room 204 ⇐∪ 
F loor 2; if s ←l Room 204, then T opoSat(s, in, F loor 2) re
turns false. adj, on the other hand, does not consider the finest 
granularity of the user’s location. Instead, adj is satisfied if the 
subject is in a PA that is immediately reachable from the PA un
der consideration (or vice versa); furthermore, neither PA can be 
a parent of the other. T opoSat is used in the context of the Sat 
function, which determines if a constraint has been satisfied. 

Building on these functions, we can define what it means to sat
isfy a relative constraint clause c ← C * . Recall that c can either 
be a simple clause (c ← C)), or it can be a complex clause that 
is created from disjuctions and/or conjunctions of simple clauses. 
That is, c =< c0, b1, c1, . . . , bn, cn >, where ci is a simple clause 
and bi is a Boolean connective. For each simple clause ci, we have 
ci =< q, n, role, topo, pa >. First, we apply ci 

' = Cast(ci), 
which replaces the original pa with the PA of the correct type. Note 
that Cast only changes ci if pa is of the form this.T , where T in
dicates a type (e.g., room, suite, floor); that is, Cast converts the 
relative pa into an absolute pa '. Now, we can apply Sat to the in
dividual components of ci

' . This procedure describes the function
ality of EvalC, which evaluates a simple constraint clause based 
on the subject’s location. 

Similarly, a when clause w ← W * consists of a Boolean combi
nation of simple when clauses, each of which contains a Boolean 

combination of simple relative constraint clauses. Hence, EvalW 
evaluates each simple clause independently, then evaluates the re
sulting Boolean expression. Finally, Eval itself operates on the 
full when clause, evaluating the Boolean expression that is pro
duced by evaluating each simple when clause. This produces the 
following UCONpreC semantics: 

0 

< role, act, obj, when > – UCONpreC : 
0 

[premises from < role, act, obj, ∀ >] 
Eval : W* × P ≤ {true, false}
Location : S ≤ P 
preCON = {Eval(when, Location(s))}
getP reCON(s, o, a) = Eval(when, Location(s)) 
allowed(s, o, a) → 
preConChecked(getP reCON(s, o, a)) ∅ 
( ∈ r ↔ EnabledRoles(pa), s ↔l pa ∅ r ↔ ActiveRoles(s) ∅ 

' ∈ r ↔ P ermittedRoles(o, a), r > r ' ) 

W hile constraints with a timeout of 0 (i.e., immediate revoca
tion) are very similar to when constraints, with the exception that a 
subset of the conditions are repeatedly checked as the permission is 
exercised. To model this behavior, we introduce the W henT oBool 
function, which takes a Boolean combination of when and while 
clauses and replaces the when clause with either true or false ac
cording to the initial evaluation. The result of this extension is the 
following UCONpreC0onC0 

semantics: 

< role, act, obj, while > – UCONpreC : 
0 onC0 

[premises from < role, act, obj, when >] 
W henT oBool : W* × P ≤W*
 

preCON = {Eval(while, Location(s))}

getP reCON(s, o, a) = Eval(while, Location(s))
 
onCON = {Eval(W henT oBool(while), Location(s))}

getOnCON(s, o, a) =
 

Eval(W henT oBool(while), Location(s)) 
allowed(s, o, a) → 

preConChecked(getP reCON(s, o, a))∅ 
(∈ r ↔ EnabledRoles(pa), s ↔l pa ∅ r ↔ ActiveRoles(s) ∅ 

' ∈ r ↔ P ermittedRoles(o, a), r > r ' ) 
stopped(s, o, a) ← 
¬onConChecked(getOnCON(s, o, a)) 

The final type of constraint to consider is a while constraint 
with a timeout t > 0. Here, we introduce X to denote the data 
structures containing expiration times for permissions. That is, 
P ermExp(s) will return x ← X . The simplest form of x would 
be a 2-dimensional array O ×A, where (o, a) would store the ex
piration time for exercising a ← A on o ← O. As such, we use the 
notation x[o, a] for this value, though we formalize this behavior 
with the F indExp function. The UpdateExp function takes such 
a data structure, and updates only the x[o, a] entry to be tc + te, the 
sum of the current system time and the expiration time. All other 
entries remain unchanged. 

