
CERIAS Tech Report 2011-28
Efficient Query Processing for Uncertain Data

 by Yinian Qi
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



 
       

 

 

  

   

       
                                            

       

       

       

 

  

      

    

                                                      ____________________________________  

   
          

Graduate School ETD Form 9 
(Revised 12/07) 

PURDUE UNIVERSITY 

GRADUATE SCHOOL 


Thesis/Dissertation Acceptance
&

This is to certify that the thesis/dissertation prepared 

Yinian Qi By 

Entitled 
Efficient Query Processing for Uncertain Data 

Doctor of Philosophy For the degree of 


Is approved by the final examining committee: 


Sunil Prabhakar Mikhail Atallah 

   Chair 

Jennifer Neville Dongyan Xu 

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. 

Sunil Prabhakar Approved by Major Professor(s): ____________________________________ 

Approved by: William J. Gorman 07/22/2011 
Head of the Graduate Program Date 



 
 

 

Choose your degree                    

 
  

  
 

             
          

 

______________________________________  
  

______________________________________  

Graduate School Form 20 
(Revised 9/10) 

PURDUE UNIVERSITY 

GRADUATE SCHOOL 


Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 
Efficient Query Processing for Uncertain Data 

For the degree of       Doctor of Philosophy 

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.* 

Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the 
United States’ copyright law and that I have received written permission from the copyright owners for 
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless 
Purdue University from any and all claims that may be asserted or that may arise from any copyright 
violation. 

Yinian Qi 

Printed Name and Signature of Candidate 

07/11/2011 

Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html 

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html


EFFICIENT QUERY PROCESSING FOR UNCERTAIN DATA
 

A Dissertation 
  

Submitted to the Faculty
 

of
 

Purdue University
 

by
 

Yinian Qi
 

In Partial Fulfillment of the
 

Requirements for the Degree
 

of
 

Doctor of Philosophy
 

August 2011
 

Purdue University
 

West Lafayette, Indiana
 



UMI Number: 3481129 

All rights reserved
 

INFORMATION TO ALL USERS
 
The quality of this reproduction is dependent on the quality of the copy submitted.
 

In the unlikely event that the author did not send a complete manuscript
 
and there are missing pages, these will be noted. Also, if material had to be removed, 


a note will indicate the deletion.
 

UMI 3481129 

Copyright 2011 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

ProQuest LLC.
 
789 East Eisenhower Parkway
 

P.O. Box 1346
 
Ann Arbor, MI 48106 - 1346
 



ii 

To my dear mom and dad, for being my source of love, support and inspiration. 



iii 

ACKNOWLEDGMENTS 

I owe my  entire Ph.D.  research  to the support  of  two major  professors I  am  

honored to have worked with: Prof. Sunil Prabhakar and Prof. Mike Atallah. Prof. 

Prabhakar, my advisor, taught me to be an independent researcher while gave me 

great advice when I most needed it. I deeply appreciate his support during my Ph.D. 

years, his openness to me as an advisor, and his valuable advice on how to write good 

papers and present research work. Prof. Atallah, an amazing mentor to me both in 

academia and in life, as well as the best teacher I have ever had (whose algorithms and 

cryptography classes were just fascinating), has always inspired me with his passion 

for research and has constantly encouraged me to aspire and accomplish. 

Prof. Chris Clifton and Prof. Jennifer Neville, who were on the committee of my 

prelim exam, gave me insightful comments and suggestions on my research. I enjoyed 

taking Jennifer’s data mining class, and visiting Prof. Clifton’s family along with 

other students in his wonderful home around Christmas time was undoubtedly one 

of the most fun memories I had at Purdue. Prof. Sonia Fahmy, whom I have neither 

worked with nor taken a class with, always showed her sincere support and care for 

me whenever we bumped into each other in the department. I would like to thank 

Prof. Luo Si for serving on my prelim committee, and Prof. Dongyan Xu for kindly 

agreeing to serve as an external member on my final exam committee when I asked 

him at the last minute. His operating system class, both engaging and interesting, 

was one of my favorite class experiences. 

My dissertation could not have been written without the help and friendship from 

my fellow students in the database lab. I would like to especially thank Rohit Jain 

and Chris Mayfield, for discussing research ideas with me and for sharing ups and 

downs with me in both research and life. I am also grateful to Hoda Eldardiry, who 

o↵ered to help me practice my prelim talk. I am extremely fortunate to have many 



iv 

friends who are willing to take their time to listen to me, support and encourage me, 

as well as give me great suggestions throughout my years in graduate school: Emil 

Stefanov, Meghana Chitale, Tiancheng Li, Hao Yuan, Dongxin Zou, Xiayu Rao, Feng 

Yan, Rongjing Xiang, Vasil Denchev, Umang Sharan, Ashish Kundu, Nwokedi Idika 

are just a few among many others. 

My appreciation also goes to all the sta↵ in Computer Science Department. They 

provided me with useful information and facilities, and are always available for assis

tance. I would like to thank Dr. William J. Gorman for his dedication to students 

and to the department, Renate Mallus for being such a wonderful resource, Ron Con

stongia for being so responsive and patient to every request I had, Nicole Piegza for 

helping me to schedule many important meetings with Prof. Prabhakar on my dis

sertation work, and the late graduate secretary Amy Ingram, who used to bring me 

so much joy when I stopped by the graduate ofce. 

Finally, I owe everything to my parents and my extended family. My parents have 

always believed in academic excellence, which eventually lead to my Ph.D. journey 

in the US. They have helped me to reach my goals and have supported me along the 

way. I also want to thank my extended family for their love and care, and for all the 

help they have lent me, especially my dear aunt and uncle, both chemistry professors 

at Fudan University in Shanghai, who treated me like their own daughter when I 

went to Fudan for college. My special thanks are to my dearest grandma, who is the 

most wise and capable woman I have ever seen. The love from my family is the most 

precious thing that I cherish. I hope I always make them proud. 



v 

TABLE OF CONTENTS 

Page
 

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix
 

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x
 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiii
 

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
 

1.1 Managing Uncertain Data . . . . . . . . . . . . . . . . . . . . . . .  1
 

1.1.1 Possible Worlds Semantics . . . . . . . . . . . . . . . . . . .  2
 

1.1.2 Tuple Uncertainty Model . . . . . . . . . . . . . . . . . . . .  4
 

1.1.3 Attribute Uncertainty Model . . . . . . . . . . . . . . . . . .  5
 

1.1.4 Orion Model . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
 

1.2 Querying Uncertain Data . . . . . . . . . . . . . . . . . . . . . . . .  10
 

1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10
 

1.2.2 Probabilistic Nearest-neighbor Queries . . . . . . . . . . . .  12
 

1.2.3 Probabilistic Skyline Queries . . . . . . . . . . . . . . . . . .  12
 

1.2.4 Threshold SPJ Queries . . . . . . . . . . . . . . . . . . . . .  13
 

1.2.5 Summary of Contributions . . . . . . . . . . . . . . . . . . .  14
 

2 PROBABILISTIC NEAREST NEIGHBOR QUERIES . . . . . . . . . .  18
 

2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
 

2.2 Augmented R-Tree Index . . . . . . . . . . . . . . . . . . . . . . . .  19
 

2.2.1 Absence Probability (AP ) . . . . . . . . . . . . . . . . . . .  19
 

2.2.2 Maximal Probability (MP ) . . . . . . . . . . . . . . . . . .  21
 

2.2.3 AP -Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
 

2.2.4 The Index Structure . . . . . . . . . . . . . . . . . . . . . .  23
 

2.3 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
 

2.3.1 GAP Function . . . . . . . . . . . . . . . . . . . . . . . . .  25
 



vi 

Page 

2.3.2 PNNT Query Processing Algorithm . . . . . . . . . . . . . .  28
 

2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . .  28
 

3 PROBABILISTIC SKYLINE QUERIES . . . . . . . . . . . . . . . . . .  33
 

3.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
 

3.1.1 Dominance and Skyline . . . . . . . . . . . . . . . . . . . . .  34
 

3.1.2 Skyline Probabilities . . . . . . . . . . . . . . . . . . . . . .  35
 

3.1.3 Probabilistic Skylines with Thresholds . . . . . . . . . . . .  36
 

3.1.4 Probabilistic Skylines without Thresholds . . . . . . . . . .  37
 

3.2 Identifying Interesting Instances for Probabilistic Skylines . . . . .  44
 

3.2.1 Probabilistic Range Trees . . . . . . . . . . . . . . . . . . .  44
 

3.2.2 A Preliminary Filtering Scheme . . . . . . . . . . . . . . . .  50
 

3.2.3 An Elaborate Filtering Scheme . . . . . . . . . . . . . . . .  57
 

3.2.4 Probabilistic Skyline Algorithm . . . . . . . . . . . . . . . .  62
 

3.2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . .  64
 

3.3 Computing All Skyline Probabilities . . . . . . . . . . . . . . . . . .  72
 

3.3.1 The Grid Method . . . . . . . . . . . . . . . . . . . . . . . .  72
 

3.3.2 Weighted Dominance Counting . . . . . . . . . . . . . . . .  75
 

3.3.3 The Combined Algorithm . . . . . . . . . . . . . . . . . . .  76
 

3.3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . .  82
 

3.4 Improved O✏ine Algorithm . . . . . . . . . . . . . . . . . . . . . .  86
 

3.4.1 Overview and Preliminaries . . . . . . . . . . . . . . . . . .  86
 

3.4.2 Computing the E↵ects of Infrequent Objects . . . . . . . . .  88
 

3.4.3 High Dimensional Cases . . . . . . . . . . . . . . . . . . . .  93
 

3.5 The Online Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  94
 

3.5.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
 

3.5.2 Dummy Points and Dummy Values . . . . . . . . . . . . . .  97
 

3.5.3 High Dimensional Cases . . . . . . . . . . . . . . . . . . . .  99
 

3.5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . .  100
 



vii 

Page
 

4 PROBABILISTIC THRESHOLD SPJ QUERIES . . . . . . . . . . . . .  103
 

4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .  103
 

4.1.1 Running Examples . . . . . . . . . . . . . . . . . . . . . . .  103
 

4.1.2 Probabilistic Threshold Query Optimization . . . . . . . . .  104
 

4.2 Optimization Rules . . . . . . . . . . . . . . . . . . . . . . . . . . .  107
 

4.2.1 General Rules . . . . . . . . . . . . . . . . . . . . . . . . . .  108
 

4.2.2 Rules for Selection, Projection and Join . . . . . . . . . . . .  112
 

4.2.3 Plan Optimization . . . . . . . . . . . . . . . . . . . . . . .  117
 

4.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . .  118
 

4.3 Improving Optimization Through Threshold Estimation . . . . . . .  127
 

4.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . .  127
 

4.3.2 Threshold Estimation . . . . . . . . . . . . . . . . . . . . . .  129
 

5 THRESHOLD SPJ QUERIES WITH DUPLICATE ELIMINATION . . .  130
 

5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . .  132
 

5.1.1 General Tuple Uncertainty Model . . . . . . . . . . . . . . .  132
 

5.1.2 Threshold SPJ Query With Dedup . . . . . . . . . . . . . .  133
 

5.2 Pruning Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135
 

5.2.1 Selection, Projection and Join . . . . . . . . . . . . . . . . .  135
 

5.2.2 Duplicate Elimination . . . . . . . . . . . . . . . . . . . . .  137
 

5.3 Pruning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
 

5.3.1 Range Partitioning for Joins . . . . . . . . . . . . . . . . . .  140
 

5.3.2 Sampling for Dedup . . . . . . . . . . . . . . . . . . . . . .  142
 

5.4 General Pruning Schemes . . . . . . . . . . . . . . . . . . . . . . .  144
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ABSTRACT 

Qi, Yinian. Ph.D., Purdue University, August 2011. Efcient Query Processing for 
Uncertain Data . Major Professor: Sunil Prabhakar. 

Applications with uncertain data pose many challenges for data management and 

query processing. This dissertation advances the state of the art for efcient query 

processing over uncertain data. We study three types of probabilistic queries: nearest-

neighbor queries, skyline queries and the general select-project-join queries, all of 

which could leverage a probability threshold for pruning such that only results that 

satisfy the query with probabilities over the given threshold are returned. For nearest-

neighbor queries, we design novel indexes and data structures to monitor the pruning 

status and uncover pruning opportunities. For skyline queries, we propose two fil

tering schemes to quickly identify interesting instances whose skyline probabilities 

are over the threshold: i) by bounding an instance’s skyline probability, and ii) by 

comparing the instance with others based on dominance relationship. In applications 

of skyline analysis where “thresholding” is not desirable, we propose the problem 

of computing all skyline probabilities and for the first time present two worst-case 

sub-quadratic algorithms to solve the problem. We further give an efcient algorithm 

for the online version of the problem. Finally, we study the general select-project

join (SPJ) queries under the Orion uncertainty model [1] and propose optimization 

rules to leverage the threshold for early pruning of unqualified tuples. We also ex

tend our study to SPJ queries with duplicate elimination. We adopt a general tuple 

uncertainty model for this case and design new techniques for handling duplicate 

elimination. Our experiments on various data sets show that our techniques are both 

e↵ective and efcient. 



1 

1. INTRODUCTION 

Uncertain data arise in many important applications, such as sensor networks and 

location-based applications [2], where data can take di↵erent values with probabilities 

due to measurement errors. Other applications include scientific data management, 

data integration, and data cleaning, where uncertainty is caused by limited resource 

to analyze and understand data. Due to the importance of uncertain data for a large 

number of applications, there has been significant recent interest in database support 

for uncertain data. Existing work in this area includes new models for uncertain data, 

prototype implementations, and efcient query processing algorithms. In Section 

1.1 below, we first give an overview of research in managing uncertain data before 

introducing our work on querying uncertain data in Section 1.2. 

1.1 Managing Uncertain Data 

Many research e↵orts have been dedicated to modeling uncertain data and build

ing prototypes of the models [1,3–9]. Two major models for uncertainty exist: Tuple 

uncertainty models and attribute uncertainty models. For tuple uncertainty mod

els [3, 4], each tuple is associated with a probability of its existence. For attribute 

uncertainty models, a tuple always exists, but there may be one or more uncertain 

attributes in the tuple with probability distribution functions (pdfs) associated with 

them. Recently, the Orion database model is proposed for supporting pdf attributes. 

It is capable of handling both attribute and tuple uncertainty [1], where attributes 

can have pdfs and tuples can have existence probabilities. 

A big  challenge  in  managing  uncertain  data  is to  ensure the  correctness of query  

processing given dependencies between uncertain data that are either inherent in 

data (e.g., mutual exclusivity between a set of tuples for tuple uncertainty models 
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and joint distribution between a set of attributes for attribute uncertainty models) or 

arise during query evaluation (e.g., joins). For example, MystiQ [4] queries uncertain 

data using safe plans [10], which attempts to choose an alternative query plan that 

results in correct confidence computation with joins and duplicate elimination of 

projections. However, safe plans are not always the most efcient plans and may 

not even exist for some queries. To overcome these drawbacks, Trio [3, 11] uses 

lineage to explicitly capture data dependencies and efciently compute confidence. 

Hence their query evaluation is not restricted to safe plans and is separated from 

confidence computation. Other tools to capture dependencies are also proposed, such 

as factor tables [7], world tables [6] and history [1]. While many uncertain data models 

assume tuple independence or tuple dependencies, Orion [1] and MayBMS [6] are 

able to capture uncertainty and dependencies at attribute level. In particular, Orion 

handles both intra-tuple dependencies (captured by dependency sets) and  inter-tuple  

dependencies (captured by history). It is also the first model to handle continuous 

uncertainty as seen in sensor networks. Recently, another model that is capable of 

handling continuous uncertainty is proposed in [9], which uses c-tables [12]. 

We first introduce the well-received possible worlds semantics for probabilistic 

data. We then give an overview of a number of uncertain data models that are widely 

accepted by the uncertain database research community. These uncertainty models 

are categorized into tuple uncertainty models and attribute uncertainty models. Fi

nally, we introduce the Orion model [1] that captures uncertainty at both tuple level 

and attribute level. Our work in query processing for uncertain data is based on these 

uncertainty models. 

1.1.1 Possible Worlds Semantics 

In order to provide meaningful semantics for queries over uncertain data, a large 

body of recent work has adopted the well-known Possible Worlds Semantics [10] 

(PWS) over probabilistic data. As with traditional data, efcient execution is neces
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Fig. 1.1.: A simple uncertain database and its possible worlds 

sary for ensuring the viability of uncertain data management systems. In fact, due 

to the complications of ensuring correct results (with respect to PWS), and the need 

for CPU-intensive operations over probability distributions, it is even more critical 

and challenging for uncertain data. 

Fig. 1.1 shows an example uncertain table with three tuples (t
1 to t

3

), each 

associated with a probability There are two attributes A and B in the table. This 

simple example illustrates the independent tuples model [10], in which all tuples are 

independent from each other and each tuple is associated with a probability that it 

exists (i.e. existence probability). Due to the uncertainty of tuple existence, there are 

an exponential number of possible worlds with regards to the total number of tuples in 

the database. All possible worlds that can be generated from the three tuples are also 

shown in Fig. 1.1. The probability associated with each possible world W , denoted  as  

Pr(W ), is computed as the product of the probabilities of tuples that appear in W , 

i.e., Pr(W ) =  
Q

Pr(t). For example, Pr(W
5

) =  Pr(t
2

) ⇤ Pr(t
3

) ⇤ (1 � Pr(t
1

)) = t2W 

0.5 ⇤ 0.4 ⇤ 0.2 = 0.04. This is because all tuples are independent from each other. 

Furthermore, we have⌃ Wi Pr(Wi) =  1.  Let  the  table  be  T . 

http:�0.2=0.04
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1.1.2 Tuple Uncertainty Model 

For tuple uncertainty models, attributes in a tuple have exact values. The only 

uncertainty comes from the existence of tuples. Two most popular tuple uncertainty 

models are the independent tuples model and the x-tuple model. 

Independent Tuples Model 

The independent tuples model is the simplest model for uncertain data. As dis

cussed earlier in Section 1.1.1, it models uncertain data as independent tuples asso

ciated with existence probabilities. There is no dependency between data in the base 

tables. Fig. 1.1 shows an example of the independent tuples model. This model is 

adopted in many papers such as [10, 11]. 

X-Tuple Model 

The x-tuple model builds upon the independent tuples model in that each tuple 

is still associated with an existence probability. However, now tuples are no longer 

independent from each other: Some tuples are mutually exclusive among each other, 

i.e., only one tuple from that set (called an x-tuple) can  exist at any  time.  Let  the  

probabilities of tuples within the x-tuple add up to p: then  p  1 always holds.  If  

p = 1,  there  must  exist  a  “representative”  tuple  for  the  x-tuple;  otherwise,  there  is  

1 � p probability that no tuple from the x-tuple exists. If we model an x-tuple as 

an uncertain object and each tuple within the x-tuple as the object’s instances, then 

each object has a set of values (i.e., instances) that it can take with possibly di↵erent 

probabilities and only one value can be taken at any time. If p < 1, we refer to 1 � p 

as the missing probability of the object – the probability that the object does not 

exist. This model has been used in many areas of uncertain data research, such as 

handling tuple dependencies [7, 11], ranking queries [13–15], skyline queries [16–19], 

etc. 
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Suppose t
2 and t

3 are mutually exclusive in Fig. 1.1.2, i.e., t
2 and t

3 belong to the 

same x-tuple. Then the possible worlds generated from the uncertain table subject to 

the above mutual exclusivity requirement are all possible worlds in Fig. 1.1.2 except 

W
5 and W

7

. 

General Tuple Uncertainty Model 

While the independent tuple model assumes independence between tuples and 

the x-tuple model groups tuples that are mutually exclusive, we propose a general 

tuple uncertainty model where no assumptions are made about dependencies between 

tuples. In this general model, each attributes in each individual tuple has a certain 

value and the whole tuple is associated with a probability of its existence. The 

dependencies between tuples are specified using a chosen mechanism, for example, 

history in Orion [1], lineage in Trio [3] and world tables in MayBMS [6]. More details 

about this model will be discussed later in Section 5.1.1. 

1.1.3 Attribute Uncertainty Model 

While attributes in tuple uncertainty models have certain values, attributes in 

attribute uncertainty model can be uncertain. The uncertain attributes are typically 

associated with probability distribution functions (pdfs). 

Uncertainty Region Model 

One common attribute uncertainty model is the uncertainty region model, where 

the location of an object is associated with an uncertainty region of all possible 

locations. The pdf of the location is known within the uncertainty region. The 

cumulative probability p of an object’s location within its uncertainty region is always 

less than or equal to 1. If p < 1, then the uncertainty region model also exhibits 

uncertainty at tuple level, e.g., the existence of the tuple (i.e., the object) itself 
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is uncertain, in addition to the uncertainty of its location. This model is widely 

adopted in location based applications, such as nearest-neighbor queries [2, 20–22], 

reverse nearest-neighbor queries [23, 24] and range queries [25, 26]. Generally the 

objects are assumed to be independent from each other. 

1.1.4 Orion Model 

In this section, we introduce the Orion model proposed in [1], a much more com

plex model compared with the simple working models introduced earlier. This is the 

model that we choose for the threshold SPJ query optimization problem [27] that 

we will address in Chapter 4. Under this model, uncertainty is represented directly 

in a tuple using discrete or continuous pdfs. Dependencies inherent in the data are 

captured in terms of joint distributions. A key aspect of the model is that it does 

not enumerate all possible values for an uncertain attribute or a tuple (as is the case 

for many other leading models). This enables the model to directly capture infinite 

possibilities (e.g., a Gaussian probability distribution) without necessarily resorting 

to an approximate representation, i.e., it handles continuous uncertainty naturally. 

Example 1.1.1 Consider an application where the speed of cars on a highway is 

monitored. Due to errors in measurement, the speed sensors report a range over 

which the actual speed is uniformly distributed. Based on the engine noise, the make 

and model of the car are inferred by classification programs. Often these inferences 

are only able to narrow down the make and model to a few options with associated 

confidences. For example, for a given vehicle, the make and model may be either 

Honda Civic, or Toyota Corolla. Note that these two fields are jointly distributed, 

i.e., we cannot have arbitrary combinations like Honda Corolla. This information is 

to be stored in a database with the following attributes: Highway, speed, Make, and 

Model. Table 1.1 shows the speed information for three cars stored using the Orion 

uncertainty model which is discussed below. 
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Table 1.1: Car speed on highways 

Highway Speed (mph) Make Model 

101 Uniform(65, 75) 
(‘Honda’, ‘Civic’): 0.4 

(‘Toyota’, ‘Corolla’): 0.2 

101 Uniform(65, 80) 
(‘BMW’, ‘Z4’): 0.3 

(‘Ford’, ‘Mustang’): 0.3 

99 Uniform(55, 70) 
(‘Hyundai’, ‘Elantra’): 0.2 

(‘Toyota’, ‘Camry’): 0.5 

Under the Orion model, an uncertain relation T is represented using a proba

bilistic schema, (  ⌃T , T ).⌃ T is the normal relational schema (attribute names and 

domain types). The set of possible domains is expanded to include new data types. 

These data types represent continuous uncertainty (either as a symbolic representa

tion such as a Gaussian, or a histogram), ordered discrete (e.g., integer values) and 

categorical or unordered discrete (e.g., colors). T captures dependency informa

tion. It  is  a  partitioning  of  the  uncertain  attributes  of  T . Each  partition,  called  a  

dependency set, declares that the attributes in that partition are jointly distributed 

(i.e., correlated). An uncertain attribute that is independent from all the other at

tributes forms its own singleton dependency set. For our car example in Table 1.1,

 T = {{Speed}, {Make, Model}}. 

In the standard relational model, a tuple is a collection of exact values (one for 

each attribute in the schema). Under the Orion model, a tuple is a collection of 

exact values (one for each certain attribute, if any) and probability distributions (one 

for each dependency set, if any). For example, the first tuple in Table 1.1 consists 

of one certain value 101 for Highway, and two pdfs: Uniform(65,75) for Speed, and  

{ (‘Honda’, ‘Civic’):0.4, (‘Toyota’, ‘Co-rolla’):0.2 } for {Make, Model}. This  tuple  

represents a car on Highway 101 traveling with a speed that is uniformly distributed 
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between 65 and 75 mph and is either a Honda Civic with probability 0.4, or a Toyota 

Corolla with probability 0.2. 

From this example we can see that the model allows for missing probabilities – i.e., 

the sum of probability values for any distribution can be less than 1 indicating partial 

probabilities. 1 In general each pdf may be multi-dimensional over any combination 

of uncertain domains. We define the probability of a dependency set S in a tuple 

t, denoted  as  Pr(t.S), as the cumulative probability mass of the pdf defined on t.S. 

The overall (tuple) probability of the tuple t, denoted  as  Pr(t), is then the product 

of the cumulative probability mass of each of its dependency sets, i.e. Pr(t) =  
Q

Pr(t.S). Thus, for the first tuple in Table 1.1, the overall tuple probability is S2�T 

1 ⇥ 0.6 = 0.6. 

In addition to representation, a model must specify how queries are processed 

correctly (with respect to PWS). The major challenge for correct evaluation of prob

abilities is caused by dependencies among derived data [7]. The model explicitly 

tracks the original pdf from which each resulting pdf in a result tuple is derived. 

Thus for each tuple, the model stores a history ⇤  that handles  inter-tuple depen

dencies that result from prior database operations. History captures dependencies 

between dependency sets of tuples. The function ⇤ maps each pdf of a dependency 

set t.S in tuple t, to  a  set  of  pdfs  that  are  its  ancestors, i.e., from  which  the  pdf  of  

t.S is derived. Only the top-level ancestors are stored, i.e., the base pdfs inserted 

in the database by the user (base tuples are assumed to be independent from each 

other). Two pdfs are called historically independent if their histories do not overlap, 

otherwise they are historically dependent. 

To achieve correct evaluation, the model converts relational operations over un

certain attributes into operations over probability distributions. Three simple opera

tions are defined and shown to be sufcient to support general SPJ queries: floor, 

marginalize and product. 

1Note that NULL values belong to each domain and can also be associated with a probability value 
in any pdf. 
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floor(f, I) takes an input  pdf  f and reduces the probability to zero over all 

points in region I. It  produces  a  partial  pdf  f 0 such that values of f 0(x) = 0  whenever  

x 2 I and f 0(x) =  f(x) otherwise.  This  floor operation corresponds to a selection 

predicate. The values in I are those which do not pass the selection criteria and 

hence do not exist in the resulting pdf. Multiple floor operations can be successively 

applied over a pdf in any order and the result would be floor(f, I
1 [ ...Ik) regardless  

of the order in which they are applied. 

marginalize(f, Ā) – produces  the  marginalized  pdf f 0 for a set of attributes Ā

given their joint pdf f with other attributes. Let Āf be the set of attributes whose 

¯pdf is f . Then  A ✓ Āf . We compute f 0 as 
R

f . For discrete distributions, 
A¯f �A¯

the integral is replaced by sum. The marginalization corresponds to a projection 

operation wherein a number of attributes are projected out. An important point to 

note is that the overall tuple probability does not change after marginalization. 

product(f
1

, f
2

) –  returns  the  joint  pdf f (over attribute set S = S
1 ⇥ S

2

) for  

two individual pdfs f
1 and f

2 (over S1 and S
2 respectively). Two cases need to be 

considered. If f
1 and f

2 are historically independent, we can simply compute the joint 

pdf as the usual product: f(x) =  f
1

(x
1

)f
2

(x
2

) where  x 2 S
1 ⇥ S

2 and x = (x
1

, x
2

). If 

they are historically dependent, it is incorrect to simply take the product of the two. 

In this situation, we first divide the attributes in S
1 and S

2 into three sets: i) Cj – 

the set of attributes that the common ancestors of S
1 and S

2 share with S
1 and S

2

; 

ii) D
1 – attributes of  S

1 that are not in Cj ; and  iii)  D
2 – attributes of  S

2 that are not 

in Cj . Identification of these sets is easily done by examining the history of S
1 and 

S
2

. These  three  sets  are  independent  of  each  other  and  we  can  use  them  to  derive  the  

distribution of S correctly while taking the dependencies into account. To do this, 

we first compute their product and then apply any floor operations that were applied 

to derive the attribute sets in either S
1 or S2 from Cj . 
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1.2 Querying Uncertain Data 

Querying uncertain data has gained increasing popularity over recent years. Much 

work focuses on solving specific problems for uncertain data, such as the nearest-

neighbor problem [2, 20, 21, 28], reverse nearest-neighbor problem [23, 24], indexing 

[29–31], ranking [13–15, 32–35], range queries [25, 26, 36, 37], skyline queries [19, 38], 

join processing [39], etc. Among these, the probabilistic threshold query is one of 

the most common queries over probabilistic data, which returns results satisfying the 

query with probabilities equal to or greater than a given threshold. Threshold queries 

are useful for many applications where results with low probabilities are less relevant. 

For example, the probability of a result is indicative of our confidence in the result 

being true [10]. Thus low probability results are not of interest in many cases. 

Optimizations can be employed to leverage the threshold for pruning during the 

query evaluation so that all results that have no hope of meeting the threshold can 

be discarded as early as possible. For example, [20] proposed the concept of the “con

strained probabilistic nearest-neighbor query” with a probability threshold and an 

error tolerance to save expensive computations of the exact nearest-neighbor prob

abilities. Other examples of threshold queries include the probabilistic threshold 

approach to ranking queries [14], range queries [29] and skyline queries [19, 38]. 

Below we first give an overview on query processing of uncertain data, then intro

duce three types of probabilistic queries that we have studied – probabilistic nearest-

neighbor queries, probabilistic skyline queries and finally, general threshold queries 

for selection, projection and join (threshold SPJ queries). All three types of queries 

can leverage a probability threshold for efciently pruning the search space. We then 

summarize our contributions to efcient evaluation of these queries in Section 1.2.5. 

1.2.1 Overview 

The main challenges in query processing of uncertain data lie in the following two 

aspects: First, we need to ensure the correctness of query results in the presence of 
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complicated dependencies between data. This is handled mainly by the uncertain 

data models, as mentioned in Section 1.1. Second, due to the probabilistic nature of 

uncertain data, the search space of queries is much larger compared with traditional 

data with no uncertainty: i) there are more potential results; ii) more data has to 

be considered in computing the results, especially in confidence computation, where 

confidence is the probability of a result satisfying the query; and iii) under the possible 

worlds semantics, if we take the näıve approach to querying uncertain data, there can 

be an exponential number of possible worlds in which the query needs to be evaluated. 

Specifically, given a query performed on a set of uncertain tables, the näıve approach 

is to first enumerate all possible worlds of the base tables, perform the query in every 

single possible world (treated as a set of certain tables) to obtain the results, then 

summarize the possible worlds to obtain the final query results in an uncertain table. 

This approach can be very expensive due to the large number of possible worlds, as 

shown in Fig. 1.1. Therefore, the more efcient approach (also the common approach) 

to query processing with uncertain data is to obtain the query results directly from 

the original tables without enumerating their possible worlds but still ensure that the 

results are the same as those obtained through the näıve approach. 

Our contributions to querying uncertain data focus on its second aspect: improv

ing the efciency. We design efcient query processing algorithms that quickly reduce 

the search space by: i) pruning unqualified results as early as possible; ii) bounding 

the confidence instead of computing the exact value for pruning opportunities (the 

former has much more efcient algorithms than the latter); and iii) taking the ef

cient approach instead of the näıve approach to uncertain data query evaluation such 

that query results are computed directly from the original uncertain tables without 

explicitly considering their possible worlds. 

Below we review three kinds of probabilistic queries that we worked on: proba

bilistic nearest-neighbor queries (Section 1.2.2), probabilistic skyline queries (Section 

1.2.3) and threshold select-project-join (SPJ) queries (Section 1.2.4). Our contribu

tions to each kind of queries are summarized in Section 1.2.5. 
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1.2.2 Probabilistic Nearest-neighbor Queries 

The nearest-neighbor (NN) query is one of the most common database queries 

that finds the nearest object to a query object given some distance function. Many 

algorithms have been proposed for NN queries [40–42] where the value of data is 

certain. In probabilistic data setting, NN queries need to be re-evaluated. Take 

the location-based data for example. Suppose all data objects are in 2-dimensional 

space. The exact location of an object is unknown. However, each object is associated 

with a region of its possible locations and the pdf of the object’s location within the 

region is known. Since each object has a probability (maybe 0) to be NN to a query 

object, we have to take probabilities into account when answering NN queries: We 

can either return all objects with a non-zero probability to be NN or return all objects 

with the NN probability greater than some threshold. We call the former probabilistic 

nearest-neighbor (PNN) queries and the latter probabilistic nearest-neighbor threshold 

(PNNT) queries. Several papers have studied the NN problem with uncertain data. 

For example, [2] proposed an algorithm for answering PNN queries. The algorithm 

returns all objects along with their non-zero NN probabilities, which requires a large 

number of expensive computations of the exact NN probabilities. However, most of 

the time we are only interested in objects with a relatively large probability to be NN, 

hence a probability threshold can be specified for the query to only return objects 

with NN probabilities that meet the threshold (i.e., PNNT queries). For such queries, 

the threshold can be leveraged to prune objects that cannot satisfy the probability 

requirement. [20] proposed the constrained probabilistic nearest-neighbor query (C

PNN) with both threshold (P ) and tolerance  (  ) constraints,  which  is  equivalent to  

having a single threshold P � . 

