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ABSTRACT 

Lee, Wonjun. Ph.D., Purdue University, August 2011. Accountability for Grid 

Computing Systems. Major Professor: Elisa Bertino. 

Accountability is an important security property of distributed systems. It assures 

that every action executed in the system can be traced back to some entity. 

Accountability is even more crucial for assuring the safety and security in grid computing 

systems. Grid computing systems provide a vast amount of computing resources such as 

computing power, data storage, and network bandwidth. However, to date no 

comprehensive approach to accountability exists for the increasingly complex grid 

environments, wherein the number of users and the types of resources are large, diverse, 

and heterogeneous. Our work addresses this inadequacy by developing a comprehensive 

accountability system driven by policies and supported by accountability agents. In this 

thesis, we first discuss the key elements of our accountability framework and types of 

accountability data obtained in two strategies. We introduce accountability policy that 

specifies which data to collect and when to collect them, and more importantly how to 

coordinate data collection among different administrative domains. We then show that 

the proposed strategies can be realized upon accountability policy by sharing it among 

accountability agents. 

In order to guarantee full accountability without conflicts when the policy is 

shared, the enforced accountability policies should be adapted based on the different risk 

levels of jobs and the different significance levels of a node. The support of flexible 

policies helps protect grid computing systems against malicious jobs, by increasing the 

level of accountability. To enable support of adaptable accountability policies, we 

propose a profile-based policy selection mechanism. This mechanism uses profiles of 
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each job and node and considers node’s capability to determine the level of 

accountability policy for the job and the node. We show how this mechanism can adapt 

the accountability policies, while at the same time achieving at least a minimum level of 

accountability. 

Accountability data collected by the accountability agents according to the 

flexible accountability policies provides a basis for analyzing resource usage and finding 

bottlenecks and detecting security breaches. Additionally, data concerning user activities 

and actions enables mechanisms for timely identifying malicious users of faulty nodes 

and helping administrators to take proper defensive actions. In this thesis, we show how 

accountability data can be used to detect distributed denial of service attacks performed 

by exploiting resources made available by grid systems to suspend mission-critical 

websites or the grid itself and then to protect systems from these attacks. We present two 

approaches for protecting against attacks targeting sites outside or inside the grid. 

In the thesis, we also describe a fully operational implementation of our 

accountability system and report the results from extensive experimental evaluations of it. 

Our experiments, carried out using the Emulab [1] test-bed, demonstrate that the 

implemented system is efficient and scalable for grid systems consisting of large numbers 

of resources and users. In addition, our experiments show that our system efficiently 

detects the distributed denial of service attacks and is effective in protecting the normal 

jobs. 
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1. INTRODUCTION 

Grid systems [2] integrate computational and data resources located at numerous 

facilities, which users can access directly at resource providers or through science 

gateways. The dynamic and multi-organizational nature of grid computing systems 

requires effective and efficient accountability systems able to scale for large number of 

users and resources. The availability of detailed and complete accountability data about 

users’ accesses to grid resources and job executions is crucial for both the grid 

administrators and the overall grid community. Such data provides a basis for analyzing 

resource usage, and finding bottlenecks and detecting security breaches. It can also help 

in managing peer-reviewed resource allocations, authorization, resource accounting and 

other coordinated services. Additionally, data concerning user activities and actions 

enables mechanisms for timely identifying malicious users of faulty nodes and helping 

administrators to take proper defensive actions. Note that limiting the damages in case of 

security incidents is a major requirement as the consequences of attacks exploiting high 

performance computing are potentially devastating [3][4]. 

In current grid systems, OS accounting and monitoring mechanisms [5][6] 

provide methods to associate CPU, memory, network, and disk usage with specific 

processes and local principals. A significant amount of information about processes can 

also be extracted from operating systems, for example from the /proc file system in 

Linux. However, current mechanisms are not sufficient to support full accountability 

because they do not allow resource usage in the system to be monitored at various levels 

of aggregation. Moreover, in systems in which jobs are decomposed and merged, 

sometimes unpredictably, mechanisms are required to monitor activities performed across 

multiple domains. 
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The design of accountability mechanisms is particularly challenging due to the 

heterogeneous nature of grid software and system components. To date, there is no grid 

computing system that addresses multi-domain accountability as part of its information 

assurance component. Our research addresses this critical inadequacy by developing an 

accountability system characterized by a rich and flexible language for the specification 

of accountability policies and an agent-based system to enforce the policies expressed in 

this language. 

1.1. Requirements for Accountability Mechanism for Grids 

The design of accountability mechanisms is a complex task that has to meet 

several requirements in order to overcome the limitations of current logging systems 

developed for monitoring users’ activities and jobs execution. Based on our hands-on 

experience in the context of the TeraGrid system [7], we have identified several crucial 

requirements for a suitable accountability mechanism for grids: 

Decentralization. It implies the distribution of the accountability tasks across grid nodes. 

Because of the distributed nature of grid systems, accountability cannot be addressed in a 

single location, but it must involve all the nodes where a job is processed. This 

requirement also calls for a harmonic and consistent view of the logging information that 

follows from the job flow across nodes. 

Scalability. Scalability in our context has two dimensions: users and nodes. Today, grids 

have become widely accessible to large user communities because of the availability of 

web-based portals. Such communities have an impact on the number of job requests that 

are typically submitted to grids. Additionally the size of grid systems is increasing 

because more and more organizations are interested in sharing resources across grids. It is 

important to devise solutions that scale, and thus work properly for grids of almost any 

size, from the ones consisting of few nodes to large infrastructures with thousands of 

nodes. 

Flexibility. A rich collection of information should be collected and efficiently stored for 

later use and analysis, ranging from user authorization data to resource usage 

information. The system should be able to combine heterogeneous accountability 
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information as needed. It is however important to identify and select only the data 

relevant for accountability, as it is not feasible to simply collect all the potentially useful 

data. The identification of the type of data to collect including information about the 

users, jobs, and nodes should be specified by using a high-level policy language to 

simplify administration tasks. 

Minimum Impact. The accountability tools must be lightweight and must not interfere 

with the ordinary computation and activities performed by the grid nodes. 

Administration Autonomy. In the design of the system, non-technical barriers such as the 

coexistence of multiple administrative domains in the same grid system should be taken 

into account. Note that this requirement is challenging, because of the difficulty to 

exactly predict how grid administrators will manage their resources. For instance, it is 

hard to predict to what extent different administrative domains will trust each other in 

sharing local information with other sites. A good design should thus preserve the 

autonomy of grid sites, and limit as much as possible the level of collaboration required 

for the sharing of accountability data. 

Integration with Digital Identity Management and Access Control Systems. Because 

actions executed in a grid system ultimately have to be traced back to real users, it is 

important that the accountability system be integrated with the system in place for 

managing user identities. In addition, in order to connect all accountability information 

related to the same job, the accountability system must be aware of how users are 

identified across different domains. Integration with access control systems is important 

in order to determine which access control policies and/or which credentials permitted 

access to a given user, when an unintended access by this user occurs. The administrators 

may obtain information useful for revising the access control policies in place and the 

credentials required to gain access to the grid resources by analyzing accountability data 

concerning access control decisions. 