Using these functions, we extend the UCONpreC model 
0onC0 

5 to express while constraints with a timeout using the following 
semantics. Our extension is to introduce the onUpdate(AT T (s)) 
procedure to update the subject’s P ermExp attribute as the access 
occurs. During access, if the condition holds (i.e., the while clause 
is satisfied), then the expiration is updated accordingly. The per
mission is revoked only if the condition fails and the current time 
is greater than the expiration time. 
5UCONABC does not define an onUpdate procedure for condi
tions, but it does for authorizations and obligations. However, we 
find it very straightforward to augment the model to support the 
same functionality for conditions. 
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T opoSat : S × RT × P ≤ {true, false}
T opoSat(s, rt, p) = true if and only if one of these hold: 

rt = in and ∈p ' ↔ P (s ↔l p ' ∅ p ' ∧ p) 
rt = out and ∈p ' ↔ P (s ↔l p ' ∅ p ' ⇐∧ p) 
rt = adj and ∈p ' , p '' ↔ P (s ↔l p ' ) ∅ (p ' ∧ p '' )∅ 

(p '' ⇐∧ p) ∅ (p ⇐∧ p '' ) ∅ ((p '' , p) ↔ E ⊥ (p, p '' ) ↔ E) 

EvalC : C × P ≤ {true, false}
EvalC(c, pa) = Sat(Cast(c, pa)) 

EvalW : W × P ≤ {true, f alse}
EvalW (< w, c >, pa) = 

BoolEval(< c ' 0, b1, c ' 1, . . . , bn, c ' n >) where 
c =< c0, b1, c1, . . . , bn, cn > and 
⇒i, 0 < i < n, c ' = EvalC(ci, pa)i 

Sat : C ≤ {true, f alse}
Sat(c) = true if and only if 

c =< q, n, role, topo, pa >, cmp = Inequality(q) and 
∈S ' � S, |S ' |cmp n 
⇒s ↔ S ' ∈role ' ↔ ActiveRoles(s) such that 
(role = role ' ∅ T opoSat(s, topo, pa)) 

W henT oBool : W* × P ≤ W* 

W henT oBool(< w0, b1, w1, . . . , bn, wn >, pa) = 
< w ' 0, b1, w ' 1, . . . , bm, w ' m >, where ⇒i, 0 < i < n 

wi ↔ Wwhile → w ' i = wi 
wi ⇐↔ Wwhile → w ' i = EvalW (wi, pa) 

Eval : W* × P ≤ {true, false}
Eval(< w0, b1, w1, . . . , bn, wn >, pa) = 

BoolEval(< w ' 0, b1, w ' 1, . . . , bm, w ' m >), where 
⇒i, 0 < i < n, w ' i = EvalW (wi, pa) 

Cast : C × P ≤ C 
[omitted for brevity, but type definition is shown] 
[replaces “this” keyword according to specified PA] 

Figure 3: Helper functions for evaluating Prox-RBAC semantics 

< role, act, obj, while, time > – UCONpreC : 
0onC0 

[premises from < role, act, obj, when >] 
CurentT ime ↔ R is the current system time 
P ermExp : S ≤ X 
UpdateExp : X ×O ×A× Z+ × Z+ ≤ X 
F indExp : X ×O ×A ≤ Z+ 

AT T (S) = {ActiveRoles, P ermExp}
onCON = {Eval(W henT oBool(while, Location(s))), 

CurrentT ime < F indExp(P ermExp(s), o, a)}
getOnCON(s, o, a) = 

( Eval(W henT oBool(while, Location(s))) ⊥ 
CurrentT ime < F indExp(P ermExp(s), o, a) ) 

allowed(s, o, a) → 
preConChecked(getP reCON(s, o, a))∅ 
(∈ r ↔ EnabledRoles(pa), s ↔l pa ∅ r ↔ ActiveRoles(s) ∅ 