1.2.3 Probabilistic Skyline Queries 

Skyline queries are widely used in multi-criteria decision making, where a choice 

that scores high in one criterion may score low in another (e.g., a hotel very close 
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to the beach but very expensive). The query returns all data points that are not 

dominated by any other point in a data set, where a point p
1 dominates another 

point p
2 if p1 is no worse than p

2 in all dimensions and better than p
2 in at least one 

dimension. 

Efcient algorithms are proposed to answer a variety of skyline queries [43–47], 

all of which deal with traditional data where no uncertainty is involved. While sig

nificant research e↵orts have been dedicated to modeling, managing and querying 

uncertain data, advanced analysis of uncertain data is still in its early stages. Re

cently skyline queries with uncertain data have also been studied [16, 19, 48]. [16] 

first introduced probabilistic skyline queries that answer skyline queries for data with 

discrete uncertainty, i.e., each uncertain object is associated with a set of instances 

and corresponding probabilities to take those particular instances. Instances of the 

same object are mutually exclusive, i.e., at most one can exist at a time. For prob

abilistic skyline queries, only objects with skyline probabilities greater than or equal 

to the threshold are returned. The skyline probability of an instance that belongs to 

an object is the probability that this instance occurs and is not dominated by any 

occurring instance of another object. The skyline probability of an object is the sum 

of the skyline probabilities of all its instances (because the instances are mutually 

exclusive). 

1.2.4 Threshold SPJ Queries 

Many algorithms for query processing with uncertain data leverages a probabil

ity threshold for efcient evaluation, such as probabilistic nearest-neighbor queries 

and skyline queries introduced earlier. Such threshold queries represent an impor

tant class of queries over uncertain data that return only those query results whose 

probabilities meet a given threshold. However, most of the algorithms for threshold 

queries are limited to a single query and do not address complex query optimiza

tion (such as an arbitrary SQL query). [8] aims at optimizing some SQL queries, 
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but only works for tuple-independent probabilistic databases and is focused on exact 

confidence computation of the query results. 

The current approach to evaluating a general threshold query that involves selec

tion, projection and join (we call it the threshold SPJ query) is to evaluate  the  query  

correctly and then discard those tuples that do not satisfy the probability threshold. 

This approach misses out on a significant optimization opportunity, similar to the 

“pushing selections, projections early” heuristic commonly used in databases. It may 

be the case that a large number of tuples that are produced by the query do not meet 

the threshold and are thus thrown out. The following important question remains 

unanswered: Is it possible to avoid spending resources on computing these “useless” 

tuples? 

One of the major challenges in answering threshold SPJ queries is ensuring the 

correctness of query results. Due to the probabilistic nature of the data, results (and 

base data items too) often have dependencies that must not be ignored in order to 

ensure correct computation of result probabilities. Consequently, the question of how 

a threshold  query for uncertain data  can be  optimized  is not obvious.  

1.2.5 Summary of Contributions 

We design algorithms to efciently process probabilistic nearest-neighbor queries 

[22], skyline queries [17,18,49] and threshold SPJ queries [27] for uncertain data. Our 

main contributions are summarized below: 

Probabilistic nearest-neighbor Queries 

•	 We generalize the PNNT query (see Section 1.2.2) by allowing objects to have 

missing probabilities (i.e. the cumulative probability of an object’s location in 

its uncertain region may be less than 1). This problem is not considered in 

any previous PNN paper and brings significant challenges to the design of new 

pruning algorithms. 
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•	 We propose an augmented R-tree index with additional probabilistic informa

tion to facilitate pruning as well as global data structures for maintaining the 

current pruning status. 

•	 We propose a PNNT query processing algorithm and experimentally verify the 

efciency of the algorithm in terms of pruning capabilities. 

Probabilistic Skyline Queries 

•	 We propose an instance-level probabilistic skyline problem that provides fine-

grained (i.e., instance-level) information about probabilistic skylines. 

•	 For situations in which users are only interested in instances with skyline prob

abilities over a certain threshold, we present two filtering schemes for efcient 

query processing. 

•	 For situations where “thresholding” is not desirable – low probability events 

cannot be ignored when their consequences are significant, it is necessary to 

compute skyline probabilities of all instances. We provide the first algorithm 

for this problem whose worst-case time complexity is sub-quadratic, as a result 

of the careful balancing between a space partitioning algorithm and the existing 

dominance counting algorithm [50, 51]. We further propose a new algorithm to 

improve this sub-quadratic result, and design an efcient algorithm to compute 

the skyline probabilities “on the fly”: Given a set of uncertain objects and a 

query point that is unknown until the query time, return the probability that 

the query point is not dominated by any instance of the given set. 

Threshold SPJ Queries Under the Orion Model 

•	 We present the first work to address the important problem of optimizing arbi

trary threshold select-project-join (SPJ) queries over uncertain data under the 

Orion model (see Section 1.1.4). 

•	 We formalize the notion of threshold SPJ queries using a new threshold operator, 

⌧✓, as an addition to  the  set of standard relational algebra operators.  
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•	 We establish query equivalences involving the threshold operator, and prove 

their correctness with respect to PWS over uncertain data. The optimization 

rules that we design are general enough to handle uncertain data with both dis

crete and continuous uncertainty and allow the uncertain data to have arbitrary 

dependencies. These equivalences are very similar to the standard equivalences 

used for regular relational query optimization. Thus they can easily be incor

porated into existing query optimizers. The main contribution of our work lies 

in establishing the correctness of the equivalences that enables their use for 

optimization. 

•	 We experimentally validate (using real and synthetic data) the e↵ectiveness of 

our optimization rules in the Orion uncertain database. 

•	 We further propose the idea of increasing the threshold as we push it down the 

query plan for pruning, in order to quickly prune away tuples that pass the 

original threshold during an early stage of query evaluation but fail to do so at 

the end of the query. 

Threshold SPJ Queries With Duplicate Elimination 

•	 We study the optimization of threshold SPJ queries when duplicate elimination 

is enabled under the general tuple uncertainty model (see Section 1.1.2). We 

design new optimization rules for this model, which are applicable even if the 

dependencies between tuples are not known at the time of the query. 

•	 We propose pruning techniques and algorithms to efciently process queries 

with duplicate elimination. We also design new techniques to improve pruning 

for queries with joins when the tables to be joined are independent from each 

other. 

•	 We give an empirical study on the performance of di↵erent optimization algo

rithms on various data sets and show that our techniques are both e↵ective and 

efcient. 
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We will discuss our algorithms and approaches to the above problems in details 

in Chapter 2 - 5. 
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2. PROBABILISTIC NEAREST NEIGHBOR QUERIES 

2.1 Problem Definition 

Assuming that we have a database of objects with uncertain attributes as continu

ous random variables associated with pdfs (i.e., the uncertain data model presented in 

Section 1.1.3), we give two formal problem definitions for NN queries of such objects. 

Definition 2.1.1 Probabilistic Nearest Neighbor (PNN) Query: Given a 

query point q and a set of objects with uncertain attributes and their correspond

ing pdfs, a PNN query returns the probability Pnn(U) that uncertain object U is NN 

to q for each object U . 

For PNN queries, the probability for each object to be NN must be computed 

unless there is evidence that the object cannot be NN (i.e., the NN probability is 

0). This implies a huge number of computations if the number of objects is huge. 

Moreover, the computation of the probability itself is very expensive, which depends 

on many other objects whose uncertain regions overlap with its own [2]. The exact 

probability computation can involve integrations over multiple subregions that may 

have arbitrary pdfs, resulting in a high computational cost. However, objects having 

a small probability to be NN are generally less important than those with a high 

probability. For many applications, it is only necessary to retrieve objects with the 

NN probability exceeding a given threshold. The formal definition of such queries is 

given below. 

Definition 2.1.2 Probabilistic Nearest Neighbor Threshold (PNNT) Query: 

Given a query point q, a threshold ⌧ and a set of objects with uncertain attributes and 

their pdfs, the PNNT query returns every object U with Pnn(U) > ⌧ . 
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Since we are only concerned about object U with Pnn(U) > ⌧ in PNNT queries, 

we do not need to compute the exact Pnn of the object if we can prove the probability 

cannot exceed ⌧ . In  this  case,  we  can  safely  prune  away  those  objects,  hence  reduce  

the computational cost. 

Note that in our PNNT queries, we do not require that the probabilities of an 

object’s region sum up to 1 (in other words, the pdf can be a partial pdf). Suppose 

the sum is p, then  1�p is the missing probability that the object does not exist at all. 

This is a more general case. We need to consider more when pruning objects: Unless 

at least one object closer to q is sure to exist, an object that is far from q still has a 

non-zero probability to be NN, thus cannot be pruned away immediately as in [20]. 

2.2 Augmented R-Tree Index 

In this section, we describe our new R-tree index for the PNNT problem defined 

in the previous section. We propose three types of augmentation to the normal R-tree 

in order to answer the PNNT queries both e↵ectively and efciently. The following 

information is added to the entries in an R-tree to facilitate query processing: Absence 

probability (AP ), maximal probability (MP  ) and the absence  probability  bounds  

(AP -bounds). We first introduce each augmentation separately, then show how to 

incorporate all of them into our index structure. In the rest of the chapter, we use ⌧ 

to denote the PNNT query threshold. 

2.2.1 Absence Probability (AP ) 

Definition 2.2.1 Pruning Circle: A circle Cq,r centered at query point q with a 

radius r is called a pruning circle if for every object U lying outside Cq,r we have 

Pnn(U) < ⌧ . 

The reason why Cq,r is called a pruning circle is that given Cq,r, we  can  safely  prune  

away all objects lying outside it when processing PNNT queries. Our goal is to shrink 
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the pruning circle as much as possible so that all objects outside it can be pruned 

away immediately, leaving only a small portion of objects to be further examined 

as NN candidates. Next we introduce absence probability for our augmented R-tree 

index: 

Definition 2.2.2 Absence Probability AP : Given a Minimum Bounding Rect

angle (MBR) M in an R-tree, AP (M) is defined as the probability that none of the 

objects contained in M is present. Likewise, for a circle C, AP (C) is the probability 

that no object in C is present. 

Moreover, we define maximum distance dmax(q, M) from query  point  q to MBR 

M to be the maximum distance of all distances from q to M and similarly minimum 

distance dmin(q, M) is  the  minimum distance  of  all distances  from  q to M . We  propose  

the following theorem that leverages AP (M) and  dmax(q, M) to  prune  away MBRs  

whose objects cannot be NN candidates. 

Theorem 2.2.1 If AP (Mi) < ⌧ for MBR Mi, then a circle Cq,r centered at query 

point q with radius r = dmax(q, Mi) is a pruning circle. 

Proof Since there may be objects inside Cq,r that are contained in MBRs other than 

Mi (denoted as Mj , as shown in Fig. 2.1), we can infer that 
! 

AP (Cq,r)  AP (Mi) · 
Q

AP (Mj )  AP (Mi) < ⌧ 
Mj ,j 6=i 

For any object U in any MBR Mk outside Cq,r (dmin(q, Mk) � r) to be NN to q, there  

should be no object inside Cq,r, i.e.,  Pnn(U)  AP (Cq,r) < ⌧ . From  Definition  2.2.1  

we conclude that Cq,r is a pruning circle. 

Fig. 2.1 illustrates the pruning circle Cq,r when AP (Mi) < ⌧ . The  MBR  Mk 

outside the circle thus can be pruned away immediately. This pruning strategy with 

respect to AP will be referenced later as the first-level pruning . We  will  see  in  

Section 2.2.3 a variation of it that is finer-grained. 

http:pruning.We
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Fig. 2.1.: Pruning circle Cq,r (AP (Mi) < ⌧) 

2.2.2 Maximal Probability (MP ) 

Definition 2.2.3 Maximal Probability MP (M) for MBR M is defined as: 

maxU2M po, where U is an object contained in M and po is the probability that U is 

present. 

The maximal probability MP  is introduced for two purposes. Firstly, it can be 

used for pre-pruning to prune away MBRs with MP  <⌧  . Consider  an  MBR  M 

with MP (M) < ⌧ . By  definitions  of  MP  and po, we  know  that  po  MP (M) < ⌧ . 

Since the probability for U to be NN to q is at most the probability of its presence, 

we have Pnn(U)  po < ⌧ for any object U in M . Hence we can safely prune away 

the entire M . Secondly,  MP (M) can also be used for further pruning beyond the 

capability of the first-level pruning, which we call the second-level pruning , which  

is supported by the theorem below: 

Theorem 2.2.2 Let Mi be an MBR within a circle C. Let Mk be an MBR outside 

C. If  MP (Mk) · AP (Mi) < ⌧ , then for any object U in Mk, Pnn(U) < ⌧ . 

Proof For any object U in Mk, we  have  Pnn(U)  po ·AP (C) MP (Mk)·AP (Mi) < 

⌧ , where  po is the probability that U is present. 

We have proved above the probability that any object U in Mk is NN to q is less 

than ⌧ , so we can safely prune away the entire MBR Mk. This  is  called  second-level 

pruning. In Fig. 2.1, if AP (Mi) ⌧ instead, we cannot use the first-level pruning to 
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prune away Mk. However, if MP  (Mk)·AP (Mi) < ⌧ holds, we can use the second-level 

pruning to prune Mk away. 

2.2.3 AP -Bounds 

Unlike AP introduced in Section 2.2.1 that stores the absence probability of an en

tire MBR, AP -bounds store the absence probabilities of regions in the MBR specified 

by the bounds. The goal of AP -bounds is to shrink the size of the pruning circle as 

much as possible so that more MBRs outside the circle can be pruned away. This is a 

fine-grained version of the first-level pruning in Section 2.2.1. Both methods require 

that we have a pruning circle in which the absence probability is below ⌧ . 

The idea of probability bounds (e.g. x-bounds) is first proposed in [39] for range 

queries with probability thresholds. In this study, we use probability bounds for 

PNNT queries. 

Definition 2.2.4 AP -bounds AP l
M(x) (left AP -bound) and AP r

M(x) (right AP 

bound) for MBR M are defined as a pair of lines intersecting with M such that 

the absence probability of the region to the left of AP l
M(x) and to the right of AP r

M(x) 

is no greater than the bounding probability x (0  x  1). 

Furthermore, we define AP-distances dlM(x) and  drM(x) to  be  distances from the  

left and right edges of MBR M to AP l
M(x) and  AP r

M(x) respectively.  We  require  

that AP -bounds be tight — they are pushed towards the left or right edges of the 

MBR as much as possible while still satisfying Definition 2.2.4. This ensures that 

AP -bounds are unique. AP -bounds can be represented using AP -distances and the 

bounding probability x. For  example,  AP l
M(x) is represented  using distance  dlM(x) 

and x itself. Suppose U
1

, U
2

, and  U
3 are three objects in MBR M , as shown in Fig. 

2.2. Let the bounding probability be x, then  the  AP -bounds of M ensures that the 

probability that none of the three objects is present within the AP -bounds is no more 

than x. Note that the bounding probability becomes larger as AP -bounds are pushed 

towards the edges, i.e., 0.5 > 0.2 in Fig. 2.2. 
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Fig. 2.2.: AP -bounds in MBR M Fig. 2.3.: Construct left-AP -bounds of M 

Pruning with AP -bounds: We  first  find  the  set  of  AP -bounds with bounding 

probability x <  ⌧  and as close to the edges of the MBR as possible. We let the new 

radius of the pruning circle be the minimal distance from the query point q to the 

AP -bound. Then all MBRs outside of this circle can be pruned away. Pruning using 

AP -bounds instead of AP of an entire MBR has the advantage that the resulting 

pruning radius is smaller, indicating that more MBRs are likely to be outside of the 

pruning circle and thus can be discarded immediately without further evaluation. 

2.2.4 The Index Structure 

Now that we have introduced all three kinds of information that we want to 

leverage in PNNT query processing, we redesign the R-tree index structure by adding 

all the information to the entries of the R-tree internal nodes. The construction of 

the augmented R-tree index is also discussed in details. 

There are multiple entries in an R-tree internal node, each of which has an MBR 

(M) and a  pointer (p) to a child node that stores information about all smaller 

MBRs contained in M . We  augment  R-tree  by  adding  the  following  additional  items  

to each entry of an internal node: i) AP ii) MP  iii) left AP bounds and right AP 

bounds. Note that we keep a set of left and right AP bounds with di↵erent bounding 

probabilities x to suit queries of various thresholds. The list of x’s is stored globally, 

each of which corresponds to a left and right pair of AP bounds in the MBR entry. 



24 

When constructing the new index, we propagate the additional information in 

MBR entries in a bottom-up fashion: The AP of an MBR at a higher level of 

the R-tree can be obtained by simply multiplying AP s of all  its child  MBRs.  Let  

M
1

,M
2

, ...,  Mm be the child MBRs of M . Then  AP (M) =  
Qm AP (Mk). In contrast, k=1 

the MP  of MBR M is obtained by finding the maximum MP  among its child MBRs, 

i.e., MP  (M) =  maxm MP  (Mk). To compute the left-AP -bounds AP l (x) of  M , we  k=1 M

compute the AP distance dl (x) =  maxm dl (x) for each bounding probability x.M k=1 Mk 

The right-AP -bounds are computed in the same way. We call this method “Coarse Es

timation Method” (CEM). Alternatively, we have “Fine Estimation Method” (FEM), 

which leverages the AP hop function to obtain a much finer estimation of AP -bounds. 

We compute AP hop functions for all of M ’s child MBRs and deduce the hop function 

of M from them. 

Definition 2.2.5 AP hop function is a function from AP -distance d to bounding 

probability x, denoted as x = h(d). A hop function is with regard to an MBR M if d 

is the distance from AP -bounds to M ’s bounds. 

Note that for both left and right AP -bounds, we have a corresponding hop func

tion. Suppose M
1 and M

2 are two MBRs contained in M , as shown in Fig. 2.3. 

x
11 · · · x1m are the bounding probabilities of left AP -bounds (AP l ) of  M

1

. LikeM
1 

wise, x
21 · · · x2m are the bounding probabilities of left AP -bounds (AP lM

2 
) of  M

2

. 

Let h
1 be the hop function of M

1 and h
2 for M2

. Let  (djk, xjk) be  the  points on  hj, 

where j 2 {1, 2}, 1   k  m, and  djk is the distance from M ’s left edge to Mj’s 

AP -bound AP l (xjk). Moreover, the AP -bounds for both MBRs are ordered such Mj 

that djk < djk+1

(djm+1 = +1, dj0 = 0).  Then  we  write  function  hj as follows: 

hj(d) =  xjk, if djk  d < djk+1 (2.1) 

Our goal is to compute M ’s hop function h from h
1 and h

2

. The absence probabil

ity of the region within the AP -bound AP l (x) with  AP -distance at least max(d
1k

1 )M , d
2k

2 

is at most the product of absence probabilities within AP -bounds AP l ) and  M
1 
(x

1k
1 

AP l (x
2k

2 M x
1k

1 .M
2 

), that is, AP l ’s bounding probability x  · x
2k

2 
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Having observed this property, we can obtain h from h
1 and h

2 as follows (1  

k
1

, k
2  m): 

h(d) =  x
1k

1

�1 · x2k
2

�1 if d 2 [d
1k

1

�1

, d
1k

1 ) and  d 2 [d
2k

2

�1

, d
2k

2 )  (2.2)  

Note that more than m AP-bounds for M can be computed from Equation 2.2. 

However, to be consistent with M
1 and M

2

, we  need  to  normalize  function  h so that 

it has only m AP  -bounds. This can be done in a number of ways. One näıve solution 

is to keep the first m bounds and throw the others away. With the help of hop 

functions, we get tighter AP -bounds and thus more MBRs could be pruned away 

using first-level pruning. 

2.3 Query Processing 

Before presenting our PNNT query processing algorithm, we first introduce the 

Global AP (GAP ) function  that is  essential for  pruning.  

2.3.1 GAP Function 

GAP function maintains the global AP information for the query point q. Let  

the distance to q be d. The  definition  of  GAP function is as follows: 

Definition 2.3.1 GAP function GAP (d) is the probability that no object exists 

inside the circle Cq,d. 

GAP is used to find and shrink the pruning circle as much as possible so that 

all MBRs outside of the circle can be pruned away. The radius R of the current 

pruning circle is maintained globally and decreases as more MBRs are seen during 

the query processing. GAP is updated whenever a new MBR is retrieved, whose 

absence probability contributes to GAP to make it more accurate. The algorithm 

updateGAP has the details. We use M to denote an MBR and M.AP (q.threshold) 

to denote the AP -bound of M with bounding probability no greater than the query 
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Algorithm 1 Update GAP 

Require: The current GAP , the query point (q), the newly-seen MBR (M) 

Ensure: The updated GAP 

if	 M.ap < q.threshold then
 

set currentP oint.d to be the distance between q and M.AP (q.threshold)
 

if currentP oint.d == d
max

(query, M) then
 

currentP oint.ap = M.ap 

else 

currentP oint.ap = q.threshold 

end if
 

end if // choosing a GAP point given M ends here
 

if GAP is empty then
 

add currentP oint to GAP 

else 

savedAP = currentP oint.ap 

insert currentP oint into GAP according to d, let  the  point  before  it  be  prevP oint 

if currentP oint is not the first point of GAP then 

currentP oint.ap = savedAp ⇤ prevP oint.ap 

end if
 

if there are points after currentP oint in GAP then
 

set their new ap to be the old ap times savedAp
 

end if
 

end if
 

find the first point (boundaryP oint) in  GAP with its ap  q.threshold
 

set the pruning radius R = boundaryP oint.d
 

discard all points in GAP with d > R 
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Algorithm 2 PNNT Query Processing 

Require: The augmented R-tree (tree) for  all data items,  the  query point  (query) 

Ensure: All data items with NN probability greater than query.threshold (results) 

prune(tree.root, query) 

for each node in non-discarded leaf-level nodes after pruning do 

for each data item in node do 

if	 item is marked as ‘c’ (candidate)  or  ‘k’ (non-candidate  to  be  kept)  then 

add item to remains (non-discarded data items) 

if item is marked as ‘c’ then 

add item to candidates (NN candidates) 

end if
 

end if
 

end for
 

end for // pruning stage ends here
 

for each item in candidates do
 

Pnn = computeNNP robability(item, remains, query)
 

if Pnn > query.threshold  then
 

add item to results
 

end if
 

end for
 

return results // refining stage ends here 
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threshold. For each point on GAP function, we use d to denote the distance to query 

q and ap to denote GAP (d), the absence probability of the circle Cq,d. 

2.3.2 PNNT Query Processing Algorithm 

Our PNNT query processing algorithm (shown in Algorithm 2) has two stages: 

Pruning stage and refining stage. In the pruning stage, the algorithm prunes away 

nodes in the augmented R-tree with the help of the GAP function. The goal is to 

dynamically update GAP as we see more MBRs so that we can shrink the pruning 

circle accordingly. The refining stage then decides whether a NN candidate is indeed 

a query result by checking whether its exact NN probability is greater than the 

threshold. 

The details of the pruning algorithm (i.e. prune) are in Algorithm 3. The input 

is the query point and the node in the tree where the pruning starts. Note that we 

update the GAP function whenever we see a new MBR using algorithm updateGAP 

introduced in Section 2.3.1. MarkMBRs (Algorithm 4) marks all MBRs in the node as 

‘c’, ‘k’ or ‘d’ according to the latest GAP function, where ‘c’ means NN candidates, 

‘k’ means non-candidates that we need to keep for the refining stage and ‘d’ means 

others to be discarded. 

The nodes in the augmented R-tree are visited in a depth-first manner. The 

function PickMBRtoExplore picks an MBR in the node from all that are marked ‘c’. 

The corresponding child of the node will then be explored. The criteria for picking is 

to choose the MBR that is furthest from the query point, in the hope that its children 

will be discarded soon. 

2.4 Experimental Evaluation 

We performed our experiments on 1-dimensional data represented as intervals. 

Each interval is the uncertain region of the data and its pdf is represented using 

histograms. The total probability p over the interval is either in (0, 1] or in (0.5, 
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Algorithm 3 Prune 

Require: A node in  tree (node) to  start pruning,  query 

Ensure: All non-discarded nodes with marked MBRs 

for each MBR M in node do 

updateGAP (M, query) 

end for 

markMBRs(node, query)
 

if node is a leaf then
 

return
 

end if 

next = pickMBRtoExplore(node, query) 

while next != NULL do 

prune(next, query) 

markMBRs(node, query) 

next = pickMBRtoExplore(node, query) 

end while 
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Algorithm 4 Mark MBRs 

Require: A node in  tree (node) to  mark its  MBRs,  query 

Ensure: All MBRs in node are marked 

for each MBR M in node do 

if M is outside of the current pruning circle CR centered at query with radius R 

then 

mark M as ‘d’  //  first-level  pruning  

else 

mark M as ‘c’
 

if M.mp < query.threshold then
 

mark M as ‘k’ // pre-pruning
 

else 

search in GAP for the last point satisfying GAP.d  d
min

(query, M) 

if M.mp ⇤GAP.ap < query.threshold then 

mark M as ‘k’  //second-level  pruning  

end if
 

end if
 

end if
 

end for
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1]. The threshold ⌧ of the PNNT query is at least 0.1. All intervals are randomly 

generated within the range (0, 10000] and the size of the interval is in [1, 10]. For each 

experiment, we average the statistics over 10 randomly generated query points in (0, 

10000]. The default values/ranges for data size n, threshold  ⌧ and total probability p 

is 100000 (100K), 0.3 and (0, 1]. We generated data with either uniform pdf (default) 

or Gaussian pdf. Default values of parameters are used unless otherwise specified. 

We ran our experiments (written in C++) on a PC with Intel T2500 2.00GHz CPU 

and 2.00GB main memory. 

E↵ect of Data Size: We evaluated our algorithm by varying the data set size 

n from 10000 to 100000. We computed the pruning percentage of our algorithm by 

dividing the number of NN candidates (candidateCount) by  n. We  compared  the  

pruning percentage when the total probability p 2 (0, 1] and p 2 (0.5, 1]. Fig. 2.4 

shows the result. Over 99.7% data items are pruned away for both cases while a 

random p 2 (0, 1] generally has a higher pruning percentage than p 2 (0.5, 1]. We 

also evaluated the time cost of our algorithm with regard to the pruning and refining 

stages in Fig. 2.5. The total time cost (pruning and refining) is also shown in Fig. 

2.5. 

E↵ect of Threshold: We  repeated  the  previous  experiments  with  the  data  size  

fixed at 100000 and the threshold varying from 0.1 to 0.9 in Fig. 2.6 and Fig. 2.7. 

We further compared the three pruning techniques (Prune0, Prune1, Prune2) with  

the varying threshold in Fig. 2.8. The result shows that Prune1 contributes the most 

of all three techniques with a pruning percentage around 99.8%, followed by Prune0 

and Prune2. 

Data with Gaussian pdf : Our  algorithm  performs  well  for  data  with  Gaussian  

pdf too. Fig. 2.9 shows the pruning percentage of the three pruning techniques over 

di↵erent thresholds. Compared with Fig. 2.8, we observe the similar results: prune1 

prunes most, followed by prune0 and prune2. The  pruning  percentages  of  the  three  

techniques are all above 94%. 
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3. PROBABILISTIC SKYLINE QUERIES 

In this chapter, we present our instance-level probabilistic skyline problem and discuss 

two main variations of the problem: one with a probability threshold that can be used 

in pruning instances whose skyline probabilities fail the threshold (Section 3.2); the 

other with no threshold given, resulting in the computation of skyline probabilities 

of all instances (Section 3.3, Section 3.4). We further study an online version of 

computing skyline probabilities and present our results in Section 3.5. 

3.1 Problem Definitions 

We first introduce some preliminaries before presenting our probabilistic skyline 

problems. The uncertainty model that we adopt for both problems (with or without 

thresholds) is the one introduced in Section 1.1.2: An uncertain object can have 

multiple instances, each associated with a probability that the instance occurs. Our 

model is more general than the previous work on probabilistic skylines [16,19], which 

assumes that instance probabilities of the same object always add up to 1. This 

assumption significantly simplifies the problem by enabling the pruning of all objects 

that are completely dominated by at least one object – since the existence of the 

dominating object is certain, the object being dominated is guaranteed to have a zero 

skyline probability and hence can be pruned right away. We remove this assumption 

in our model by allowing objects to have missing probabilities : the probabilities of an 

object’s instances may add up to x < 1, indicating that the object does not exist with 

probability 1 � x (the missing probability). Under this new model, pruning becomes 

less straightforward: Even if one object is completely dominated by another, the 

former can still have a non-zero skyline probability as long as the latter does not 

exist. 
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Table 3.1: Instance probabilities in Fig. 3.2 
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3.1.1 Dominance and Skyline 

Given a data set S of n certain points: p
1

, · · ·  , pn in the data space D with d 

dimensions: D
1

, · · ·  ,Dd, point  pi is said to dominate point pj if 8k 2 [1, d], pi.Dk  

pj .Dk and 9l 2 [1, d], pi.Dl < pj .Dl. A  point  pi is a skyline point or in the skyline if it 

is not dominated by any other point in S. A  skyline query for certain data returns 

all skyline points. 

Example 3.1.1 In Fig. 3.1, p
1

, p
2

, . . . , p
10 are 10 points in the two-dimensional space 

D. The skyline points consist of p
1

, p
6 and p

8

. All the other points are dominated by 

at least one point, e.g., p
7 is dominated by p

8

, and p
5 is dominated by p

6

. 

http:2[1,d],pi.Dl
http:2[1,d],pi.Dk
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3.1.2 Skyline Probabilities 

Fig. 3.2 shows an example of three uncertain objects with their corresponding 

instances in two-dimensional space. Note that both objects A and B have missing 

probabilities (0.1 and 0.4 respectively), since the probabilities of their instances sum 

up to less than 1. 

Generally, we consider each instance as a d-dimensional point in the data space 

D. The  dominance  relationship  “�” between such points (i.e.  instances) is the same  

as the dominance relationship between points for certain data as defined in Section 

3.1.1. Following the convention in the database community, we assume that smaller 

values in each dimension are preferred over larger ones. We hence use p to refer to 

an instance, i.e. a data point in D. An uncertain object U with k instances can be 

denoted as U = {p
1

, ..., pk} where pi(1  i  k) is an instance  of  U . The  transitivity  

of the dominance relationship holds between instances [16], i.e. if p
1 � p

2

, p
2 � p

3

, 

then p
1 � p

3

. 

Definition 3.1.1 The skyline probability of an instance p, denoted as Prsky(p), is 

the probability that p exists and no instance of other uncertain objects that dominates 

p exists. Let m be the total number of uncertain objects and let p 2 Uk. The skyline 

probability is defined as: 

def 
Y

Prsky(p) = Pr(p) · 
m

(1 � 
X 

Pr(q)) (3.1) 
i=1,i 6 q2Ui,q�p=k 

m

= Pr(p) · 
Y 

(1 � 
X 

Pr(q)) (3.2) 
i=1,i 6 q2DS,i(p)=k 

where DS,i(p) denotes the set of instances of object Ui in S that dominate p. We call 

it dominance set. The skyline probability of an uncertain object U = {p
1

, ..., pk} is 

the sum of the skyline probabilities of all its k instances: 

k

Prsky(U) =  
X

Prsky(pi)  (3.3)  
i=1 
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Example 3.1.2 In Fig. 3.2, we have three uncertain objects A,B,C with multiple 

instances. The probabilities of instances are listed in Table 3.1. Each object has a 

skyline probability. For example, B has two instances b
1 and b

2

. b
2 is not dominated 

by any point, so its skyline probability is simply its own probability 0.2. For b
1 to 

be a skyline point, none of the points that dominate b
1 (i.e., a2, a4, b2, points in the 

rectangle) should exist. Hence its skyline probability is 0.4 * (1 - 0.2 - 0.1) = 0.28. 

The skyline probability of B is 0.48. 

Probabilistic skylines proposed in [16] are at the object level: only uncertain 

objects with a skyline probability over a certain threshold are returned. However, 

there are applications where the user is more interested in the instances, such as 

applying for job positions o↵ered by di↵erent companies [17], where job positions are 

modeled as instances and the company that o↵ers them as the object (the detailed 

example is in Section 3.1.4). In this case, a fine-grained look at probabilistic skylines 

is desired by the user. Below we propose two kinds of instance-level probabilistic 

skyline problems: One with thresholds available for pruning and the other without 

thresholds. 

3.1.3 Probabilistic Skylines with Thresholds 

In situations where users are interested only in instances with skyline probabilities 

over a certain threshold, we can bound the skyline probability of an instance p and use 

the threshold as well as the bounds (both upper and lower bounds) to quickly decide 

if p is worth evaluating or not (i.e., whether p has the potential to be an interesting 

instance). We denote the upper bound of Prsky(p) as  Pr+ (p), and the lower bound sky

as Pr� (p). Similarly, we also have Pr+ (U) and  Pr� (U) for an uncertain object  sky sky sky

U . 

We define our instance-level probabilistic skyline problem as follows: 

Definition 3.1.2 Given a data set S of n instances that belong to m uncertain 

objects and a probability threshold ✓, the instance-level probabilistic skyline analysis 
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returns all instances with skyline probabilities at least ✓. i.e. return the skyline set 

Ssky such that: 

Ssky = {p 2 S|Prsky(p) ✓} 

We also refer to Ssky (the skyline results) as probabilistic skylines for threshold ✓. 