Detection and Protection from Distributed Attacks. The scalable nature and the complex 

architectures of grids suffer of several vulnerabilities, since grids were designed with no 

security in mind. By exploiting its existing vulnerabilities, malicious parties can take 

advantage of resources made available by grid systems to attack mission critical websites 
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or the grids directly. Since the attacks we consider here are caused by grid resource and 

lead to serious consequences, the accountability system should be able to detect the signs 

of such distributed attacks by monitoring jobs and resources usage and simultaneously 

protect the grid system. 

1.2. Contributions 

In this thesis we propose a comprehensive approach addressing the identified 

requirements based on a layered architecture for end-to-end accountability. We introduce 

the concept of accountability agents or agents for short, which are entities in charge of 

collecting accountability data and monitoring submitted jobs and their users. We develop 

a simple yet effective language to specify the relevant accountability data according to 

some policies, referred to as accountability policies. The accountability policies specify 

which data to collect and when to collect them, and more importantly how to coordinate 

data collection among different administrative domains. Our architecture supports 

different types of accountability policies. One of them is the shared policy that specifies 

the elements required from an agent in order to obtain a unified form of job execution 

record. Agents should keep a consistent shared policy in order to guarantee full 

accountability. However, if elements of the data to be sent from a node to another are 

missing or different from the ones required by the policy, a conflict may occur. A conflict 

indicates the inability of a node to comply with the policy shared by nodes. In addition 

because of different node capabilities and limited amounts of resources available for 

collection of accountability data, it should be possible to have different shared policy for 

each job and node. In order to address such conflicts and yet achieve a flexible 

accountability system, we propose a profile-based policy selection mechanism. Under 

this approach, the best accountability policy is chosen based on the attributes of jobs and 

grid nodes, and the capability of each node to collect accountability data. The selected 

policy preserves the minimum level of accountability and approximates the requirements 

of the shared policy. 

Accountability data collected in a distributed manner according to these dynamic 

accountability policies provides information about job’s trace and its origin and is 
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analyzed for runtime anomalies. This real-time based diagnostic approach through data 

analysis plays an important role in detecting the source of malicious activities and 

identifying the misbehaving parties via a distributed query during forensic analysis. To 

show how the accountability system can be used for such purposes, we propose an 

accountability-based mechanism for protection from Distributed Denial of Service 

(DDoS) attacks conducted by using the resources of a grid computing system. A DDoS 

attack makes a computer resource unavailable to legitimate users. We discuss two 

different kinds of DDoS attacks that could exploit grids, and the detection strategies for 

each kind. Accountability agents leverage information about jobs and resources 

consumption to quickly detect suspicious patterns that could be symptoms of a DDoS 

attack. Through a distributed notification protocol, all agents are informed of ongoing 

attacks and are able to timely react to protect the jobs of legitimate users. 

We implemented the prototype of the accountability system on an emulated grid test-bed, 

which consists of a hundred nodes. Our experiment show that the implemented system is 

efficient and effective in terms of scalability and protection against DDoS attacks. 

1.3. Background 

We begin with the overview of the key components of a grid systems followed by 

an illustration of the authentication and authorization protocols typically adopted in grid 

systems. We assume that authorization protocols are based on the well-known attribute-

based access control model, which is a widely used model for open distributed systems 

today. Examples of such protocols are those developed as part of the GridShib [8] 

initiative. 

1.3.1. Grid Computing 

Grid computing or computational grid is the application of multiple computing 

resources to a single problem at the same time. A complex scientific or technical problem 

typically requires a large number of computer CPU cycles and/or a large amount of data. 

Grids enable sharing and aggregating a wide variety of resources such as supercomputers, 
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Application 

Collective 

Resource 

Connectivity 

Fabric 

Figure 1.1 Layer Grid Architecture 

storage systems, data sources that are geographically distributed and owned by different 

organizations to solve a large scale computational problems in science, engineering, and 

commercial enterprises. Grid computing is a form of distributed computing where many 

networked computers compose a set of clusters [9] to perform very large tasks. 

The grid architecture can be viewed as having several “layers” [10] (see Figure 

1.1): The grid Fabric layer provides shared resources such as computational resources, 

storage systems, catalogs, network resources, and sensors to which the access is mediated 

by grid protocols. A “resource” can be defined as logical entity such as a distributed file 

system, computer cluster, or distributed computer pool. Grid-specific network 

transactions require communication and authentication protocols. The Connectivity layer 

implements and makes available these protocols. The communication protocols enable 

exchanging of data between Fabric layer resources, while authentication protocols built 

on communication services support secure communication with the verification of users’ 

identity and resources. Communication functions include transport, routing, and naming. 

Authentication solutions have following characteristics: Single-Sign-On (SSO), 

delegation, integration with various local security solutions, and user-based trust 

relationships. Grid Security Infrastructure (GSI) [11] is one of services in this layer. The 

Resource layer supports protocols for the secure negotiation, initiation, monitoring, 

control, accounting, and payment of sharing operations on individual resources. The 

resource layer protocols are only concerned with individual resources. The Grid Resource 

Access and Management (GRAM) [12] and GridFTP [13] are examples of protocols in 
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resource layer. The Collective layer supports protocols for interactions across collections 

of multiple resources such as Condor-G [14] for co-allocating and scheduling services 

and MPICH [15] for programming systems enabled by grid, while the Resource layer is 

focused on interactions with a single resource. The final layer, aka Application layer, 

comprises the user applications. This layer provides end-users with access to the 

underlying resources in the form of command line tools, desktop applications, or web-

based interfaces. 

The following example shows a usage scenario that commonly occurs in practice 

and corresponding grid services. 

Example 1. Pete, a participant of the open science grid (Virtual Organization, VO) which 

links shared resources, performs a multidisciplinary simulation, nwFluid_linux that uses 

programs and data located at multiple locations as Figure 1.2. Even though Pete is 

affiliated with Purdue University, he can run program A at A-state University, and B at 

B-state University using input data from C-state University. 

Based on such scenario we may illustrate how the grid architecture works. Table 

1.1 shows the services at each grid layer that might be used to implement the 

multidisciplinary simulation application in our scenario. 

Key components in the grid computing are represented by grid nodes. A grid node 

is any machine or cluster of machines that processes a job or portion of it. On a typical 

Pete 

SP Run program A 

Run program B 

Read data C 

RPx 

RPz 

Purdue Univ. 
A-state Univ. 

RPy 

IdP 

C-state Univ. B-state Univ. 

Figure 1.2 An example of running a multidisciplinary job in multiple grids 
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grid, such as the NSF TeraGrid and Open Science Grid (OSG), each contributing 

organization, aka Resource Provider (RP), makes available to the grid various kinds of 

resources, such as computational and visualization resources, datasets, storage, and 

applications. RPs are typically composed of multiple machines, which may be organized 

into high-performance computing clusters (HPC). HPC clusters are sets of tightly 

connected computing machines typically deployed to increase performance by supporting 

parallel execution of different parts of a job across several nodes in the cluster. In the 

case of computing resources, each RP typically makes available one or more clusters. 

Service Providers (SPs) provide specialized services at the application layer, and perform 

functions such as account management, certificate management and user support. In 

general SPs make available those services as web services that can be invoked through 

web portals, also known as science gateways such as [16][17]. 