' ∈ r ↔ P ermittedRoles(o, a), r > r ' ) 
onUpdate(P ermExp(s)) : P ermExp(s) = 

UpdateExp(P ermExp(s), o, a, t, time) if 
Eval(W henT oBool(while, Location(s))) 

stopped(s, o, a) ← 
¬onConChecked(getOnCON(s, o, a)) 

4. IMPLEMENTATION 
As a proof of concept, we have implemented a Prox-RBAC pro

totype. Our architectural design couples a centralized authorization 
server with a distributed, asynchronous clients. These clients can 
be either stationary (e.g., workstations) or mobile devices (e.g., lap-
tops). In either case, accessing sensitive data requires providing a 
high-integrity proof of location that is generated with the help of a 
fixed-location device, such as an near-field communication (NFC) 
or magnetic stripe reader. In addition, passage through an entry 
point must be monitored and controlled by a fixed-location device 
that reports the user’s location change to the centralized server. In 
this section, we describe the principals of our enforcement archi
tecture, our multi-factor authentication protocol and algorithm for 
requesting access to a protected resource, and a description of our 
implementation features. We then use these definitions to present 
the sketch of a formal proof of correctness. 

4.1 Principals 
Our Prox-RBAC prototype is built on interaction between four 

principals. First, the Authorization Server (AS) is the centralized 
server that acts as the policy decision point (PDP). The AS main
tains a mapping of all users’ locations, represented at the finest
granularity PA that applies. The AS also maintains all access con
trol policies. Next, the User refers to the human user requesting 
access. Each user (subject) s will have an identifier ids, a password 

pwds 
6, and a proximity-connection device that is used for gener

ating the proof of location. This portable device will have a secret 
value sv(s), as well as a certificate, signed by the AS, that contains 
data required to perform an interactive zero-knowledge proof-of
knowledge protocol that demonstrates possession of sv(s). 

The user performs the access control protocol using a Client, 
which is a trusted computing device for accessing sensitive data. 
The client acts as the policy enforcement point (PEP), revoking 
privileges when requested by the AS. As clients may be mobile, 
they are identified solely by an identifier and denoted ci. Each 
client has a network connection to communicate with the AS and 
is equipped with a trusted computing component (TCC), such as a 
TPM, that can bind keys to applications. That is, the application 
requesting access to a protected resource will have a public-private 
key pair, denoted pk(ci) and sk(ci) respectively, and a certificate 
Cert(ci) signed by AS. For simplicity, we assume the presence of 
a trusted path for the user to enter a password. Additionally, we as
sume unauthorized software is prevented from accessing sensitive 
data, and remote attestation techniques are used to ensure that the 
software on the client matches a pre-approved configuration. 

A Location Device (LD) is a fixed-location reader distributed in 
a PA. These devices are used to authenticate the location of the 
user at the time of an access request. Since these devices have 
fixed locations, each is denoted ldi,j to indicate the jth location 
device in pai. Each LD employs a proximity-based communication 
technology and possesses a certificate Cert(ldi,j ) that is signed by 
the AS. These certificates contain coordinates cdt(ldi,j ), as well 
as data that allows AS to retrieve sv(ldi,j ), a secret value stored 
on ldi,j . For example, this data could be an encrypted version of 
sv(ldi,j ), where only AS has the corresponding key. In order to 
bind the user and client to the location, the client and LD must have 
a physical connection. For instance, the LD could be integrated in 
a laptop base station that is built into a desk.7 

4.2 Access Request 
Our access request protocol is built on a number of cryptographic 

primitives. First, let (Gen,Enc,Dec) denote both public key and 
symmetric key encryption schemes. In both cases, k + Gen(1n) 

6Other user authentication mechanisms, such as public key certifi
cates, could also be used in place of a password.
7One could argue that the physical connection between the client 
and LD obviates the need for the proximity-based communication 
device that the user carries. However, the device would be a small 
persistent device that the user employs for entrance to secured areas 
and other activities, as well. As such, the device is simply used to 
provide an additional layer of authentication. 