We call the instances with skyline probabilities below the given threshold “unin

teresting” and the others “interesting”. The goal of our probabilistic skyline analysis 

is to quickly identify all interesting instances by leveraging the threshold for pruning. 

We discuss our algorithms in Section 3.2. 

3.1.4 Probabilistic Skylines without Thresholds 

Existing probabilistic skyline queries use a threshold to filter out results whose 

skyline probabilities are below the threshold [16, 19, 49]. We propose a di↵erent ap

proach that abandons the use of thresholds in pruning and instead computes the 

skyline probabilities for all instances. This allows more flexibility for users to utilize 

the skyline results according to their own utilities rather than focus on probabili

ties alone. Moreover, with this new approach, we only need to compute the skyline 

probabilities once for all users, leaving users the largest flexibility to make their own 

decisions based on their current utilities and the skyline probabilities returned by the 

algorithm. We give two examples below to further illustrate the motivation behind 

this approach. 

Motivation 

Example 3.1.3 The provision of a service often involves a number of di↵erent sub-

services: The quality of a patient’s experience at an “urgent health care” facility de

pends on which of the doctors is on duty, which nurse is assigned to the patient, which 

sta↵ member handles the billing and insurance paperwork, etc. In e↵ect, there is not 
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a single patient experience at that facility, but a collection of possible experiences, 

one for each k-tuple of team members that the patient interacts with during a visit. 

Similarly, the quality of the dining experience at a restaurant depends on which of the 

waiters the customer gets, and which of the cooks prepares the meal. Each possible 

k-tuple of team members has a probability, and determining which service providers 

dominate is easily seen to be a skyline computation problem (one in which a service 

provider is an object and a k-tuple of team members is an instance of that object). 

But why would one want the detailed skyline probabilities of the instances, when the 

skyline probability of an object would seem to sufce, which allows the efcient elim

ination (through thresholding) of dominated objects? The reason is that a customer’s 

valuation function of an instance is variable from customer to customer (and can 

vary over time for the same customer): Thresholding may eliminate a low-probability 

object but whose instances (or a subset thereof) are peculiarly appealing to some cus

tomers. In other words, probabilities are not all that matters, consequences matter 

too: Computing all instance probabilities allows for subsequent customized valuation 

of objects according to di↵erent sets of valuation functions, some of which may have 

been unforeseen at the time the instance probabilities were first computed (there is no 

need to recompute them when a new valuation function is used). 

Example 3.1.4 Alice just got an MBA degree and is looking for jobs at various 

companies. Each company has multiple jobs that can be o↵ered to MBAs. These 

jobs vary in titles, work units (departments) and geographic locations, which are not 

criteria in her decision making. The two criteria in deciding which company she 

wants to work for are the annual salary and the job security (shown in Fig. 4.2), both 

the bigger the better. The salaries vary among the available jobs in the company, and 

the job security of each is quantified by a numerical score (e.g., as reported by credit-

rating agencies or financial analysts). A company can be considered as an uncertain 

object with its job openings as instances. At any time, an MBA can only take one 

job from a company, and the job o↵ers between di↵erent companies are independent 

from each other. Each job is associated with a probability that the particular job will 
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Fig. 3.3.: Companies and job openings. 

be o↵ered to an MBA by the company, which can be estimated using past statistics on 

success of applications. This probability may di↵er from one job to another, because 

some positions are easier to get than others or because there are more positions of 

a certain kind than others. Furthermore, the probabilities over all job instances of a 

company may add up to less than 1, as a result of some job that might be o↵ered by 

the company but is unknown to the MBA at the time of her job hunting. The relative 

importance of salary and job security varies among di↵erent MBAs. For some, salary 

is most important while others prefer steady jobs. Even for the same MBA like Alice, 

her interest might change from focusing on salaries to preferring secure jobs over 

time. 

Computing all skyline probabilities of instances instead of leveraging a threshold 

on skyline probabilities for pruning has several advantages: 

First, the relative importance among the criteria of the skyline computation for a 

specific user is usually unknown to the system, hence for skyline queries with certain 

data, typically all skyline points are returned to the user. We use the term “utility” 

to refer to the satisfaction of a user when given a point. It is the responsibility of the 

user to identify the interesting points from the skyline set according to his/her own 

utility function. In case of uncertain objects with multiple instances, each instance 

of an object has a skyline probability from which the object’s skyline probability is 

computed. If we threshold out uncertain objects (thus all its instances) based solely 
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on their skyline probabilities like in [16], we are making assumptions on the utility 

of a user in the sense that the user will not be interested in any uncertain object 

whose skyline probability is below a certain threshold. However, it is possible that 

for some user, an uncertain object with a relatively low skyline probability (below 

the threshold) has instances whose utilities are so huge to the user as to make them 

non-negligible. 

Example 3.1.5 In Fig. 4.2, Company E is very appealing to Alice for its best average 

job security. However, its skyline probability may be low due to the fact that most of 

its jobs are dominated by multiple jobs from other companies, hence could have been 

discarded if we had followed the thresholding approach in [16]. As a result, Alice could 

have missed a good opportunity to apply for Company E that has the most secure job 

e
5

. 

As indicated in Examples 3.1.3 and 3.1.4, utility is user-defined, may change over 

time for the same user, or simply be unknown to the system at the time of the skyline 

analysis. Therefore, it is unfeasible to replace the skyline probability by (skyline 

probability)*utility and threshold on this new quantity. 

Besides the main problem above, the thresholding approach su↵ers from the in

herent problem of selecting a suitable threshold in search for interesting uncertain 

objects: A high threshold may lead to empty results, and hence the query needs to 

be restarted with a lower threshold; a low threshold may produce too many results 

and increase the query response time [21]. Moreover, the performance of heuristic 

pruning methods that leverage a given thresholddepends heavily on the characteris

tics of the data set being used and the value of the probability threshold. For some 

data and threshold, the skyline probability computation may have to be done for a 

large number (if not all) of the instances. 

The problems with the thresholding approach have motivated the study of new 

probabilistic skyline analysis: computing skyline probabilities of all instances [17,18]. 

The outcome of such analysis is useful to all users in their decision making, despite 

their di↵erent utilities. 
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The O✏ine Problem 

The first problem that we address is to compute the skyline probabilities of all 

instances, from which the skyline probabilities of all objects can be computed. We 

propose several algorithms to solve the problem. The input and the output of the 

algorithms are given below. 

Input: m independent uncertain objects denoted as U
1

, . . ., Um: For  each  object  Ui, 

a set of  ni instances of that object is given (denote the set by Ui), where the set 

consists of d-dimensional points with probabilities that add up to at most 1. The 

sets of instances for di↵erent objects are disjoint, but two instances are allowed to 

have the same coordinates if they are from di↵erent objects. We assume that any two 

instances within the same object can not have the same coordinates. We use S to 

denote [m Ui and n to denote |S| = 
Pm

i=1 ni where ni = |Ui|. For  each  point  p 2 S,i=1

we use Pr(p) to denote its instance probability.
 

Output: For  all  p 2 S, the skyline  probability of  p : Prsky(p)
 

Note that we do not count the “e↵ect” of instances that dominate p and come from 

the same object as p (i.e., instances in DS,j (p)). The existence of p (with probability 

Pr(p)) already ensures that none of the other instances of Uj exists. We use DS (p) to  

denote [mi=1

DS,i(p) (i =6 j), i.e., all instances in S that dominate p and are not from 

the same object as p. 

From Equation 3.2, we can see that the skyline probability of p (p 2 Uj ) consists  

of two parts: p’s own probability Pr(p) and  the  probability that  p is not dominated 

by any instance from other objects, which is computed as the product of probabilities 

that none of instances from other objects that dominate p exist. We denote the second 

part as �̂(p) (to  be  distinguished from  �(p) in  Equation 3.6), i.e.,  

m
def

�̂(p) = 
Y 

(1 � 
X 

Pr(p 0)) (3.4) 
i=1,i 6 p02DS,i(p)=j 

Example 3.1.6 In Fig. 3.2, instance b
1 is dominated by instances a

2

, a
4 and b

2

. 

Therefore, DS (b1) =  DS,A(b1) =  {a
2

, a
4

} and �(̂b
1

) =1�(Pr(a
2

) + Pr(a
4

)) =0.7. 



42 

Since we can always compute PrSky(p) from  �̂(p) in  constant  time,  we  henceforth  

focus on computing �̂(p) rather than the  actual skyline  probability of  an instance.  

Section 3.3 gives a sub-quadratic algorithm for computing all skyline probabilities 

of two-dimensional instances and Section 3.4 presents a new algorithm that further 

improves the sub-quadratic time complexity. 

The Online Problem 

The second problem that we address naturally extends from the first one: Now 

instead of computing the skyline probabilities for a fixed set of points (i.e., instances), 

we want to compute the probability that no instance from the fixed set dominates 

a point “on the fly”, where no query point is known in advance. The input and the 

output of an algorithm that solves the online problem are as follows: 

Input: Same  as  that  for  the  o✏ine  problem  except  that  now  we  also  have  an  arbitrary  

query point q in the data space D that is not part of the input data set S. 

Output: For  the  query  point  q, the probability that q is not dominated by any 

instance in S: 
mY
(1 � 

X 
Pr(p)). (3.5) 

i=1 p2DS,i(q) 

Note that q is simply a point in D – We can  treat it  as the only  instance of  an  

extra online object (i.e., the (m + 1)
th object), and it has an instance probability of 

1. When it is clear from context, we refer to the above probability in Equation 3.5 

as the online skyline probability of query point q, which  is  di↵erent  from  the  skyline  

probability of an instance in S defined in Equation 3.2. The algorithm for computing 

the online skyline probability of a query point is given in Section 3.5. 

The major notations for the above probabilistic skyline problems are summarized 

in Table 3.2. 
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Table 3.2: Summary of notations 

Notation Meaning 

m, n number of all uncertain objects, number of all instances 

d number of dimensions 

Ui the ith uncertain object; the set of instances of Ui (ni = |Ui|) 

ni number of instances of Ui 

S the set of all instances (n = |S|) 

p point/instance in S 

✓ probability threshold 

Pr
sky

(·) skyline probability 

DS,i(p) instances of Ui in S that dominate p 

DS (p) instances of non-Uj objects in S that dominate p (p 2 Uj ) 

Oi(p) sum of probabilities of Ui’s instances that dominate p 

�̂(p) probability that p is not dominated by instances of other objects 

F, F the set of frequent objects, the set of infrequent objects 

Gi a group  of infrequent objects  

Ii all the instances in Gi 

µ cuto↵ value for determining if an object is frequent or infrequent 

↵(p) 
probability that p is not dominated by any instance of other 

frequent objects (e↵ect of frequent objects on p) 

,(p) 
probability that p is not dominated by any instance of other 

infrequent objects (e↵ect of infrequent objects on p) 

,i(p) 

probability that p is not dominated by any instance of other 

infrequent objects in group Gi (p can be an instance of objects 

outside of Gi) 

,0 
i(p) 

for an instance outside Ii, the probability  that no instance  q 2 Ii 

exists such that q : p 
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3.2 Identifying Interesting Instances for Probabilistic Skylines 

In this section, we present the algorithms for identifying interesting instances for 

probabilistic skylines, defined as instances with skyline probabilities greater than or 

equal to a given threshold (Definition 3.1.2). 

We present two filtering schemes for efcient query processing: 

1. Preliminary filtering scheme: techniques for avoiding the expensive computation 

of exact skyline probabilities by bounding them with easier-to-compute values 

for comparing to the threshold. 

2. Elaborate filtering scheme: techniques for massive filtering through inter-instance 

comparisons that leverage one instance’s bounds to filter other instances based 

on the dominance relationship. 

3.2.1 Probabilistic Range Trees 

We propose two indexing structures based on the range tree [52] to facilitate 

bounding and computing skyline probabilities. We augment the original range trees 

with additional probabilistic information stored at the internal nodes, which can be 

leveraged when querying the trees to quickly bound the skyline probability of a given 

instance p (the query instance). We call such trees probabilistic range trees (PRT). 

Section 3.2.1 introduces a general PRT built upon all n instances with probabilistic 

information. A similar indexing structure is described in Section 3.2.1, which is built 

for every uncertain object and has di↵erent probabilistic information. A total of m 

such trees are needed for all m objects. Our algorithms for the preliminary filtering 

use both trees, as we will see later in Section 5.1.2. 

Overview 

We explain the construction of the PRT on n d-dimensional points (representing 

all instances in the data set S). We begin with the base case of d = 2,  and  follow  the  
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Fig. 3.4.: Probabilistic skylines with three objects and eight instances 

Table 3.3: Instances in Fig. 3.4 and their skyline probabilities 

Object O
1 O

2 O
3 

Instance p
1 p

2 p
3 p

4 p
5 p

6 p
7 p

8 

Value (1, 1) (4, 4) (5, 2) (2, 2) (3, 5) (5, 3) (3, 1) (6, 4) 

Probability 0.2 0.3 0.5 0.4 0.2 0.2 0.2 0.8 

Skyline Probability 0.2 0.144 0.24 0.32 0.128 0.048 0.16 0 

presentation of [52] modified to accommodate the probabilities. A complete binary 

tree T is built on top of the points sorted according to dimension D
1

. Each  internal  

node v of T points to an info-list Lv that contains the points at the leaves of the 

subtree of T rooted at v, sorted  according  to  their  D
2 dimension. Therefore, if v 

has children u and w, then  Lv is the merge of Lu and Lw; we  assume  that  every  

element of Lv stores its rank in each of the lists Lu and Lw (which implies that 

once a search item’s position has been located in Lv it can be located in Lu and 

Lw in constant time). The space is obviously O(n log n). We also assume a derived 

probability (defined later in Section 3.2.1 and Section 3.2.1 respectively for the two 

kinds of PRTs) is associated with every element of Lv. 

Fig. 3.5 illustrates a two-dimensional PRT built on top of the eight instances in 

the example of Fig. 3.4 and Table 3.3. The leaves of the PRT are the instances by 
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Fig. 3.5.: A 2-dimensional probabilistic range tree 

the first dimension. Each of the internal nodes v
1 to v

7 points to an info-list that 

contains instances sorted by the second dimension. For example, v
2

’s info-list (Lv
2 ) 

has four instances p
1

, p
7

, p
4

, p
5 with ascending values in the second dimension. They 

are instances at the leaf level of the subtree rooted at v
2

. Since  v
2 has two children: 

v
4 and v

5

, Lv
2 can be obtained by simply merging Lv

4 and Lv
5 . 

A d-dimensional PRT is built inductively using d� 1 dimensional PRTs:  A  com

plete tree T is built whose leaves are the n points sorted according to dimension D
1

, 

and each internal node v of T points to a d � 1 dimensional PRT  that  contains the  

elements at the leaves of the subtree of T rooted at v, organized  according  to  the  re

maining d�1 dimensions  (i.e.,  ignoring  D
1

). The space complexity is O(n(log n)d�1). 

Note that our construction ensures that the points in the info-lists are always sorted 

according to the last dimension. Fig. 3.6 illustrates such a d-dimensional PRT with 

d = 3.  A  node  u in this PRT points to a two-dimensional PRT where a node v points 

to an info-list. 

General Probabilistic Range Tree 

To compute probabilistic skylines, we build the general probabilistic range tree 

(general-PRT ) on  all  n instances in the data set S. 
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…
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v

Fig. 3.6.: A 3-dimensional probabilistic range tree 

Probabilistic Information 

In the overview of probabilistic range trees, we did not explain what probabilistic 

information an info-list contains. Here we take a closer look at the info-lists in the 

general-PRT. The probabilities stored with info-lists are defined as follows: 

Definition 3.2.1 Let p be the k-th instance in an info-list L. Let p belong to an 

uncertain object Ui(1  i  m), let L̂ be the list of the first k instances in L, then the 

probability associated with p (denoted as p) in L is computed as: 

m

p = 
Y

(1 � 
X 

Pr(q)) (3.6) 
i=1 q2 ˆL,q2Ui 

In other words, the probability p is the probability that no instance in L̂ exists, 

i.e., the probability that p does not exist and no instance before p in the info-list L 

exists. 

Creating Info-Lists 

Given a set of instances, we can create an info-list L by adding each instance to L 

and then sort all instances by their d-th dimension values. After this, we need to 

compute the probabilistic information associated with each instance in the info-list. 

Based on Equation 3.6, we compute p for each p in L as shown in Algorithm 5. We 

use si to record the current probability sum for object Ui that has appeared in L. As 

we go through the instances in L, we update the corresponding probability sum (line 
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Algorithm 5 Computing ’s for an info-list 
Input: Info-list L 

Output: Updated L with p computed for each instance p in L 

1: for each p 2 L do 

2: if p 2 Ui then 

3: si = 0  //  initialize  probability  sums  

4: end if 

5: end for each 

6: = 1  //  initialize  the  current  

7: for each p 2 L do 

8: if p 2 Ui then 

9: s = si // back up the old si 

10: si = si + Pr(p)  //  update  si 

11: p = /(1 � s) ⇤ (1 � si) //  compute  p 

12: = p // update the current 

13: end if 

14: end for each 

10), and compute p based on the of the instance immediately before p in L (line 

11). 

As a concrete example on computing ’s, let us look back at Fig. 3.5 where info-

lists of a PRT is shown. Since the instances in this figure are from the example in 

Fig. 3.4, they are from di↵erent objects. Hence the PRT is actually the general-PRT. 

Therefore, for the info-list of the node v
2 (Lv

2 ), we can compute the probabilities 

associated with each instance using Algorithm 5. For example, in L is 1 �p
1 v

2 

Pr(p
1

) = 1  � 0.2 = 0.8, and p
7 is 0.8 ⇤ (1 � Pr(p

7

)) = 0.8 ⇤ (1 � 0.2) = 0.64. 

The time needed to compute 0s for an info-list L is O(|L|), since we only scan 

the list twice. Note that the list of probability sums is only used for computing 0s 
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of the instances when creating the info-list. It is not stored along with the info-list. 

Therefore, it will not bring an additional worst-case O(m) space complexity for each 

info-list in the general-PRT. 

Colored Probabilistic Range Trees 

Besides the general-PRT built upon all n instances in S, we  also  have  m specific 

PRTs, each built upon the instances of the corresponding object. If we render each 

instance with a color that indicates the source of the instance and match color i 

to object Ui, then each of these specific PRTs has only one color. Hence we call 

these trees colored-PRTs as opposed to the general-PRT. For the rest of the section, 

whenever we say “instance p of color i”, we mean “instance p that belongs to object 

Ui”. 

Unlike the info-lists of the general-PRT, an info-list of a colored-PRT is associated 

with probability sums for each instance in the list. For the k-th instance p in an info-

list L of a colored-PRT, its probability sum Op is computed as follows: 

Op = 
X

Pr(q)  (3.7)  
q2Lˆ

where L̂ is the list of first k instances in L. That  is,  Op is the sum of probabilities 

of all instances up until p in L. For  computing  all  O’s, we simply go through each 

instance in L and accumulate the probability sum. The time complexity is O(|L|). 

As an example, if we build a colored-PRT upon the instances of U
3 in Fig. 3.4, the 

colored-PRT has p
7 and p

8 as the leaves and an internal node that is also the root. 

The info-list pointed to by the root contain the two instances: p
7 and p

8 sorted by 

the second dimension values. We compute their O’s as follows: Op
7 = Pr(p

7

) = 0.2, 

Op
8 = Op

7 + Pr(p
8

) = 0.2 + 0.8 = 1.  
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3.2.2 A Preliminary Filtering Scheme 

Now that we have introduced both the general-PRT and the m colored-PRTs, we 

can use them to compute the bounds of the skyline probabilities that are used for 

filtering. The scheme presented in this section works at the individual instance level 

without comparing instances; the next section will present a more refined scheme 

where more savings are achieved through a mechanism of inter-instance comparisons 

whereby one instance’s elimination (it is not a skyline result) implies a mass extinction 

of other instances that dominate it, and one instance’s survival (it is a skyline result) 

implies a mass survival of other instances that are dominated by it. 

Obtaining an Upper Bound 

Given a query instance p, we  can  obtain  Pr+ (p) by querying  the  general-PRT  sky

Tg as follows: 

We begin with the base case of d = 2, as shown in Algorithm 6. Given the two-

dimensional query p = (p.D
1

, p.D
2

), we first locate the search path (call it P) in  

Tg from the root to the position of the value p.D
1 among the leaves, then do one 

binary search for p.D
2 in the info-list Lroot of the root of Tg. We  record  the  position  

(rank) k of p.D
2 in Lroot and call it the search position in Lroot. We  use  Lv[k] to  

denote the k-th instance (let it be q) in  the  info-list of the  node  v and Lv[k].rankL, 

Lv[k].rankR to denote the rank of q in the info-lists of v’s left child and right child 

respectively. These ranks are stored so that given the position of q in Lv, we  can  

locate its position in info-lists of v’s children in constant time. Since v is initially the 

root and k is initially the search position in Lroot, we  can  obtain  the  search  positions  

in the successive nodes as we walk down the search path P . 

We define the left fringe nodes of the PRT given the query instance p as the left 

children of the nodes on the search path P and are not nodes on P themselves. For 

example, in Fig. 3.5, the search path P for p
6 is v1� > v

3

� > v
7

� > p
6 (rendered 

with dashed arrows). The corresponding left fringe nodes are v
2 and v

6 (highlighted), 

http:Lroot.We
http:p.D1,p.D2
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who are left children of v
1 and v

3 respectively. The leaf p6 is on P , so it  is  not a  left  

fringe node despite the fact that it is a left child of v
7 on P . 

We use L̂v to denote the truncated info-list of node v (Lv) with instances  up till  

the search position in Lv. If  v is a left fringe node, we call such L̂v a qualified info-list 

. Fig. 3.5 highlights two qualified info-lists for the query p
6

: One  contains  the  first  

three instances of L and the other contains the first instance of L (refer to Fig. v
2 v

6 

3.4 for the values of instances). 

When we reach the leaf at the end of the query, the variable upperBound in 

Algorithm 6 is the product of all ’s we read along P . It  is  indeed  an  upper  bound  

of Prsky(p), as we will see shortly. The time complexity for such a query is O(log n). 

In the example of Fig. 3.5, the upper bound that we get for Prsky(p6) is  p
4 ⇤ p3, 

where p
4 and p

3 are the last instances of the two qualified info-lists. 

When d >  2, we obtain the upper bound Pr+ (p) by querying  inductively on  d�1sky

dimensional PRTs: Given the query p = (p.D
1

, · · ·  , p.Dd), we first locate the path P 

in Tg from the root to the position of the value p.D
1 among the leaves. Then we walk 

along P and issue the query of p0 = (p.D
2

, · · ·  , p.Dd) for  every  d�1 dimensional PRT  

associated with every qualified node. The final Pr+ (p) is  obtained  by  multiplying  sky

the values returned by all sub-queries. Such a query takes altogether O((log n)d�1) 

time, as we cannot avoid doing at most O(log n) binary searches  in PRTs  of  the  left  

fringe nodes for the first d � 1 dimensions in order to find the qualified info-lists for 

reading ’s. 

We can obtain the qualified info-lists ( L̂’s) by modifying Algorithm 6: Instead of 

reading ’s in line 9 and multiplying them along the path in line 10, we create an 

info-list L̂u containing the first k0 instances of Lu and add it to the result. The lemma 

below states that the set of all instances in L̂’s is the set of all instances in S that 

dominate p, which  can  be  easily  proved  from  the  search  process  and  the  definition  of  

the general-PRT. Note that the notation L̂i in the lemma is the i-th qualified info-list, 

not the qualified info-list at node i. 
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Algorithm 6 Compute an upper bound of Prsky(p) 
Input: the general PRT Tg and a query instance p 

Output: an upper bound of Prsky(p) 

1: binary search for p.D
1 to find the search path P 

2: binary search for p.D
2 in Lroot, let  the  position be  k 

3: upperBound = 1  

4: v = root //walk along P starting from root 

5: while current node v is not a leaf do 

6: if the next node w 2 P is v.rightChild then 

7: k0 = Lv[k].rankL 

8: u = v.leftChild 

9: = Lu[k0].beta // read from v’s left child 

10: upperBound = upperBound ⇤ 

11: k = Lv[k].rankR // locate the position in Lw 

12: end if 

13: else // w is a left child of v 

14: k = Lv[k].rankL // locate the position in Lw 

15: v = w // go one level down 

16: end while 

17: return upperBound 

Lemma 3.2.1 Let L̂
1 · · · L̂t be qualified info-lists for query p. Let SLˆ = [it =1

SLˆi 
, 

where SLˆi 
is the set of instances in L̂i. Then we have: 1) 8q 2 SLˆ , q  � p; 2) 

8q0 2 S � SLˆ , q
0 6� p. 

For every L̂i, let  i be the associated with the last instance in L̂i, i.e.  i is the 

probability that none of the instances in L̂i exists. The next lemma (can be easily 

proved by induction) and theorem show that although we cannot compute Prsky(p) 
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directly from i’s, we can compute Pr+ (p) to help prune  p if this upper bound falls sky

below the threshold ✓. 

Lemma 3.2.2 (1 � a
1

) · · · (1 � at) 1 � (a
1 + · · ·+ at), where 0  ai  1, 1  i  t, 

and t 1 

Following the notations in Lemma 3.2.1, we have: 

Theorem 3.2.3 Let i be the probability associated with the last instance in L̂i(1  

i  t) where Li is a qualified info-list for query p, then 
Qt

i is an upper bound of i=1 

t mYY 
Prsky(p), i.e. 0

@


1

A
1 � 
X 

Pr(q) Prsky(p) 	  (3.8)  i 

i=1 j=1 q2Uj ,q2S
ˆL 

= 
QmProof We know from Definition 3.2.1 that (1 � sij ) where  sij is the sum i j=1

of probabilities of instances that belong to Oj and at the same time are instances in 

L̂i. We  expand  
1

, · · ·  ,	 t as follows: 

1 = (1  � s
11

) · (1 � s
12

) · · · (1 � s
1m) 

2 = (1  � s
21

) · (1 � s
22

) · · · (1 � s
2m) 

. . . . . . . . . . . . 

YYYY 

t = (1  � st1) · (1 � st2) · · · (1 � stm) 

We multiply the above t equations together and obtain: 

t t t	 t

(1 �
 (1 �
 (1 �
si1) si2) sim)· · · 
  i = 

t tm mYXYY 

i=1 i=1 i=1 i=1 

Each product 
Qt (1 � m on the right hand side (RHS) is for the same i=1

sij ), 1  j 

uncertain object Oj . Since  0   sij  1, apply Lemma 3.2.2 m times and we have: 

0

@


1

A
#

!
#

1 � 
X


1 �
1 Pr(q)sij = i 

i=1 j=1 i=1 j=1 q2Oj ,q2S ̂L 
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From Lemma 3.2.1, we further conclude that 

t mYY 
i 

i=1 j=1 

0

@


1

A
1 � 
X 

Pr(q) 
q2Oj ,q�p 

Let p 2 Ok. Since  
P 

the above inequality: 

RHS =
 

Pr(q) +  Pr(p)  1, the following holds for the RHS of q2Ok,q�p 

mY
0

@


!
#

1 � 
X
#

1 � 
X


Pr(q) Pr(q)·
 
q2Ok,q�p j=1,j=6 k 

mY 

q2Oj ,q�p 
0

@


1

A
1 � 
X


Pr(p) · Pr(q) = Prsky(p) 
j=1,j 6=k 

Therefore, Inequality 3.8 holds. 

q2Oj ,q�p 

0

@
t mY

Y 

Theorem 3.2.3 shows that 
Qt

i is an upper bound of the desired Prsky(p), which i=1 

proves that the value returned by Tg.getUpperBound(p) is  indeed a  Pr+ (p). This sky

directly points out a way of pruning the query instance: Given a threshold ✓, as  soon  

as we see the current product of ’s (which is a Pr+ (p)) fall below ✓, we  can  stop  sky

and declare that p is not in the skyline, since Prsky(p) < ✓ must also hold. 

Y 

Obtaining a Tighter Upper Bound 

While using the general-PRT alone gives us an upper bound of the skyline proba

bility, a tighter upper bound can be achieved by using both the general-PRT and the 

colored-PRT. 

First, let us review Theorem 3.2.3: We have proved that 

⌘
and multiplying Pr(p) at  both sides,  we have  

m

!
#

1 � 
X
#

1 � 
X


Pr(q) Pr(q)·
 i 

i=1 q2Uk,q�p j=1,j 6=k q2Uj ,q�p 

⇣
1 �

P

By dividing Pr(q)q2Uk ,q�p 

0

@

Qt 

i=1 

1 �
P 1 � 

X

i · Pr(p) 

Pr(p) · Pr(q)
Pr(q)q2Uk,q�p j=1,j 6=k 

= Prsky(p) 

q2Uj ,q�p 

1

A
#

1

A
#

1

A
#
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We further observe that Pr(p)  1 �
P 

Pr(q) (remember  p 2 Uk), hence q2Uk,q�p 

Qtt

i=1 i · Pr(p)Y 
i Prsky(p)

1 �
P 

Pr(q)q2Uk ,q�pi=1 

i.e. 
Qt

i · Pr(p)/
⇣
1 �

P 
Pr(q)

⌘
is a tighter upper bound of Prsky(p) than  i=1 q2Uk,q�p 

Qt 
i.i=1 

We know Pr(p) and  
Qt

i from querying the general-PRT, to obtain this tighter i=1 

upper bound, the only part we need to know is 
P 

Pr(q), which is a probability q2Uk,q�p 

sum that can be obtained by querying the PRT of color k, denoted  as  Tck . The  

algorithm for computing this sum given a query instance p is the same as computing 

the upper bound with the general-PRT in Algorithm 6 except this time we carry 

a sum instead of a product along the search path: Whenever a new probability is 

read from a qualified info-list (remember that the probability now is O instead of , 

see Section 3.2.1), we add it to the current sum (initialized to 0). The final sum is 

then the sum of all O’s we read as we walk along the path. The algorithm to get all 

qualified info-lists in a colored-PRT given query p is exactly the same as that in the 

general-PRT described in Section 3.2.2. 

The corollary below for querying colored-PRTs can be derived immediately from 

Lemma 3.2.1: 

Corollary 3.2.4 The set of instances of all qualified info-lists by querying Tck is the 

set of all instances of color k in S that dominate p. 

Therefore, the probability sum returned by querying Tck is indeed 
P 

Pr(q),q2Uk,q�p 

i.e., the sum of probabilities of all instances that dominate p and belong to Uk at the 

same time. The algorithm to compute the tighter upper bound is summarized in 

Algorithm 7. 

Obtaining a Lower Bound 

We start with d = 2.  For  every  instance  (x, y), we define siL(x) (resp.,  siB(y)) to 

be the sum of the probabilities of instances of color i that are to the left of x (resp., 
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Algorithm 7 Compute a tighter upper bound 
Input: query instance p, the general-PRT  Tg and m colored-PRTs T , · · ·  , Tc

1 cm 

Output: a tighter upper bound for  Prsky(p) 

1: obtain Pr+ (p) (oldBound) by querying  Tg // Algorithm 6 sky

2: if p 2 Uk then //Section 3.2.2 

3: obtain the probability sum (sum) by  querying  Tck 

4: end if 

5: newBound = oldBound * Pr(p) /  (1 - sum) 

6: return newBound 

below y). It is straightforward to preprocess the n instances so that a query that asks 

for siL(x) or  siB (y) can  be  processed  in  O(log ni) time:  Simply  x-sort (resp., y-sort) 

the instances of color i and store in that sorted list the prefix sums of the probabilities: 

For each instance p in the list, the prefix sum of p is the sum of probabilities of all 

instances in the list up till p. Then  we  process  a  siL(x) (resp., siB(y)) query by 

locating x (resp., y) in that list and reading the  relevant prefix sum.  Doing such  

preprocessing for all m colors takes O(
Pm

i=1 ni log ni) =  O(n log n), where ni is the 

number of instances of object Ui. We  assume  this  has  been  done.  

The following lower bound (whose proof we omit) Pr� (p) holds  for  any  instance  sky

p = (p.D
1

, p.D
2

) and  p 2 Uk. 

m

Pr(p) · 
Y 

(1 �min{siL(p.D1

), siB (p.D2

)}) 
i=1,i 6=k 

The above lower bound for all n instances can be computed in time O(m2 + n log m) 

(due to the space limit, we omit the details here). While this is good if m is much 

smaller than n (i.e., if each object has many instances), it is not satisfactory if m is 

close to n. In such a case we can compute the n lower bounds given below in total 
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time O(n log n) (they  are thus  easier to compute,  but also less sharp than the above  

lower bound). 

m m
( )

Pr(p) · max 
Y 

(1 � siL(p.D1

)) , 
Y 

(1 � siB (p.D2

))
i=1,i 6 i=1,i 6=k =k 

The above lower bounds can be easily extended to d >  2 by computing the  sums  

of probabilities for each dimension, as we did for the first and second dimension in 

case d = 2.  

3.2.3 An Elaborate Filtering Scheme 

Recall that the preliminary filtering tries to filter out instances by bounding their 

respective skyline probabilities. The improved filtering scheme of the present section 

adds inter-instance comparisons to achieve wholesale filtering (positive or negative), 

i.e., it considers the impact of one instance’s elimination or survival on other instances 

related to it by the dominance relationship. Therefore, the order in which instances 

are processed (individually, by bounding skyline probabilities as in the preliminary 

scheme) becomes crucial. 

