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ABSTRACT 
In a distributed computing environment, remote devices must often 
be granted access to sensitive information. In such settings, it is 
desirable to restrict access only to known, trusted devices. While 
approaches based on public key infrastructure and trusted hardware 
can be used in many cases, there are settings for which these solu
tions are not practical. In this work, we define physically restricted 
access control to reflect the practice of binding access to devices 
based on their intrinsic properties. Our approach is based on the 
application of physically unclonable functions. We define and for
mally analyze protocols enforcing this policy, and present experi
mental results observed from developing a prototype implementa
tion. Our results show that non-deterministic physical properties of 
devices can be used as a reliable authentication and access control 
factor. 

Categories and Subject Descriptors 
K.6.5 [MANAGEMENT OF COMPUTING AND INFORMA

TION SYSTEMS]: Security and Protection—authentication 

General Terms 
Security 

Keywords 
physically unclonable functions, applied cryptography, access con
trol 

1. INTRODUCTION 
Controlled remote access to protected resources is a critical el

ement in security for distributed computing systems. Often, some 
resources are considered more sensitive than others, and require 
greater levels of protection. Recent advances in access control [6, 
1, 21] provide means to tighten the security controls by consider
ing users’ contextual factors. While these techniques offer more 
fine-grained control than traditional identity-based approaches, we 
desire an even stronger guarantee: Our goal is to provide a means 
by which access is granted only to known, trusted devices. 
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To achieve our aim, we had to address two separate issues. First, 
we required the ability to identify a device uniquely. That is, our 
scheme must be able to distinguish between two devices with soft
ware that is configured identically. Second, we had to establish a 
mechanism for encrypting the data for access by only the identified 
device. 

A naïve approach to this problem would be to apply authentica
tion mechanisms at the network and transport layers, for instance 
Challenge-Handshake Authentication Protocol (CHAP), Transport 
Layer Security (TLS), or Internet Protocol Security (IPsec). How
ever, these solutions fail to provide our desired security guarantees 
in three ways. First, they differentiate based on stored data, e.g., 
cryptographic keys. If this data is leaked, these solutions can be 
broken. Our approach, however, does not rely on the security of 
data stored on the client. 

Second, these approaches are too coarse-grained, granting or 
denying access below the application layer. That is, our solution 
allows a server program to selectively grant access to subsets of 
data based on the unique hardware of the remote device. Existing 
approaches cannot provide this flexibility. 

The third and final shortcoming of these basic approaches is that 
they can be completely bypassed by improper management and 
insider threats. In a recent report [35], the most common cause 
(48%) of data breaches was privilege misuse, which includes im
proper network configuration and malicious insider threats. In our 
approach, access control decisions are based on the physical prop
erties of the remote devices themselves. While this does not com
pletely eliminate insider threats, our solution does offer a higher 
level of defense against such insider threats. 

Alternatively, one could rely on a public key infrastructure (PKI) 
using trusted platform modules (TPMs). While these approaches 
will work in traditional computing environments, our interests ex
tend to environments for which TPMs are not available or PKI 
is considered to be too expensive. Specifically, we desire a solu
tion that could also be deployed in low-power embedded systems. 
In these scenarios, the computing power required for modular ex
ponentiation can quickly exhaust the device’s resources. Our ap
proach relies on a cryptographic scheme that offers similar guaran
tees as PKI, but with less computation required. 

Our solution is based on the use of physically unclonable func
tions (PUFs) [14, 15]. PUFs rely on the fact that it is physically 
impossible to manufacture two identical devices. For example, 
two application-specific integrated circuits (ASICs) can be man
ufactured on the same silicon wafer, using the same design. How
ever, a circuit in one ASIC may execute faster than the equivalent 
circuit in the other, because the wire length in the first is a nanome
ter shorter than the second. Such variations are too small to con
trol and can only be observed during execution. PUFs quantify 
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these variations as challenge-response pairs, denoted (C, R), that 
are unique to each particular hardware instance. A robust PUF is 
unpredictable, yet consistent for a single device. It is also unforge
able, as the physical variations that determine the PUF are too small 
to control. 

Previous works on PUFs have focused on two areas. First, PUFs 
can be used to store cryptographic keys in a secure manner. Given a 
PUF pairing (C,R) and a key K, the device stores X = R ⊕ K. In 
this case, R acts as a one-time pad, and X is a meaningless string 
of bits that can be stored in plaintext on a hard-drive. When the 
key is needed at a later time, the device again executes the PUF to 
get R and recovers the key as K = R ⊕ X. The second use of 
PUFs is to generate cryptographic keys directly by mapping R to, 
for example, a point on an elliptic curve. In such a usage, the PUF 
does not have to store any data. 

The advantages of employing PUFs for key generation and stor
age are subtle, and may be missed at first glance. First, note that no 
cryptographic keys are explicitly stored; the only data above that 
is ever stored is the value X, which is a random, meaningless bit 
string that reveals no information regarding the key K. A second 
advantage, which follows from the first, is that any key exists only 
at run-time. Furthermore, if the PUF is integrated into the proces
sor itself, then the keys never even exist in main memory. Thus, 
PUFs offer very strong protections of cryptographic keys. 

While these previous works assume a traditional cryptographic 
scheme is in place, we propose a new and unique direction for PUF 
research. That is, we propose incorporating the randomness of the 
PUF directly into an application-layer access request protocol. Our 
light-weight multifactor authentication mechanism, coupled with 
a dynamic key generation scheme, provides a novel technique for 
enforcing access control restrictions based on the device used. 

The main contributions of our work can be summarized as fol
lows. 

•	 We propose the notion of physically restricted access control. 
That is, we propose integrating a device’s distinct character
istics directly into an access request. 

•	 We define protocols for registering a device and making an 
access request, and present formal analyses of the security 
guarantees. 