Read(s, o, r, ci, ldj,k) – Subject s activates role r and requests read 
privilege on object o, using client ci at location device ldj,k . 
(1) s ≥ ldj,k Prove(sv(s)) 
(2) s ≤ ci ids, pwds, r 
(3) ci ≤ ldj,k Signsk(ci)

(ids), Cert(ci) 

[ldj,k] h := H(n∪ids∪T ∪pk(ci)∪sv(ldj,k)) 
(4) ldj,k ≤ ci c ⊆ Commit(h) 
(5) ci ≤ AS Signsk(ci)

(c), Cert(ci) 
(6) ci ≥ AS Auth(ids, pwds, r) 

[AS] K ⊆ Gen(1n) 
(7) AS ≤ ci Encpk(ci)(K), EncK(Signsk(AS)(c, pk(ci)) 
(8) ci ≤ ldj,k Signsk(AS)(c, pk(ci)) 

[ldj,k] K ' ⊆ Gen(1n) 
(9) ldj,k ≤ ci Cert(ldj,k), Encpk(AS)(K ' ), 

EncK/ (Open(c, h)) 
(10) ci ≤ AS o, Cert(ldj,k), Encpk(AS)(K ' ), 

EncK/ (Open(c, h)) 
(11) AS ≤ ci EncK(ô) 

Figure 4: Protocol for requesting read access 
denotes a probabilistic key generation algorithm and m := Deck(c) 
denotes the decryption of ciphertext c using the key k. In the public 
key case, c + Enck(m) is an IND-CPA-secure encryption (which 
is probabilistic), while c := Enck(m) denotes (t, E)-secure (de
terministic) symmetric key encryption. While this reuse is a slight 
abuse of notation, it should be obvious to the reader which scheme 
is used, as we denote public key pairs as pk(·) and sk(·) and a 
symmetric key as K. 

Similarly, (Gen,Sign,Verify) denotes an unforgeable signature 
scheme where k + Gen(1n) denotes a probabilistic key generation 
algorithm, s := Signsk(x)(m) indicates the signature s to be the 
message m signed with the secret key of x, and v := Verifypk(x)(s, m) 
produces either true or false by verifying s is the signature of m, 
using the public key of x. Let H denote a collision-resistant cryp
tographic hash function such that h := H(m) denotes the hash of 
a message m. 

Finally, let (Commit,Open) denote a non-interactive commit
ment scheme that is both perfectly hiding and computationally bind
ing. c + Commit(s) refers to the probabilistic generation of the 
public commitment c for the secret value s, while Open(c, s) de
notes the process of revealing of the parameters of the commitment. 
Let Prove(sv(p)) denote an interactive zero-knowledge proof-of
knowledge protocol in which the prover p demonstrates knowledge 
of a secret value sv. Finally, Auth(ids, pwds, r) denotes an au
thentication protocol in which the user provides password pwds to 
prove the claim to identity ids, and r indicates a requested role. 

Figure 4 shows our basic access protocol. It is initiated by a 
subject s ← S to request read permission on object o ← O, while 
using role r ← R. The request is made using client ci at location 
ldj,k. The protocol starts by s using his proximity device to prove 
knowledge of sv(s) to ldj,k and entering ids, pwds, and r into the 
client via a trusted path. The client presents a signed version of 
ids to ldj,k via the physical connection, and ldj,k responds with a 
commitment c, binding ids to ci at timestamp T with a nonce n. 
Note that only ldj,k is able to open this commitment. ci signs the 
commitment, sending the result to the AS. The AS and ci then enter 
an authentication protocol that confirms the identity of ids and his 
authorization to enter r. 

Assuming the authentication of s is successful, the AS returns 
a signed version of the commitment c, encrypted in a manner that 
is only readable by ci. ci decrypts the signed commitment, and 
forwards the result to ldj,k, who confirms the signature of the AS 
(thus indicating that the AS received the commitment intact). ldj,k 

opens the commitment and encrypts the result with the public key 

of the AS. ci forwards the encrypted packet and the name of the 
object o requested, and the AS returns the encrypted object with 
a key bound to ci. Note that, while this protocol describes read 
actions, it is straightforward to extend it to handle write actions. 