Filtering Rationale 

Before presenting our elaborate filtering scheme, we first define a ratio called the 

“key ratio” for  an instance  p: 

Definition 3.2.2 For any instance p 2 Uk, p’s key ratio r is: 

Pr(p)
rp = (3.9)

1 �
P 

Pr(p0)p02Uk,p0�p 

If rp 
2

1 , we call p a “target instance”. 

rp can be easily computed in O(log n) by querying  Tck to get the probability sum 
P 

Pr(p0).p02Uk,p0�p 

The following theorem states the conditions for negative filtering: 

http:�siL(p.D1
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Theorem 3.2.5 Let instance p 2 Uk, instance q 2 Ul. If  Prsky(p) < ✓ and p � q, 

then: 

1) k 6= l: If  p is a target instance, then Prsky(q) < ✓. 

2) k = l: If  p is a target instance or if Pr(p) Pr(q), then Prsky(q) < ✓. 

Proof 1) Since p is a target instance, rp 
1

2 . We can deduce that 

Pr(p) 1 � 
X 

Pr(p 0) � Pr(p)  (3.10)  
p0�p,p02Ok 

Due to the transitivity of the dominance relationship, any instance that dominates p 

must dominate q. Hence 

(3.10) 1 � 
X 

Pr(p 0) 
p0�q,p02Ok 

Using the above inequality and the transitivity of the dominance relationship as well 

as the fact that Pr(q)  1 �
P 

Pr(p0) (because  both  p0 and q belong to Ol),p0�q,p02Ol 

we have 
m

Prsky(p) =  Pr(p) · 
Y 

1 � 
X 

Pr(p 0) 

! 

i=1,i 6 p 02Oi=k 0�p,p

m
! ! 

1 � 
X 

Pr(p 0) · 
Y 

1 � 
X 

Pr(p 0) 
02Ok =kp0�q,p i=1,i 6 p0�q,p02Oi 

m
! ! 

= 1 � 
X 

Pr(p 0) · 
Y 

1 � 
X 

Pr(p 0) 
p0�q,p02Ol i=1,i 6=l p0�q,p02Oi 

m

Pr(q) · 
Y 

1 � 
X 

Pr(p 0) 

! 
= Prsky(q) 

i=1,i 6 p0�q,p=l 02Oi 

Since Prsky(p) < ✓, Prsky(q) < ✓ also holds. 

2) If p is a target instance and k = l, the  proof  in  1)  still  holds;  if  Pr(p) Pr(q), 

since k = l, we have:  
m

✓  >  Prsky(p) =  Pr(p) · 
Y 

1 � 
X 

Pr(p 0) 

! 

i=1,i 6 p 02Oi=k 0�p,p

Y
Pr(q) · 

m

1 � 
X 

Pr(p 0) 

! 
= Prsky(q) 

i=1,i 6 p0�q,p=k 02Oi 
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We call instances satisfying the above conditions “killers” – the elimination of 

themselves causes the massive extinction of others from the skyline result set. In 

contrast, the corollary below states the conditions for instances to be “saviors” – the 

survival of themselves causes the survival of others in the final skyline result. The 

proof of this corollary depends on the proof of Prsky(p) Prsky(q), which is exactly 

the same as the proof in Theorem 3.2.5. 

Corollary 3.2.6 Let instance p 2 Uk, instance q 2 Ul. If  Prsky(q) 

then: 

✓ and p � q, 

1) k 6= l: If  p is a target instance, then Prsky(p) ✓. 

2) k = l: If  p is a target instance or if Pr(p) Pr(q), then Prsky(p) ✓. 

Schedule Instances 

The theorem and corollary in the previous section together point out a way of 

filtering instances massively based on a single instance’s skyline probability. As we 

have mentioned earlier, the order in which instances are processed is crucial. The 

goal of our refined filtering scheme is to maximize both negative filtering (“killing”) 

and positive filtering (“saving”) as we process the candidates list so that the number 

of the PRT queries (either for bounding or computing the exact skyline probability) 

is minimized. We propose the following heuristic for scheduling instances to achieve 

this goal: 

Using the standard dominance counting techniques [50], we preprocess all n in

stances in O(n log n) time  to compute  two quantities  count+(p) and  count�(p) for  

every instance p, where  count+(p) is the number of instances dominated by p and 

count�(p) is  the  number  of  instances  that  dominate  p. We  first  sort  the  instances  ac

cording to count+ in the descending order. The list then becomes our initial candidate 

list for computing the skyline results. 
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Algorithm 

The algorithm for the elaborate filtering consists of two parts: first the negative 

filtering, then the positive filtering. After scheduling all n instances to form the 

initial candidate list, we process each instance p in the candidate list in order by 

upper bounding Prsky(p) (using the techniques in the preliminary filtering scheme). 

Then we do the negative filtering as shown in Algorithm 8. In line 6, we obtain the 

set of instances that are dominated by p by querying a mirror of our general-PRT 

(i.e. instead of returning instances that dominate p, it  returns  instances  that  are  

dominated by p). The order that we process instances guarantees that the current 

instance, if turned out to be a killer, can kill the largest number of instances (because 

its count+ is the biggest among the unprocessed candidates). 

After the candidate list has been exhausted, i.e. all killings have been done, we 

sort the remaining instances in the list by their count� in the descending order. We 

then process each instance q in this new candidate list in order by computing Pr� (q)sky

and compare it with ✓ to see whether q survives as a skyline result. If it survives, we 

move it from the candidate list to the skyline result Ssky. The  rest  of  the  algorithm  

is similar to the one in Algorithm 8. 

Notice that we do negative filtering (killing) first, followed by positive filtering 

(saving). This is due to the asymmetry of killing and saving: A killer p kills all 

instances dominated by p, whereas  a  savior  q only saves a portion of all instances 

that dominate q — only the target instances among them can be saved. Hence killing 

filters more than saving. It should come before saving to minimize the number of 

instances that need to be processed or further evaluated. 

If an instance cannot be pruned by the preliminary or the elaborate filtering, we 

need to further evaluate it to decide whether the instance is really a skyline result by 

computing the exact skyline probabilities. This can be done by querying either the 

general-PRT or the colored-PRTs. 
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Algorithm 8 Algorithm for negative filtering in the elaborate filtering scheme 
Input: data set S, threshold  ✓ 

Output: the candidate list Cand after filtering 

1: create the initial Cand from S //Section 3.2.3 

2: for each instance p in Cand do 

3: compute Pr+ (p) // Algorithm 6 and 7 sky

4: if Pr+ (p) < ✓ then sky

5: remove p from Cand 

6: get the set of instances dominated by p 

7: for each instance q in the set do 

8: if p is a target instance then 

9: remove q from Cand 

10: else 

11: if p, q are of the same color and Pr(p) Pr(q) do 

12: remove q from Cand 

13: end if 

14: end if 

15: end for each 

16: end if 

17: end for each 

18: return Cand 

Using General-PRT 

From qualified info-lists ( L̂’s) for query p (see Section 3.2.2), we can get all in

stances in L̂’s. By Theorem 3.2.1, these instances are all instances that dominate 

the query instance p in S. Therefore,  we  can  go  through  all  such  instances  to  com

pute the exact Prsky(p) according to  Equation 3.2 and add  p to the skyline result if 
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Prsky(p) ✓. The  time  complexity  for  computing  Prsky(p) is  O((log n)d�1 +t), where 

t is the number of all instances in L̂’s. 

Using Colored-PRTs 

For the instance p that belongs to object Uk, we  can  compute  Prsky(p) by querying  

all colored-PRTs except the one with color k. For  each  colored-PRT  Tci (1  i  

m, i 6= k), we obtain the sum of probabilities of all instances of color i that dominate p 

(see Section 3.2.2). We denote this sum as si. Then  Prsky(p) =  Pr(p) 
Qm 

=k(1�si).i=1,i 6

The time complexity for computing Prsky(p) is  O(m(log n)d�1). 

3.2.4 Probabilistic Skyline Algorithm 

Now that we have presented our preliminary and the more elaborate filtering 

schemes and our algorithm for computing the exact skyline probabilities, we can 

propose our final algorithm for computing the instance-level probabilistic skylines 

given a threshold ✓. 

Two-Stage Algorithm 

We propose a two-stage scheme for our instance-level probabilistic skyline algo

rithm, given the threshold ✓: 

1.	 Filtering stage: 

1) Initialize the skyline result Ssky to an empty set 

2) Initialize the candidate list to be all n instances in S 

3) Use the elaborate filtering scheme to reorder the candidate list, eliminate in

stances with skyline probabilities below ✓, and move  those  with  skyline  probabilities  

at least ✓ to Ssky 

2.	 Refining stage: 
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1) For each remaining instance p in the candidate list, compute the exact Prsky(p) 

by querying the PRTs 

2) Add p to Ssky if Prsky(p) ✓ 

3) Return the final Ssky as the set of skyline results to our probabilistic skyline 

problem 

The filtering stage uses the elaborate filtering scheme we proposed in Section 3.2.3, 

which includes the usage of the preliminary filtering scheme in Section 5.1.2. We can 

also use the preliminary filtering scheme alone in the above algorithm, by changing 

Step 3 of the filtering stage. The remaining instances in the candidate list after the 

filtering stage are instances that can neither be eliminated nor guaranteed to belong 

to Ssky. We  then  query  either  the  general-PRT  or  the  colored-PRTs  to  compute  the  

exact skyline probabilities of the instances and add those with skyline probabilities 

at least ✓ to Ssky. 

Probabilistic Skylines at Object Level 

While [16] computes all uncertain objects whose skyline probabilities meet a given 

probability threshold, our probabilistic skyline algorithms return all instances in the 

data set S whose skyline probabilities meet the threshold. The granularity of our 

skyline results is at the instance level, which is finer compared with the object level 

in [16]. Moreover, our instance-level algorithms can be adapted for obtaining the 

skyline results at the object level as follows: 

For each object Ui, we  compute  the  lower  and  the  upper  bounds  of  all  its  instances  

by using the preliminary filtering scheme. The sum of the lower bounds (resp. upper 

bounds) of Ui’s instances becomes Pr� (Ui) (resp.  Pr+ (Ui)). Let the threshold for sky sky

the object-level probabilistic skylines be ✓o. We  then  check  whether  Pr� (Ui) ✓osky

(i.e. Ui is a skyline result) and whether Pr+ (Ui) < ✓o (i.e. Ui is not a skyline result). sky

If Ui can neither be put to the skyline result set nor be discarded, we further compute 
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the exact skyline probabilities of its instances, sum them up to obtain Prsky(Ui) and  

compare it with ✓o. 

3.2.5 Experimental Evaluation 

To evaluate the e↵ectiveness of our filtering schemes and the scalability of our 

algorithms, we used two data sets, one real data set and one synthetic data set. The 

experiments were performed on a PC with Intel Core 2 Duo T9600 2.8GHz CPU and 

6GB main memory running Ubuntu Linux operating system. All algorithms were 

implemented in C++. Currently our probabilistic range trees are stored in memory. 

Our future work will be to store the data structures on the disk to support efcient 

query processing at a larger scale. 

Data Sets 

In our experiments, we used the real data set: the NBA data set as in [16], 

kindly provided to us by the authors of [16]. The NBA data set contains 339,721 

records about 1,313 players. Like in [16], we treat each player as an uncertain object 

and the records of the player as the instances of the object. Each record has three 

attributes: number of points, number of assists, and number of rebounds (large values 

are favored over small ones), i.e., the dimension d = 3.  We  assign  random  probabilities  

to instances of the same object such that the probabilities sum up to 1 (later for the 

synthetic data set, we allow missing probabilities of objects). This is di↵erent from 

[16], which assigns equal probabilities to instances of an object. Allowing di↵erent 

records of a player to have di↵erent probabilities captures the fact that the physical 

condition of a player usually changes from game to game (e.g., the player could be in 

great physical condition in some games, and have su↵ered from small injuries prior 

to other games). 

Besides the NBA data set, we also used a synthetic data set generated similarly 

to [16,17,43] as follows: We first randomly generated the centers c of each uncertain 
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object. The value at each dimension of an instance has a domain [1, 1000] and was 

randomly generated in the hyper-rectangular region centered at c with the edge size 

uniformly distributed in the range [1, 200]. The default number of uncertain objects 

m is 20,000. The number of instances for an object is uniformly distributed in the 

range [1, 30] by default. Therefore, if m = 20, 000 the expected total number of 

instances n is around 300,000. The default threshold ✓ is 0.01 for the instance-level 

skyline probabilities. Although the absolute value of the threshold seems small, this 

threshold is already very selective among skyline probabilities of all instances, as we 

can see later in the experiments below. This is mainly due to the fact that an uncertain 

object may have many instances, resulting in small occurrence probabilities for these 

instances to begin with before bounding/computing their skyline probabilities. 

E↵ectiveness of Filtering 

We evaluated the e↵ectiveness of our two filtering schemes: we computed the 

percentage of instances filtered by the upper bounds and the lower bounds in the 

preliminary scheme, as well as the percentage of instances filtered by massive killing 

and saving in the elaborate scheme. During the evaluation, we also varied several 

parameters of the data set to test the scalability of our algorithms as well as to see 

how the parameters a↵ect the filtering gain. Such parameters include: the data set 

size (number of objects/instances), the threshold, the average number of instances 

per object, the number of dimensions. 

E↵ectiveness of the Preliminary Scheme 

We evaluated the percentage of instances filtered by the upper bounds and the lower 

bounds in our preliminary scheme on the synthetic data set with m = 2000.  We  also  

evaluated the respective filtering capabilities of the upper bounds (Section 3.2.2) and 

the corresponding tighter upper bounds (Section 3.2.2). The result is shown in the 

first chart of Fig. 3.7. We always use the “normal” upper bounds (as opposed to 
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“tighter” upper bounds) first to filter instances, as they are easier to compute than 

the tighter ones. If the normal upper bound is above the threshold (i.e., cannot filter), 

then we further compute the tighter upper bound to see if the tighter one will help 

us filter the instance. Notice that if the upper bound is below the threshold, then the 

tighter upper bound must also fall below the threshold, indicating that both bounds 

can filter the instance. 

Similarly, we show the e↵ect of the lower bound on filtering in the second chart 

of Fig. 3.7. While the filtering percentage of both upper bounds increases as the 

threshold increases, the trend is reversed for the lower bound. This is because with 

higher thresholds, it is easier for an upper bound to fall below the threshold but 

harder for a lower bound to exceed it. Furthermore, we can see that the two upper 

bounds filter much more than the lower bound (over 97% of instances are filtered by 

the upper bounds), although these two kinds of bounds are computed independently. 

E↵ectiveness of the Elaborate Scheme 

The elaborate scheme uses the upper and lower bounds from the preliminary scheme, 

and further exploits the dominance relationship between instances for massive filtering 

(negative or positive). We evaluated the e↵ectiveness of our elaborate filtering on 

both the real NBA data set and the synthetic data sets. The percentage of instances 

filtered after “killing” (i.e., negative filtering) and that after “saving” (i.e., positive 

filtering) are shown in the third chart of Fig. 3.7 for the NBA data with a varying 

threshold. The same plot is drawn for the synthetic data in the last chart of Fig. 

3.7. For both data sets, killing filters instances massively while saving contributes 

an additional 0.1% or less to the final filtering percentage, as most of the instances 

(above 99.5% for a threshold over 0.002) have already been identified as uninteresting. 

This demonstrates our earlier statement that negative filtering filters much more 

than positive filtering in the elaborate filtering scheme. We also plotted the filtering 

percentage against the data set size (i.e., di↵erent m’s) on the synthetic data in the 

first chart of Fig. 3.8. As the number of objects increases, the filtering percentage 
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Fig. 3.7.: E↵ectiveness of preliminary filtering and elaborate filtering with respect to 

threshold 

increases in general (because more instances are present to compete with each other 

and more instances are likely to be dominated by others) with an exception from 

m = 12k to m = 16k, which  might  due  to  their  particular  distributions  of  instances  

in the data space. 

As we know from Section 3.2.4, the final skyline result set consists of two parts: 

the instances that are saved during the elaborate filtering, and the instances whose 

exact skyline probabilities are verified to be above the threshold during the refining 

stage. We call the former “saved” ones; and the latter “refined” ones. The second 

and the third charts in Fig. 3.8 both compare “saved” and “refined”, and display 

them in stacked columns, since the sum of the two is the actual skyline result size. 

The former is plotted from the real NBA data set while the latter is drawn from the 

synthetic data set. The two charts also di↵er in the x-axes: the former plots the 

skyline set against the threshold while the latter plots it against the data size m with 

a fixed  threshold at 0.01.  We  observe that the  threshold seems to  have a  much more  

significant e↵ect than m on the size of the skyline results – the higher the threshold, 

http:thresholdat0.01
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Fig. 3.9.: Comparison between our algorithm and the näıve algorithm 

the smaller the set. The e↵ect of m on the skyline size is not as obvious, though we 

can still presume that the bigger the data set, the bigger the final skyline set. It may 

depend heavily on the threshold in use: a smaller threshold may yield a clearer trend 

of this, since there are more instances that are likely to be above the threshold with 

a larger  data set.  
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Fig. 3.10.: E↵ect of dimensionality 

Comparison with the Naive Approach 

We implemented the näıve approach to the instance-level probabilistic skylines 

for benchmarking, which uses a nested loop (O(n2)) to compute the exact skyline 

probability of an instance by looking at all other instances. The time cost of our 

algorithm using the elaborate filtering scheme and that of the näıve algorithm are 

shown in the first chart of Fig. 3.9. The dimensionality is 3 and the threshold is 0.01. 

Our algorithm performs significantly better than the näıve one, and the advantage of 

our algorithm becomes even bigger as the data set size grows. The second chart of Fig. 

3.9 provides a detailed view on how the time cost of our algorithm breaks down to 

three parts: the time cost for constructing PRT’s (the general-PRT and the colored

PRT’s), the time cost for negative filtering (killing) and that for positive filtering 

(saving). We can see that constructing the indices is actually the most expensive of 

the three: This is due to the fact that when we construct the trees, we also need to 

compute the probability information stored with each node for later use. Time cost 

for killing and saving also increases as m grows. More optimizations can be done 

for saving to reduce the time cost, which involves designing strategies to efciently 

compute the lower bound. Due to the space limit, we will not discuss the details here. 

Since our algorithms are designed specifically for the instance-level filtering with 

a more general uncertain model, while [16] focuses on the object-level filtering for 

probabilistic skylines, we do not think a comparison of the two will yield convincing 
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results when either their algorithms or our algorithms have to be specifically modified 

and optimized in order to suit the other’s case and become comparable. 

E↵ect of Other Parameters 

We have mentioned the e↵ect of the threshold and m on filtering in the previous 

sections. Now we will discuss the e↵ect of the dimensions as well as the e↵ect of the 

number of instances per object. 

The two charts in Fig. 3.10 show how filtering percentage and time cost change 

with di↵erent dimensions and di↵erent data set size. Here the filtering percentage 

is computed as the total number of instances killed and saved divided by the total 

number of instances in the data set. We observe that given a data set, the filtering 

percentage decreases as the dimension increases. This is because an instance p is less 

likely to be dominated by another instance q that has values better than or equal 

to p’s own values in every dimension. In addition, for all dimensions, the filtering 

percentage increases as m increases. For the time cost, increasing dimensions bring 

increasing overhead in constructing and querying PRT’s, as seen in the second chart 

of Fig. 3.10: the time cost of the 4d data is over ten times more than that of the 2d 

data for the same number of objects. 

Finally, the last chart of Fig. 3.8 shows how filtering changes with respect to 

the number of instances per object. The x-axis represents the maximum number of 

instances an uncertain object can have. For example, 90 means the instance count 

per object is generated uniformly between 1 and 90. We fixed the total number of 

instances to around 300,000 while changing the range of the instance count per object 

from [1, 30] to [1, 150]. Intuitively, more instances per object implies fewer objects 

given a fixed total number of all instances. It also suggests that each instance now 

has smaller probabilities to occur in the first place (the sum of the probabilities over 

all instances of an uncertain object cannot exceed 1), which means that the skyline 

probabilities of these instances may also be smaller because they cannot exceed their 
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own occurrence probabilities. Therefore, the filtering percentage increases, as the 

number of interesting instances has decreased. 
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Fig. 3.11.: Space partitioning using a grid 

3.3 Computing All Skyline Probabilities 

Recall that the key in computing the skyline probability of an instance is com

puting ˆ(p) (Equation 3.4, Section 3.1.4). We first review two basic algorithms for 

computing ˆ(p) in Section 3.3.1 and Section 3.3.2, then present our o✏ine algorithm 

in Section 3.3.3 that balances the use of the two basic algorithms to achieve sub-

quadratic time complexity for two-dimensional data. 

3.3.1 The Grid Method 

We first present this space partitioning method for uncertain data with two di

mensions: d = 2.  Let  Cx (Cy) be  the set of  x (y) coordinates of instances in S. Then  

|Cx|  n, |Cy|  n, as  there  might  be  instances  with  the  same  x or y coordinates. The 

elements of Cx ⇥ Cy form a grid of at most n2 vertices, consisting of the original n 

instances (along with their probabilities), and the rest of the vertices that do not cor

respond to original instances. We therefore consider the latter as “virtual” instances 

of a non-existent object U
0 and assign to each a probability of zero. 

Example 3.3.1 Fig. 3.11 shows such a grid with five instances p
1

, ...,  p
5 marked as 

solid points. All the other vertices on the grid (7 in total), which are virtual instances, 

are marked as hollow points (e.g., vertex v). 
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We seek to compute ˆ(p) for  every grid  vertex  p (even the virtual ones). The 

reason that we also compute for virtual instances will be explained later in Section 

3.3.3. Now we focus on the algorithm for doing this in O(mn2) time.  

First we observe that it sufces to compute, for each vertex p, the m sums 

O
1

(p), . . . , Om(p) where  

Oi(p) =  
X 

Pr(p 0), i = 1, . . . ,m 	  (3.11) 
p02DS,i(p) 

because once we have those sums we can compute the desired ˆ(p) values  for all  p’s 

(let p’s object be Uj ) in  the  grid in  O(mn2) time,  following  the  equation below:  

m

ˆ(p) =  
Y 

(1 � Oi(p))	 (3.12) 
i=1,i 6=j 

So we focus on the computation of all the Oi(p)’s. The algorithm for computing them 

is given next. 

1.	 Process the horizontal grid lines: For each horizontal line of O(n) vertices,  

from left to right, we compute for every vertex p of that line the m horizontal 

summations Oi 
⇤(p)’s which are similar to the Oi(p)’s except that they are defined 

one-dimensionally and relative only to the horizontal line that contains p (i.e., 

as if nothing exists other than what is on that horizontal line). Formally, let 

p 2 h where h is the horizontal line that contains p, let  p0 <h p denote the 

relationship “p0 is to the left of p and is on the same horizontal line h as p”, 

then we have 

Oi 
⇤(p) =  

X 
Pr(p 0) 	  (3.13)  

p02Si,p0<hp 

We compute Oi 
⇤(p)’s in the following way: If p is the first vertex on h, set  all  

m Oi 
⇤(p)’s to zero. Otherwise, let the left neighbor of p on h be p̂. Copy  all  

m Oi 
⇤(p̂)’s to Oi 

⇤(p)’s. If p̂ is an original (not virtual) instance and p̂ 2 Sj , add  

Pr(p̂) to  Oj 
⇤(p). 

The above takes O(m) for each  p on the horizontal line, hence we can compute 

Oi 
⇤(p)’s for all p’s in time O(mn) per horizontal line.  
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Example 3.3.2 In Fig. 3.11, p
1 is an instance of U

1 with probability 0.8, p
2 

and p
4 are instances of U

2 with probability 0.5 each, p
3 and p

5 are instances of 

U
3 with respective probabilities 0.6 and 0.1. Then for p

4 on the horizontal line 

h
1

, O⇤(p
4

) =  O⇤(p
4

) = 0  while O⇤(p
4

) = 0.6.
1 2	 3

2.	 Process the vertical grid lines: We compute Oi(p)’s for the vertices of each 

vertical grid line in bottom to top order: 

Oi(p) =  Oi 
⇤(p) +  Oi(p 0) +  

8
>< 

>:
#

Pr(p0) if  p0 2 Si 
(3.14) 

0  otherwise  

where p0 is the grid vertex immediately below p on the vertical line l that 

contains p (hence its Oi(p0) is already available  because it has already been  

processed in the bottom-up order for l). If p is the very bottom vertex on l, 

then Oi(p) =  Oi 
⇤(p). Note here we add Pr(p0) to  Oi(p) to  take  into account  

probabilities of original instances on l that dominate p, which  are  not  captured  

by either Oi 
⇤(p) or  Oi(p0). 

Example 3.3.3 To compute Oi(p4)’s from Oi 
⇤(p

4

)’s computed in Example 3.3.2, 

we follow Equation 4.2.3 (take i = 3  for example): 

O
3

(p
4

) =  O
3 
⇤(p

4

) +  O
3

(v) + 0 	  (3.15)  

= Pr(p
3

) +  O
3

⇤(v) +  O
3

(p
5

) +  Pr(p
5

)  (3.16)  

= 0.6 + 0 +  O
3 
⇤(p

5

) + 0.1 = 0.7 	  (3.17)  

Similarly, we compute O
1

(p
4

) = 0.8, O
2

(p
4

) = 0.5. 

The next theorem states that Oi(p) is correctly computed by the algorithm above. 

The proof is straightforward, hence omitted. 

Theorem 3.3.4 For any vertex p on the grid, Oi(p) computed by the grid method is 

the sum of probabilities of instances of Ui that dominate p, i.e. Equation 3.11 can be 

deduced from Equation 3.13 and 4.2.3. 



�

�

75 

Step 1 of the algorithm takes O(mn) time  per horizontal  line, thus  O(mn2) total  

time for all horizontal lines. Step 2 takes O(mn) time per vertical line, thus O(mn2) 

total time for all vertical lines. Since it takes an additional O(mn2) to compute  ̂ (p)’s 

from Oi(p)’s for all p’s in the grid, the overall time complexity for computing ˆ(p)’s 

is also O(mn2). 

The above algorithm easily generalizes to dimensions d >  2, with a rather daunt

ing time complexity of O(mnd). In the worst case m is proportional to n and the time 

complexity is then O(nd+1). It is interesting that such an algorithm with a discour

agingly bad time complexity, will actually play a critical part in the sub-quadratic 

time solution that we will provide later in Section 3.3.3. 

3.3.2 Weighted Dominance Counting 

The algorithm reviewed in this section, although inefcient if used as the sole 

method for solving the problem, will play a useful role as one of the two building 

blocks for the more efcient solution we give later. 

The weighted dominance counting (WDC) problem is: Given a set S of n weighted 

points, compute for each point p of S the sum of the weights of all points in S that 

dominate p. If  all  weights  are  equal  to  1,  the  problem  is  the  same  as  counting  points  

that dominate p. To be consistent, we use the same dominance concept here as in 

Section 3.1.1. 

It is well known that the WDC problem can be solved in O(n(log n)d�1) time  

for d-dimensional points ( [50,51]). This immediately gives an O(mn(log n)d�1) time  

solution to our problem, by using the WDC algorithm m times (once for each object) 

on all n instances with their probabilities as weights: For object Ui, we  assign  the  

ni instances of object Ui weights that are equal to their probabilities, and assign the 

other n � ni instances weight zero. 
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These m successive runs of the WDC algorithm give, for every instance p 2 S, 

the m sums 
P 

p Pr(p0), i.e., Oi(p)’s (for i = 1, . . . ,m). From these, it is easy 02DS,i(p) 

to use an additional O(m) time per instance  p in S to compute 

m
defˆ(p) = 

Y 
(1 � 

X 
Pr(p 0)), 

i=1,i 6 p02DS,i(p)=j 

because each summation within the product is already available from one of the m 

runs of the WDC algorithm. 

In the worst case, m is proportional to n and the time complexity is O(n2(log n)d�1). 

The algorithm in Section 3.3.3 (developed in [17]) improved this worst-case time com
1 

plexity down to Õ(n 2� d+1 ). In this work, we further improve the worst-case time 

complexity down to Õ(n2� d 
1 
). 

3.3.3 The Combined Algorithm 

Before presenting our sub-quadratic algorithm for computing all skyline probabil

ities and later its extension to high dimensions, we first give an intuitive overview on 

how our scheme works in the two-dimensional case. 

Our algorithm works by balancing the use of two inefcient methods: One uses 

weighted dominance counting (WDC), the other is based on partitioning space into 

grids. Using the former alone to compute skyline probabilities for all instances would 

result in an O(n2 log n) time  complexity,  whereas  using the  latter alone  would take  

O(n2) time without computing for virtual instances. The schema of our algorithm 

is illustrated in Fig. 3.12, which shows the interplay between di↵erent subsets of 

uncertain objects. We use a dashed arrow from one set of objects SA to another set 

SB to denote the e↵ect of instances in SA on the skyline probabilities of instances in 

SB . Specifically,  by  “e↵ect  of  p 2 SA on p0 2 SB” we mean the contribution  of  p to 

the summation Oi(p0). We use " and e to denote the e↵ect computed during WDC 

and the e↵ect computed during the grid method. 

The main ideas of our algorithm are as follows: 
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Fig. 3.12.: Schema of our algorithm 

1. We use WDC for objects that are “frequent” with a number of instances that 

exceeds a special value µ. Objects  that  are  not  frequent  are  called  “infrequent”  

objects. Specifically, we compute the e↵ect of each frequent object on the skyline 

probabilities of all n instances in time O(n log n) using the WDC algorithm. 

This is captured by " 
1 and " 

2 in Fig. 3.12. 

2. We	 merge the infrequent objects into groups such that each group contains 

between µ and 2µ instances (except that the last group could contain fewer 

than µ instances). In Fig. 3.12, the set of infrequent objects is divided into t 

groups: G
1

, . . . , Gt. 

3. We use the grid method for each group of the infrequent objects.	 It is crucial 

here that we compute ˆ(p)’s for virtual instances on the grid as well as original 

instances. Although this takes cubic time with regard to the number of instances 

in the group, it lends itself to the efcient computation of the e↵ects of the group 

on all the other instances outside of the group through the use of a “bucketing” 

technique that processes together all the non-group instances that fall within a 

cell of the grid (a “bucket”); the details are given later in Section 3.3.3. In Fig. 

3.12, e
1 captures the e↵ect of a group Gi on its own instances while e

2 and e
3 

capture the e↵ect of Gi on all the other instances. 

We use the case d = 2  to  present  our  algorithm,  and  later  extend  it  to  the  case  

d > 2. The case d = 1  is  trivial  to  solve  in  O(n) time and hence  we  omit  it.  
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Algorithm 9 shows our algorithm for computing all skyline probabilities that fol

lows the schema in Fig. 3.12. A more detailed explanation for two-dimensional data 

is given below. 

Partitioning Objects 

Partition the m objects into two sets: a set of frequent objects (F ), consisting 

of every object Ui for which ni > (n log n) 
1 
3 ; the other objects (in F ) are  said to be  

infrequent. We shall process the frequent objects di↵erently from the infrequent ones. 

The value (n log n) 
1 
3 is the partitioning point µ we mentioned earlier. 

Handling Frequent Objects 

Line 3 to 10 in Algorithm 9 shows how to handle frequent objects. For every 

frequent object Ui, we use WDC once (as explained in Section 3.3.2) to obtain Oi(p)’s 

for every p 2 S. Let  p be an instance of object Uj. We  compute  the  quantity  

↵(p) =  
Y 

(1 � Oi(p)) (3.18) 
Ui2F,Ui 6=Uj 

as the e↵ect of frequent objects on any instance p, which  is  illustrated  by  " 
1 and " 

2 

in Fig. 3.12. 

Handling Infrequent Objects 

Line 11 to 18 in Algorithm 9 shows how to handle infrequent objects. We first go 

through the infrequent objects and, while doing so, partition the infrequent objects 

into groups, as follows: A new group is initially created, with no objects in it – we 

refer to it as the current group. The next encountered object is included in the current 

group: If this causes the number of object instances in the current group to exceed 
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Algorithm 9 Computing skyline probabilities 
Input: a set  S of n instances from m uncertain objects 

Output: all instances with skyline probabilities 

1: Result = ; 

2: partition objects into two sets: F , F // Section 3.3.3 

3: for each Ui in F do // Section 3.3.2 

4: obtain Oi(p) for  all  p 2 S by calling WDC(S) 

5: end for 

6: for each p 2 S (let p 2 Sj ) do 

7: for each Ui in F and Ui =6 Uj	 do 

8: ↵(p) =  
Q

(1 � Oi(p))Ui2F 

9: end for 

10: end for 

11: partition F into groups: G
1

, . . . , Gt // Section 3.3.3 

12: for each Gi in F do // Section 3.3.1 

13: obtain ˆ 
i(p) for  all  p 2 Ii by calling Grid(Ii) 

14: for each p /2 Ii do 

15: locate p in a grid cell C of Gi 

16: ˆ 
i(p) =  ̂  

i(p0) //  p0: bottom-left  corner  of  C 

17: end for 

18: end for 

19:	 for each p 2 S do 

ˆ20:	 i(p)Prsky(p) =  Pr(p) · ↵(p) · 
Qt

i=1 

21: Result = Result [ (p, Prsky(p)) // add the pair 

22: end for 

23: return Result 
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(n log n) 
1 
3 (i.e., µ), then that group is considered done (i.e., no longer current) and a 

new (initially empty) current group is started (to which the next object encountered 

is added, etc). 