•	 We present a prototype implementation of our client-server 
architecture, which includes the creation of a PUF on a field
programmable gate array (FPGA) for experimental evalua
tion. Our implementation provides several insights concern
ing the adoption of PUF technology in security protocols. 

•	 We provide empirical results that validate our use of a PUF 
to create a light-weight multifactor authentication system. 

The rest of this paper is organized as follows. Section 2 details 
our threat model and deployment assumptions. Section 3 describes 
related work in the area of trusted computing, authentication, and 
access control. Section 4 provides an overview of how PUFs are 
created and controlled. In Section 5, we define our notion of physi

cally restricted access control, specify protocols for enforcing this 
goal, and provide a formal analysis of our security guarantees. Sec
tion 6 provides details of our implementation, including our choices 
of cryptographic primitives for our protocol and our PUF FPGA 
implementation. Section 7 presents empirical results of our experi
ments. In Section 8, we discuss additional issues relevant to future 
implementations of our scheme. We then conclude in Section 9. 

2. THREAT MODEL 
In describing our threat model, we start with the central server 

S. We first note that the adversary’s goal is to gain access to sensi
tive data stored on S. We place no restrictions on what constitutes 
this data; we simply note that a server application running on S 
is responsible for the access control decisions. Next, we assume 
that S is trusted and secure. While this may seem like a strong as
sumption to make, we stress that it is the data stored on S that is 
important. That is, if an adversary can compromise S, there is no 
need to attack our protocols, as he has already “won.” 

Regarding the client devices C, we assume that the organization 
has the authority to tightly control the software running on each 
device. While this is a daunting task for traditional computing, 
recall that we are also highly motivated by the concerns of embed
ded distributed applications. Embedded devices do not require the 
complex code base that exists in a traditional workstation; thus, sat
isfying this requirement is easier. Furthermore, our protocols will 
still apply in traditional schemes, too. Specifically, remote attes
tation techniques can be used to ensure that only known, trusted 
software is running. 

Our main adversaries, then, are the users. We consider two 
classes of users as threats. First, client users have full access to 
the device, with the exception of installing software. That is, these 
users can read any data stored on the device. However, they cannot 
extract the data from memory to external storage. Also note, in the 
case of embedded systems, there might not actually be a user, as 
the devices may be executing autonomously. If there is a human 
user, he will have a password, and we assume it is protected. 

The other class of users that pose a threat, whether malicious or 
not, are administrators. While administrators may have access to 
the data on S directly, our assumption is that the goal of a malicious 
administrator is to enable access to an untrusted device, thereby 
bypassing the physical restrictions. This adversary has access to all 
secret data stored on S. 

Finally, we also consider network-based attackers, such as eaves
droppers. In all cases, we apply standard cryptographic assump
tions. Specifically, we assume that adversaries are limited to prob
abilistic, polynomial-time attacks. 

3. RELATED WORK 
The literature of computer security contains a long history of 

identification schemes and authentication protocols [24, 23, 11, 
12]. Modern research in this area has become more focused on 
addressing issues concerning digital identity management under 
specialized circumstances, such as internet banking [10], secure 
roaming with ID metasystems [20], digital identity in federation 
systems [5], authentication for location-based services [18], and 
location-based encryption [2]. These works rely on knowledge or 
possession of a secret, and do not bind the authentication request to 
a particular piece of hardware. 

The origin of PUFs can be traced to attempts to identify hardware 
devices by mismatches in their behavior [22]. The use of PUFs for 
generating or storing cryptographic keys has been proposed in a 
number of works [31, 17, 16, 15, 14]. AEGIS [32, 33], a new 
design for a secure RISC processor, incorporates a PUF for cryp
tographic operations. Biometrics have also been used to generate 
secure keys [19]. We will contrast our approach with this scheme in 
Section 6.1. Our work contrasts with these, as we aim to integrate 
the unique PUF behavior directly into an authentication protocol, 
rather than simply providing secure key storage. 

In a previous work, we presented a very rudimentary sketch of 
incorporating PUFs into an authentication system (reference omit



Figure 1: A sample 1-bit PUF based on ring oscillators 

ted for purposes of anonymity). However, the focus of that pa
per was on joint installation of PUF challenges to combat insider 
threats. Additionally, that work did not present any formal pro
tocol definition or implementation. In contrast, our current work 
presents substantial more significant results. We present formal 
definitions of our approach, protocols, and security proofs of our 
design. Also, our current work addresses the technical details in
volved with such an implementation, including the necessity of 
error-correcting codes, and presents empirical results of our pro
totype implementation. 

Besides our previous work, [3] and [13] are perhaps the most 
similar to our current work. However, the former focuses on bind
ing software in a virtual machine environment, whereas the latter 
focuses on authenticating banking transactions. Our protocols fo
cus on light-weight multifactor authentication for distributed set
tings to bind remote file access to trusted systems. 

Other types of trusted hardware exist for various purposes. TPMs 
can provide secure key storage and remote attestation [34, 4, 30, 
28]. In many cases, the secure storage of TPMs can be used to bind 
authentication to a piece of hardware. However, we are interested 
in solutions for distributed computing that do not rely on TPMs, as 
TPMs may not be available for the devices used. 

Finally, a new direction for hardware identification has emerged 
to identify unique characteristics of RFID devices [8, 7, 29]. These 
works are similar to previous work on PUFs, where they focus on 
identifying the device. These works do not propose new protocols 
that incorporate the unique behavior directly. 

4.	 PUFS 
The fundamental idea of PUFs is to create a random pairing be

tween a challenge input C and a response R. The random behavior 
is based on the premise that no two instances of a hardware design 
can be identical. That is, one can create a PUF by designing a piece 
of hardware such that the design is intentionally non-deterministic. 
The physical properties of the actual hardware instance resolve the 
non-determinism when it is manufactured. For example, the length 
of a wire in one device may be a couple of nanometers longer than 
the corresponding wire in another device; such differences are too 
small to be controlled and arise as natural by-products of the phys
ical world. 

