CERIAS Tech Report 2011-22
Intrusion Detection Correlation in Computer Network Using Multi-Agent System
by Ayman Elsayed Elsayed Taha
Center for Education and Research
Information Assurance and Security
Purdue University, West Lafayette, IN 47907-2086

Ain Shams University
Faculty of Engineering
Computer and Systems Engineering Department

Intrusion Detection Correlation in Computer
Network Using Multi-Agent System

A Dissertation
Submitted in Partial Fulfillment of the Requirements of the
Degree of Doctor of Philosophy in Electrical Engineering
Computer and Systems Engineering Department

Submitted by
Ayman Elsayed Elsayed Taha

M. Sc., Electrical Engineering
(Computer and Systems Engineering)
Ain Shams University, 2002

Supervised by
Prof. Dr. Hani M. K. Mahdi
Prof. Dr. Ismail Abdel Ghafar Farag
Assoc. Prof. Dr. Ayman Mohamed Bahaa

Cairo, Egypt

July, 2011

Abstract

Ayman Elsayed Elsayed Taha
Intrusion Detection Correlation in Computer Network

Using Multi-Agent System
Doctor of Philosophy Dissertation
Ain Shams University, 2011

Alert and event correlation is a process in which the alerts produced by
one or more intrusion detection systems and events generated from
different systems and security tools are analyzed and correlated to provide
a more succinct and high-level view of occurring or attempted intrusions.
Current correlation techniques improve the intrusion detection results and
reduce the huge number of alerts in a summarized report, but still have
some limitations such as a high false detection rate; missing alerts in a
multi-step attack correlation; alert verifications are still limited; Zero Day
attacks still have low rates of detection; Low and Slow attacks and
Advanced Persistent Threats (APTs) cannot be detected; and some attacks
have evasion techniques against IDSs. Finally, current correlation systems
do not enable the integration of correlations from multiple information
sources and are limited to only operate in IDS alerts. Agents and multi-
agent systems have been widely used in IDSs because of their advantages.

The thesis purpose is to prove the possibility of improving both IDS
Accuracy and IDS Completeness through reducing either False Positive
or False Negative alerts using correlation between different available
information sources in the system and network environment. The
dissertation presents a modular framework for a Distributed Agent
Correlation Model (DACM) for intrusion detection alerts and events in
computer networks. The framework supports the integration of multiple
correlation techniques and enables easy implementation of new
components.

The framework introduces a multi-agent distributed model in
a hierarchical organization; correlates alerts from the IDS with attack
signatures from information security tools and either system or
application log files as other sources of information. Correlation between
multiple sources of information reduces both false negative and false
positive alerts, enhancing intrusion detection accuracy and completeness.
Each local agent aggregates/correlates events from its source according to
a specific pattern matching. The integration of these correlation agents
together forms a complete integrated correlation system.

The model has been implemented and tested using a set of datasets.
Agent’s proposed models and algorithms have been implemented,
analyzed, and evaluated to measure detection and correlation rates and
reduction of false positive and false negative alerts.

In conclusion, DACM enhances both the accuracy and completeness of
intrusion detection. DACM is flexible, upgradable, and platform
independent. It decreases the audit load and the time cost required to
obtain effective situational understanding; increases the coverage of the
attack space and forensics; and improves the ability to distinguish the
serious attack from the less important ones or identify the kind of needed
reaction. DACM can also be used to enhance the early detection
capability of APT. Finally, DACM can be used as a real time system with
minor modifications. We think that this is a promising approach
successfully combining correlation techniques with agent technology in
intrusion detection systems in order to provide higher security for
computer networks and internet services.

Keywords:

Intrusion Detection, Alert Correlation, Multi-Agent Systems, Learning
Agent, Reduction Rate

Acknowledgements

First, thanks to Allah (God) who made me able to accomplish this work,
I sincerely express my deepest gratitude to my thesis supervisors, Dr. Hani
Mahdi, Professor of Computer Engineering, Faculty of Engineering, Ain Shams
University, and Dr. Ismail Abdel Ghafar, Professor of Computer Engineering,
Military Technical College, and Dr. Ayman Bahaa, Associate Professor of
Computer Engineering, Faculty of Engineering, Ain Shams University. | was
fortunate to have met such outstanding scholar supervisors. | like to express my
thankfulness for their kind supervision and offering unfailing support, invaluable
advices and comments and helpful and useful discussions in selecting the
interesting point and during the preparation of this thesis. I owe a special
acknowledgment to them for giving me a lot of their time during the years of
preparing this thesis. I could never had done it without their support, technical
advice and suggestions, thorough reading of all my work.

I would like to thank the Center for Education and Research of Information
Assurance and Security (CERIAS), Purdue University, USA. | appreciate the
valuable support of the CERIAS executive director Prof. Eugene Spafford, the
generous effort of his staff especially Information Assurance Research Engineer
Keith Watson, for their cooperation during my scholar visit to the Center. They
provided me with great resources to capture and collect the data needed for this
work. Special Thanks to my friend Glenn Glover who guided me to that center.

| appreciate the assistance and input from my colleagues in ORC and their support
during this work, special thanks to Ahmed Abdel Sabour and Galal Mohamed
for their help during implementing the proposed model.

I will never be able to thank my mother and my family enough for supporting me
during my whole life. I tried to accomplish this work to make them proud of me.
Finally, I am very grateful to my wife Dalia, and my lovely two kids, Asser and
Sama, for their patient support especially during my scholar visit, sacrifices,
sustained moral support, and encouragement. I always thank my God for blessing
me with such a wonderful family. I would like to dedicate this work specifically
to them and my mother and my whole family.

Statement

This dissertation is submitted to Ain Shams University for the degree of
Doctor of Philosophy in Computer and Systems Engineering Department.

The work included in this thesis was carried out by the author at
Computer and Systems Engineering Department, Faculty of Engineering,
Ain Shams University.

No part of this thesis has been submitted for a degree or qualification
at other university or institution.

Date : 07/07/2011
Signature
Name : Ayman Elsayed Elsayed Taha

Table of Contents

ADSITACT. ... I
Table Of CONLENLSc.veiiiicic s %
LISt OF FIQUIES ..ottt iX
LiSt OF taDIES ... Xii
List Of AIQOMtNMSooiiiiee e xiii
List Of ADDIeVIAtioNccooiiiiiiii e Xiv
Chapter One: INErOUCTION ..o 1
1.1 Intrusion Detection and Response Systems.........cccccvevververvennnn, 1
1.1.1 IDS Terminology and Parameterscccocveverieereeneseennnnn, 1
1.1.2 IDS LIMItAtiONS ...ccveiiiiieiiesiesiesisieeee e 2
1.1.3 Intrusion Detection Alerts Correlationccccceeceviereennenn. 2
1.1.4 AQeNtSIN IDS ... 3

1.2 IDS Correlation Problem Definition...........ccccooeviniiinnininnnn, 3
1.3 The Proposed Model..........cccooviieiiiieiicc e 4
1.4 MethodolOgy.....cccoeiiiieiiciece e 5
1.5 CONrDULIONS ..oviiiiiiiiceee e 5
1.6 Dissertation Organizationc.ccoceeveieeneenenie e see e 6
Chapter Two: Literature Survey and Related work.............cccoccevvennne 7
2.1 The Importance of Security and Intrusion Detection 7
2.1.1 Security MeChanismcccccverieiiiiieeie e 8
2.1.2 Intrusion Detection SYStems.........ccccoveveiiieiieenesiieseere e, 9
2.1.3 Intrusion Detection Correlation Systems.........c.ccceververnenne. 14
2.1.4 Recent Cyber Security Attacks.........cccooeveriininiciinieenenn 15

2.2 Basic Concepts of Data Correlationccccccoecvriiiieicninnnnnn, 19
2.2.1 Alert normalization..........cocovenieiinie e 23
2.2.2 Alert aggregation and FUSIONcccevveveiiereene e 24
2.2.3 Alert verification and Prioritization..........c.ccccoevvvvininnnennn, 26

2.3 Alerts Correlation TeChNIQUES........ccoveveiiieiieir e, 28
2.3.1 Correlation of Attack SCeNecccoovvvveiiniiiieicee e 29
2.3.2 Correlation of Pre and post conditionscccccceveevvenenne. 31

2.3.3 Casual analysis Correlation based on Statistical Techniques...
.. 33

2.3.4 Distributed Correlation.............ccooeveneneieniiineeeeen 34
2.4 Alert Correlation LIMitationscccccoevvveienieninienieeeens 36
2.5 Agentsin IDS and Correlationccoocveiienininnnene e, 37
2.6 Comprehensive Approach Model for IDS Alert Correlation ...39
Chapter Three: Distributed Agent Correlation Model........................... 43
3.1 Distributed Agent Correlation Model Description................... 43
3.1.1 IDSs Correlation AQeNtS.......cccveueivereseereerieseeseeeeseesee s 44
3.1.2 INFOSEC TOO0IS AQENTSceeveieeiieeie et eiesiee e 46
3.1.3 System and Application Logs AgeNntsccceveririiereenienn 48
3.1.4 DACM Central AQENL........cccoiiiriiiiiiieieeie e 50
3.1.5 Formal Description for Central Agent..........cccccevvvieieeniene 51
3.1.6 RESPONSE AQENT......eviiiiiiiiiie et 52
3.1.7 Learning AQENL......cccveiveieieeeeie s ese e 52
3.1.8 The Knowledge Base and Security PoliCyc.ccceevenenne. 53
3.2 DACM COMPONENTSeeiieieiiiiiieriee et 54
3.3 DACM Knowledge Base.........ccoovvieiierenieiieneeee e 55
3.3.1 System Parameters and Role Base Tables..........c.ccccvvvennn. 55
3.3.2 AIErtS TabIe ..o 56
3.3.3 Vulnerability Scanner.........cccccevevvevieiievieee e 56
3.3.4 Performance Monitors Tables ... 57
3.3.5 Firewall Log Files TablesS........ccccovveiiiiniiiniiniencee e 57
3.3.6 System Audit Files Tables.........ccocvvviiiriiinienieiiee e 58
3.3.7 Services Log Files Tables..........ccooeviiiniinienienee e 58
3.3.8 OULPUL TaDIES: ..o e 58
3.4 DACM FEATUIES......cvveiiiiiieiiee e 59
3.5 Implementation Scope and Performance Enhancement........... 61
Chapter Four: DACM Design and Algorithms..........cccccevvevenininnnnn 63
4.1 IDS Alert Correlationccooveeiienenesesee e, 63
4.1.1 IDS Alert Correlation Performance Analysis...........cc.c........ 63
4.2 Modified CAM TIME ..o 64

4.2.1 Agent Based Correlation Modelc.ccoooeiiiiiiiinieninnnne, 65

4.2.2 Dynamic Parallel Correlation Model............cc.cccevvverieiienenn, 72
4.3 DACM Individual AgeNtSccceiveieiieiiee e 76
4.3.1 1P Address Normalizationcccccevevenenenineniniseeen, 77
4.3.2 Firewall AQent ..o 79
4.3.3 FTP10Cal AQENTSoiviiiiiieciieece e 81
4.3.4 SSH AQENT ... 85
4.35 Error LOG AQENTcvviiiiiiiiiiee e 87
4.3.6 ACCESS 10 AQENT....ciiiieiiiceee e 90
4.4 DACM Central AQENL.......cccveiueiieiieie e 95
4.5 Implementation ENVIrONMENt..........c.ccooveieiinneeienieneeieeen 101
Chapter Five: ~ DACM Results and Analysis..........ccoooevverinininenenn 102
5.1 CRIAS Data SeL.......cociiiiiiiiesieeee e 102
5.1.1 CERIAS Network DesCriptioncccccccvvveevveiesieesnariennens 102
5.1.2 Data DeSCriPtiON......cccccveiueiieiieie e 104
5.1.3 ATACKS ...cuiiiiiiiciieieie e 106
5.1.4 AACK SCENAIOS.oceiiiiieiiee ittt 106
5.2 IDS Alerts Correlation ReSUIS........ccoevieriiiiniiiesieiicie e 108
5.2.1 IDS correlation Modelccooeiiiiiiiiiiiieeeeee e, 109
5.2.2 CAM RESUILS ...oeeiiiiiieie e 110
5.2.3 ABCM eSUIScuviiiieiiciesicecee s 112
524 DPCM RESUISceeiiiiiiiiieriisiieieee s 113
5.2.5 IDS Alert Correlation Techniques Performance 115
5.3 DACM Components RESUILScccooveiieiinieniecee e 121
54 DACM Central Agent ReSUItS........cccoevveiieiiiiiiieniee e, 123
55 DACM Evaluation and ASSESSMENTccceverirerenieiennenns 132
55.1 DACM LiMItationcccccoviririniiieiienenese s 132
5.5.2 DACM ASSESSMENTccuviiieiirieiiereeeee e 133
5.6 Practical Implementation ISSUESc.cccoceririeiienenienienenen, 134
Chapter Six: Conclusions and Future Workcccccceeeevieiiieiiennenn 135
6.1 CONCIUSIONS ..o s 135
6.2 FULUIE WOTK.....oooieiiieie s 138

APPENDIX A : LARGER IMAGES OR RESULTS FIGUREScoccvvvvreeeeeennnn 139
Appendix B: DACM Agents Formal Descriptioncccccocevvveieeeennnnn 157
LIST OF PUBLICATIONStviiieiiiiie e e eitiee e e s stte e e e e sitee e e e sttee e e e snnneeeesnnnneaeeennes 162
REFERENCES......uiiieiititee e ittt e e e et e e e s stte e e e anatae e e s eaaee e e s snseeeeeasnnaeeesenarnneeaan 163

viii

List of Figures
FIGURE 2.1 COMPERHENSIVE APPROACH MODEL FOR IDS ALERT

CORRELATION ..ottt s 40
FIGURE 3.1DACM BLOCK DIAGRAMcoiiiiiiiiiiitiii s 44
FIGURE 3.2 IDS CORRELATION AGENTSocoiiiiiiii e 45
FIGURE 3.3 IDS ALERTS OUTPUT USING BASE FOR SNORTccccceviiirnnninne. 45
FIGURE 3.4 FIREWALL ROUTER LOG FILE ..ot 46
FIGURE 3.5 INFOSEC TOOLS CORRELATION AGENTS.........ccoviiiiiiiniiiee, 48
FIGURE 3.6 FTP LOG FILES........ccoi it s 49
FIGURE 3.7 SYSTEM AND APPLICATION LOGS CORRELATION AGENTS......49
FIGURE 3.8 STANDARD ALERT ATTRIBUTES........ccoeiiiiiiiiee e 51
FIGURE 3.9 LEARNING AGENTS BLOCK DIAGRAMccccoviiiiiiiiiiic e 53
FIGURE 3.10. DACM COMPONENTS STRUCTURE..........cccooviiiiiciciee 54
FIGURE 3.11 IDSS CORRELATED ALERTS TABLE ATTRIBUTES...........cccveeee. 56
FIGURE 3.12 VULNERABILITY SCANNER ALERT ATTRIBUTES...........cccvvee. 56
FIGURE 3.13 NESSUS OUTPUT FOR VULNERABILITY SCANNER...........ccco..... 56
FIGURE 3.14 PERFORMANCE MONITOR ALERT ATTRIBUTES..........cccccccveninnn. 57
FIGURE 3.15 FIREWALL OUTPUT LOG FILEcccooiiiiiiiiiiiic 57
FIGURE 3.16 FIREWALL ALERT ATTRIBUTEScccoviiiiiiic, 57
FIGURE 3.17 SYSTEM AUDIT ALERT ATTRIBUTEScccooiiiiiiiiiicce, 58
FIGURE 3.18 SERVICES LOG ALERTS ATTRIBUTES ..o, 58
FIGURE 3.19 IMPLEMENTATION SCOPE OF DACM COMPONENTS................. 62
FIGURE 4.1 ABCM CORRELATION MODEL BLOCK DIAGRAMc..cccecevvnninne. 65
FIGURE 4.2 ABCM SEQUENTIAL LEARNING PHASE ..., 67
FIGURE 4.3 ABCM PARALLEL LEARNING PHASE. ..., 67
FIGURE 4.4 CERIAS ABCM PARALLEL LEARNING RESULTcccoovvviiiiinnn, 68
FIGURE 4.5 ABCM CORRELATION PHASE ..., 70
FIGURE 4.6 DPCM BLOCK DIAGRAM ..ot 72
FIGURE 4.7 DPCM CORRELATION STAGESccoooiiiiii e 72
FIGURE 4.8 CERIAS DPCM CORRELATION EXAMPLE ..o, 74

FIGURE 4.9 DACM INDIVIDUAL AGENTS ..o 76

FIGURE 4.10 FIREWALL ROUTER LOG CONTENTS.......ccviiiireieeeeeeeee 79
FIGURE 4.11 FTP LOG FILE EXAMPLE ..o 81
FIGURE 4.12 FTP TRANSFER LOG FILE EXAMPLEcccooiiiiieeeeeee 83
FIGURE 4.13 SSH LOG FILE “INETDLOG” EXAMPLEccccooiiiiiiieceneeene 85
FIGURE 4.14 ERROR LOG CONTENTS ..ot 88
FIGURE 4.15 HTTP ACCESS LOG FILE ..ot 91
FIGURE 4.16 ACCESS LOG TABLE.......cocciiiiieitsreeeee s 92
FIGURE 4.17 OSHTTP ERROR LOG FILE......ccccciiiiiiieieiee e 92
FIGURE 4.18 MISSING EXAMPLEccoviiiiiiiietseeee et 94
FIGURE 4.19 DACM CENTRAL AGENT RESULTS......c.cooiiiiiiiiiecee e 96
FIGURE 5.1 CERIAS NETWORK BLOCK DIAGRAMccoviiiiiiiiciecne e 103
FIGURE 5.2 SNORT IDS ALERTSoooiiiiiiiieieeere e 108
FIGURE 5.3 IDS ALERT CORRELATION INTERFACE........ccccoiininiiiiniiicieine 109
FIGURE 5.4 AF CORRELATION RESULTcoviiiiiiiiiineiieee e 110
FIGURE 5.5 TR CORRELATION RESULTcoviiiiiiiiiiineiieieee e 111
FIGURE 5.6 FINAL CAM CORRELATION RESULT®.......cooovviiecieciecieeecie, 111
FIGURE 5.7 ABCM LEARNING PHASEccoooiiiiiieieneee s 112
FIGURE 5.8 ABCM’S CORRELATION PHASE RESULTS.......cccoviniiireeienee 113
FIGURE 5.9 DPCM CORRELATION STAGES RESULTccccovniiinincreeccnnes 114
FIGURE 5.10 DPCM FINAL CORRELATION RESULTcccccovniiiiriccreecennes 115
FIGURE 5.11 REDUCTION RATES COMPARISON OF IDS CORRELATION
TECHNIQUES.ot 117
FIGURE 5.12 CORRELATION TIMES COMPARISON OF IDS CORRELATION
TECHNIQUES. ...t 120
FIGURE 5.13 CORRELATION TIMES COMPARISON OF IDS CORRELATION
TECHNIQUES. ...t 121
FIGURE 5.14 SSH AGENT RESULT ..ottt 122
FIGURE 5.15 ABCM RESULT FOR SPECIFIC IP AS PART OF DACM™.............. 122
FIGURE 5.16 DACM DAILY RESULTSooviiiiiiieiceserrese s 123

FIGURE 5.17 DACM IP REPORT FORM ABCM IDS CORRELATED ALERTS ...125

FIGURE 5.18 DACM IP REPORT FORM HTTP ATTACK™ccoocvvvvirvrerrerr, 125
FIGURE 5.19 DACM MAXIMUM PRIORITY REPORT........ccooooervinrreneressiesreennes 126
FIGURE 5.20 LOW AND SLOW ATTACK SUMMARYccocovmmrrmrrrnererrierrinnnes 127
FIGURE 5.21 LOW AND SLOW ATTACK FOR 192.160.165.222"ccco........ 127
FIGURE 5.22 LOW AND SLOW ATTACK FOR 216.129.119.45.........c..cccooeerrmnnc, 128
FIGURE 5.23 DACM SUMMARY REPORT™ ._.........coiiiiiirieeieceeeceses e, 128
FIGURE 5.24 DACM SUMMARY RESULTS CHARTccooosvviemrinreeieesenseessiennes 131
FIGURE 5.25 DACM PERCENTAGE SUMMARY RESULTS CHART........c.......... 132

Xi

LIST OF TABLES

TABLE 2.1 CYBER ATTACKERS COMPARISONccoviiiiiiinciinceseeeeseees 19
TABLE 2.2 SOURCES OF INTRUSION DETECTION DATA CORRELATION 21
TABLE 2.3 CAM COMPONENTS REDUCTION RATE FOR DIFFERENT
DATASETS ..o 41
TABLE 4.1 FIREWALL ATTACK TABLE ..ot 80
TABLE 4.2 FTP ATTACK TABLE ..ot s 83
TABLE 4.3 FTP TRANSFER ATTACK TABLEcoiiiiiicc s 85
TABLE 4.4 SSH TRANSFER ATTACK TABLE........ccoiiiiiieeeeeeeee 87
TABLE 45 HTTP ATTACK TABLE RECORDccoiiiiiiieieiescre e 90
TABLE 4.6 DAILY REPORT TABLE ATTRIBUTESccoooiiiiiieiieeee e 98
TABLE 5.1 SNORT IDS ALERT ATTRIBUTES.......cccoviiiiiieeneeeeee e 109
TABLE 5.2 ALERT CORRELATION REDUCTION RATES COMPARISON......... 116
TABLE 5.3 CORRELATION TIME COMPARISON FOR IDS ALERT
CORRELATION MODELS ORDERED BY DATE OF ALERTS.......... 118
TABLE 5.4 CORRELATION TIME COMPARISON FOR IDS ALERT
CORRELATION MODELS ORDERED BY ALERTS COUNT 119
TABLE 5.5 DACM SUMMARY RESULTcciiiiiiiiiiieice e 129
TABLE 5.6 DACM PERCENTAGE SUMMARY RESULTccecoviiiiiiiicceeie 130

Xii

List of Algorithms

ALGORITHM 4-1 LEARNING PHASEcot it s 69
ALGORITHM 4-2 ABCM CORRELATION PHASE ..o 71
ALGORITHM 4-3 DPCM ALGORITHM....cioviiiiieiiicseeeee s 75
ALGORITHM 4-4 SAVE IP FUNCTION ..ot s 78
ALGORITHM 4-5 FIREWALL AGENToooiiiiiiireenireene s 80
ALGORITHM 4-6 FTP AGENT ..ot s 82
ALGORITHM 4-7 FTP TRANSFER AGENTcoviiiiireiiircse s 84
ALGORITHM 4-8 SSH AGENT ..ottt 86
ALGORITHM 4-9 HTTP AGENT ..ottt 89
ALGORITHM 4-10 ACCESS LOG AGENTcooiiiiiiireeseeese s 93
ALGORITHM 4-11 MISSING LOG AGENTooiiiiitiiiniiieeesese e 95
ALGORITHM 4-12 DACM CENTRAL AGENT ..ot 97

Xiii

LIST OF ABBREVIATION

ABCM
ACCL
AF
APT
ASR
AV
CAM
DACM
DPCM
FTP
FR
IDS
LA
LSA
MAS
MSA
RR
TR

SSH

: Agent Based Correlation Model

- Active Correlation Component List
- Alert Fusion

: Advanced Persistent Threat

: Attack Session Reconstruction

: Alert Verification

: Comprehensive Approach Model

: Distributed Agent Correlation Model
: Dynamic Parallel Correlation Model
: File Transfer Protocol

: Focus Recognition

- Intrusion Detection system

: Learning Agent

- Low and Slow Attack

: Multi-Agent System

: Multi Step Attack

: Reduction Rate

: Threat Reconstruction

: Secure Shell

Xiv

CHAPTER 1
INRODUCTION

Chapter One: Introduction

Recently, computer networks have evolved into a ubiquitous
infrastructure. High speed backbones and local area networks provide the
end user with huge bandwidth compared with that available a few years
ago. In addition, wireless technology is bringing connectivity to a number
of devices, from laptops to cell phones and PDAs, creating a complex,
highly dynamic network of systems. Most notably, the internet has
become a mission-critical infrastructure for governments, companies,
institutions, and millions of everyday users. Because of this increased
reliance on networked computers, security has become a primary concern.

1.1 Intrusion Detection and Response Systems

Intrusion detection is the process of recognizing computer system misuse.
Intrusion response is the process of responding to that misuse. They are
essential techniques providing an extra layer of defense when other
security mechanisms fail (e.g. identification, authentication, access
controls, cryptography, firewalls, and VPNSs). Intrusion Detection
Systems (IDSs) are software and hardware systems that automate the
process of monitoring the events occurring in a computer system or
network, analyzing them for signs of security problems [1].

1.1.1 IDS Terminology and Parameters

An alert or an alarm is defined as a signal reporting that a system has
been, or is being, attacked. A True Positive (TP) alert is defined as the
case when a real attack triggers IDS to produce an alarm; this alarm is a
correct alarm. A False Positive (FP) alert is defined as the case when an
event triggers IDS to produce an alarm when no attack has actually taken
place; this alarm is a false alarm. A False Negative (FN) is defined as the
case of IDS failing to detect an actual attack. A True Negative (TN) alert
is defined as the case when no attack has taken place and no alarm is
raised [1].

Both false positive and false negative alerts are the main metrics of the
IDS accuracy and completeness parameters, which are calculated as

follows:
Accuracy = TP / (TP+ FP) (1.1)
Completeness = TP / (TP + FN) (1.2)

For example, IDS that produces 100 alerts for 80 real attacks where other
20 attacks were missed and 40 non-attack actions were detected as attacks
then this situation can be expressed as follows:

IDS Alerts: 100, True Positive: 60, False Positive: 40
False Negative: 20 alerts
Accuracy = 60 / (60+40) = 60 %

Completeness = 60 / (60+20) =60/80 = 75 %

1.1.2 IDS Limitations

IDSs have some limitations affecting their performance. First, IDSs are
prone to producing a large number of alerts. Second, false positives and
false negative of IDSs are inevitable. Third, IDSs can only detect single
attack but not multi-step attacks, which need network security experts to
analyze manually. These limitations lead to the use of alert correlation
techniques [2].

1.1.3 Intrusion Detection Alerts Correlation

Alert correlation [2] is a promising intrusion detection technique that
significantly improves security effectiveness by analyzing alerts from one
or more IDSs and providing a high level view of the attempted intrusions.
Correlation components are procedures that aggregate alerts according to
certain criteria; the aggregated alerts could have common features or
could represent the steps of pre-defined scenario attacks. Correlation
approaches are composed of a single component or a comprehensive set
of components. The Correlation process is performed through several

different stages including normalization, aggregation, verification, and
correlation.

The Reduction Rate (RR) [10] is the ratio between the number of output
alerts after correlation and the number of input alerts:

RR = (1- (Output alerts/Input alerts))*100 1.3)

The situation where IDS produces 100 alerts as an input for correlation
system, the correlation system correlate those alerts together and
summarizes them to 60 alerts, in this example the reduction rate of that
correlation system can be calculated as follows:

Example: Input = 100 alerts, Output = 60 correlated alerts

RR = (1- 0.6) *100 = 40 %

1.1.4 Agentsin IDS

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through response
system [3]. A software agent is a computer program which works toward
goals in a dynamic environment on behalf of another entity, possibly over

an extended period of time, without continuous direct supervision or
control [3].

Agents have been widely used in IDSs [46-49] because they can be added
and removed without having to restart the IDS, thereby providing flexible
scalability. Agents are capable of performing simple functions on their
own; a group of agents working together are able to derive complex
results by exchanging information. Use of many agents reduces system
overhead and avoids single point of failure. Finally, agents provide a
multi-point detection and knowledge sharing capability.

1.2 IDS Correlation Problem Definition
The major problem with the existing correlation systems is that they do

not provide a complete correlation solution. Instead, some of them
address only a limited part of the correlation process. For instance, multi-

3

step correlation does not solve the problem of the high false positive rates
of intrusion detection sensors. Other comprehensive correlation
techniques using an integrated set of correlation components still have
performance problems; giving the fact that the effectiveness of a specific
correlation technique is highly dependent on the properties of the network
and attacks on it, some of the correlation components may not of use with
a specific environment but they still consume valuable processing time.
Moreover, current correlation systems do not enable the integration of
correlations from multiple information sources and are limited to operate
in IDSs alerts. Furthermore, existing systems are not easily extended, and
most are platform dependent.

Finally, current correlation techniques improve the intrusion detection
results and reduce the huge number of alerts in a summarized report, but
still have some limitations as follows:

e High false detection rate;

e Missed alerts in a multi-step attack;

e Limited alert verifications;

e Low rates of detection for Zero Day Attacks;

e Failure to detect Low and Slow Attacks and Advanced Persistent
Threats; and

e Ineffectiveness against IDS evasion techniques.

1.3 The Proposed Model

This dissertation presents a model to prove the possibility of enhancing
both IDS Accuracy and IDS Completeness through reducing either False
Positive or False Negative alerts using correlation between different
available information sources in the system and network environment

The dissertation presents a modular framework for Distributed Agent
Correlation Model (DACM) for intrusion detection alerts and events in
computer networks. The framework supports the integration of multiple
correlation techniques, and enables easy implementation of new

4

components. The framework introduces a multi-agent distributed model
in hierarchical organization and correlates alerts from the IDS with attack
signatures from other source of information (e.g. firewalls, performance
monitors, FTP logs, and other access/error log files).

Correlation between multiple sources of information reduces both false
negative and false positive alerts, enhancing both intrusion detection
accuracy and completeness. Each local agent aggregates/correlates events
from its source according to specific pattern matching; the integration of
the correlation agents forms a complete integrated correlation system.

1.4 Methodology

This research went through several steps, studying the existing correlation
system for intrusion detection was the first step. This study allowed us to
identify the missing part and the drawback of those systems. The next
step was the presented idea to solve the current correlation system
problems and improve its performance. After that we collected a datasets
needed to test the proposed idea. This dataset was collected on networks
with a variety of services and includes real networks, networks
specifically constructed for dataset gathering, and simulated networks.
The dataset included real and attempted attacks. Then we implement a
prototype for the proposed model to prove the theory of the idea and to
assure the success of the model. The proposed prototype was constructed
from a set of individual agents for each task. The next step was
integrating those agents together to build the whole model. Finally, we
extract the model results and perform the needed analysis for these results
for purpose of assessment and presentation

1.5 Contributions

This dissertation provides solutions for the problems outlined above, and
provides the following contributions:

e Enhanced accuracy and completeness of intrusion detection;
e Improved flexibility, upgradability, and platform independence;

e Decreased audit load and time cost required to obtain effective
situational understanding;

e Increased coverage of the attack space and forensics;

e Improved ability to distinguish serious attacks from less important
ones;

e Distinguish between attacks where an immediate response is
needed from others where an alternative is acceptable; and

e Enhanced early detection capability for recent cyber attacks such
as Advanced Persistent Threats (APTs) and Low and Slow
Attacks.

1.6 Dissertation Organization

The remainder of this dissertation is structured as follows. Chapter 2
presents a survey of intrusion detection and related work, describing and
giving an introduction to current correlation systems and distributed
correlation techniques. Chapter 3 introduces a description of our
distributed agent correlation model and its components. Detailed
implementation of this model components and algorithms is presented in
Chapter 4. In Chapter 5, detailed experimental results of applying the
proposed model on the gathered dataset are presented. Finally, Chapter 6
presents conclusions and outlines future work.

CHAPTER 2
Literature Survey
and Related Work

Chapter Two: Literature Survey and Related work

In this chapter, a literature survey of security and intrusion detection, alert
correlation, recent cyber attacks, and correlation related work will be
presented.

2.1 The Importance of Security and Intrusion Detection

While computer systems in the past usually were not networked, or were
connected to a small network spanning a company or a building, today
almost every computer system is connected to the Internet. The main
concern with this situation is that the number of potential attackers that
can attack a given system has increased drastically. Whereas before an
attacker had to be physically present at the console of the computer or be
connected to the same local area network as the target computer, today's
attacker can be located almost anywhere in the world.

Another reason for the increased importance of computer security is that
today more sensitive data are stored on computers than before. For
instance medical records and bank accounts are not paper based anymore.
Another change that has happened lately is that many businesses rely on
computer systems to perform their function. As a result, a computer
system problem can shut down the whole operation. For instance, a web-
based store would not get any customers if their network connection
failed.

All these changes to the ways businesses handle data have increased the
number of potential targets for attacks and the effect of successful attacks
have become more serious. In addition, the attackers have improved their
attack techniques. It is now common to see large scale coordinated attacks
where the attacker utilizes multiple computers in order to attack a single
target.

These kinds of attacks can be challenging to defend against, as it is not
easy to identify the attacker when he is using multiple hosts. In addition,
the attacker's computers are often located on different networks. This

7

potentially makes the aggregate network throughput available to the
attacker very large and can enable the attacker to flood the victim's
network with traffic, creating a denial-of-service attack.

Computer security is an increasingly important topic. It is important to
insure that the secrecy of sensitive data is protected, the integrity of
important data is not violated, and the availability of critical systems is
guaranteed. Computer security tries to achieve all these goals.

2.1.1 Security Mechanism

Computer security offers three types of security mechanisms [66, 67] to
protect a system: authentication, authorization, and auditing. These three
mechanisms are essential for securing a system against attacks.
Authentication is the process of proving the user identity to a computer
system. The most common form of authentication is to require the user to
type in a user name and password before logging on to a computer.

The assumption is that only the real user knows the password. When the
system is presented with a user name and a matching password, it grants
the user access to the system and stores the user's identifier in protected
system memory. At a later point, if the system needs to know the identity
of the user, this information can be retrieved from the system memory.

In general, there are three possible ways of doing authentication. A user
can be authenticated based on something he knows. An example of this is
the password scenario mentioned above. Another way of doing
authentication is based on something the user has. This can be a key, or
some kind of security token like a smartcard. The third way of performing
authentication is based on something the user is. In this case, the system
scans one or more of the user biometric to identify that he is the person he
claims to be. Fingerprint, eye iris, face shape, and voice recognition fall in
this category. It is also common to combine several authentication
schemes. For instance, a system might require both a password and a

security card in order to complete the authentication, which is called two
factor authentication, also there are three factor authentication is used.

Authorization is the process of checking that a logged in user is
authorized to perform an operation or access a resource. If the user is not
allowed to do so, access is blocked. Authorization requires authentication
in order to function, otherwise a user might just lie to the system about
who he is in order to gain access to protected resources. Authorization is
performed by the operating system before a user is allowed to access the
resource. For example, before a file is read the user's identity is fetched
from protected storage and compared to the access control list associated
with the file to be opened. If the user is allowed to read the file, a valid
file handle is returned; otherwise, access is denied.

Auditing is the process of recording security relevant data about a user's
activities. For instance, this can be information such as what time and
from what IP a user has logged in, or information about attempted access
to resources that were denied, such as a user trying to open a file he does
not have access to. Some systems also log every system call invocation
performed by the programs run by the users. The idea of auditing is to
detect users trying to access resources they are not authorized to access,
or users trying to circumvent security mechanisms.

Cryptography is also used to secure modern systems. For instance, it is
common to encrypt sensitive traffic in transit in order to prevent outsiders
from sniffing the data. This is especially true for authentication schemes.
If, for instance, an authentication scheme relied on sending passwords in
clear text across the network, the authentication could be easily broken by
anyone able to read the communication between the server and a user
logging in.

2.1.2 Intrusion Detection Systems

Since the security mechanisms presented can fail, additional protection is
needed. In order to provide an extra layer of defense, intrusion detection

9

systems (IDSs) have been proposed. IDSs scan through audit data or
sniffs into network packets in order to find evidence of malicious
behavior. When the manifestation of a possible security violation is
found, a system administrator is alerted and presented with a report about
the incident. The system administrator then chooses how to act on the
report.

2.1.2.1 Classification of IDSs

Intrusion detection systems can be classified in several ways. It is
common to classify any IDS by the detection mode, the audit source, the
usage frequency, and the response mechanism [4].

Classification by the detection method is most common. There are two
main types of detection methods: misuse detection and anomaly
detection.

Misuse detection systems utilize a rule database that explicitly models
what is not allowed. Everything that does not match any of the rules is
allowed.