Comment and notation. Note that the number of instances in a completed group is 

between µ and 2µ, because  an  infrequent  object  does  not  add  more  than  µ to the 

current group it joins. The number of completed groups (call it t) is  obviously no  

more than n/(n log n) 
1 
3 . We denote these groups as G

1

, . . . , Gt. We  use  mi to denote 

|Gi| (= the number of objects in Gi), Ii to denote the set of all instances of the mi 

objects in Gi (hence |Ii| = 
P

nj ).Uj 2Gi
 

The next step computes, for each group Gi, the quantity 
  

ˆ 
i(p) =  

Y 
(1 � 

X 
Pr(p 0)) 

Uj 2Gi,Uj 6 p02DIi,j (p)=Uk 

for every p 2 S (let p belong to object Uk). The challenge is how to do this efciently 

— we can no longer a↵ord to use WDC because there are many objects in a Gi. We  

do the following instead: 

For each of the groups G
1

, . . . , Gt in turn, compute for every instance p in S the 

quantity	 ˆ 
i(p), i = 1, . . . , t. This is done as follows for Gi: 

ˆFirst, we use the grid method on Gi. This  gives  i(p) for  every  grid vertex  p, 

which is the e↵ect of Gi on its own instances (i.e., e
1 in Fig. 3.12) as well as virtual 

ones. This takes cubic time with regard to the number of original instances in the 

grid. 

Second, we compute the e↵ect of Gi on all instances in S that are not on the 

grid of Gi, i.e., instances from other groups of infrequent objects and instances from 

frequent objects, as illustrated by e
2 and e

3 respectively in Fig. 3.12. The grid for 

Gi partitions the plane into O(|Ii|2) regions  (called cells).  We  use  binary search to  

first locate each point p of S � Ii in the grid cell in which it lies (two binary searches 

per point – one to locate the vertical slab in which it lies and the other to locate the 

cell within the vertical slab). Then for each such point p we set ˆ 
i(p) =  ̂  

i(p0) where  

p0 is the bottom-left corner of the grid cell containing p. Note that if such p0 cannot 
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1 
3

be found for p, then  ̂  
i(p) = 1.  Since  p0 can be a virtual instance, it is crucial that 

in the grid method we compute for all vertices including the virtual instances so that 

the e↵ect of Gi on p can be obtained instantaneously. 

Computing Skyline Probabilities 

For every p in S, compute the  desired  Prsky(p) as  

t

Prsky(p) =  Pr(p) · ↵(p) · 
Y

ˆ 
i(p)  (3.19)  

i=1 

Equation 3.19 is equivalent to Equation 3.2 because the set of frequent objects and 

the groups of infrequent objects are partitions of all uncertain objects; also, the un

certain objects are all independent from each other. 

Complexity Analysis 

In this section, we analyze the time complexity of our algorithm in Algorithm 9 

for two-dimensional uncertain objects. 

Partitioning objects (line 2 in Algorithm 9) takes O(m) time by  going through all  

m objects. Handling frequent objects consists of calling WDC algorithm to obtain 

Oi(p)’s for all p 2 S (line 3 to 5) and then further computing ↵(p)’s (line 6 to 10). 
25 

The first part takes a total of O(n 3 (log n) 3 ) time,  as  the  number of  frequent objects  

is no more than n/(n log n) 
1 
3 , and the WDC for each of these takes O(n log n) time.  

115 
The second part takes a total of O(n /(log n) ) time,  as  it  takes  O(n/(n log n) ) time 3 3 3

to compute ↵(p) for each  p and there are altogether n such p’s in S. Therefore,  the  
25 

total time cost to handle frequent objects is O(n (log n) ).
3 3

Handling infrequent objects is more complicated. Grouping at line 11 takes O(m) 

time. For each group Gi, calling  the  grid  method  at  line  13  takes  time  O(|Ii|3) where  Ii 

is the set of all instances in Gi. This  is  O(n log n) because  |Ii|  2(n log n) is ensured 

by our grouping method (see Section 3.3.3). For each p in S �Gi, we can locate it in 
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a grid cell of  Gi in O(log |Ii|) =  O(log n) time  by two binary searches.  Line  16 takes  

constant time since ˆ 
i(p0) is already available from line 13. Thus the above takes a 

total of O(tn log n) time,  where  t is the number of the groups of infrequent objects. 
11 

Since |Ii| > (n log n) 3 for any group Gi except the last one, t = O(n/(n log n) 3 ),
 
25 

resulting in a time complexity of O(n (log n) ) for handling  infrequent objects  from  3 3

line 11 to line 18 in Algorithm 9.
 

Finally, computing the desired skyline probabilities for all p in S takes O(tn) time, 
  
15 

which is O(n /(log n) ).
3 3

The overall time complexity of our algorithm is, as argued in the analysis of each 
25 
). For higher dimensions, we use the notation “Õ(·)” which is step, O(n (log n)3 3

1 

similar to the “O(·)” notation except that it ignores polylog factors (whereas the 

former ignores only constant factors). Similar to the complexity analysis for d = 2,  

d+1 ) time  can be  ˜for d >  2 we can show that a worst-case performance of  O(n 2�

achieved to compute skyline probabilities for all instances. The detailed analysis can 

be found in [17]. 

3.3.4 Experimental Evaluation 

Algorithms with good asymptotic complexity can often be impractical unless n is 

huge. Our algorithm is not one of those, and is in fact practical even for moderate 

values of n, as the  following brief  experimental  evaluation demonstrates.  

We performed our experiments on synthetic data sets of two dimensions (d = 2)  

and compared it with alternative algorithms for computing all skyline probabilities. 

We implemented all algorithms in C# and the experiments were performed on an 

Apple MacBook Pro with Intel T2500 2.0GHz CPU and 2GB main memory. In the 

rest of the section, we first describe the data sets used in our experiments and then 

discuss the experimental results. 
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Data Sets 

We generated our synthetic data sets similarly to [16, 43] as follows: We first 

randomly generated the centers c of each uncertain object. Let p.x and p.y be the 

values of the first and the second dimension of an instance p, i.e.  the  x and y 

coordinates of p if we think of the instance as a point in a 2-d space. Both dimensions 

have a domain [1, 1000]. The default number of uncertain objects m is 1000. The 

number of instances for an object is uniformly distributed in the range [1, 40] by 

default. Therefore, by default the expected number of instances n is around 20,000. 

The x and y values of an instance are randomly generated in the rectangle centered 

at c with the edge size uniformly distributed in the range [1, 200]. 

E�ciency and Scalability 

We compared our algorithm (OURS) against  the  priority  search tree  based  algo

rithm (PST) [53], which queries the priority search tree built upon the data set S to 

find all instances that dominate a given instance p, i.e.  the  dominance  set  DS (p). 

The skyline probability of p then can be computed from Equation 3.2. The reason 

that we can leverage PST for finding DS (p) is that this problem can be converted to 

a two-dimensional range query:  Retrieve all instances  p0 such that p0.x  p.x and 

p0.y  p.y (we make sure that if either is “=”, then the other must be “¡”). It is 

well known that this can be done for query point p in time O(log |S| + |DS (p)|). Let 

n = |S|, then  the  tree  takes  O(n) space  and can  be  built in  O(n log n) time.  We  

also implemented the näıve algorithm (NAIVE) with an  O(n2) time  complexity for  

benchmarking. It checks all n instances to determine the dominance set of p before 

computing the skyline probability of p. 

Fig. 3.13 shows the running time of the three algorithms: OURS, PST and NAIVE 

on data sets with di↵erent total number of instances (i.e. n’s) ranging from 10k to 

60k. We used the default number of instances per object (in [1, 40]). As expected, 

NAIVE has the worst performance overall followed by PST, both  of  which have a worst
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case time complexity of O(n2). Since our algorithm has a worst-case time complexity 
25 

of O(n 3 (log n) 3 ), it performs better with larger n’s, as shown in Fig. 3.13. OURS 

outperforms both alternatives even for moderate values of n such as n = 30k, while  

for smaller n’s, its running time is slightly longer than the other two. As n increases, 

the advantage of our algorithm over the other two becomes more salient. 

E↵ect of Instance Count per Object 

Since we use the cuto↵ value µ = (n log n) 
1 
3 to partition objects into frequent and 

infrequent objects, di↵erent numbers of instances per object can a↵ect the number 

of frequent objects versus the number of infrequent ones, resulting in di↵erent e↵ects 

on the time cost of the WDC and the grid method (Grid) within  our algorithm.  For  

example, with n = 20k, µ = 65.  If  the  instance  count  per  object  generated  in  our  

synthetic data set is between [1, 80], there can be many more infrequent objects than 

frequent ones, since the expected instance count is 40 < µ. As a result, the time cost 

of Grid in our algorithm will be bigger. 

We evaluated the e↵ect of instance count per object on the time cost of WDC and 

Grid in Fig. 3.14. The average instance count per object varies from 20 to 120 and 

n is fixed to be around 20k. We can see that WDC generally takes much longer than 

Grid. Given  µ = 65,  as  instance  count  increases,  the  number  of  infrequent  objects  
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decreases, hence the time cost of Grid decreases. The time cost of WDC first increases 

as a result of more frequent objects, then maintains at a level. 
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3.4 Improved O✏ine Algorithm 

In this section, we propose a new algorithm for computing all skyline probabili

ties (the o✏ine problem) that improves the algorithm presented in Section 3.3.3 by 
325 

reducing the time complexity from O(n (log n) ) to  O(n log n) in  the  2D case.  The  3 3 2

performance gain comes from a di↵erent way to compute the e↵ects of infrequent ob

jects, which is more efcient than the way in Section 3.3.3. Such a better infrequent 

object handling method allows us to increase the cuto↵ value µ from (n log n)1/3 to 
p
n, which reduces the time complexity of computing the e↵ects of frequent objects, 

because there are less frequent objects when the cuto↵ value raises. Note that the 

improved o✏ine algorithm handles the frequent objects in the same way as in Section 

3.3.3. 

3.4.1 Overview and Preliminaries 

As in the preliminary algorithm of Section 3.3.3, we partition all uncertain objects 

into two categories: frequent objects and infrequent objects. The cuto↵ value µ is 
p

now di↵erent: We define objects with at least n instances as frequent objects and 
p

the rest as infrequent objects (i.e., µ = n). 

For an instance p 2 Uj, we compute the  quantity:  

def 
,(p) = 

Y 
(1 � Oi(p)) (3.20) 

Ui2F ,Ui 6=Uj 

as the e↵ect of infrequent objects on instance p. 

We have defined earlier the e↵ect of frequent objects on instance p as ↵(p) in  

Equation 3.18. With ↵(p) and  ,(p), the skyline probability of an instance p can be 

easily computed as: 

Pr
sky

(p) = Pr(p) · ↵(p) · ,(p). 

The e↵ect of frequent objects on all instances (i.e., ↵(p) for all  p 2 S) can be  
p

computed in O(n n log n) time  with  O(n) space. This is achieved by the WDC 
p

algorithm as we did in Section 3.3.3 in O(n n log n) time, because there are only 
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p
O( n) frequent objects and each WDC takes O(n log n) time. The space complexity 

is O(n). 

The e↵ect of infrequent objects on all instances (i.e., ,(p) for  all  p 2 S) can  be  
p

computed in O(n n log n) time  with  O(n) space  using  the  plane sweep algorithm 

that will be described in Section 3.4.2. The sweep line algorithm requires a data 

structure Ty that satisfies the following properties: 

•	 Instances in Ty are sorted according to their y-coordinates. 

•	 Each instance p in Ty is associated with two quantities: w and O, where  w is a 

weight and O is a sum of probabilities. 

•	 Retrieving w and retrieving O of an instance p both take O(log n) time.  

•	 Inserting a new instance to Ty takes O(log n) time.  

•	 Group-updating of the w’s of instances whose y-coordinates are within a range 

takes O(log n) time.  Specifically, the  operation  is  called a  range weight update, 

denoted as RWU(a, b, c), with the intended e↵ect that each instance p whose 

y-coordinate is between a and b (a  b) has its  w multiplied by c. 

A linear-space data  structure  Ty that achieves the above can be constructed as 

follows: First, sort all the input instances according to their y-coordinates. This is 

possible because the instances are given o✏ine. Then construct a binary tree on top 

of the sorted instances. Each leaf node of the tree corresponds to an instance. Each 

internal node of the tree stores the range of y-coordinates of the instances of all the 

leaf descendants of that internal node. Each node v will maintain a value ⌘(v). The 

⌘’s are used to compute the w quantities. The way ⌘ is used and updated is described 

below: 

•	 To retrieve the w quantity of an instance p, find the path from the root to 

the leaf that corresponds to p in O(log n) time,  and then the  w quantity is the 

multiplication result of all the ⌘ values associated with the nodes (including the 

leaf) on that path. 
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•	 To insert an instance p with quantity w, first  find  the  path  from  the  root  to  the  

leaf that corresponds to p in O(log n) time,  and denote  the path by  v
1

, v
2

, · · ·  , vk 

where k is the length of the path. Then set the ⌘ value of the leaf vk to be 

w/ 
Y 

⌘(vi). 
1ik�1 

•	 To perform RWU(a, b, c), locate the O(log n) tree nodes whose subtrees are 

disjoint and covering exactly all the instances with y-coordinates between a 

and b, then  update  the  ⌘ values of those O(log n) tree nodes  by multiplying  c. 

3.4.2 Computing the E↵ects of Infrequent Objects 

To simplify the presentation, we assume that instances have distinct y-coordinates, 

regardless of which object (frequent or infrequent) it is from. 

Imagine moving an infinite vertical line (called the sweep line) from left to right  

across the plane, beginning at the leftmost instance of any uncertain object. As the 

sweep line moves, we maintain the instances from infrequent objects that we have 

seen so far in a dynamic data structure Ty that was described in 3.4.1. During the 

plane sweep, whenever the sweep line encounters an instance p, we  compute  the  e↵ect  

of infrequent objects on p (i.e., ,(p)) as follows: If p is an instance from a frequent 

object, we simply query Ty for the relevant w and O (whose definition will be given 

below), from which we can compute ,(p); otherwise, p belongs to an infrequent object, 

we need to insert p into Ty and update Ty. When there are more than one instances 

on the sweep line, we process the instances ordered by their x-coordinates. 

We compute the ,’s for all instances by initializing Ty to be empty, then moving 

the sweep line l from the leftmost instance in S to the rightmost instance in S. For  

every position x of l, we  maintain  in  Ty the infrequent-object instances that have been 

encountered by l during its sweep so far, with the weight w(p.y) of  such an instance  

p in Ty being: 
def 

w(p.y) = 
Y

(1 � Ol
i(p.y)) 

Ui2F 
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Fig. 3.15.: Example on computing w(p
2

.y) 

where p.y is the y-coordinate of instance p and Ol
i(p.y) is  a 1-dimensional version of  

Oi(p) for  the  horizontal projections  on  the  current  sweep line  l of the instances of Ui 

already encountered by l. In  other  words,  Ol
i(y) is  the  sum of  the  probabilities  of  

the instances of Ui that are either at or to the left of the current position of l and 

also have a smaller y-coordinate than that of instance p. Recall  that  in  the  previous  

section, we mentioned that an instance p in Ty has two quantities: w and O. We  now  

define w to be w(p.y) and  O to be Ol
i(p.y) (assuming  p 2 Ui). Note that if instance p 

belongs to a frequent object and is (geometrically) on line l then w(p.y) =  ,(p), but 

as l moves past p and sweeps through other instances, w(p.y) changes  and ceases  to  

be ,(p). If p belongs to an infrequent object, the relationship between w(p.y) and  

,(p) is not as  simple.  We  will  see  why this  is the  case  in  Section 3.4.2.  

Example 3.4.1 In Fig. 3.15, we have 4 instances from 3 uncertain objects U
1 to 

U
3

. U
2 and U

3 are infrequent objects while U
1 is frequent. Suppose the current sweep 

line l is at x
2

. ,(p
2

) = 1  � Pr(p
3

), since the only instance from an infrequent object 

that dominates p
2 is p3. As the sweep line moves from x

2 to x
3

, w(p
2

.y) changes as 

follows: 

• When l is at x
2

: w(p
2

.y) = 1  � Pr(p
3

) =  ,(p
2

); 

• When l is at x
3

: w(p
2

.y) =  (1  � Pr(p
3

))(1 � Pr(p
4

)) < ,(p
2

). 
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The way we compute w(p.y) for any p given the position x of the current sweep line l 

is that we always horizontally project p to l and get a virtual point p0 = (x, p.y). Then 

we compute the e↵ect of infrequent objects on this virtual point p0 without considering 

the original p. For example, when l is at x
3

, p
2 
0 is dominated by infrequent-object 

instances p
3 and p

4

, hence w(p
2

.y) =  (1  � Pr(p
3

))(1 � Pr(p
4

)). The shaded region in 

Fig. 3.15 indicates the region that needs to be examined when computing w(p
2

.y) for 

l at position x
3

. 

We next explain in detail what is done with Ty when the left-to-right sweep en

counters an instance p of an object Uj (that could be either frequent or infrequent). 

Let the current sweep line be l. 

Computing ,(p) 

We distinguish two cases when computing ,(p), where p is an instance of Uj : 

Case 1: Uj 2 F , i.e.,  p is an instance from a frequent object. 

We first search for p’s predecessor in Ty under the order of y-coordinates. This 

can be done in O(log n) time by using an auxiliary dictionary data structure to 

maintain the inserted instances, where y-coordinates are the search keys. Denote the 

predecessor by p0 . Assume that p0 is from object Uk. Note that Uk 2 F , because  Ty 

only stores infrequent objects. Retrieve both w(p0.y) and  Ol
k(p0.y) from  Ty in O(log n) 

time, then we can compute 

0 0 0 ,(p) =  w(p .y) ⇤ (1 � Ol
k(p .y) � Pr(p 0))/(1 � Ol

k(p .y)). (3.21) 

This is because, after the projection, the instances from infrequent objects that 

dominate p are exactly those that dominate p0, plus  p0 itself. In Equation 3.21, the 

division by 1�Ol
k(p0.y) represents  the  cancelation of  Uk’s e↵ect and the multiplication 
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by 1 � Ol
k(p0.y) � Pr(p0) represents  adding  Uk’s new e↵ect on p after taking p0 into 

account (where p0 2 Uk). The total time needed to compute ,(p) for a  frequent-object  

instance p is just O(log n). 

Case 2: Uj 2 F , i.e.,  p is an instance from an infrequent object. 

We need to be more careful in computing ,(p) in this case. First of all, w(p0.y) 

might contain the e↵ect from instances of Uj itself, which should be removed in 

computing ,(p) (recall that in Equation 3.20, the instances from the same object are 

not considered), i.e., we should first divide w(p0.y) by  1  � Ol
j (p) to  cancel the e↵ect  

of instances from Uj . Then  we  check  if  Uk = Uj : If  so,  we  are  done;  otherwise,  we  go  

on to incorporate the e↵ect of p0 . 

As an example, suppose that the sweep line l in Fig. 3.15 now moves past the 

position x
3 and encounters a new instance p whose y-coordinate is between p

1 and p
4

. 

The predecessor of p in Ty is hence p4 (note that p4 2 U
3

, where  U
3 is an infrequent 

object). If p /2 U
3

, then  ,(p) = 1  � Pr(p
4

); otherwise, ,(p) =  1.  

Updating Ty 

If Uj is frequent, we do not need to update Ty, as  Ty only contains instances from 

infrequent objects encountered during the sweep. However, if Uj is infrequent, we 

need to update Ty to reflect the change after seeing p 2 Uj at the current sweep line. 

This update is done as follows: 

00 00Let p be the nearest predecessor of p from the same Uj as p; this  p can be 

obtained from an auxiliary dynamic dictionary structure that maintains the instances 

of Uj already encountered by the sweep line l, sorted  by  their  y-coordinates. Such a 
p

step takes O(log n) query  time,  as  Uj is an infrequent object with the number of 
p

instances no more than n. 
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We insert instance p into Ty with w(p.y) =  ,(p) and  Ol
j (p.y) =  Ol

j (p00.y) + Pr(p00). 

Insertion takes O(log n) time,  so does retrieving  Ol
j (p00.y) from  Ty. 

Now we need to update w(p̂.y) for  every instance  ̂p in Ty with greater y coordinate 

than that of p. The  weight  of  each  of  such  instances  ̂p has to be updated to reflect 

the e↵ect of the newly inserted p that p̂ dominates. There are two cases that we need 

to consider: 

Case 1: p̂ 2 Uj (where p, p̂ are from the same object): 

We do the following updates 

w(p̂.y) w(p̂.y) ⇤ (1 � Ol
j (p̂.y) � Pr(p))/(1 � Ol

j (p̂.y)), 

Oj Oj 
l (p̂.y) l (p̂.y) + Pr(p). 

p
Note that this step takes O(nj log n) time,  which is  O( n log n) because  Uj is infre

quent. 

Case 2: p̂ /2 Uj (p, p̂ are from di↵erent objects): 

Although there can be O(n) such non-Uj instances to be updated, this massive 
p

update can be done in O(nj log n) time (i.e.,  in  O( n log n) time) because  these  non-

Uj instances can be partitioned into O(nj ) contiguous  groups separated  by instances  

from Uj : We  update  the  weights  of  each  such  non-Uj group in logarithmic time using 

RWU(a, b, c) where  a (resp., b) is the  y coordinate of the instance pu (pl) of  Uj that 

is at the upper (lower) boundary of that contiguous group of non-Uj instances, and 

c = (1  � Ol
j (pl.y))/(1 � Ol

j (pl.y) + Pr(p)). 

Note that for non-Uj instances, the old e↵ect of instances from Uj is 1 �Ol
j (pl.y)+  

Pr(p) and the new e↵ect is 1 � Ol
j (pl.y). This is because pl 2 Uj and its Ol

j (pl.y) has  

already been updated to include the e↵ect of the newly-inserted p in Case 1. 
p

The time for processing an instance encountered by the sweep line l is O( n log n), 
p

and therefore the total time is O(n n log n). 
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3.4.3 High Dimensional Cases 

The extension to d-dimensional case is based on the following idea (assuming 

d is a fixed constant): Assume that the cuto↵ value to do the frequent/infrequent 

partition is µ. The e↵ects of the frequent objects can be done using WDC (like we 

did in the 2D case), in O(n
µ · n logd�1 n) time.  For the  e↵ects  of  infrequent objects,  

the algorithm uses a (d � 1)-dimensional hyperplane to sweep through the instances 

one by one according to their sorted order. The sorted order is obtained by sorting 

the instances, where the k-th coordinate serves as the k-th most important key, i.e., 

the sort order is lexicographic. During the sweeping, the algorithm maintains the 

w and Ol
i quantities like our 2D case, using an O(n logd�2 n)-space data structure 

that support insertion, retrieval and range weight update in O(logd�1 n) time.  Each  

time an instance is inserted into the data structure, it needs to do µd�1 range weight 

updates. The dominating time comes from these range weight updates, so the total 

time complexity during the sweep is O(nµd�1 logd�1 n) time.  

Based on the above analysis, the total space complexity is O(n logd�2 n), and the 

total time complexity is 

n 
O(nµ d�1 logd�1 n + · n logd�1 n). 

µ 

Choosing the cuto↵ value to be µ = n1/d yields Theorem 3.4.2. 

Theorem 3.4.2 O✏ine skyline probabilities for d-dimensional uncertain data can be 

computed in O(n2� 1 
logd�1 n) time and O(n logd�2 n) space. d 
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3.5 The Online Algorithm 

The online problem for probabilistic skylines is to compute the probability that 

a query point  q is not dominated by any instance in a given data set, i.e., the online 

skyline probability of q. In  this  section,  we  present  a  data  structure  that  can  be  
p

preprocessed in O(n n log n) time  and space,  so that this  online  skyline  probability  
p

can be computed in O( n log n) time.  

Throughout this section, we assume that the x-coordinates of all the instances 

in S are distinct; the y-coordinates of all the instances in S are distinct; any online 

query point does not share the same x-coordinate or y-coordinate with any instance 

in S. This assumption is done without loss of generality, and dropping it would result 

in a more cluttered exposition but would not cause any change in our asymptotic 

complexity bounds. 

3.5.1 Basic Idea 

We partition all uncertain objects into two categories: frequent objects and in-
p

frequent objects. The cuto↵ value µ is set to n as in the algorithm of Section 

3.4. 

The e↵ect of frequent objects on a query point q, 

↵̂(q) =  
Y

(1 � Oi(q)), 
Ui2F 

p
can be computed in O(

P
Ui2F log ni)  O( n log n) time  if  a weighted  dominance  

counting data structure [52] is built to compute Oi(q) for  each  Ui 2 F . The  total  time  

and space for all such data structures are O(
P

Ui2F ni log ni)  O(n log n). 

It remains to show how to efciently compute the e↵ect of infrequent objects. For 

a query  point  q 2 D, define  ̂,(q) to  be  the e↵ect  of  infrequent objects on  q, i.e.,  

,̂(q) =  
Y

(1 � Oi(q)). (3.22) 
Ui2F 
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We will show that computing ,̂(q) for  any point  q 2 D takes O(log n) time  with a  
p

data structure that can be built in O(n n log n) time and space.  

The key idea to compute Equation 3.22 efciently is to transform the computation 

of 1 � Oi(q) to a  range  product problem.  More  specifically,  for  an object  Ui, we  will  

construct a set of dummy points Ui 
0 and assign a dummy value v(p) for each  p 2 Ui 

0 (the 

construction algorithm will be given in Section 3.5.2), such that computing 1 � Oi(q) 

for any online query q 2 D is equivalent to a range product query in U 0 
i over the 

dummy values, i.e. 

1 � Oi(q) =  
Y 

v(p 0), (3.23) 
p02U 0 

i ,p
0�q 

where p0 � q means that p0 dominates q. We  assume  that  the  range  product  is  1  if  

there is no point dominating p (i.e., no point in the range). 

Under this transformation, Equation 3.22 becomes a range product in the point 

set U 0 = 
S

Ui 
0 over the dummy values, i.e., 

F Ui2F 

,̂(q) =  
Y Y 

v(p 0) =  
Y 

v(p 0). 
Ui2F p02U 0,p0�q p02U 0 ,p0�qi F 

This range product problem can be solved in O(log |U 0 |) time  with an  O(|U 0 | log |U 0 |)
F F F 

time and space preprocessing using a standard range query data structure [52]. 

We will provide an algorithm in Section 3.5.2 to construct the point set Ui 
0 and 

their dummy values. Based on our construction, the following lemma holds: 

Lemma 3.5.1 For any Ui 2 F , there exists an algorithm to construct Ui 
0 and the 

dummy values in O(n2 
i ) time and space. The number of dummy points in Ui 

0 is n2 
i . 

The total number of dummy points in U 0 is bounded by 
F 

X

2

p p p


X
ni n = n 

X
ni  n · n.ni 

Ui2F Ui2F Ui2F 

Therefore, the total time and space to build the range product data structure for U 0 
F 

p p
is O(n n log n), and a range product query takes O(log(n n)) = O(log n) time.  

Algorithm 10 and 11 summarize the data structures for online skyline probability. 

Theorem 3.5.2 summarizes the above analysis for Algorithm 10 and 11. Note that The 
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Algorithm 10 Preprocessing for Computing Online Skyline Probability 

1: for each Ui 2 F do 

2: Build a data structure for computing Oi(q). 

3: end for 

4: for each Ui 2 F do 

5: Compute the dummy point set Ui 
0 and their dummy values. 

6: end for 

7: Put together all the dummy points to form U 0 , i.e.,  U 0 = 
S

Ui2F Ui 
0 . 

F F 

The dummy values are unchanged. 

8: Build a range product data structure over the dummy values of U 0 . 
F 

Ignore those dummy points whose dummy values are 1. 

Algorithm 11 Computing Online Skyline Probability 
Input: a query  point  q 2 D 

1: Initialize RESULT 1. 

2: for each Ui 2 F do 

3: RESULT RESULT ⇥ (1 � Oi(q)), 

where Oi(q) is computed by a weighted dominance  counting query  in  Ui. 

4: end for 

5: RESULT RESULT ⇥ ,̂(q), 

where ,̂(q) is computed by a range product query in  U 0 
F 
. 

6: return RESULT. 

p
data structures can also be used to compute all skyline probability in O(n n log n) 

time with slight and straightforward modifications. 

Theorem 3.5.2 Online skyline probability for a 2D query point can be computed in 
p p

O( n log n) time with data structures that can be built in O(n n log n) time and 

space. 
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3.5.2 Dummy Points and Dummy Values 

For each infrequent object Ui, construct  a  grid  using  a  method  similar  to  the  one  

described in Section 3.3.1 except that only one object is considered here (i.e., no 

grouping). There are n2 
i grid points, and these grid points form the set Ui 

0. So  it  

remains to assign the dummy values to the grid points so that Equation 3.23 holds. 

The dummy value assignment scheme is similar to the scheme for extension for the 

more general ULDB model in [11]. 

To assign dummy values to the grid points in Ui 
0, we  first  process  the  grid  to  

compute Ôi(p) for  each  grid point  p 2 Ui 
0, where  

Ôi(p) =  Oi(p) +  Pr(p). 

Pr(p) is the probability of an instance of Ui located in p. Note that Pr(p) = 0  if  p 

does not coincide with any instance of Ui. This  processing  is  straightforward  using  

two “FOR” loops, and it takes O(n2 
i ) time.  

We then assign the dummy value for a grid point p 2 Ui 
0 as follows: 

•	 If p is the bottom-left grid point (the one with the smallest coordinates in all 

dimensions), the dummy value is set to 1 � Ôi(p). 

•	 If p is on the leftmost vertical line of the grid but not the bottom-left point, we 
1��̂i(p)assign value to p where pb is the point immediately below p (see Fig. 
1��̂i(pb) 

3.16). 

•	 If p is on the bottom horizontal line of the grid but not the bottom-left point, 
1��̂i(p)we assign value to p where pl is the point immediately to the left of p.
1��̂i(pl) 

•	 Otherwise, the dummy value v(p) can  be  computed as: 
  

(1 � Ôi(p))(1 � Ôi(plb))
v(p) =  
(1 � Ôi(pl))(1 � Ôi(pb)) 

where plb is the point immediately to the left of pb (or equivalently, the point 

immediately below pl). 
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Fig. 3.16.: Illustration of Pb, Pl and Plb 

 













 









 

 

 



Fig. 3.17.: Illustration of a transformation from Ui to Ui 
0 
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The total time to assign the dummy values is clearly O(n2 
i ). Equation 3.23 holds, 

because we can verify that by assigning grid points such dummy values, we make 

sure that the product of dummy values of all grid points that dominate a query point 

q 2 D is 1 � Oi(q). 

An example of the above transformation is illustrated in Fig. 3.17. The circles 

are the instances of Ui. The  squares  are  the  corresponding  dummy  points  in  Ui 
0. If  an  

online query point q is located in the ? position, then 1 �Oi(q) = 1  � (0.3+0.2) = 0.5 

which is equal to the product of the dummy values 4 , 7 , 25 and six 1’s. 
5 10 28 

3.5.3 High Dimensional Cases 

The generalization to d-dimensional cases is straightforward: Algorithm 10 and 

Algorithm 11 still apply when a d-dimensional data structure is used. We analyze 

the time and space complexity below. 

Assume that the frequent/infrequent cuto↵ value is µ, and  the  dimension  d is a 

fixed constant. The d-dimensional range sum data structures in line 2 of Algorithm 

10 can be constructed in time O(ni log
d�1 ni) time and space,  such that  Oi(q) can be  

computed in O(logd�1 ni) time [52]. So the total time and space complexity of line 1 

to 3 of Algorithm 10 is bounded by the order of 

X
ni log

d�1 ni  
X 

ni log
d�1 n = n logd�1 n. 

Ui2F 1im 

The dummy points at line 5 can be constructed in O(ni
d) time  on a  d-dimensional 

grid. So both the total number of dummy points (i.e., |U 0 |) at  line  7 and  the  total  
F 

time and space of line 4 to 6 are bounded by the order of 

X 
d 

X 
d�1 d�1 ni  niµ = nµ . 

Ui2F Ui2F 

The range product data structure in line 8 can be constructed in time and space 

proportional to 

|U 0 | logd�1 |U 0 |  nµ d�1 logd�1(nµ d�1)  nµ d�1 logd�1(n d) =  O(nµ d�1 logd�1 n),
F F 



100 

such that a range product query can be done in O(logd�1(nµd�1)) = O(logd�1 n) 

time [52]. Therefore, the total preprocessing time and space of Algorithm 10 is 

d�1O 
(
n logd�1 n + nµ + nµ d�1 logd�1 n

)
= O(nµ d�1 logd�1 n). 

At the query stage, the running time for line 2 to 4 of Algorithm 11 is in the order 

of 
nX

logd�1 ni 
X

logd�1 n =
  F

  logd�1 n  logd�1 n. 
µ

Ui2F Ui2F 

The range product query at line 5 is O(logd�1 n). So the total query time is: 

O(n
µ log

d�1 n) ,  dominated by line  2  to 4.  