4.3 Algorithms 
Policy evaluation occurs after step 10 of the access control pro

tocol in Figure 4. The Request algorithm, defined below, attempts 
to activate the spatial role based on the user’s location. If the ac
tivation is successful, the policies are evaluated and the on-going 
conditions (in the case of while constraints) are determined. As
suming the initial conditions are satisfied, the algorithm returns ap
proval and the object is sent in step 11 of the protocol. 

Request(s, o, ci, a, r)
 
Input: s: the requesting subject; o: the requested object; ci: the client;
 

a: the requested action 
Output: approved or denied 
1. if Activate(s, r, Location(s)) = failure then return denied 
2. satisfied ⊆ EvalP olicies(s, P olicies[o][a]) 
3. if satisfied = 0 then return denied 
4. ongoing ⊆ 0 
5. foreach p = < sr, a, o, ¢ > ↔ satisfied 
6. ongoing ⊆ ongoing ∃ W henT oBool(p, Location(s)) 
7. Ongoing(s) = Ongoing(s) ∃ {< o, ci, ongoing >}
8. return approve 

The policy evaluation procedure is defined in the EvalPolicies 
algorithm. The AS identifies the relevant policies for the object and 
action, determines if the user has an activated role that satisfies the 
policy, then proceeds to evaluate the proximity constraints. The 
algorithm returns the set of policies that are satisfied, as these poli
cies may have on-going conditions (i.e., while clauses) that must 
be continuously enforced. 

EvalPolicies(s, P (o, a)) 
Input: s: the requesting subject; P (o, a): the set of matching policies 
Output: satisfied: the set of policies that have been satisfied 
1. foreach p = < sr, a, o, ' > ↔ P (o, a), sr = < rp, pap > 
2. permitted ⊆ false 
3. foreach role = < rs, pas > in ActiveRoles(s) 
4. if rs > rp and pas ∧ pap then 
5. permitted ⊆ true 
6. if permitted = true then 
7. foreach w clause in ' 
8. foreach constraint in w 
9. evaluate constraint based on location information 
10. evaluate w clause based on constraint satisfaction 
10. if w is satisfied satisfied then 
11. satisfied ⊆ satisfied ∃ {p}
12. return satisfied 

The constraint evaluation is a straightforward evaluation based 
on the location information maintained by AS and the specified 
topological relation. For instance, consider the constraint 

when at least 1 Supervisor in Room 105 
The AS simply checks to see if there is at least one person in Room 
105 who has Supervisor as an active role. If the constraint instead 
specified 

when at least 1 Supervisor in F loor 1 
then the AS would compute the sum of all users with an active Su
pervisor role who are present anywhere on the first floor. If the 
constraint uses the this keyword, the algorithm traverses the par
ent hierarchy to find the correct PA based on the user’s PA. Hence, 
the policy evaluation has a linear complexity based on identifying 
the PAs that are relevant to the constraint. 



4.4 Prototype Implementation 
We have developed a proof-of-concept prototype of Prox-RBAC 

to measure the performance of the cryptographic protocols and 
the enforcement algorithms. To instantiave the Prove construct, 
we employed the Feige-Fiat-Shamir identification protocol [11], 
which uses a zero-knowledge proof, and we use a Pedersen com
mitment [19] for the Commit and Open primitives. For Auth, we 
simply used a salted hash of a password. We used SHA-256, AES
256, 1024-bit RSA, and SHA-1 with DSA for the Hash, Enck, 
Encpk(c), and Signk primitives, respectively. We implemented our 
prototype in Java 1.6.0_20, relying on standard cryptographic im
plementations when possible. For the Pedersen commitment and 
the Feige-Fiat-Shamir protocols, we used a custom implementation 
that employed the BigInteger class. Our test machine consisted of a 
2.26GHz Intel R® CoreTM 2 Duo CPU with 3GB of 667MHz mem
ory, running on Ubuntu 10.04 (“Lucid Lynx”) with version 2.6.32 
of the Linux kernel. Based on 500 iterations, the most expensive 
of the cryptographic operations are the Pedersen commitment (av
erage of 17.7 ms to generate and 20.2 ms to confirm) and RSA (5.7 
ms to encrypt, but 30.2 ms to decrypt). Other than the DSA sig
nature (9.8 ms average), all other computations required less than 
1 ms on average to complete. The average time for the complete 
Read protocol (including the policy evaluation algorithms) was ap
proximately 89.4 ms. 