While there are several types of PUFs, in this work we focus on 
PUFs derived from ring oscillators (ROs). Figure 1 shows a sample 
1-bit RO PUF. A RO consists of a circular circuit containing an odd 
number of not-gates; this produces a circuit that oscillates between 
producing a 1 and 0 as output. In a 1-bit PUF, the output of two ROs 
pass through a pair of multiplexors (MUX) into a pair of counters 
that count the number of fluctuations between the 0 and 1 output. 
The PUF result is 1 if the counter on top holds a greater value, and 

0 otherwise. The role of the challenge in a 1-bit RO PUF is to flip 
the MUX. 

Clearly, it is not desirable to have such a one-to-one correspo
nence for larger PUFs. As such, for larger output bit strings it is 
better to have a pool of ROs, and randomly select pairs for com
parison based on the challenge. In [33], the authors evaluate the 
entropy resulting from random pairings of ROs, and show that N 
ROs can be used to produce log

2
(N !) bits. For example, 35 ROs 

can be used to create 133 bits. Thus, a small number of ROs can be 
used to exhibit good random behavior. Another way to introduce 
entropy into the PUF behavior is to apply a cryptographic hash to 
the output. Given a strong hash function, changing a single bit of 
the PUF challenge, which yields a single flipped PUF bit, will pro
duce a very different output. 

The interesting properties of PUFs arise from the fact that it is 
virtually impossible for two ROs to operate at the same frequency. 
Specifically, miniscule variations in the wire width or length can 
cause one RO to oscillate at a faster speed than the other. As these 
variations are persistent, one of the oscillators will consistently be 
faster. Thus, the behavior of PUFs based on ROs depends on the 
physical instance of the device. Also, if the PUF is large enough, 
the behavior is unique. Furthermore, as these variations can be 
neither predicted nor controlled, they cannot be cloned. 

With the exception of our implementation description in Sec
tion 6, we will assume an idealized PUF in our protocol design. 
That is, given a challenge-response pair < Ci, Ri > and another 
challenge Cj  Ci, one cannot predict the value of Rj .= Conse
quently, our results apply to any PUF that meets this ideal, rather 
than just RO-based PUFs. 

5.	 PHYSICALLY RESTRICTED ACCESS 
CONTROL 

In this section, we start by defining our notion of physically re
stricted access control. Next, we offer a high-level protocol and 
formal analysis for achieving this goal. We then present a more 
concrete example of this protocol that is derived from the Feige
Fiat-Shamir identification scheme. 

We assume that the protected resources consist of files on a cen
tral server and subjects request access to these files remotely. For 
a file access request by a subject from a given device, the access 
control system checks whether the subject is allowed to access the 
file from the device; if this is the case, the server encrypts the file 
with a dynamically generated key and sends the resulting data to 
the device. 

We thus assume an access control model based on a number of 
sets. Let S denote the set of subjects, D the set of trusted devices, F 
the set of protected files, and R the set of privileges. For simplicity, 
we assume R = {read, write}. A permission can be written as 
the tuple < s, f, r >, such that s ∈ S , f ∈ F , and r ∈ R. Thus 
P ⊆ S × F ×R defines the set of authorized permissions subject 
to the physical restrictions. Let P UFd : C → R be the PUF for a 
trusted device d ∈ D. 

We define physically restricted access control to be the restric
tion of an access request < s, d, f, r >, subject to the following 
conditions: 

•	 The identity of s is authenticated. 

•	 < s, f, r >∈ P . 

•	 d ∈ D, and the authentication is performed implicitly by the 
ability of d to demonstrate a one-time proof of knowledge of 
P UFd. 



•	 A dynamic encryption key kP UF based on the proof of P UFd 

is used to bind the request to the device. 

An important element of this definition is the notion of hard

ware binding of the cryptographic key. That is, the key kP UF is 
generated dynamically and relies on the physical properties of the 
hardware itself (i.e., the PUF). Consequently, kP UF is never explic
itly stored on the requesting device. This dynamic key generation 
is in contrast to traditional key management, in which keys are gen
erated a priori. This approach simplifies the administration work, 
while reducing the threat of a rogue administrator transferring keys 
to an untrusted device. 

One possible criticism to our definition is that it does not con
sider what happens to the contents of the file after decryption. That 
is, if the device d is malicious (or is infected with malicious soft
ware), it could simply broadcast the contents after decryption. We 
counter this objection by noting that remote attestation techniques 
could be applied to ensure that only trusted applications are run
ning on the device. Hence, we assume either the device is free of 
malware, or the server can detect the malware and abort. 

In addition to such software attacks, an attacker with physical 
access and sufficient technical skill could read the contents directly 
from the device’s memory. However, such an attack exists regard
less of the access control methodology applied. As such, we con
sider such threats beyond the scope of our work. 

5.1 Protocols 
Our protocols rely on a number of cryptographic primitives. Let 

H denote a collision-resistant hash function, while Enck(m) de
notes the symmetric key encryption of a message m with the key 
k, using a cipher that is secure against probabilistic polynomial 
time (PPT) known ciphertext attacks. Define Auth(·) to be a ro
bust authentication scheme that is resilient against PPT adversaries. 
Gen(·) denotes a pseudorandom key generator based on the pro
vided seed value. 

Let Commit(·) denote a commitment scheme that ensures confi
dentiality against PPT adversaries. Chal(·) and Prove(·), then, in
dicate a random challenge and the corresponding zero-knowledge 
proof of the secret value bound to the commitment. Furthermore, 
we assume that any PPT adversary A has negligible probability of 
guessing Prove(·) without access to the committed secret value. 
Assuming C denotes the PUF-enabled client (also called the de
vice) and S indicates the server, the table in Table 1 gives the for
mal definition of our protocols. 