Anomaly-based systems, on the other hand, use a model of normal activity
and anything that does not match the model of normality is considered an
attack. An anomaly detector assumes that all anomalous events are signs
of an attack and that all attacks produce anomalous events. Since an
anomaly-based system does not model attacks specifically, it can detect
previously unknown attacks. Misuse-based systems, on the other hand,
can only detect attacks for which they have a rule, and cannot detect a
novel attack unless it is some variation of one of the attacks already in the
rule base.

Misuse detection systems are further divided into stateless and stateful
systems. A stateless system only looks at the current audit event when
determining if an event is malicious or not. In contrast, stateful systems
store and use information about previous audit events. When an event is

10

processed, both the current event and the sensors state are taken into
account in the detection process. One of the main advantages of stateful
systems is that they can support more complex rules than stateless
systems. This complexity comes at a cost though, since stateful sensors
consume memory in order to store the state. Stateful sensors also tend to
require more processing power than a stateless system, since the rules are
more complex.

Anomaly detectors can be either learning-based or specification-based. A
learning-based anomaly detection system utilizes a training period, during
which the system learns what the properties of normal traffic are. It is
usually assumed that the training phase does not contain any attacks;
otherwise, the system would include attacks in its normality model. When
the training phase is completed, the system switches into detection mode.
In this mode, the input data is compared to the model trained in the first
step. Any audit event that does not match the learned model is reported as
anomalous and logged.

Specification-based systems rely on a specification of what normal traffic
should look like. This specification can either be introduced to the system
manually or be automatically generated. Automatic generation of the
specification can be helpful, since it is a difficult task to manually to
specify what normal events look like. Automatic generation is also able to
produce a specification with no errors, whereas a manual specification is
more prone to include errors. Tools to automatically generate a
specification have, for instance, been utilized by systems looking for
illegal sequences of system calls. A list of all legal system call sequences
can be automatically extracted from the source code of the protected
program. During detection, the system call sequences generated by the
program are compared to the list of legal sequences.

A different way of classifying intrusion detection systems is by the source
of audit data processed. Three different categories of audit data sources

11

are common, namely network-based audit data, host-based audit data, and
application-based audit data.

Network-based sensors collect packets from the protected network in
order to perform detection. Depending on the sensor, the network data
processed can be complete packets, packet headers, or payload data.
Some network-based systems use firewall logs as input. These firewall
logs contain the headers of the network packets that have been blocked by
the firewall. Host-based sensors process audit data generated by a host's
operating system. It is very common for this type of sensor to perform
detection on the log of system calls that have been executed. Other types
of host-based systems process different types of system logs, such as
UNIX system log data [4].

Some IDSs even use the content of all the files stored on the host's hard
drive as input [5]. Application-based sensors process logs created by a
user-space application. This kind of sensor is usually used to protect
network daemons. For instance, several systems that process web logs [6]
and FTP logs.

IDS systems can also be classified by their usage frequency. Inline
systems operate in real-time and consume audit data as it is generated..
Other systems are run in offline mode, where the system is run
periodically to look for signs of attack, this is the most common mode of
operation.

It is also possible to classify intrusion detection systems by the type of
response the system performs when an attack is detected. The most
common type of response is passive where an attack occurrence is logged
or the administrator is notified by other means (e.g., SMS or email), this
is commonly called an alert. Active systems block an attack so it cannot
succeed. These systems are usually referred to as intrusion prevention
systems (IPSs). Depending on the implementation, an active system

12

could, for instance, send a reset packet to tear down the attacker's
connection or update the firewall rules so that the attacker IP is blocked.

2.1.2.2 Intrusion Detection Challenges

The main problem with most intrusion detection systems is that they
generate an enormous amount of alerts that are not caused by real attacks.
These false alerts are usually referred to as false positives. Many sites that
deploy IDSs do not even look at the intrusion reports until after a break-in
is detected by other means. The intrusion detection system in these cases
becomes more of a tool to help the administrator perform forensic work
after the break-in has occurred, than an actual security monitoring tool.

Another problem with current intrusion detection systems is that the
intrusion reports they produce do not have enough information for the
administrator to make an informed decision about how to handle the
incident. One of the reasons for this lack of information is that sensors
only operate in one domain. A network-based sensor only sees network-
based attributes like IP addresses and port numbers. The network-based
sensor has little idea of the security state of the host it is protecting. For
instance, it does not know the process id or user id of the processes that
are accepting the network connections it observes. Similarly, host-based
sensors report little information about the network characteristics of an
attack. A host-based sensor that reports a buffer overflow in a program
usually does not include the IP address of the attacker simply because the
sensor does not have access to this information.

A meaningful prioritization score is also missing from the alerts of most
IDSs. Network-based sensors usually do not discriminate between
attempted attacks and successful ones. This, in combination with the vast
amount of alerts usually produced by sensors, makes it very hard to get a
high-level picture of the security state of the protected network.

Non-contextual alerts are also a problem of existing systems. A non-
contextual alert is an intrusion detection alert generated as a response to a

13

real attack, but because of the configuration of the host, the attack cannot
succeed. An example of this is an alert warning about a web-based attack
that only works against Windows computers, while the target is a Linux
box. The main cause of this problem is that intrusion detection sensors
usually do not have enough information about the hosts they are
protecting.

Finally, IDS can only detect single attack but not multi-step attacks,
which need network security experts to analyze manually. These
challenges may also produce undetected alerts which are real attack.
These missing alerts are usually referred to as false negatives.

2.1.3 Intrusion Detection Correlation Systems

In order to alleviate some of the problems of intrusion detection systems,
alert correlation systems have been proposed. Correlation systems collect
the alerts from a number of sensors and process these alerts in order to
generate a high-level view of the current security status of the protected
system. The main goal of a correlation system is to reduce the number of
alerts a system administrator has to manually process. The correlation
system achieves this by identifying and suppressing false alerts, grouping
alerts that refer to the same incident together, and prioritizing the alerts.

Three types of correlation techniques have been proposed: multi-step
correlation, fusion-based correlation, and filter-based correlation. Multi-
step correlation seeks to detect attacks that consist of multiple stages.
These kinds of attacks are very common. For instance, an attacker might
first scan ports in a host in order to identify possible vulnerabilities,
before performing the actual break-in. This attack has two stages, the first
being the scan, while the second stage is the break-in itself.

Fusion-based correlation systems utilize an alert similarity metric.
Incoming alerts are compared to each other using this metric, and alerts
that are found to be similar are grouped together. Different similarity
metrics are utilized in order to perform different kinds of fusion. Usually

14

systems like these perform multiple correlation steps, where a different
similarity function is used for each step.

Correlation systems performing filter-based correlation seek to identify
the most important alerts in the alert stream. These systems often perform
prioritization, where each alert is given a score. This score can be utilized
for ranking the alerts so the system administrator can easily get an
overview of the most critical alerts. Filter-based correlators usually
calculate the criticality of an alert by considering the importance of the
assets under attack and the probability that the attack has succeeded.

2.1.4 Recent Cyber Security Attacks

Advanced Persistent Threats (APTs) [7, 8] are a cybercrime category
directed at business and political targets. APTs require a high degree of
disappearance over a prolonged duration of operation in order to be
successful. The attack objectives therefore typically extend beyond
immediate financial gain, and compromised systems continue to be of
service even after key systems have been breached and initial goals
reached. APT can be defined using its named requirement:

Advanced — Criminal operators behind the threat utilize the full spectrum
of computer intrusion technologies and techniques. While individual
components of the attack may not be classed as particularly “advanced”
(e.g. malware components generated from commonly available Do It
Yourself (DIY) construction Kits, or the use of easily procured exploit
materials), their operators can typically access and develop more
advanced tools as required. They combine multiple attack methodologies
and tools in order to reach and compromise their target.

Persistent — Criminal operators give priority to a specific task, rather than
opportunistically seeking immediate financial gain. This distinction
implies that the attackers are guided by external entities. The attack is
conducted through continuous monitoring and interaction in order to
achieve the defined objectives. It does not mean a barrage of constant

15

attacks and malware updates. In fact, a “low-and-slow” approach is
usually more successful.

Threat — means that there is a level of coordinated human involvement in
the attack, rather than a mindless and automated piece of code. The
criminal operators have a specific objective and are skilled, motivated,
organized and well funded.

A key requirement for APTs (as opposed to an “every day” botnet,
a botnet is a collection of infected computers or bots that have been taken
over by hackers and are used to perform malicious tasks or functions) is
to remain invisible for as long as possible. As such, the criminal operators
of APT technologies tend to focus on “low and slow” attacks — stealthily
moving from one compromised host to the next, without generating
regular or predictable network traffic — to hunt for their specific data or
system objectives. Tremendous effort is invested to ensure that malicious
actions cannot be observed by legitimate operators of the systems.

APT Started with low-and-slow scanning, then get in network using
malware such that it can creates backdoors and stay undetectable and
remote controlled from outside the network, these condition enables it to
get data and keep persistent. The APT Continues to Use a Repetitive and
Identifiable Targeting and Exploitation Cycle through several steps:

1. Reconnaissance (data gathering): Attackers research and identify
individuals they will target in the attacks, using public search or other
methods, and get their email addresses or instant messaging handles
(Face book, Twitter). Reconnaissance is a step which could not be
detected using current security systems.

2. Probing the network: It all typically starts with spear-phishing emails,
where the attacker targets specific users within the target company with
spoofed emails that include malicious links or malicious PDF or
Microsoft Office document attachments. That infects the employee’s

16

http://en.wikipedia.org/wiki/Hacker_(computer_security)

machine and gives the attacker a foot in the door. Detecting of this step
depends on the applicability and awareness of specific security policy and
the behavior of the employees, while some limitation of these policies
prevents the detection of this phase.

3. Establishing a backdoor: The attackers try to get domain administrative
credentials and extract them from the network. Since these credentials are
typically encrypted, they then decrypt them using pass-the-hash [9] or
other tools and gain elevated user privileges. From here, they move
“laterally” within the victim’s network, installing backdoors here and
there. They typically install malware via process injection, registry
modification, or scheduled services. The detection of this step could be
achieved partially using the host based IDS, but it is still limited without
suitable log files analysis.

4. Obtaining user credentials: Attackers get most of their access using
valid user credentials, and they access an average of 40 systems [4] on the
victim’s network using the stolen credentials. The most common type:
domain-administrator credentials. This step never been detected upon the
success of previous step.

5. Installing multiple utilities: Utility programs are installed on the
victim’s network to conduct system administration, including installing
backdoors, grabbing passwords, getting email, and listing running
processes, for instance. The detection of this step could be achieved
partially using the host based IDS, but it is still limited without suitable
log files analysis.

6. Criminal Remote Control: APTs rely on the remote control
functionality in order to navigate to specific hosts within target
organizations, exploit and manipulate local systems, and gain continuous
access to critical information. Detecting of this step could be achieved by
monitoring continuous connection with external networks. While APT

17

malware can remain stealthy at the host level, the network activity
associated with remote control is more easily identified.

7. Privilege escalation, lateral movement, and data exfiltration: Now the
attackers start grabbing emails, attachments, and files from servers via the
attacker’s computer and communication infrastructure. They typically
funnel the stolen data to staging servers, where they encrypt and compress
it, and then delete the compressed files from the staging server. Detection
of this step depends on the early detection of step 5 and 6.

8. Maintaining persistence: If the attackers find they are being detected or
remediated, then they use other methods to ensure they don’t lose their
presence in the victim’s network, including revamping their malware.
Success of APT attacks depends on their patience and resilience; they are
very sophisticated, determined, and coordinated activities. The APT
attackers are in there to stay for awhile, not to snatch and grab data.

APT can be detectable in some steps while it is hard in other ones as
described above. It will be hard to detect APT in case of insider collusion
(co-ordination) unless with robust access control policy. Some parameter
needed to have threshold values to represent attacks added with
probability factors. Network flow with the controller network needed to
be addressed.

Table 2.1 show comparisons of current cyber attackers according to their
environment: operating system and IPS they use for the attacks, how they
select the attack destination, the attack parameters, the network status
during the attack, purpose of the attacks, the investor, and the possibility
of detection of these attacks. Attackers are classified into individual
amateur, individual professional, group of professionals, and organized
cybercrime.

18

Table 2.1 Cyber Attackers Comparison

Amateur | Professional Group of Organized
Professional | Cybercrime
0O/S Single Single / Multiple | Single/Multiple | Multiple
IP address Single Single / Multiple | Multiple Multiple
Destination Random | Random/ Selected Selected
Selected
Attack types | Random Both random or Both random or | Predefined MSA
Blindly Predefined MSA Predefined MSA
Persistent NO No No Yes
Frequency of | Fast Fast Fast, yet Slow, patient,
Events distributed and hidden
Network Very High | High High-distributed | Low
traffic
Automation Manuel Manuel Manuel/Automa | Automated
ted
Funded No No No Yes
Purpose Having Personal reasons, | Business Classified coun-
fun being | gain money reasons, gain tries information,
hacker money Big Companies
losses
Detectable Easy Hardly detectable | Hardly Undetectable
detectable (APTs)

2.2 Basic Concepts of Data Correlation

Data correlation [10] is one of the intrusion detection analysis tools; it is
similar but differs to other terms like data aggregation and event
reconstruction. Data correlation means associating sets of events detected
through various means and applying knowledge to determine whether
they are related, and if so, in what manner and to what degree. Data
aggregation refers to the process of acquiring more and more data. Event

19

reconstruction means piecing data together to determine exactly what
events occurred and in which order. Data sources can be intrusion
detection sensors, logs, database, and so forth as shown in Table 2.2.

Previous work on intrusion correlation has mostly focused on IDSs alert
correlation. There are three famous techniques [11, 12] for alert
correlating which are Similarity-based, Pre-defined attack scenarios and
Pre-requisites and consequences of individual attack. These techniques
could be verified through correlation phases [13], and could be organized
in different architectures and components. The correlation process may be
organized from single component or comprehensive set of components.
Alert correlation phases include: normalization, aggregation and fusion,
verification, building attack scenarios techniques, and prioritization.

Normalization means that all alerts from different sensors should be
described with similar attributes. Aggregation looks for alerts that have
similar attributes between any two pairs of alerts, according to this
similarity the two alerts could be correlated. Verification either identifies
alerts that are irrelevant to the protected network or verify that if the alerts
are successful in their attacks. The idea of building attack scenarios relies
on the fact that complex attacks are usually executed in several r steps,
where the first steps prepare for the attacks executed in the later steps.

Therefore, the multi-step correlation approach tries to link alerts that are
part of different steps of the same complex attack scenario. Finally
prioritization assigns a priority to each alert. Priorities are usually
assigned to alerts depending on how important the attacked assets are.

20

Table 2.2 Sources of Intrusion Detection Data Correlation

Type of Data | Major Advantages Major Disadvantages
Source
System logging | Indicates ~ what actually | Can be tampered with or

happened on targeted system

turned off altogether;
difference in formats
can be confusing

Firewall
logging

Provide complete picture of
inbound and outbound traffic
at the point where the firewall
is placed in the network

Overwhelming volume
of data; difference in
can be
confusing; limitation in

formats

dealing with encrypted
traffic; packet fragment
reassembly issues

Packet dumps

Provide a detailed analysis of
traffic going over the network

Overwhelming volume
of data (unless dumps
short time
periods);tedious analysis

are for

Network-
monitoring tool
output

Can provide comprehend
picture of the state of the
network; particularly valuable
in spotting denial of service
attacks

Financial expense, most
of these tools are
commercial

Target-
monitoring
output

Target-monitoring tools run in
the background; changes in
files and directories are often
indication of attacks

False alarms; financial
expense of commercial
tools

21

Type of Data | Major Advantages Major Disadvantages

Source

SNMP traps Easy to setup and | Many versions of SNMP
administer; provides | are riddled with
remote near-real-time | vulnerabilities; can flood
alerting; usefulness of | network
certain kinds of traps
(failed logins)

IDS output Usually reasonably | Quality of output (hit rate,
convenient to access and | false alarm rate) various
easy to understand from one IDS to another;

limitation in dealing with
encrypted traffic and
evasion techniques;
limited throughput rate.

Database Can provide considerable | Financial cost of setting

containing data
about attack

amount of relevant data;
allows data mining

up and maintaining

database privacy issues

Web postings

Search engines can make

a wide range of
information about
incident available;
attackers who evade

intrusion detection may
reveal information about
their attack on the web

The accuracy and validity
of information posted on

the web, especially
information concerning
attacks, is dubious, false

information abounds.

There are two architectures for alert correlation system: centralized
architecture [14] and distributed architecture [15, 16]. The key process
unit of centralized architecture is Central IDS Correlation Node, which
directly processes alerts from multiple IDS sensors. The correlation
algorithm of this architecture is simple and can correlate overall alerts

22

quickly. Distributed architecture composed of a set of correlation nodes
and categorized as complete distributed architecture or hierarchical
distributed architecture. The correlation phases and components are
presented in more detail in the remainder of this chapter.

2.2.1 Alert normalization

In the correlation process alerts are received in different formats from
different sensors. Intrusion Detection Message Exchange Format
(IDMEF) [17] is an XML-based standard for intrusion detection alerts.
This standard enables a correlation system to read alerts from different
IDS sensors. IDMEF is a specification provided by the Intrusion
Detection Working Group (IDWG).

The purpose of IDMEF is to define data formats and exchange procedures
for sharing information of interest to security incident detection and
response systems. In order to make Alerts compliant with the Intrusion
Detection Message Exchange Format (IDMEF), it requires translating raw
alerts into a standardized alert format, and assigning them with a
standardized name. This format includes a comprehensive set of attributes
that can be used by the IDS when reporting alerts. IDMEF is a very useful
standard, but it has its problems. For instance, not many of the attributes
are required, and for many of the attributes that are required the value
\unknown" is accepted. As a result, many IDSs output alerts with most of
the attributes set to \unknown".

Another problem is that the IDMEF standard only specifies the syntax of
alerts; not the contents of these alerts. For instance, the attack type, which
is one of the most important attribute, does not have any standard naming
convention associated with it. As a result, different sensors call the same
attack by different names. That is, one sensor can refer to a port scan as
"port-scan™ while another sensor can refer to the same attack as "scanning
activity".

23

The attributes of raw alerts need to be copied to the appropriate fields of
the alert as defined by the attribute mappings in the normalization
database. The attributes of the standardized alert contain alerted type,
analyzer time, attacker nodes, attack graph, consequence, name, priority,
etc.

RFC4765 [18] describes a data model to represent information exported
by security incident detection systems and explains the rationale for using
this model. An implementation of the data model in the Extensible
Markup Language (XML) is presented; an XML Document Type
Definition is also developed.

One fact should be taken care is that time difference among each network
sensors exists in an alert fusion system. All the clocks of the sensors used
in the fusion system have to be synchronized. This can be achieved by
using the Network Time Protocol (NTP). NTP is a protocol for
synchronizing the clocks of computer client or server to another server or
reference time source over packet-switched, variable-latency data
networks.

2.2.2 Alert aggregation and Fusion

The goal of the alert aggregation is to aggregate large overlap alerts.
Aggregation is the grouping of alerts that both are close in time and have
similar features. It fuses together different “views” of the same event.
Each alert usually has several attributes associated with it, for example,
source and target IP addresses.

The similarity-based alert correlation approaches could provide a way to
identify what sets of correlated alerts may be further integrated based on
the similarity between their attributes. These approaches perform alert
correlation through measuring the similarity between alerts attributes to
discover the relationships among these alerts. For example, the model
proposed in [19] presents a correlation process utilizing an alert similarity
metric. The correlation process is carried out in three phases.

24

The first phase aggregates low-level events using the concept of attack
threads. Alerts are clustered together if they are similar with respect to a
similarity metric. The metric for the thread phase requires that the sensor
field, attack class, attack name, source, and target in the alerts are the
same. The idea is to cluster alerts that are part of the same ongoing attack.
The next correlation step utilizes a different similarity metric. The
requirement that the sensor field is the same is dropped; in addition, the
requirement that the alert name is the same is relaxed. The idea of this
step is that detection of the same attack by multiple sensors should be
fused. The third and last correlation step utilizes another similarity
function. This metric relaxes the requirement that the attack class should
be the same. The idea of this correlation step is to merge alerts
representing different attack steps, in an attempt to provide a higher-level
view of the security state of the system.

In [20], a system that performs both aggregation and correlation of
intrusion detection alerts produced by a number of different sensors has
been proposed. A detailed semantic alert model is presented, and adapter
modules are developed to map proprietary alert formats into this model.
The pre-processed alerts are first correlated. Two different types of
correlation are performed: duplicate removal, and consequence
correlation. Duplicates are instances of the same attack as detected by two
different sensors, and are detected utilizing rules read from a
configuration file. Consequences are rules specifying that one event
should be followed by another type of event. After correlation,
aggregation is performed.

The aggregation phase clusters together alerts with similar attributes.
Three different attributes are utilized in the aggregation phase: source,
target, and attack class. The aggregation phase identifies hosts that are
sources of attacks, hosts that are the target of attacks, and popular attack
classes. For example, if alerts were generated for DDoS attack packets,

25

they would be either similar in destination and attack class in destination,
if two alerts are similar in source and target IP addresses, it may be
possible that the corresponding attacks are launched by the same attacker.

In [21], a real time aggregation and correlation system named Alertclu is
described. Using similarity-based alert clustering analyzing technology,
Alertclu can improve the aggregation of intrusion detection system
outputs and allow one to seamlessly incorporate additional information.
In addition, Alertclu supports the operators by classifying alerts into true
positives and false positives. The results of experiments show that the
proposed system is able to reduce the numerous redundant alerts and
effectively reduces the analyst operators’ workload.

2.2.3 Alert verification and Prioritization

The purpose of the verification component is to take a single alert and
determine the success of the attack that corresponds to this alert. The idea
is that alerts that correspond to failed attacks should be appropriately
tagged and their influence on the correlation process should be decreased.
In general scenario, the alert corresponding to the worm attack is
identified as unsuccessful attack action for a UNIX/Linux service,
because it is an exploit for Microsoft Windows. Thus, the alert is tagged
as non relevant and excluded from further correlation. Alert verification
using wvulnerability analysis information has been advocated as an
important tool to reduce the noise in the alert stream produced by
intrusion detection sensors in [22].

Alert verification can be performed using both passive alert verification
and active alert verification techniques. Passive alert verification depends
on a priori information gathered about the hosts, the network topology,
and the installed services. This technique periodically performs
vulnerability scans and updates a database of network assets. This
database is then accessed by the correlation system when processing the

26

alerts. If an alert is received and the database indicates that the attacked
service is not vulnerable the alert is suppressed.

The advantage of passive techniques is not necessary to perform
additional tests, and do not interfere with the normal operation of the
network. The disadvantage of passive mechanisms is the potential
difference between the status stored in the knowledge base and the actual
security status of the network and does not support dynamic mechanisms
for alert verification. Instead, they rely on information about the security
configuration of the protected network that was collected at an earlier
time using vulnerability scanning tools.

Active verification techniques need to look for evidence of the success of
an attack by checking information at the victim machine and perform the
vulnerability scans as the alerts arrive and do not rely on a database.
Scanners are usually adopted in active verification techniques. For
example, when a Windows DCOM RPC buffer overrun attack is detected
by an detection system, a scanner will be activated. If the scanner script
that checks for this particular vulnerability (“Microsoft RPC Interface
Buffer Overrun KB824146) reports that the host that was attacked does
not run the Windows RPC service, this alert can be ignored.

Unfortunately, active actions are visible on the network and scanning
could possibly have an adverse effect on one’s own machines. It is
important to pay attention that scan test run by a vulnerability scanner
could crash a service. Port scanning also consumes network bandwidth
and resources at the scanned host. One also has to make sure that the
alerts generated in response to the activity of the vulnerability scanner are
excluded from the correlation process in order to avoid going in an
infinite loop of alert detection - scanner execution.

The purpose of alert prioritization is to classify alerts based on their
severity and take appropriate actions for dealing with each alert class.
Alert prioritization component should take into account various domain

27

information in addition to alert types. Security policy, network topology,
vulnerability analysis of the network services and installed software, and
asset profiles are some of factors affecting priority of alerts. The
prioritization is performed by considering the importance of the asset
under attack and the likelihood that the attack will succeed.

The model in [23] relies on a formal description of sensor capabilities in
terms of scope and positioning to determine if an alert is a false positive.
More precisely, the model is used to verify if all sensors that could have
been able to detect an attack agreed during the detection process,
assuming that inconsistent detections denote the presence of a false alarm.
While this approach benefits from a sound formal basis, it suffers from
the limitation that false alerts can only be detected for those cases in
which multiple sensors are able to detect the same attack and can
participate in the voting process.

Unfortunately, many real-world intrusion detection systems do not
provide enough detection redundancy to make this process applicable.
The model can be seen as a formal model for representing security related
information including wvulnerabilities, security tools, alerts and
information system characteristics. Although it provides the formalism for
modeling security related information, specific mechanisms are still
required for prioritizing alerts.

2.3 Alerts Correlation Techniques

Alert correlation focuses on discovering the relationships between
individual alerts raised by security incident detection systems and other
security systems. Alert correlation has to do with the recognition of
logically linked alerts, and is dedicated to disclose the logical association
between network attack activities by analyzing their corresponding alerts.

Generally, the method of alert correlation deals with meta-alert which is
generated by alert aggregation. The main approach of alert correlation can
be divided into three classifications: correlation of attack scene,

28

correlation of prerequisites and consequences, and causal analysis
correlation based on a statistical technique.

2.3.1 Correlation of Attack Scene

The methods in [24] studies the relationship between contextual attack
behaviors and use the method of correlation rule matching based on the
causality relationship between two contextual attack steps to construct
attack scenarios. This method is similar to the way of misuse detection.
The predefined attack scenarios based approaches correlate alerts based
on known scenario templates. The templates are patterns of known
sequences of attacks consisting of individual attack steps. Then, they
match agent alerts to attack steps in the scenario templates.

In [25], a new method of mining multi-stage attack behaviors pattern was
proposed in order to recognize attacker's high level strategies and predict
upcoming attack intentions. Authors applied a reformative algorithm to
mine frequent attack sequence patterns from history alert data. They also
used correlativity between two contextual elements in the attack sequence
to correlate attack behaviors and identify potential attack intentions.

In [26] event correlation and attack scenario construction based on
association with network attack graphs is proposed. It handles missed
detections through the analysis of network vulnerability dependencies.
The attack graph provides the necessary context for intrusion events, and
provides the graph distances upon which the correlations are based.
Online event processing depends on pre-computed attack graph distances
only, and requires only a lookup and 4 arithmetic operations. To compute
attack graph distances (offline), a model of attacker exploits and network
vulnerabilities have been built.

The network vulnerability model has been created automatically from
output of the Nessus [27] vulnerability scanner. The model then computes
the distance of the shortest path between each pair of exploits in the attack
graph. These distances are a concise measure of exploit relatedness,

29

which could be used for subsequent online causal correlation of intrusion
detection events. From the online stream of intrusion events, individual
event paths have been built based on attack graph reachability. The
inverse distance between each event in a path is a measure of correlation.

The approach proposed in [28] consists of a number of phases including
alert clustering, alert merging, and intention recognition. In the first two
phases, alerts are clustered and merged using a similarity function. The
intention recognition phase is referenced in their model, but has not been
implemented. An interesting aspect of this approach is the attempt to
generate correlation rules automatically. While it may seem appealing,
this technique could generate a number of spurious correlation rules that,
instead of reducing the number of alerts and increasing the abstraction
level of the reports, could introduce the correlation of alerts that are
“close™ or “similar" by pure chance, in this way increasing the noise in the
alert stream.

Some approaches [29, 30] specify attack scenarios through attack
languages. In [30] attack scenarios through chronicle language are
modeled. A chronicle is a set of events that are connected by temporal
constraints. The key of this method is how to construct the scenario
templates by the patterns of correlated alerts. Several algorithms were
developed for the mining of sequential patterns. It proposes a multi-alarm
misuse correlation component based on the chronicles formalism.

In [31] State Transition Analysis Technique (STAT) has been provided to
model and detect security incidents in large-scale, heterogeneous
networks. In [32] propose a completely decentralized approach to solve
the task of event correlation and information fusing of the data gathered
from multiple points within the network is proposed. The system models
an intrusion as a pattern of events that can occur at different hosts and
consists of collaborating sensors deployed at various locations throughout
the protected network installation. They present a specification language

30

to define intrusions as distributed patterns and a mechanism to specify
their simple building blocks.

The peer-to-peer algorithm to detect these patterns and its prototype
implementation, called Quicksand, is developed. These methods can
potentially uncover the causal relationship between alerts, but they need
to define the specification of attacks and the results rely on the precision
of correlation rules. Such limitations make the methods hard to
implement.

2.3.2 Correlation of Pre and post conditions

Pre and post conditions (also called prerequisites and consequences) are
defined for individual attacks. The prerequisites and consequences based
approaches [33, 34] model each attack through describing its prerequisites
and its consequences. Intuitively, the prerequisite of an attack is the
necessary condition to launch an attack successfully, and the consequence
of an attack is the possible outcome if an attack succeeds.

Alerts are connected (or correlated) when the post condition of one alert
matches the precondition of a later one. This allows for the specification
of complex chains of attacks without having to explicitly model complex
scenarios. For an example of an attack that can be correlated using this
technique, consider an attack where the intruder first breaks into a host in
the Demilitarized Zone (DMZ) of a company. A demilitarized zone is a
computer network that sits between the internal network and the Internet
and acts as a security buffer. After breaking into this host, the attacker
performs another attack starting from the compromised host. Both steps
of the attack are detected by intrusion detection sensors and alerts are sent
to the correlation system.

Upon receiving the first alert, the correlation system utilizes a rule that
says no precondition is needed to attack a host in the DMZ and the
postcondition is that the attacker has access to the attacked host. The
second attack step triggers a rule that has a precondition that says that

31

attacks originating from the DMZ require access to the DMZ host. The
postcondition of this rule is that the attacker has access to an internal host.
These two alerts will now be joined, since the postcondition of the first
attack (access to a DMZ host) matches the precondition of the second
attack.

Another example of a technique that uses pre and postconditions to
identify causal relationships between alerts is presented in [35]. In this
paper, attack conditions are expressed using capabilities and concepts.
Capabilities are used to describe both information that the attacker must
know to perform a certain attack (e.g., a user name and password for a
valid account), or a condition that represents a necessary context for an
attack (e.g., a particular configuration of the network). Concepts are used
to model fragments of complex attacks (e.g., a denial-of-service attack
against a specific host) and both their requisites and their impact on the
security of the protected network are expressed in terms of capabilities.

By composing the capability provided by a concept with the capability
required by another concept it is possible to recognize complex attack
scenarios (e.g., a remote shell connection spoofing that relies on a denial-
of-service attack).

The correlation method [36] uses logical formulas to represent the
prerequisites and consequences of attacks. A logical formula is a logical
combination of predicates. The prerequisites, consequences and attributes
of attacks are formalized as meta-alert types (or alert types). A hyper-alert
type (or alert type) is a triple (fact, prerequisite, consequence), where the
fact is a set of alert attribute names associated with the corresponding
domains, the prerequisite is a logical formula, and the consequence is a
set of logical formulas.

The usefulness of the system has been demonstrated by showing how it
could significantly reduce the number of false alarms reported by a
detection system while negligibly reducing the valid alarms. Their tool is

32

most logically used as an off-line forensic tool for mining old stored alerts
after a new vulnerability is found.

2.3.3 Casual analysis Correlation based on Statistical Techniques

In [37] the proposed model focuses on discovering novel attack strategies
via analysis of security alerts. In alert correlation, the developed
correlation system was based on two hypotheses of attack step
relationship. The first hypothesis is that some attack steps are directly
related because an earlier attack enables or positively affects the later one.
They developed a probabilistic-based correlation engine that incorporates
domain knowledge to correlate alerts with direct causal relationship.

The second hypothesis is that some related attack steps, even though they
do not have obvious or direct (or known) relationship in terms of security
and performance measures, still exhibit statistical and temporal patterns.
Two correlation engines have been developed to discover attack transition
patterns based on statistical analysis and temporal pattern analysis,
respectively. Based on the correlation results of these correlation engines,
they construct attack scenarios and conduct attack path analysis. The
security analysts are presented with aggregated information on attack
strategies from the integrated correlation system.

Alert fusion is more complex when taking into account anomaly detection
systems, because no information on the type or classification of the
observed attack is available to the fusion algorithms. The model proposed
in [38] generated high level correlated alerts from low level sensor data
and then conducted causal analysis based on a statistical technique,
known as the Granger Causality Test (GCT), to discover new patterns of
attack relationships. They used time series analysis methods to find
implicit relationships in alert data. They grouped alerts sharing all
attributes together allowing a small time window in the order of few
seconds. This grouped alerts issued on the same attack. In next step they
grouped alerts with identical attribute values apart from the sensor. This

33

step aggregated together alerts related to the same attack issued from
heterogeneous sensors, again a small difference in time stamps is allowed.

2.3.4 Distributed Correlation

The model proposed in [39] describes a mission-impact-based approach
to the analysis of security alerts produced by spatially distributed
heterogeneous information security (INFOSEC) devices, such as
firewalls, intrusion detection systems, authentication services, and
antivirus software. The intent of their work is to deliver an automated
capability to reduce the time and cost of managing multiple INFOSEC
devices through a strategy of topology analysis, alert prioritization, and
common attribute-based alert aggregation.

This approach relies on a knowledge base that describes the security-
relevant characteristics of a protected network to prioritize the alerts
through computing rank of the alerts and clustering them based on the
ranks. The knowledge base is called Incident Handling Fact Base, which
provides some critical information regarding alert codes, their
descriptions, and dependencies of alert types to their required OS
versions, hardware platforms, network services and vulnerabilities. Using
this knowledge base a simple form of passive alert verification could be
performed where alerts representing attacks against non-existent services
are discarded.

The information about network assets is gathered using Nmap [40] and
contains only information that is gathered by this specific tool (e.g., IP
addresses, installed operating systems, and open ports). The prioritization
is performed by considering the importance of the asset under attack and
the likelihood that the attack will succeed. They developed a prototype
system called the Mission Impact Intrusion Report Correlation System, or
M-Correlator. M-Correlator is capable of receiving security alert reports
from a variety of INFOSEC devices. It is intended to provide analysts (at
all experience levels) a powerful capability to automatically fuse together

34

and isolate those INFOSEC alerts that represent the greatest threat to the
health and security of their networks.

In [41] a novel intrusion detection system for grid systems is presented. It
is intended to identify potential attackers who try to modify or
compromise the applications sent to execution by various users or target
different resource groups within the Grid. The system makes use of a
number of available local intrusion detection systems which send data to a
grid-level intrusion detection system that takes decisions based on an
overview of the entire Grid.

These IDS can correlate the information received from the local systems,
as well as monitoring data from the Grid System, using statistical
methods, to identify attacks that cannot be detected at a local level.
Another contribution of this paper is the classification of threats based on
the intent of the attacker. This paper also demonstrates that these types of
attacks can be detected using the proposed complex intrusion detection
system.

The model in [42] is proposed to achieve alert correlation which supplies
information about the vulnerabilities. They used a hyper-alert type to
encode their knowledge about each type of attacks. The proposal has a
relational database that implements parts and the corresponding tables are
automatically generated from data sources. IDS and vulnerability scanner
fill the database with events.

In [43] it is analyzed how the control and estimation methods can be
applied to correlate distributed events for network security. Based on
those methods, a Process Query System has been implemented which can
scan and correlate distributed network events according to users’ high-
level description of dynamic processes.

35

2.4 Alert Correlation Limitations

Most of the approaches based on pre and post conditions focus on the
modeling and detection of multi-step attacks to provide a high-level view
of the “attack history" associated with a security compromise. It is
assumed that the analyzed event stream is composed only of well-defined,
relevant alerts, and that real attacks trigger more than a single alert. As a
result, these systems can focus on clusters of related alerts and discard all
alerts that have not been correlated.

Unfortunately, this assumption has not been substantiated by
experimental data or supported by a rigorous analysis. In practice, it is
often necessary to filter out irrelevant alerts that may generate spurious
attack histories. This view is supported by [44] on alert correlation, which
states that false alerts generated by IDSs have a negative impact [on
correlation].

A limitation of approaches that are based on pre and postconditions is the
need to manually define these conditions for all alerts. In addition, when
only dependencies between alerts are modeled (as opposed to complete
scenarios), it is not possible to monitor the evolution of a particular
scenario instance from state to state in real-time, possibly anticipating the
further progress of an intrusion. In addition, it requires that all the
relevant preconditions and postconditions are modeled. If a relevant
precondition or postcondition is not modeled, some causal relationships
between alerts could go undetected.