There are two ways by which grid users gain access to grid resources. The 

traditional paradigm is for a user to log in to the RP site on its grid entry nodes, which we 

Table 1.1 Grid Services at Each Layer for the Example Scenario from Figure 1.3 

Layer Grid services Remarks 

Application Multidisciplinary simulation User applications 

Collective 

Querying an information to 

determine availability of 

computers, storage, and the 

location of input data 

Brokering services for resource 

discovery; Membership and 

policy services for keeping track 

of who is allowed to access 

resources 

Resource 

Submitting request to appropriate 

computer, storage to start 

computations, and move data; 

Monitoring the progress of 

computations and data transfer 

Running the same program on 

different computer systems 

depends on resource-layer 

protocol 

Connectivity 

Obtaining required authentication 

credentials to submit a job 

Must be implemented 

everywhere, and relatively small; 

Core protocols are 

Communication (IP, TCP/UP) 

and authentication (SSO, 

delegation) 

Fabric 

Storage systems, computers, 

networks, code repositories, 

catalogs 

Physical devices or resources that 

grid user want to share and 

access 
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call grid entry point, and submit applications directly to grid nodes using grid middleware 

commands. With science gateway portals, a researcher can become a user of the portal 

and, after authenticating at the portal, request services through the portal, which in turn 

executes the application requested on local or remote grid resources on behalf of the user. 

In this case, the access to grid resources is transparent to the user, making it possible for a 

much broader community to utilize high performance grid resources. 

It is critical to have common grid infrastructure software in order to construct a 

grid computing environment. Globus Toolkit [18] is the de-facto standard for grid world. 

By providing a PKI-based certificate solution for security, it contributed to enable cross-

institutional resource access control. As important functions, it provides protocol and 

services for job submission and resource discovery. 

1.3.2. Grid Job Scheduler 

Many scientific and engineering applications need to carry large-scale 

computations. Efficient parallel implementations (e.g., using MPI library – Message 

Passing Interface [19]) allowed them to run such computational tasks on multiple nodes 

simultaneously. As a result, a grid job is often a composite of sub-jobs that are scheduled 

onto available computing nodes by the grid scheduler at the RP. 

Portable Batch System (PBS) [20] is a widely used software application that 

performs job scheduling. The primary job of PBS is to allocate computational tasks 

among available computing nodes. PBS is a scheduler mechanism supported by GRAM, 

a component of the Globus Toolkit. As another framework, Condor [14] is prevalently 

used for job scheduling and supported by GRAM. Condor is a high-throughput 

computing software framework for coarse-grained distributed parallelization for 

computationally intensive tasks. It can be used to manage workload on a dedicated cluster 

of computers or send out work to idle desktop computers. Condor supports the standard 

MPI and PVM (Parallel Virtual Machine [21]) for the world of parallel jobs. 

Like PBS and Condor, most job schedulers run on the dedicated clusters. Each 

cluster has a head node and several compute nodes (or called worker nodes). The Head 

Node (HN) is responsible for scheduling jobs based on the resource state as reported by 
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the compute or worker nodes (CN/WN), the priority of the job owner on the resource. In 

the case of computing resources, one RP typically makes available one or more clusters. 

1.3.3. Authentication and Authorization Infrastructure 

As accountability has strong ties with authentication and authorization, it is 

important to clarify the underlying mechanisms adopted for these crucial security 

functions. Our accountability system is integrated with the federated approaches used for 

managing grid user identities, as developed by the GridShib [8] or ShibGrid [22] project. 

Such approaches do not require cumbersome static pre-registration phases typical of 

conventional access methods for grid users. 

Each user in a Shibboleth [23]-enabled grid system is associated with a unique 

Identity Provider (IdP), which is the user’s home organization. The IdP manages the 

user’s registration, by issuing an X.509 [24] certificate to the user, or if the authentication 

is not PKI-based, by assigning a login name which is unique within the home 

organization. The IdP also manages user identity attributes and issues temporary 

identifiers, referred to as handles that are used by the IdP to provide user’s attributes to 

relying parties requesting these attributes. By exploiting the GridShib SAML [25] tool, 

handles can be embedded in X.509 certificates and pushed to the RP when the user 

submits a job request. This approach allows the RP to immediately verify the users’ 

attributes and decide whether or not to grant access. The use of handles protects the 

privacy of user identification from the RP, because RP does not need to know them. 

However, it makes harder to associate the identity of the user with the submitted job upon 

its completion, as the actual identity is not included in the temporary handles for privacy 

purposes. How to achieve accountability when handles are used will be discussed at 

section 2.2.4. 
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2. ACCOUNTABILITY DATA, AGENTS, AND POLICIES 

To hold individual users accountable for their activities in grid systems, 

appropriate information should be collected. We have devised two basic approaches to 

gather such accountability data; job-flow based, grid-node based. Data obtained 

according to those two approaches are then combined to get more detailed aggregate 

accountability data. In what follows, we begin with describing the type of relevant data 

collected for accountability, followed by the two basic approaches. Section 2.1 introduces 

the notion of accountability agent. We propose two strategies to collect accountability 

data by accountability agents in Section 2.2 followed by the log sharing mechanism in 

Section 2.3. Section 2.4 shows a mechanism of non-repudiation required in accountable 

grid computing systems. We then introduce a policy language in Section 2.5. 

2.1. Accountability Agents 

Accountability agent is the entity that collects and processes accountability data 

based on the two strategies that we proposed. Since the main purpose of accountability 

agents is to collect data, it is important to identify the type of data that is relevant for 

accountability. 

2.1.1. Accountability Data 

Specifically, the following data types are of interest for accountability purpose: 

Access control data. Such data is extracted from software at the application layer. It 

refers to the authentication tokens used by users to access the Grid, the type of credentials 

(or handles) requested for obtaining authorization, and the corresponding access control 
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policies utilized, if any
1
. Because access control determines which jobs are executed on 

the grid, monitoring access control decisions by recording all information related to such 

decisions is crucial to determine if and why wrong access control decisions have been 

made and thus take proper corrective actions. 

Job-related data. This data is associated with the job and its execution, and is extracted 

from components of the middleware layer. It includes information such as the number of 

sub jobs, the machines where the jobs are hosted, the resource (computational and/or 

storage) consumption for processing the job, the process id, the SP id. Additionally, 

information related to the protected files accessed by the job can be collected. 

Resource oriented data. This data includes the entire information specific to the machine 

where grid computations are executed, such as resource usage, frequency, number of 

CPU cycles. 

Agents employ different techniques for data collection, according to the type of data they 

extract
2
. For example, accountability information can be extracted from text logs typical 

of job schedulers or by intercepting information logged at user portals. Such information 

tracks users' requests and authorizations about job scheduling. 

2.1.2. Locations of Accountability Agents 

The functions of agents are twofold. First they monitor resource consumption 

and/or users’ access to the nodes they are associated with. Second, they provide 

accountability data to other agents. Consequently, to provide a global solution to 

accountability within the grid and to maximize the bene!t of our accountability 

mechanism, agents must be carefully distributed across the grid nodes. 

1 
In some grid system access is static and predefined. In those cases, grid mapfiles mapping local accounts 

2 
Not all nodes have the same functionality, so different nodes will be mapped onto agents with specific 

techniques for accountability data extraction 
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Figure 2.1 Architecture of the Accountability System 

Several distribution strategies could be adopted, based on the number of administrative 

domains, sites and/or distribution of computational nodes. For instance, one could 

distribute agents so that all administrative domains have a single centralized agent, or 

agents could be independently distributed using a machine-centric approach and then 

connected according to the dynamic connections generated by the submitted jobs. We 

thus identify two main criteria when placing the agents. For each administrative domain 

we require that there exist at least one agent collecting data for each type of 

accountability data; and that each possible job "ow be monitored by one or more agents 

from the time of submission until completion regardless of the number of nodes involved 

and the number of crossed domains. 