Given these formalisms, we now explain the intuition behind 
each protocol. In Request(adm, m), an administrator adm re
quests a set of m challenges to be used with a new (unspecified) 
device.1 S authenticates adm and creates a database entry of the 
form < adm, n, C1, . . . , Cm >, binding those challenges and the 
nonce to that administrator. Hence, only that administrator is autho
rized to use that particular set of challenges. We use prms to indi
cate any parameters needed for the commitment and proof scheme. 
For instance, in our implementation prms consists of a modulus. 

For Enroll(adm, pwd, C1, . . . , Cm, prms), we are assuming a 
trusted path from adm to C. That is, no eavesdropper learns the ad
ministrator’s password, and all data are entered correctly. Based on 
this assumption, adm provides the inputs to C, which initiates an 
enrollment protocol that starts with authenticating adm. C uses a 

1In general, we assume Ci ← Gen(1n) ∀ 1 ≤ i ≤ m; that is, 
each challenge is the result of a pseudorandom generator with a 
security parameter 1n . However, in some applications, it may be 
desirable for S to define the challenges predictably. As such, we 
are intentionally vague on the selection of C1, . . . , Cm. 

pseudorandom generator to produce a one-time-use key otk derived 
from the administrator’s password pwd, the nonce n, and the chal
lenges. S can retrieve the nonce and challenges from its database, 
thus recreating the key on its end. C uses otk to encrypt a commit
ment of the PUF challenge-response pairs. S acknowledges receipt 
of the values with a hash of the commitment. 

Finally, Access(user, file, action) defines the access request 
protocol. As before, S authenticates the user making the request, 
and selects a random set T of the challenges C1, . . . , Cm. After 
receiving Chal(T ), C executes the PUF to get the responses Ri 

for each Ci ∈ T . The corresponding zero-knowledge proof p ← 
Prove(T ) is derived from these responses. S uses p and the user’s 
password pwd as inputs to a pseudorandom generator to produce 
a one-time-use key k. S encrypts the file contents c with this key, 
returning the encrypted file to C. Hence, the intuition behind this 
protocol is that the file can only be decrypted by that user with that 
particular PUF-enabled device. 

We note that there is one important consideration regarding our 
definition of Access(user, file, action). Unlike the previous pro
tocols, this protocol will be executed repeatedly. However, there 
are only 2m subsets of P(C1, . . . , Cm). After all subsets are ex
hausted for a single user, the necessary proof will be reused. How-
ever, this repetition is acceptable, as the proof is never made public. 
Instead, the proof is used as an input to the key generation. Further
more, assuming the nonce z is never repeated, the keys generated 
will always be different, even if p ← Prove(T ) is reused. 

In designing our protocols, we envisioned both traditional com
puting and embedded applications. In the embedded scenario, there 
may not be a human user making the request Access(user, file, 
action). A straightforward variant of our protocol could accom
modate this situation by eliminating Auth(user) from that proto
col. Then, S must make the access control decision based on the 
device making the request, not the user doing so. Though this 
flexibility is a nice feature of our design, we will not investigate the 
security claims of this variant in this paper. 

5.2 Security Analysis 
Here, we present our formal analysis of the security properties 

of our protocols. We start with three lemmas, and complete our 
analysis with a theorem that our approach satisfies our definition of 
physically restricted access control. 

Lemma 1. 
A PPT adversary A can enable an untrusted device with only neg

ligible probability. 
Proof: Based on our assumption that Auth(·) is resilient against 
PPT adversaries, S will abort the Request(·) and Enroll(·) pro
tocols, except with negligible probability. Even with a transcript 
of Request(·), A must be able to forge the Encotk(·) message to 
enable an untrusted device. However, with no knowledge of pwd, 
this feat is also infeasible, by our assumptions of Enck(·). There
fore, A has only negligible probability of completing the Enroll(·) 
protocol and enabling an untrusted device. D 

Lemma 2. 
An honest client C can validate its enrollment with the legitimate 
S, except with negligible probability. 
Proof: Similar to Lemma 1, a PPT adversary A has negligible 
probability of forging H(Commit(< C1, R1 >, . . . , < Cm, Rm > 
)). Hence, if C receives such a hash, it has high assurance that 
the hash originated from the legitimate S and the enrollment suc
ceeded. D 
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Request(adm, m) – Administrator adm requests m challenges to enable a new device. 

– S performs Auth(adm) 
– S responds with C1, . . . , Cm, parameters prms, and a nonce n 

Enroll(adm, pwd, C1, . . . , Cm, prms) – C (after receiving data provided by adm) sends a commitment of the PUF to S. 

– S performs Auth(adm) 
– C generates otk ← Gen(pwd, n, C1, . . . , Cm) 
– C provides Encotk(Commit(< C1, R1 >, . . . , < Cm, Rm >)) 
– S responds with H(Commit(< C1, R1 >, . . . , < Cm, Rm >)) 

Access(user, file, action) – Subject user requests action for file, which is encrypted with key chal and transferred. If 
action = read, S sends the file. Otherwise, C sends it. 

– S performs Auth(user) and issues Chal (T ), where T ⊂ P(C1 , . . . , Cm) 
– S responds with a nonce z 
– S verifies that user is permitted to perform action on file 
– Generate and transfer Encchal(c), where p ← Prove(T ) and chal ← Gen(p, z, pwd) 

Table 1: Protocols for enforcing physically restricted access control 

Lemma 3. 
A PPT adversary A with transcripts of Request(·) and Enroll(·) 
can model the PUF with only negligible probability. 
Proof: In order for A to learn the commitments of the PUF be
havior, A must either decrypt Encotk(Commit(< C1, R1 >, . . . , 
< Cm, Rm >)) or find a preimage of H(Commit(< C1, R1 > 
, . . . , < Cm, Rm >)). However, based on our assumptions re
garding Enck(·) and H(·), both actions are infeasible. Thus, these 
protocols do not leak enough information for a PPT adversary A to 
model the PUF. D 

Informally, these lemmas demonstrate that the Request(·) and 
Enroll(·) protocols guarantee integrity and confidentiality against 
PPT adversaries. That is, by viewing a transcript of both proto
cols, A fails to learn the administrator’s pwd or the PUF challenge-
response pairs. Furthermore, any tampering by A will be detected 
by either S or C. Also, A cannot launch a man-in-the-middle at
tack against Enroll(·), as doing so requires knowledge pwd. Ap
plying these lemmas, we propose the following theorem. 