Based on the above analysis, di↵erent cuto↵ value µ’s can lead to di↵erent pre

process/query time/space trade-o↵s. If we set µ = n1/d, then  we get Theorem 3.5.3.  

Theorem 3.5.3 Given a query point q, its online probability for d-dimensional data 

can be computed in O(n 
1�1 d logd�1 n) time with data structures that can be built in 

O(n2� 1 
d logd�1 n) time and space. 

3.5.4 Experimental Evaluation 

We performed our experiments on synthetic data sets of two dimensions (d = 2)  

and compared it with alternative algorithms for computing all skyline probabilities. 

All the algorithms were implemented in C++ and the experiments were performed 

on a PC with Intel Q6600 2.4GHz CPU and 3GB memory. 

Data Sets 

We generated our synthetic data sets similarly to the previous work [17, 43] as 

follows: We first randomly generated a centers c for each uncertain object. Both 

dimensions have a domain [1, 1000]. The number of uncertain objects m ranges from 

100 to 4000. The number of instances for an object is uniformly distributed in the 
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range [2, 40] by default. The x and y coordinates of an instance are randomly gen

erated in the rectangle centered at c with the edge size uniformly distributed in the 

range [1, 200]. 

E�ciency Comparisons 

We compared our algorithm (OURS) against the  previous work (PRVS) [17] and a  

range tree based algorithm (RNGT) [52].  The  OURS is implemented using the online 

algorithm in Section 3.5, because it also works for the o✏ine problem. The range tree 

based algorithm queries a range tree built upon the data set S to find all instances that 

dominate a given instance p, i.e., the dominance set DS (p). The skyline probability 

of p then can be computed from Equation 3.2. The time complexity of such a range 

tree based approach is O(
P 

(log |S| + |DS (p)|)). We also implemented the näıve p2S 

algorithm (NAIVE) with an  O(n2) time complexity for benchmarking. It checks all n 

instances to determine the dominance set of p before computing the skyline probability 

of p. 

Fig. 3.18 shows the running time of the four algorithms: OURS, PRVS, RNGT and 

NAIVE on data sets with di↵erent total number of instances (i.e., n’s) ranging from 

2,161 to 84,128. As expected, NAIVE has the worst performance overall followed by 

RNGT. The  OURS performs best, followed by PRVS. As n increases, the advantage of 

our algorithm over the other three becomes more salient. 
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Fig. 3.18.: Efciency comparisons 
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4. PROBABILISTIC THRESHOLD SPJ QUERIES 

In this chapter, we discuss the optimization opportunities and techniques for prob

abilistic threshold queries that involve selections, projections and joins (SPJ) under 

the Orion uncertain data model. 

4.1 Problem Definition 

We begin with a running example throughout the chapter. With the aim of being 

as general as possible, we have chosen to use the Orion uncertain data model [1] 

(see Section 1.1.4) since it encompasses many other recent models (such as Trio [3], 

MayBMS [6], and MystiQ [4]) while having the advantage of handling continuous 

data as well as the capability of handling both tuple uncertainty and attribute un

certainty. We then formally define the probabilistic threshold queries and introduce 

the threshold operator. We finally state the goal for our PTQ optimization. 

Note that we do not support duplicate elimination for our threshold SPJ query 

optimization under the Orion model. Since the Orion model allows continuous data 

with attribute uncertainty, the semantics of duplicates in this case is not clear. In 

Chapter 5, we adopt the general tuple uncertainty model (see Section 1.1.2) that only 

handles discrete uncertainty, and study the threshold SPJ query optimization that 

allows duplicate elimination. 

4.1.1 Running Examples 

We present below a query on uncertain tables that serves as a running example 

throughout this chapter. 
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A B C D

(4, 7): 0.9
(2, 6): 0.1

(2, 3): 0.3
(5, 4): 0.7

(1, 3): 0.7
(8, 1): 0.3

(1, 6): 0.6
(7, 9): 0.4

A < 5

B < 7

A C

4: 0.9
2: 0.1

2: 0.3

1: 0.7 1: 0.6

B D

6: 0.1
3: 0.3
4: 0.7

3: 0.7
1: 0.3

6: 0.6
9: 0.4

A B C D

(2, 6): 0.1 (2, 3): 0.3

(2, 3): 0.07
(2, 6): 0.18
(2, 9): 0.12

(1, 6): 0.07
(1, 3): 0.18
(1, 4): 0.42

(1, 3): 0.7 (1, 6): 0.6

C

2: 0.03

2: 0.021

1: 0.042

1: 0.42

R1’

R2

R12

R3

A C

4: 0.9
2: 0.1

2: 0.3
5: 0.7

1: 0.7
1: 0.6
7: 0.4

C < 3

A < B

R1

R

history (not all is shown)

Fig. 4.1.: Running example (the tables and the query) 

Example 4.1.1 Consider a relation R, with four discrete uncertain attributes A, B, C 

and D, as shown in Fig. 4.1. Attributes A and B are jointly distributed, as are C 

and D. Each pair may represent, for example, two location coordinates, or values 

reported by di↵erent individuals or sensors. The example shows two tuples in R. The 

uncertainty in the first tuple is as follows: the values of A and B are either 4 and 

7, respectively, with probability 0.9, or 2 and 6, respectively with probability 0.1; the 

values of C and D are either 2 and 3 with probability 0.3, or 5 and 4 with probability 

0.7. The uncertainty in the second tuple is similar. Table R
1 and R

2 are derived 

from R as follows: R
1 = ⇡ A,C (O A<5

R), R
2 = ⇡ B,D(O B<7

R). The following query is 

performed over R
1 and R

2

: 

⇡ R
1

.C ((O R
1

.C<3

(R
1

)) ./ R
1

.A<R
2

.B (R2

)) 

as shown in Fig. 4.1 along with all intermediate results during the query evaluation. 

We explain below how this query is evaluated under the Orion model. 

4.1.2 Probabilistic Threshold Query Optimization 

We begin with a formal definition of the probabilistic threshold query (PTQ): 
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Definition 4.1.1 (The Probabilistic Threshold Query (PTQ)) Given a probability 

threshold ✓, and a regular query, a PTQ returns all tuples satisfying the query with 

tuple probabilities greater than or equal to ✓. 

Example 4.1.2 In Example 1.1.1, suppose the speed limit on Highway 101 is 70 miles 

per hour ( mph), the local police want to find all speeding cars with probability at least 

0.4. This is a PTQ where ✓ = 0.4. To answer the query, we first find out all cars 

on Highway 101: Tuple 1 and Tuple 2, then compute their tuple probabilities after 

the selection ‘Speed > 70’ is performed, which are 0.5*0.6=0.3 and 2/3*0.6=0.4, 

respectively. Note that the tuple probability is computed from the two dependency 

sets ({Speed}, {Make, Model}) after the selection on Speed “floors” out part of the 

uniform distribution where Speed  70. The result of this PTQ is Tuple 2. 

In this example, we take a two-stage approach for the PTQ execution: First we 

obtain the tuples satisfying the query (Tuple 1 and 2), then among the resulting 

tuples, we choose those whose probabilities meet the threshold (Tuple 2). We call 

the first stage “evaluation stage” and  the second  “pruning stage”. However, for 

complicated queries, this direct approach can be very inefcient. As with other query 
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operators (e.g., selection, projection), we could perform significantly better if we could 

prune out tuples at early stages of the query evaluation based upon the probability 

threshold operator. This can be especially beneficial for uncertain data for which 

probability computations can be CPU-intensive. 

Our solution is to treat the threshold as a regular algebra operator and study its 

relationship to the standard operators (viz. selection, project, and join). The goal 

is to identify equivalences involving this new operator that allow us to enumerate 

alternative plans that are guaranteed to give the same results for uncertain data as a 

starting plan. This is exactly how regular queries are optimized. As a first step, we 

introduce the threshold operator: 

Definition 4.1.2 (The Threshold Operator) The threshold operator ⌧✓ when applied 

on an input relation, only retains those tuples with tuple probabilities greater than or 

equal to the threshold ✓. Formally, we have 

⌧✓(R) =  {t|t 2 R ^ Pr(t) ✓} 

where t is a tuple and R is a relation. 

We can apply the threshold operator after selections, projections, and Cartesian 

products on uncertain relations as follows (let t0 be a tuple in the resulting table): 

⌧✓(Oc(R)) = {t0|t0 2 Oc(R) ^ Pr(t0) ✓} 

⌧✓(⇡A¯(R)) = {t0|t0 2 ⇡A¯(R) ^ Pr(t0) ✓} 

⌧✓(R1 ⇥R
2

) =  {t0|t0 2 R
1 ⇥R

2 ^ Pr(t0) ✓} 
¯where c is the selection predicate (i.e., condition), A is a set of attributes in R, and 

R
1 and R

2 are two relations. 

We are interested in identifying equivalences among the standard algebra operators 

and the new threshold operator ⌧✓. The  goal  is  to  enable  enumeration  of  alternative  

plans that can be exploited by an optimizer. The key idea is that pushing the ⌧✓ 

operator earlier in a plan could potentially result in a more efcient plan by reducing 

the number of tuples that need to be evaluated. 
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The query plan can be viewed as a tree with the root being the last operation to 

perform. The threshold operator ⌧ ✓ sits at the root to filter out results that satisfy 

the query but do not meet the threshold requirement. This is illustrated in Fig. 4.2, 

which is the PTQ version of our running example (see Example 4.1.1). We can think 

of the PTQ optimization process as one that “trickles down” ⌧ ✓ along the tree so that 

unqualified tuples are pruned earlier at lower levels of the query plan tree. 

Example 4.1.3 As seen in Example 4.1.1, the original query in Fig. 4.1 before 

applying any threshold operators can be defined as 

⇡ R
1

.C ((O R
1

.C<3

(R
1

)) ./ R
1

.A<R
2

.B (R2

)) 

Its PTQ version is to return all tuples with probabilities at least ✓ after the original 

query is executed. Notice that if we can place the threshold operator before the join 

and successfully prune tuples from either R
1 or R2

, the expensive join execution will 

be much more efcient since there are less tuples to evaluate for the join predicate. 

We will later prove that such pruning does not prune away any potential result and 

will come back to the example for a more detailed discussion in Section 4.2. 

In summary, the task of the PTQ optimization is to decide where to put ⌧ ✓ in the 

query plan so that the correctness of the query result is preserved while the pruning 

of unqualified tuples is maximized. Before considering complex queries with multiple 

operators, we first study the optimization problem for individual operators in Section 

4.2. 

4.2 Optimization Rules 

In this section, we give the optimization rules for PTQ based on selection (O ), 

projection (⇡ ), Cartesian product (⇥) and join (./ ). The idea is to perform the 

threshold pruning at earlier stages during the query execution so that tuples that 

cannot meet the threshold can be discarded without further evaluation. Note that 

among the five basic operations for relational algebra, we only discuss three (selection, 
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projection and Cartesian product), because the set di↵erence and union require a clear 

definition for equality of two tuples with uncertain attributes, which is left for future 

work. 

4.2.1 General Rules 

We first give general optimization rules for threshold queries and their correctness 

proofs, from which specific optimization rules for query operators can be deduced. 

Optimization Rule 1. ⌧✓(op(R)) = ⌧✓(op(⌧✓(R))), where op stands for an 

operator (O or ⇡), i.e., we can apply the threshold operator to the relation R first to 

filter out tuples with a tuple probability less than ✓ before evaluating op. 

Proof Let t be a tuple in R and Pr(t) be  the  tuple  probability  of  t. Let  t0 = op(t). 

For t0 to be a tuple in the PTQ result, the tuple probability Pr(t0) after evaluating 

the operator must be at least ✓. Since  Pr(t0)  Pr(t), we can prune t immediately if 

Pr(t) < ✓. 

When executing a PTQ with threshold ✓, we can first apply ⌧✓ to R, thus  saving  

e↵orts to evaluate the query operator for tuples whose probabilities are already below 

✓. The  efciency  can  be  significantly  improved  especially  when  the  query  operator  is  

expensive to perform (e.g. selection with a complex predicate). 

To further improve the efciency of executing threshold queries, we can leverage 

the indexing techniques. For example, a B-tree built on the tuple probabilities can 

facilitate the inner threshold pruning on the original relation R to avoid sequential 

scanning of all tuples, which brings down the complexity of pruning based on Opti

mization Rule 1 from O(n) to  O(log n), where n is the number of tuples in R. However, 

the index structure must be updated whenever there are deletions and insertions of 

tuples. Furthermore, the index must also be updated whenever the probabilities of 

uncertain attributes change. 

Next we introduce a theorem upon which many of our optimization rules are built. 

It lays a solid foundation for ensuring the correctness of many PTQ optimization rules 
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that we present later in the chapter. It also ensures the safety to avoid tracking his

tories or dependencies between attribute sets in many cases, which greatly simplifies 

the PTQ optimization for uncertain data with arbitrary dependencies. 

Theorem 4.2.1 Given two arbitrary sets of attributes that are disjoint, the probabil

ity of the cross product of the two sets is no more than the probability of either set. 

Formally, let S
1 and S

2 be two arbitrary attribute value sets in tuple t
1 and t

2 respec

tively (t
1 and t

2 can come from di↵erent relations). Let Pr(S
1

, S
2

) be the probability 

of the cross product of the two sets and Pr(S
1

), Pr(S
2

) be the probability of S
1 and 

S
2 respectively. Then we have: 

Pr(S
1

, S
2

)  min(Pr(S
1

), P r(S
2

)). 

Proof Our proof consists of a proof for Pr(S
1

, S
2

)  Pr(S
1

) and a  proof  for  

Pr(S
1

, S
2

)  Pr(S
2

), from which we deduce that Pr(S
1

, S
2

)  min(Pr(S
1

), P r(S
2

)). 

For simplicity of notations, we write Pr(S
12

) instead  of  Pr(S
1

, S
2

) in our proof.  We  

only show the proof for Pr(S
12

)  Pr(S
1

) below,  as  the  proof  for  Pr(S
12

)  Pr(S
2

) 

is exactly the same. 

Without loss of generality, we partition Si (i = 1  or  2)  into  two  parts1: 

•	 Historically dependent attributes: Cj , 1  j  m, where  Cj = Nj \ S
12 and Nj 

is the common ancestor of S
1 and S

2 (i.e., Nj 2 ⇤(S1

) \⇤(S
2

), the intersection 

of the histories of S
1 and S

2

). Thus Cj is the set of attributes that the ancestor 

Nj shares with either S
1 or S2

. 

• Historically independent attributes: Di = Si �
S

Cj is the set of attributes in 

Si that are not shared with any common ancestor of S
1 and S

2

. 

Let XS
t be the random variable for an attribute set S in t. Let  xt

S be an instance of 

XS
t . If  t is omitted in XS

t (i.e., XS), we mean the random variable for the attribute 

1See Section 1.1 for definitions of historical dependency 
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set in S. Particularly,  if  S refers to Cj , we  interpret  t.Cj as the common attribute set 

between tuple t and the ancestor Cj . Let  f(xS
t ) be  the  pdf of xS

t , then  we have:  

) =f(xS
12 

8
>< 

>:
#

0  if  f(xS
ti
i 
) = 0  

t
1 t

2 ) 
Qmf(x )f(x f(xCj ) otherwise  D

1 D
2 j=1
 

m
Y
t
1 t

1 t
1f(x ) =  f(x )
 f(x )
S

1 D
1 Cj 

j=1 

Y 

With the above pdf, we  can  compute  the  probability  of  the  set  S
12 and S

1 respec-

Y 

tively as follows. Note that the attribute sets D
1

, D
2 and Cj , 8j are independent of 

each other. 

m

m

Z

Z
#

Pr(S
12

) =  f(xS
12 )dxS

12 

t
1 t

2f(x )f(x )D
1 D

2 
f(xCj )=
 

tif(x )6=0Si j=1 
Z
 Z
 Z
 (4.1)
 

t
1 t

2f(x ) f(x )
 f(xCj )=
 D
1 D

2 

Y 
j=1 

m

= Pr(t
1

.D
1

)Pr(t
2

.D
2

) Pr(Cj ) 

Y 

j=1 

Note that (4.1)  Pr(t
1

.D
1

) 
Qm Pr(Cj ).j=1 

Likewise, we can compute Pr(S
1

) as follows:  

m

Pr(S
1

) =  Pr0(t
1

.D
1

) Pr0(t
1

.Cj ) 

Y 
j=1 

m (4.2)
 

= Pr0(t
1

.D
1

) Pr0(Cj ) 
j=1 

Note that although t
1

.Cj ✓ Cj , their  total  probabilities  are  the  same  (this  can  be  

easily proved by integrating over their respective pdfs, where f(x t1 ) is  the  marginal-Cj 

ized pdf obtained from f(xCj )). 

Comparing (4.1) with (4.2), we notice that Pr(t
1

.D
1

)  Pr0(t
1

.D
1

) and  Pr(Cj )  

Pr0(Cj ) due  to more floors  when computing  Pr(S
12

) than computing  Pr(S
1

) (when  

computing Pr(S
12

), we need to consider floors resulting from selection predicates to 

http:Pr(t1.D1
http:Pr0(t1.D1
http:Pr0(t1.Cj
http:Pr0(t1.D1
http:�Pr(t1.D1
http:Pr(t1.D1)Pr(t2.D2
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obtain both S
1 and S

2 while we only consider floors to get S
1 when computing Pr(S

1

), 
t
1 t

2i.e., the former considers either f(x ) = 0  or  f(x ) = 0  while  the  latter  considers  S
1 S

2 

only f(xS
t
1

1 
) = 0),  we  have:  

m m

(4.1)  Pr(t
1

.D
1

) 
Y

Pr(Cj )  Pr0(t
1

.D
1

) 
Y

Pr0(Cj ) 
j=1 j=1 

i.e., Pr(S
12

)  Pr(S
1

). 

Note: If  S
1 and S

2 are from the same tuple (i.e., t
1 = t

2

) and are  dependent within  

the tuple, we can think of their common ancestor Nj as their dependency set in the 

tuple, and the rest of the proof is the same as the above. 

Theorem 4.2.1 empowers us to avoid tracking histories and dependencies between 

attribute sets when pruning – we can always prune according to either S
1 or S2 

regardless of whether the two sets are correlated or how they are correlated. 

Example 4.2.2 As a concrete example to illustrate the use of Theorem 4.2.1, let us 

revisit our running example in Fig. 4.1 and 4.2. We have explained how to prune 

intuitively in Example 4.1.3 without giving the reason why the pruning is correct, now 

let us examine the pruning more closely. The reason that we can discard the first 

tuple in R
1 
0 (call it t0 

11

) as well as the first tuple in R
2 (call it t21), hence avoiding the 

join operation that would have otherwise produced Tuple 1 through Tuple 3 in R
12

, is 

that by Theorem 4.2.1, the probability of any tuple t in R
12 containing either t0 or

11 

t
21 must not exceed the probability of t0 or t

21 themselves (both below the threshold). 
11 

Since projections do not change the tuple probabilities (see Section 5.2.1 for details), 

the tuples in R
3 projected from Tuple 1 to Tuple 3 in R

12 also have probabilities below 

the threshold, hence cannot be in the final results. Note that in pruning Tuples 1 to 

3 in R
12

, we do not need to worry about the dependency between attributes A and 

B or that between C and D. Using Theorem 4.2.1, we simply prune based on the 

probabilities of t0 and t
21

.
11 

From Theorem 4.2.1, we obtain the following corollary: 

http:�Pr0(t1.D1
http:�Pr(t1.D1
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Corollary 4.2.3 Given a tuple t and any set of attributes t.S ✓ t, we have Pr(t)  

Pr(t.S). 

Proof The tuple probability Pr(t) =  Pr(t.S, t.S0) where  t.S 0 [ t.S = t and t.S 0 \ 

t.S = ;. From  Theorem  4.2.1,  we  know  that  Pr(t)  min(Pr(t.S), P r(t.S 0))  

Pr(t.S). 

The optimization rule below can be deduced immediately from Corollary 4.2.3: 

Optimization Rule 2. Given table T (⌃T , T ) and  PTQ with  threshold  ✓, 

8Si 2 T in tuple t, Pr(t.Si) < ✓ ) Pr(t) < ✓. 

In other words, if there exists any dependency set with probability below ✓, we  

can immediately prune the tuple away knowing that there is no way for the whole 

tuple to have a probability that meets the threshold. 

4.2.2 Rules for Selection, Projection and Join 

We now present our optimization rules specifically for selection, projection and 

join. 

Selection 

For selection operator O, Optimization  Rule  1  and  Rule  2  both  apply.  We  can  first  

use them to prune away tuples without evaluating the selection predicate. For the 

remaining tuples, however, we have to compute the final probability that the tuple 

satisfies the predicate. Our optimization goal here is then to estimate this probability 

earlier to facilitate pruning. 

Let Sc be the set of attributes involved in the selection predicate c. We  refer  to  

the probability that c holds for attributes Sc in tuple t as Pr(c). Note that Pr(c) is  

not a tuple-level probability; rather, it is a probability that is computed solely from 

t.Sc. The  following  optimization  rule  holds  for  any  selection  predicate  c (let t0 = Oc(t) 

where t 2 R): 

http:min(Pr(t.S),Pr(t.S0
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Optimization Rule 3. Pr(c) < ✓ ) Pr(t0) < ✓. 

Proof We first compute Pr(t0) from  Pr(t) as follows:  

Pr(t)
Pr(t0) =  · Pr(c)

Pr(t.Sc) 

The formula is based on the fact that the only di↵erence between Pr(t0) and  Pr(t) 

results from the requirement that c should hold. From Corollary 4.2.3, we have 

Pr(t)  Pr(t.Sc), hence Pr(t0)  Pr(c) < ✓. 

From Rule 3, we obtain the following equivalence: 

⌧✓(Oc(R)) = ⌧✓(O⌧✓ (c)(R)) 

where ⌧✓(c) means applying the  threshold operator  to  Pr(c) for  relation  R. 

Now we seek further optimizations based on the form of the predicate c: 

Simple Predicate 

A simple  predicate  c involves at least one uncertain attribute (e.g. U,U 0) and  

has one of the following forms: i) U op k ii) U op A iii) U op U 0 , where  A is a 

certain attribute, k is a constant number and op is a comparison operation. For 

a simple  predicate  c, we  use  Optimization  Rule  3  for  pruning.  To  further  improve  

the efciency of pruning, we can build a Probabilistic Threshold Index (PTI) on the 

uncertain attribute U [29]. PTI is built based on the concept “x-bound” proposed by 

Cheng et al. [39], which is a probability bound maintained in the nodes of an R-tree 

based index to facilitate pruning for probabilistic threshold range queries. Such an 

index exploits both the range predicate over an attribute and the threshold predicate 

over the probability of the attribute within the range. 

Complex Predicate 

c is a boolean combination of predicates c
1 and c

2 using AND(^), OR(_), NOT (¬). 

We discuss the optimization for each combination below. 

i) c
1 ^ c

2

: The  following  rule  holds  in  this  case.  

http:�Pr(t.Sc
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Optimization Rule 4. Given a PTQ ⌧✓(Oc
1

^c
2 (R)) and a tuple t0 in the result 

table, Pr(c
1

) < ✓ _ Pr(c
2

) < ✓ ) Pr(t0) < ✓. 

Proof Let Pr(ci) < ✓ for some i 2 {1, 2}, then  Pr(c
1 ^ c

2

)  Pr(ci) < ✓. Let  

c = c
1 ^c2, we  have  Pr(c) < ✓. By Optimization Rule 3, we conclude that Pr(t0) < ✓. 

From Rule 4, we can deduce the equivalence: 

⌧✓(Oc
1

^c
2 (R)) = ⌧✓(O⌧✓(c1)(O⌧✓(c2)(R))) 

= ⌧✓(O⌧✓(c2)(O⌧✓(c1)(R))) 

ii) ¬c
1

: Let  Sc
1 be the set of attributes in c

1

, then  we have: 
  

Optimization Rule 5. Given a PTQ ⌧✓(O¬c
1 (R)) and a tuple t, if  Pr(c

1

) > 1 � ✓
 

or Pr(c
1

) > Pr(t.Sc
1 ) � ✓, then  Pr(t0) < ✓.
 

Proof We first compute Pr(t0) from  Pr(t): 

Pr(t)
Pr(t0) =  · (Pr(t.S ) � Pr(c

1

))
Pr(t.Sc

1 ) 
c
1 

Since Pr(t)  Pr(t.Sc
1 ) from  Corollary 4.2.3, we  have:  

Pr(t0)  Pr(t.Sc
1 ) � Pr(c

1

)  1 � Pr(c
1

)  (4.3)  

If either Pr(c
1

) > 1 � ✓ or Pr(c
1

) > Pr(t.Sc
1 ) � ✓ holds, then (4.3) < ✓. Hence 

Pr(t0) < ✓. 

iii) c
1 _ c

2

: Since  c
1 _ c

2 = ¬(¬c
1 ^ ¬c

2

), the probability 

Pr(c
1 _ c

2

) =  Pr (¬(¬c
1 ^ ¬c

2

)) 

= Pr(t.Sc
1 , t.Sc

2 ) � Pr(¬c
1 ^ ¬c

2

)  Pr(t.Sc
1 , t.Sc

2 ) 

where Sc
1 and Sc

2 are the set of attributes in c
1 and c

2

. Intuitively, probability 

Pr(t.Sc
1 , t.Sc

2 ) is  the  joint probability mass  of  the  attributes  involved in  c
1 and c

2 

without imposing any predicate – applying predicate c
1 or c2 beyond that will only 

decrease this probability. 

Optimization Rule 6. Given a PTQ ⌧✓(Oc
1

_c
2 (R)) and a tuple t, Pr(t.S , t.Sc

2 ) <c
1 

✓ ) Pr(t0) < ✓. 
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Proof We know from the above equation that Pr(c
1 _ c

2

)  Pr(t.S , t.S ) < ✓.c
1 c

2 

Let c = c
1 _ c

2

. From  Rule  3,  we  conclude  that  Pr(t0) < ✓. 

Example 4.2.4 Suppose a tuple t in relation R with two uncertain attributes a {2: 

0.1, 4: 0.2} and b {1: 0.5, 2: 0.1}. Consider PTQ ⌧
0.2(Oc

1

_c
2 (R)) where c

1 is a >  3 

and c
2 is b <  2. Since Pr(a, b) = 0.3 ⇥ 0.6 = 0.18 < 0.2, we can immediately discard 

t without evaluating the predicates. 

The corollary below follows immediately from Rule 6 and Theorem 4.2.1: 

Corollary 4.2.5 Given a PTQ ⌧✓(Oc
1

_c
2 (R)) and a tuple t, Pr(t.S ) < ✓_Pr(t.S ) <c

1 c
2 

✓ ) Pr(t0) < ✓. 

Proof From Theorem 4.2.1, we know that 

Pr(t.S , t.Sc
2 )  min(Pr(t.S ), P r(t.S ))c

1 c
1 c

2 

 Pr(t.Sci ) < ✓ 

where i 2 {1, 2}. From  Optimization  Rule  6,  we  know  Pr(t0) < ✓. 

Projection 

¯For projections ⇡A¯, where  A is the set of attributes to be projected, let Pr(t) 

and Pr(t0) be the  tuple  probability of  t before and after projection, we introduce 

the lemma below, which comes from [1] and is also clear from the possible world 

semantics: 

Lemma 4.2.6 For a given tuple t, any projection on t does not change the tuple 

probability. 

From Optimization Rule 1 and Lemma 4.2.6, we can easily deduce the following 

optimization rule for projections: 

Optimization Rule 7. For threshold queries based on projections, we have 

⌧✓(⇡A¯(R)) = ⇡A¯(⌧✓(R)). 

The above rule can be regarded as a special case of Rule 1, where the outer ⌧✓ is 

no longer needed since the projection does not change the tuple probability. 

http:�0.6=0.18
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Cartesian Product 

Cartesian product between two relations R
1 and R

2 is one of the most expensive 

operators. If R
1 has m tuples and R

2 has n tuples, the complexity of performing 

Cartesian product is O(mn). Our optimization goal is then to reduce the number of 

tuples that need to be evaluated from either relation and prune away as many tuples 

as possible without dropping any potential result. Let t
1

, t
2 be tuples in R

1 and R
2

. 

Let t
12 be a tuple in R

1 ⇥R
2

. We  have:  

Optimization Rule 8. If Pr(t
1

) < ✓ or Pr(t
2

) < ✓ , then  Pr(t
12

) < ✓ . 

Proof From Theorem 4.2.1, we know that 

Pr(t
12

) =  Pr(t
1

, t
2

)  min(Pr(t
1

), P r(t
2

)) 

If either Pr(t
1

) or  Pr(t
2

) is below  ✓ , then  Pr(t
12

) < ✓ . 

From Rule 8, we obtain the equivalence ⌧ ✓(R1 ⇥ R
2

) =  ⌧ ✓(⌧ ✓(R1

) ⇥ ⌧ ✓(R2

)). By 

applying this rule, we may filter out a large number of tuples from R
1 and R

2 before 

performing R
1 ⇥R

2

. If  the  two  relations  are  huge,  this  reduces  many  I/O  operations  

that are otherwise unavoidable during the Cartesian product execution, thus making 

PTQ processing much more efcient. 

Join 

The join operator ./ c can be considered as a selection after performing the Carte

sian product, i.e., R
1 ./ c R2 = O c(R1 ⇥ R

2

), where R
1 and R

2 are two relations. We 

can employ optimization rules for Cartesian product and selection to do the join. 

Moreover, if c only involves attributes from a single relation R, we  can  perform  O c(R) 

before the Cartesian product to reduce the number of tuples from R that need to be 

checked. 
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4.2.3 Plan Optimization 

Now that we have optimization rules for individual operators, we can apply them 

to a given query plan with combined operators. Let us first review our running 

example (let ✓ = 0.4) in Fig. 4.2. The query is: 

⌧ 
0.4(⇡ R

1

.C ((O R
1

.C<3

(R
1

)) ./ R
1

.A<R
2

.B R2

)) 

Let predicate c
1 be R

1

.C < 3 and  c
12 be R

1

.A < R
2

.B. Using Optimization Rule 

1, 3, 7 and 8, we “trickle down” ⌧ 
0.4 along the query plan tree and equivalently, we 

execute the following query instead: 

⇡ R
1

.C (⌧ 0.4(O ⌧
0.4(c12)(⌧ 0.4(O ⌧

0.4(c1)(⌧ 0.4(R1

))) ⇥ ⌧ 
0.4(R2

)))) (4.4) 

Note that we execute ⌧ 
0.4 from inside out (⌧ 

0.4s in inner parentheses are executed 

first): If a tuple can be pruned with some inner ⌧ 
0.4, we  can  discard  the  tuple  right  

away without completing the whole evaluation. The query plan tree corresponding 

to 4.4 is shown in Fig. 4.3. We show below how various optimization rules work 

together in pruning for a complicated PTQ with selections, projections and joins all 

present: 

In (4.4), though we cannot prune anything by executing ⌧ 
0.4(R1

) (See Fig. 4.1: 

The two tuples of R
1 have probabilities 1 and 0.7 each), we can use ⌧ 

0.4(F1

) to  prune  

the first tuple of R0 
1 away, as a result of Optimization Rule 3. We can also prune the 

first tuple of R
2 away with Rule 1 by executing ⌧ 

0.4(R2

). The pruning of tuples in 

R
0 
1 and R

2 before joining them is itself a result from applying Rule 8, which leaves us 

only one join operation to do: Joining Tuple 2 from R0 
1 and Tuple 2 from R

2

. Tracing  

back to their history in Fig. 4.1, we correctly compute the joining tuple to be: 

A B C D 

(1, 3): 0.7 (1, 6): 0.6 
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Its tuple probability is 0.7 ⇤ 0.6 = 0.42 > 0.4. According to Optimization Rule 7, 

the projection does not change the tuple probability. We hence return the projected 

tuple as the final answer (Tuple 4 of R
3 in Fig. 4.1). 

As we can see from Section 4.2, our contributions lie in providing a new way of 

optimizing probabilistic threshold queries that is general, and similar to the tradi

tional approach for optimization. The merit of the approach is not in the complexity 

of the proposed rules, rather in their simplicity and easy applicability while ensuring 

correct evaluation with respect to possible world semantics. 

Generally, given a query plan P of a PTQ in which the threshold is placed at the 

end of the query, our goal for PTQ optimization is to find an equivalent query plan P 0 

of P such that we can prune as many tuples as possible by leveraging the threshold 

(i.e., applying the threshold operator) during the query evaluation while keeping the 

total cost low. Our approach here is to start with a plan P that is guaranteed to be 

safe (through the use of histories and dependency sets) and then apply optimization 

rules to P to generate equivalent plans that are also all guaranteed to be safe (the 

rules ensure correct evaluation). Since there are usually multiple optimization rules 

that are applicable for P , we  can  generate  multiple  equivalent  plans  by  applying  

di↵erent sets of rules or by applying the same set of rules in di↵erent order. The 

query optimizer then chooses which alternative plan to use based on cost estimation, 

a process  similar to  that  of the current  traditional  database optimizers.  