Based on these criteria we have developed an articulated strategy for agent 

location. At each RP - corresponding to an administrative domain -, agents are located by 

layers, as shown in Figure 2.1 (AccA is a shorthand for Accountability Agents). A !rst 

layer of agents is located at the entry points of the grid. As discussed, these nodes take 

authentication and authorization decisions. Moreover, users handles and/or authorization 

tokens are created at these nodes. Agents can thus record here the policies used to 

authenticate users and/or to grant the required job request. Agents at this layer are 
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associated with SP machines and/or RPs offering direct access. 

A second layer of agents is located with the schedulers such as Condor-G [14] or 

PBS. These agents collect information related to the job scheduling strategy, such as the 

RPs where the job will be processed and, in the event of a job split into multiple sub-jobs, 

the number and destinations of these sub-jobs. 

Finally, a last layer of agents is located at the compute resources. Our design 

requires at least one agent for each head node. The cluster head node hosts agents 

because the head node schedules jobs to the compute nodes and has job related 

information. The head node is responsible for compute nodes, as its main function is to 

control and monitor compute nodes. Existing monitoring primitives allow head nodes to 

retrieve aggregate accountability data about compute nodes. 

However, such primitives do not neither track how the job is split, nor do they 

track the resource consumption for each sub-job created. To obtain such !ne-grained 

information and achieve full accountability we require each compute node to have an 

agent. Data at compute nodes is collected using an accounting tool and sent back to the 

head node upon request. 

2.2. Two Strategies To Collect Accountability Data 

2.2.1. Job-flow Based and Grid Node Based Approaches 

Agents operate according to two different strategies, namely job-flow based and 

grid node based, with emphasis, respectively, on data related to jobs and their "ow; and 

on the sources of speci!c data types. 

Jobs flow from the entry point to the remote grid nodes based on resource 

availability and job description. As mentioned in Chapter 1, a job that requires a long 

computation is often split into many sub-jobs to be executed in parallel. Sub-jobs are 

distributed across different grid nodes, and move from nodes to nodes. Hence, monitoring 

sub-job transfer is crucial. A possible approach is to employ point-to-point agents, which 

collect data at each node that the job traverses. We refer to this approach as a job-flow 
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based strategy. Such approach enables tracking a job process throughout its whole life-

cycle, from the time when a process is created to the time when its execution is 

completed. Each agent only controls the node where it is located, because due to the 

distributed nature of grids it is not practical to collect all information about a job at a 

centralized location. 

The data collected according to the job-flow based approach is of two kinds: 

access control data and job-related data. 

In order to obtain a complete picture of the grid active jobs and the related 

resource consumption, the job-flow strategy is complemented with an approach 

collecting resource-oriented data. This approach, referred to as the grid-node based 

strategy, collects data at a given spatial location for all jobs active at such location a 

given time point. The spatial location may be set at one or multiple nodes [26] of the grid 

system. With respect to the type of data collected, the grid-node based strategy focuses on 

collecting resource-related information, which includes entire information specific to the 

machine where jobs move and computations are executed. The viewpoint can be 

restricted at data related to a single grid layer. 

In the grid-node based strategy data is collected by exploiting appropriate 

resource monitoring tools, which periodically collect resource usage information at each 

fixed points. Specifically, if the focus is on the fabric layer, such information includes 

used CPU cycles, state information such as current load, queue state, memory usages for 

computational resource. If the focus is on the connectivity layer, since data is exchanged 

through communication protocols, transport, routing, and naming information for each 

job can be logged for all the active transactions. Finally, if the focus is on the resource 

layer, where operations, such as process creation and data access, are performed, process 

information and/or file names transferred may be of interest. The agents take advantage 

of such existing information sources -so to meet the minimum impact requirement -

without adding new monitoring mechanisms when possible. 
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2.2.2. Combination of Two Approaches 

As accountability data can potentially be used for diverse types of analysis, an 

approach focusing on one single aspect may be inadequate. Moreover, only the 

combination of different types of data can provide a solid basis for analyzing the use of 

the grid and identifying possible misuse of grid resources. 

The aforementioned approaches are complementary to each other, and can be 

used to collect detailed information about the executed job, along with its resource 

consumption and status progress at each traversed node. For example, if a job misused 

the resources available at a certain node (by for example accessing protected files), by 

retrieving its job-id and analyzing resource data collected by the grid-node based method, 

we can identify the actual principal who submitted the job. Furthermore, we can 

investigate other possible errors of related jobs, which used the same resources and have 

been submitted by other principals. Such detailed analysis is possible only by cross 

correlating the data collected using the job-flow based method. 

Figure 2.2 shows a simple example of data sets collected by the two approaches. 

The first two tables show the names of data and their values extracted by the job-flow 

strategy. One of jobs, identified as PBS.3839, is submitted to an SP named 

gk.rcac.purdue.edu. The handle 3f7b3dcf-1674-4ecd-92c8-1544f346baf8 is generated by 

IdP idp.rcac.purdue.edu. Since the job is a multi-job divided and submitted to RP2 and 

RP3, the identifiers of sub-jobs, PBS.3839-2 and PBS.3839-3, should be collected as 

paired with their destinations. Assume that the sub-job, PBS.3839-3, is suspended for 

some reasons and the accountability policy specifies to log the process identifier that is, 

Handle 
3f7b3dcf-1674-4ecd-

92c8-1544f346baf8 

Job Id PBS.3839 

{Sub jobs, Dest.} PBS.3839-2 --> RP2 

{Sub jobs, Dest.} PBS.3839-3 --> RP3 

Job-Relation Graph 1 

Date/Time 2007:02:08:09:48:22 

Checking-Point Job Queued 

Node Id gk.rcac.purdue.edu 

IdP Id idp.rcac.purdue.edu 

Handle 
3f7b3dcf-1674-4ecd-

92c8-1544f346baf8 

Job Id PBS.3839-3 

Job-Relation Graph 3 

Process Id 11325 

Date/Time 2007:02:08:10:11:19 

Checking-Point Job Suspended 

Node Id cn5.rcac.purdue.edu 

Process Id 7193 

Memory Usage (MB) 65 

Process Id 11325 

Memory Usage (MB) 1910 

Resource: Memory 

Host: cn5.rcac.purdue.edu 

2007:02:08:10:52:00 

SP CN CN
 

Figure 2.2 Combination of Two Approaches 

http:idp.rcac.purdue.edu
http:gk.rcac.purdue.edu
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11325, for the job suspended in the compute node, cn5.rcac.purdue.edu, then the agent 

would find the process id mapped to abnormal memory usage at the resource table 

located at the same node, that is, cn5.rcac.purdue.edu. Once the sub-job, PBS.3839-3 is 

identified as one that caused misuse of the memory resource from the second table, 

PBS.3839-2 assigned at RP2 is identified as a job that may potentially cause bad 

operations, because sub-jobs may be heavily interdependent. In this example, the 

information in the resource table is obtained according to grid-node based strategy by 

fixing the point at Fabric layer, while the first two tables are generated according to job-

flow based strategy. 