Theorem 1. 
The Access(·) protocol enforces physically restricted access con

trol under the PPT adversarial model. 
Proof: By Lemma 1, we are guaranteed that only trusted devices 
will be able to produce p ← Prove(T ). Lemma 2 ensures that 
trusted devices receive confirmation if their enrollment is success
ful; as such, if the confirmation is not received, proper mitigation 
can be performed. By Lemma 3, we are guaranteed that PPT adver
saries cannot possess a model of the PUF behavior by observing a 
transcript of the Request(·) and Enroll(·) protocols. We explicitly 
model the authentication of user, check that user is authorized to 
perform action on file, and the device is implicitly authenticated 
by generating a one-time proof of knowledge of the PUF behav
ior. Furthermore, the one-time key chal ← Gen(p, z, pwd) exists 
only at run-time, is never transmitted, is bound to the hardware of 
the requesting (trusted) device (by the use of the PUF), and is used 
to encrypt data transferred between C and S. The probability of 
a PPT adversary generating chal is negligible, so the encryption 
successfully enforces the access control policy. Therefore, by defi
nition, the Access(·) protocol enforces physically restricted access 
control under the PPT adversarial model. D 

6. IMPLEMENTATION 
In this section, we describe our implementation of a PUF-based 

access control mechanism based on our protocols described above. 
We start by describing our protocol instantiation and our implemen

tation of a PUF using ring oscillators, which is the same method 
used in [32]. We also describe the use of Reed-Solomon codes to 
ensure the PUF produces a consistent result that can be used for 
authentication, and detail our minimal storage requirements. 

6.1 Protocol Instantiation 
The underlying premise of our protocol instantiation is the Feige

Fiat-Shamir identification scheme. Our choice of hash function was 
SHA-1, although a better choice would be SHA-256, which offers 
more protection against preimage attacks and is collision-resistant. 
Our choice of symmetric key cryptography was AES which also 
provides the security against PPT adversaries that we require. 

Our Auth(·) primitive uses the hash function and a nonce n in a 
challenge-response protocol. Specifically, S generates n, and the 
user must respond with H(H(pwd), n). Note that both hashes are 
necessary, as our implementation of S protects the secrecy of user 
passwords by storing H(pwd), not the passwords themselves. Fur
thermore, as the response requires knowledge of both n and the 
password (in the form of H(pwd)), this challenge-response pair 
preserves the secrecy of pwd from PPT adversaries. Figure 2(a) 
shows our implementation of Request(adm, m), in which an ad
ministrator A requests a new set of challenges from the server S. 
The parameter N returned in step 4 is used as a modulus in the 
other protocols. 

Our Enroll(adm, pwd, C1, . . . , Cm, prms) implementation is 
shown in Figure 2(b). Our Commit(·) primitive consists of the 
pairs (C1, R1

2), . . . , (Cm, R2 ), where the multiplication is modum

lus N . The security of this commitment relies on the intractability 
of computing Ri by observing Ri 

2 (mod N ). That is, even if a PPT 
adversary gains access to the committed values stored on S, he can 
compute the modular square roots with only negligible probabil
ity, and the confidentiality of the PUF is assured. As we will ex
plain in Subsection 6.4, we used the mcrypt utility to generate the 
cryptographic keys, thus providing the functionality of the Gen(·) 
primitive. 

Our instantiation of Access(user, file, action) is shown in Fig
ure 2(c). As we mentioned previously, our choice of Chal(·) and 
Prove(·) is based on the Feige-Fiat-Shamir identification scheme. 
The first step of this scheme is for the prover (C) to generate a 
random r and send x ≡ +/- r 2 (mod N ).2 The user is then au
thenticated using a nonce and a cryptographic hash. Given the 
challenge set T ⊂ P(C1, . . . , Cm) (where P denotes the power 
set), C executes the PUF for each Ci ∈ T . That is, C computes 
y ≡ r · Ri

pi (mod N ), where pi = 1 if Ci ∈ T and pi = 0 

2Randomly flipping the sign of r 2 (mod N ) ensures that the scheme 
is a zero-knowledge proof of knowledge. 
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(a) Request(adm, m): Requesting a set of m	 (b) Enroll(adm, pwd, C1, . . . , Cm, prms): 
challenges	 Generating the Feige-Fiat-Shamir PUF commit

ments. 

(c) Access(user, file, action): Using Feige-Fiat-
Shamir and the PUF to generate a one-time-use key to 
encrypt the file. 

Figure 2: Physically restricted access control protocols. All multiplications are modulo N . 

otherwise. Thus, the proof p ← Prove(T ) is the value +/- y 2 (mod 
N ). As both parties also know H(pwd) and the nonce z, and they 
can compute +/- y 2 (mod N ), they can use the proof to generate 
chal ← Gen(p, z, pwd) as required by the protocol. 

There is an important subtlety here that should be noted. Under 
the traditional Feige-Fiat-Shamir scheme, the prover sends y and 
the verifier must compare both y 2 (mod N ) and −y 2 (mod N ) 
with the product of x and the committed values. That is, it would 
seem that C and S would have to attempt the encryption and/or 
decryption twice. However, this is not the case. S always uses 
x · Ri

pi (which includes the correct sign). As the decision of 
whether or not to flip the sign of x was made by C, C clearly knows 
whether the proof should be y 2 (mod N ) or −y 2 (mod N ). Hence, 
the encryption and decryption only need to be attempted once by 
each party. 