Given the large number of attacks and the platform-specific nature of pre
and postconditions, effective alert reduction would require a substantial
modeling effort, similar to the effort required to develop complete attack
rule sets for misuse-based detection systems. Another problem is the
assumption that only attacks that are carried out in multiple steps are
important. While it is reasonable to give high priority to alerts that have

36

been detected as part of a multi-step attack, it is not wise to disregard all
alerts that are not part of a multi-step attack.

2.5 Agentsin IDS and Correlation

Agent is as a distinct software process being able to accomplish some
work without manual intervention and supervision in certain condition
[45]. It is self-adaptable, intelligent and collaborative. An Agent not only
works independently, but also can accomplish some missions and
cooperate with other Agents. Further, an Agent can be controlled to
perceive the change of environment and act to the environment back.
Agents are autonomous that can act independent from other agents and
perform different tasks. They are also robust and fault-tolerant to
changing environments.

There are two kinds of agents: static agents and mobile agents. A static
agent was the first proposed agent technology which is applied in the area
of intrusion detection. A static agent, that is to say, the agent that resides
in a fixed position or some fixed platforms. A mobile agent is an entity
capable to move from a node to another over the network in order to
perform the work locally. It permits to spread dynamically the server
interfaces managed on the different sites. It guarantees a big resistance to
network breakdowns; it also permits savings of bandwidth since
negotiations between mobile agent and server consist in local message
exchanges that don’t pass by the network [46].

In an agent based IDS idea, there is no central node, therefore no central
point of failure. Overcoming the deficiency of centralized structure is the
major reason for using agents in the intrusions detection field. The agents
usefulness includes also reduction of the network load, overcoming of
network latency and support for disconnected operations.

In [47], a lightweight and adaptive mobile agent-based intrusion detection
system (LAMAIDS) is presented. The presented model detects intrusion
from outside the network as well as from inside. A main machine, being a

37

typical intrusion detection system residing at a secure location, creates
mobile IDS agents and dispatches them into the network. The mobile IDS
agents are equipped with lightweight IDS capabilities and decision-
making. On each hop, the agents sniff the network traffic and look for
abnormal activities using a set of rules supplied by the main machine.
Simulation results based on real-world scenarios demonstrate significant
improvements in terms of detection rate, network overhead, and
adaptability, scalability, and fault tolerance.

In [48], a novel hybrid model for Mobile Agent based Distributed
Intrusion Detection System was proposed. The proposed model has new
features such as robustness, capability of detecting intrusion against the
IDS itself and capability of updating itself to detect new pattern of
intrusions. In addition, the proposed model is also capable of tackling
some of the weaknesses of centralized Intrusion Detection System
models.

In [49] a distributed intrusion detection system model based on agents is
proposed. This system adopts the way which combines static agent and
mobile agents, Host-based Intrusion Detection System (IDS) and
Network-based Intrusion Detection System. The system uses mobile
agent for decentralized data collection, data analysis and response, and
has certain dynamic learning capability.

In [50, 51], an autonomous agent has been trained to observe system
behavior and flag any anomalous activity. In this prototype, agent
monitors the network traffic and been subjected to training phase to detect
the malicious behavior in the network by human operator. In [52],
distributed agent architecture have been used for intrusion detection, the
model proposed a mobile agent based model for intrusion detection
system, called MAFIDS, including new metrics issued from emergent
indicators of the agent synergy and a proposed event correlation engine.
The model implementation showed its capabilities to detect the SYN

38

flooding attack in a short time and lower false alarm rate by comparing it
to SNORT [53]. The idea was to take advantage from agent technology to
overcome two major problems of other IDS: a longer detection, higher
false alarm rate.

In [54, 55], distributed agent approach for alarm correlation was proposed
to identify the root causes of network failures and fault identification. The
proposed model presented a new distributed alarm correlation approach
that effectively tackles the aforementioned data deficiencies. According to
the proposed approach, the managed network is first divided into a
disjoint set of management domains and each domain is assigned an
intelligent agent, the intelligent agent perceives each network entity in its
domain as a source of information and assigns weights for emitted alarms
by these entities. Based on their weights, the observed alarms are then
correlated by their respective agent into a single local fuzzy composite
alarm. Since local composite alarms constitute only partial views of the
managed network, they are correlated, by a higher management entity,
into a global alarm that accurately reflects a comprehensive view of the
managed network.

2.6 Comprehensive Approach Model for IDS Alert Correlation

Comprehensive approach model for real-time alert correlation [56 - 58]
has been produced as integrated solution. It consists of a set of correlation
components which cover different correlation techniques as shown in
Figure 2.1. The alert correlation module is composed of a set of
procedures which can be arranged in different ways. Some procedures
process data of an alert and the others implement correlation methods by
combining alerts using individual filters.

Six main components have been implemented depending on five types of
filters: Fusion, One20ne, Network-Host, One2Many, and Many20ne.
The correlation components which effectively reduce alerts are: Alert
Fusion (AF) which combines duplicate alerts that represent the

39

independent detection of the same attack by different IDS. Alert
Verification (AV) which takes a single alert and determines the success of
the attack corresponding to that alert. Thread Reconstruction (TR) which
combines a series of alerts that refer to attacks launched by a single
attacker against a single target. Attack Session Reconstruction (ASR)
associates network-based alerts with host-based alerts that are related to
the same attack.

™ 4
Alert Thread
lert F .
Sensor Alerts Normalization Pre-Processing Ale t i VE"“““'D” Reconstruction TR
One to one
b - L] v

* W
/\l/f Attack Session
\\ L-"Z_ Reconstruction
network

2% <™

|— Mu\ll Step Focus Recognition FR
: Impact
Intrusion reports Prioritization Attack
analysis One to Many &
Many to One

Figure 2.1 comperhensive approach model for IDS alert correlation

~
Asset
database

Sensor
ontology
database

x,_

Security
Admin

Focus Recognition (FR) which identifies the hosts that could be the
source or the target of a substantial number of attacks. More specifically,
this component aggregates the alerts associated with a single host
attacking multiple victims (called a one2many scenario), and a single
victim that is targeted by multiple attackers (called a many2one scenario).
Multi-Step Attack (MSA) which identifies common attack patterns such
as recon-breakin-escalate or island-hopping attacks {attacker breaks into a
host and uses it as a launch for more attacks}. The victim in one alert
becomes the attacker in the following one. There are more additional two
components: impact analysis, and prioritization, that depend on the nature
and the policy of the protected network. However, both of them are not
evaluated in this approach.

40

The study and analysis of components reduction rate of the model is
shown in Table 2.3. The rows represent different CAM components
reduction rate values, while the columns represent the different used
datasets. The table shows that TR and FR components have the highest
Reduction Rate (RR) percentage, are considered the most effective
components used for all datasets. Both AF and MSA have lower RR
values, yet they are still used for the most of datasets. Each of AV and
ASR does not have any effect except on one dataset only. It is concluded
that the affected correlation components are six (AF, AV, TR, ASR, FR,
MSA), but not all of such components are used for all different dataset
(The average is 3.7 component).

Table 2.3 CAM Components Reduction Rate for Different Datasets

. Data Set 2 2 - -
N, 2 = a =] o ¥
: < q > g - .-"- Zz =
3 2 - 3 3 5| 32
; £ U % = s @ pt
=) z a g 2 & Z
Component . 2 = &
AF 6.38 0.01 0.04 28.43 0 0 0.09 4.99
AV 0 0 0 0 0 97.1 0 13.9
TR 771 6.61 315 60.25 69.8 71.8 99.9 59.5
ASR 0 0 0 0 0 0 2.27 .32
FR 10.9 49.6 89.9 88.65 70.8 2.26 50.6 51.8
MSA] 0.16 0.63 1.4 1] 1.01 2.2 0.7

Count of used

Components

The performance of IDS correlation is measured by reduction rate and
correlation time. The correlation time for each component is calculated by
the count of input alerts and the correlation time for each alert. The
sequence order of correlation components affects the correlation process
performance; the total time needed for the whole process depends on the
number of processed alerts in each component. Table 2.3 shows analysis
result of the effectiveness of each component on the different analyzed
datasets. The last row shows the total count of effective components

41

whose reduction rate is more than zero value. Such count differs
according to the dataset, and varies from minimum two components in
the case of “Rome AFRL” dataset to five in the case of” Treasure hunt”.
The RR for each component varies from 0 to 99.91 % depending on the
component algorithm and selected dataset.

Different reduction rates of each component simply affect the following
component input of alert stream, i.e. the arrangement order of the
components is a primary concern for each dataset to obtain faster
correlation process. Different RR of a single component in different
dataset is varying because of the difference of attack scenario, and target
networks used for each dataset.

42

CHAPTER 3
Distributed Agent

Correlation Model

Chapter Three: Distributed Agent Correlation Model

As stated earlier, alert correlation is a major required mechanism to
provide useful and comprehensive output of IDS. Although several
techniques have been proposed to carry such a mechanism there is still a
lot of work to enhance, both the performance and quality of such
techniques. Whereas having an additional source of information about a
particular event is useful when the uncertainty of the source, the accuracy,
and the scope of that event is considered. In this chapter a novel model is
proposed to enhance both the performance and quality of the correlation
task. Agents, learning, and multi sources output correlation are used to
achieve this task. In the rest of this chapter a description, component, and
features of the proposed model will be illustrated.

3.1 Distributed Agent Correlation Model Description

Distributed Agent Correlation Model (DACM) is a multi-agent
distributed correlation model in a hierarchical organization. It correlates
alerts from IDS’s and from other sources of information. Data sources for
correlation are IDSs, system and application log files for different
services provided by the system, and security tools. Examples of security
tools are firewalls, vulnerability scanners, and performance monitors,
while examples of application and system log files are audit system logs,
FTP logs, SSH logs, http/https logs, and OS log files.

Figure 3.1 shows the block diagram of DACM. The figure shows that
DACM has its inputs from different information sources. DACM core
correlates these input data using a set of local and central agents
depending on the learning capability as well as knowledge base and
security policy. Finally, DACM produces the output as a report for
security administrator or automated response capability. DACM phases
include: collection, storage, analysis, presentation, sharing, and reaction.
The details of each agent will be described in the rest of this chapter while
the detailed implementation will be described in the next chapter.

43

InfoSec Tools

(Firewall, Vulnerability

Scanner, Performance Monitors) Learning Agent

A 'y

DACM

Application and System Log Files Core Agents I Security Admin

|
K I
' 1

! L ¥ 1 Model Result
! [
IDS (Network and : Knowisden :
Host Based) I Base, Security Policy I
! [
! I
! [
! 1

Information sources

Figure 3.1DACM Block Diagram

DACM core agents consist of a set of correlation agents for different
sources of information. These agents are grouped into three main
classifications: IDS's correlation agents for both network based and host
based IDSs, INFOSEC tool agents for different available security tools in
the system, and system and application log agents for different auditing
logs of operating system and available serves and application.

3.1.1 IDSs Correlation Agents

IDS alert correlation consists of a set of correlation components within a
certain structure. IDS sensors could be network based IDS or host based
IDS, each of them produces its own alerts. Network based IDS has local
correlation agents to correlate its alerts, on the other hand host based IDS
has its own correlation agent. The main IDS correlation agent correlates
the output of network based correlation agent and host based correlation
agent together and produce IDS’s correlated alerts. Figure 3.2 shows a

44

block diagram of IDS's correlation agents for IDS sensors of network
based and host based IDS's.

~
Network Based IDS [NIDS Agent
J
Main IDS
Correlation Agent
Host Based IDS —»‘ HIDS Agent

Figure 3.2 IDS Correlation Agents

Figure 3.3 shows an example of the output of snort IDS as network based
IDS using Basic Analysis and Security Engine (BASE) tools [59]
interface, the output shows alert attributes discovered by snort for
intrusion attempts.

43 Applications Places System Ly 153 Usa Ty 4) Wed Jan 26, 4:18PM @ ayman (O
£ @ O Basic Analysis and Security Engine (BASE) : Alert Listing - Mozilla Firefox

Hle Edit ¥iew History Bookmarks Ipols Help

<;] N @ [8] | http:/1127.0.0. 1/acidbase/base_stat_alerts.php v| [*gv| |
Most Visited v [g Getting Started (g Latest Headlines v

[@] Basic Analysis and Security En... o v

& Time profile of alerts -

Displaying alerts 1-9 of 9 total

= Signature > < Classification > < Total #> S # <85 A > < Dest. Address > < First> :Last:J
[cve] [icat] attempted-admin 1(0%) 1 i 1 2010-06-282010-06-21
[bugtraq)] [snori] 05:59:45 (05:59:45
COMMUNITY
EXPLOIT
LANDesk
Management
Suite Alerting
Service buffer [}
overflow
[snort] attempted-dos ~ 220{0%) 1 10 21 2010-07-082010-07-14)
COMMUNITY 17:28:06 15:32:10
SIP TCPRIIP

Figure 3.3 IDS alerts Output using BASE for Snort

Details of the used correlation techniques for IDSs correlation agents are
45

presented in section 4.2 in next chapter.

3.1.2 INFOSEC Tools Agents

Information Security tools are software which concern and analyze the
information exchange within network traffic to determine which of this
traffic trying to access resources as illegitimate behavior. A firewall is one
of the most famous tools which consists of software and/or hardware
devices. A firewall [60] is a secure internet gateway that is used to
interconnect a private network to the Internet. It is used as a technological
barrier designed to prevent unauthorized or unwanted communications
between computer networks or hosts, depending on a set of access control
lists within the network hosts and resources. Figure 3.4 shows the content
of firewall router log files which shows the blocked list of IPs trying to
access the website without authorized privileges or access control policy.

SCA] = Iy
Fie EM0 Gewin Vs Dncsdeg Lingusge Lemag Ae Rus TeATL Pugen Wedse |
= K 1 Ciac| syl ¢x = 1 [F * DAY BT

Fhcarriad tese fbe lengih - IS News | 1OGO0E4 Lnc 3RS Coldi) Sl IR o e Lol

Figure 3.4 Firewall router log file!

! Larger image of Figure 3.4is included in Appendix A

46

Local Agent to correlate (aggregate) firewall router log files entries and
group these entries for each blocked IP per day. Correlation is based on
grouping the same blocked IP into a single record, a number of attempts
field is added as an aggregation attribute.

A vulnerability scanner [61] is a computer program designed to assess
computers, computer systems, networks or applications for weaknesses.
There are a number of types of vulnerability scanners available today,
distinguished from one another by a focus on particular targets. Types of
vulnerability scanners could be Port Scanner, Network Enumerator,
Network Vulnerability Scanner, Web Application Security Scanner,
Database Security Scanner , and Computer Worm. A system monitor is
hardware and/or software based system used to monitor resources and
performance in a computer system. DACM has INFSEC agent to
correlate the output of these tools according to specific behavior.

Other local agents correlate vulnerability scanner outputs according to
scanner type. Mainly the vulnerability that is related to the same target
port and grouped together, and the IP/Port combination are used to
identify this alert.

Performance monitor tools provide and view information about the use of
hardware (CPU, memory, disk, and network) and software (file handles
and modules) resources in real time. It displays basic system resource
usage information, and displays column lists of processes, services,
associated handles and associated modules; charts of CPU usage. It also
displays overall physical memory consumption and separate consumption
of every process; charts of used physical memory. It views disk usage
through displaying processes with disk activity, storage, charts of disk
usage (KB/sec), and disk queue length. Finally, it displays processes with
network activity, TCP connections, and listening ports.

Performance monitor tools allow network administrators to proactively
discover and address end-to-end network performance issues, measure the

47

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Port_scanner
http://en.wikipedia.org/wiki/Network_enumerator
http://en.wikipedia.org/w/index.php?title=Network_vulnerability_scanner&action=edit&redlink=1
http://en.wikipedia.org/wiki/Web_application_security_scanner
http://en.wikipedia.org/w/index.php?title=Database_security_scanner&action=edit&redlink=1
http://en.wikipedia.org/wiki/Computer_worm

amount and type of traffic on a particular network, and locate and
diagnose congestion and latency problems for network troubleshooting by
using real-time and historical reports

Local agent correlates/aggregates performance monitor outputs according
to specific use of profile matching. This agent type analyzes the network
performance monitoring tool outputs. Normal network performance
thresholds values are defined in different intervals during the day
resulting in a performance profile. This profile is constructed by
supervised learning and stored in the knowledge base. If the monitored
performance exceeds the threshold, an alert is generated. Multiple alerts
for the same performance metric and period are grouped together;
performance metric is used for traffic rate, usage ratio, congestion rate
and so on. Figure 3.5 show block diagram of INFOSEC tools agents.

1 1 !
| | I
Firewall Routers Vulnerability Scanners Performance Monitors

FW Agent [VS Agent 1 PM Agent

Figure 3.5 INFOSEC Tools Correlation Agents

3.1.3 System and Application Logs Agents

System logs consist of audit log files and application log files. Audit logs
contain activities within each system user about his/her transaction with
system files, where application log files contain the entries associated
with specific services and hosts within the computer system or network.
These logs may be either access log or error log within each running
application or service. DACM includes local agents to correlate each
system log file contents according to specific pattern matches and
comparing attack profiles which were previously generated during
learning period. These patterns and profiles are generated from a

48

supervised learning process where normal and abnormal log patterns are

identified by an operator or by the learning agent.

Figure 3.6 shows the contents of FTP log file as one of possible
application logs which can be used within a network. Log file shows the
complete session instruction for a specific user and his action since the
FTP session opened and his transaction till the end of the session.
Detailed description of the log content and whether these contents
represent malicious or normal behavior will be described in chapter 4.
Figure 3.7 block diagram of different agents for system and application

logs files.

T\Dtalliog Diats Brsih)

The B 5eonch Vo Eceding ~Lamgusge - Gewngs -Macre: B
i 3 S|l o

| -

§ pronpa g

.............

sengin

TeaFx Puging Winsow

.80 230 FASS - =PASS ana
209,80 250 CWD — - - “CWD /pub/pepess/Everyshing
309,80 200 TYPE — =TYFE I

208,80 237 FASV -

1To80STID

Ven: 1BAIIT Lm TTBEL Colid Sel 314

Figure 3.6 FTP Log Files?

System Audit files

1 SSH.og files

A

y

[SA Agent]

e

FTP log files

.~HTTP log files

Y

A 4
[SSH Agent } [FTP Agent }[HTTP Agent }

Figure 3.7 System and Application Logs Correlation Agents

2 Larger image of Figure 3.6 is included in Appendix A

49

Service and application logs have formal description in which they
represent mathematical relation to determine the attack signature in their
log files, FTP Agent® as an example of these agents can be formally
described as follows:

Arrp € FTP alerts

FTP enuy (IP, Date, Time, Command, User) € FTP Log

{S}: set of unauthorized FTP commands; {U}: set of unauthorized users

V Entry € FTP Log

If command (FTP gnwy) € {S} or user (FTP gnuy) € {U}

Then FTP Entry is malicious, Produces AFTP

FTP enuy (IP, Date, Time, Command, User) ——FTP Attack Table
Else

Read next FTP gnury

3.1.4 DACM Central Agent

Main central agent correlates alerts from IDS’s with outputs from other
local agents from other information sources. This agent is the heart of the
model it provides better understanding of the network. Each local agent
aggregates/correlates events from its source and modifies it to standard
alert format and stores these results in its own table for main agent. Each
agent has specific function and data to extract depending on its source of
information and taking into account the network nature like impact
analysis and prioritization. The output correlation of the central agent
represents the final intrusion reports provided to security admin. These
reports include even summary results or detailed intrusion attempts.

Standard alerts representation is used where the alert name and attributes
are stored in a table as illustrated in Figure 4.8. Correlation between alerts
from different sources is done based on a similarity function for the
source of attack, attack type, and near time stamps.

® Formal description other individuals agents and central agent are presented in
Appendix B

50

sid | cid |Sig_id| sig_name |timestamp| ip_src |ip_dst| proto |sport |dport

Figure 3.8 Standard Alert Attributes

3.1.5 Formal Description for Central Agent

Formal description is a method of presenting software systems in a way to
facilitate further analysis for several metrics as completeness and
correctness. In this section, a formal description for the central agent” is
given as an example to show the mathematical formula used in the agent.

Ai € IDS alerts, As€ Firewall alerts , A_€ log alerts ;

A, (source, time, destination, type) € IDS alerts

A (source, time, destination) € Firewall alerts

A (source, time, destination, type) € Logs alerts

YV alert Aj

Ai Is verified alerts w.r.t. Ag

If source (A;i) = source (Ar) And Destination (A;) = Destination (Ag)
And |Time (Ai) —Time (AF)| <= Tihreshold

Where Tinreshold 1S the minimum allowed difference time

Ai Is verified alerts w.r.t. A_

If source (A;i) = source (AL) And Destination (A;) = Destination (AL)
And [Time (A;) — Time (AL)| <= Tthreshold

Where Tihreshold 1S the minimum allowed difference time

Ai Is IDS only
If attributes (A;) < > attributes (A.) OR
Attributes (A;) < > attributes (Ar)

A s Low and Slow attack

* Formal description of Other individuals agents and central agent are presented in
Appendix B

51

A is IDS only and Count (source [Ai]) = 1 per day
And days (source [Ai]) >3

Valert A,

AL is negative alert w.r.t. A

If source (A;i) = source (AL) and

Time (Ai) <> Time (A))

Or attributes (AL) < > attributes (A;)

AL is reconnaissance

If count (AL) > A,

Where Al is access count of specific IP / day and
Ay : allowed threshold access per day

3.1.6 Response Agent

The response agent is responsible for the suitable action against the
attacker. The response agent interacts with the main central agent to
respond depending on the final report. The final report contains summary
of correlated attacks and the response agent suggests suitable response
against these attacks. The attack response matches are included in specific
tables according to the knowledge base in the system depending on
historical behavior or learning systems. The implementation of the
response agent is not included in this thesis and could be considered as
important topic for future work.

3.1.7 Learning Agent

The proposed model has learning capability through learning agent which
learns the precondition and post condition of new attacks as well as
needed learning from other sources, in log files which of the log contents
could be considered as attack signatures and which is considered normal
signature. The model support adaptive learning by providing the contents
which has not been previously indicated as either an attack or a normal
signature. These contents are classified into three different types; similar
to attack, similar to normal and unknown. Later, the system administrator
can convert any of these types to either a normal or an attack signature.

52

To enhance learning capability and trace attacker behavior, honey pot
agent could be used to learn new attacks and build attack profiles for
more accurate knowledge base. A honey pot [62] is a trap set to detect or
deflect attempts at unauthorized use of information systems. It consists of
a computer, data, or a network site that appears to be part of a network but
which is actually isolated and protected, and which seems to contain
information that would be of value to attackers. In addition, learning
capability could be extended to include learned attacks through sharing
information with other external knowledge bases of similar systems.

Supervised Training Manuel Training Honey Pots

ST Agent MT Agent HP Agent

Figure 3.9 Learning Agents Block Diagram

3.1.8 The Knowledge Base and Security Policy

The knowledge base and security policy information represents the
network nature and the needed authorization and behavioral profiles
information. This information could be used by the individual local agents
and the central agent to discover the related attacks. These information are
saved in database tables which include preconditions and post conditions
for multi step attacks, specific learning parameters, normal and attack
profiles, attacks response matching, and access control lists which
mention system users and their privileges. Some threshold values for
profile matching, such as performance measure, time of use, and network
reconnaissance measures, are also saved in the knowledge base.

53

3.2 DACM Components

DACM components structure is shown in Figure 3.10, it consists of two
levels. In the first level a set of agents is presented. This set represents
model components, some of which represent local correlation components
within IDS, other INFOSEC tools, or system log files. And the learning
agent represents the learning capability in the model. Each correlation
agent reads data from its source and matches it according to a specific
template. A template is a particular pattern used in pattern recognition; it
could be a characteristic pattern of attack by an individual or group of
attackers. DACM agent’s algorithms are smart to avoid correlating
important alerts; the new unknown alerts will be moved to second phase
for further correlation and more analysis.

Network Based IDS Host Based IDS)
Information Security Tools
, l J—
PM Agent \ [FW Agent J [NIDS Agent] HIDS Agent }
} i
VS Agent [i J i
j IDS Main Agent 56
. '
Error iAccess log Main Network Correlation Agent
ent
\ - System Database (rules, attack, response)
[r'y
System Audit i
Agent ' g o)
\. [Learning Agent] Response Agent Secunty Admin

F A

System & Application Logs

Learning & build KB

Training Period Honey Pot

Result and Response

Figure 3.10. DACM Components Structure

54

In the second level, the main correlation agent is considered as the central
agent of the model. This agent correlates the outputs of other agents to
provide the whole picture of the network to the security administrator. It
can also provide the response agent with the suitable automated response
action against the detected attacks according to predefined rules.

3.3 DACM Knowledge Base

The model has a central database which consists of set of tables
representing knowledge base and alerts results from different detectors
and finally output tables for the security administrator. The output tables
include final correlated alerts results and other decision tables for more
learning and enhance the knowledge base tables.

3.3.1 System Parameters and Role Base Tables

The system parameters and role base tables include the required
information for agent to distinguish between the attack signature in
related log files and information sources. For example if we have FTP
service within a network , it is needed to determine which permission is
allowed for FTP users, could they read files or also they can add, store,
modify, and delete files to FTP directory. The FTP write files command
will be considered signature for attack if the users are not allowed to write
files and could be considered normal behaviors if they are allowed to
write files to FTP directory.

Threshold values for system parameters determine which cases could be
malicious and which could be normal, network performance monitor
measure could be 80 % or more during daily work hours, but if this
measure is the same during the weekend or after midnight at 2:00 AM, so
it is a signature that something wrong in network traffic is happening.
Network asset tables include the network assets, operating systems and
ports.

55

3.3.2 Alerts Table

Alerts tables are divided into two kinds: one for individual alerts which
will be kept for long time for low and slow attack detection and another
table for correlated alerts, both tables have the same structures as shown
in Figure 3.11, the attributes are: Sensor ID, Alert id, attack type,
Timestamp, Source IP, Destination IP, and Correlation type

Sensor | Alert | Attack | Timestamp | Source | Destination | Correlation
ID ID Class IP IP Type

Figure 3.11 IDSs Correlated Alerts Table Attributes
3.3.3 Vulnerability Scanner
Port scan output reports determine which port could be vulnerable to
attack as a destination port in alerts, scanning for vulnerable ports within
the network will be executed periodically. Result will be saved to
vulnerable ports table as shown in Figure 3.12, it includes: Date, Time,
Port ID, protocol, Port status (open, warning, closed), Port service.

Date Time Port ID Protocol Port Status

Figure 3.12 Vulnerability Scanner Alert Attributes

The integration between this table and alerts tables verify the vulnerable
ports with destination ports in alerts and triage between the false positive
and accurate alerts. Figure 3.13 shows an example of Nessus tool output

poly-app-1.cerias.purdue.edu general/icmp Security notes found

Nmap scan report for kargad.cerias.purdue.edu
(128.10.252.9)

Host is up (0.0010s latency).

Not shown: 978 filtered ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

113/tcp closed auth

443/tcp open https

Figure 3.13 Nessus Output for vulnerability scanner

56

http://poly-app-1.cerias.purdue.edu/
https://mail.google.com/mail/?ui=2&ik=e2f549c738&view=att&th=1294bc19bf2d93e2&attid=0.1&disp=inline&zw#0.1_poly-app-1_cerias_purdue_edu_general_icmp
http:kargad.cerias.purdue.edu

3.3.4 Performance Monitors Tables

Asset performance increase or decrease compared with threshold values
(performance-time) compared with normal system behavior or even by
some special cases of system stress without attacks. Figure 3.14 shows
performance monitor alert attributes: Asset ID (CPU, Memory, DISK 10,
and Network 10), Date and time, Performance (%), Performance Type
(high-low-normal) compared with threshold values for normal behavior.

Asset ID Date Time Performance %

Figure 3.14 Performance monitor Alert Attributes
3.3.5 Firewall Log Files Tables
Firewall log file contains blocked IP packets according to specific access
control lists, depending on network security policy. Firewall log agent
read blocked IP packets within a specific time compared with other
source of information; like IDS or other log files. Figure 3.15 shows an
example of log entry of firewall log file.

May 9 00:02:21 cisco3.cerias.purdue.edu 592997:
592983: -.May 9 00:02:20.515 EDT: %SEC-6-
IPACCESSLOGP: list 120 denied tcp
94.125.182.255(6665) -> 128.10.244.160(1094), 1
packet

Figure 3.15 Firewall Output log file

The log agent stores its result in a table with attributes shown in Figure
3.16 which includes: date, time, service, source IP, source port, target IP,
and target port.

Date Time Service | Source IP | SPort Target IP | TPort

Figure 3.16 Firewall Alert Attributes

57

http:cisco3.cerias.purdue.edu

3.3.6 System Audit Files Tables

These tables include data about; write files, copy files, and move files to
external network. These data are compared with specific profiles
depending on access control policy and time of events. This comparison
is helpful against indoor and outdoor attacks. The audit table could
include a set of attributes for such activities as shown in Figure 3.17.
These attributes are: the date, action type (write-copy-move), file type, file
name, file location, user ID, user password, and user IP.

File User
Date | Command type

Type | Name | Location | Name | Password | IP

Figure 3.17 System Audit Alert Attributes
3.3.7 Services Log Files Tables
Internet web sites provide different services for their users. FTP and SSH
are examples of these services. Web site users explore and use different
pages and web forms, users' activities through websites are saved in error
log files and access log files. Users' activities could be normal behavior or
malicious behavior. Depending on learning period, a set of attack profiles
and normal profiles have been implemented. These service and
applications log agents read these logs and compare them with the related
profiles. When it matches any attack profiles, it stores the related attack
into its result tables as shown in Figure 3.18. The alert attributes includes:
date, time, service, type of attack, and attacker IP address.

Date Time Service Attack Type | IP Address

Figure 3.18 Services Log Alerts Attributes
3.3.8 Output Tables:
Output tables summarize correlated alerts from different sources to
address attacks from different IPs within a period. It includes the
attacker's 1P, date, and the detailed attacks from this IP. These alerts could
be received from different agents such as an IDS agent, a firewall agent,

58

SSH attack, an error log attack, and its scanning activity for the network.
Output tables also include summarized information about false negative
alerts and verified alerts.

Supervised learning decisions table contains unknown behavior with
related log from IDS and other logs for the same IP to support adaptive
learning capability.

3.4 DACM Features

The main purpose of the proposed model is to enhance the IDS accuracy
and completeness by reducing both false positive and false negative
alerts. It gives better situation understanding within the protected
network. For example, in such attacks which are composed of many steps
such as Multi-Step Attacks (MSA) or Attack Session Reconstruction
(ASR); if any alert of the attack steps was missed it will be just partially
matched not fully matched. As a result, the detection of the actual attack
scenario or type will be limited. DACM could be used to detect missed
alerts to reduce false negative alerts (missed alarms).

The learning agent learns the precondition and post condition of multi-
step attacks. For example, alerts All, Al2 and Al3 represent three steps of
multistep attack. Alert 1 has both precondition and post condition pairs
AL1 (P1, S1), Alert 2 Al2 (P2, S2) where p2=s1, and Alert3 Al3 (P3, S3)
where p3=s2. IDS may miss critical events that prevent matching the
proper attack scenario which produces false negative alert. In case of
detection alerts All, Al3 provides us with only a partial match of the
multistep attack not the complete detection of MSA attack. Using DACM
will help detect Al2 from other sources (firewall, Log file, etc...).
DACM will enhance the partial match correlation assurance and help in
detecting related attacks which did not have explicit relations.

The model may detect zero day attacks when detecting anomalous
behavior compared with specific profiles using different sources of
information. DACM enhances Alert Verification (AV) through

59

correlation of alerts from IDS’s and other tools which reduce false
positive alerts. It also determines potentially malicious sources of traffic
compared with legitimate ones.

DACM has a chance of early discovery of the Advanced Persistent Threat
(APT). APT has the same sequence of normal attacks but should be
delayed and coordinated within a long period of time. Detecting the
gathering of data is the initial in APT steps, through the access log files.
DACM will keep individual alerts within a long period of time in special
tables for detecting low and slow attacks. Keeping these individual alerts
for a specific period depends on the attacked service. For example, for
port 80 we would have these alerts running for three months instead of a
year if the SSH service was the one being attacked. Later, correlating
individual events and alerts from different resources occurring over a long
period of time and comparing it with normal behavior should detect low
and slow attacks. DACM may detect suspicious behavior with less
precision than in specific attack detection (often in the grey area between
attacks), network problems, and user misconduct.

Using multiple sources of information will help in detection of an
unknown worm that generates abnormal traffic and a number of atypical
connections to formerly unused ports and destinations. In addition, it
enables detection of suspicious access, such as a user making a persistent
connection to an administrative port for the first time. Excessive traffic
with anomalous destinations and uses, and unknown attacks can be
identified according to anomalous activity generated by the attacker. That
of which can be detected by monitoring indicators of general user activity
such as ports, services, traffic, times, etc. for all users (indoor and
outdoor).

DACM can detect malicious connections in comparison to legitimate
ones. The existence of the same source IP address in firewall log file,
IDS, and other log files within the same time period indicates that it is a

60

malicious connection. We now have to block this connection as a source.
DACM can determine a potentially malicious source of traffic compared
with legitimate ones. Repeated port scans and network traffic in different
times for a long period, and sources IPs or output packets for specific IPs
without host names may indicates these IPs as malicious sources of
traffic.

DACM decreases the time cost required to obtain effective situational
understanding. It also increases the coverage of the attack space and
improves the ability to distinguish the serious attacks from the less
important ones. It also distinguishes between the ones that require
immediate reaction and others where an alternative is acceptable.

3.5 Implementation Scope and Performance Enhancement

The implemented model does not include all the previous described
agents; it includes a set of agents representing the different types of
correlation because of the nature of collected data and the scope of this
research. The implemented model includes the required component to
prove the research concept. Network based IDS correlation agents have
been implemented as an example of an IDS correlation agent while a host
based IDS correlation agent was not implemented. A firewall agent has
been implemented as an example of INFOSEC tools agent while
vulnerability scanner and performance monitor agents were not
implemented.

Correlation agents for error and access log files for different services
within the network have been implemented as an example for system log
files, while the system audit files correlation agent was not implemented.
Supervised training with support of system admin has been implemented
as an example of learning capability, while learning using honey pot was
not implemented. Finally response agent was considered out of the
current scope for this research. It will be an interesting research topic for
future work. Analysis of packet dump of the network during the period of

61

collecting data was performed manually with Wire Shark tool [63];
automation of capture data packets correlation was considered out of
scope for current model implementation. Figure 3.19 shows the
highlighted implemented components in this work from entire DACM
components.

Several algorithms, parallelization, and enhancement are presented in
detail in the next chapter for the sake of performance enhancement.

Network Based IDS Host Based IDS
v v
PM Agent (FW Agent ‘ ‘ NIDS Agent J HIDS Agent
———a % ! T
VS Agent [IDS Main Agent }
P i

Error & Access

Main Network Correlation Agent
log agent
System Database (rules, attack, response)
-
System Audit T l
Agent ; :
o Learning Agent ‘ Response Agent w SeQUty Adatn
Training Period Honey Pot

Figure 3.19 Implementation Scope of DACM Components

62

CHAPTER 4
DACM Design
and Algorithms

Chapter Four: DACM Design and Algorithms

In this chapter different individual agents and central agent
implementation will be demonstrated. Different agent’s algorithms for
alerts and events correlation are presented.

4.1 IDS Alert Correlation

In this section, two IDS alerts correlation techniques are presented to
enhance the correlation process presented in Comprehensive Approach
Model (CAM) [56 - 58]. CAM results showed that the average time used
to process one alert by different components varies depending on used
dataset. Some components need more time to process one alert in a
dataset while it needs shorter time to process one alert in another different
dataset.

4.1.1 IDS Alert Correlation Performance Analysis

Comprehensive approach model [56 - 58] for IDS alert correlation was
produced as integrated correlation components which include different
sequential correlation components. Figure 2.1 showed CAM correlation
components. Results of the reduction rate for each component against
different datasets in CAM are presented in Table 2.3. This analysis
showed that the sequence order of the correlation is not ideal and many
components have not been used for most of the datasets which increases
the correlation time needed to obtain effective correlation report for
security administrator.

The correlation performance is measured by reduction rate and correlation
time, the optimum correlation process has highest reduction rate in lowest
correlation time.