2.3. Log Sharing Mechanism 

2.3.1. Job-graph with Cover-records 

Many scientific applications require multiple computing nodes and run efficient 

parallelized implementations. As a result, a grid job is divided into many sub-jobs and 

scheduled to run many nodes. These nodes may reside in different network domains. In 

practice, a sub-task of a job is sometimes further divided and executed at other nodes. We 

call such composite jobs the workflows of sub-jobs. A common approach to model job-

flows is to employ a directed graph that directly describes how the sub-jobs of a job are 

interconnected. We refer to such directed graph, representing the flow of job/sub-jobs, as 

job-graph. The vertices of the job-graph represent grid nodes where jobs are forwarded, 

scheduled and/or processed. The directed edges denote job movements resulting by the 

scheduling or/and rescheduling of the job and/or sub-jobs onto another grid node because 

of parallelization, lack of resources in a node, and so forth. Job-graphs are not always 

generated in real time base. 

Definition 2.1 (Job-graph). Let N be a non-empty set of grid nodes. A job-graph G = {N, 

E} is a directed graph satisfying the following conditions: 1) each node n ! N 

corresponds to a grid node characterized by indexes i, j, where i denotes the unique node 

http:cn5.rcac.purdue.edu
http:cn5.rcac.purdue.edu
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identi!er and j the computational units of the nodes
3 

2) each edge e = (ni, n!i’) ! E 

denotes a sub-job assignment from the parent node ni to the child node n!i’ 3) there is a 

unique root node of the graph, that is "n ! N s.t. (n!, n) # E. 

Thus, the number of edges in a graph is the same as the number of job 

assignments. A same node may have multiple entering edges if the same node is assigned 

to process two or more sub jobs of the same job, i.e., an overloaded node. Job schedulers 

typically adopt this approach in case of overloaded nodes or computationally intensive 

jobs. 

The graph in Figure 2.3 illustrates an example of job-graph. Suppose that a multi-

job job1 that comprises two sub-jobs, job1-a, job1-b, is submitted for execution at service 

provider SP1. A sub-job, job1-b that is scheduled at resource provider, RP2, is further 

split onto job1-b-1 and job1-b-2 to be run in parallel at compute nodes CN1 and CN2, 

respectively. The directed edge from CN2 to CN1 shows that job1-b-2 is rescheduled at 

CN1 because of, for example, insufficient resource at CN2 for job job1-b-2. If job1-b-2 is 

evicted from node CN1 for the same reason and then rescheduled to CN2 again, the 

identifier of job1-b-3 should be assigned a name, for example, job1-b-4, different from 

already assigned names in order to distinguish activities performed before and after the 

evictions. Especially when the suspicious operation is repeated making loops between 

nodes, renaming helps to trace back to the original job by constructing cover-records 

based on the modified job names. 

Once created, the job is a moving object that traverses grid layers to reach 

multiple nodes, and finally consumes resources in the fabric layer. 

job1-a job1-b 

job1-b-1 

job1-b-3 

job1-b-2 

SP1 

RP1 RP2 

CN1 CN2 

Figure 2.3 An Example of Job-graph 

3 
Recall that as specified in the past section a same grid node can have multiple computational units 
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The main challenge in enforcing the job-flow based strategy is represented by the 

ability of tracking a job, in presence of complex job scheduling techniques adopted by 

grid nodes. Our approach to capture provenance information during the execution of a job 

is based on two key factors: 1) the use of shared policies, and 2) the design of a graph 

based log sharing mechanism. Specifically, the accountability agents share the job-

relation data with communicating agents, as specified by the shared policies. 

Each agent stores a view of the job-graph defined by Def. 2.1. The view is defined 

from the perspective of one grid node (controlled by one agent) corresponding to a node 

in the job-graph. Graph views are defined as follows: 

Definition 2.2 (Graph View). Let G = {N, E} be a job-graph, defined according to 

Definition 2.1. A view of a job-graph from a node nz,t is defined as V= {N’, E’} where: 

1. "ni,j ! N’ s.t. ni,j = nz,t ; 

2. E’ = {e | (e ! $ % e = (nz,t, n) & e ! $ % e = (n, nz,t,))}; 

3. N = {n | (n ! ' % (e = (n, nz,t,) % e ! E’) & ( e = (n, nz,t,) % e ! E’))} 

By definition, each agent has a partial vision of the job path (see Figure 2.4) that 

includes the immediate predecessor node and the immediate successor node(s) (subject 

nodes). 

Each accountability agent keeps a cover-record that keeps track of the job-

relation between predecessor and successor nodes. 

The cover-record maintains the local graph view as Def. 2.2, along with additional 

N5,10 

job1 

job1-a job1-b 

job1-b-1 

job1-b-3 

job1-b-2 N6,12 

N1,1 

N2,1 N3,8 

Figure 2.4 Views of a Job-graph. The Circled Portions Denote Different Views 
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information, such as job-id, handle value for unique identi!cation, and other data as 

speci!ed by the shared accountability policies (see Section 2.3). Cover-records also 

maintain a log of the job state, along with the timestamp tracking the job state transition 

from one state to another. The union of the graph views determined by the job sharing 

mechanism corresponds to the whole graph, provided that the shared policies support a 

correct sharing of the information required to connect the shared jobs. The truth of such 

claim follows from condition 1 of Def. 2.2, which ensures that all nodes in the graph are 

considered, and from the fact that all the relationships among nodes are captured, as a 

consequence of condition 2 in Def. 2.2. 

2.3.2. Log Sharing Mechanism in Multiple Domains 

To implement the job-flow based logging method, the agent in each node follows 

two rules as discussed in subsection 2.1.2. First, the agent logs a partial path of the job 

that includes the direct predecessor and direct successor nodes. Second, each agent shares 

the collected information obtained at its node with other agents based on the stated 

accountability policy. An accountability policy specifies the exact accountability 

information to be collected, as we will discuss in Section 2.5. This approach, referred to 

as graph-based log sharing mechanism, is highly decentralized, in that no single agent 

keeps track of the whole job-flow. In other words, the agents maintain complete view of a 

job as a group, without generating a large amount of overhead at a single node. 

Operationally, each agent keeps a cover-record that shows the relation between 

the job, or a portion of it, in its node (namely, the subject node) and the ones allocated at 

direct predecessor and/or direct successor nodes (object node). The cover-record 

maintains the local view of the whole graph in the job-relation information. The agent 

generates a cover-record when specific changes in a job state occur. Examples of such 

states as supported by Globus Toolkit [18] are pending, active, suspended, completed. For 

instance, when the job moves into a pending state, the corresponding cover-records are 

generated in each node as shown in Figure 2.5. 
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Handle 3f7b3dcf 

JobId job1 

SP1 

Job 

relation 

{job1-a, {job1-b, 
RP1} RP2} 

TS 
2010:01:03: 

11:31:56 

Actions queued 

Handle 3f7b3dcf 

JobId job1-a 

Job 

relation 

RP1 

{job1, SP1} 

TS 
2010:01:03: 

11:32:22 

Actions queued 

Handle 3f7b3dcf 

JobId job1-b 

Job 

relation 

{job1, SP1} 

{job1-b-1, CN1}{job1-b-2, CN2} 

RP2 

TS 2010:01:03:11:32:37 

Actions queued 

Handle 3f7b3dcf 

JobId job1-b-1 

{job1-b, RP2} 

Job 

relation 

CN1 

TS 
2010:01:03: 

11:32:43 

Actions queued 

Handle 3f7b3dcf 

JobId job1-b-2 

Job 

relation 

{job1-b-2, CN2} 

CN1 

TS 
2010:01:03: 