In addition, readers who are familiar with existing work in gen
erating cryptographic keys from biometrics [19] may object to our 
use of the responses as the secrets. In that work, the authors cre
ate a secure key K and compute Θlock = K ⊕ Θref , where Θref 

denotes the reference biometric sample. To authenticate a sample 
Θsam at a later point, the system applies the bit mask Θlock in an 
attempt to recover the key K. 

In our approach, this bit mask is unnecessary for two reasons. 
First, unlike biometric data, the PUF responses exist only at run
time and are never made public. In contrast, biometric data, such 
as fingerprints, are always present and can be harvested. Thus, PUF 
responses are more private and, consequently, more protected. Sec
ond, revoking a biometric is impossible; however, it must be possi
ble to revoke the associated key. The bit mask makes this possible. 
In our scheme, though, revocation of a PUF response Ri is simple: 
S stops using the associated challenge Ci. Hence, applying the bit 
mask to the PUF response is unnecessary for our scheme. 

6.2 PUF Creation 
We used the Xilinx Spartan-3 FPGA to implement a PUF. To 

simplify the circuitry, we created independent pairs of ROs, each 
forming a 1-bit PUF. To ensure that we could count a high number 
of oscillations, we implemented a 64-bit counter to receive the data 

from each multiplexor. Each oscillator consisted of a series of nine 
inverter gates. Our experiments with fewer gates resulted in the 
oscillator running at too high of a frequency, but nine gates offered 
good, consistent behavior. 

We controlled the PUF execution time by incrementing a small 
counter until it overflowed. The Spartan-3 uses a 50 MHz clock, 
so a 16-bit counter overflows in approximately 1 ms. We also in
creased the counter size to 20 bits, which required 21 ms to over
flow. We did not notice any observable difference in the consis
tency; hence, a 16-bit counter offers sufficient time for the oscilla
tors to demonstrate quantifiably different behavior. 

Our design is based on a 128-bit PUF. However, in our experi
ments, we needed to create a state machine to write the PUF result 
out to a serial port. The extra space for the state machine would not 
fit on the Spartan-3. As such, we reduced the PUF size to 64 bits 
for experimental evaluation. In future designs, all work will be per
formed on the device itself, the state machine will not be needed, 
and accommodating 128-bit PUFs (and larger) will certainly be fea
sible. 

From the perspective of space on the device, the limiting factor 
is the usage of the look-up tables (LUTs). Implementing a 128-bit 
PUF on the Spartan-3 occupies 39% of the available input LUTs 
and 78% of slices. However, as more ROs are added, the number 
of slices grows only slightly, while the usage of the LUTs increases 
more quickly. Implementing two independent 128-bit PUFs on the 
same device would occupy 78% of the LUTs and 99% of slices. 
Note, though, that these numbers are based on our simplistic PUF 
design, which consists of 128 pairs of independent 1-bit ROs. More 
advanced designs [33] select random pairs from a pool of ROs; in 
such an approach, a 128-bit output can be produced from 35 ROs, 
whereas our approach would use 256 (128 pairs). 

By implementing the full PUF as independent 1-bit PUFs, there 
is a direct correlation between each bit of the challenge and each bit 
of the response. That is, flipping only a single bit of input would 
result in only a single bit difference in the output. To counteract 
this correlation, we take a hash of the PUF output. As a result of the 
properties of cryptographic hash functions, a single bit difference 
in the PUF output will produce a very different hash result. This 
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hash step prevents an attacker from using the one-to-one mapping 
to model the PUF. 

6.3 Error Correction 
PUFs are designed to be generally non-deterministic in their be

havior. The physical properties of the device itself resolves this 
non-determinism to create a consistent and predictable challenge
response pattern. However, variations in the response are inevitable. 
For instance, if two ring oscillators operate at nearly identical fre
quencies, the PUF may alternate between identifying each as the 
“faster” oscillator. Reed-Solomon codes [26] correct these varia
tions up to a pre-defined threshold. 

Reed-Solomon codes are linear block codes that append blocks 
of data with parity bits that can be used to detect and correct errors 
in the block. To guarantee that we can correct up to 16 bits of output 
for a 128-bit PUF, we use a RS(255,223) code. Note that this code 
operates on an array of bytes, rather than bits. To accommodate 
this, we encode each PUF output bit into a separate byte. Alterna
tively, we could have compacted eight bits at a time into a single 
byte for a more compact representation. In fact, doing so is neces
sary for implementations that use larger sizes of PUF output. For 
our current work, though, we find this encoding to be acceptable, 
even if it is not optimal. 

RS(255,223) reads a block of 223 input symbols and can cor
rect up to 16 errors. After converting the PUF output to a string of 
bytes, we pad the end of the string with 0s. The encoding produces 
a syndrome of 32 bytes that must be stored. When the PUF is exe
cuted at a later point, the response is again converted to a string of 
bytes and padded, and these 32 bytes are appended. The array of 
bytes is then decoded, correcting up to 16 errors introduced by the 
noisy output of the PUF. 

While Reed-Solomon codes can correct errors in a data block, 
they operate under the assumption that the original data is correct. 
In the case of PUFs, it is also possible that the original data varies 
from the normal behavior observed at later times. To counteract 
this initial bias, during the enrollment process, we execute the PUF 
three times, not once. For each bit, we do a simple majority vote. 
That is, the “official” PUF result is the result of the consensus of 
the three executions. 