Moving toward a practical deployment with location sensing is 
more challenging. We have performed preliminary work toward 
using an Advanced Card Systems (ACS) NFC reader, model ACR 
122 to communicate with a Nokia 6131 NFC-enabled cell phone. 
Communication between the ACR 122 and the Nokia 6131 uses the 
peer-to-peer extension to the Java JSR 257 Contactless Communi
cation API. Our software employs the NFCIP library8, which uses 
the Java smartcardio libraries. One difficulty we had with this im
plementation is that the BigInteger class does not exist in the Java 
ME distribution. Consequently, deploying a protocol such as the 
Feige-Fiat-Shamir scheme requires developing one’s own solution 
for large integers. However, based on our experiments, we observe 
that the average computation time for generating the Feige-Fiat-
Shamir proof is less than the amount of time to perform the AES 
encryption in the protocol. Thus, such a deployment is feasible. 

The final challenge in developing a practical implementation of 
Prox-RBAC is enforcement of the one-way movement through en
try points. In our current prototype, we use the NFC phone to 
connect to a reader that would (in a real deployment) control the 
lock to a door. To confirm passage, the user would have to use the 
NFC phone to connect to a reader on the other side of the door. 
Clearly, this approach is inelegant, and a more desirable solution 
would include other forms of sensing to detect the user’s move
ment. In addition, our prototype does not include proximity-based 
communication between the client (i.e., a laptop) and the entry. For 
completeness and to prevent data leakage, the entry points should 
be equipped with a means to detect when a laptop is leaving the PA 
and revoking permissions as necessary. 

4.5 Functional Correctness 
In this section, we use the protocol and algorithm specifications 

to demonstrate that our prototype correctly enforces the Prox-RBAC 
semantics as defined. Due to space constraints, we will only offer 
sketches of proofs and leave full consideration for the full version 
of the paper. 

Lemma 1: The access protocol defined in Figure 4 prevents unau
thorized access under the Dolev-Yao adversarial model. 
8Available download at http://code.google.com/p/nfcip-java/. 

Proof: As all sensitive data is encrypted, eavesdroppers only ob
serve signed data (preventing unauthorized modification), the ob
ject being requested, or the one-time use commitment. If the ad
versary modifies either of the latter two pieces of data, the user 
and/or the AS would detect the corruption. Furthermore, modifying 
the object requested would not give the user access to unauthorized 
data. Thus, only authorized access is allowed. 

Lemma 2: The policy evaluation algorithms correctly enforce when 
and while constraints. 

Proof: The EvalPolicies algorithm includes a procedure for evalu
ating the initial conditions, corresponding to the when constraints. 
The algorithm returns the set of satisfied policies, which are then 
added to the user’s Ongoing list. This list identifies the while 
constraints that must continuously be evaluated. If an Ongoing 
constraint is no longer satisfied, the list entry contains the object 
and client used; the AS uses this information to send a revocation 
request to the client. 

5. RELATED WORK 
Role-based access control (RBAC) [21] is a popular technique 

for maintaining and administering access privileges in an organiza
tion. One of the advantages of RBAC is its ability to incorporate 
hierarchies into the model [22, 23]. Building on the core RBAC 
model, researchers have proposed extensions that integrate contex
tual factors [6, 8]. These extensions include temporal and spatial 
constraints [9, 14, 1, 9, 20, 4, 2, 7, 5]. Our work can be viewed 
as an extension of the latter category, in which spatial information 
is considered as part of the access control request. However, our 
work has a significantly different focus than these works. 

Specifically, models for spatial RBAC systems, such as those just 
identified, are based solely on the location of the user making the 
request. The presence or absence of other users in the reference 
space is irrelevant in those models. In contrast, our focus is to 
define proximity constraints that are based on the user’s location in 
relation to other users in the system. This work is the first to focus 
on the specification of these relative constraints and the challenges 
of their enforcement. 