11:32:53 

Actions queued 

Handle 3f7b3dcf 

JobId job1-b-2 

Job 

relation 

{job1-b-2, CN1} 

CN2 

{job1-b, RP2} 

TS 2010:01:03:11:32:59 

Actions queued 

Figure 2.5 Cover-records for Job-graph of Figure 2.3 When a Job Is 

Submitted. – Clockwise from Upper Left, (a), (b), (c), (d), (e), and (f) 

Merging the local views represented by cover-records results in a whole graph. The job-

graph is a single rooted graph structure, and the root node is the job entry point (i.e., the 

service provider or gateway where the job is submitted). The job entry point is the natural 

root since it stores at first the job record. When the whole graph structure is to be 

completed for a split or forwarded job, the agents relay job information to their father 

nodes, so that the agent at the root node is able to assemble the whole job information of 

a job-graph. The agent at each node is responsible for forwarding the job and/or resource 

information collected locally to the predecessor node. When the node does not have a 

child node in the cover-record (e.g., nodes in Figure 2.5-(b), (d), (e)), the agent at the 

node just sends the resource related data. However if there are successor nodes for the 

subject node, like in the examples in Figure 2.5-(c), (f), the agent is in charge of 

collecting data that its successor nodes received or collected. Finally the agent at the root 

node, SP1 in Figure 2.5-(a), is able to collect all accountability data. 
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2.4. Guaranteeing privacy and non-repudiation 

One of Internet2 working groups [23] for Shibboleth has implemented two 

methods for implementing handles in the transactions. These are the 

SharedMemoryShibHandle [27] and the CryptoShibHandle. Shibboleth Single Sign On 

(SSO) Service generates the handle, which is opaque, transient identifier associated with 

the authenticated user, and then stores the handle and local user name corresponding to 

that handle at cache memory. This handle is then used to request all available attributes 

for the user referred to by this handle to the user’s home organization. To request a user’s 

attributes the Shibboleth daemon at the SP sends the same handle it received from the 

user. Between the IdP and SP, the following SAML [25] authentication assertion which 

contains the NameIdentifier [28] is used. In a SAML, the IdP creates a NameIdentifier 

and embeds it in an authentication assertion; SP include the NameIdentifier in the SAML 

assertion to request to IdP. 

With the handle received from the SP, Attribute Authority (AA) at the IdP verifies 

whether the handle is recently generated by the SSO Service and to which user it refers. 

In general, the user’s actual identity is hidden outside of the home organization by 

explicitly referring to this handle. The randomness of handles is good for privacy since 

neither SP nor RP can determine real user’s identity from handles. Handles are always 

unique for every individual Shibboleth transaction across SPs. These identifiers have a 

one-time use semantics since they are kept in a cache and then terminated after being 

used to search a local user and thus providing the user’s attributes to the requesting SP. 

Instead of storing the handle at cache memory, with the cryptographic scheme, we 

are no longer to keep the handle in the cache memory at IdP side. This is another 

implementation of handle, which is called CryptoShibHandle provided by Shibboleth. In 

CryptoShibHandle, the local user name and a random string are encrypted directly into 

<saml:Subject> 

Format=”urn:mace:shibboleth:1.0:nameIdentifier” 

NameQualifier=https://idp.example.org/shibboleth> 

3f7b3dcf-1674-4ecd-92c8-1544f346baf8 

</saml:NameIdentifier> 

Figure 2.6 SAML Assertion Containing Handle 
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the handle value. Therefore it does not require keeping a state at the IdP at the expense of 

using a symmetric key. 

In accountability system where all handles should be kept both at the IdP and at 

the SP to determine the real user identity from the handles, the first method is not 

appropriate because if the number of users in an organization is high, the handles to be 

created should be multiplied by the number of job requests and keeping all handles in 

caches or secondary storages all the time is very expensive. 

Although the CryptoShibHandle satisfies issues both about privacy and memory 

usages, it does not satisfy non-repudiation. The term, non-repudiation crypto-technically 

means a way to provide proof of the integrity and origin of action [29], which can be 

verified by any third party. It is an important property of accountability to protect against 

false denial of a certain action. However there is no way to verify that the user is the real 

identity who is claimed to be when using CryptoShibHandle. While the Shibboleth does 

not specify the authentication method adopted by the IdP, we propose that Public Key 

Infrastructure (PKI) should be used to give a medium to guarantee non-repudiation to the 

system. When authenticating a user in PKI, the web server verifies the user at first by 

sending a nonce, which is a random string, and then by receiving the encrypted nonce by 

user’s private key. Authentication is completed when decrypting the received encrypted 

nonce with a public key, which is embedded at the certificate, and then matching the 

original nonce with the decrypted nonce. The IdP should have an additional component to 

encrypt user’s unique identity such as Distinguished Name (DN), email address, etc., 

both with encrypted and plain nonce for a handle. The handle is as follows. 

Handle = EIdP’s symmetric key (local User’s identity + EUser’s private key(nonce) + nonce) 

If an intentional or unintentional misuse of the resources is detected, the 

accountability agent requests IdP with the handle for claims. The IdP can identify real 

user by decrypting the handle with its symmetric key and verify that he/she is who 

requested the service to the SP, through the user’s signature. Since the nonce, which is 

encrypted by the user’s private key, is given in the handle, IdP can easily verify the user’s 
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SP 

CA 
5. EIdP’s symmetric key
 

(Id+Euser’s private key(nonce)+nonce)
 
1. cert: 

Ek(Id+user’s pub. key) 

2. cert 

3. nonce 

4. Euser’s private key(nonce) 

IdP 

Webserver 

Figure 2.7 Job Contract Publication Process 

identity by matching the plain string nonce with the one decrypted by user’s public key. 

If they match, the user is not able to deny his/her past actions. 

In this mechanism, IdP does not need to keep nonce information since it is already 

included at handle, and users’ identity information is protected by the IdP’s symmetric 

key against SP/RP. The malicious user cannot deny his/her malicious action conducted as 

identity in the handle because no one except him/her can know his/her private key that 

encrypted the nonce. Thus additionally malicious IdP cannot forge the nonce and 

Table 2.1 Symbols Used in the Specification of Actions 

Name Symbol Description 

Agents A is the set of accountability agents. Each agent a ! A 

is uniquely identified by combination of agent id 

and node location 

States S is the set of possible states a job can assume 

Data DS is the set of possible data items to collect. It is 

partitioned into three subsets, one for each possible 

data type 

Access Control Data DSac subset of DS that collects access control data 

Resource Data DSres subset of DS that collects resource related data 

Job Data Set DSjob subset of DS that collects job related data 

Repository Rep denotes the storage repository where accountability 

data can be located 

T T Temporal expressions, specified as [30][31] 



 

 

 

   

 

 

 

 

 

  

 

 

 

 

 

   

 

  

   

     

  

   

     

  

 

   

    

   

  

  

   

   

 

 

 

    

 

 

 

25 

encrypted nonce by generating another private key to claim non-malicious user since IdP 

cannot modify user’s certificate where the user’s public key exists. 

2.5. Accountability Policy Specification 

Accountability policies specify what to track and when, and more importantly 

how each agent has to coordinate with other sites' agents. In this section we introduce a 

high-level representation of such policies. Policies are expressed by actions, capturing the 

main activities of an agent. 