6.4 Client-Server Implementation 
We implemented our protocols as a custom client-server proto

type. Both applications use a custom-built package for performing 
arbitrary-length arithmetic operations for large numbers. All hash 
operations use the SHA-1 implementation by Devine [9]. We incor
porated the Reed-Solomon code library created by Rockliff [27]. 
Recall that, in our protocols, we use symmetric key encryption in 
a number of steps; the symmetric keys are generated from a shared 
secret. In all cases, we wrote the secret to a file, used the Linux 
utility mcrypt (which reads the file and generates a strong key 
from the data), and immediately destroyed the file using shred. 
The cryptographic algorithm used was 128-bit AES (Rijndael). To 
minimize the possibility of leaking the key by writing the shared 
secret to a file, we used setuid to run server under a dedicated 
uid, and restricted read access to the file before writing the secret. 

6.5 Storage Requirements 
The storage requirements of our solution for both C and S are 

minimal. C must store N , the challenges Ci, and an error-correcting 
syndrome for each challenge. As we detailed above, N and Ci are 
each 128 bits, or 16 bytes in length. Each syndrome (one per chal
lenge) is 32 bytes in length. Thus, the total storage for C in our 

prototype is 48m + 16 bytes. For 16 challenges, then, the storage 
requirement is under 1 KB. 

S also must store a minimal amount of data. S stores N and the 
R2 (mod N ) commitments, each of which are 128 bits (16 bytes) 
in size. In addition, S stores a hash of each user’s password. If 
SHA-1 is used, that hash is 20 bytes. If a denotes the number of 
devices enabled and b denotes the number of authorized users, the 
total storage requirement for our system is (16m+16)a+20b bytes 
of data. E.g., given 100 users, S can enable 1000 devices with 16 
challenges each for less than 268 KB of storage. 

i 

7. EXPERIMENTAL EVALUATION 
We now present the experimental evaluation of of our prototype. 

Our evaluation goals focused on two areas. First, we strove to 
demonstrate that RO-based PUFs are both non-deterministic and 
consistent. That is, different physical instantiations of the same 
PUF design produce different behavior, but repeating the PUF exe
cution on the same input and hardware produce results that can be 
reliably quantified as the same binary string. Our second area of 
evaluation was on the performance of our client-server prototype. 
In that portion, we show that our design offers better performance 
than using traditional PKI to distribute symmetric encryption keys. 

The output from the PUF, implemented using a Xilinx Spartan
3 FPGA, is transferred to a client application via serial cable, al
though in deployed settings all operations would occur on the same 
device. All client and server operations were executed on a system 
with a 2.26GHz Intel R 2 Duo CPU with 3GB of 667MHz ® CoreTM 

memory. The OS used was Ubuntu 9.04, with version 2.6.28-15 of 
the Linux kernel. 

7.1 PUF Consistency 
As noted in Section 6, we implemented a 64-bit PUF and wrote 

the serialized output to a workstation via cable. In our experiments, 
we observed an average of 0.2 bits that differed from the “official” 
PUF result. The maximum difference that we observed was 5 bits. 
Clearly, the use of Reed-Solomon codes that can correct up to 16 
error bits at each iteration will be able to provide consistent output 
from the PUF, even if we double the size of the PUF to 128 bits. 
Furthermore, note that changes in environmental conditions, such 
as different temperatures, will affect the absolute speeds at which 
the ROs oscillate. However, the PUF result is based on the relative 
speeds; that is, increasing the temperature will slow both ROs in 
a pair down, but is unlikely to change which of the two oscillates 
faster. Consequently, the PUF shows very consistent behavior that 
can be used to build a reliable authentication mechanism. 

7.2 Client/Server Performance 
To evaluate the performance of our client and server implementa

tions, we executed a series of automated file requests, given several 
different files sizes. In these experiments, we emulated the PUF in 
software. As noted in Section 6.2, we can control the PUF execu
tion time; overflowing a 16-bit counter adds only 1 ms to the client 
computation time. Figures 3 and 4 report the amount of time for 
computing key portions of the Access protocol for some of the file 
sizes that we measured. 

In these figures, “Generate Proof” (shown in blue) refers to the 
time to authenticate the user by generating or checking the hash 
H(H(pwd), z) and the proof y sent in step 3. “Generate Key” 
(shown in green) refers to the amount of time required to create the 
128-bit AES key needed to encrypt or decrypt the file, Echal(file). 
The AES computation is shown in orange. 

Figures 3 and 4 are shown on both a (truncated) linear scale and 
a logarithmic scale. The key observation of these figures is that the 
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(a) Truncated, linear scale (b) Logarithmic scale 

Figure 3: Average client-side computation time for steps 3 and 4 of the Access protocol. 

(a) Truncated, linear scale (b) Logarithmic scale 

Figure 4: Average server-side computation time for steps 3 and 4 of the Access protocol. 

two primary functions of our protocol, plotted as “Generate Key” 
and “Generate Proof,” are fairly constant and minimal. The client 
side operations take approximately 14 ms on average, which is the 
same length of time as decrypting a 6-byte piece of data with AES 
(12 ms on average). The server burden is even less, requiring ap
proximately 2 ms for each protocol stage and 9 ms to encrypt the 
file. As the file size increases, the AES encryption clearly becomes 
the limiting factor, as it increases approximately linearly with the 
file size, while our protocol overhead remains constant. 

Comparing the performance of our approach with traditional PKI 
(specifically, RSA) required addressing a number of factors. First, 
the intractability assumption behind our approach (as described in 
the next section) states that finding the modular square root is at 
least as hard as factoring the product of primes, assuming the prod

uct and the modular square are the same size. That is, computing 
Ri from a 128-bit Ri 

2 is only as difficult as breaking a 128-bit RSA 
key, which is quite a weak claim. Thus, we needed to increase 
the size of the PUF output. Note, though, that the PUF execution 
time does not change. The only additional performance overhead 
is the extra time required to do the modular multiplication on larger 
numbers. 