Consider a N input alerts and O output alerts as a result of the correlation
process, the reduction rate is defined as:

Reduction Rate (RR) = 1-%

For component (i), RR;: Reduction rate by Component i is defined as:
63

RRi =1- (Oi/Ni)
The Total Reduction Rate:

RR =[], RR; (4.1)
i=1

Equation 4.1 represents the total reduction rate of the model components.
For the i™ component, Ti: is the total time taken by component i to
perform correlation and is a function of the count of input alert and time
taken to analyze each alert.

Ti=f(ci,Ni)

Total correlation time: T=}{_; T, (4.2)

The correlation time used in CAM model is represented in equation 4.2
which represent the sum of correlation time of all components even if
they do not have effective reduction rate value.

4.2 Modified CAM Time

To eliminate the use of components with zero reduction rate affect, and to
have optimum order of correlation components such that the components
with higher reduction rates can be used before other components with
lower reduction rate, we will assume the activity variable Xi is a Boolean
variable that could be zero or one as follows
X = {O, RR; =0

! 1, RR; > 0
Giving the condition that RR; > RRj.1,
The above condition determines the sequence of correlation components,
with the minimum total correlation time. This sequence requires the
components which have higher reduction rate to be used first before the
components with lower reduction rate values. Modifying each component
time Ti by its activity variable Xi eliminates component with zero
reduction rate.

64

Topt == Z?=1 Tl Xl (4.3)

Equation 4.3 represents optimum total correlation time depending on the
used components and datasets. The correlation time will be calculated for
effective components which have reduction rate greater than zero value.
The enhancing of the correlation process can be obtained by calculating
the reduced time. It can be represented by the difference in time between
calculated T in equation 4.2 and calculated T in equation 4.3 as follows:

Taier=T-Topt (4.4)

4.2.1 Agent Based Correlation Model

Figure 4.1 shows the proposed model which presents an Agent Based
Correlation Model (ABCM) for Intrusion Detection Alerts. In this model
Learning Agent (LA) learns the nature and characteristics of normalized
alerts produced by different IDSs within a network, and then it selects the
suitable correlation components that can be used and their proper order.

The model provides minimum correlation time for all datasets whatever
their nature. ABCM consists of two phases, learning phase and
correlation phase. The input of ABCM is normalized and pre-processed
alerts while the output goes to a set of selected correlation components
called Active Correlation Components List (ACCL).

~
Impact analysis and)
Normalized Alerts ABCM Intrusion Reports
Prioritization

J

Figure 4.1 ABCM correlation model block diagram

The selection of added components in ACCL depends on agent learning,
the output alerts correlated by ACCL is directed to the last two
components of correlation process. This model is based on the real-time
CAM [56 - 58]. However, instead of using sequence of all correlation

65

components, it uses an optimal ordered set of specific effective
correlation components depending on agent learning.

4.2.1.1 Learning Phase

During the learning phase, LA learns the output of each component and
the dataset nature. Based on this learning beside a set of rules and
knowledge base as well, LA can determine the active correlation
components and their proper order. Each correlation component has
specific criteria to aggregate and correlate alerts. The knowledge base for
learning is formed by the criteria for each component in addition to the
RR obtained by each component

The learning phase starts through the execution of initial correlation
process as sequential learning as shown in Figure 4.2. In sequential
learning, the initial components sequence order could be as described in
Comprehensive Approach Model [56 - 58], or it could be random
sequence order. Figure 4.2 shows that LA learning depends on initial
inputs. These inputs are: the learning parameters which could be a period
of time (t) or specific number of alerts (N); the normalized pre-processed
alerts; and a pre generated knowledge base. Each component aggregates
and merges its input alerts according to component algorithm and criteria.
Alerts attributes (source, attack type, destination) are used as the basis of
merging alerts.

RR can be calculated through comparing output alerts with input alerts.
Depending on the value of RR for each component, LA builds ACCL
which contains the components with RR higher than zero value. The
learning phase could be processed in parallel learning as a separate
process; parallel learning is shown in Figure 4.3.

66

A 4

Sensor Alerts

]

Normalized)
Preprocessed Learning Agent (LA)

alerts

Y

]
Learning Knowledge
Parameters Base ACCL Intrusion reports | Prioritization
|

Figure 4.2 ABCM sequential learning Phase

The correlation of all components has been done in parallel and learning
agent to get the correlation result of each component separately. The
learning parameters determine learning period or count of learned alerts.

Learned alerts have been selected randomly during learning phase, and
they are excluded in correlation process.

7 N
Learning Knowledge
TR Parameters Base
N
FR \
\ AF || Learning Agent
Normalized Alerts
/[//
ASR)
ACCL
MSA / 7
N u#

Figure 4.3 ABCM Parallel learning Phase

67

Figure 4.4 shows the learning result of 2866 alerts which represent a ratio
of 10 % of collected alerts in one day (28866) of CERIAS dataset
described in chapter 5. Learning results show that ACCL contains
components: FR with RR of 92.87 %, TR with RR of 91.82 %, and MSA
with RR of 2.17 % while component AF has zero reduction rates.

A
Learning Knowledge
TR (91.82) Parameters Base
»
e
Learning Agent
Normalized Alerts
==
(FR :92.87, TR: 91.82,MSA 2.17)
Meee gk

Figure 4.4 CERIAS ABCM Parallel learning Result

Algorithm 4.1 describes the learning phase process; LA builds ACCL in
descending order of the component reduction rate. The normalized pre-
processed alerts go through their basic correlation path. By the end of the
correlation process of each component, LA reads RR of each component.
If the RR is higher than zero, the component data will be added to the
ACCL which includes serial, component name, and RR value. By the end
of correlation of the last component, ACCL will be having a specific set
of components with different RR values. The agent sorts these
components in descending order of their RR, and it also disables
components with zero RR values.

Moreover, LA updates the knowledge base using the new criteria of
merging alerts in each correlation component. Learning phase should be

68

enough for studying the nature of alerts in the network. Such phase
continues depending on the learning parameter (t or N) and/or assuring no
changes of the alerts nature.

Algorithm 4-1 Learning Phase

Algorithm 4.1 Learning Phase

Inputs: (IS) normalized and pre-processed stream of alerts, IP: number of input alerts,
learning parameter (Alerts number N)

Output: (ACCL), set of active correlation components (RRc > 0)

Initialization: Empty ACCL (Ser, CC, RR) ACCL (0, ,0), k=6 (maximum number of
correlation components), m=0

For alerts in N
While k > 1 do // For each component do

OSc «— CORRCc(IS);
OPc ¢— no ofalerts in OSc
RRc ¢— (1-OPc/IP)*100
if RRc > 0 then
begin
ACCI(Ser) € ser+1;
ACCL(RR) € RRg;
ACCL(CC) «— CC;
end
Else
/l For each component with RRc=0
begin
Disable component;
m — m+l;
end

end if /1end if RR>0

k & k-1;

loop

end while

sort ACCL(RR, descending);
end for
return ACCL,

LA could be a part of the correlation process by eliminating some alerts
depending on the network nature (alerts against windows server while
maintaining UNIX server).

69

4.2.1.2 Correlation Phase

By the end of learning phase, ACCL contains only effective correlation
components in descending order of their RR. In the correlation phase, the
flow of normalized alerts stream will be controlled by the agent. Alerts
are directed to the first component in ACCL which has the highest RR
during the learning phase. The output of the first component will be the
input of the second one which has the second highest RR, and so on till
they reach the last component in ACCL.

Figure 4.5 describes correlation phase of the normalized pre-processed
alerts. Alerts are correlated using one path of many alternative paths.
These alternative paths represent different suggested ACCLs which have
been implemented previously during the learning phase. For example, the
analysis of sample of CERIAS dataset correlation shows that ACCL has
only FR and TR (Highlighted Boxes in Figure 4.5) with RR values
(FR=92.87, TR=91.82, and MSA=2.17), While the other three
components AF, AV, , and ASR have no effect on that dataset.

'R FR » AT > AV > ASR —n MSA
Normalized TR FR AF —_—
Pre-processed alerts ——» ACCL i
' 1 - 1
g -5 ' .
i : :
\‘ ' ' !
£ (FR:92.87) —» (TR:91.82) —+(M5A 2.17) ——»|
¥ '
= W, i
:; Intrusion reports Prioritization «—— [mpact analysis

Security
Admin
Figure 4.5 ABCM Correlation Phase

Algorithm 4.2 shows the correlation phase process; the inputs of the
algorithm are: ACCL, and array of alerts which represent the remainder
alerts after excluding the learned alerts in the learning phase.

The correlated alerts OCc are considered to be the output of the
algorithm. The agent uses the first component in ACCL to correlate the

70

http:MSA=2.17
http:TR=91.82
http:FR=92.87

input alerts, and then it moves the pointer of ACCL to the next
component, the next components correlates the output alerts of first
component, the loop continues till using all components in ACCL.

Algorithm 4-2 ABCM Correlation Phase

Algorithm 4.2 Correlation Phase
Inputs: (IS) normalized and preprocessed stream of alerts, IP: number of input alerts,
ACCL (Ser, CC, RR)
Output: (OS) correlated stream of alerts,
Begin
While ACCL (ser) > 0 (is not empty) do
//'loop for all components in ACCL
Begin
CORRC(IS) using ACCL(CC);
OSc «— CORRc(IS);
OPc «— noofalertsin OSc
RRc <+— (1-IP/OPc)*100
ACCL(CC) <— next ACCL(CC);
/I next lowest RR component in ACCL
Loop // all components in ACCL have been used
end while
OS «— OSc of last component in ACCL
end
return OS;

The total correlation time by ABCM is calculated as follows:

TascM = Tieaming + Tcorrelation where Teorrelation OFf ACCL components as
optimal serial sequence without unneeded components and in proper
order is as follow:

Tecorrelation = jn:1 t]-

Where n is the count of ACCL components.
Total Tagcm is much lower than total correlation time by CAM.

71

4.2.2 Dynamic Parallel Correlation Model

This novel model presents a Dynamic Parallel Correlation Model
(DPCM) for Intrusion Detection Alerts; the model dynamically selects
optimum correlation components arrangement order and provides
minimum correlation (for all datasets, whatever their nature is). DPCM is
a part of the entire correlation process as shown in Figure 4.6. The input
of DPCM is a stream of normalized alerts while the output of DPCM will
be the input of the rest of correlation components process.

~N

DPCM Impact analysis and

Normalized Alerts Intrusion Report

Prioritization

Figure 4.6 DPCM Block Diagram

The input of DPCM is normalized and pre-processed alerts. Figure 4.7
shows that DPCM is composed of a set of correlation stages, each stage
contains k parallel correlation components (k=6) (AF-AV-TR-ASR-FR-
MSA), the input of every stage is directed to all active components in this
stage simultaneously.

0 y S N ¢ 'S
Parallel
correlation
components
Parallel kx1 Parallel Parallel
correlation correlation correlation
components After removal of componen components
Stage Flow highest RR and Flow ts Flow
Control zero RR Control Control N e
kx1 Program components (m) Program Stage Program 1x1
K=k-(14m) 2x1
X il | S i | S

Figure 4.7 DPCM Correlation Stages

The model assures that alerts go through only effective correlation
components. The correlation criteria are different for each correlation
component, since all components have their independent correlation and
they can work in parallel independent of each other.

72

The components arrangement will be dynamically changed in descending
order depending on the RR of each component. This model is based on
the real-time correlation model. However, instead of using sequence of all
correlation components, a set of correlation stage will be used. Each stage
contains all effective correlation components in parallel manner.

DPCM creates a thread for each correlation component to perform
synchronous correlation; all threads access alerts data at the same time,
each thread process its dedicated correlation method and creates a list of
correlated alerts. The counts of threads depend on the count of active
component (k) in each stage. Using threads optimize processor and
memory usage, all threads on the same process can access list of variables
in memory at the same time, no need for semaphores to read variable.

Algorithm 4.3 shows the contents of DPCM algorithm which describes
how it works, the input is a stream of normalized alerts (IS) and the
output is a correlated stream of alerts (OS). In the program initialization,
all components have been set to active state (k=6) and set zero value for
count of components with zero RR values (m=0). The program reads the
inputs stream alerts in the first correlation stage and reads the RR ratio of
alerts obtained by each component. Depending on these RR results the
program decides which components will be used in the next stage. The
output of component with highest RR will be the input of the next
correlation stage. The component with higher RR and components with
zero values RR (m) will be disabled in the next stage.

The active components in next correlation stage will be calculated again
by k=k-(1+m). In next stage the active components will reduce the input
alerts stream each with a specific RR ratio. The loop continue till k=1
where all correlation stages used either by going through all six stages or
specific set of them depending on values of (m) during the flow of alerts.

Each component in the correlation stages aggregates and merges its input
alerts according to component algorithm and criteria. Alerts attributes

73

(source, attack type, destination) are used as the basis of merging alerts.
RR can be calculated through comparing output alerts with input alerts.

Figure 4.8 shows CERIAS alert dataset sample correlation using DPCM.
All active components in first stage simultaneously correlate the input of
normalized alerts stream. The results of first stage shows that three
components (AV, ASR, and AF) have zero RRc values (m=3).
Component TR have highest RR value (FR=92 %) and RR values of
(TR=90 %, MSA=0.38 %). With k=6, and m= 3 number of active
components in next stage is k=6-(1+3) = 2. In next stage the algorithm
disables highest RR (FR) and zeros RR components (AV, ASR, and AF).
The active correlation components in second correlation stage are TR and
MSA.

s ~ e) g
[o2 | s
Flow o -J—TTE—]:”" Flow
MSA (0.03) control [
Program [*--.. _’m?, Program M msa0.03)
e
ASR(D
~— I , S—

Figure 4.8 CERIAS DPCM Correlation Example

Both components will correlate the output of TR component from first
stage. The RR of active components in second stage will be calculated
again with values (TR=66 %, MSA=0.3%). The output of this stage is the
correlated alerts by TR component {higher RR than MSA}. The program
passes the output correlated alerts from TR to next stage and disable FR
in next sage and recalculate k=2-(1+0)=1. The third stage has only MSA
active component with RR = 0.03%. It correlates its input alerts and
recalculates k = 1- (1+0) = 0.

\l

4

http:MSA=0.38

Algorithm 4-3 DPCM Algorithm

Algorithm 4.3 DPCM Algorithm
Inputs: (IS) normalized and preprocessed stream of alerts, IP: input alerts
Output: (OS) correlated stream of alerts, OP: number of output correlated alerts
Initialization: k=6 (maximum number of correlation stages), m=0 (component with zero
RR), all components in active state.
Begin
While k> 1 do
Begin /I For each component in active list
Begin
0Sc «— CORRc(IS);
OPc «— no of alerts in OSc
RRc «+— 100 (1-IP/OPC)
End
if RRc = 0 then
Begin
disable component;
m ¢—m+1;
End
Else
End if
OS «— output of component with max RRc
k «— k-(1+m)
disable component with max RRc
end loop
end

This means there are no more active components or correlation stages
anymore. The correlated alerts produced by the third stage are the final
output of DPCM process. DPCM uses just three components instead of
six. The optimum components order was FR, TR then MSA and was
dynamically selected in descending order depending on their RR. The
total correlation time by DPCM is calculated as follows:

Torem = X3y Ti X
75

Where X; represents the active correlation stages, these stages contain
only effective correlation components and have dynamic descending
order of its reduction rates. Total Tppy correlation time is optimum
compared with total correlation time by CAM.

4.3 DACM Individual Agents

In this section DACM correlation agents design and algorithm will be
presented, block diagram of DACM components shown in Figure 4.9.

Attack activity Access log recon = Error log attack
Attacks http_attack
> | Firewall |] HTTP | S T
LSS o | SSH |] HTTPS | = — I HTTPs |
FIP_, | Ftp Malicious |] FTP | —
Missing
(|| — |
|
Ftptransfer
Access
Y v
44 Local log Agents , IDS agent }4—' Snort IDS alerts
Knowledge base ABCM result
(Correlated Alerts)
Normal profile
Attack profile
Unknown profile http_error_sequence
Database

Figure 4.9 DACM Individual Agents

DACM is composed from a set of correlation agents; each agent
correlates alerts or events from its information source. Different agent’s
sources of information including IDS alerts, firewall log file, other
services log files. Log files may be error log files or access log files, and
finally a set of knowledge base which include network security policy and

76

needed threshold values to determine behavioral profiles and attacks
signatures.

4.3.1 IP Address Normalization

Different source of information have been used for retrieving attack
signatures, the detected IP address has different format in each source.
IDS alerts include decimal format for source and destination IPs, while
INFOSEC tools and other application log files include standard 32 bit
representation “Standard IPs”. Normalizing IPs together is a necessary
process for correlation such information together, this process indicates
that every IP address has a unique ID in the system. Algorithm 4.4
performs save IP function to create IPs table, this algorithm transfers any
used decimal or standard IP to a unique 1D which represents it and could
be used within the system. IPs table consists of three fields which are:
ID, Decimal IP, and Standard (256 base) IP. ID is a unique id for each IP;
Decimal IP is the IP address in decimal format retrieved from IDS alerts
where Standard IP is the IP address in standard 32 bit format retrieved
from INFOSEC tools and System Log files.

The algorithm read IP address from information sources and creates a
record with a unique ID for this IP. If the IP address in decimal format, a
convert process could be used to convert it to standard IP and insert a
record of this IP in IPS table. If the IP address in standard format, it
check if this IP is already has a unique ID, if so it return this ID, if not it
creates a new record to assign new ID for this sting IP.

Convert IP function convert the decimal format detected from IDS to a
standard format (base 256), the standard IP is composed of 4 parts from
left to right. If we have a decimal IP address = “1812014676”, we need to
convert it to standard IP address; convert function starts by initiating a
loop from 1 to 4, and dividing the decimal format number to (256) " (4 -
i) which produce 108 as first part of standard IP address, looping to i =2

7

and repeating steps from 2 to 9 till i=4 which produce IP in sting format
(base 256) = “108.1.38.84".

Algorithm 4-4 Save IP Function

Algorithm 4.4 Save IP function
Input: IP standard variable or decimal ip
Output: IP record number
Begin
If format (IP) =decimal Then
IP_standard = Convert (IP_decimal, IP_standard);
Else
IP_decimal = null;
End if // Check if the ip existing in IP table
Result = Select standard IP from "IPS" table where IP (base256) =Standard IP
If result is true then
return ID;
return ;
Else // result is false
ID=max (ID) + 1;
Insert into IPS values (ID, IP_decimal, IP_standard);
Return ID;
End if
End;
Return ID.

Convert (IP_decimal, IP_standard)
Fori=1To4
num = Int(IP_decimal / 256 ~ (4 - 1))
IP_decimal= IP_decimal - (num * 256 " (4 - i))
Ifi=1Then
IP_Standard = num
Else
IP_Standard = IP_Standard & "." & num
End If
Next |
End for
Return IP_Standard

78

http:108.1.38.84

4.3.2 Firewall Agent

Firewall agent read the contents of router log file, this log file contains list
of blocked IP which tried to attack the network, it extracts the data
indicating the attack such as date and time of attack trial, the destination
protocol, source IP and source port, and destination IP and port. Figure
4.10 shows an example of router log blocked IP entry, the entry include
the blocked trial attributes and other detailed information about the
protected server and router.

Jun 16 22:13:45 cisco3.cerias.purdue.edu 316500: 316485: Jun 16
22:13:44.639 EDT: %SEC-6-IPACCESSLOGP: list rsrchin denied
udp 108.1.38.84(50184) (Port-channell 001f.9ed2.ba40) ->
128.10.247.62(54045), 1 packet

Figure 4.10 Firewall router log contents

Algorithm 4.5 shows the agent process to read the log contents and
convert it to a record in the attack table. The input is the router log file,
and the output is the attack table record.

The algorithm has some initial variables to be used as static split
variables; these variables are static contents in the router log entry. The
algorithm starts reading the file contents and checks each line contents; it
splits with server name as first static variable then it reads the date and
time from the first part of the splitting and continues splitting the second
part with other splitting variables to get the other required attributes of
attacks such as source IP and Port, protocol, destination IP, and Port.

The algorithm reaches the end of the line and stores the extracted
attributes into the related record in the firewall attack table as shown in
Table 4.1.

79

http:cisco3.cerias.purdue.edu

Algorithm 4-5 Firewall Agent

Algorithm 4.5 Firewall Agent
Input: router log file.
Output: fill data to database table ‘attacks'
Initialization:
set server name = “cisco3.cerias.purdue.edu”
Set SP1 =" %SEC-6-IPACCESSLOGP: ",
SetSp2="->""
Begin
While not EOF
For each line
Read line contents;
Split line with static variables name;
read date and time;
read source IP and port;
read protocol type;
read destination IP and port;
ignore unwanted variables;
Store to attack table (date, time, source IP, source Port, protocol,
destination IP , destination Port);.
End for;
End While;
Return ‘attack’ table.

Table 4.1 Firewall attack table

Jun 16 22:13:45 ud 108.1.38.84 50184 128.10.247.62 54045

80

http:cisco3.cerias.purdue.edu

4.3.3 FTP local Agents

The first FTP agent algorithm reads the contents of the log file which
contains ftp service logs and error messages and requests associated with
FTP commands as shown in Figure 4.11. Local FTP agent reads complete
session for the user activity in the log file to check the command type
tried by the user.

Jun 12 02:59:17 omelas proftpd[27814] ftp.cerias.purdue.edu
(::ffff:117.198.209.80[::ffff:117.198.209.80]): FTP session opened.
[12/Jun/2010:02:59:17 -0400] ::ffff:117.198.209.80 ::ffff:117.198.209.80 331 USER - - -
"USER anonymousJun 12 02:59:18 omelas proftpd[27814] ftp.cerias.purdue.edu
(::ffff:117.198.209.80[::ffff:117.198.209.80]): ANON anonymous: Login successful.
[12/Jun/2010:01:59:18 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 230 PASS - - -
"PASS anon@Ilocalhost

[12/Jun/2010:01:59:18 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 250 CWD - - -
"CWD /pub/papers/Everything[

[12/Jun/2010:01:59:18 -0500]::ffff:117.198.209.80::ffff:117.198.209.80 200 TYPE - - -
"TYPE |

[12/3un/2010:01:59:19 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 550 STOR -
"STOR hi.exe

Jun 12 02:00:05 omelas proftpd[27708] ftp.cerias.purdue.edu
(::ffff:117.198.209.80[::ffff:117.198.209.80]): FTP session closed.

Figure 4.11 FTP log file example

Algorithm 4.6 shows the FTP agent process to read the log contents and
check if it contains any FTP command which violates the network
security policy. In case of finding an evidence of that violation, it extracts
this log entry and inserts it to a record in FTP attack table. The input is the
log file which contains user’s commands in FTP server, and the output is
the FTP attack table.

81

http:ffff:117.198.209.80[::ffff:117.198.209.80
http:ftp.cerias.purdue.edu
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:0500]::ffff:117.198.209.80::ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80[::ffff:117.198.209.80
http:ftp.cerias.purdue.edu
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80[::ffff:117.198.209.80
http:ftp.cerias.purdue.edu

Algorithm 4-6 FTP Agent

Algorithm 4.6 FTP agent
Input: FTP (proftpd) log
Output: fill data to database table ' Ftp'
Initialization: User select not allow events (DELE, MKD, STOR, STOU, RMD, ALLO,
APPE);
User type ftp server (ftp.cerias.purdue.edu)
While not EOF
For each line
Read line contents ;
Read command type
If command type in list
Then

Store to ftp table (date, time, source IP, event , Description) ;

Else
End if ;
loop;
End for;
End While;

Return ‘ftp’ table.

The algorithm has initial list which contains the list of prohibited
commands in the FTP server. The algorithm starts reading the file
contents and checks each line contents; it splits line contents and read the
date, time, source, and command type. After reading command type the
algorithm check if that the command is included in the not allowed
command list; if yes then it stores a record in the ftp attack table. This
record includes the date, time, source IP, command, and description of
this command. In case of the command is an allowed command, the
algorithm continue reading the next line till the end of the user session
and the file contents.

82

http:ftp.cerias.purdue.edu

Table 4.2 shows the related record indicating that attack and its detailed
information as well as command description.

Table 4.2 FTP attack table

m

Jun 16 22:13:45 117.198.209.80 STOR STOR hi.exe

FTP transfer agent algorithm detects malicious behavior during transfer
FTP files. The log file contains a listing of files transferred over FTP,
normally the third column should say ftp for all users which indicates
FTP user trying to transfer file, while if we have a "root" username and
the commands do not appear to be standard as shown in Figure 4.12, it
indicates a malicious trial to FTP transfer using root access.

[11/3un/2010:01:02:50 -0400]::fff:66.199.234.66 root POST
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root: USER-AGENT:
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root HOST: -
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root ACCEPT:
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root = REFERER:
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root PROXY-CONNECTION:
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root COOKIE:
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root CONTENT-LENGTH:
[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root CONTENT-TYPE:

Figure 4.12 FTP Transfer log file example

Algorithm 4.7 shows FTP transfer algorithm, it reads the log file as an
input while it stores its output in FTP transfer attack table. The algorithm
starts by reading the log contents line by line and it splits the line contents
to get the required attributes and ignore unwanted characters. In each line
it checks the username and file transferred format.

83

Algorithm 4-7 FTP Transfer Agent

Algorithm 4.7 FTP Transfer Agent
Input: xfer log file.
Output: fill data to database table ' Ftp'
Initialization : set username ="* root "
While EOF
For each line N
Read line contents;
Search for username in the line in third column

If username = “root”

then

split line contents and ignore unwanted characters
read date;
read time;
read IP;
return process name;
Store to database (date , time , Ip , event , Process hame);

Else

End if;

End for
End while

Return ‘FTP’ Table

If the username is FTP and transferred file has the required standard
format then it is legitimate user. If the username is root, on ftp transfer
file is not standard or trying to get proxy-connection as shown in Figure
4.12, so it is an evidence of malicious FTP transfer and stores related
record in FTP transfer attack table. This record includes date, time, source
IP, event, and process name as shown in Table 4.3

84

Table 4.3 FTP Transfer Attack Table

m

Jun 11 01:02:50 66.199.234.66 Transfer ~PROXY-CONNECTION

434 SSH Agent

SSH (secure shell) agent is an example of service agents. SSH agent reads
the contents of SSH service log file that records service usage and error
messages from the service and child processes. It shows the attackers’
attempts to access SSH service with root user or invalid username or
password.

The log includes error messages associated with SSH which identifies IPs
and hostnames of people asking to guess users passwords. SSH agent
reads the log contents and checks the error messages indicating illegal
trials to access SSH through guessing user names and passwords or trying
to hide the user browser identification. Figure 4.13 shows an example of
some error messages in the log file which shows trial of IP
“222.186.24.122” to guess user root password or guessing a user name
and password for user “oracle”.

Jun 12 18:23:00 basm.cerias.purdue.edu sshd[16678]: Failed password for root from
222.186.24.122 port 34507 ssh2

Jun 12 18:23:09 basm.cerias.purdue.edu sshd[16686]: Invalid user oracle from
222.186.24.122

Jun 12 18:23:09 basm.cerias.purdue.edu sshd[16686]: error: Could not get shadow
information for NOUSER

Jun 12 18:23:09 basm.cerias.purdue.edu sshd[16686]: Failed password for invalid user
oracle from 222.186.24.122 port 34748 ssh2

Jun 12 18:23:12 basm.cerias.purdue.edu sshd[16688]: Failed password for invalid user
test from 222.186.24.122 port 34800 ssh2

Figure 4.13 SSH log file “Inetdlog” example

The SSH agent reads those messages and store their attributes to SSH
attack table which contains the date, time, source IP, source Port, and

85

http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu

description. Algorithm 4.8 shows the SSH agent process to read the log
contents and check if it contains any error messages which violates the
network security policy and extracts this log entry and inserts it to a
record in SSH attack table.

Algorithm 4-8 SSH Agent

Algorithm 4.8 SSH agent
Input: SSH (BASMSSH-inetd) log
Output: fill data to database table ' SSH'
Initialization: user type server name “basm.cerias.purdue.edu”
user type unwanted string " Invalid , Failed password, Did not receive
identification™
While not EOF
For each line
Read line contents; Read message string
If message string in list
Then
split line contents and ignore unwanted characters
read date; read time;
read IP; read sport;
read error message;

Store to SSH table (date, time, source IP, Sport , error

message) ;
Else
End if ;
loop;
End for;
End While;

Return ‘SSH’ table .

The input is the log file which contains users messages in SSH server, and
the output is the SSH attack table. The algorithm has initial list which

86

http:basm.cerias.purdue.edu

contains error messages which indicate malicious behavior within SSH.
The algorithm starts reading the file contents and checks each line
contents; it splits the line contents and reads the date, time, source, and
error message. After reading the error message the algorithm checks if
that message is included in the not allowed command list; if yes then it
stores a record in SSH attack table. This record includes the date, time,
source IP, source port, and the error message as shown in Table 4.4. In
case the error message indicates allowed access, the algorithm continues
reading the next line till the end of the file contents.

TABLE 4.4 SSH Transfer attack table

e

Jun 16 22:13:45 222.186.24.122 34442 Failed password for root

4.3.5 Error Log Agent

Error log agent reads the contents of the file associated with http and https
services. The purpose of the error log agent is to identify attack signatures
stored in the http or https error log files by reading these files and
comparing their contents with either attack profile or normal profile.
These profiles were previously created during the supervised learning
period to distinguish which of these log entries was produced by attack
and which was produced by normal usage.

Figure 4.14 shows an example of attack profile for IP address
“108.1.38.84” during learning period. In case of detecting a new profile
in the log files, error log agent checks the similarity of this profile to one
of known profiles and identify the new profile as similar to attack or
similar to normal.

Later the user administrator can assure this similarity and change the type
of profile to attack profile or normal profile.

87

http:108.1.38.84

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 1. {main}()
Ivarlwwwi/www.cerias.purdue.edu/htdocs/education/k-12/shared/submit_link.php:0,
referer: http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 2. Form->outputForm()
Ivarlwww/www.cerias.purdue.edu/htdocs/education/k-12/shared/submit_link.php:98,
referer: http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 3.ListField->pHtmiField()

Ivarlwwwishared/cerias/class.formdata.php:60,referer: http://www.cerias.purdue.edu

feducation/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 4. ListField-
>pScrollingList() Ivariwww/www.cerias.purdue.edu/htdocs/education/k-
12/lib/class.formdata.scrollinglist-k12.php:222,
referer:http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 5. renderGroupList()
Ivarimwwi/www.cerias.purdue.edu/htdocs/education/k-12/lib/class.formdata.scrollinglist-
k12.php:299,referer: http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 6. renderOptions()
Ivariww/www.cerias.purdue.edu/htdocs/education/k-12/lib/submit_link.func.

php:159,referer:http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

Figure 4.14 Error Log Contents

Algorithm 4.9 shows the error agent process to read the log contents and
check if it contains any attack signatures which violates the network
security policy and extracts this log entry and inserts it to a record in http
attack table. The input is the “errorlog” log file which contains user’s
messages in http and https server, and the output is the http attack table.

The algorithm starts reading the file contents and checks each user session
and its error sequence contents; it splits lines contents and read the date,
time, source, and error sequence.

88

http://www.cerias.purdue.edu/
http:108.1.38.84
http://www.cerias.purdue.edu/education/k-12/K-5_Resources
http:108.1.38.84
http:108.1.38.84
http:108.1.38.84
http://www.cerias.purdue.edu/education/k-12/K-5_Resources
http:108.1.38.84
http://www.cerias.purdue.edu/education/k-12/K-5_Resources
http:108.1.38.84

Algorithm 4-9 HTTP Agent

Algorithm 4.9 http Agent
Input: http or https error log file, error sequence table.
Output: fill data to database table ' http attack’
Initialization: user select type of file type : 1 - http, 2 - https
While not EOF

For each line

Read line contents;

Get first error line

Repeat until error sequence end;

Read date;

Read time;

Read ip address;

Read error sequence;

Check the error sequence in http_error_sequence table ;

If match

then

get error sequence code ;
get sequence type;
else
check similarity;

end if;
End for;
End While ;
Return ' http_attack ' table

After reading the whole error sequence for one user the algorithm gets the
error sequence code and retrieve its type from error sequence table.
Finally the algorithm stores a record indicating the user error sequence in
the http attack table. This record includes the date, time, source IP, error
sequence code, and profile type as shown in Table 4.5.

89

The following is the algorithm for the check similarity function in
algorithm 4.9

Check similarity
If error sequence subset of other known error sequence
Then

Error type is similar to type;

Insert to http_error_sequence table ;
Else

Error type is unknown;

Insert to http_error_sequence table ;
End if;
example: A - " {main}(),include() "

B-" {main}(),include(),PageDef->show(),CPL:: checkinternalIP() "

If error B stored as normal behaviour the error A is part of B then A

will have type “similar to normal *

Table 4.5 shows the result of malicious behavior by IP 108.1.38.84.
Sequence “6” is the error sequence code stored in http error sequence
profile and type “1” represent that the type of this profile is an attack
profile.

Table 4.5 HTTP Attack Table Record

Jun16 22:13:45 108.1.38.84 6

4.3.6 Access log Agent

On the contrary of other individual agents, access log agent does not
indicate attack signatures or malicious behavior by external users, it
indicates users who are trying to gather information and check the website
contents or the operating environment of the network. Access log agent
reads the contents of “access log” files about access messages associated
with http and https services.

90

http:108.1.38.84

The purpose of the access log agent is to identify reconnaissance activities
against the network which allows early detection of expected attacks.
Figure 4.15 shows an example of access log http service log file; it
contains historical access of the user through the system.

202.251.144.65 - - [11/Jun/2010:00:00:38 -0400] "GET /images/body_bg.png HTTP/1.1"
302 208 "http://www.cerias.purdue.edu/site/search/site? g=microsphere+"
"Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR
2.0.50727; Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729;
OfficeLiveConnector.1.5; OfficeLivePatch.1.3)"

202.251.144.65 - - [11/Jun/2010:00:00:38 -0400] "GET /images/feed-icon16x16.png
HTTP/1.1" 302 214 "http://www.cerias.purdue.edu/site/search/site? g=microsphere+"
"Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR
2.0.50727; Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729;
OfficeLiveConnector.1.5; OfficeLivePatch.1.3)"

Figure 4.15 http access log file

Algorithm 4.10 shows the access agent process to read the log contents
and aggregates different user access within the website link. The input is
the “access log” files which contain user’s access in http, https, OS, and
FTP services, and the output is the access table.

The algorithm starts reading the file contents and checks each line which
contains user session and its access messages which include date, IP, and
the accessed resource. For each user IP, the algorithm checks if there is a
record for this IP in the same day, if yes it increases the count of the
access for the user IP by one, if no it creates a record in the access table
per day.

Figure 4.16 shows an example of the access table records created from
access log entries. Access table record include date, source IP, count of
access per day and type of access.

91

http://www.cerias.purdue.edu/site/search/site
http:202.251.144.65
http://www.cerias.purdue.edu/site/search/site
http:202.251.144.65

192.197.163.98 - - [11/Jun/2010:00:00:04 -0400] "GET fweblogs/feed/rss/ HTTP/1.1" 301 254 "-" "libwww-perl/5.808"
68.8.83.188 - - [11/Jun/2010:00:03:07 -0400] "GET /images/itunes_seminarjpg HTTP/1.1" 302 245 ™-" "Zune/4.2
68.8.83.188 - - [11/Jun/2010:00:03:07 -0400] "GET /fassets/images/itunes_seminar.jpg HTTP/1.1" 200 37677 "-" "Zunef4.2"

‘ date total ip type

11f1un/2010 1 192.197.163.98

11/1un/2010 2 68.8.83.188 |
D type
1 HTTP
2 HTTPs
3 FTP
& o5

Figure 4.16 Access Log Table

While access log agent indicates the external user access to the contents
of the web site, Missing log agent indicates the external user scan of the
network files which represent their trial to identify the server Operating
system or looking for the availability of specific services. Missing log
agent reads the contents of the OS error log and FTP error log files. The
purpose of missing log agent is to identify scan activities against the
network which allows early detection of expected attacks. Figure 4.17
shows an example of an OS http error log http service log file; it contains
user trials to look for specific files within the system

[Fri Jun 11 00:01:16 2010] [error] [client 66.249.71.230] File does not exist:
Ivar/ftp/osmirrors/pub/FreeBSD/ports/sundv/packages-stable/python/pyne-1.1.0_6.thz
[Fri Jun 11 00:01:31 2010] [error] [client 66.249.71.230] File does not exist:
Ivar/ftp/osmirrors/pub/FreeBSD/ports/sundv/packages/python/trac-TracGantt-
0.3.2a_4.thz

[Fri Jun 11 00:01:34 2010] [error] [client 67.218.116.168] File does not exist:

Ivar/ftp/osmirrors/pub/debian/pool

Figure 4.17 OSHTTP error log file

92

Algorithm 4-10 Access Log Agent

Algorithm 4.10 Access agent
Input: Access log files .
Output: fill data to database table 'Access’
Initialization: User select file type
1 - http, 2 - https, 3 — 0s mirror , 4 — ftp
While Not EOF
For each line
Read line contents;
Read date;
Read source IP;
check " access " table if date and IP is inserted
if true then
update total = total + 1;
else
Store to database (date, Ip, 1,type).
End if;
End for
End while

Return ' Access' table .