2.5.1. Actions’ Representation 

We model the agents' basic actions using seven expressions. The main symbols 

Job processing Job flow Data 

main steps 

Job executed 

Job queued 

Job started 

Job pending 

Job submission 

Authorized 

Job processed 

Job created 

Job completed Job aborted 

User name, authentication 

token, authorization token, 

Authentication policy, 

authorization policy, IP 

address, IdP id, SP id 

Job id, 

Program used, Platform, 

Server where the job is 

created, Time stamp, 

Checkpoint 

Sub jobs id, 

Sub jobs location, Resource 

usage (CPU-Cycle, Memory), 

Time elapsed, 

Process id 

Job split Sub jobs id, 

Parent job id 

Files accessed, 

created/modified 

Figure 2.8 Job Flow and Corresponding Accountability Data 
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used for our expressions are listed in Table 2.1. 

Actions describe the agents' operations to be executed, and may or may not relate 

to jobs. When jobs are involved, agent’s actions are also influenced by the job state, 

which changes over time, from the creation to the completion (successful or abnormal). 

The set of states that we consider are denoted as S. A generic list of possible states is 

provided in Figure 2.8
4
. 

Actions can be of seven different types, and are defined as presented in Table 2.2. 

Detailed descriptions of each type are as follows. 

collect_job_data(x, state, data_set, storage): x denotes an agent and takes values from A 

; state denotes a set of job state and takes values from S ; data_set denotes the set of data 

to be collected; storage denotes the data repository Rep where the collected data have to 

be stored. 

This type of action specifies the information that agent in node has to collect for 

all jobs locally processed. Note that the mandatory element to be collected for all job 

actions is the job-id, which is fundamental for binding the job with its data. The exact 

data to be possibly retrieved changes according to the state of the job at the time of 

collection. When several state values are listed in the same action, the semantics is that 

the action is triggered when the job enters one of these states. Intuitively, some states 

imply others. For example, if a job is queued, it means that it has been already submitted. 

However, the action should occur only when the specified state is reached. As shown in 

Figure 2.8, the state can be expressed at different granularity levels. A coarse grained 

expression may only consider the executing state of job while a fine-grained one may 

differ among the various job processing steps. We assume data collection to be an atomic 

operation with respect to the job state. Agents collect the data available upon job 

transition from one state to the subsequent one, with the obvious exception for terminal 

states. 

collect_resource_data(x, data_set, time_constraints, storage): x denotes an agent and 

takes values from A; data_set denotes the set of data to be collected and takes values 

4 
Specific transition state diagrams can slightly differ depending on the specific job type, whether it is a 

computing-intensive job or a long-running one. 
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from DSac ( DSres ; time_constraints denotes a temporal expression and takes values in T; 

storage denotes the data repository Rep where the collected data have to be stored. 

The second type of action specifies the information that has to be collected for a 

resource according to the temporal constraints specified in time_constraints; 

time_constraints is a compound temporal expression, specifying both a periodic 

expression and the retention time, to mandate respectively how often the data needs to be 

collected and for how long has to be maintained. Periodic and temporal expressions are 

expressed using formalism proposed in [30][31]. 

send_job_data(x, agent_job_relation, state, data_set, job_id): x denotes an agent and 

takes values from A ; agent_job_relation denotes agents who will receive values from A ; 

state denotes a set of job state and takes values from S ; data_set denotes the set of data 

to be collected and takes values from DSjob ; job_id denotes job_id and takes values from 

DSjob 

In order to build a partial view of the job-graph, agents at each node should send a 

job-relation information to the node to where the job flows. 

receive_job_data(x, agent_job_relation, state, data_set, job_id): x denotes an agent and 

takes values from A ; agent_job_relation denotes agents who will send values to A ; state 

denotes a set of job state and takes values from S : data_set denotes the set of data to be 

collected and takes values from DSjob ; job_id denotes job_id and takes values from DSjob 

In order to build a partial view of the job-graph, agent in each node should receive 

a job-relation information from the node from where the job flows. 

request_job_data(x, agent_job_relation, data_set, job_id): x denotes an agent and takes 

values from A; agent_job_relation denotes agents to which request will be made by x ; 

data_set denotes the set of data to be collected and takes values from DSjob ; job_id 

denotes job_id and takes values from DSjob 

The agent of the root node in a job-graph can trace every traversal of the job 

across the domains as if every grid node exists in the domain local to the root node. To do 

this, the root node needs to request data to agents located at a job-graph to ask forwarding 

their collected data. Agents requested this action would repeat requesting job data to 

successor nodes until all terminal nodes are reached. 
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forward_job_data(x, requester, data_setcombined, job_id): x denotes an agent and takes 

values from A; requester denotes agents who requested the values; data_setcombined 

denotes the set of data to be collected and takes values from DSjob ( DSac ( DSres ; job_id 

denotes job_id and takes values from DSjob 

The agents requested by the root node or the predecessor node for sending data, 

are responsible for forwarding the collected data to the requester. 

combine_job_data(x, agent_job_relation, data_setcombined, job_id): x denotes an agent 

and takes values from A; agent_job_relation denotes agents who will receive values from 

A ; data_setcombined denotes the set of data to be collected and takes values from DSjob ( 

DSac ( DSres ; job_id denotes job_id and takes values from DSjob 

To build a complete view of the job-graph, agents at the root nodes need to collect 

overall information of a job. Before forwarding data, an agent combines collected data 

obtained from successor nodes with the locally collected data. 

The following is an example of actions. In our analysis and examples, we 

consider the two traditional types of high performance computing job; computations and 

data transfers. 

Example 2. The following action specification states that agent AA@Purdue at Purdue 

University will collect user's handle, job_id, process_id, and time stamp when a job is 

either transferred or completed. 

collect_job_data(AA@Purdue, {Transferred, Completed}, {handle, job_id, process_id, 

timestamp}, purdue_db) 

Next actions specify the collection of the resource data associated with agent 

AA@Purdue to be executed every week day once an hour. Following we show examples 

of action speci!cations for sending job data. 

collect_resource_data(AA@Purdue, DATA, Week+{2,...,6}+1h, purdue_db) 

DATA:={CPU cycle, memory consumption, network bandwidth} 

send_job_data(AA@Purdue, AA@B-State, completed, {}, job_id) 

receive_job_data(AA@Purdue, AA@C-State, submitted, timestamp, job_id) 
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Table 2.2 Action Specification 

Action Type Arguments Semantics 

collect_job_data 
(x, state, data_set, 

storage) 

agent x collects data in data_set 

about job_id, where job_id is a 

mandatory element in data_set, 

when job_id reaches a state 

among the ones appearing in state 

and stores it at repository, storage 

collect_resource_data 
(x, data_set, 

time_constraints, storage) 

agent x collects data in data_set at 

repository, storage according to 

the temporal time constraints, 

time_constraints 

send_job_data 
(x, agent_job_relation, 

state, data_set, job_id) 

agent x sends data in data_set to 

agents that belong to 

agent_job_relation for a job, 

job_id when the job state turns to 

state 

receive_job_data 
(x, agent_job_relation, 

state, data_set, job_id) 

agent x receives data in data_set 

from agents that belong to 

agent_job_relation for a job, 

job_id when the job state turns to 

state 

request_job_data 

(x, 

agent_job_relation, 

data_set, job_id) 

agent x requests data in data_set 

to agents that belong to 

agent_ob_relation for a job, 

job_id 

forward_job_data 

(x, 

requester, 

data_setcombined, job_id) 

agent x forwards data in 

data_setcombined to agents for a job, 

job_id 

combine_job_data 

(x, 

agent_job_relation, 

data_setcombined, job_id) 

agent x combines data forwarded 

from agents that belongs to 

agent_job_relation into 

data_setcombined for a job, job_id 

Actions can be combined and merged in case they are redundant. In order to 

check for redundancy, actions need to be expressed in a minimal, also called canonic, 
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form. We say that an action is in a canonic form if it only conveys one value for each 

possible input parameter, excluding the data_set parameter. 