Two works are close in aim as our own. Team-based access con
trol using contexts (C-TMAC) [12], like our own, incorporates both 
RBAC and the location of multiple users. However, in C-TMAC, 
the system only considers locations of users who are on the same 
team as the requesting user, rather than all users. Furthermore, C-
TMAC does not specifically focus on location, but rather the more 
generic notion of context (of which location is one aspect). As 
such, C-TMAC does not consider the challenges of location val
idation and does not define a policy language. A different inter
pretation of proximity has previously been explored in the context 
of access control. Specifically, the proximity-based access control 
(PBAC) model [10, 13] considers the requesting user’s proximity 
to a computer. For instance, if a temporary emergency medical cen
ter is created during a disaster response, then a doctor who is in the 
immediate vicinity would be granted access. In other words, PBAC 
can be viewed as considering absolute proximity, as the computer 
typically has a static location. Our work, in contrast, considers 
relative proximity based on the locations of other users, who are 
assumed to be continually moving. 

One area of study that may appear similar to our own is the ques
tion of nearest neighbor queries. For instance, Yang et al. [24] have 
proposed techniques for k-nearest neighbor queries within an in
door environment. These queries are based on a minimal walking 
distance metric. Although Prox-RBAC also considers the location 
of other users, we do not use a uniform metric. That is, our spatial 
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model abstracts the distance between protected regions of varying 
sizes. One interesting extension of Prox-RBAC could be to apply 
k-nearest neighbor queries to our spatial model, where the distance 
metric is the number of hops within the network of entry points. 

6. CONCLUSIONS 
In this work, we have extended the notion of spatially aware 

RBAC to incorporate proximity constraints, which specify policy 
requirements that are based on the locations of other users in the 
environment. We have introduced our spatial model, primarily con
sisting of an accessibility graph that is based on existing work on 
graph-based indoor space models. We have also defined the syntax 
and semantics for the Prox-RBAC language for specifying these 
constraints. In addition to the formalization of our model and lan
guage, we have defined an enforcement architecture, including pro
tocols and algorithms. We have offered preliminary results that 
prove the architecture correctly meets the semantic definitions. We 
have also described our initial work toward developing a prototype 
Prox-RBAC system, and closed with an informal security analy
sis. Based on these results, we find that it is feasible to construct a 
usable and efficient proximity-based RBAC system. 

7. ACKNOWLEDGEMENTS 
The work reported in this paper has been partially supported 

by Sypris Electronics and by the MURI award FA9550-08-1-0265 
from the Air Force Office of Scientific Research. 

8. REFERENCES 
[1] S. Aich, S. Sural, and A. K. Majumdar. STARBAC:
 

Spatiotemporal role based access control. In OTM
 
Conferences, 2007.
 

[2] V. Atluri and S. A. Chun. A geotemporal role-based 
authorisation system. In International Journal of Information 
and Computer Security, volume 1, pages 143–168, 2007. 

[3] C. Becker and F. Dürr. On location models for ubiquitous
 
computing. Personal Ubiquitous Computing, 9:20–31,
 
January 2005.
 

[4] S. Chandran and J. Joshi. LoT RBAC: A location and
 
time-based RBAC model. In Proc. of 6th International
 
Conference on Web Information Systems Engineering
 
(WISE), pages 361–375. Springer-Verlag, 2005.
 

[5] L. Cirio, I. F. Cruz, and R. Tamassia. A role and attribute
 
based access control system using semantic web
 
technologies. In Proc. of 2007 On the Move to Meaningful
 
Internet Systems - Volume Part II, OTM’07, pages
 
1256–1266, Berlin, Heidelberg, 2007. Springer-Verlag.
 

[6] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, 
M. Ahamad, and G. D. Abowd. Securing context-aware 
applications using environment roles. In Proc. of 6th ACM 
Symposium on Access Control Models and Technologies 
(SACMAT ’01), pages 10–20, 2001. 