Algorithm 4.11 shows the missing agent process to read the log contents
and aggregates different user scans within the website files. The input is
the “error log” files which contain user’s access in http, https, OS, and
FTP services, and the output is the missing table. Initial scan messages
list include the messages indicating that the users are trying to access
unauthorized files or looking to specific files names which show the used
operating system

The algorithm starts reading the file contents and checks each line which
contains user session and its error messages which include the date, IP,
and error. For each user IP, the algorithm check if this message is in scan

93

messages list, if yes it will check if there is a record for this IP in the same
day. In case if the user has previous record with the same day, the
algorithm increases the count of the scan for the user IP by one, if no it
creates a record in the missing table per day. Figure 4.18 shows an
example of the missing table records created from missing log entries.
Missing table record include the date, source IP, count of scan per day
and type of scanned services.

[Sat Jun 26 00:00:55 2010] [error] [client £6.242.71.165] (13)Permission denied: Can't open directory for index:
[Sat Jun 26 00:00:55 2010] [error] [client 66.242.71.162] (13)Permission denied: Can't open directory for index:
[Sat Jun 26 00:01:13 2010] [error] [client 216.129.119.48] File does not exist: fvar/ftp/esmirrors/pub/FreeBSDfports/

‘ date total ip type

Sat Jun 26
Sat Jun 26

]

66.249.71.169
216.129.115.48

1 HTTP

HTTPs

FIP

| w| M

Figure 4.18 Missing example

Threshold values have been set for the normal count of access links
within the web site and the count of missing files in knowledge base
tables. We can use these threshold values to distinguish between the
normal accesses or scan files and the reconnaissance activity for the
attack purpose in both access missing tables.

94

Algorithm 4-11 Missing Log Agent

Algorithm 4.11 Missing Log Agent
Input: FTP and OS mirror Error log files.
Output: fill data to database table ' missing
Initialization: Set scan message list = “permission denied, file does not exist”
While not EOF
For each line
Read line contents;
Read date;
Read source IP;
Read message;
If message in scan message list
check " access " table if date and IP is inserted
if true then
update total = total + 1;
else
Store to database (date, Ip, 1,type).
End if;
Else
End if
End for
End while

Return ‘missing’ table.

4.4 DACM Central Agent

DACM central agent has access to the result tables of different individual
agents; it aggregates these results together into unified table which
includes those results together in relation with the attacker IP. Figure 4.19
show that different individual agents stored their results in central
database tables. Central agent gets that database to produce a set of useful
reports which summarize different attacks against the network together.

95

Those results shown in the figure includes daily report, IP report, severity
alerts, single alerts, false negative alerts, reconnaissance alerts, summary
date report, and sever IPs report.

By the end of the individual agent results, table IPs contains all different
IPs which has been stored in attack tables or access or missing tables with
a unique ID representing that IP address.

DACM results
Attack activity Access log recon T Error log attack
l Firewall | l HTTP | HTTP
|| o
[| | =]
p_— L - - o Low and Slow alerts
Ftptransfer l
Access
v False negative alerts
| Snort 1DS alerts
L Local log Agents , IDS agent
L alerts
(Correlated Alerts)
Attack profile J o
| Central Agent }—T
Unknown profile http_error_sequence L J
Threshold Values

Database

Figure 4.19 DACM Central Agent results

DACM central agent performs its function through two steps, the first
step is to aggregate all different results from individual agent results into
daily table which includes different attacks and activities for different IPs.
The second step is the analysis of these attacks together to represent the
whole picture of the situation in the network and improve the detection
rate and to produce the correlation results of such different agents
together.

Algorithm 4.12 show the first step process, the agent loops through IPS
table, for each record, it selects the ID for the IP address and select related

9

(o]

attacks and activity for that IP from different result tables and insert that
record in new table called daily.

Algorithm 4-12 DACM Central Agent

Algorithm 4.12 Daily agent
Input: All other agents’ results tables.
Output: fill data to database table ' daily' and ' daily_res'
Step 1
Loop through IPS table
Insert new record in ' daily' table with
Select IP from IPS, // where IP = IP in related tables
Date as current system data, // where date = date in related
tables
Count “abcm_res” , // IDS correlated alerts
Count “attacks_res’, // firewall contents for IP
Count “ftp", // FTP attack table
count “ftptransfer’, // FTP transfer attack table
count “http_attack’,// http attack table
Count “ssh’, // ssh attack table
Sum “access’, // acces count for that IP
Where count > access threshold value
sum “missing’, // scan count for that IP
Where count > scan threshold value
End loop
Step 2 : For IP in daily table select IP,
Date, Count "abcm_res™, Sum "access’,
Count “attacks_res’, Count “ftp,
Count “ftptransfer’, Count “http_attack’,

Sum “missing’, Count “ssh”, Alert type

Table 4.6 shows the daily table fields. These fields are Date, IP, count of
alerts for this IP from IDS correlated alerts in that day, count of appeals of

97

this IP in firewall blocked IPs log, related FTP and FTP transfer attacks,
related http attacks, related SSH attacks, and related access or scan
activities count for that IP which exceed the allowed threshold values for
normal access or scan activities. In addition an analysis result field called
type to show the IP behavior and conclusion in the system.

Table 4.6 Daily Report Table Attributes

Date Type ABCM Firewall FTP FTP Http SSH Access Scan
root attack

Daily report algorithm aggregates that related attacks together for better
understanding of current situation for different attacks, and summarizes
wide range of activity for each attacker IP.

Algorithm 4.12 performs the second step to show the conclusion and
better analysis of that aggregated alerts in stepl. Step 2 determines the
behavior type for each IP. Step 2 loops through daily table to determine
the alert type by comparing the count of alerts from different sources to
indicate the alert type according to a set of rules shown in the following
pseudo code for each set of types.

The alert type for each IP will be determined according to different alert
and attacks from that IP.

False negative alerts with respect to IDS are real alerts while it was not
detected by these IDS. The alert type could be false negative in case that
the IP attacks are not detected in the IDS alerts while they were detected
from other sources of attacks such as FTP, SSH, and HTTP attacks. It
could be considered false negative alerts where the IP attack is detected in
IDS alert and detected in other sources but in different times.

98

False negative and verified alerts pseudo code
For each IP
If Count “abcm_res™ = 0
and { OR Count “attacks res >=1
OR Count “ftp’ >=1
OR count “ftptransfer >=1
OR count “http_attack™ >=1
OR Count ‘ssh’ >=1}
Then
Alert type = False Negative
Else
For each alerts
If time (alert) <> time (alerts from other attacks)
Then
Alert type = False Negative
Else
Alert type= Verified alerts
End if
End if;

False negative and verified alerts conditions are shown in false negative
and verified alerts pseudo code; if the alerts were detected in IDS
correlated alerts and detected in the same window time from other sources
of attacks such as FTP, SSH, and HTTP attacks, then the alerts are
considered verified alerts or severe alerts. Verified alerts assure that the
alerts were detected using different sources of information which reduce
false positive alerts.

Alert type is a single IDS alert if only one alert was detected from IDS
and have not been detected by other sources of information in that
window time. Such kind of an alert could be stored to indicate the
probability of low and slow attack.

99

Case : single alert // single alerts for Low and Slow attacks
If Count "abcm res" =1 and
Count “attacks res” =0 and
Count “ftp =0and
count “ftptransfer’ =0 and
count “http_attack™ =0 and
Count “ssh’ =0 ;
Then
Alert type = Single alert;
End if;

Alert type is Reconnaissance alert if there is no alerts detected either from
IDS or from other sources of information in that time, but there is system
access and/or scan which exceed the threshold allowed values. Such kinds
of reconnaissance indicate it is gathering data about the system before
being attacked. Such kinds of alert type enable the early detection of those
trials of attacks.

Case : Reconnaissance // no attacks, gathering data or systemscan
If Count "abcm_res” =0 and {
Count “attacks res =0
and Count “ftp° =0
and count “ftptransfer’ =0
and count “http_attack”™ =0
and Count “ssh’ =0 }
and { sum ‘missing” >= minimum value
OR Sum “access >= minimum value }
then
Alert type = Reconnaissance alert.
Else
End if

Alert type is IDS only when many alerts were only detected by IDS and
have not been detected by other sources of information in that time. Such

100

kinds of alerts indicate that no other sources were able to detect that
attack which may help in improving the logging capability.

Case: IDS alerts only
If Count of "abcm_res” >1 and
{ Count “attacks ress =0 and
Count “ftp = and
count “ftptransfer’ =0 and

count “http_attack™ =0 and

Count “ssh’ =0
} and
{
OR sum “missing” <= minimum value
OR Sum “access” <= minimum value
}
Then
Alert type = IDS only alert;
Else
End if ;
End loop

Return ' daily' and ' daily_res' tables

4.5 Implementation Environment

DACM have been implemented using Mysgl database for storing alerts
tables and correlated alerts results as well as result tables of different
agents, it also used to store knowledge base and learning criteria.
Borland6 C++ programming language have been used to implement IDS
alert correlation agent, while Microsoft Visual Basic 6 used to implement
central agent and other correlation agents for security tools and log files.
Finally, we used Windows7 Ultimate 64-bit operating system over Dell
studio laptop with Intel Core2Duo CPU-9300-2.5GHz - 6MB cache
processor, and 2GB RAM for testing the implemented model.

101

CHAPTER S
DACM Results

and Analysis

Chapter Five: DACM Results and Analysis

This chapter presents detailed DACM results for individual agents and the
central agent. The chapter is organized into six sections. Section one
provides a description of the CERIAS dataset that was gathered and tested
to implement DACM. Section 2 provides detailed results for the CAM,
ABCM, and DPCM IDS alert correlation techniques and their
performance/time metrics. Section 3 provides results for the individual
agents from other sources of information. Section 4 summarizes DACM
central agent results. Section five evaluates DACM performance measure
and assessment. Finally, section six addresses some DACM
implementation consideration.

5.1 CRIAS Data Set

The dataset used to implement DACM was collected by the author during
a visiting scholar trip to the Center for Education and Research in
Information Assurance and Security (CERIAS) [64] from April - July
2010. CERIAS, part of Purdue University, is considered to be one of the
leading information security research centers in the world.

This section describes the data collection environment, the CERIAS
network from border router to the web server, and the contents of the
collected datasets; it also includes a description of simulated attacks and
attack scenarios.

5.1.1 CERIAS Network Description
The CERIAS network shown in Figure 5.1 is described as follow:

1. CERIAS is connected to the Purdue Data Network and the rest of the
world through an 1TaP router.

2. The ITaP router connects to the CERIAS network bridging firewall.
This firewall blocks IP addresses of known attack sites, compromised
machines, and sources of disruption. The firewall also blocks non-
routable IP addresses as defined in RFC 5735 [65] (Special-Use IPv4
Addresses).

102

L ITaP Router]

A 4 A 4

[CERIAS Bridge Firewall][CERIAS Bridge Firewall]

Firewall

[CISCO 7513 router Agent

)
A 4 \
[Switch]—{ IDS Agent }7[Switch]

254 Subnet
l 252 Subnet
| ‘, l |
R - : N
NTP time VPN CERIAS Primary OS Mirror FTP
. . Archive server
server server visitor L website)
v v
N N\)
Project web http/https Access FTP log
server log Agent log Agent Agent
J J

Figure 5.1 CERIAS Network Block Diagram

103

3. The bridging firewall is connected to a Cisco 7513 router. This router
uses a variety of ACLs to protect the CERIAS subnets. The web server
lives on the 129.10.252.0/24 subnet which is used as an internet DMZ
network. Basically, the DMZ has limited network access both internally
and externally. From outside the CERIAS network, only network
connections for NTP, HTTP, and HTTPS are allowed. From inside the
DMZ, the web server is not allowed access to the internal subnets.

4. The web server itself has been configured to resist attacks. It uses a
recent supported version of Apache 2, uses mod_security2 for
application-level firewall protection, and each component has been
configured to security best practices for protection from attacks.

5.1.2 Data Description

Data was collected 11-28 June 2010 and consisted of three main sources:
Snort [49] alerts, network packet data, and application and system log
messages.

The snort sensors monitored network traffic on the 128.10.254.0/24 and
128.10.252.0/24 subnets. The 254 subnet is a network for CERIAS
visitors, the CERIAS VPN server, and two public NTP timeservers; there
is limited firewall protection for this subnet. The 252 subnet has the
CERIAS primary web site (kargad), as well as the project web server
(blackmesa), and the CERIAS Security Tool Archive and the OS Mirror
Web and FTP site (omelas). Snort captured almost 800,000 alerts in this
period. The alerts were stored in database tables within a MySQL
database and are accessed through the ACIDBASE [55] web interface.
The environment was Ubuntu 10.04 Linux-based OS.

We used Wireshark [59] to capture network packets traffic for CERIAS
website (kargad) which contains detailed packet information. We also
retrieved the output of Nessus [23], a network vulnerability scanner, and
Nmap [36], a network mapping utility, to check for known network
vulnerabilities and network port status.

104

Finally, we collected log files for CERIAS services as follows:

Archive FTP: FTP log messages from the ftp.cerias.purdue.edu and
osmirror.cerias.purdue.edu sites.

Proftpd: error messages and requests associated with FTP.
Xferlog: a listing of files transferred over FTP.

Archive HTTP: HTTP log messages from the ftp.cerias.purdue.edu and
osmirror.cerias.purdue.edu sites.

FTP HTTP: http requests and error messages for ftp.cerias.purdue.edu.

OSMIRROR HTTP: http requests and error messages for
osmirror.cerias.purdue.edu.

BASM SSH

Inetdlog: Service and error messages from the inetd and child processes;
this log includes error messages associated with SSH. IPs and hostnames
of people asking to guess users passwords.

CERIAS HTTP:

access_log: HTTP requests.

error_log: Errors associated with HTTP requests.

https_access_log: HTTPS (SSL) requests.

https_error_log: HTTPS (SSL) errors associated with HTTPS.

Firewall Router: Log messages containing a list of blocked network
packets from the outside world. We can identify the blocked IPs and
compare it with the IPs listed in other resources during the same time
period to assure their behavior.

While our model includes performance data, they were not collected
during the data collection process (experiment) as necessary performance
monitoring tools were not available.

105

ftp://ftp.cerias.purdue.edu/
ftp://ftp.cerias.purdue.edu/
ftp://ftp.cerias.purdue.edu/
http:osmirror.cerias.purdue.edu
http:osmirror.cerias.purdue.edu
http:osmirror.cerias.purdue.edu

5.1.3 Attacks

Some attacks were conducted during the capture data period to add to the
normal attack behavior. The simulated attacks were conducted to assure
that the captured data contained LOW and Slow attacks. The simulated
attack data is as follows:

Nmap: port scan of web server; we used the version check option to
determine the name and version of the service “nmap —sV”; we looked to
port 80 and 443 (http and https) service.

Nikto: Configuration scan of the web server, we attempted to evade IDS
detection by slowing the scan speed down, “nikto.pl -Tuning 3b -Pause 5
—evasion”.

Using a Firefox plug-in called tamper data, we attempted to send bad data
to a form in the CERIAS web site in order to exploit vulnerabilities in the
form processing script.
5.1.4 Attack scenarios
In collecting the above data, we attempted several attack scenarios.
While we collected some signatures from these trials, the scenarios were
not completed successfully because of CERIAS security.
Scenario 1
- An attacker uses a regular web browser to browse a web site for
forms which he/she can use to attack the system. (One of these
forms may have vulnerabilities that could be exploited by the
attacker).
- The attacker uses a variety of techniques to determine the
vulnerability of the forms:
0 Putting too much data in the form to check how the script
responds
o Altering the URL components to see how the script
responds.
- If the script has a vulnerability, the attacker will attempt to:

106

http:nikto.pl

Corrupt the database and disrupt the website;

Extract information from the database;

Alter information in the database;

Run a command in the system to gain illegal access or
disrupt the system behavior.

The attacker tries to determine what other systems are accessible
and attempts to do reconnaissance to determine which of these
systems could be compromised.

The attacker will bring over utilities (attack tools to current
compromised machine) to compromise other accessible machines.
Attack accessible machines and compromise them.

O O O O

Scenario 2

The attacker probes the CERIAS FTP server looking for
vulnerabilities and configuration errors.

o Assumption: FTP server has a buffer overflow problem.
The attacker uses buffer overflow to gain access to the FTP server.
The attacker uses that access to bring over attack tools.

Those tools are then used to gain higher level access to the FTP
server operating system:

0 The attacker could delete the FTP archive; corrupt/modify
the contents; or use the ftp as a distribution point for illegal
software.

o0 Determine other accessible systems to attack them.

Scenario 3

The attacker identifies an available CERIAS SSH servers.
He/she discovers the user id for a CERIAS employee.
He/she uses a SSH brute force tool to guess the password for the
user id identified in step2.

o Assumption: the attacker gets a correct password.
The attacker uses the account and password to get illegal access to
other CERIAS systems.

107

- The attacker brings over attack tools to attack other systems.
Scenario 4
- Assumption. One of the projects runs student code that has a
vulnerability.
- An attacker discovers the vulnerability and exploits the code in the
project server and uses it to gain access on the system.
Scenario 5
- Attacker sends Phishing Email to the user.
- The user accesses the phishing site and enters his/her identity.
- The attacker uses the account and password to get illegal access to
other CERIAS systems.
- The attacker brings over attack tools to attack other systems.

5.2 IDS Alerts Correlation Results

Over a period of 18 days, Snort collected 858,000 alerts in the CERIAS
dataset; alerts were divided to be correlated through those days. The alerts
were correlated using CAM [56-58], ABCM, and DPCM. Figure 5.2
shows the total number of alerts and the 18 tables which represent daily
alerts.

et v | P Vi | Pt Bt | s Vi
Pemisdn ekl 10018571

Figure 5.2 Snort IDS alerts®

> larger image of Figure 5.2 is included in Appendix A
108

Table 5.1 presents sample alerts. The collected alert data included sensor
id, alert id, signature, timestamp, source IP, destination IP, protocol,
source port, and destination port.

Table 5.1 SNORT IDS alert Attributes

Sid|Cid| Sig Name | Timestamp | IP_src IP_dst |Proto|SportDport

6 | 16 |CMPPING 6/11/2010 9:14 | 3460811837 | 2148204039 | 1
speedera

6 | 20 [EXPLOITntpdx g1 0010 901 | 1656885345 (2148204039 17 | 123 | 123
overflow attempt

7 |28 ZXEEZM'SCMOC/ 6/11/2010 21:42(1131319090(2148203530| 6 (59285 80

7 | 30 [WEB-MISC 6/11/2010 21:47|3475949512(2148203529| 6 |19427| 80
robots.txt access

5.2.1 IDS correlation Model

We implemented an integrated interface to correlate the alerts using the
three different techniques and compare their reduction rate and correlation
time. Figure 5.3 shows the IDS correlation models’ interface. We ran the
three models against the alerts from the 18 days and got the reduction rate
and correlation time for each model.

- =

W Erharced Corellatan m
Stagel Stage2

Conslation Componerts Conslation Comporeis

B e U ———
Staged
Corslation Compormrts

Saaged
Ceelation Compermnts
" ™"

TR T

R m R
AF AF aF
ASR ASR

[T M54 A
Inpus Adeet Courd. 0
Dt et Conrt 0

Cohats

Irput Aot Conmt 0
Dtpust Adert Court 01

Lot

Irgad Aldest Courd 0
Ousgt dlent Courd 0

Labeds)

irgad Alert Courd 0
Dutgedt Alert Courd 0

Laberid

Sko B Step. Stop

C; 7%. =] | semos |
-
/ |

Load Alerts Data from Database Agent Based Correlation Model ABCM

LoadAlest Dala | Blandom Al Generste | Save tlets | Load Foom Diata Base Frocen Soquechd

Comprehensive Approach Model CAM Dynamic Parallel Correlation Model DPCM

Figure 5.3 IDS alert correlation Interface®

® Larger image of Figure 5.3 is included in Appendix A
109

5.2.2 CAM Results

As an example, the 28,664 alerts from day 11 were tested, and we ran
CAM to correlate those alerts. Figure 5.4 shows the results of correlation
with component alert fusion (AF), producing a 0 % reduction rate in 166
seconds of correlation time. The AF component has no affect in reducing
the number of alerts while still consuming high processing time.

[Show result @1

—-—

& lav TR |asR PR |msa |AL |

[nput Alet Count 28664
Clutput Alert Count 28664

Reductionrate 10

Frocessing Time 16RRE7

Cloze

Figure 5.4 AF correlation result’

Figure 5.5 shows that the Threat Reconstruction correlation component
produced 1,960 alerts compared with 28,664 input alerts. This is a
93.16% reduction in the output alert rate with 8.5 seconds of processing
time.

" Larger image of Figure 5.4 is included in Appendix A

110

Show result s e

AF | av TR]ASH |FR | mMsa |arl |

Input &lert Count 28664
Qutput Alert Count 1980
Feduction rate 0.931621551513672

Processing Time 8471

Cloze

Figure 5.5 TR Correlation Result

The final correlation result for the 28,644 alerts in our sample test was
obtained using the FR and MSA correlation components. As show in
Figure 5.6, the final reduction rate using CAM is 97.4 % with a total
processing time of 175 seconds. The sequence components results
indicate that only the TR, FR, and MSA components are effective. The
effective correlation components have a total correlation time of
approximately 11 seconds, while AF has a correlation time 166 seconds
without any alert reduction. CAM thus has 166 seconds of wasted time.

Show result [ﬁ

—

& |av TR JasR |FR | Msa ALL]

Input Alert Count 28664
Output Alert Count 725
Reduction rate 097470634 7303497

Processing Time 175564

Close

Figure 5.6 Final CAM Correlation Result

111

\ =k
5.2.3 ABCM results <

Agent based correlation Model runs

Leaning Parameter ~ Alerts Count 28664

Leatning Alerts ﬂ J vy
through Learning and Correlation Leam Courl: 2385

Exacute al Learn and Execute | Exit

Phases. The Learning Phase creates Loan |t

Handumﬂead‘g..“..'l:éélﬁumg Execute |

ACCL to determine which component

can be used and in which order. The Leaming Resull
Input Leam Caunt =2965

Learning Phase results presented in | JhIUT-02Eenee
Figure 5.7 show that ACCL will be | @Eﬁ%ﬁf}fﬁgﬂ?ﬁm2205801
composed of FR, TR, and MSA | -
components. The learning time was 3 e Ui i

seconds for 2866 alerts (10 % of the '

total number). The order of ACCL il
depends on the reduction rate of each
component in ACCL. FR has the |
highest reduction rate followed by TR;

MSA was the lowest reduction rate.

Figure 5.7 ABCM Learning Phase®

In the Correlation Phase, only the effective correlation components in
ACCL will be used to correlate the alerts. The input to the first
correlation component in ACCL will be the rest of the alerts after removal
of the learned alerts. As shown in Figure 5.8, the FR component has a
reduction rate of 93% for the 25,798 input alerts and produces 1,785
correlated alerts for the second component in ACCL. The TR component
has a reduction rate of 65% for the 1,785 input alerts and produces 615
correlated alerts for the third component in ACCL. The MSA component
has a reduction rate of 0.4% for those 615 input alerts and produces 612
correlated alerts as the final correlated alerts. The 612 final correlated
alerts represent a reduction rate of 97% for the 25,798 input alerts. The
total correlation time for the sequence of correlation using ACCL

® Larger image of Figure 5.7 is included in Appendix A
112

components is 7 seconds, which produces total learning and correlation
time of 10 seconds. Thus the Learning Phase enhanced the correlation
process compared with CAM by eliminating the time consumed for the
AF component.

B§ ABCM - o] x|
Learning Parameter Ailerts Count 2BEE4
Learring Alerts ﬂ J j 10 %

Learn Count: 2866

Learn | Execute | Execute al | Learn and Execute E xit

Fandom Read | Leamn | i Ewecute

Learning Results
Input Learn Count =2866
TR OUT =80.2651 786204155
FR OUT =92 4533622169495
AFOUT =0
MSa DUT =0.31402651 2205601
Learn Time =3135

ACCL

Index =FR . TR . MSa |

Execute Results

Executedt Action: FR Input: 25738 Output: 1785
Fed Fate: 93.080

Executedt Action: TR Input:1785 Output: 615
Fed Rate: 65.546

Executedt Action: M54 [nputB15 Output: B12
Red Rate: 0.4878

Total Red rate = 97.627

Correlation Time 7145

Figure 5.8 ABCM’s Correlation Phase Results®

5.24 DPCM Results

In DPCM, correlation is done in correlation stages, with each stage
including a set of correlation components instead of an individual
component. Figure 5.9 shows the DPCM correlation for 11 June of
28,664 alerts as same example correlated by CAM and ABCM. All
correlation components in the first stage have been used and produced
different reduction rates for each of them. Components AV, ASR, and AF
have 0% reduction rates and will be disabled in the next stage. Since the

% Larger image of Figure 5.8 is included in Appendix A
113

FR Component has the highest reduction rate in the first correlation stage,
its output will be the input to the next stage and it will be disabled in the
next stage. In the second correlation stage, TR and MSA correlate the
output of the FR component from the first stage. Since TR has a higher
reduction rate than MSA, the correlated alerts output of the TR
component will be the input to the third stage. In the third stage the TR
component will be disabled, and only the MSA component is active.

8 e corcinicn . ——————— —m

Stagel Stage2 Staged Staged Stage § Stage

Corelation Components Coselation Companents Corelation Components Corelation Components Corelation Components Corelation Components
L] TR " R] i}
A R FR FR i FR
oF AF AF o AF AF
] A Y av AV av av
SR ASR ASR ASR ASR ASR
S WS4 MSA MSa MSA MS&

Input Alet Count 28664 Input Alert Count 1675 Inpud Alert Count 626 Input Alest Count 0 Input Alest Court 0 Input Alert Count 0
Output Alert Count 1875 Output Alert Count 626 Output Alert Count 624 Output dlert Count 0 Output Alet Count 0 Dutput Alest Count 0
3 2 1 Label34 Label35 Label36:

Stop Stop Stop Stop Stop Stop

Load Alert Data | Random Alert Generate | Save Aleits | Load Form Data Base Process Sequectial DPCM__ | ABCM Save DB ‘ Results Exil

Figure 5.9 DPCM Correlation Stages Result™

The output of the third stage, represented by the MSA output, is the
output correlated alerts done by DPCM. This is 625 alerts out of the total
input of 28,664 alerts. Figure 5.9 shows the total result of the DPCM
correlation process. The DPCM reduction rate is 97.8% while consuming
336 seconds of processing time for the total correlation time by the
different correlation stages.

The correlation time for each stage depends on the longest correlation
component in that stage. The DPCM reduction rate is more accurate than
ABCM with no need for a learning process, while having a longer
correlation time in comparison with CAM and ABCM.

19|_arger image of Figure 5.9 is included in Appendix A
114

DPCM is also expected to have a lower time than CAM exactly as ABCM
if a fully parallel architecture is used to implement it. The time produced
here is because a single processor with multi-threading is used to
implement DPCM.

Staget Stage2 Stage3 Staged r Stage 5. Stage b
Coselaion Camparents Corsltion Conparerts Corelaion Conpareris Corelf Show result — —] s
i R 1R ey | TR |ash | |Msa |l |
™ i i Inpul At Court 26864
o o i Dutput Alerl Count 625
Reduction rate 0.978195687266846
A N
Piocessi ing Time 332641
43R AR AR
W54 M3A W54
Inpuat dlert Count 28664 Input slet Count 1875 Input Alest Counl 626 Input Aled |
Output Aleit Court. 1875 Output Aleit Court. 626 Output Aleit Count. 624 Output AR
§ 2 1 o2 T
St Siop Stp Siep St T Stop
Load Alert [ala | Random Alert Generate | Save Alerts ‘ Load Fom Data Base‘ Process Sequectial DFCM ‘ ABCM | Save DB ‘ Resuts Ext ‘

Figure 5.10 DPCM Final Correlation Result™

5.2.5 IDS Alert Correlation Techniques Performance

This section compares the performance of three different IDS correlation
techniques against the 18 days of alerts gathered in the CERIAS dataset.
Table 5.2 summarizes the reduction rates for CAM, DPCM, and ABCM.
There were 838,348 total alerts collected over 18 days. There was an
average of 46,574 daily alerts, with a minimum of 11,788 alerts (20 June),
and maximum of 152,240 alerts collected (18 June).

The total output of correlated alerts by CAM was 17,741 alerts out of
838,348 input alerts, representing a 97.88% total reduction rate. The total
output of correlated alerts by ABCM was 16,218 alerts out of 754,505
alerts after excluding learned alerts from correlation, representing a total
reduction rate of 97.88%. The total output correlated alerts by DPCM
was 17,004 of 838,348 and a total reduction rate of 97.97%.

1 L arger image of Figure 5.10 is included in Appendix A
115

Table 5.2 Alert Correlation Reduction Rates Comparison

CAM DPCM ABCM
Day |I/P alerts alert
O/P RR O/P RR [Eo— o/P RR

11 28664 | 725 97.47 625 97.82 2866 619 | 97.60
12 46703 | 1076 | 97.70 979 97.90 4670 961 | 97.71
13 54759 | 1060 | 98.06 935 98.29 5475 909 | 98.16
14 34303 | 1184 | 96.55 1178 | 96.57 3430 1050 | 96.60
15 51823 | 944 98.18 870 98.32 5182 832 | 98.22
16 49609 | 1095 | 97.79 1010 | 97.96 4960 997 | 97.77
17 34879 | 982 97.18 905 97.41 3487 881 | 97.19
18 152240 | 1083 | 99.29 1077 99.29 15224 1044 | 99.24
19 15175 | 531 96.50 513 96.62 1517 497 | 96.36
20 11788 | 354 97.00 346 97.06 1178 312 | 97.06
21 49336 | 1164 | 97.64 1143 97.68 4933 1118 | 97.48
22 39786 | 1146 | 97.12 1139 97.14 3978 1035 | 97.11
23 27753 | 1214 | 95.63 1171 95.78 2775 1067 | 95.73
24 70686 | 1192 | 98.31 1174 98.34 7086 1140 | 98.21
25 36072 | 1117 | 96.90 1106 | 96.93 3607 1003 | 96.91
26 57598 | 1055 | 98.17 1036 98.20 5759 1018 | 98.04
27 52035 | 1083 | 97.92 1075 97.93 5203 1039 | 97.78
28 25139 | 736 97.07 722 97.13 2513 696 | 96.92

116

Figure 5.11 shows a graph of the daily reduction rate for CAM, DPCM,
and ABCM. The x-axis represents the daily alert count, and the Y-axis
represents the reduction rate percentage of each model for those daily
alerts. The results showed that the reduction rates of the three models are
very close to each other with minor differences. While they are almost
equal, DPCM has the highest reduction rate, followed by CAM, and then
ABCM.

Reduction Rate Percentage %

100.00 -
99.00
98.00
B CAM
97.00 B DPCM
= ABCM
96.00
Alerts Count
95.00 S S
< on OO on OO OO O 1N 0 O W M OW AN 0O 1N O
O O N O N O NS NOO MO N O NOO DN M
O NN M 0 OO N AN OONN OUOWm O -
00 O I & d O N I 4 OO N O OI~NAN I
Nﬂ-mmm#mgaa#mml\mmmr\l

Figure 5.11 Reduction Rates Comparison of IDS Correlation Techniques

Table 5.3 summarizes the correlation times for CAM, DPCM, and
ABCM. It shows the daily alerts ordered by the date of the alerts, while
Table 5.4 shows the same results ordered by the alert count and
correlation time for each technique.

117

Table 5.3 Correlation Time Comparison for IDS Alert Correlation
Models ordered by date of alerts

Day |Alerts Count| CAM Time |[ABCM Time| DPCM Time
11 28664 195 10 367
12 46703 436 28 842
13 54759 620 35 1159
14 34303 233 23 434
15 51823 447 35 982
16 49609 504 39 1130
17 34879 325 24 526
18 152240 6048 103 10082
19 15175 52 9 102
20 11788 27 3 50
21 49336 457 32 889
22 39786 375 34 738
23 27753 171 18 281
24 70686 940 44 1863
25 36072 278 20 543
26 57598 652 39 1260
27 52035 564 27 1120
28 25139 141 15 272

118

Table 5.4 Correlation Time Comparison for IDS Alert Correlation Models
ordered by alerts count

Day |Alerts Count| CAM Time |ABCM Time | DPCM Time
20 11788 27 3 50
19 15175 52 9 102
28 25139 141 15 272
23 27753 171 18 281
11 28664 195 10 367
14 34303 233 23 434
17 34879 325 24 526
25 36072 278 20 543
22 39786 375 34 738
12 46703 436 28 842
21 49336 457 32 889
16 49609 504 39 1130
15 51823 447 35 982
27 52035 564 27 1120
13 54759 620 35 1159
26 57598 652 39 1260
24 70686 940 44 1863
18 152240 6048 103 10082

119

Figure 5.12 shows a chart of the daily correlation time for CAM, DPCM,
and ABCM. The X-axis shows the daily alerts count; the Y-axis
represents the correlation time in seconds. The results show that the
correlation time increased linearly with increasing alerts count until the
range of 70,000 alerts, while it increased exponentially in case of 152,240
alerts. The chart shows that ABCM has the lowest correlation time
compared with CAM and DPCM techniques. DPCM has the highest
correlation time compared with CAM and ABCM. DPCM timing
depends on the correlation time of each stage, while CAM and ABCM
timing depends on the correlation time of each component. The
correlation time of each stage depends on the longest correlation time of
the active components in that stage. The chart shows results varying from
3 seconds in the case of ABCM for minimum alerts count, to more than
10,000 seconds for DPCM technique in the case of 152,240 as maximum
alert count. Detailed correlation times for alert counts less than 70,000
alerts (dashed red rectangular in Figure 5.11) will be shown in a separate
chart.

Correlation time (Sec)

12000

10000 o—CAM

8000 =—ii—DPCM

/ /
- e
/

2000

Alerts Count

1 1 1 1

O .
0 20000 40000 60000 80000 100000 120000 140000 160000

Figure 5.12 Correlation Times Comparison of IDS Correlation
Techniques

120

Figure 5.13 presents a graph of correlation times for different IDS
correlation technigues with excluding of maximum number of alerts of
152,240 alerts to show the detailed differences in correlation time for each
technique for alerts less than 70,000 alerts.

Correlation time (Sec)

2000
1800 /!
1600 - CAM 7

1400 —W—DPCM

1200 ABCM “.!
1000

800 A

600
400
200

Alerts Count

O TAA 4 T VAT MR e 1 1

0 10000 20000 30000 40000 50000 60000 70000 80000

Figure 5.13 Correlation Times Comparison of IDS Correlation Techniques

ABCM has the lowest correlation time because it uses only effective
components in ACCL, while CAM has a higher correlation time because
it consumes time in ineffective components; DPCM has a higher
correlation time because the use of stages increased every stage time
compared with the use of components in the single processor environment
used.

5.3 DACM Components Results

This section presents the result of different individual agents. These
results depend on some parameters like previous period or certain IP
address. Figure 5.14 shows SSH agent result which includes detected
malicious activity within SSH service. The detected attacks described by
ID, source IP, Date, Time, process ID, user, and description.

121

The SSH agent detects users who are trying to guess the username or
password for SSH services or try to hide their browser information to

prevent the system from identifying them.
e T T

gt ety - .
s pma B e

Figure 5.14 SSH Agent Result*

Other similar agent’s results for different services such as Firewall, FTP,
FTP transfer, error log attack, access log, and system scan could be
presented in such way. ABCM correlation for IDS alerts is included as
IDS agent result to integrate with other agents results. Figure 5.15 shows
ABCM results as a module in DACM including correlated alerts for
specific IP address (98.194.16.97).