4.2.4 Experimental Evaluation 

The goal of our experiments is to validate the e↵ectiveness of our optimization 

rules proposed in Section 4.2. We evaluate the e↵ectiveness of the rules on both 

synthetic and real data sets. 

http:�0.6=0.42
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Table 4.1: Sensor data set schema 

TS SID xpos ypos 

14:16:20.50 2242 prod(Gaus(327, 20), Gaus(296, 20)) 

14:16:20.50 2243 prod(Gaus(338, 61), Gaus(293, 61)) 

14:16:20.50 2244 prod(Gaus(319, 17), Gaus(110, 17)) 

14:16:20.50 2245 prod(Gaus(315, 19), Gaus(101, 19)) 

14:16:20.50 2246 prod(Gaus(327, 42), Gaus(287, 42)) 

Data Sets 

We use two data sets in our experiment: One is a real data set for attributes 

with continuous uncertainty, and the other is a synthetic data set for attributes with 

discrete uncertainty. 

The real data set comes from a sensor application that monitors the movement of 

people within a building using 802.11-based sensors that report approximate locations 

in real-time. Each tuple consists of a sensor ID (SID) that identifies each sensor, the 

time stamp (TS) of the measurement, and the measured location (xpos, ypos). Due 

to the calibrated errors with the sensors, the positions are reported with uncertainty 

represented as Gaussian distributions around the reported locations. We use it as an 

example of continuous uncertain attributes. Table 4.1 shows the first 5 tuples in this 

sensor data set. The notation prod(Gaus(µ
1

, O
1

2), Gaus(µ
2

, O
2

2)) stands for the joint 

pdf of the Gaussian distributions of xpos and ypos (as introduced in [1]), where µ
1 

and O
1

2 are the mean and the variance of xpos, and  µ
2 and O

2

2 are the mean and the 

variance of ypos. The  cumulative  probability  of  the  joint  pdf is 1, hence the tuple 

probability is 1 for all tuples. 

The synthetic data set that we generate is a simulation of the real sensor data 

set with xpos and ypos, having  discrete  uncertainty.  We  generate  100,000  tuples  in  

total. Each tuple has a TupleID, along with xpos and ypos values that are jointly 
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distributed as one dependency set. The number of instances in the dependency set, 

k, is uniformly distributed between 1 and 10. The tuple probability of the synthetic 

data set, which equals the total probability of this dependency set (as TupleID is 

certain), is randomly generated from 0.001 to 1. The probabilities of the instances 

are generated randomly and sum up to this total probability. The values of both 

attributes xpos and ypos are in the range [1, 1000]. For each uncertain attribute in 

each tuple, we randomly pick a central point center in [1, 1000]. We also generate 

the spread of its instance values in the tuple that obeys Gaussian distribution with a 

mean 10 and variance 2, which roughly corresponds to 1% of the entire range. With 

the center and spread fixed, we can randomly generate the values of the k instances 

such that they are within the range [center - spread /2, center + spread /2]. 

Unless specified otherwise, the default value of the threshold is 0.4 for all experi

ments, and the default size of the real and synthetic data sets are 10,000 and 100,000 

tuples each. 

Query Examples 

Below we describe the PTQ queries used in our experiment to test the performance 

of our optimization rules. We denote the table as T , and  uncertain  attributes  as  U 

and U 0 . The value of an uncertain attribute is denoted as u or u0. We  compare  our  

optimizations against the unoptimized evaluations of the queries. Since probabilistic 

query evaluation involves using non-standard relational operators (viz. floor, product, 

marginalize), the optimization available in standard PostgreSQL cannot optimize 

these operations or the threshold operator. Thus the base näıve case that we compare 

our optimizations to executes the query using Orion operators and then applies the 

threshold operator to all resulting tuples, retaining only those that meet the overall 

probability threshold. 

The list of queries used in our experiments are given below. 

Q1: SELECT * FROM T
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This simple query illustrates the power of Optimization Rule 1. The result should 

only return those tuples with tuple probability greater than the threshold. To make 

use of the rule, a B-tree index is created on tuple probabilities and used to prune out 

all tuples with probabilities below the threshold ✓. 

Q2: SELECT * FROM T WHERE U > u 

This query benefits from Rule 3 in addition to Rule 1. In order to use Rule 3, 

it is necessary to support threshold range queries using a PTI index, which is built 

on attribute U to prune out all tuples with Pr(U > u) < ✓. A  B-tree  index  on  the  

original tuple probabilities is also maintained as above for Rule 1 to be applicable. 

Q3: SELECT * FROM T WHERE U > u AND U’ < u’ 

This query benefits from Optimization Rule 4. We build PTI indices on attributes 

U and U 0, separately,  to  prune  out  tuples  with  either  Pr(U > u) < ✓ or Pr(U 0 < 

u0) < ✓. 

Q4: SELECT * FROM T WHERE U > u OR U’ < u’ 

This query demonstrates the e↵ectiveness of Optimization Rule 6. By pruning 

tuples whose attribute set U [ U 0 has a probability below the threshold. 

Q5: SELECT U FROM T 

This query benefits from both Rule 1 and Rule 7. Projection does not a↵ect the 

tuple probabilities. Hence a B-tree index on tuple probabilities is enough for pruning 

unqualified tuples. 

Q6: SELECT * FROM T1 INNER JOIN T2 

ON T1.TupleID = T2.TupleID 

A B-tree  index  on  the  tuple probabilities  of  T
1 and another for T

2 would sufce 

for leveraging Optimization Rule 8 to reduce the number of join evaluations that are 

needed for the inner join query. 
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Q7: SELECT TT1.U FROM ( 

(SELECT * FROM T1 WHERE T1.U > u AS TT1) 

INNER JOIN 

(SELECT * FROM T2 

WHERE T2.U > u AND T2.U’ < u’ AS TT2)
 

ON TT1.TupleID = TT2.TupleID)
 

This is an example of a complicated query similar to our example query in Fig. 

4.1. It uses several optimization rules: Optimization Rule 1, 3, 4, 7 and 8. These 

rules work together to ensure that the threshold operator is pushed down the query 

plan tree as far as possible so that unqualified tuples from either table T
1 or T2 can 

be pruned away before the join and unqualified tuples from the joined table can also 

be discarded promptly. 

Experimental Results 

Our experiments compare the optimized PTQ execution with the base case, i.e., 

the näıve approach that does not use any optimization rules that we proposed earlier. 

We call them “optim” and “näıve” respectively. 

We now show how our optimization rules are actually written in the form of SQL 

queries. Consider query Q7. If the threshold is p, this  query  in  the  näıve  form  is  

written as: 

SELECT TT1.U FROM ( 

(SELECT * FROM T1 WHERE T1.U > u AS TT1) 

INNER JOIN (SELECT * FROM T2 WHERE T2.U > u 

AND T2.U’ < u’ AS TT2) 

ON TT1.TupleID = TT2.TupleID) 

WHERE mass(TT1.U) > p 

In the optimized version, this query is written like this: 
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SELECT TT1.U FROM ( 

(SELECT TupleID, floor(U, U <= u), U’ FROM T1 

WHERE prob > p AND T1.U >? (u, p) AS TT1) 

INNER JOIN 

(SELECT TupleID, floor(U, U <= u), 

floor(U’, U’ >= u’) 

FROM T2 WHERE prob > p AND T2.U >? (u, p) 

AND T2.U’ <? (u’, p) AS TT2) 

ON TT1.TupleID = TT2.TupleID) 

WHERE mass(TT1.U) > p 

“>? (x,p)”  and  “<? (x,p)”  are  operators  defined  in  Orion  which  calls  PTI  index  

for value x and threshold p. mass is a function that calculates the probability mass 

of an uncertain variable. The function floor  is the floor operation we introduced 

in Section 1.1, which zeroes out part of the uncertain attribute’s pdf that does not 

satisfy the predicate. We see that TT
1 in the optim query is defined using Rule 3, 

TT
2 is defined according to Rule 3 and 4. And the join is done according to Rule 3, 

4 and  8.  

We evaluate all queries from Q1 through Q7 on both real and synthetic data sets 

in the following aspects: 

E↵ect of Data Set Size 

Fig. 4.4 and Fig. 4.5 show the e↵ect of data set size on the run time of selection 

query Q1 and Q3. The threshold is fixed at 0.4. Due to the small size of the real 

sensor data set we have, we choose to perform this test on the synthetic data set 

alone. Let the synthetic data set we generated be T . For  the  join  query  Q6,  we  

generate two tables T
1 and T

2 from T . T
1 contains all tuples from T whose xpos is 

greater than 300 while T
2 contains all tuples from T whose ypos is less than 600. We 

record the time cost for running optim against näıve. The result in Fig. 4.6 (the data 

set size here is the size of the table after the join) shows that Optimization Rule 8 

significantly contributes to better performance of Q6 in terms of run time. 
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Fig. 4.6.: E↵ect of data size on Q6 Fig. 4.7.: Query selectivity of Q2, Q3, Q4 

E↵ect of Threshold 

Fig. 4.7 gives a comparison between the selectivity of di↵erent thresholds for Q2, 

Q3 and Q4 on the sensor data set. All three queries are selections with predicates. 

We define selectivity as the ratio of the size of the PTQ result set and the size of 

the original data set. With an increasing threshold, all queries observe a consistent 

decrease in the selectivity of query results, as more tuples become unqualified for the 

threshold. The threshold also a↵ects the run time of the query, as shown in Fig. 4.10 

on the sensor data set for the same queries. We compute the ratio of näıve’s run time 

and our optim’s run time for thresholds from 0.1 to 0.9 (called näıve-optim ratio). 

We perform the same experiment for simple selection and projection (i.e. Q1 and 

Q5) on the sensor data set, and the result is shown in Fig. 4.11. Fig. 4.12 shows the 

run time of näıve versus that of optim (threshold fixed at 0.6). For join operations, 
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we plot the run time of optim and näıve on the sensor data set and the synthetic 

data set in Fig. 4.8 and Fig. 4.9 respectively. An interesting observation is that the 

threshold does not really a↵ect the run time of näıve while it has dramatic impact on 

the run time of optim. 

E↵ect of Optimization Rules 

We now evaluate a more complicated SQL query that combines all the above 

operations in one query and leverages multiple optimization rules for faster query 

execution. 

We use Q7 as an example of such queries, which benefits from Optimization Rule 

1, 3, 4, 7 and 8. In Fig. 4.13, we show the pruning percentage (number of join 

tuples pruned over the total number of join tuples) by applying Rule 1, 3, 4 and 8 

separately. Note that here we do not measure the pruning percentage for Rule 7, 
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since Rule 7 is equivalent to Rule 1 in terms of pruning (projections do not change 

the tuple probability). While the first three rules are measured individually, Rule 8 

is actually a combination of all these rules. Also, for Rule 1, we measure the pruning 

percentage for both T
1 and T

2

. To  distinguish  the  two,  we  call  the  first  Rule  1a  and  

the second Rule 1b. As we can see from Fig. 4.13, Rule 8 has the most powerful 

pruning capability, discarding almost 90% of all tuples due to its high selectivity from 

both T
1 and T

2

. 
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4.3 Improving Optimization Through Threshold Estimation 

So far we have discussed the optimization for threshold SPJ queries under the 

Orion model, where the optimization is achieved mainly through pushing down the 

threshold operator along the query plan to prune unqualified tuples away as early as 

possible. During this process, the original threshold on the query result is “trickled” 

down the query plan without change: At any stage of query execution, we apply 

the appropriate optimization rules to prune out tuples of intermediate results whose 

probabilities are below the same threshold. 

However, pruning using the original threshold ✓ may turn out to be too conser

vative: Tuples that pass this pruning at an earlier stage of query execution may still 

fail to meet the minimum threshold requirement of ✓ at the end. In the rest of the 

section, we will show that it may be possible and more desirable to push down a 

threshold greater than ✓ for more aggressive pruning. 

4.3.1 Motivation 

We use the example below to illustrate how pruning for SPJ queries can be done 

more efciently by varying the threshold during the query evaluation. 

T in Table 4.2 has three uncertain attributes A, B, C and two dependency sets 

{A}, {B, C}. A has continuous uncertainty modeled as uniform distributions while 

B, C have discrete uncertainty and are jointly distributed. The threshold query 

is: ⌧
0.4(OA�5

T ), where 0.4 is the threshold and ⌧
0.4 is the threshold operator [27]. 

From [27] we know that equivalently, the above threshold query can be evaluated as 

⌧
0.4(O⌧

0.4(A�5)

(⌧
0.4T )) where we apply the threshold operator multiple times for early 

pruning. 

First we observe that no tuple can be pruned by applying ⌧
0.4, as  all  tuple  prob

abilities are at least 0.4. For example, Tuple 1’s probability is 1 ⇤ (0.4 + 0.1) = 0.5. 

Hence ⌧
0.4T = T . We need to further examine ⌧

0.4(A 5) for possible pruning. 

http:�0.4(O�0.4(A�5)(�0.4T
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Table 4.2: An uncertain table T 

A B C 

Uniform(0, 10) 
(0, 1): 0.4 

(0, 2): 0.1 

Uniform(2, 17) 
(1, 3): 0.2 

(1, 5): 0.3 

Uniform(5, 36) 
(1, 3): 0.1 

(2, 2): 0.3 

Uniform(2, 7) (3, 5): 0.5 

We can compute the maximum cumulative probability for dependency set {B,C} 

across tuples as: max{0.4 + 0.1, 0.2 + 0.3, 0.1 + 0.3, 0.5} = 0.5. If we had used the 

same threshold 0.4 on the predicate A >  5 (i.e.,  ⌧
0.4(A 5)), we would have missed 

out the opportunity to discard tuples with Pr(A 5) 0.4 that fail to yield a final  

tuple probability that meets the 0.4 threshold. In fact, given that the maximum 

probability for {B,C} (denoted as Prmax({B,C})) is 0.5, Pr(A 5) should be at 

least 0.4/0.5 = 0.8 for the result tuple to pass the threshold requirement. Therefore, 

we can safely prune all tuples except Tuple 3 with the enhanced 0.8 threshold while no 

single tuple could have been pruned if we had kept the same threshold 0.4. Therefore, 

the increased new threshold 0.8 is a more accurate lower bound on Pr(A 5). 

Likewise, if we know the maximum probability for A 5 (denoted  as  Prmax(A 

5)) to hold across all tuples, we can bound the threshold for the probability of de

pendency set {B,C}: We  use  ✓/Prmax(A 5) to prune out tuples with cumulative 

probabilities of dependency set {B,C} under this new threshold. Furthermore, if we 

also know Prmax({B,C}), we can check whether Prmax({B,C}) <  ✓/Prmax(A 5) 

(where ✓ is the original threshold). If so, we know immediately that no tuple meets 

the threshold requirement. 
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4.3.2 Threshold Estimation 

We vary the threshold ✓ as it “trickles” down the query plan tree by estimating the 

“real” threshold to use when applying optimization rules. This new threshold is the 

minimum probability threshold needed for the final result tuple to have a probability 

✓. Note that the new threshold is employed to prune unqualified tuples rather than 

to guarantee the finding of final results. 

To estimate the threshold for pruning, we maintain the maximum cumulative 

probability over the joint pdf of each dependency set across all tuples, which is denoted 

as Pr
max

( ), where is the dependency set. There are several ways in which this 

information can be leveraged to improve pruning: 

First of all, we know that the probability of a tuple is the product of the cumulative 

probabilities of all its dependency sets. Therefore, as long as one Pr
max

( ) < ✓, there  

is no chance for any tuple in this uncertain table to be a query result that meets 

the desired threshold of ✓, regardless of the SPJ query issued. Hence we completely 

bypass the query evaluation. 

Second, for queries with selections, we can use Pr
max

( ) to increase the threshold 

to be applied to the selection predicate, as illustrated in the example of Table 4.2. 

Let the attributes in the selection predicate be from 
1

, ...,  i where 1  i  k and 

k is the total number of dependency sets in the table. Then we can compute the new 

threshold ✓0 to be applied to the selection as: ✓0 = ✓/
Qk ( ).i+1 Prmax

In addition, as the example of Table 4.2 suggests, the other way round works too 

for selection queries: If we know the maximum probability for a selection predicate 

to hold across all tuples, we can also estimate the new threshold on the rest of 

dependency sets and see if the product of the maximum cumulative probabilities of 

these dependency sets meets the new threshold. 
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5. THRESHOLD SPJ QUERIES WITH DUPLICATE 

ELIMINATION 

While the previous chapter studies threshold select-project-join (SPJ) query opti

mization under the Orion model, this chapter discusses the threshold SPJ query op

timization when duplicate elimination is allowed. Recall that the Orion model does 

not support duplicate elimination. This is mainly due to the existence of continuous 

uncertainty in the Orion model, for which the semantics of duplicates is not clear. 

Therefore, to allow duplicate elimination in our threshold SPJ queries, we limit the 

uncertainty in data to discrete uncertainty. To make this discrete uncertainty model 

as general as possible, we adopt the general tuple uncertainty model introduced in 

Section 1.1.2, which allows arbitrary dependencies between tuples. Many current 

uncertain models can be converted to this general model, which we will discuss in 

Section 5.1.1. 

Unlike the Orion model where tuples are essentially joint distributions of all de

pendency sets [1] and uncertainty can come from attributes, under the general tuple 

uncertainty model, each tuple is in e↵ect a “valuation” of all attributes in the table: 

Let A
1

, A
2

, ..., Ak be k attributes in an uncertain table T , then  each  tuple  t in T is 

a valuation  v = {A
1 = a

1

, A
2 = a

2

, ..., Ak = ak} where ai(1  i  k) is  a constant.  

Such a valuation is associated with a probability that it occurs, i.e., the probability 

that the tuple t exists, denoted as Pr(t). We later refer to v as the tuple value of t, 

denoted as t = v. An SPJ query with threshold ✓ returns tuples that satisfy the SPJ 

query with probabilities ✓. It  is  important  to  know  what  tuples  mean  for  di↵erent  

models in order to understand what we are thresholding on. 

We design new threshold SPJ query optimization schemes that can be applied 

to the general tuple uncertainty model, as well as pruning rules and techniques to 

specifically handle duplicate elimination, which is not considered in Chapter 4. We 
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introduce a new query operator dedup, denoted  as  � (see Definition 5.1.2), as an ad

dition to the set of standard relational algebra operators. The introduction of dedup 

creates disjunctive relationship between tuples in addition to their initial dependen

cies. The biggest challenge now is to push the threshold through a dedup operator in 

the query: We can no longer push the same threshold down the query plan without 

possibly pruning away potential results – duplicate tuples whose individual probabil

ities are all below the threshold could still pass a dedup operator if the probability of 

their disjunction (the dedup result) exceeds the threshold. 

While the dedup operator calls for new pruning rules that vary the threshold for 

more accurate pruning, we show that joins may also take advantage of such a varying 

threshold to improve pruning in Section 5.2.1. Our pruning rules and algorithms in 

general propose the threshold to use for each query operator that maximizes pruning 

while maintaining high precision and recall for the entire query. 

Intuitively, there are two aspects we should consider for threshold query optimiza

tion: 

•	 The query. By analyzing the query, we know what operators are used at what 

stages in the query plan. Such information could be leveraged for choosing the 

right set of pruning rules as well as the right pruning algorithms to estimate 

the threshold. 

•	 The data. The more we know about the data, the more accurate the threshold 

estimate could be. This includes knowledge from the dependencies between 

tuples to distributions of attribute values across tuples. 

We discuss in detail how the query and the data can help us design good pruning 

rules in Section 5.2, based on which pruning techniques are proposed in Section 5.3. 

We finally present our pruning schemes in Section 5.4. 
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5.1 Problem Definition 

5.1.1 General Tuple Uncertainty Model 

We formally define the general tuple uncertainty model mentioned in Section 

1.1.2 as follows: Each tuple t in a probabilistic database DBP is associated with a 

probability Pr(t) that  the  tuple  appears  and a boolean expression  ¢(t) (referred  to as  

“lineage” in [11]) to capture the dependencies between base tuples in generating t. We  

assign a unique random variable to each tuple in DBP . The  probability  distribution  

of a random variable r for a tuple t is discrete: Either r = true with probability 

Pr(t) or  r = false with probability 1 � Pr(t), i.e., random variable r represents the 

atomic event that tuple t appears. We write r and ¬r as shorthand for the events 

r = true and r = false. For  a  base  tuple  t in DBP (as opposed to a tuple generated 

from a query on DBP ), its lineage is simply r. An instance of the above probabilistic 

database DBP is a truth assignment of the random variables for all tuples in DBP 

where the assignment is allowed by the dependencies. For example, if tuples t
1 and 

t
2 are mutually exclusive, the probability of the assignment r

1 = true and r
2 = true 

is zero, i.e., it is not a possible instance of DBP . When the reference is clear from the 

context, we use t to represent both the tuple and its corresponding random variable. 

Note that we choose lineage as the mechanism that the model adopts to capture 

tuple dependencies only for simple exposition and experimentation. As pointed out 

earlier in Section 1.1.2, many other mechanisms can be used to capture dependencies 

that are either inherent in the data or generated during query evaluation. Since we 

do not assume knowledge about any dependency between tuples at the beginning of 

a query, we design applicable pruning rules regardless of the dependencies. However, 

if the exact dependencies are known before the query, we can leverage them for more 

accurate pruning. 

The general tuple uncertainty model is a simple but powerful model, as many 

existing data models with discrete uncertainty can be converted to this model. The 

independent tuple model and the x-tuple model are trivially convertible to the general 



133 

model. For others that are more complicated, such as MayBMS [6] and BayesStore [5], 

we can first list out all possible combinations of values across all attributes (i.e., 

all possible tuples) in each uncertain table based on the original uncertain table 

representation (usually more succinct than the one used in the general model). At the 

same time we maintain the dependency information for each tuple obtained above.We 

replace the original uncertain table representation using the new representation where 

uncertainty is only at the tuple level. We then inherit the existing mechanisms for 

tracking dependencies, such as c-tables for MayBMS [6] and Bayesian networks for 

BayesStore [5]. 

5.1.2 Threshold SPJ Query With Dedup 

We now formally define the threshold SPJ query under the general uncertainty 

model that allows duplicate elimination: 

Definition 5.1.1 Given a probabilistic database DBP under the general tuple un

certainty model, a threshold ✓, a SQL query Q with selection, projection, join and 

duplicate elimination, the threshold SPJ query Q✓ returns all tuples in DBP that 

satisfy Q with probability no less than ✓. 

Note that duplicate elimination is allowed, but not enforced. Therefore, the query 

needs to explicitly use the dedup operator for duplicate elimination. 

Definition 5.1.2 Given a relation R in a probabilistic database DBP , the dedup op

erator � on R, denoted as �(R), returns all tuples t in R with distinct values such that 

if t is the only tuple with value v, t is returned with lineage unchanged; otherwise, let 

t
1

, t
2

, ..., tk be k tuples with value v, then a single tuple t = v is returned with new 

lineage 
Wk

i=1 ¢(ti) and new probability Pr(t) = Pr(¢(t)). 

Fig. 5.1 shows an example of a table R with three attributes and four tuples. 

Each tuple’s probability and lineage are shown in separate columns. We assume that 

http:above.We
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A B C probability lineage 

5 1 3 0.8 t
1 

2 4 2 0.4 t
2 

2 1 3 0.2 t
3 

9 3 6 0.3 t
4 

B C  lineage 

1 3 t
1 
W

t
3 

Fig. 5.1.: Query with dedup under general tuple uncertainty model 

all tuples are independent from each other. Initially the lineage of each tuple is set 

to its own event variable. The table on the right is the result after performing the 

following threshold query: ⌧
0.5(�(⇡B,C (OA<8

R))), where ⌧
0.5 is the threshold operator 

with threshold ✓ = 0.5. The selection predicate A <  8 disqualifies  tuple  t
4

. The  

dedup operator after the projection leaves two candidates: {B = 1, C  = 3} from 

t
1

, t
3 and {B = 4, C  = 2} from t

2

. However, only the former remains to be the 

final result, as its probability computed from the lineage passes the 0.5 threshold: 

Pr(t
1 
W

t
3

) =  Pr(t
1

) + Pr(t
3

) � Pr(t
1

) ⇤ Pr(t
3

) = 0.84 > 0.5. 

Computing the probability of a lineage where base tuples are independent is known 

to be #P-hard [10, 54]. Therefore, the goal of our threshold query optimization is to 

design pruning algorithms that can quickly prune tuples with probabilities less than 

the threshold to avoid computing the exact probabilities. The results after pruning 

should have high precision as well as recall: The pruning algorithms should not return 

many tuples that are incorrect results, nor should the algorithms prune many correct 

results away. The definitions for precision and recall are given below: 

• precision = #correctly returned tuples / #all returned tuples 

• recall = #correctly returned tuples / #all correct tuples 

Specifically, given a query and its execution plan, we estimate the appropriate 

threshold to use for pruning tuples at each stage of the plan such that unqualified 

tuples can be pruned as early as possible. Unlike the optimization discussed in the 

http:�Pr(t3)=0.84
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previous chapter, when we “trickle” the threshold down a query plan, we no longer use 

the same threshold from the beginning to the end: The threshold is allowed to change 

for di↵erent query operators to improve pruning performance. Below we propose our 

new pruning rules under the general tuple uncertainty model that support duplicate 

elimination for threshold SPJ queries. 

5.2 Pruning Rules 

We design our pruning rules for each query operator, i.e., selection (O ), projection 

(⇡ ), join (./ ) and duplicate  elimination (� ), respectively. Same as in [27], we use 

the threshold operator – ⌧ ✓ to represent the step when a probability threshold ✓ is 

used to decide if a tuple should be retained or not: Only those with probabilities no 

less than ✓ (i.e., pass the threshold operator ⌧ ✓) are retained. As we have mentioned 

earlier, duplicate elimination is explicit: It is treated as a separate query operator 

� rather than being implicitly performed at the end of each query. Therefore, the 

pruning rules below proposed for selection, projection and join are all rules that 

apply without duplicate elimination implicitly performed at the end. 

5.2.1 Selection, Projection and Join 

Selection 

The general tuple uncertainty model defined in Section 5.1.1 guarantees that there 

is a clear yes-or-no answer to the question: Does the tuple satisfy the selection pred

icate? On the contrary, for the attribute-level uncertainty model, a “tuple” may 

mean a joint distribution of all attributes in the table [27], hence part of the tuple 

may satisfy the selection predicate while the rest may not. Under the general tuple 

uncertainty model, however, a tuple is essentially a valuation of all attributes and 

is associated with a probability that such valuation appears, as we have mentioned 

earlier. Such valuation either satisfies the predicate or not. The following Rule 1 
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summarizes the above by stating that selection does not change the tuple probabil

ity: Thresholding on tuples after performing selection is the same as thresholding on 

tuples before the selection. 

Rule 1. ⌧✓(OcR) =  Oc(⌧✓R) where c is the selection predicate and R is the uncer

tain relation in a probabilistic database DBP with tuple uncertainty. 

Given Rule 1, we can trickle the same threshold ✓ down a selection operator in a 

query plan, which enables us to prune at lower levels of the plan (i.e., at an earlier 

stage of the query evaluation). The lineage of a tuple after selection remains the 

same. 

Projection 

Same as selection, projection does not change the tuple probability. After projec

tion (without implicitly performing duplicate elimination), the values of the projected 

attributes (the new tuple, denoted as t0 ) are  implicitly associated with the  original  

tuple t where the values come from, hence Pr(t0 ) =  Pr(t), ¢(t0 ) =  ¢(t), where ¢ is the 

tuple lineage. The pruning rule for projection thus looks similar to that for selection: 

Rule 2. ⌧✓(⇡�! R) =  ⇡�! (⌧✓R) where A is the list of projected attributes. 
A A 

Join 

Joining two tables R
1 and R

2 together creates conjunction between tuples from 

the two tables. Let t
1 and t

2 be two tuples that satisfy the join predicate and are 

from R
1 and R

2 respectively. Then the lineage of the join tuple ¢(t
12

) should be  

updated to ¢(t
1

) ̂  ¢(t
2

), as t
12 = t

1 ^ t2. The  probability  of  the  new  tuple  t
12 depends 

not only on Pr(t
1

) and  Pr(t
2

), but also on the dependency between t
1 and t

2

. For  

example, if the two tuples are mutually exclusive, then Pr(t
12

) =  0;  if  t
1 ) t2, then  

Pr(t
12

) =  Pr(t
1

); if they are independent, then Pr(t
12

) =  Pr(t
1

) ⇤ Pr(t
2

). 

We propose the following rule for the join that holds regardless of dependencies 

between tuples from the two tables: 
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Rule 3. ⌧ ✓(R1 ./ c R2

) =  ⌧ ✓(⌧ ✓R1 ./ c ⌧ ✓R2

) where c is the join predicate. 

Proof Given a join tuple t
12 from t

1 and t
2

, its  probability  Pr(t
12

) =  Pr(t
1 ^ t

2

) =  

Pr(t
1

) ⇤ Pr(t
2

|t
1

)  Pr(t
1

). Similarly, we have Pr(t
12

)  Pr(t
2

). Therefore, if either 

Pr(t
1

) < ✓ or Pr(t
2

) < ✓ , Pr(t
12

) < ✓ , i.e., we can apply the threshold operator ⌧ ✓ on 

R
1 and R

2 first before performing the join. 

Rule 3 applies universally regardless of dependencies between the two tuples to be 

joined. However, if the join tables are independent from each other, we can leverage 

this knowledge for better pruning. The idea is essentially the same as that in Section 

4.3 (although for a di↵erent setting) where the new threshold that filters through the 

join operator is boosted. 

Rule 4. If R
1 and R

2 are two uncertain relations that are independent from each 

other, then ⌧ ✓(R1 ./ c ⌧ ✓/Pr
max

(t
1

)

R
2

) where ti is any tuple in R
2

) =  ⌧ ✓(⌧ ✓/Pr
max

(t
2

)

R
1 ./ c 

Ri and Pr
max

(ti) is the maximum tuple probability of Ri (i = {1, 2}). 

Proof Given a join tuple t
12 from t

1 and t
2

, its  probability  Pr(t
12

) =  Pr(t
1 ^ t

2

) =  

Pr(t
1

) ⇤ Pr(t
2

)  Pr
max

(t
1

) ⇤ Pr(t
2

). Therefore, if Pr(t
2

) < ✓ /Pr
max

(t
1

), Pr(t
12

) < ✓ . 

Likewise, we have Pr(t
2

) < ✓ /Pr
max

(t
1

) ) Pr(t
12

) < ✓ . Therefore,  we  can  either  use  

Pr
max

(t
1

) to boost the  threshold to be  used on  R
2 (✓ /Pr

max

(t
1

) ✓ ) or use  Pr
max

(t
2

) 

to boost the threshold to be used on R
1

. 

The following Rule 5 can be immediately deduced from Rule 4: 

Rule 5. If R
1 and R

2 are independent from each other and Pr
max

(t
1

)⇤Pr
max

(t
2

) < 

✓ , then no tuple satisfies the query: ⌧ ✓(R1 ./ c R2

). 

5.2.2 Duplicate Elimination 

Recall that duplicate elimination (dedup) on a table creates disjunctions between 

tuples. Let t
1

, t
2

, ..., tk be k tuples in a table R with the same value v across all 

attributes in R. After dedup, the lineage of a resulting tuple t (with value v) generated 

from the k tuples is updated to the following: ¢ (t) =  
W

i
k 
=1 ¢ (ti). It is obvious that 
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we cannot näıvely push down the same threshold through, otherwise we are likely to 

prune away potential results in situations where for all 1  i  k,Pr(ti) < ✓, but  it  

still holds that Pr(t) =  Pr(¢(t)) ✓. 

On the other hand, for all tuples with unique values (i.e., k = 1),  no  disjunction  

is created. We can still use the same threshold for pruning. 

To design a pruning rule for the dedup operator �, it  is  important  to  know  some  

information about the data itself such as the number of tuples with the same value 

(i.e., k) for each possible  tuple  value  v in the table. We call k the occurrence count 

of value v. We  can  build  a  histogram  on  tuple  values  with  bin  size  1  to  obtain  this  

information. The pruning rule below is designed based on knowing the ks: 

Rule 6. Let v be the value of a tuple t in an uncertain relation R and k be 

the number of tuples in R with the same value v, then ⌧✓(�R) =  ⌧✓(�(⌧✓0 R)) where 

✓0 = ✓/k for each tuple t being evaluated. 

Proof For tuples t
1

, ..., tk in R with the same value v, the  probability  of  value  v 

after dedup (call it tuple t) is  computed as:  Pr(v) =  Pr(t) =  Pr(
Wk

i=1 ti). We need 

to prove that by thresholding on t
1

, ..., tk using ✓0 = ✓/k before dedup is performed, 

we will not prune away any potential result. Clearly, t will be pruned only if all tis 

have Pr(ti) < ✓/k. In  this  case,  Pr(t) = Pr(
Wk ti) 

Pk Pr(ti) < ✓ holds, i.e., t isi=1 i=1 

definitely not a result and should be pruned. Therefore, pruning using ✓/k guarantees 

that no potential result will be dropped. 

Note that as long as there exists a ti (1  i  k) with  Pr(ti) ✓/k, t will be 

returned as a result. The values of all tis are  the same (i.e.,  8i, ti = v = t). Hence as 

long as one ti passes the new threshold ✓/k, t will be retained. 