[7] I. F. Cruz, R. Gjomemo, B. Lin, and M. Orsini. A location
 
aware role and attribute based access control system. In
 
Proc. of 16th ACM SIGSPATIAL International Conference 
on Advances in Geographic Information Systems (ACM 
GIS), pages 84:1–84:2, New York, NY, USA, 2008. ACM. 

[8] M. L. Damiani and E. Bertino. Access control and privacy in 
location-aware services for mobile organizations. In 7th 
International Conference on Mobile Data Management 
(MDM), 2006. 

[9] M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca. 
GEO-RBAC: A spatially aware RBAC. In ACM Transactions 
on Information and System Security (TISSEC), 2007. 

[10] S. M. Didar-Al-Alam, H. Mahmud, and M. A. Mottalib. 
Modifications in proximity based access control for multiple 
user support. International Journal of Engineering Science 
and Technology, 2:3603–3613, 2010. 

[11] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of 
identity. In Proc. of 19th Annual ACM Symposium on Theory 
of Computing (STOC), pages 210–217, 1987. 

[12] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. 
Thomas. Flexible team-based access control using contexts. 
In Proc. of 6th ACM Symposium on Access Control Models 
and Technologies (SACMAT), pages 21–27, New York, NY, 
USA, 2001. ACM. 

[13] S. K. S. Gupta, T. Mukherjee, K. Venkatasubramanian, and 
T. B. Taylor. Proximity based access control in 
smart-emergency departments. In Proc. of 4th Annual IEEE 
international Conference on Pervasive Computing and 
Communications Workshops (PERCOMW), pages 512–, 
Washington, DC, USA, 2006. IEEE Computer Society. 

[14] F. Hansen and V. Oleschuk. SRBAC: A spatial role-based 
access control model for mobile systems. In Proc. of 8th 
Nordic Workshop on Secure IT Systems (NORDSEC), pages 
129–141, October 2003. 

[15] C. S. Jensen, H. Lu, and B. Yang. Graph model based indoor 
tracking. In 10th International Conference on Mobile Data 
Management (MDM), pages 122–131, 2009. 

[16] C. S. Jensen, H. Lu, and B. Yang. Indoor–a new data 
management frontier. IEEE Data Eng. Bull., 33(2):12–17, 
June 2010. 

[17] M. S. Kirkpatrick and E. Bertino. Enforcing spatial 
constraints for mobile rbac systems. In Proc. of 15th ACM 
Symposium on Access Control Models and Technologies 
(SACMAT), pages 99–108, New York, NY, USA, 2010. 
ACM. 

[18] J. Park and R. Sandhu. The UCONABC usage control model. 
In ACM Transactions on Information and System Security, 
volume 7, pages 128–174, 2004. 

[19] T. P. Pedersen. Non-interactive and information-theoretic 
secure verifiable secret sharing. In Proc. of 11th Annual 
International Conference on Advances in Cryptology, 
CRYPTO ’91, pages 129–140, London, UK, 1992. 
Springer-Verlag. 

[20] I. Ray, M. Kumar, and L. Yu. LRBAC: A location-aware 
role-based access control model. In Proc. of Internation 
Conference on Information Systems Security (ICISS), pages 
147–161, 2006. 

[21] R. Sandhu. Role-based access control models. In IEEE 
Computer, Feb. 1996. 

[22] R. Sandhu. Role hierarchies and constraints for lattice-based 
access controls. In 4th European Symposium on Research in 
Computer Security (ESORICS), 1996. 

[23] R. Sandhu. Role activation hierarchies. In 3rd ACM 
Workshop on Role-Based Access, 1998. 

[24] B. Yang, H. Lu, and C. S. Jensen. Probabilistic threshold k 
nearest neighbor queries over moving objects in symbolic 
indoor space. In Proc. of 13th International Conference on 
Extending Database Technology, EDBT ’10, pages 335–346, 
New York, NY, USA, 2010. ACM. 

[25] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A 
logical specification for usage control. In Proc. of 9th ACM 
Symposium on Access Control Models and Technologies 
(SACMAT), 2004. 

http:GEO-RBAC:AspatiallyawareRBAC.In
http:definitions.We