Sebented bn | 98.154.16.67
St st Mol ol
-

(TIE] EH

Figure 5.15 ABCM Result for Specific IP as part of DACM*

12 | arger images of Figures 5.14 and 5.15 are included in Appendix A

122

http:98.194.16.97

ABCM correlated alerts include source IP, date, time, alert signature, and
destination. Each agent result includes 1D, Date, and Time, Source IP, and
attack description. Three common attributes of all alerts from different
agent result date, time, and attacker or source IP, these attributes could be
used to integrate attacks done by same IP in same time. Integrating such
kind of alerts together with IDS correlated alerts conclude the current
situation of attempted intrusion to the system

54 DACM Central Agent Results

DACM central agent has rich valuable information from different
individual agent’s result. Using this information together, the central
agent provides valuable reports summarizing the improvement in IDS
capability. Figure 5.16 shows the daily report of DACM which concludes
alerts and show their total classification. Daily alerts report is described
by alert ID, source IP, Date, alert type, count of alerts from IDS correlated
alerts for source IP. It also include other alerts from other source SSH,
Firewall, for that source IP , and finally it conclude access log and system

scan alerts which exceeds the allowed threshold value.

P T -
g | AT False Negartive : 4819, Low and Slow : 272

Single Alerts - 4578 | Firewall Alerts : 74378
Severity Alerts: 337 | IDS only : 1375

Figure 5.16 DACM Daily Results™®

13 |arger Image of Figure 5.16 is included in Appendix A
123

The alert type is driven from the integration of different agent’s result for
the same IP. False Negative alerts during the whole period of test were
4819 alerts. The alerts were not detected by IDS through its correlated
alerts and discovered by other agent’s results. The false negative alerts
show which agent detected it from FTP, SSH, and http attack. Severity
alerts during the whole period of the test were 337 alerts. The alerts were
detected by IDS through its correlated alerts and also discovered by other
agents result. The severity alerts show which other agent detects it from
firewall, FTP, SSH, and http attack added to IDS alerts.

IDS alerts during the whole period of the test were 1375 alerts. The alerts
were detected more than one time for the same IP by only IDS through its
correlated alerts and not discovered by any of the other agents’ results
Single alerts during the whole period of test were 4578 alerts. The alerts
were detected by only IDS through its correlated alerts just one time
during the whole period of test and never repeated and not discovered by
any of the other agents’ results. Single alerts are stored for a while to be
analyzed for detection of low and slow attack. Total IDS alerts were 6953
which is equal to IDS only alerts added to single alerts.

Firewall alerts represent summarized information in daily result report.
The count of firewall alerts during the whole period of test was 74378
alerts. The alerts were detected only by firewall locked address within the
test period. Reconnaissance alerts conclude the trial of gathering data
about the network through unhallowed access of system or trying to scan
the system to discover the operating system. The count of reconnaissance
alerts during the whole period of test was 1273 alerts. Different detailed
reports for each alert type could be displayed within specific period or IP
address as a report parameter.

DACM agent has different reports to trace a specific IP address to
conclude the trial and attack signature for this IP in different source of
information. Figures 5.17 and 5.18 show an example of IP report which

124

show that IP “108.1.38.84” was detected by ABCM correlation as IDS
alerts and the same IP appeared in the firewall agent result as blocked IP,

also it was detected by http attack in the same time window in one case.
T

Figure 5.17 DACM IP Report form ABCM IDS correlated alerts**

In other cases it was detected in http attack while not detected in IDS
because of the use of IDS evasion technique. In other cases it was
detected only in IDS and was not detected by http attack because of the
attack nature.

Figure 5.18 DACM IP Report form HTTP attack’

¥ Larger images of Figures 5.17 and 5.18 are included in Appendix A
125

http:108.1.38.84

DACM decreases the audit load and the time cost required to obtain
effective situational understanding of the network through displaying the
most repeated IPs as sources for different attacks. Figure 5.19 shows
maximum priority report, which display the most common IPs which
were detected by different agent’s results or by DACM central agent. The
reports shows the top 10 IPs which have the highest count of repeated

alerts for different alerts type and/or reconnaissance activity.
R i e o EEEEE

Figure 5.19 DACM Maximum Priority Report™

DACM detects low and slow attacks which occur over several days, and
classify them depending on their source of detection. Figure 5.20 shows
Low and Slow summary report within the test period, it includes source
IP of low and slow attack and count of daily detected single alerts for that
IP.

Figure 5.21 shows the detailed low and slow attacks for IP
192.160.165.222. DACM detected 16 single alerts for this IP in 16
different days. Figure 5.22 shows other low and slow attacks and other
reconnaissance activity for same IP. The IP 216.129.119.45 has 9

> Larger Image of Figure 5.19 is included in Appendix A
126

http:216.129.119.45

individual single alerts and system access and scan greater than threshold
values.

=8 4
s . DR Lo s e sma
o G wnd P Adiren
Ak only = = Rl MBCHA Wi | hicerh Ban | Bouie Bia_ | FTRMiSou T Roctng | FTE Afie | Sibim Soan S5 Rea o
PR b 1 # [a ® 8) a
[— x H » 8 H H N - a
H M 8 H . n n N F
H @ 0 0 1 o 6 0
o L = 1 n 1 2 v @ =]
1 0] @ H o n a
1 1] . v " % 9
Semnt 1175 b " H n " H H H H H
H r M s M ® . a
i @ H H . # 6 i
AL Rt L i ¥ [a . 8 " s
ci 1 " 8 a M # N 8
Tiady R H 1 I 8 H 8 1 a
1 n u a . " w "
@ e i % [H H B W a
W ey sl ' - 0 v * v "]
gl sl 1 " u @ H o - 0
o 8 " 1 a " 4 v # i 9
- e e iy a i F) '] H . n 1 "
§ o bt et - H H H s . # ' a
o H o o M = o n 0
R0 Resresiestocy sets a i B 1 s H » 2 H
O Dt et - i ¥] ® . a i a
W& e = H s " & H 8 [a
u 1 u 0 8 H " n a
u H . 8 & H B ' a
- n i "] v r v 1 v
w H " H H H # 8 a
» 1 o] 9 1 v ' 9
- - H » H H H H] a
i H 3 " = = - ! M
u H o 0 a H M M a
" H i 8 H H b 1 H
- 1 -] o . # m H
a ' h 8 H H N 8 H
o 1 1 w 8 . # u M
i H o o a H 8 H a
w 1 1]] v v] [
a H H H H " 4 H
" 1] [v v 1 [-
[|
- - - — =0
© DNCH AR /Low and siow stwcn
< Date and P Address
Abtack activity . 3 P e ABCM Briu | Aciess Bri. | Boutei i, | PP Miious | FIFRosting | HITP Ak | Sytem Sean | 331 rity =
bl 192160168027 14 1 o (] @ @ o ° o
Evar Lag Aitack, s B oamamas 18 i s 2 i i N h
¥ msmm 1 -]
B ueimm 1t [k 0ACM Resuks | ownd slow anack /P 150100168222 1 [T
Access Log fecon . ¥ 3 LAl 1
ol Cute ABCM Revuty | Aceis R | Router.. | FTPMalL | FTPRes... | WITPAML.. | Sintem... | S3H Re.
| L0182 120600 1 @ 1 o o o o o
Soort 105 Aot * PRI T o a 0 o » o o
3 ML LOATS 1 e 2 o o o 2 o
= 4 108227 1LOREIS 1 o o o o o a o
DACM Results. 5 RG0S weOme 1 o ° o o 0 o o
& SRIROASIZ LTORII0 1 e 2] [° o o
[Duity Repart T 1116016433 MOAEIS 1] °] o 8 ° o
@ P Regont b0l OIS 1 o a o o " o n
3 BLIOANRII TLAAELE 1 e @ v 1 @] v
W Severty sharts 1 180144321 0416 1 ® o] o 8]]
W Singhe slens n 16016531 INORDND 1 o o o o 0 o o
I WS 1 a v [@ @ v
SIS hawr i o ek i3 21 mokaei 1 e 2 o o o o o
T ——— 1 160188 TEE TGRS e o o o o o o
LY— stem 1 BRI TN 3 ° 9 o o ° a v
‘3 o s 6 1916006523 BOMEIS 1 ® I o [@ ']]
2 Dee report
A8 Severe s
Knawicdge Base . *
Detaits)
Selected bp - A IF Addresses
Saaen date Nt set

Figure 5.21 Low and Slow Attack for 192.160.165.222"'

18 arger Images of Figures 5.20 and 5.21 are included in Appendix A

127

DACM summarizes the total daily alerts and classify them depending on
their source of detection. Figure 5.23 shows DACM summary report, it
includes daily alerts count of the test period, count of alerts detected by
IDS which are correlated by ABCM and other alerts which were missed
from IDS and detected by other agents such SSH, FTP, and http attacks.

2w TEETEET T T T

o Do wel B Advpn

|
E
]
g

SHINSUYEUTUTNNT

ssssmessoracoEE e

Sotedted lp: [FLR4
Shiet ke DLTLEI
v e | TDATITID

Figure 5.22 Low and Slow Attack for 216.129.119.45"/

ABCM Missed DACM

......

m 414
w3 e Ea
o Bl M
a s 04 ™
¥ a4n b Tay
L3 asa Mz ™
H m o e
: o n "
H a ta -
: et a b
e ol s
] = a
o m]
o t T
i i b
b . ar
- e i
138 2 “ar
ABCM: Correlated alerts from IDS
nermtedge B
Desats . Missed: Correlated alerts from other sources
Sebectod Ip ; Al I Addrasses
Stant dhate : Mot set
e i DACM: Correlated alerts from IDS and other sources

Figure 5.23 DACM Summary Report®

7 Larger Images of Figures 5.22 and 5.23 are included in Appendix A
128

Third column shows the total alerts detected by DACM which is
calculated from addition of IDS alerts to other agent’s alerts. DACM
enhances IDS completeness through detecting the false negative alerts
which were missed from the IDS alerts. Table 5.5 summarizes daily alerts
count and number of IDS detection and missed alerts from IDS which
have been detected by other log agents, and the total of them.

Table 5.5 DACM Summary Result

Day Alerts | IDS Detection | Other logs Detection| DACM
11 28664 277 339 616
12 46703 393 241 634
13 54759 380 290 670
14 34303 449 304 753
15 51823 449 300 749
16 49609 458 322 780
17 34879 373 357 730
18 152240 469 342 811
19 15175 248 248 496
20 11788 166 288 454
21 49336 444 306 750
22 39786 414 354 768
23 27753 427 370 797
24 70686 451 317 768
25 36072 411 322 733
26 57598 421 266 687
27 52035 389 224 613
28 25139 334 248 582

129

The minimum alerts count was 11788 alerts in day 20; the detected
correlated alerts from IDS were 166 alerts. DACM detected 288 alerts
from other log agents in the same day. The maximum alerts count was
152240 alerts in day 18; the detected correlated alerts from IDS were 469
alerts. DACM detected 342 alerts from other log agents in the same day.

Table 5.6 DACM Percentage Summary Result

Day Alerts IDS % |Other Logs %| DACM %
11 28664 45 55 100
12 46703 62 38 100
13 54759 S7 43 100
14 34303 60 40 100
15 51823 60 40 100
16 49609 59 41 100
17 34879 51 49 100
18 152240 58 42 100
19 15175 50 50 100
20 11788 37 63 100
21 49336 59 41 100
22 39786 54 46 100
23 27753 o4 46 100
24 70686 59 41 100
25 36072 56 44 100
26 57598 61 39 100
27 52035 63 37 100
28 25139 57 43 100

130

Table 5.6 summarizes the percentage of detection of daily alerts count and
number of IDS detection to the percentage of missed alerts from IDS
which have been detected by other log agents, and the total of both of
them. The average percentage alerts for DIS alerts percentage was 56%
and was 44% percentages for missed alerts in case of average daily alerts
of 46574 alerts.

Figure 5.24 shows a graph chart of number of IDS detection as IDS and
missed alerts from IDS which have been detected by other log agents as
other log, and the total for both of them as DACM. The x-axis represents
the daily IDS alerts count while the y-axis represents the count of
detected alerts. The graph shows that the use of other agents in DACM
enhances the detection rate of missed alerts.

Detected Alerts

800 —fli—Other logs
DACM
700
600 + <
500 —]
400 -
300 - N
200
¥
100
0 T T T T T T T T T T T T T T T T T 1 Daily Alerts
<t 0O on OO O O N WO O O M O AN 0O N O
O O N O N O NN S N0 MO W o M~ O onm m
O SN IN M 0 O O N I N OO INN OO WImM O
00 O < < 1 O S NN N 1O)N O O AN W0
N <t D N N T ™M ﬂ T " T N NN W N N

Figure 5.24 DACM Summary Results Chart

Figure 5.25 shows a graph chart of percentages of IDS detection in blue
color and missed alerts from IDS which have been detected by other log

131

agents in red color, and the total for both of them in green color. The x-
axis represents the daily IDS alerts count while the y-axis represents the
percentage of count of detected alerts to the total detected alerts by
DACM. Total detected alerts by DACM represent the complete unit for
both kinds of detection. The graph shows that the use of other agents in
DACM enhances the detection rate of missed alerts by 44% compared
with the case of using just IDS correlation.

Result Ratio
1.20
1.00 + —
0.80
0.60 - e | DS
0.40 - = QOther Logs
DACM
0.20
0-00 T T T T T T T T T T T T T T T T T 1 Daily Alerts
S MO oOOMmMN OO O W1 W WOUMmOUAEN 0N o
O O N O NO NS N~NOMOWL OOMN~NOOMnNnmM
O NN MOO WO ANCETANOMONN OOW!MW O -
0 VUt T OO T AN WM AHOOOONN O OMNAN W,
NI MO In<tm I.!H') T N NN N N AN

Figure 5.25 DACM Percentage Summary Results Chart
5.5 DACM Evaluation and Assessment

In this section we will present summary of the model assessment and
implementation issues, DACM capabilities, DACM limitation, and
needed consideration for implementation will be presented.

5.5.1 DACM Limitation

Additional DACM learning is needed to build more accurate behavioural
profiles which determine attack signatures in system and application log
files. Multi-step attack scenarios also need more learning to build pre-
condition and post-condition tables for such attacks. DACM alerts are

132

considered on an equal footing, and aren’t considered the influencing
factors of different alerts on the same information system. Research is
needed to distinguish between such alerts and assign weights for each
alert type depending on its source of information and influence of the
provided service. The assurance and quality of information from different
agents is needed to avoid existing of fake agents and limiting the practical
implementation.

The implemented model could be attacked by someone who knows the
model idea by one of the following methods: Modification of log records,
changing his behaviour to avoid learned profiles, sending malicious data,
generating false alerts, or compromise a system to generate large amount
of data to hide his activity.

5.5.2 DACM Assessment

DACM improves IDS capability through the use of different sources of
information. False positive alerts are reduced because of the verification
of alerts detected by IDS from other sources like firewalls, different log
attacks, or http attacks. False negative alerts are reduced because missed
alerts from IDSs are detected from other logs such as SSH, FTP, and http
attacks. DACM enables early detection of trials to gather data which
represent the first phase of advanced persistent threat and individual alerts
for Low and Slow attack.

Previous correlation techniques were limited to the use of IDS alerts for
correlation and enhancing correlation component performance. Few
techniques [35, 36] used vulnerability scanners to assure alert verification.

Using the simplicity of the relationship between individual agents, it is an
easy and simple task for each individual agent to correlate its alerts and
shares its output with other agents. This approach reduces the overhead
and enables the ideal use of system resources such as memory and CPU.
DACM enables minimum correlation time of ABCM as IDS alerts
correlation technique and allows continuous adaptive learning to update

133

ACCL, assuring the use of suitable correlation components for different
datasets.

The DACM central agent accesses the results tables of other agents from
central database, reducing network traffic compared with the case of
accessing them from multiple machines or accessing the information
source itself. DACM is ready for real time operation with minor
modification in agent programs; the current proposed prototype was
implemented after collecting the dataset, so it was not possible to run it as
a real time model.

5.6 Practical Implementation Issues

The implementation of DACM model must reflect that the DACM is real
time system; faster hardware produces better results in suitable time. The
structure of the model can be unified hierarchical system or can be
divided into group of smaller distributed systems. The structure nature
must consider the communication overhead and the number of nodes and
information source (500 IDS, 300 log file, 100 Firewall, etc).

The expected time to implement such system will depend on the
availability of qualified engineers and programmers to build the needed
learning systems, and the availability of the proper hardware. DACM is
platform independent; it can be implemented using windows, Linux, or
UNIX operating system. It also can be implemented on network of PCs or
sun workstation.

DACM is scalable system, but more scalability analysis is needed to
determine the maximum number of monitored nodes. The larger numbers
of nodes will require complex communication design and high rate of
sending data which may affect the system performance. The central agent
performance may be affected with huge number of nodes, the idea of
implementing multiple hierarchical small systems and exchange data
between each subsystem central agent may be better for huge number of
nodes.

134

CHAPTER 6
Conclusions
and Future Work

Chapter Six: Conclusions and Future Work
6.1 Conclusions

This dissertation proved that it is possible to enhance both IDS Accuracy
and IDS Completeness through reducing either False Positive or False
Negative alerts using correlation between different available information
sources in the system and network environment. The dissertation
presented a Distributed Agent Correlation Model (DACM) providing a
scalable alert correlation for large scale networks. The model utilizes
multiple distributed agents to provide an integrated correlation solution.
The model can be extended by creating new correlation agents, and can
be tailored to a protected network by selecting what agents to use and
configuring each individual agent’s parameters. DACM correlates alerts
from IDSs with other information source such as INFOSEC tools and
system and application log files.

A collection of datasets was used to evaluate the correlation system. The
datasets were collected on networks with a variety of services and
includes real networks, networks specifically constructed for dataset
gathering, and simulated networks. The collected datasets are real-world
datasets, with real attacks in addition to some simulated attacks to build
behavioral profiles, since no cooperation from the attacker can be
assumed. The intentions of the attackers were deduced from the gathered
datasets.

Agent’s proposed models and algorithms have been implemented,
analyzed, and evaluated to measure detection and correlation rate and
reduction of false positive and false negative alerts.

This dissertation proposed two alternative models to enhance the IDS
alert correlation process: an Agent Based Correlation Model (ABCM) and
a Dynamic Parallel Correlation Model (DPCM).

The ABCM works through a learning phase and correlation phase. During
the learning phase, Learning Agent (LA) learns the nature of the alert

135

datasets and effective correlation components and their Reduction Rate
(RR) and builds an Active Correlation Component List (ACCL). The
ACCL contains the effective correlation components in descending order
of their RR. Depending on the learning phase, the agent controls the
correlation process during the correlation phase using the implemented
ACCL. The order of correlation starts with components with higher RRs
in ACCL followed by lower RRs until correlation by the last component
in ACCL.

DPCM has parallel processing correlation to assure using the suitable
component and its order. It consists of correlation stages with each stage
consisting of a set of correlation components. The proposed model
dynamically selects the optimum order of the needed correlation
components depending on the working environment. The input to each
stage is the output of the correlation component with the highest RR in
the previous stage. In the next stage, the higher RR component and
components which have zero value RRs will be disabled. The optimal
components order minimize the number of processed alerts in each stage
by starting from higher to lower reduction rate components. ABCM is
scalable regarding the number of correlation components in ACCL, while
DPCM is scalable regarding the number of correlation components in
each stage. Using threads in PDCM optimizes usage of memory and
processor during correlation process.

The results showed that ABCM and DPCM have similar RRs as CAM,
while ABCM has the lowest correlation time and DPCM has the highest
correlation time. That means ABCM maintains the same correlation
accuracy provided by CAM in less time and less number of components.
While it has the longest time in our single processor implementation,
DPCM is expected to have the lower time if fully parallel architecture is
used. DPCM has the highest reduction rate with minor differences than
ABCM and CAM.

136

Firewall log file was used as INFOSEC tools information example,
firewall agent reads router log files and summarizes the blocked IP in
firewall tables. SSH, FTP, and error logs were used as system and
application log files information example, these logs agents read the
related log files, and extract the attack signature in each file to its output
tables. Each agent has a previously learned pattern to determine the
normal versus attack behavior in the log file contents. Access log agents
and OS log agents determine when other users are trying to gather
information about the protected network contents or the services provided
and the used operating systems.

The DACM central agent correlates the output of ABCM as IDS alert
correlation with other agent’s output. The results show that DACM
enhances both the accuracy and the completeness of intrusion detections
by reducing false positive and false negative alerts through the integration
of these alerts from multiple information sources. DACM supports an
adaptive continuous learning capability by providing profiles which have
never been learned as normal or attack behavior to the system
administrator to classify these profiles.

DACM decreases the audit load and the time cost required to obtain
effective situational understanding of the network. DACM is scalable for
large scale networks; many different agents can be added to expand the
area of detection by different attacks. The results show that DACM
provides 44% better intrusion detection than other IDS techniques
through the detection of new attacks which were not detected by IDSs. It
also showed that DACM detected low and slow attacks and
reconnaissance trials by external users. These reconnaissance trials are a
signature of early detection of Advanced Persistent Threats. DACM can
be used to detect Zero Day Attacks through detection of any malicious
behavior compared with normal network behavior.

137

Finally, DACM could be used as a real time system with minor
modifications to the current implementation to allow continuous online
correlation for individual and central agents. The model presented in this
dissertation is a promising approach which combines use of correlation
techniques and agent technology.

6.2 Future Work

This dissertation introduces several directions for future research
including extending the model by implementing other agents for network
security tools, system audit logs, and host based IDS; enhancing the
learning capability with more accurate behavioral profiles for detecting
coordinated attacks and multi-step attacks; and in preparing different
scenarios to include those kinds of attacks and generating the datasets to
be utilized in building the knowledge base for learning. Studying
distributed wide area networks and worldwide correlation would improve
the intrusion detection and early detection of new attacks.

Expanding the model to include automated responses would address the
need for immediate responses to attacks; the automated response agent
would depend on the correlated alert results and select the proper
response from among the available network capabilities. While DACM
depends on the knowledge base and network security policy, studying
indoor risk analysis and security assurance appears as a critical point for
future research. Finally, measuring the performance, trustworthiness, and
assurance of distributed agents is a challenge to the problem of the
probability of the existence of fake agents.

138

APPENDIX A
Larger Images of

Results Figures

3|1} Boj 431n0d [femadid '€ aanbi4 Jo abew| Jebae] T-V

File Edit Search View Encoding Language Settings Macro Run TextFX Plugins Window 7 X

LBldhhloei gt BRAS1IEINCEIDEEEay =gy

= routerlog 1

536531 Jun 16 22:13:28 cisco3d.cerias.purdue.edu 316483: 316468: Jun 16 22:13:27.679% EDT: 3¥5EC-6-IPACCESSLOGP: list 120 denied tcp 75.214.186.16(1932) -> 1 =
Jun 1& 5 :29 cisco3.cerias.purdue.edu 316484: 316469: $5EC-&-IPACCESSLOGP: li=st ftpin denied udp 69.177.8.214(123) (Por
Jun 16 22:13:29 ciscol.cerias.purdue.edu 316485: 316470: $5EC-6-IPACCESSLOGDP: list projin denied icmp 219.147.27.154 -> 1
Jun 16 :30 cisco3.cerias.purdue.edu 316486: 316471: $5EC-6-IPACCESSLOGP: list 120 denied tcp 75.214.186.16(1932) -> 1
Jun 16 22:13:31 cisco3.cerias.purdue.edu 316487: 316472: 25EC-6-IPACCESSLOGP: list ftpin denied udp 128.46.142.33(123) (Po
Jun 1& 22:13:32 cisco3.cerias.purdue.edu 316488: 316473: $SEC-6-IPACCESSLOGP: li=st ftpin denied udp 195.216.34.248 (4401) (
Jun 16 22:13:33 ciscol.cerias.purdue.edu 316489: 316474: $5EC-6-IPACCESSLOGP: list ftpin denied udp 24.12.225.75(123) (Por
Jun 16 22:13:34 cisco3d.cerias.purdue.edu 316490: 316475: $5EC-6-IPACCESSLOGP: list ftpin denied udp 71.103.244.137(9302) (
Jun 16 22:13:35 cisco3.cerias.purdue.edu 316491: 316476: %5EC-6-IPACCESSLOGP: li=st n denied udp 125.170.12.59(49165) (
Jun 16 22:13:36 ciscol.cerias.purdue.edu 316492: 316477: $5EC-6-IPACCESSLOGP: list ftpin denied udp 170.20.232.230(1024) |
Jun 16 22:13:38 cisco3.cerias.purdue.edu 316493: 316478: £5EC-6-IPACCESSLOGP: list ftpin denied udp 165.139.169.214(123) (
:39 cisco3.cerias.purdue.edu 316494: 316479: 25EC-6-IPACCESSLOGP: list ftpin denied udp 70.155.239.7(61973) (P
Jun 1& 22:13:40 cisco3.cerias.purdue.edu 316495: 316480: $SEC-6-IPACCESSLOGP: li=st ftpin denied udp 96.27.239.130(65535) (
Jun 16 £ 141 ciscol.cerias.purdue.edu 316496: 316481: $5EC-6-IPACCESSLOGP: list wpnin denied udp 150.176.200.253(1017
Jun 16 22:13:42 cisco3.cerias.purdue.edu 316497: 316482: £5EC-6-IPACCESSLOGP: list ftpin denied udp 70.98.34.82(19506) (Po
Jun 16 22:13:43 cisco3d.cerias.purdue.edu 316498: 316483: $5EC-6-IPACCESSLOGP: list frpin denied udp 12.221.42.98(57532) (P
Jun 1& 22:13:44 cisco3.cerias.purdue.edu 316499: 316484: $5EC-6-IPACCESSLOGP: list ftpin denied udp 65.182.224.139(238) (Pr“
Jun 16 22:13:45 cisco3.cerias.purduc.edu 316500: 316485: 2SEC-6&-IPACCESSLOGP: list rsrchin denied udp 108.1.3B8.84 (50184) (
pun 16 22:13:46 cisco3.cerias.purdue.edu 316501: 316486: $S5EC-6&-IPACCESSLOGP: list ftpin denied udp 19%2.18.47.109(123) (Po
Jun 16 22:13:47 cisco3.cerias.purdue.edu 316502: 316487: $5EC-&-IPACCESSLOGP: list ftpin denied udp 72.12.12.86(1) (Port-c
Jun 16 22:13:48 ciscol.cerias.purdue.edu 316503: 316488: $5EC-6-IPACCESSLOGP: list ftpin denied tep 221.8.118.8(80) (Port-

o

[
-
[N

R
[y
L

]
s
w

Jun 16

Ry
I
X

Jun 16 22:13:49 cisco3.cerias.purdue.edu 316504: 316489: Jun 16 22:13:48.815 EDT: %5EC-6-IPACCESSLOGP: list ftpin denied udp 75.25.33.18(2051) (Por
Jun 16 22:13:50 cisco3.cerias.purdue.edu 316505: 316490: Jun 16 22:13:49.879 EDT: %5EC-6-IPACCESSLOGP: list ftpin denied udp 220.216.96.225(123) (P
Jun 1& 22:13:51 cisco3.cerias.purdue.edu 316506: 316491: Jun 16 22:13:50.888 EDI: 3$S5EC-6-IPACCESSLOGP: list ftpin denied udp 12.89.61.14(1024) (Por
Jun 16 22:13:52 ciscol.cerias.purdue.edu 316507: 316492: Jun 16 22:13:51.8%2 EDT: %5EC-6-IPACCESSLOGP: list ftpin denied udp 66.188.42.155(191) (Po
Jun 16 22:13:53 cisco3.cerias.purdue.edu 316508: 316493: Jun 16 22:13:52.8%96 EDT: %5EC-6-IPACCESSLOGP: list ftpin denied udp 165.13%.169.18%9(301) (
Jun 16 22:13:54 cisco3.cerias.purdue.edu 316509: 316494: Jun 16 22:13:53.948 EDT: %S5EC-6-IPACCESSLOGP: list ftpin denied udp 207.148.206.130(17181
Jun 1& 22:13:55 cisco3.cerias.purdue.edu 316510: 316495: Jun 16 22:13:54.968 EDT: 3%SEC-6-IPACCESSLOGP: list ftpin denied udp 165.139.169.189(497) (
Jun 16 22:13:56 cisco3.cerias.purdue.edu 316511: 316496: Jun 16 22:13:55.988 EDT: %5EC-6-IPACCESSLOGP: list ftpin denied udp 68.79.98.72(123) (Port
Jun 16 22:13:57 cisco3.cerias.purdue.edu 316512: 316497: Jun 16 22:13:56.996 EDT: 35EC-6-IPACCESSLOGP: list ftpin denied udp 66.208.44.5(3%251) (Po
Jun 16 22:13:59 cisco3.cerias.purdue.edu 316513: 31649B8: Jun 16 22:13:58.028 EDT: %S5EC-6-IPACCESSLOGDP: list 120 denied icmp 111.175.233.33 -> 128.
Jun 16 22:13:59 ciscol.cerias.purdue.edu 316514: 31649%: Jun 16 22:13:58.032 EDT: %5EC-6-IPACCESSLOGP: list ftpin denied udp 173.202.89.80(50795) (

2:14:00 cisco3.cerias.purdue.edu 316515: 316500: Jun 16 22:13:59.060 EDT: 3%5EC-6-IPACCESSLOGP: list ftpin denied udp 71.136.6.98(46619) (Po

Jun 16 22:14:01 cisco3.cerias.purdue.edu 316516: 316501: Jun 16 22:14:00.080 EDT: %SEC-6-IPACCESSLOGP: list ftpin denied udp 140.239.198.90(123) (P «
m | *

Normal text file length: 222836148 lines: 1096064 Ln:536549 Col:1 Sel:211 UNIX ANSI INS

139

3|14 B0 414 9'€ aunbi4 Jo abew | 18bue] 2-V

:\Data\Log Data Keith\log d log - ++

File Edit Search View Enceding Language Settings Macro Run TedtFX Pluging Window 7 X

s B DD ot x| BRSIED DI BRI ez

{+ R
= pmﬁpdbg}
77648 [12/Jun/2010:01:57:56 -0500] :117.198,.209.80 ::ffff:117.198.209.80 250 CWD - - - "CWD /pub/papers/gene-spafford -
[12/Jun/2010:01:57:56 -0500] :117.198.209.80 ::ffff:117.198.209.80 550 RNFR - - - "RNFR aslam-krsul-spaf-taxonomy.pdf
[12/Jun/2010:01:58:42 -0500] :117.198.209.80 ::ffff:117.198.209.80 250 CWD - - - "CWD /pub/papers/gene-kim -
[12/Jun/2010:01:58:42 -0500] :117.198.209.80 ::ffff:117.198.209.80 550 RNFR - - - "RNFR Tripwire-appdev.pdf [

Jun 12 02:58:50 omelas proftpd[27787] osmirrors.cerias.purdue.edu (crawl-66-249-71-200.googlebot. :ffff:66.249.71.200]): FIP session opened.
fEfFff:66.249.71.200]) : ANON anonymous: Login s
Ffff:66.249.71.200]): Preparing to chroot to
FfFff:66.249.71.200]): using sendfile capabili
tffff:66.249.71.200]): FIP sess3ion closed.

:17 omelas proftpd[27814] ftp.cerias.purdue.edu (::ffff:117.198.209.80[::£££ff:117.198.209.80]): FIP session opened.

Jun 12 02:58:51 omelas proftpd[27787] osmirrors.cerias.purdue.edu (crawl-66-249-71-200.googlebot.
Jun 12 01:5
Jun 12 01:5

:51 omelas proftpd[27787] osmirrors.cerias.purdue.edu (crawl-66-249-71-200.googlebot.

5
8:51 omelas proftpd[27787] osmirrors.cerias.purdue.edu (crawl-66-249-71-200.googlebot.

Jun 12 01:58:51 omelas proftpd[27787] osmirrors.cerias.purdue.edu (crawl-66-249-71-200.googlebot.com[:
Jun 12 02:59

[12/Jun/2010:02:59:17 -0400] ::f£ff:117.198.209.80 ::ffff:117.198.209.60 331 USER - - - "USER anonymous

Jun 12 02:59:18 omelas proftpd([27814] ftp.cerias.purdue.edu (::fE££f£:117.198.209.80([::££££:117.198.209.80]): ANON anonymous: Login successful.