The other disparity between our approach and RSA is that the re
sult of an RSA decryption would give you the key itself. In our ap
proach, we would be left with a 1024-, 2048-, or 4096-bit value that 

would have to be converted into an AES key. However, based on 
our experiments with mcrypt, we observed only negligible over
head to convert this PUF output value into a key. Thus, this extra 
work had no measurable impact on our performance. 

Figure 5 shows the difference in performance between our PUF
based key generation and using RSA to encrypt an AES key. The 
RSA modular exponentiation requires approximately four times 
the computation time as our client-side PUF-based key generation. 
Thus, our approach offers a clear performance advantage, which 
may be very beneficial for low-power embedded devices. 

8. DISCUSSION 
We start this section with a brief discussion on PUF and RSA 

key sizes. We then focus on possible attack models for our design. 

8.1 On Key Sizes 
In the previous section, we showed the performance difference 

between our 128-bit PUF-based client-server architecture and var
ious sizes of RSA keys. However, comparing the security guar
antees of our system with the use of PKI to distribute symmetric 
keys is somewhat challenging. Revealing Ri 

2 while assuming Ri to 
be secure relies on the assumption that computing modular square 
roots is intractable. [25] shows that this computation is at least 
as difficult as factoring the product of primes, provided the num



Figure 5: Large PUF computation compared with RSA-based 
modular exponentiation 

adversary can only have learned these values by successfully at
tacking S. Clearly, if A can bypass S’s protection of the pairs, he 
can also directly access all of the files on the system. Hence, the 
only remaining motivation of such an attacker is to try to model the 
PUF by learning the PUF responses. 

The defenses against such an adversary rely on a number of 
factors. First, even if we set aside the PPT model and assume 
that the adversary has somehow learned the key used to encrypt 
Echal(file) and the inputs to Gen(p, z, pwd). Note that this p is 
exactly the proof generated in the Feige-Fiat-Shamir identification 
scheme, which is known to be zero-knowledge. Hence, observing 
additional sessions provides no new information regarding the val
ues of Ri. 

Thus, A can only model the PUF by computing the modular 
square roots. Returning to the PPT model, such an attack can suc
ceed with only negligible probability, as computing modular square 
roots is at least as difficult as factoring a large product of primes for 
composite values of N [25]. Admittedly, in our prototype, we used 
only 128-bit values (which is quite weak), but we demonstrated that 
it would be straightforward to increase the PUF output to larger 
sizes with minimal overhead. Hence, a PPT adversary could not 

2 
i ). 

square root is only as hard as factoring a 128-bit RSA key, which Finally, consider the case of a malicious administrator. Insider 

is quite a weak claim. We counter this criticism of our design with threats are very difficult to prevent in general, as these attackers 

the following justifications. have been granted permissions because they were deemed trust-

First, attacking the Ri values in this manner can only occur at worthy. In our approach, there is no inherent mechanism for pre

bers are all large. Intuitively, though, computing a 128-bit modular model the PUF, even with possession of the pairs (Ci, R

S. That is, the R2 
i values are never transmitted in the clear where venting a malicious administrator from enabling untrusted devices. 

an attacker can eavesdrop. In RSA, though, public keys are used 
to encrypt the symmetric keys before transmitting them across the 
network. Transmitting keys in this manner creates an attack surface 
that our approach avoids. 

Second, the PUF could be repeatedly polled to produce a larger 
output bit string. That is, appending 8 responses for a 128-bit PUF 
will create a 1024-bit bit string. Additionally, we showed that in
creasing the size yields a minimal performance cost when com
pared with common RSA key sizes. Consequently, we do not con
sider criticisms based on the key size to detract from the soundness 
of our overall design. 

8.2 Additional Threats & Attacks 
In Section 5.2, we provided a formal analysis of our protocol. 

Here, we expand on this analysis with an informal discussion of 
the remaining threats to our design. First, recall that our protocol is 
built on the assumption that C is a trusted device. As such, we do 
not consider attacks in which C leaks secure data received through a 

2 

legitimate access request. The presence of malware on C makes this 
a very realistic concern. However, we consider this threat beyond 
the scope of our work, and focus on what can be accomplished 
under the assumption that the C is trusted. 

A common flaw in authentication protocols is vulnerability to a 
replay attack. Consider a PPT adversary A with a transcript of of 
Access(user, file, action), as shown in Figure 2(c). If either z or 
T were different, the replay attempt would fail. Additionally, even 
if both z and T are the same, A would learn nothing new. That 
is, under the PPT assumption, A cannot decrypt Echal(file). The 
only threat in this scenario would be if the session involved upload

ing the file from C to S. In this case, A could force S to revert the 
status of file to an earlier version. However, this can only happen 
if both z and T are identical. Assuming a large range of values for 
these variables, this attack can succeed with only negligible proba
bility. 

Now consider a stronger adversary A that has learned the pairs 

i ) for a particular device. Under the PPT model, such an (Ci, R

One simple defense would be to apply separation-of-duty, thus re
quiring multiple administrators to input the same challenges to each 
device.3 Another approach would be to require a supervisor to ap
prove the enrollment request. Incorporating such defense-in-depth 
techniques would strengthen our scheme against these threats. 

9. CONCLUSIONS 
In this work, we have proposed a novel mechanism that uses 

PUFs to bind an access request to a trusted physical device. In con
trast to previous work, we do not use the PUF to generate or store 
a cryptographic key. Rather, we incorporate the PUF challenge-
response mechanism directly into our authentication and access re
quest protocols. Furthermore, our approach avoids expensive com
putation, such as the modular exponentiation used in public key 
cryptography. As a result, our PUF-based mechanism can be used 
in settings where PKI or TPMs are either not available or require 
too much performance overhead. We have presented the details of 
our implementation. Our empirical results show that PUFs can be 
used to create a light-weight multifactor authentication that suc
cessfully binds an access request to a physical device. 
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