In Fig. 5.1, the result of the threshold query: ⌧
0.5(�(⇡B,C (OA<8

R))) is {B = 1, C  = 

3}, which comes from both t
1 and t

3

. If  we  apply  the  above  Rule  6  for  pruning  instead  

of computing the exact probability of the result tuple, we can see that the tuple count 

k = 2  for  {B = 1, C  = 3} and the new threshold for pruning is 0.5/2 = 0.25. t
1 passes 

the new threshold while t
3 fails. As a result, {B = 1, C  = 3} is still retained even 

though its lineage is now simply t
1 instead of t

1 
W

t
3

. 

http:0.5/2=0.25
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If we have a histogram built on tuples in R but with a larger bin size (i.e., there 

are more than one value associated with the bin), then each bin b is associated with 

an average occurrence count k computed as follows: Let v
1

, v
2

, ..., vl be l values in b, 

we first compute the occurrence count ki for each vi as the number of tuples in R 

with the same value vi, then  we  compute  k as the average of all ki’s. Given the above 

histogram and a value v, to  find  out  the  occurrence  count  for  v, we  first  locate  the  bin  

that the value v belongs to, and then use the corresponding count k for the bin (which 

is the average occurrence count of all values in the bin) as the count for v, which  may  

not be its actual occurrence count. Obviously histograms with larger bins are not as 

accurate in describing the original data as those with bin size 1. Hence using a coarser 

histogram results in less accurate pruning with Rule 6. When the bin size reaches the 

total number of distinct tuple values in R, k becomes the average occurrence count 

for all values. In this case, ✓0 in Rule 6 becomes fixed as ✓/k regardless of tuple values. 

The histograms we have discussed so far store only the occurrence counts (ks) 

corresponding to their value bins. If, on the other hand, we store with each bin of 

value v the maximum probability of the k tuples max Pr(ti) as  well  as  the  sum of  all  k 

probabilities 
P

Pr(ti) in addition to the  count  k, we  can have  a better estimation of  

Pr(t) where  t = v after duplicate elimination: max Pr(ti)  Pr(t)  min(1,
P

Pr(ti)) 

[55]. This probability range can be leveraged for pruning as summarized in Rule 7: 

Rule 7. For tuples t
1

, ..., tk in R with the same value v, the probability of value v 

after dedup (call it tuple t) is in the range: [max Pr(ti),min(1,
P

Pr(ti))] , 1  i  k: 

If max Pr(ti) ✓, t must be a result; If 
P

Pr(ti) < ✓, t must not be a result, hence 

should be pruned. 

5.3 Pruning Techniques 

In this section, we discuss pruning techniques specifically geared to the dedup and 

the join operators. As we have shown in Section 5.2, neither selection nor projection 

changes tuple probabilities. Hence pushing the same threshold down either operator 
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sufce. However, for joins and dedups, we need to be more careful in choosing the 

right threshold. 

5.3.1 Range Partitioning for Joins 

Recall that joins can change probabilities of the join results based on dependencies 

between the two tuples to be joined. Rule 3 of Section 5.2 shows that the probability 

range of a join tuple t
12 from tuples t

1 and t
2 is [0,min(Pr(t

1

),Pr(t
2

))] regardless of 

dependencies between t
1 and t

2

. While Rule 3 enables us to apply the same threshold 

on t
1 and t

2 first before performing the join, Rule 4 further increases the threshold 

to be applied to t
1 and t

2 under the independence condition. Below we propose a 

technique based on Rule 4 to further improve the performance of pruning for join 

queries, given the independence assumption of the join tables. 

Let R
1 and R

2 be two uncertain tables to be joined that are independent from each 

other. In order to apply Rule 4, we maintain the statistics on the tuple probabilities 

of R
1 and R

2

, namely, the  maximum  tuple  probability  Pr
max

(t
1

) and Pr
max

(t
2

) where  

t
1 and t

2 are tuples from R
1 and R

2 respectively. However, if both tables are huge, it 

is very likely that Pr
max

(ti) is  close to 1,  hence using  ✓/Pr
max

(ti) as  the new  threshold  

for pruning tuples is not much more e↵ective than using the original threshold ✓ for 

pruning – there can be many join tuples in the result set with actual probabilities less 

than ✓. Alternatively, we could simply multiply the probabilities of all pairs of tuples 

that satisfy the join predicate to obtain the exact probabilities of join tuples and 

decide if any should be pruned. This näıve method, although guarantees to return 

correct results, requires performing a large amount of joins, many of which could have 

been avoided had we leveraged a threshold for early pruning. 

To fully take advantage of Rule 4 in maximizing pruning, we propose the range 

partitioning technique for joins. We first partition the join tables R
1 and R

2 by the 

range of their tuple probabilities in linear time. Specifically, let c be the number of 

partitions for each table (c is a constant, c > 0), we scan the original table Ri and 
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partition it into a set of smaller tables Rij (0  j < c) as follows:  If a tuple  t has a 

probability in range (j/c, (j + 1)/c], we assign it to Rij . While partitioning, we also 

maintain the maximum tuple probability Pr
max

(tij ) for  each  Rij (Prmax

(tij )  (j + 

1)/c), which is no bigger than Pr
max

(ti) due to the smaller size of  Rij compared with 

Ri. Such partitioning needs to be done only once for all queries. Given a join query 

with threshold ✓, we  first  prune  out  all  Rij s whose maximum  tuple probabilities are  

less than ✓. Then  for  each  remaining  R
1j , we  use  a new  threshold  ✓

1j = ✓/Pr
max

(t
1j ) 

to prune out all R
2j0 s with Pr

max

(t
2j0 ) < ✓

1j (0  j, j0 < c). Then we perform the join 

between tuples in R
1j and tuples in the remaining R

2j0 s whose  probabilities meet  ✓
1j . 

Similarly, for each remaining R
2j0 , we  can  also  use  a  new  threshold  ✓

2j0 = ✓/Pr
max

(t
2j0 ) 

to prune out all R
1j s with Pr

max

(t
1j ) < ✓

2j0 and then perform the join between tuples 

in R
2j0 and tuples in the remaining R

1j s whose  probabilities  meet  ✓
2j0 . 

The advantage of the above range partitioning technique is that it enables finer-

grained pruning by maintaining maximum probabilities at sub-table level instead of 

the table level, thereby boosting the threshold even further using Rule 4. Moreover, 

thanks to the introduction of sub-tables, which are groups of tuples whose probabili

ties fall into the same range, it is now possible to eliminate entire sub-tables instead of 

individual tuples before performing the join. This also optimizes the query evaluation 

by minimizing the number of tuples to be retrieved for the join. 

Example 5.3.1 As shown in Fig. 5.2, we have already partitioned both tables R
1 

and R
2 into two sub-tables based on their tuple probabilities. The first sub-table has 

all tuples with probabilities less than or equal to 0.5 while the second has the rest. For 

example, R
1 is partitioned into R

11 and R
12

. To perform an equality join between 

R
1 and R

2 on A = D with threshold ✓ = 0.3, we first find out all tuples from R
2 

that should be joined with R
11

. Since the maximum tuple probability of R
11 is 0.5 

and the threshold is 0.3, we use 0.3/0.5 = 0.6 as the new threshold for R
2 and prune 

the whole sub-table R
21 away. For the remaining R

22

, we use the 0.6 threshold to 

prune its tuple t
21 away, leaving a single tuple t

24 to be joined with R
11

. Similarly, for 

R
12 with maximum tuple probability 0.8, we obtain the new threshold 0.3/0.8 = 0.375 
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A B Probability

1 4 0.50

2 3 0.80

1 3 0.45

2 2 0.65

R1

A B Probability

1 4 0.50

1 3 0.45

A B Probability

2 3 0.80

2 2 0.65

t11

t12

t13
t14

t11

t13

t12

t14

R11

R12

D E Probability

2 5 0.55

1 4 0.35

1 6 0.30

1 3 0.90

R2

t21

t22

t23
t24

D E Probability

1 4 0.35

1 6 0.30

D E Probability

2 5 0.55

1 3 0.90

t22

t23

t21

t24

R21

R22

Fig. 5.2.: Range partitioning technique for joining R
1 and R

2 on A = D with ✓ = 0.3 

for pruning. Since R
21

’s maximum probability is 0.35 < 0.375, we can eliminate the 

whole sub-table and only perform joins between tuples from R
12 and R

22

. 

If we had not used the above range partitioning technique, we would have checked 

all 4*4=16 pairs of tuples for the join, since applying Rule 3 (prune tuples from 

both tables whose probabilities are below the threshold) would not have achieved any 

saving (all tuples from R
1 and R

2 have probabilities 0.3). However, with range 

partitioning, we only need to check 2 ⇤ 1+2  ⇤ 2 = 6 pairs of tuples for the join, saving 

as much as 10/16 = 62.5% of work. 

5.3.2 Sampling for Dedup 

As mentioned in Rule 6 and 7, to dedup on table R, we  can  pre-construct  his

tograms on the whole table R for pruning purposes. Later in Section 5.4.4, we will 

see that histograms on base tables are not useful for all queries, and new ones on 
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selected attributes must be constructed on the fly for pruning, which are kept for 

future references. 

Maintaining such histograms could be expensive, as potentially there could exist 

as many as exponential number of histograms for each base table with regard to the 

number of its attributes. Moreover, in case of complicated SPJ queries that involve 

multiple tables and have dedup operators, new histograms are likely to be requested 

at the time of the query, whose construction would significantly slow down the query 

processing. 

In these situations, it is easier to use sampling to estimate the threshold for pruning 

rather than analyze the complex query and build new histograms from scratch that 

correspond to the particular query at hand. However, the sampling approach to 

threshold estimation has no guarantee on the precision or the recall of the final results, 

as statistics gathered for a sample do not always reflect the statistics about the original 

data. In practice, it serves as a simple and quick method to estimate the threshold 

for pruning when there is duplicate elimination. We show in Section 5.5 that it has 

decent performance in terms of precision and recall in our experiments. 

The key to estimating the threshold to be pushed down a dedup operator in Rule 

6 is  to estimate the occurrence count  k. We  can  use  the  following  algorithm  for  

sampling to obtain this k: Given  a  sampling  percentage  x, we  first  sample  all  base  

tables Ris in the query such that the size of the sample table corresponding to Ri is 

x ⇤ |Ri|. The samples are generated based on the existing histograms of base tables. 

Tuple values with larger occurrence counts also have higher probabilities to be fetched 

to the sample. Note that the histograms here are on whole tuples of the base tables 

(i.e., all attributes are included), hence we only need k histograms for k base tables. 

If such histograms are unavailable at the time of the query, we simply obtain our 

samples by randomly choosing tuples from the base tables. 

Once the samples are obtained, we run the entire query (except the final thresh

olding step) on the samples to obtain the final results (referred as the “sampling 

results” for short), from which we compute the following statistics of the occurrence 
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counts: the average, maximum and minimum occurrence counts of all values in the 

sampling results, denoted as avg, max and min respectively. Similarly, we denote the 

average, maximum and minimum counts of all values in the actual results obtained 

from the original tables as AVG, MAX and MIN, clearly we have max  MAX and 

min MIN. However, for average counts, either avg AVG or avg < AVG could 

hold depending on the tuples in the sample. 

Note that we obtain the aggregates of occurrence counts instead of the exact 

histogram of the sampling results. This is because the samples are usually very small 

compared with original tables, hence many tuple values present in the original tables 

are not found in the samples. For such values, we do not know their occurrence count 

k in order to obtain ✓/k as the new threshold to be pushed down a dedup operator for 

pruning tuples with these values. However, by using aggregates of occurrence counts 

from the sampling results, we can compute the new threshold as the original threshold 

divided by the chosen aggregate (avg, max or min), and use this same threshold for 

all tuple values. 

In Section 5.5.2, we present our experimental results on sampling and discuss in 

detail the e↵ect of sampling percentage and the choice of occurrence count (i.e., avg, 

max or min). 

5.4 General Pruning Schemes 

In this section, we present our general pruning schemes for any given SQL query 

Q that involves selection, projection, join and duplicate elimination. Our schemes 

leverage the pruning rules proposed in Section 5.2 as well as pruning techniques in 

Section 5.3, and aim to estimate an accurate threshold at each step during the query 

evaluation for better pruning. 
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5.4.1 Näıve Pruning Scheme 

Our näıve pruning scheme always uses the same threshold for pruning regardless of 

the query operator currently being evaluated. This scheme, in e↵ect, applies Rule 1, 2 

and 3 for selection, projection and join respectively, all of which trickle down the same 

threshold through the query operator. In case of dedup, however, instead of applying 

Rule 6 or 7, the näıve pruning scheme sticks to the same threshold for pruning. 

In this way, the scheme avoids the cost of building and querying the histograms 

for obtaining the occurrence count k or the probability bounds (see Section 5.2.2). 

However, it also introduces pruning errors by possibly decreasing the recall: Tuples 

pruned individually because their probabilities are below the threshold ✓ may have 

a probability over  ✓ after dedup, i.e., the näıve pruning scheme may miss correct 

results. The precision, on the other hand, remains 1 for all single queries that do 

not have joins. For such queries with no dedup, this trivially holds as selection and 

projection do not change tuple probabilities. For those with dedup, precision is 1 

because if there exists a duplicate tuple ti with Pr(ti) ✓, for  tuple  t after dedup, 

Pr(t) = Pr(
W

ti) max Pr(ti) ✓, i.e.,  t must be a dedup result. The precision of the 

näıve scheme may drop below 1 when the query to be evaluated has joins. Applying 

Rule 3 with the same threshold on both tables before the join does not prune out 

potential results, but may keep many unqualified tuples whose probabilities after the 

join fall below the threshold. 

5.4.2 Range-based Pruning Scheme 

Our range-based pruning scheme examines the query plan in a bottom-up fashion, 

and at each node in the plan computes the probability range of the node’s lineage. 

Probability range of a node at level j in the query plan tree is computed from prob

ability ranges of its children at level j + 1.  This  process  is  similar  to  the  one  in  [55]  

except that in our case, the lineage may not be in DNF and the random variables in 

the lineage (the base tuples) may not be independent from each other. Pruning occurs 
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at the end of the query by comparing the threshold ✓ with the maximum bound of 

the lineage associated with the result tuples: If ✓ is larger than the maximum bound, 

we prune the tuple away. 

The algorithm for computing the bounds is recursive, as follows: For a boolean 

expression e in the lineage that consists solely of a random variable r, we  set  both  

the maximum and minimum bounds of e: Pr
max

(e) and  Pr
max

(e) to  be  Pr(r) and  

return the bounds; for a boolean expression e that is a disjunction of k other boolean 

expressions (denoted as e = 
W

i
k 
=1 ei), we compute Pr

max

(e) as  
Pk

i=1 Prmax

(ei) and  

Pr
min

(e) as maxki=1 Prmin

(ei); for a boolean expression e that is a conjunction of k 

other boolean expressions, i.e., e = 
Vk

i=1 ei, we  compute  Pr
max

(e) as  mink
i=1 Prmax

(ei) 

and Pr
min

(e) as 0.  

The range-based scheme uses Rule 1, 2, 3 and 7 for pruning. 

5.4.3 Sampling-based Pruning Scheme 

As discussed in Section 5.3.2, the sampling approach does not depend on the query 

at hand: All it does is to obtain a small sample for each base table so that when the 

query comes, it can run the whole query on the corresponding samples and obtain 

the aggregate occurrence counts to be used for pruning on the original tables. 

In general, given a query with dedup, a sampling percentage, and a choice of 

average, minimum or maximum count to be used for pruning, the sampling-based 

scheme first obtains samples of size: percentage * table size, then run the whole 

query and compute the choice of count k from the sampling results immediately after 

the last dedup operator is applied. Then it pushes down ✓/k all the way to the leaf 

level of the query plan and prunes away tuples from all base tables in the query with 

tuple probabilities <  ✓/k. Rule 1, 2, 3 and 6 are applied during this process. Here 

we are only concerned with the last dedup instead of intermediate dedups because a 

query plan where dedup is applied multiple times is equivalent to one where dedup is 

applied at the end. 
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5.4.4 Histogram-based Pruning Scheme 

Rule 6 proposed in Section 5.2 computes the new threshold to be pushed through 

a dedup operator as the old threshold (✓) divided by the  occurrence  count (k) of  the  

current tuple value (v). On the other hand, Rule 7 leverages the probability bounds 

of disjunctions generated by duplicate elimination for pruning. As we have mentioned 

earlier, histograms can be leveraged in applying Rule 6 and Rule 7. For Rule 6, we can 

use a simple histogram where tuple values are mapped to their occurrence counts; 

for Rule 7, we store additional statistics that correspond to the tuple values: the 

maximum probability and the sum of all probabilities of tuples with the same value. 

For a given SPJ query Q with duplicate elimination, our goal is to estimate the 

threshold to be pushed through each query operator without actually computing the 

query. We have mentioned earlier that knowledge about the data and the query 

is helpful in solving the problem. The histogram-based pruning scheme is an ideal 

example to illustrate how we can leverage both data and query for pruning. 

First of all, we analyze the query and find out all attributes that will appear in the 

query result. We then partition them into k sets such that attributes in the i-th set 

are from base table i (1  i  k). For each attribute set i consisting of j attributes 

Ai1, Ai2, ..., Aij from table i, we  check  if  there  already  exists  a  histogram  that  is  built  

on these attributes of table i. For example, if the original table R has three attributes 

A, B, C in which only A is projected in the end, then we need a histogram on R with 

a single attribute  A. If  such  histograms  are  not  available,  we  build  them  on  the  fly  

and keep them for later use. 

Next we use the information from the histograms for pruning: If the histogram 

only stores occurrence counts k for values, we estimate the occurrence counts k̂ for 

actual values at the time of dedup as k and use Rule 6 to prune tuples before dedup 

with a new threshold ✓/k. Since  the  histogram  is  built  upon  base  table  R and not 

all tuples from base tables become final results that satisfy the whole query, the 

actual occurrence count k̂  k. Therefore,  using  ✓/k for pruning will not prune away 
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potential results, i.e., the histogram-based pruning has a recall of 1. If the histogram 

also stores the sum of probabilities corresponding to value v, we  can  apply  Rule  7  by  

checking directly if the sum is < ✓: If so we prune all tuples with the same value v; 

otherwise we keep the tuples. Rule 7 also has a recall of 1 because only tuples that 

for sure cannot meet the threshold are pruned away. 

In both cases, pruning occurs at the leaf level of the query plan, i.e., all pruning 

is done on base tables. Similar to the sampling approach, histogram-based pruning 

is concerned only with the last dedup and the final attributes in the query – we 

do not care whether there are intermediate dedups or what intermediate queries are 

performed. 

After the “top-down” process of pruning base tuples, we go “bottom-up” to eval

uate the query and to compute the probability range at each stage of the query for 

potential pruning, which is essentially the same as the range-pruning scheme intro

duced in Section 5.4.2. The tuples that pass both top-down and bottom-up pruning 

are finally returned as results. 

None of the above pruning schemes introduced in this section assume the knowl

edge of tuple dependency or independency. However, if such information is known 

before the query is evaluated, we can leverage the information for better pruning, 

such as Rule 4 and 5 for joins as well as the range partitioning technique introduced 

in Section 5.3.1. 

5.5 Experimental Results 

We empirically evaluate the performance of our pruning schemes on various syn

thetic data sets by running simulation of database query processing. All programs 

were written in C# and were run on a MAC with T2500 2GHz CPU and 2GB main 

memory. 
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5.5.1 Data Sets and Experiment Setup 

We generated the synthetic data set as follows: For each base table, we first gen

erated the schema: the number of attributes and the minimum and maximum value 

allowed for each attribute. The actual value of an attribute in a tuple is generated 

uniformly within this range. Given the total number of tuples in each base table, 

the number of duplicate tuples in the table, and the maximum number of occurrence 

count for all tuple values, we first obtained a duplicate tuple value by generating 

random values for each attribute in the tuple independently. We then generated the 

actual number of occurrence count k for that value and repeated it k times in the 

table. The default number of tuples in base tables is 100,000. The default maxi

mum number of occurrence count is 5 and the default number of duplicates is 10% of 

the table size. By default, base tables are independent from each other. The tuples 

within the same table are also independent by default. However, we can generate 

dependencies when needed. For example, to generate mutually exclusive tuples in a 

table, we can randomly generate sets of tuple IDs in the table, each of which denotes 

a set  of tuples that  are mutually exclusive.  

All tuples in base tables are assigned distinct random variables, which are used in 

the lineage of tuples. 

In our evaluations, we consider two types of queries: i) queries on single tables, 

referred to as single queries for short, and ii) queries on multiple tables, referred to 

as join queries. Let  T
1 and T

2 be two tables with tuple uncertainty. T
1 has three 

attributes: A
1

, A
2

, A
3 and T

2 has two attributes: B
1 and B

2

. The  possible  range  of  

each attribute in T
1 is as follows: A1 2 [0, 10, 000), A

2 2 [0, 5000), A
3

in[0, 3000). The 

value ranges of B
1 and B

2 are the same as those of A
1 and A

2

. Similar  to  T
1

, T has 

three attributes A
1

, A
2

, A
3 as well. However, the value ranges of these attributes in 

T are di↵erent: A
1 2 [0, 2000), A

2 2 [0, 3000), A
3

in[0, 5000). We test the following 

two queries in specific (note that we use SELECT DISTINCT for the dedup operator): 
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Q1: 

SELECT DISTINCT A1, A2 FROM T WHERE A1 < c 

Q2: 

SELECT DISTINCT A1 FROM ( 

(SELECT DISTINCT A1, A2 FROM T1 WHERE A1 < c1 AS TT1) 

INNER JOIN 

(SELECT DISTINCT B1 FROM T2 WHERE B1 < c2 AS TT2) 

ON TT1.A1 = TT2.B1) 

At the end of each query, we apply the threshold operator ⌧✓ to prune out all 

result tuples with probabilities less than ✓. 

5.5.2 Performance of Pruning Schemes 

We compare the performance of di↵erent pruning schemes in terms of precision, 

recall and time cost. Naı̈ve refers to the näıve pruning scheme, Range refers to the 

range-based pruning scheme, Sampling refers to the sampling-based scheme, and fi

nally, Histogram1 and Histogram2 refer to the histogram-based schemes with the 

former applying Rule 6 and the latter applying Rule 7. Precision and recall measure 

the e↵ectiveness of our schemes while the time cost reflects the efciency of the al

gorithms. We compute the precision and recall against the probabilistic version of 

Karp-Luby Monte Carlo algorithm [55, 56] for threshold query evaluation: Given a 

query Q, the  results  are  computed  first  without  thresholding.  For  each  result  tuple,  

we use Karp-Luby algorithm to evaluate the probability of its lineage, which takes into 

account the dependencies between base tuples and returns tuples whose approximate 

probabilities are over the given threshold. 

For each lineage evaluation, we run the simulation 100,000 times to make the 

approximated probability as close to the real probability as possible. We then compare 

the results of our pruning algorithms with the results returned by the simulation, and 

compute the precision and recall of our pruning algorithms. 
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E↵ect of Data Set Size 

We increase the data set size (i.e., table size) to test the scalability of our pruning 

schemes, as shown in Fig. 5.3. The time cost of all pruning algorithms for Q1 

increases as the table size increases from 100k to 500k. Naı̈ve is the fastest pruning 

scheme while Sampling is the slowest. This is because Sampling needs to generate 

the samples first, run the whole query on the samples, before getting the estimate of 

the new threshold for pruning on the original table. Note that in Fig. 5.3, neither 

Histogram1 nor Histogram2 includes the time to build the histogram – since the 

histogram may be re-used later for future queries, we do not count the time to build 

the histogram as a cost in the two histogram-based pruning schemes. Later in Fig. 

5.14, we show the time cost for constructing histograms separate from pruning with 

these histograms. 

E↵ect of Threshold 

As the threshold increases, fewer tuples satisfy the query with probabilities that 

meet the threshold. Fig. 5.4 shows the e↵ect of the threshold on the precision of 

pruning results. For all pruning algorithms except Naı̈ve, with an increasing thresh

old, the precision decreases. The precision of Naı̈ve, on  the  other  hand, remains  to  

be 1 regardless of thresholds. This is because Fig. 5.4 was based on Q1 on a single 
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table. With no joins, the only operator that a↵ects the tuple probability is the dedup 

operator. Since Naı̈ve keeps all tuples whose probabilities meet the threshold, if the 

tuple ti is not a duplicate, it must be a result; otherwise, the disjunction of j duplicate 

tuples t
1

, ..., tj in which ti ✓ must also have a probability ✓ (refer to Rule 7 for 

the probability range of disjunctions), hence ti (or more accurately, the value of it) 

must also be a result. Therefore, the precision of Naı̈ve is 1. 

For queries with joins, however, Naı̈ve no longer keeps precision at 1 – in cases 

where probabilities of join tuples returned by Naı̈ve fail to pass the threshold (even 

though before the join, both tuples to be joined have probabilities ✓), Naı̈ve also 

returns incorrect results, hence the precision is less than 1. Fig. 5.5 and Fig. 5.6 

show the e↵ects of the threshold on precision and recall respectively. We can see in 

Fig. 5.5, the precision of Naı̈ve is no longer always 1 – it slightly decreases as the 

threshold increases, although remains to be the highest precision of all the pruning 

schemes. However, this is compensated by the fact that Naı̈ve has the lowest recall 

of all, as seen in Fig. 5.6. In general, as the threshold increases, both precision and 

recall decrease. The recall for Range and Histogram2, however, is  always  1  regardless  

of thresholds. Both pruning schemes check the probability ranges of tuple lineage and 

apply Rule 7 for dedup and Rule 3, Rule 4 for joins (the tables in the experiments are 

independent from each other, so Rule 4 can also be applied). These rules guarantee 

that no potential result would be dropped, i.e., the recall of tuples after the pruning 
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is 1. Histogram2, though  its  recall  is  close  to  1,  does  not  keep  its  recall  at  1  at  

all times. Recall that Histogram2 applies Rule 6 to prune out tuples with value v 

whose probabilities are below ✓/k where k is the occurrence count of the current tuple 

value v. Suppose  v remains because there is one tuple t whose probability is ✓/k. 

Suppose also v is to be joined with tuples from another table. If Histogram2 had 

not pruned all the other tuples t0 with t0 = v, the  probability  of  result  v, which  is  a  

disjunction of all tuples with value v (denote as Pr(v)), would have been big enough 

to yield a join tuple probability ✓. However, now that only a single tuple t remains 

to be joined with the other table and Pr(t)  Pr(v), the join tuple probability fails 

to meet the threshold ✓. Therefore,  the  join  tuple  from  v is pruned even though it is 

actually a result. Hence the recall of Histogram2 could be less than 1. 

Finally, Fig. 5.7 gives the time cost of various pruning algorithms with regard 

to the threshold. All pruning schemes except Range and Sampling takes less time 

to finish as the threshold increases, for pruning capabilities increase as the threshold 

increases. The exception of Range is due to the fact that Range does not leverage the 

threshold for early pruning – it always waits till the end when it has all tuple lineage 

to estimate the probability range for pruning. Therefore, a larger threshold does not 

mean as much to Range in terms of performance gain as to other pruning schemes. 

Sampling also does not conform to the decreasing trend of the time cost in Fig. 5.7. 
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This may be due to a significant part of the total time spent on the additional step 

of sampling and running queries on the sample before the actual pruning. 

E↵ect of Occurrence Count and Sample Size 

When the choice of occurrence count changes from min to average to max, the 

precision and recall of Sampling also changes, as seen in Fig. 5.8. The sole e↵ect of 

the choice of occurrence count is on the new threshold to be used later for pruning 

on the original table. Using Rule 6, the larger the count, the smaller the threshold. 

Therefore, it is less likely to prune away potential results (hence the increasing recall) 

but more likely to return tuples whose final probabilities fail the threshold (hence 

the decreasing precision). Since min  avg  max, we observe the above trend of an 

increasing recall and a decreasing precision. 

For the sampling-based scheme, the size of the sample a↵ects the performance of 

the pruning. The larger the sample is, the more accurately the sample captures the 

characteristics of the original data set. Fig. 5.9 and Fig. 5.10 show the precision and 

recall of Sampling for Q1 and Q2 respectively. In both figures, precision drops and 

and recall increases as the sampling percentage increases. While for Q1 in Fig. 5.9, 

recall does not increase much, recall for Q2 in Fig. 5.10 significantly increases as the 

sampling percentage increases. As the sample size grows, the average of occurrence 
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counts (the default choice) also increases, meaning that the new threshold to be used 

(✓/avg) becomes smaller. Similar to our discussion for Fig. 5.8, we can deduce that 

the precision should decline while the recall should improve. 

E↵ect of Duplicates 

We vary the “degree” of duplicates by changing the total number of duplicate 

tuples in a table. Fig. 5.11 and Fig. 5.12 show the change of precision and recall 

with regard to the duplicate percentages of the tables to be joined. Initially, T
1 has 

5% duplicates while T
2 has 10%. We gradually increase this to 20% for T

1 and 25% 

for T
2

. It  is  not  easy  to  see  a  trend  of  decreasing  precision  and  increasing  recall  in  the  
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two figures. With more duplicates in the table, Sampling, for  example, is  likely  to  get  

larger occurrence counts and apply smaller thresholds, hence larger recall and smaller 

precision. This is in accordance with the general trend in Fig. 5.11 and Fig. 5.12 

for Sampling. Note that we have discussed earlier that for Histogram2 and Range, 

recall is always 1, which is again proved in Fig. 5.12. 

Fig. 5.13 shows precision and recall in the same figure. Each series in the figure 

is a series of (recall, precision) points for fixed join tables with certain duplicate 

percentages. Each mark on the series represents a di↵erent sampling percentage, 

from 5% to 25%. We can easily observe that as the sampling percentage increases, 

precision decreases and recall increases. In order to find a sampling percentage that 

is “optimal” – with both high precision and high recall, we can find a point on a series 

that maximizes some criteria such as the sum or the product of the precision and the 

recall. 

Histogram Construction vs. Pruning 

Finally, we show the histogram construction time v.s. histogram pruning time 

in Fig. 5.14. Note that in all figures in this section, the time cost of Histogram1 

and Histogram2 does not include the time cost for building the histograms that the 

pruning algorithms use. 

We can clearly see in Fig. 5.14 that building histograms on the fly is very ex

pensive, with its time cost much more than the time to prune tuples with existing 

histograms. Therefore, if the histogram in need is not available at the time of the 

query, the time to build a new one from scratch will dominate the total time for 

the histogram-based pruning scheme, i.e., it will significantly slow down the pruning 

algorithms. In this case, as we pointed out in Section 5.3.2, it may be faster and 

easier to use the sampling method. 
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6. CONCLUSIONS 

Applications with uncertain data face many challenges that mainly come from two 

aspects of uncertain data: i) The uncertainty in data calls for e↵ective and efcient 

data representation, as well as novel techniques for efciently pruning large search 

space; ii) The dependencies in data that come from the original data or generated 

during the query evaluation must be handled properly by mechanisms to capture 

dependencies as well as by query processing algorithms that take dependencies into 

account when computing query results. 

This dissertation focused on the first aspect of uncertain data in query evaluation. 

We presented novel algorithms for efciently processing the following queries on un

certain data: probabilistic nearest neighbor threshold queries (PNNT), probabilistic 

skyline queries and threshold SPJ queries. We gave an efcient algorithm to process 

PNNT queries for uncertain data with missing probabilities, a problem that has not 

been addressed by any previous paper. We designed an augmented R-tree index for 

efcient pruning with a probability threshold. 

For probabilistic skyline queries, we studied two versions of the instance-level 

probabilistic skylines: one with a threshold, the other without. To the best of our 

knowledge, we were the first to study the problem of computing all skyline probabil

ities (probabilistic skylines without thresholds). We designed an efcient algorithm 

based on space partitioning and weighted dominance counting. We gave strict com

plexity analysis of our sub-quadratic algorithm for d = 2  and  showed  how  to  extend  

it to higher dimensions. Our algorithm provides the user with the greatest flexibility 

in identifying their own interesting skyline instances by returning skyline probabili

ties of all instances and making no assumptions on how the user will use the skyline 

results (i.e. the user utility is not restricted in any way). Such skyline analysis only 

needs to be done once for all users, and the results are useful for all users regardless of 



158 

their di↵erent utilities. For cases when the user is interested in instances with skyline 

probabilities over a certain threshold, we proposed two filtering schemes to avoid the 

expensive skyline probability computations. In our preliminary filtering scheme, we 

designed two indexing structures based on the range search tree to facilitate bounding 

of a query instance’s skyline probability. Our more refined filtering scheme further 

explores the dominance relationship for massive filtering. 

While our algorithms for both PNNT and probabilistic skylines are specific to the 

query in consideration, the optimization rules proposed in Chapter 4 are for general 

probabilistic threshold queries that involve selections, projections and joins (threshold 

SPJ queries). We identified query equivalences for SPJ queries and established the 

correctness of pushing down the threshold operator in the query plan. Our SPJ 

query optimization works for the complicated uncertain database model proposed 

in [1] with both attribute and tuple uncertainty as well as dependencies between 

arbitrary attribute sets. The optimization rules are shown to be e↵ective in reducing 

query processing time through experiments on both real and synthetic data sets. 

We further studied the optimization of SPJ queries when duplicate elimination is 

allowed. We adopted a general tuple uncertainty model for this case and proposed new 

optimization rules and pruning techniques that aim at e↵ective pruning for queries 

with duplicate elimination while maintaining high precision and recall. 
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