Jun 12 01:59:18 omelas proftpd[27814] frtp.cerias.purdue.edu (::ffff:117.198.209.80[::ffff:117.198.209.80]): Preparing to chroot to directory '/var/f
77661 “12/Jun!2010:01:59:13 -0500] ::ff£ff:117.198.209.80 ::ffff:117.198.209.80 230 PASS - - - "PASS anonflocalhost
77662 [12/Jun/2010:01:59:18 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 250 CWD - - - "CWD /pub/papers/Everything

77663 [12/Jun/2010:01:59:18 -0500] f£fFf:117.198.209.80 ::ffff:117.198.209.80 200 TYPE - - - "I¥FE I

TT664 [12/Jun/2010:01:59:18 -0500] FEE-117.1968.208.80° - EEE£:117.128.209.600 227 FASY — — — "EASW
77665 [12/0un/f2010:01:59:19 -0500] ::ffff:117.198.209.80 ::Efff:117.198.209.80 550 STOR - - - "STOR hi.exe
77666 Jun 12 02:00:05 omelas profrpd[27708] frp.cerias.purdue.edu (::ffff:117.198.209.80[::fFfff:117.198.209.80]): FTIP sess3ion closed.
77667 Jun 12 02:00:19 omelas proftpd[27814] ftp.cerias.purdue.edu (::ffff:117.198.209.80[::ffff:117.198.209.80]): FIP session closed.
77668 Jun 12 03:02:18 omelas proftpd[27947] ftp.cerias.purdue.edu (109-61-56-173.adsl-poocl.dravanet.hu[::££fff:109.61.56.173]): FIP session opened.
77669 [12/Jun/2010:03:02:19 -0400] 109-61-56-173.adsl-pool.dravanet.hu ::f£f£f£:109.61.56.173 331 USER - - - "USER anonymous
77670 Jun 12 03:02:1% omelas proftpd[27947] ftp.cerias.purdue.edu (109-61-56-173.adsl-pool.dravanet.hu[::£fff:109.61.56.173]): ANCN anonymous: Login succe
77671 Jun 12 02:02:1% omelas profrpd[27947] frp.cerias.purdue.edu (109-61-56-173.adsl-pool.dravanet.hu[::ffff:109.61.56.173]): Preparing to chroot to dire
77672 [12/Jun/2010:02:02:19 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 230 PASS - - - "PASS chrome@example.com
77673 [12/Jun/2010:02:02:19 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 215 S¥ST - - - "SYST
TT6T4 [12/Jun/2010:02:02:19 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 257 PWD - - - "BWD
77675 [12/0un/2010:02:02:19 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 200 TYPE - - - "TYPE I
[12/Jun/2010:02:02:19 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 227 PASY - - - "PASV
[12/Jun/2010:02:02:20 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 550 SIZE - - - "SIZE /pub/tools
[12/Jun/2010:02:02:20 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 550 MDTM - - - "MDTM /pub/tools
[12/Jun/2010:02:02:20 -0500] 109-61-56-173.ad=sl-pool.dravanet.hu ::ffff:109.61.56.173 550 RETR - - - "RETR /pub/tools
[12/Jun/2010:02:02:20 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 227 PASY - - - "PASV
[12/Jun/2010:02:02:20 -0500] 109-61-56-173.adsl-pool.dravanet.hu ::ffff:109.61.56.173 250 CWD - - - "CWD /pub/tools/ -
mm | b
Nermal text file length: 170805710 lines: 1344227 Ln:77661 Col:1 Sel:514 UNEX AMSI INS
'

140

SM9|V SA| 1ous z'G aanbi4 Jo abew| Jabie] £-v

Databases

S e
& acd_ag_alert
B
& acid_event_11
B acid_event_12
) acid_event_13
- acid_event_14
- acid_event_15
B acid_event_16
B acd_event 17
-] aci_event_18
) acid_event_19
-5 acid_event_20
B acd_event 21
-] aci_event_22
-~ acd_event_23
B acid_event_24
B acid_event_25
B acid_event_26
-~ acid_event_27
B acid_event_23
) acd_event_ip
B acid_event_mod
) acid_ip_cache
E asdpem_2
= e
D atiacks

m

4507 WEB-MISC /doc/ access 25|2010-06-11 08:57:| 1131319090 454 565|2148203530 452 752(11/06/2010 |08:57:49
5509 ATTACK-RESPONSES 403 Forbidden 26|2010-06-11 08:58: | 2145203533 452, 785| 3632363307 454 375(11/06/2010 |08:58:19
6509 ATTACK-RESPONSES 403 Forbidden 26|2010-06-11 08:58:| 2143203533 452,785| 1136881746 32,870(11/06/2010 |08:58:55
/510 SMTP PCT Client_Helo overfiow attempt 27| 2010-06-11 08:58: | 2161247737 51,264 2148203545 452 918(11/06/2010 |08:58.57
3509 ATTACK-RESPONSES 403 Forbidden 26|2010-06-11 08:59:| 2143203530 452,752| 1136881320 32,873(11/06/2010 |08:59:19
9511 (http_inspect) 1S UNICODE CODEPOINT 0/2010-06-11 08:59: | 1123632973 33,573 2148203529 452 995(11/06/2010 |08:59:20
1/516 EXPLOIT ntpdx overfiow attempt 27|2010-06-11 09:01:| 1656885345 51,266 2143204039 51,265(11/06/2010 |09:01:35
10(508 WEB-MISC robots.txt acoess 25|2010-06-11 09:00:| 1094153113 455b,835| 2145203530 452 752(11/06/2010 |09:00:45
11(507 WEB-MISC /doc/ access 25|2010-06-11 09:00:| 1138390182 455,002| 2148203533 452 785(11/06/2010 |09:00:50
19(515 WEB-CGI calendar access 26|2010-06-11 09:01:| 1203917688 1,226/ 2148203529 452 995(11/06/2010 |09:0129
23(517 WEB-PHP directory.php access 28|2010-06-11 09:01:| 1136832417 449 587 | 2148203529 452 995(11/06/2010 |09:01:38
25(518 MISC rsyncd overfiow attempt 29|2010-06-11 09.01:| 3423711599 51,267 | 2148203533 452 785(11/06/2010 |09:01.49
28(508 WEB-MISC robots.txt access 25|2010-06-11 09:01:| 3475850774 454 198| 2148203533 452 785(11/06/2010 |09:01:56
30(509 ATTACK-RESPONSES 403 Forbidden 26| 2010-06-11 09.02:| 2145203529 452 995| 1563755596 33,563(11/06/2010 |09:02:03
13(512 (portscan) TCP Portsweep 0/2010-06-11 09:01: 2148203545 452,518|2148201031 450,663(11/06/2010 |09:01:03
15|5614 (portscan) TCP Portscan 0(2010-06-11 09:01:| 2148201031 450,663 2148203529 452 995(11/06/2010 |09:01.05
2|519 ICMP PING speedera 29|2010-06-11 09:05: | 1658707692 51,271 2148204039 51,265(11/06/2010 |09:05:49
54|520 RPC portmap NFS request UDP 30| 2010-06-11 09:07: | 2148201237 450,816 2148203545 452 918(11/06/2010 |09:07.52
538|508 WEB-MISC robots.txt access 25|2010-06-11 09:07:| 2161248018 453 540| 2148203529 452 995(11/06/2010 |09:07:57
15|516 EXPLOIT ntpdx overfiow attempt 27| 2010-06-11 09:16: | 2805920601 51,270 | 2148204036 51,269(11/06/2010 |09:16:45
83(508 WEB-MISC robots.txt access 25|2010-06-11 09:13:| 34755950819 454 213| 2148203533 452 765(11/06/2010 |09:13:56| ~
« [n | »

Grid View |Fun_n\ﬁew|P[i'|tDa‘ta|§bb\ﬁew|

Records fetched: 100016071

I I

LIMIT 0, 1000 |

141

99eJJa1u| uone|aaa0) SudY SAl £'G 24nbi4 Jo abew| a9bue] y-v

Labels Label22 Labefi3 Tl Label35 Label36

Stop | Stop JLL Stop | Stop Stop | Stop i
LoadAletDala | Random Alet Genesale | Save Alets [Load Fom Data Base | Process Sequectial i_DPc—M_ﬂ Aaz_[Save DB | Resuls | Ext | |
Load Alerts Data from Database Agent Based Cotrelation Model ABCM

Comprehensive Approach Model CAM

142

143

Learning Parameter Alerts Count 28664

Learming Alerts P_ I_ I_ 10 %

Lean Count: 2366

Leamn 7 Execute 7 Execute al 7 Learn and Execute | Exit

Fiandam mmmn; Execute *

Learning Results
Input Leam Caunt =2866
1 TR OUT =90.2651796804199
FR OUT =92 4533622169495
AFOUT =0
| MSA OUT =0 31402651 2205601
Leam Time =3135

ALCL
| Index=FF , TR , M54,

| E=ecute Resultz

A- 5 Larger Image of Figure 5.7 ABCM Learning Phase Result

B ABCM - 10| x|
Learning Parameter Alerts Count 28664
Learning Alerts b |_ b mn

Learn Count: 2866

Learn _ Erecute 7 Execute all _ Learn and Execute | Esit

Fandom Read _ Learn 7 Erecute

Learning Results
Input Learn Count =2866
TR QUT =90, 2651786504199

FR OUT =92 4633622163435
AFOUT =0

M54 QUT =0.31402651 2205601
Learn Time =3135

. ACCL
Index=FR . TR . M3A

Execute Results
Executedt Action: FR Input: 25738 Output: 1785
Red Rate; 93.080

Executedt Action: TR Input:1785 Output; B15
Red Rate; 5,546
Executedt Action: MSA Input:E15 Dutput; 612
Red Rate: 0.4878

Total Red rate = 97 627

Corelation Time 7145

A-6 Larger Image of Figure 5.8 ABCM Correlation Phase Result

144

1|Nsay sabels uoneaa10d INDdA 6°'G a4nbiH Jo abew| Jebae] /-v

- i Y e Gt |
~Stagel Stage? Staged 1| Staged Slage § “Stage B
Corelation Components Corelation Componenis Corelation Companents Corelation Components Carelation Components Corelation Components
Th | ™ | i | T | Th Th
f | i | R | m | R m
I | AF | N | ¥ | o I
w | A | Y | v | W W
AR | A5 I 58 I R] AR SR
e | e | s | ek | Msh a4
It Al Count 28664 Iriput &lert Count 1875 Ingut Alert Count 626 Input Alest Count 0 Input Alest Count 0 It Bt Count - 0
Oufput Alest Count 1875 Output Alert Count 626 Output Alert Count 624 Output Alert Count 0 Output Alert Count 0 Oufput Alest Count 0
] 2 1 Labelod Lebel35 Label36
Stap Stap Stap Stop Shnp Stop
LoadAlert Data | Random Alet Generate ‘ Save At | Load Form Data Base | Eait

145

1INSay UoIR|3410D [euld INDJA 0TS 24nbi4 jo abew| 4abae g-v

Stagel Stage2 —Staged ~Staged 1Stane
Coeelation Components Corelation Companents Conelation Companents '3
TR | " | i
FR ‘ R | FR Input Alert Court 28564
oF ‘ o | 13 Output lett Count. 625
Reduction rate 0.973195667266046
AV ‘ A | N
Processing Tmme 332641
R | AR | AR
ViEh | A | MEA
Input Alert Count 28664 Input Alert Comt 1875 Input Alett Counl - B26
Output Alert Count 1875 Output Alert Count 626 Qutput Alert Count 624
[2 1
Stop | Stop ‘ Stip ‘ Step Stop Stop ‘
Load dlert Data ~ Random Alert Generate | Save Aleits | Load Foim Data Base | Process Sequectal DPCM ABCM I Save DB I Results I Edt I ‘

146

1INsay 1uaby HSS ¢T°G a4nbi4 Jo abew| Jabae] 6-v

s T T R e
Mgt * | SSH Attack Alerts for Different IPs

e Dabe andl IP Addies

Arnack activity . 2 Ha [Time Process... | Uiser Destription -
“ Firewall 3 J02SEEALES DE410T 567% asart Falled passwiand fos irmalid wser statt
1 J0L5LE 168 &ALl 5677 sabey Irrvalicd uses ales
i S5H g 0751 ELIEE Ba-dl:0 5677 sales Falled pasvwand for iralid wser sales
®. FTP Malicinus & L5168 G311 5679 reirus Irrvalidd wiet mecawil
7 251168 DEd1-13 5679 récrst Failed passvwdnd for iralid wsér recruit
& FIF Fual access 8 H025LEIES 0R41el9 SRAL alias irliel e alkas
] 0156168 034112 5681 alias Failed password for invalid weer slis
1o 1MWINLATSUES [(58 g S5r dlscdr Failed password for dled
Error Lisg Attach . ¥ 11 1AIILITSIES EEOLT 9238 rgal Il ueser rgsl
12 1B N1 IT5 RS 154442 13378 Unkno_. Did not receive identdicsdion sbing
13 122211175088 15:44:42 143%2 Linknn_ [kl mak receive ientdication shring
Access Log Recon . ¥ 14 1BN1LATRIES 154442 14488 Unkno—. Did nol receive idenldfication shing
1% 1BILETHAES L4442 14350 Unkng.. g mok receive identdication stnng
3 13 FULITEEES P5:44:42 14497 Linkne [id mok recebvee idemtilicafion shing
Staord DS Alerts. ¥, 17 181175185 154443 14408 Unkno— Did not receive identdicstion sting
s 128211175185 %4443 14454 Unkno._. hd ok récene ientdication stnng
= 1% 1FZILITS RS 154443 1439 Linknn_ DA mak rece e iemtdicatian sting
DACH Results. n 128211 175,485 154443 14499 Unkno_ Did nok receive identdication sting
il 128211175088 15:44:43 14511 Linkna__ Citel mok receive iemtdicadion vhing
2 1317585 154443 14512 Unkno— Did not receive ienldicstion sbing
Knowledye Basc , i FL) 1/ ALITHEED L4443 1431) nkng_ Did molt réceive Wentdication sting
M 12 FULITE RS 154443 14516 Linkne_ Mg mok recebee ibemtdicatian shing
Dienails 2 15 1BHLITEIES 154443 14533 Unkne— Did nol receive mlentdicadion shing
pa 1B L1708, LaddAs 14320 Wnkng Did mot receive sdentdication stnng
= Frl LFE2ILITENES 154443 14517 Linkne Citel mok receive ientdicadion shing
Selected h' AP Addresses a1} 138211175185 Lxd442 14520 Unkne.. Dvd mot receive dentdication sting
Start date = Not set = 12200175 EES 1544043 14537 Unkre_ [nok receive identdicatian stimg
End date ; Mot set 30 1RNLITEIES 154443 14528 Unkne—. Did nol receive idenldicsion shing
J1 1ALV, Lrddda 1a%ah hnknig.. Did mok réceive iantdicalion stnng
a2 LEE LTS EES 54444 14546 Linkno. [itd mok recebee idertdication shing
i3 13 M1AT5IES 154444 14333 Waikng— Did nol receive ienldication skiing
J4 L3 UL 249058 fLox i F T b oW Failed password for row
E FIREEE. 127 LE33T 16< reat Falled passward for roat
e 22218624122 plsrrat) 1420 oot Failed password for root
£l I22MEE 24127 EE242 16A3S roat Failed passward for roat
38 IR 2M.027 18:3245 16644 reol Failed paiswoid Mo real
9 Freal ol ek LIS LRLGS root Fail&d passwand for roat
40 22FERS 24127 LE=2350 1hRBAD ront Falled patswarnd for roat
a1 JIRLEE.M.12 18:2253 16672 reul Failed paiswend Mot reol
4z Frraloiie ek LEEZZNT 1R root Failed passwonrd for root -

SelIP | Wiew

147

NOVYd
Ut di 913193dS 104 3Ns3y INOGV GT'G 84nbi4 Jo sbew| Jebue] OT-v

s TSR T

e Dabe andl IP Addies
Artack activity .

Error Log Altsck .
Accens Log Kevon .
Smort INS Aerts .

@ Comelaled Alents
DACM Riesulis .
Knowledge Base .

Denails

Lelected Ip: 98.194.16.57
Start date - Mot set
End date ; Mol vet

&

anort B0 Alerts [Correlated Alerts .

N-;_h_ :_-0|._|r_:! ¥ qmmmc_r...
| GEA1MI69T 135.00.254.T7
1 SE1M.L6ST 1ZEA028 T
3 AR LIEAT]

1 53.154.16.87

- 201516597

R SE.1M.168T

7 BE.1%4.16.87

B 58151657 18902547
9 HBAH16S9T 12500.254.7
1o 931941587 IZR0.2847
1 51 EE ST 135002547
12 93116587 125002547
13 SIS 130247
14 SaAM.1eAT 125002547
15 SRAM.16ST

1k 811657

17 SR EEST

18 531541557 125002547
L% B9 LEAT 135002547
o 931016597 125202547
21 SEAs1eST 130004, 7
n SE154.168T 125009547
i LoALR LR ZE02MT
24 SE1MARGT 13500.24.7
Fe SR 188T 135002547
1 SNBSS 13a0.24.7
n BG4 1EAT 175002547
o 931041657 125202847
) SR1SAE5T 12500.204.7
30 BA1.LEST 135002547
31 93116587 125002547
Er SEIMABTT 130247
E:) BE.1MLLEAT 125002547
4 SEAMARET 123.00.24 7
E L B4 LE5T 125003547
3 SE.1M.1697 1ZEA0.254.7
Y SEASIBST 1200.204.7
E-: BE.154. 16 8T

g 93.154.16.87

a0 SRS

IDS ABCM Correlated Alerts of: 98.194.16.97

11062000
11062010
11082000
11062010
1LOE2010
11,062000
11062010
TL0G/20010
11062000
11062010
11062000
11062010
110G/ L0
11082000
11052010
SPL T
120672010
1202010
120872000
12/06/2010
1L/ 20L0
12082000
12062010
LA/ 0L
12082000
L2000
120572000
12062010
L0620
120672000
12/06/2010
1406/ ML
12082000
L2000
120672010
12/06.2010
140G/ 200
12062000
12/06,2010
EEE 0T

Rime

DFOL3s
10:01:35
Llsie34
1%04:34
130134
141134
1511:34
161133
171133
18:11:33
1133
51133
Jraha Bt 3
o B
13:1:32
1200532
(L=
0201
a3l
41131
an
D230
0rH30
D130
D130
piiaralet]
(R b]
1x31:09
1xn-m
14:31:0%
15:31:29
1Al m
175108
1E:31m
FeSldg
HE51:2T
5T
51T
235127
1z

ilDﬁ!ll_.H’Q

ESPLOTT Atpee aveefine attemp
EXPLOM nbpdds overllow silempd
EXP O mtpdy sveeflow altempd
EPLOTT nbpde avesfles silempd
OO rbpd owverflow aftempd
FXPLOTT Aty averflnw astempd
EXPLOIT nbp<ds ovesllow sttempd
LEPLOT Atpds dvertlow aftempd
EXPLOTT Atpade avesfine attemps
[ENPLOT nbpdn overllow sitempd
EXPLOTT mbpady aoeeeflow aftempd
EXPLOT nipds avesflow sllempl
LHPLOIT mtpd owerTlow aftempd
EXPLOTT erbpady oneeeflow aftempd
[ESPLOIT mibpds ovesflow sllempd
LXPLOT mtpds overflow sftémpd
X OIT mtpae averfine attempt
CHPLOIT mbpede owerflow sttempd
NPT evtpady eneeeflow aftempd
EXPLOIT nbpds ovesllow sltempl
LEPLON mtpds overflow attemps
[ExPOTT mbpade aveeeflow aftempd
[ESPLETT mibpds avesTlew sllempd
LRPLONT rbpde gverflow attempd
EXPLOIT mbpady aneeeflow aftempd
LOPLONT mtpdx owerflow aftémpt
EXM O mipde oveeflow attempd
EXPLOT nbpds avesflow sllempd
LWPLOIT mtpde oveetlow sttempd
EXPLOTT mbpedy oveeeflow aftempd
EXPLOT nipds avesllow allempd
LHPLOIT mtpdx owerflow attempl
ExP O mbpde aveeflow aftempd
L0 ntpds owverflow attempd
[EWPL DT mbpody ool aftempd
EXPLOTT nibpds ovesllow sltempd
LNFLOT mtpde Jveetlow sttempd
[EXM O mtpody oeeefinw alitempd
EXPLOT nbpde averllow sitempd
LEFLOI mbpde oveifloww attempd

| signature Llass

attempted-ndmin
alizmpled admin
attempted-admin
altempled-admin
attémpted-admin
attempited-admin
altempled admin
attempted-admin
attempte-admin
altempled-admin
attempted-admin
allempled-admin
attzmpteg-admin
attempted-admin
aliempled admin
attémpted.admin
attempted-ndmin
sttempted-admin
attempted-admin
allempled -admin
attempted-admin
attempted-admin
altempled. admin
sttempted-admin
attempted-admin
attempted-admin
attempited-admin
allempled admin
attempted-admin
attempted-admin
allempled admin
attzmpted-admin
attempted-ndmin
attempted-admin
attempted-admin
allempled admin
sttempted-admin
attempted-admin
allempled - admin
attempted-admin

SelIP

148

uoday Ajre@ INDVA 9T°G 84nbi4 Jo abew | 4abae TT-V

< Date and IP Address .

Attack activity . ¥

“@

Error Log Attack.

L3

Access Log Recon .
Snort IDS Alerts .. ¥

DACM Results.. 2

1 Daily Report

@ P Report

@ severity alerts

W Single alerts

W low and Slow attack
@ False Negative alerts
W Reconnaissance alerts
) Date report

sl SeverelPs

Knowledge Base . ¥

Details 2

Selected Ip: 108.1.38.84
Start date : Not set
End date : not set

DACM Results / Daily Report

iﬂ’ Total False Negative alerts : 4819
W' Total Single aterts :4587
@ Total severity alerts 337

G Total Reconnaissance alers :11273

No |lp __ [Date
21 1111043125 11/06/2010
2 1121352161 11/06/2010

3 1141113622 11/06/2010
24 1141291442 11/06/2010
25 1141454245 11/06/2010

% 115.117.233.2.. 11/06/2010
7 116.125.140.12 11/06/2010
-} 116.125.140.13 110672010
2 116125.140.14 11/06/2010
30 11612514017 11/06/2010
3 1161251403 11/06/2010
3 116.125.142.2... 1106/2010
33 116.74.50.188 11/06/2010
34 117.193.100.1... 11/06/2010
35 117.2.0.180 11/06/2010
36 117.207.132.26 11/06/2010
37 1173948148 1106/2010
38 118.68.168.210 11/06/2010
39 1189611658 11,06/2010
40 11897.232.50 11/06/2010
41 119.159.222.2.. 11/06/2010
42 11953.193.130 11/06/2010

43 1196319355 11/06/2010
44 1196319356 11/06/2010
45 119563.156.54 1106/2010

45 119.52.252.224 11/06/2010

47 1214933134 11/06/2010
48 1215558181 11/06/2010
49 12.190.86.13 11/06/2010
50 12.19086.14 110672010

51 11.21936.117 11/06/2010
52 121.243.184.2.. 11/06/2010
53 121451898 11/06/2010
54 122163.76.160 11/06/2010
55 12253163.172 1106/2010
Sh 173125A7.246 110R/2010

'*' Total Low and slow attack: 272
‘ Total Fire'Wall alerts ;74378

© Totat 05 only:1375
o Total IDS alerts :6953

Tie | ABCMResu.|
Reconnaissance 0 206
Reconnaissance 0 3
Severity 1 2%
Reconnaissance 0 m
False Negative O 1
False Megatve 0]
Singel 1 2
False Megative 0 1
False Negative 0 1
False Megative 0 3
Singel 1 2
False Negative 0 100
Singel 1 52
False Negatwe O 32
False Negative 0 19
Singel 1 455
Reconnaissance 0 352
False Negative O 1
False Negative 0 1
False Negative O 22
False Negative O 35
Singel 1 1
False Hegative 0 3
Singel 1 4
Singel 1 1
False Negative 0 4
False Negative O 1
Singel 1 20
Reconnaissance 0 4
Reconnaissance 0)
False Negative 0 2
False Negative 0 43
Singel 1 2
False Negative O 50
False Negative 0 1
Rernnnaitzance 0 mT

Access Res...

False Negative : 4819, Low and Slow : 272
Single Alerts : 4578 , Firewall Alerts : 74378
Severity Alerts: 337, IDS only : 1375
Reconnaissance : 1273 , Total IDS : 6953

Router Res... | FIP Malicious | FIP Rooting | HTTP Attacks | SystemScan | SSHResubs | »

Bom~mrOm~onoo

2000000000000 00000O00000000O0COO0OO0O0OOCOO0OO
w

0000000000000 0000000000000000000000
SO0 D0000000000000D0000000000000000000
SO0 000 0000000000000 0000000000000O0O0

R O - Lt - - N e SISy Y

SLIB|V pale|a.ta0) Sal
INOGV w0y 1odsy dI INOVA LT°G a4nbi Jo abew| ssbae z1-v

i pacm

 Report setting ®

s Date and IP Addeess

Artack activity . ¥
Error Log Allsk E3
Acvews Log Kewn z
Emort NS Meris . #F
DACM Resules £
™ Diaily Repart

& 1P Report

W Sevedty alerts

W Sangle aleris

W tow and Show sttack
@ Fake Negatioe aberts
¥ Heconnemsance aleits

_::} Diate repart

tj Severe Fs

Knowledge Dase . *
Dby &
Selected Ip: 108.1.38.84

Seart date - 06/11/2000
End date: 28062000

Date and [P Address .

It

P Address: 108.1.3854 o
el , IP Report ABCM Correlated Alerts of: 108.1.38.84
Lnd Date - 28,08/ 2010]

[& i Report 10813054 ==y

ABCM | TP Attacks | FTP Malidous | FTF Roak access | 354 | Firewall | Access | System Sean|

Ho | Souwice IP Destination P
10813084 1M10.7%29
|08.1.35.84 131035205
108.138.84 128101529
108.1.33.54 1281025225

108.138.84 1131025215
108.1.35.04 131003520
108.1.35.84 12125225

TR g

date

17062010
15062010
21062010
56,2010
TR06/2010
I b 2010
ZRA6000

Lime

o0
R 2458
15:14:51
[iEH EHPS
16:08:11
H2T: Vo
1326

signabuie

intto_nspect) BARE BVTL UNSLODL LNC
BAAP PCT Client_Hello averflow afiempd
WEB-MISC robuls. el acess

BAAP PCT Client_Helln averflow attempt
AP PCT Client_Hellu overlow silempd
BAAF PCT Chent_Hello overfl 0w sttempt
BAP PCT Cliene_Helln averfing attempl

Sigrature Chass

aftempied-admin
web-applicatian-adivlly
attempted-admin
allempled admin
aftempted-admin
attempted-aamin

Yoeny
dL1H wJioj 1oday dI INOVA 8T'S 24nbi4 Jo abew| Jebae] £T-v

& pacm e

s Date and [P Address .

Artack activity .
Erior Log Alladk .
fooess | og Reoom .
Eport INS Merts .

DACM Results .

= Daily Repart

@ 1P Report

W Severzy alerts

W Single aleris

.i low and Slow sttack

@ Fake Negatioe aberts

¥ Heconnsmsance alerts
) Date repont

a8 Severe P5

Krowledge Have .

Dhelaiby

Sedected Ip: 10813604
Starl date 00115010
End date : 2806, 2010

&

Date and IF Address .

P Addhesy: 1001 3084

start Date = 11082010

Lnd Date: 280657000

F

IP Report Http Attacks Alerts of: 108.1.38.84

& ipReport 10813088

==

L0l i A B L
15 108.138.84 HTTP
1 ylouna HITR
17 108.1.38.84 HTTP
1B 108.138.84 HITP
13 1081 3884 HITP
20 108.138.84 WTTP
n 108.138.84 HITP
Fr T0H. 004 HITP
3 1D8.1.38.84 HTTP
4 wmulups HIe
5 108.1.38.84 HTTP
26 1D8.1.38.84 HTTP
) 10413884 HITP
) 10A.1.38.84 HTTPs
»n 108.1.38.84 HTTPs
H U168 HITPs
a1 108.1.38.84 HTTPs
¥ 108.138.84 HTTR:
a3 104.1.38.84 HTTPS
M 108.1.38.84 HTTP:
a5 1413684 HITP:

Dhate

22062000

22/00,2000
2082010
2206/1010
pri i)
2082000
1061000
2HOLFOI0
2206/3010
22062000
22052000
22063010
220675000
17082000
170600
10 e
17082000
17062010
17,08/ 2010
17063010
17082000

Time

S

224152
2R44ET
22ASH
ra b
2454
IEAEM
e e
2AEM
e by
ket LY
22A52S
i b
s o1
090558
[E-ne-ar)
el
[Fe 5T
ey i)
[2
e et E]

[anch] wrie attaces [T tancious. | 1P Root sccess [55t [Frewadt [Access | spstem Scan

Srquence 10 | Attack Type

il
17
13
13
az
a3
L
az
a2

ar

Neolice
HMatice
Hatire
Nolice
Hatice
Hatiee
Holice
Hatice
Halice
Hatice
Hatice
Healice
Hotice
ModSecurity
ModSecurily
Tlgdhecurity
ModSe curity
MuodSecurily
MndLecurity
Mud Security
Modaecurity

Waming —
ariarigw Amaingd, mickudel,..
undonowr smsingdd, CPL-fileLi
LIRAnET {maing), Siin-s re...
undungwn imaing, Skin- > re..,
attack imsinl orm-»
attark {mainj], Farm-s o
atisck imainid, Form-» g
aftack MBI Farmer o
allack {maini, Farm-» o
artack AMBINGLFOrm=> g
attack Amaing), Farm.-» o |I
maing, "
undnowT Amaing, ndudell..
Elncked aftack hlodSecurngy:
Blocked sltack MaodSecurity.
Blocked sttack Modseounty
Elockrd sttack hbadSecunty:
Elecked sltack ModSewunity:
Elncked attack Ko AL Frunty:
Elucked sttack ModSecuity:
Blocked attack Modsedunty:

151

1odey Alolad wnwixeN INDVA 6T°G 84nbiq Jo abew| Jabue y1-v

Artack activity .
Earur Log Altack .
#rorss | og Recon .

ot [0S Aleris .

Star date : Mot wel
End date 1 pot et

DACK Results / Severe IPs,

Oidery | DAM

N

Inense severay [0

5

Na w | ABCM Resu... | hecess Res.. | RouterBes | FIP Malidous | FIPRacting | MIP attscks | System 5can | 55H Results | DATM |
1 128.10.247 £6 0 18137 3 1 0 5236 11483 o 5242
1 79.139.176.252 n o 0 0 3534] o [3555
3 TILIATE LS a il 0 0 1754 0 0 0 i
1 1568042 2 1410 [0 0 1684 § o 1686
5 VLI 3 e a 0 [1432 o a 144
B TAEEIS45S 2 3513 a 0 o 1208 13 o 1220
7 339996194 8 1572 0 0 0 135 o o 13z
" GA95114.41 9 =m] 0 o 5 I 0 76l
o 0741228074 12 1033 a 0 [05 o o 709
10 128.10.2529 n 1282 1 0 0 569 o o 586

152

$0eNY MO|S pue Mo 0z'G a4nbiH Jo abew | Jabue GT-V

b DACM =

DAty Résults /Low and ilow attack .

&

P ——— Low and Slow Alerts of Different IPs

Arnack activity . ¥ me |lp Total ABCM Resu. | Actess Res_ | Router Rep. | (TP Malicous | FIFRooting | WP Attacks | System Scan | 35H Resuls
2 192,160.165.222 16 1 o o o [o o o
Error Log Alteck. ¥ B 17388125 15 1 F) o] 0 il » 0
e 173.185.193.26. 14 i & o o o a & o
30 417477111 11 i]]] a a a]
Ao L Reexom. 3 n WI6I05 11 1 -1 1 o 0 0 = o
32 ERA0.E0ET i i 10 o o o 0 10 o
33 124.115.6.10 1 1 1 1] (1] 1] [} o]
St 05 Mlerts. L 4 120,220161.101 10 1 H o 0 0] o]
3% NTEEITIM 9 i 7 o o o a 5 o
35 64.60.13.2 g 1 o L] a 1] a a L]
DACM Resules . 2 37 MEEEETIS 9 1 & o o a a a o
= 38 67.195.111.40 L] 1 19 -] (-] Q L] o o
L2 Daily Repurt El 101012621 8 1 1 [0 [[1 0
40 NE1M11845 8 i 17 o o 8 a 4 o
i 1P Repon 41 207.46.12.115 L]) M]] -] a a L]
@ Severity alerts 42 173192135178 B 1 7]] 0 0 [0 (]
@ Sngle slerts 2 NE1M01947 & 1 193 o o o 0 a4 o
@ low and Siow attack 44 1431331402 B 1 al 1] a [1] a 1 o
! 45 MTEEITLIES B 1 F o o o a 1 o
B Fale Negatroe sberts 6 20746.199.200 B 1 q) (-] Q a 3 o
: 47 91010 B 1 o] [o] 0]
'_'_!' Reconnairance slens 48 678013050 B i o B I o 0 a o
) Date repar 48 10478 B 1 2] [8 L] 1]
&8 Severs s 0 1m205M7 7 1 o] 0 0] o]
51 74813143 7 1 51 o o o a 10 o
52 WIaE1E9182 7 1 & o [o o 3]
§ NTe1WM 7 i &5 B o o a 1 o
Knoidedge B 4 2 S 655512047 7 1 1 o ° 0 P 0 o
55 NIe131M4 7 1 P] 0 0] 5]
5 78619533 7 1] o o o o 1 o
Detalty 2 57 74.222.4.162 7 1 1) (-] Q L] 1 o
W 1721918 7 1 ¢ o [0 7 0]
Selected Ip: AT Addresses 5 11943.199.56 & 1 4 o o o a 3 (]
Srart date : Kok wrt B 07861952 & i Y [} 0 [L} 14 o
B dite Mok 64 &l 610418085 & 1 o o o o ' a o
62 216.241.182.150 & 1 114 -] Q (] L] a 1]
6l GhSTLI0 & 1 o] 0 0] 0]
B4 ELMBIIAIED & i 158 o o o o 8 o
65 B5.114331412 & 1 12) (-] Q a 5 o
B MNTAE13133 6 1 P] 0 9] 3]

153

¢CC'99T1°09T'¢6T
104§ %01 MO|S pue Mo TZ'G a4nbiH Jo abew| Jebue] 9T-v

‘MM.‘ . []

St i

s Date and [P Address .

Artack activity .
Erior Log Alladk .
fooess | og Reoom .
St INS Merts .

DACM Results .

= Daily Repart

@ 1P Report

W Severity lerts

Ul Single alerts

W tew and Shew sttack

@ False Negatior slerts

¥ Heconnsmsance alerts
) Date repont

a8 Severe P5

Krowledge Have .

Dhelaiby

Selected Ip : All I Addresses
Sharl date : Nod vt
End date 1 mot set

DAl Results /Low and ilow attack .

RELOTREESYERLUAES

I el 2
192.160.165.222

173.5.81.25
173,166,193 26
20417177111
143,206.30.58
B 0.A9.57
124.115.6.10
128,220.161.101
1746158179
64,60.13.2

200 4067 15
E7.195.111.40
128.10.126.21
21612911945
074612135
173.192.135.178
21612911947
74.2223.202
207.46,199.16%
207.46.199.200
24.249.183.214
G78H.113.150
021601771
128.210.5.247
207.45,13.142
746,190,182
207.46.199.38
Gi.55.120.47
207.46.13.144
207 40,195,236
T4.2124.067
173.11.87.115
1196315150
207.46.195.226.
216,104,144 .66
216,241.162.150
66.249:71.200
67.218.116.162
85114130122
207.46.13.133

Low and Slow Alerts of: 192.160.165.222

4
mn

=
»

fotal | ACM Resu.. | Actess Res—. | Bouter Res.. | 1P Maliaous | FIPRoating | TP Atiacks | System Scan | 350 Resuts

16 1] o] a a 0 o

15 2 9 o 0 0

3 g 20 g

4 [& oM Aot /lowand siowamack /P 102060165222 & & H

1

1 e | g | Drade ABCM Results | Accest Be | Rowler ., | FTP Mali. | FIPRog... | HTTPAlL, | Spdem.. | 55H
i 1 192080065222 1008000 1 =] o o a a o o
i 2 193.160.165.222 13067040 1 Q -] o a a Q -]
a 4 192080.065,222 1ADL0L0 L o o L] o a o o
] 4 192.180,185.222 15082000 1 a o o o 1]] o
9 5 192.160.165.222 16067010 1 Q -] o a a [} -]
4 £ 19060.055,222 1LAOLO00 L o o U o Q o o
L] 7 192.180.065.227 1A0S3000 | o a o a [1] [+]
Ed k] 192.160.065.222 19083040 1 -] -]] L] L] -] L]
a L] 1920060.065.202 0L/ A00 1 o o L] a a o L]
B 1 192.180.065.222 22083000 L a o o L]] (] o
B 11 182.160.065.222 3060040 1 -] -]] L] L] -] -]
[} 12 19280065 222 a0 mn 1 a o o a a o o
[13 1921860165222 2506010 1 -] -] L] a a -]]
a 14 19ZIG0045.222 MOEsELD 1 =] o] L] L] [:] o
B 15 192 180.065.227 7082010 | =] o o a 1] o o
B 16 192160165222 ZEOE0I0 1 Q]] a a -] -]
a

|

)

7

7

|

?

r

7

7 4 m] #
i _

¢ - - — - —
L]

W 1 114 o [:] 1] L]] o

6 1 o o o a L] 1] 1]

L] 1 188 L] Q Q L] T8]

L 1 12 o :] o a E] 1]

& 1 E] -] -] -] L] 3 e

154

Gy'6TT'62T°9TC
104§ %01 MO|S pue Mo Z2'G a4nbiH Jo abew| Jebue] /T-V

—
RDacM, & 8

%m' ‘ DACM Résults)/ Low and jhow attack .
b Date.and P Addres, Low and Slow Alerts of: 216.129.119.45

Amack activity . ¥ He [Ip | Totsl AUCM | Agcess . | Router.. | FIPMal. | FIPRo. | HTTPAL. | System. | S5MRe_ -
n 192.160.165.2... 16 1 o o o a] o o
Errur Log Allack , ¥ n 173.8.81.25 15 1 »] 0 []] o | |
= 17316519306 14 1 [(] [L] a B] e
30 WATATTALL N 1 o o o a a o o |
Aooess | og Reoon . L] 3 143.20630.58 11 - 25 1 i a : ; a —
3 GaADARET 1 -
3 seenasr U {1 DACM Results / Low and siow atiack /P 17388125 by | N e ==
Sport INS Alerts . L 3 128.2201611... 10
% M7 LE191M 9 Na|ip | Date ABCM L. | Areess A | Router.. FTPMall. | FTPRoa.. | HITR A | System . | S5H Res..
34 64,60.13.2] 1 17388125 1MO6010 1 -] Q ']] a F.]]
DACM Results . 2 T 200606715 3 2 17IEELIS 1306010 1 = o 0 o 0 : o
; L] FLI95.111.40 9 3 ITIAALIS 1406010) = o [o a] o
[=1 Daily Repart ® 18101261 8 4 17385125 15062010 1 k-] o o o a =]
@ ©PReport an 21612911945 9 5 173BHLIS IS061H10 1 = o] o 0] o
2 41 74612125 9 6 I7T3RALIS ISOG00) 24 o o o a = a
W Severity alens 41 179.1821351.. & T 173EELIS 1806010 1] 0 [o L]] [
Wi Single alerts a3 261711947 8 B 173BHLIS L0600 1 = 0 o o 0] o
0D how a0 Siow aezpck 44 MM 8 9 173848lL25 2206/2010 1 28 Q []] a -] Q
a5 20746199165 @ W0 L7IBELES E0GAN0 1 F- 0]] a F-] 0
@ False Negative aberts a6 HTLE100 8 I 1TIAELIS MA6010 1 B o o o a = o
a7 24.249.183.214 8 12 17388125 2506010 1 28 []] a -]]
‘_’ Renanaance siers a4 LRBE1131%0 8 13 LTIBELES 206010 1 F-] [] 1] (] ol o
2 Datereport) 21601771 & 14 1T38ALIS ARG 1 E o o o a = a
Al Cevere s 50 128210547 7 15 17388125 IBO6G0 1 28 []] a 2]
51 07413142 7
52 746190182 7
3 2074619938 7
Knawledge Base . ¥ T Y TR |
35 20746.13.144 7
B 200.46,195.2 7
Detaib # 57 74.232.4.162 7
5 173.1187.115 7
Selecred lp: 101064 % U9ENIELH &
Start date : 0L1AUI0 B MTA6.195324 &
End date : 28/06/2010 61 11610419966 &
] 2162413821, &
&3 BA.407LI0 &
2] 67.118.116.162 &
6% 851141001828 &
(1] 74613133 6

155

1oday Arewwns INDVQ €2°S 24nbi4 Jo abew| Jabue 8T-Vv

Ihpm‘tuﬂhg. &

<5 Date and IP Address .

Attack activity . =
Error Log Attack . ¥
Access Log Recon . ¥
Snort [DS Alerts . .
DACM Results. L
[Daily Report

@ 1P Report

W Severity alerts

W Single alerts

W' low and Slow attack
& False Negative alerts
¥ Reconnaissance alerts
) Date report

&% SeverelPs

Knowledge Base . ¥

»

Details

Selected Ip : All IP Addresses
Start date : Not set
End date : not set

DACM Results / Time range results.

ABCM Missed DACM

No Date ABCM Missed DACM
1 11/06/2010 n 339 616
2 12/06/2010 393 41 634
3 13/06/2010 380 290 670
4 14/06/2010 448 304 753
5 15/06/2010 449 300 749
& 16/06/2010 458 322 780
¥ 17/06/2010 3713 357 730
8 18/06/2010 469 342 Bl1
2 19,/06/2010 245 248 496
10 20/06/2010 165 283 454
11 21/06/2010 444 306 750
12 22/06/2010 414 354 768
13 23/06/2010 427 370 797
14 24/06/2010 451 317 768
15 25/06/2010 411 3n 33
16 26/06/2010 421 56 687
17 27/06/2010 389 rrl] 613
18 28/06/2010 334 245 552

ABCM: Correlated alerts from IDS
Missed: Correlated alerts from other sources

DACM: Correlated alerts from IDS and other sources

156

APPENDIX B
DACM Agents Formal

Description

Appendix B: DACM Agents Formal Description
B-1: IDS Alert Correlation

A, (sensor, ID, source, timestamp, destination, type) € IDS alerts

Ai+1 (sensor, 1D, source, timestamp, destination, type) € IDS alerts

A; and Aix1 could be correlated using different correlation components,
these components represents specific criteria in which they use to
correlate the alerts, the criteria of each component will be described in
mathematical relation of the alerts attributes. Correlation components
used in [56 - 58] were formally described as follows:

Alert Fusion Correlation Component can be described as follows:

A, Ai+1 will be correlated together

If source (A;) =source (Ai.+1) and

Destination (A;) =destination (Ai+1) and

Type (Ai) =type (Ai+1) and

[Time (Ai) — Time (Ar)| <= T threshold and

Sensor (Aj) <> sensor (Ai+1)

Where T threshoid IS the minimum allowed difference time

Threat Reconstruction Correlation Component can be described as
follows:

A, Ai+1 will be correlated together

If source (A;) =source (Ai.+1) and

Destination (A;) =destination (Ai:;) and

Type (Ai) =type (Ai+1) and

Sensor (Aj) = sensor (Ai+1) and

[Time (Ai) — Time (Ap)| <= T window

Where T window 1S the minimum allowed difference time to correlate two
alerts from same source

157

Focus Recognition Correlation Component can be described as follows:

Ai, Ais1 will be correlated together

If (source (Aj) < > source (Aj+1) and
Destination (A;) =destination (Ai+1) and
Type (Ai) =type (Ai+1) and

Sensor (A;) = sensor (Aj:+1) and

ITime (Ai) — Time (Ar)| <= T window)

Or

If (source (Aj) = source (Ai+1) and
Destination (A;) < > destination (Aj+1) and
Type (Ai) =type (Ai+1) and

Sensor (Aj) = sensor (Aj:+1) and

ITime (Ai) — Time (Ar)| <= T window)
Where T window IS the minimum allowed difference time to correlate two
alerts from same source

Multi Step Attack Correlation Component can be described as follows:

Ai, Ais1 will be correlated together
If Destination (A;) = source (Ai+1) and
Time (Ai) < Time (Ai+1)

B-2: InfoSec Tools Agents
Firewall Agent can be described as follows:

Arw € Firewall alerts

Firewall Entry (IP, Date, Time, Destination, Port) € Firewall Log

V Entry € Firewall Log

Firewall Entry (IP, Date, Time, Destination, Port) —» Firewall
Attack Table

Read next FTP Entry

158

Vulnerability Scanner Agent can be described as follows:

Avys € Vulnerability Scanner alerts

Vulnerability Scanner Entry (Date, Time, Port, service, Status)
€ Vulnerability Scanner Log

V Entry € Vulnerability Scanner Log

If status (Vulnerability Scanner Entry) is open

Then Port (Vulnerability Scanner Entry) is vulnerable, Produces Ays
Vulnerability Scanner Entry (Date, Time, Port, Service, Status)
— Vulnerability Scanner Alert Table

Else

Read Vulnerability Scanner Entry

B-3: Service and Application Logs Agents Formal Description
FTP Agent can be described as follows:

Arrp € FTP alerts

FTP Entry (IP, Date, Time, Command, User) € FTP Log

{S}: set of unauthorized FTP commands; {U}: set of unauthorized users
V Entry € FTP Log

If command (FTP Entry) € {S} Or user (FTP Entry) € {U}

Then FTP Entry is malicious, Produces AFTP

FTP Entry (IP, Date, Time, Command, User) — FTP Attack Table
Else

Read next FTP Entry

SSH Agent can be described as follows:

ASSH € FTP alerts

SSH Entry (Date, Time, Source IP, Sport, error message) € SSH Log
{S}: list of error messages associated with attack signatures

V Entry € SSH Log

If error message (SSH Entry) € {S}

Then SSH Entry is malicious, Produces ASSH

159

SSH Entry ((Date, Time, Source I[P, Sport, error message)
— SSH Attack Table

Else

Read next SSH Entry

HHTP and HTTPS Agents can be described as follows:

A yre € HTTP alerts , A yrtes € HTTPS alerts

HTTP Entry (Date, Time, Source IP, error sequence messages) €
SSH Log

{S}: list of error sequence messages associated with attack profiles

{N}: list of error sequence messages associated with normal profiles

vV Entry € HTTP/HTTPS Log

If error sequence messages (HTTP Entry) € {S}

Then HTTP Entry is malicious, Produces AHTTP/HTTPS

HTTP Entry ((Date, Time, Source IP, Sport, error sequence message)
— HTTP/HTTPS Attack Tables

Else

If error sequence messages (HTTP Entry) € {N}

Read next HTTP Entry

B-4: DACM Central Agent can be described as follows:

A; € IDS alerts, As € Firewall alerts , A_ € log alerts ;

A, (source, time, destination, type) € IDS alerts

AF (source, time, destination) € Firewall alerts

AL (source, time, destination, type) € Logs alerts

v alert Ai

A Is verified alerts w.r.t. Ag

If source (Ai) = source (AF) And Destination (Ai) = Destination (AF)
And [Time (Ai) — Time (AF)| <= Tihreshold

Where Tinreshold 1S the minimum allowed difference time

Ai Is verified alerts w.r.t. A_

If source (A;i) = source (AL) And Destination (Ai) = Destination (AL)
And |Time (Ai) —Time (A|_)| <= Tihreshold

160

Where Tinreshoid 1S the minimum allowed difference time

A Is IDS only

If attributes (A;) < > attributes (A.) OR
Attributes (A;) < > attributes (Ar)

A Is Low and Slow attack

A is IDS only and Count (source [Ai]) = 1 per day
And days (source [Ai]) >3

V alert A,

AL is negative alert w.r.t. A

If source (A;) =source (A.) and

Time (A) <>Time (AL)

Or attributes (AL) < > attributes (A;)

AL is reconnaissance

If count (AL) > A,

Where A, is access count of specific IP / day and
Aty : allowed threshold access per day

161

REFERENCES

LIST OF PUBLICATIONS

1- Ayman E. Taha, Ismail Abdel Ghaffar, Ayman M. Bahaa Eldin, Hani
M. K. Mahdi, “Agent Based Correlation Model for Intrusion Detection
Alerts”, pp 89-94 proceeding of IEEE International Conference on
Intelligence and Security Informatics (ISI 2010), May 2010, Vancouver,
Canada.

2- Ismail Abdel Ghaffar, Ayman E. Taha, Ayman M. Bahaa Eldin , Hani
M. K. Mahdi, “Towards Implementing Agent Based Correlation Model
for Real-Time Intrusion Detection Alerts”, proceeding of 7th International
Conference on Electrical Engineering, ICEENG 2010, May 2010, MTC,
Cairo, Egypt.

3- Ayman M. Bahaa Eldin , Hani M. K. Mahdi, Ayman E. Taha, Ismail
Abdel Ghaffar, “Dynamic Parallel correlation Model for intrusion
detection alerts”, poster in Annual Information Security Symposium of
Center of Education and Research of Information Assurance and Security
(CERIAS), Purdue University, March 2010, west Lafayette, Indiana,
USA.

4- Ayman E. Taha, Ayman M. Bahaa Eldin, Ismail Abdel Ghaffar, Hani
M. K. Mahdi, “Distributed Agents Correlation Model for intrusion
detection in computer network” , Computers & Security Journal
Elsevier, In Progress.

162

REFERENCES

[1] Karen Scarfone, Peter Mell , “Guide to Intrusion Detection and
Prevention Systems (IDPS),” National Institute of Standards and
Technology NIST Special Publication 800-94, Computer
Security, February 2007.

[2] Tianning Zang, Xiaochun Yun, Yongzheng Zhang, “A Survey of
Alert Fusion Techniques for Security Incident,” Proceeding of
the Ninth International Conference on Web-Age Information
Management IEEE, November, 2008.

[3] Agent Maira Gatti, Arndt von Staa , “Testing & Debugging
Multi-Agent Systems: A State of the Art Report,” ISSN: 0103-
9741, February, 2006

[4] H. Debar, M. Dacier, and A. Wespi. “Towards taxonomy of
intrusion detection systems,” Computer Networks,” vol.31,
No.8, pp. 805-822, 1999

[5] Gene H. Kim and Eugene H. Spafford. “The Design and
Implementation of Tripwire: A File System Integrity Checker,”
Technical report, Purdue University, November, 1993.

[6] G.Vigna, W.Robertson, V.Kher, and R.A. Kemmerer. “A
Stateful Intrusion Detection System for World-Wide Web
Servers.” In Proceedings of the Annual Computer Security
Applications Conference (ACSAC 2003), pp. 34-43, Las Vegas,
NV, December, 2003.

[7] Mandiant, “M-TRENDS, the advanced persistent threat”, http:-
[lwww.princeton.edu/~yctwo-/files/readings/M-Trends.pdf,
June, 2010.

[8] Advanced Persistent Threats (APTSs), http://www.damballa.com/
knowledge/advanced-persistent-threats.php, June, 2010.

[9] Bashar Ewaida , “Pass-the-hash attacks: Tools and Mitigation,”
Technical paper, SANS Institute InfoSec Reading Room,
January, 2010.

[10] Carl Endorf , Gene Schultz , Jim Mellander,”Intrusion Detection
and Prevention,” McGraw-Hill, ISBN: 978-0072229547,
December, 2003.

[11] Robiah Yusof, Siti Rahayu Selamat, and Shahrin Sahib
“Intrusion alert correlation technique analysis for heterogeneous
log,” IJCSNS International Journal of Computer Science and
Network Security, vol.8, No.9, September 2008.

163

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Carl%20Endorf
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Gene%20Schultz
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Jim%20Mellander
http:http://www.damballa.com
www.princeton.edu/~yctwo-/files/readings/M-Trends.pdf

[12]

[13

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Zhai, Y., Ning, P., & Xu, J. “Integrating IDS alert correlation
and OS-level dependency tracking.” North Carolina State
University, North Carolina, 2005.

Tianning Zang, Xiaochun Yun, Yongzheng Zhang, A Survey
of Alert Fusion Techniques for Security Incident”, The Ninth
International Conference on Web-Age Information Management,
July 2008

C. Mu, H. Huang, and S. Tian, “A survey of intrusion-detection
alert aggregation and correlation techniques,” Journal of
Computer Research and Development, vol. 43, pp. 1-8, 2006.

Donghai Tian, Hu Changzhen, Yang Qi, and Wang Jiangiao
“Hierarchical Distributed alert correlation model,” 2009 Fifth
International Conference on Information Assurance and
Security, pp. 765-768, August, 2009.

Chenfeng VincentZhou, ChristopherLeckie, Shanika
Karunasekera, “Decentralized multi-dimensional alert correlation
for collaborative intrusion detection,” scienceDirect, Journal of
Network and Computer Applications, vol. 32, pp. 1106-1123,
February, 2009.

D. Curry and H. Debar, “Intrusion Detection Message Exchange
Format: Extensible Markup Language (XML) Document Type
Definition,” draft-ietf-idwg-idmef-xml-10.txt+, January, 2003.

The Intrusion Detection Message Exchange Format [Online],
Available: http://www.ietf.org/rfc/rfc4765.txt", January, 2010.

D. Andersson, M. Fong, and A. Valdes. “Heterogeneous Sensor
Correlation: A Case Study of Live Traffic Analysis.”, In
Proceedings of the 3rd Annual IEEE Information Assurance
Workshop, United States Military Academy West Point, New
York, June 2002.

H. Debar and A. Wespi, “Aggregation and correlation of
intrusion detection alerts,” Proceeding of International
Symposium. Recent Advances in Intrusion Detection, pp. 85-103,
October, 2001.

Tian Zhihong, Qin Baoshan, Ye Jianwei, Zhang Hongli,
“Alertclu: A Realtime Alert Aggregation and Correlation
System,” International Conference on Cyber worlds 2008, pp

164

http://www.ietf.org/rfc/rfc4765.txt

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

778-781, September, 2008.

R. Gula. Correlating IDS Alerts with Vulnerability Information.
Technical report, Tenable Network Security, December 2002.

B. Morin and H. Debar., “Correlation of Intrusion Symptoms: an
Application of Chronicles,” In Proceedings of the International
Symposium on Recent Advances in Intrusion Detection,
Pittsburgh, PA, September, 2003.

D. Xu, and P. Ning, “Alert Correlation through Triggering
Events and Common Resources”, Proceedings of the 20™ Annual
Computer Security Applications Conference (ACSAC “04),
December, 2004.

Wang Li Li Zhi-tang Lei Jie, “Learning attack strategies through
mining and correlation of security alarms”, Proceeding of 10th
IFIP/IEEE International Symposium on Integrated Network
Management, pp. 713-717, May, 2007

Steven Noel, Eric Robertson, Sushil Jajodia, “Correlating
Intrusion Events and Building Attack Scenarios Through Attack
Graph Distances”, Proceedings of the 20™ Annual Computer
Security Applications Conference (ACSAC’04), December, 2004

Nessus Vulnerabilty Scanner, http://www.nessus.org/, June, 2010

F. Cuppens and A. Miege, Alert correlation in a cooperative
intrusion detection framework, In Proceedings of The 2002 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2002.

S. T. Eckmann, G. Vigna, and R.A. Kemmere, “STATL: An
Attack Language for State-based Intrusion Detection,” Journal of
Computer Security, 10(1/2), pp. 71-104, 2002.

B. Morin and H. Debar, Correlation of intrusion symptoms: an
application of chronicles, In Proceedings of The 6th
International Conference on Recent Advances in Intrusion
Detection (RAID’03), September 2003.

R.A. Kemmer, G. Vigna, A Model-Based Real- Time Intrusion
Detection System for Large Scale heterogeneous Networks,
California Univeristy, Santa Barbara, Department of Computer
Science, Technical Report [Online], August 2003, Available:
http://www.stormingmedia.us/42/4280/A428024.html

C. Krugel, T. Tuth, and C. Kerer, “Decenlralized event
165

http://www.stormingmedia.us/42/4280/A428024.html
http:http://www.nessus.org

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

correlation for intrusion detection,” In International Conference
on Information Security and Cryptology (IUSC), December,
2001.

P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Techniques and tools
for analyzing intrusion alerts,” ACM Transactions on
Information and Systems Security, vol. 7, pp. 274-318, 2004.

P. Ning, Y. Cui, and D. S Reeves, Analyzing intensive intrusion
alerts via correlation, In Proceedings of The 5th International
Symposium on Recent Advances in Intrusion Detection (RAID
2002), pp. 74-94, Zurich, Switzerland, October, 2002.

S. Templeton and K. Levitt, “A requires/provides model for
computer attacks,” In Proceedings of New Security Paradigms
Workshop, pp. 31-38. ACM Press, September, 2000.

P. Ning, Y. Cui, and D. S Reeves, “Constructing attack scenarios
through correlation of intrusion alerts,” In Proceedings of The
9th ACM Conference on Computer and Communications
Security, pp. 245-254, Washington, D.C., November, 2002.

Xinzhou Qin, “A Probabilistic-Based Framework for INFOSEC
Alert Correlation”, Ph.D. Thesis, College of Computing, Georgia
Institute of Technology, Georgia, USA, August, 2005.

X. Qin and W. Lee, “Statistical Causality Analysis of INFOSEC
Alert Data. In Proceedings of The 6th International Symposium
on Recent Advances in Intrusion Detection (RAID 2003), vol.
2820 of Lecture Notes in Computer Science, Springer—Verlag.
Heidelberg, Germany, pp. 73-93, 2003.

P. Porras, M. Fong, and A. Valdes, “A Mission-Impact-Based
Approach to INFOSEC Alarm Correlation,” In Proceedings of
the. International Symposium. The Recent Advances in Intrusion
Detection, pp. 95-114, Zurich, Switzerland, October 2002.

Nmap- Network Mapper, Security Scanner For Network
Exploration & Hacking. http://nmap.org/, June, 2010

Catalin Leordeanu, Levni Arif and Valentin Cristea, “Correlation
of Intrusion Detection Information in Grid Environments,” 2010
International Conference on Complex, Intelligent and Software
Intensive Systems, pp. 463-468, February, 2010.

Wen Long, Yang Xin, Yixian Yang “Vulnerabilities Analyzing

166

http:http://nmap.org

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Model for Alert Correlation in Distributed Environment,” 2009
IITA International Conference on Services Science, Management
and Engineering, pp. 408-411, November, 20009.

Guofei Jiang, Member, George Cybenko, “Temporal and Spatial
Distributed Event Correlation for Network Security,”
Proceedings of the American Control Conference, 30 June-2
July, 2004

P. Ning and D. Xu. “Learning Attack Strategies from Intrusion
Alert,” In Proceedings of the ACM Conference on Computer and
Communications Security (CCS '03), Washington, DC, October
2003.

V. Honavar and L. Miller and J. S. K. Wong, “Distributed
knowledge networks,” IEEE Information Technology
Conference, Syracuse, pp. 87-90, 1998.

Dalila Boughaci, Habiba drias, Ahmed Bendib, “A Distributed
Intrusion Detection Framework based on Autonomous and
Mobile Agents,” Proceedings of the International Conference on
Dependability of Computer Systems IEEE.

Mohamad Eid, Hassan Artail, Ayman Kayssi, and Ali Chehab,
“A Lightweight Adaptive Mobile Agent-based Intrusion
Detection System LAMAIDS,” International Journal of Network
Security, VVol.6, No.2, pp. 145-157, March, 2008

Amir Vahid Dastjerdi, and Kamalrulnizam Abu Bakar, “A Novel
Hybrid Mobile Agent Based Distributed Intrusion Detection
System,” Proceedings of world academy of science, engineering
and technology, vol. 35, ISSN 2070-3740, November, 2008.

Jianxiao Liu , Lijuan Li , “A Distributed Intrusion Detection
System Based on Agents,” 2008 IEEE Pacific-Asia Workshop on
Computational Intelligence and Industrial Application, pp. 553-
557, December, 2008.

Mark Crosbie, Gene Spafford, “Active Defense of computer
system using autonomous agent,” Technical report no 95-008,
COAST group, computer science department, Purdue University,
February, 1995.

Jai Sundar Balasubramaniyan, Eugene Spafford, Diego
Zamboniy, “An Architecture for Intrusion Detection using
Autonomous Agents,” COAST Technical Report 98/05, COAST

167

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Laboratory, Purdue University, June 11, 1998

Farah Barika KTATA, Nabil EL KADHI, Khaled GHEDIRA,
“Distributed agent architecture for intrusion detection based on
new metrics,” Proceeding 2009 Third International Conference
on Network and System Security, pp. 321-327, October, 2009.

Snort — the open source network intrusion prevention and
detection system. http://www.snort.org, 2010.

Abduljalil A. Mohamed, Otman Basir, “Fusion Based Approach
for Distributed Alarm Correlation in Computer Networks,” 2010
Second International Conference on Communication Software
and Networks, pp. 318-324, February, 2010.

A.A Mohamed and O. Basir, “An Adaptive Multi-Agent
Approach for Distributed Alarm Correlation and Fault
Identification,” Parallel and Distributed Computing and
Networks, February, 2010.

F.Valeur, G.Vigna, C. Kruegel, and R.A.Kemmerer,
“Comprehensive approach to intrusion detection alert
correlation,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, pp. 146-69, July-September, 2004.

F. Valeur, “Real-time Intrusion Detection Alert Correlation,”
Ph.D. Thesis, University of California Santa Barbara, Santa
Barbara, California, USA, 2006.

Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, “Intrusion
Detection and Correlation Challenges and Solutions,” ISBN: 0-
387-23398-9, Springer, 2005.

Basic Analysis and Security Engine (BASE), http://base.securei-
deas.net/about.php, June, 2010.

David W Chadwick, “Network Firewall Technologies,”
Technical Report, IS Institute, University of Salford, Salford, M5
4WT, England.

Avi Kak, “Port Scanning, Vulnerability Scanning, Packet
Sniffing, and Intrusion Detection,” Lecture Notes on “Computer
and Network Security,” Purdue University, April, 2011.

Franck.Veysset, Laurent.Butti, “Honey pot technologies,” First
Conference, France Télecom R&D, June, 2006.

168

http://base.securei
http:http://www.snort.org

[63]

[64]

[65]

[66]

[67]

Wireshark, Network protocol analyzer, http://www.wireshark-
.org, June, 2010.

Center of Education and Research for Information Assurance and
Security (CERIAS), http://www.cerias.purdue.edu, June, 2011.

M. Cotton,L.Vegoda, "Special Use IPv4 Addresses,” Internet
Engineering Task Force (IETF),ISSN: 20701721, http://tools.iet-
f.org/html//rfc5735, June, 2010.

Vijay Ahuja, “Network and internet security”, AP professional,
1996.

William Stallings, “Network and internetworking security
principles and practices”, Prentice Hall, New Jersy, 1995.

169

http://tools.iet
http:http://www.cerias.purdue.edu
http://www.wireshark

sl 138 aLail o iS00 Lay (o 4 il Mas g il) S0 Bl

dwais Miul gaga JlaS A o Al L yidd Gaeall oSG G Baay el o) 3
(el (e Amda duvgdl 4 ¢ Lkl clbulall duva ad o sl
edes Sllandl gany s Glualall Auia andy Cilalal) duvia Jul JE) Lo Jelead o]
dadia and ¢ Cladall Ania delie 3l cpall slgy daaa Gag) 3 5 &y Suall ddl) 20
O Aol oa ol il Ua glane i€ 081 | Guad (e Arals Al 43S ¢ alill g sl
DL Al 5 ahe liBlie ¢ (el a8 Y laade g pilial aniy | sald a8l ¢ 3LLY)
e AN Sgaia 38 Gald S Laes agd (pae U Jaall 138 2085 o) g Ginill & guia ga
3y siiall wafiy agacd (52 Al N 028 a3 (ST Al Alu i o328 dlac) il g SIS agi

(el Jal je asead 4880 dxa yall 5 asall cilal JEY 5 dyalall

Oy sl Gan o 50 Miud ALl dea) e s AEliall Aind sliac SN 4 o)
550 Ml 5 A5 5! sanall LY Il 53)5 Al e glaall Gaels ilagl s anla S 5
uad (e daala dudighl LIS Al s cillall davia ady YD 55 80 HLia Ll
Oo waadly salaly a8 a8 A) eas Ay s S aladll daals et

Aaadll Chlalid HY) 5 Chlgaa ¢l g A 5 yall CilasSlall

sasiall LY I s Amalay Claslaall (aeli i)y adad SHal SN a3
Jaall il Al agally 3) dlas Comsp) s8all 38 5all paal adll acall Hud) A)
Aalall oL JA alall agislail) gudly S8 laglaall (ali Silag) udigs Aala

Janll 138 LY a3 Apalall 3l gall 5 Ll gand dalae jsbian (ja 05 jis Lag S yall

@L‘AUABJSMJM"%dk&w\u}&‘)sﬂwu‘fJAJaﬁéjﬂw‘)ﬁ\

LS b YA agmandiy 2ol ageedd e 5 oY Canliall SN A aplaind Y
Wy i s 3 el gia (3 U)l cr G538 aglea¥ Jaadl 13 apais Jslal)
TS ok JMA Lala g Al) 358 JDA agimaais ab yual Law s jul cla¥l Mkl
e Wiy dl Sl ¢ ailall (s sinall agacy agaaail ab SN 5 ¢ dalall salall aand 23
ile 38 aaan s el (s agl) Jasdl 138 ool ol Al g Aad) 515 Y] o2 Al

dgay o Al @l il aeady Jal i 58l Cus apn Julud e jge (gaia
Jagall clale g el cpaali il ol (e Liayl s () 5iaY) L) dadail g Jila s (e (3 yia)
S 5 S pany ila glaall 038 (e) pdaill JalSS g dayl y3 dabisal) chlandld) 5 calayail]
JS asiy Aulag) sl Apledl Aalalal) el el ane J6 A (e 30AIL 31 Y1 Gl
i aladiuly 4, dalial) e ghead) JMA (e 3181 GLE) J3Ya ey dpee 5l JS 5
Lo i AU (S5 il glaall o3 JalS3 ey o sagd) Cilaray o Capail) Al i 4
(JalSia

A<l (pe Lgasend o3 Ul s iy sael e HUaill 4 jais 2 3lall oy Al) ol
Alaty alldall 28 2S5 5eY) sasiall Y ol 50 50 dralany Gl slaall (i Gl S 50
C¥ae Cun (e Lllad Lgiad ja g Leie JSI ela¥) anig da i) z3laill s e)l 5all)
Y JalE Va5 dag) il Ve g Uadl) Ay 8 Y e maaaall Ca el
Uil o1l A 5 4,318

AUt JLaiS) g 56l (puamy () gaamial) ¢3S gl alasiny 5 sall Jalii 3¥1 23 gl aladiiad Aiadls
iy 4l LS ¢ e Ji allas o aaing V5 Ay ey o sl A0S0 ety (31 _aY1 ol
L) A8l ety o3 gl aladiind A0l JalSiall (ol gall agdl (o gllaall 3 seaall 5 il
DA (e Fad) JBY) o) 5 padadll il 3l (50 e 5508l i g o gmgl Jili g (e S)
Jad 3y gllaall cul pdaill 8 iy jaaall (il AalSa) Jilll 8 col sl g g
D3 a3 Y gAY) L e

asnedl gy e Tl o gngll Jio Aiall o sagll Jil gl Sl GLISY) AlSa) Sl ey
& OUais) (pariiisall (s A slae 5l Alaiiall il jpdail) CLES) JDA (e Jaal giall aial)
ama o) o smgl) A glae 8 4y 535 sl R sl) ae e 5 48 Al UKy 4S50
oAl Tyl pll 2] Aapud) COGaatl) Gamy () glisg dus Biall Gl 6 Jaall
) pdanll

iy il Jag) 55 L aladid s geny 53 2o 5 mei s 7 sad 88 Al) G et g
Glaad g il Alle el Gilead yid o Jal e (B) AYT GLEKY () soanidl Sl
JEREN

daalide cilals

Sl Jasa ¢ alaiall JiS sl ¢ oS sl Baamie Aakail¥) ¢l yy jaill ol 3 ¢ (3) AN ol

uadla
ada e ad) Cpad
ol gal) CilSad B) A CALES) qullad Jay) 3
G gadaiall oDlanl) alai aladtily
o) 551 Al

DS 5 alad e @l podail) Jas N sIaY) e (3) AAY) GLES) JiYa 5l &) pdas day) i3
GIAY) Y slaad ALal) 4yl Jlay peaiie 6 ady (3)IAY) LK) Aaaiy
Sl pdaill Qa5 A e 313 GLES) il i <l jpdail) Jagl il A0 el
Jardl Jie) guaill dn sl (ans Lga J15 Y (815 5 paitin o)l (3 Lgapalli g Lgie 5 polall
Gl shad sae YA (e asagdl Jiai i) @l pdadll aal as 5 dalalald) < pdadll e)
Jie LLES) 25 Y Eiaall o sagll Cadlad (oany a5y LS ol pdal) (mmy (e 2S5
Ll o sagll Ol g3l Gany aladiinl Liay) 5 Jual siall pafiall o sagl) aiagi s e chaill o sagdl
Ll i e aaiad dallal) ol | a3l Ay L) dadaiy 5 ghiall 5 oA (e LeiSa
Claglaall olias gaan o JalSill e aaiad Vg Jadh (31 5iAY) L) ekl @l jias

i) akas g calapdaill Jaaa) culila o el Jila g e AS0A1L dalial)

Cun ¢ GAY) GLES) Tty e JS (g sa2mal) IS 51 e Dlaal) Radail alasind o
e il A5 pe Al ety Lo pUaill Jiandid sale) () Aaladl (ga JS 5 il Adlal o3
2 500 L€ ALl e 1oL) Rl Ry 3 S 5 S s oLl iLolS) 3
aladinl Jly ¢ saaiall oS) edlead) Akl alasial laglad) o3a Joli i sais
s8] Lok y 23S o Hilh 1335 Al 8 anl) e gl oL iy g oL S
il sbaall Jalsi 5 (3153850 aaniall GLEISY) e

M (e) A Y] GLES) Aadai) JLa) 5 5eli€ nnd AlSal i)) Al) 038 Cangs
Dbas calidg o daal A8l aladialy @llhg dnlidly dulag¥) @l A 2o 5 Jane JWlS
Aaatioeall Cand sal) lSad g Juanil) Ayl AUaL Aaliall e slal)

e Sanll Aalii) w2l g 5 pall)RV CHLES) a5 3 sail laas Ua) ALl 38 o
acy SRV 13 ol sl ClSud 8 (31 GLEES) JiYa s & _ysial () gasaiall o380
eSS 5 Y iy A g Shiane S0m i sSa elis o (s B33wka Tl il JulSs

uadi (e daala

dusigh A

o) giall dada

aba) ndl el Cald) aul

Ja el Aigh) 8 danddll of H oy)

abaill g lialadl duaia 1 Al aglil) acadl)
Ouad (e Aala — Audigl S A8

Ao Sl el KN - Y44y oAl A

Yory o il A

ada)) e

VAV [AN

3 yaldl)

pball 5 Clalaldl dia — 40 56 dnigll (5) sllS
A Sl 4 adll A0S

il 5 il duaia — Ly 50 Ausig) yiieale
sl (e Aadla — Al A4S

Yooy

Aaluall il @l — il slaall alai 3 laly edigs M

ada avad)) el

YOAN/VY

uadi (e daala

WRAERS

Al 1) pdhay iy 23

Ealyl) auf

hsall g U

Dliall Jaa

o)yl 08 3al)

e Aadilall dgall
381 el A3 0
L Al dgal)
ol &

Allad) Ad s 5l

i) atha aul
s

Gl

uadi (e daala
Laigl) 4

alai g cilpalal) dtin anid

obj'.\SA;Ul.uJ
ab adh addl Eald) and
o gall S 6 Y G calid T, ¢ Al ol
- e (=2 9l 2 > Ol

L 5eSl) il o) 553 Aa

il) Adal

aih g)
akail) g cilaadall s andy i G JuaS daaa S 3]

ad (e Al - il &S

Silealal) A 36 z A se Jeleal A
Ao Sl ddl) 24K
abaill g cilaadal) dunia audy o lue i Ol sl daaa Cpadf 2

i e el - Auaigl) B
[BN

Ldald) il yal)

daalal) Galaa 488) ga A0S alaa 488) ga

I /1

Ruaigh 1 - (puad (e nala
alaill 5 sl Avia and

Al ATl Gul gad) Sl B (51 AN CLEES) Gullad Jag) 3
deﬁd\ & larl) ew
)
e Aig (o)) Sl Aa)3 e J puaall Faie
(phil) 5 il dnia)

e Aadie
ada)) Cyad
L el dunigh) yituala
(Al 5 il dnia)

Y"Y—MU:\.C‘\.MIA

Gl) s
E3 JlaS Jaaa dla A
g il s Jeland 3]
Ol plg daaa Cpanl 2
yaa - 5_alall

Y~\\-}:\l}3

	Abstract
	Table of Contents
	List of Algorithms
	Chapter One: Introduction
	1.1 Intrusion Detection and Response Systems
	1.1.1 IDS Terminology and Parameters
	1.1.2 IDS Limitations
	1.1.3 Intrusion Detection Alerts Correlation
	1.1.4 Agents in IDS

	1.2 IDS Correlation Problem Definition
	1.3 The Proposed Model
	1.4 Methodology
	1.5 Contributions
	1.6 Dissertation Organization

	Chapter Two: Literature Survey and Related work
	2.1 The Importance of Security and Intrusion Detection
	2.1.1 Security Mechanism
	2.1.2 Intrusion Detection Systems
	2.1.2.1 Classification of IDSs
	2.1.2.2 Intrusion Detection Challenges

	2.1.3 Intrusion Detection Correlation Systems
	2.1.4 Recent Cyber Security Attacks

	2.2 Basic Concepts of Data Correlation
	2.2.1 Alert normalization
	2.2.2 Alert aggregation and Fusion
	2.2.3 Alert verification and Prioritization

	2.3 Alerts Correlation Techniques
	2.3.1 Correlation of Attack Scene
	2.3.2 Correlation of Pre and post conditions
	2.3.3 Casual analysis Correlation based on Statistical Techniques
	2.3.4 Distributed Correlation

	2.4 Alert Correlation Limitations
	2.5 Agents in IDS and Correlation
	2.6 Comprehensive Approach Model for IDS Alert Correlation

	 Distributed Agent Correlation Model
	3.1 Distributed Agent Correlation Model Description
	3.1.2 INFOSEC Tools Agents
	3.1.3 System and Application Logs Agents
	3.1.4 DACM Central Agent
	3.1.5 Formal Description for Central Agent
	3.1.6 Response Agent
	3.1.7 Learning Agent
	3.1.8 The Knowledge Base and Security Policy

	3.3 DACM Knowledge Base
	3.3.1 System Parameters and Role Base Tables
	3.3.2 Alerts Table
	3.3.3 Vulnerability Scanner
	3.3.4 Performance Monitors Tables
	3.3.5 Firewall Log Files Tables
	3.3.6 System Audit Files Tables
	3.3.7 Services Log Files Tables
	3.3.8 Output Tables:

	3.4 DACM Features
	3.5 Implementation Scope and Performance Enhancement

	Chapter Four: DACM Design and Algorithms
	4.1 IDS Alert Correlation
	4.1.1 IDS Alert Correlation Performance Analysis

	4.2 Modified CAM Time
	4.2.1 Agent Based Correlation Model
	4.2.1.1 Learning Phase

	4.3 DACM Individual Agents
	4.3.1 IP Address Normalization
	4.3.2 Firewall Agent
	4.3.3 FTP local Agents
	4.3.4 SSH Agent
	4.3.5 Error Log Agent
	4.3.6 Access log Agent

	4.4 DACM Central Agent
	4.5 Implementation Environment

	Chapter Five: DACM Results and Analysis
	5.1 CRIAS Data Set
	5.1.1 CERIAS Network Description
	5.1.2 Data Description
	5.1.3 Attacks
	5.1.4 Attack scenarios

	5.2 IDS Alerts Correlation Results
	5.2.2 CAM Results
	ABCM results
	5.2.4 DPCM Results
	5.2.5 IDS Alert Correlation Techniques Performance

	5.3 DACM Components Results
	/
	/
	5.5 DACM Evaluation and Assessment
	5.5.1 DACM Limitation
	5.5.2 DACM Assessment

	5.6 Practical Implementation Issues

	Chapter Six: Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