Redundancy is defined as follows. In the definition, A denotes an action, and let 

A.par denote the parameter name in A and let A.parval denote the corresponding values. 

Definition 2.3 (Redundant actions). Let A and A' be actions in a canonic form. We say 

that A is redundant with respect to A' if 

! A and A' are of the same type; 

! "A.par' s.t. A.par = A'.par' 

! and A.parval=A'.par'val and A.data_setval " A'data_set'val'. 

Example 3. Consider the following canonic actions. 

(1) collect_job_data(AA@Purdue, Completed, {handle, job_id, process_id, file_name, 

timestamp}, purdue_db) 

(2) collect_job_data(AA@Purdue, Completed, {job_id, file_name, timestamp}, 

purdue_db) 

Since {job_id, file_name, timestamp} ) {handle, job_id, process_id, file_name, 

timestamp} (2) is redundant with respect to action (1). 

Redundant actions can be eliminated – action (2) of Example 3 is eliminated. A 

set of non-redundant actions mandates a protocol for agents to execute. We define such 

protocols as action expressions. 

Definition 2.4 (Action expressions). Action expressions (AE) are defined recursively as 

follows: 

! All actions defined according to the specification of Table 2.2 are action expressions. 

! If A and A’ are action expressions, then the set AE={A, A’} is an action expression. 

Action expressions do not mandate an execution order. However some of action 

expressions are meaningful only if executed in a certain sequence. For example, if one 

type of action expressions is of forward_job_data, then the action expression should also 

contain a combine_job_data, i.e. expressed as (forward_job_data # combine_job_data). 

Other examples are as follows (send_job_data # collect_job_data); (request_job_data 

# send_job_data). 
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2.5.2. Accountability Policies 

The accountability policies are of two types: local and shared. The two types are 

the result of the different strategies that an agent can adopt. We recall that these 

correspond to the job-flow based and grid-node based strategies. Policies local to a given 

location capture data as required by the grid-node based approach. By contrast, shared 

policies apply to the job-flow based approach, and specify which job information has to 

be sent or received upon job change of state, from an agent. 

An abstract representation of the policies is provided in Figure 2.9. The policies 

are actually encoded using XML [32]. Such encoding is represented in Appendix A. 

The local policy shown in Figure 2.9-(a) specifies that the agent’s action, 

COLLECT-RESOURCE-DATA must be executed in order to collect resource data when 

the job is located at head node. The shared policy reported in Figure 2.9-(b) specifies 

which data elements (handle, jobid, node-id, subjob-id, subjob-node-id, authentication-

token, access-control-decision, access-control-policy, process-id, and timestamp) have to 

be collected by execution of the agent’s action, COLLECT-JOB-DATA, when the job 

state becomes Pending. The policy also specifies that agents have to send (agent’s action, 

SEND) the required data (handle, jobid, node-id, and timestamp) to sub-job’s destination 

when state changes to Active. The elements to send according to a shared policy are 

crucial in order to generate the cover-record. The handle is the temporary identifier 

generated at the IdP or entry point and unique for each job. Since the handle keeps a 

direct connection to a real user’s identity, it is valuable for accountability. When a job 

travels across multiple domains, the job changes its name. Thus, for the shared-policies 

defined according to job-flow based approach, the local job identifier is considered an 

important element. Additionally source information (node-id) from which sub-jobs are 

sent is of interest for constructing the job-relation graph on cover-record. Finally 

timestamp is also important element for both shared and local policies to specify when 

the action is performed. In addition to the elements shown in the example, the policies 

may also include the retention-time specifying for how long the collected data should be 

kept. 
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<?xml version=”1.0” …?> <?xml version=”1.0” …?> 
<AccA_Policy> <AccA_Policy> 
<HeadNode> 

<COLLECT-RESOURCE-DATA> 

<data>jobid</data> 

<data>ctime</data> 

<data>qtime</data> 

<data>etime</data> 

<data>cput</data> 

<data>mem</data> 

<data>vmem</data> 

<data>walltime</data> 

<data>cpu</data> 

<ts>timestamp</ts> 

</COLLECT-RESOURCE-DATA> 

</HeadNode> 

</AccA_Policy> 

<Pending> 

<COLLECT-JOB-DATA> 

<data>handle</data> 

<data>jobid</data> 

<data>node-id</data> 

<data>subjob-id</data> 

<data>subjob-node-id</data> 

<data>authentication-token</data> 

<data>access-control-decision</data> 

<data>access-control-policy</data> 

<data>process-id</data> 

<ts>timestamp</ts> 

</COLLECT-JOB-DATA> 

</Pending> 

<Active> 

<SEND> 

<data>handle</data> 

<data>jobid</data> 

<data>node-id</data> 

<ts>timestamp</ts> 

</SEND> 

<RECEIVE> 

<data>subjob-id</data> 

<data>subjob-node-id</data> 

</RECEIVE> 

</Active> 

</AccA_Policy> 

Figure 2.9 Abstract Representation of (a) Local Policy, and (b) Shared Policy 

The shared policy consists of essential accountability and specified 

accountability. The essential accountability is the minimum level of accountability 

required to complete a cover-record. The data elements of essential accountability are 

handle, jobid, node-id, timestamp, subjob-id, and subjob-node-id in the example of 

Figure 2.9. The specified accountability is the accountability level defined to collect 

specified data in the shared policy. The data of specified accountability are handle, jobid, 
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node-id, subjob-id, subjob-node-id, authentication-token, access-control-decision, 

access-control-policy, and process-id from the Figure 2.9. 

We abstract from the underlying policy encoding by using the following simple 

formalism for the two policy types. 

Definition 2.5 (Accountability policies). An accountability policy is an expression of one 

of the following form: 

! A shared policy shared_policy is an action expression AE = {A1,...,Am}, specified 

according to Definition 2.4, such that *i ! [1, m], *j, k ! [1, n], j"k, Ai.Sitej = Ai.Sitek 

! A local policy local_policy (among n organizations) is an action expression AE = 

{A1,...,Am}, specified according to Definition 2.4, such that "i ! [1, m], *j, k ! [1, n], 

j"k, Ai.Sitej " Ai.Sitek 

In other terms, accountability policies are action expressions speci!ed for the 

same agent, as speci!ed in the de!nition by the condition on the parameter x of actions in 

AE. Local policies have the additional constraint of being expressed only in terms of 

actions expressing data collection. By contrast, shared policies may include any 

combination of actions. If collection actions are included, the intended meaning is that 

the data is shareable with other agents upon request. 

Shared and local policies are specified according to the grammar in Figure 2.10 

We use the Backus-Naur notation to describe the syntax of the accountability policy 

language. Our grammar mainly consists of action_specification, Acc_data, which is 

job_flow_based or grid_node_based, and terminal variables such as state, names of data 

supported in the languages. 

We give an example of shared and local policies in what follows. 

Example 3. A job is submitted to Purdue University SP and then assigned for execution 

to the RPs, A-state University, and B-state University. Purdue agrees to send job-relation 

data (handle, job-id, subjob-id, RP-id, timestamp) to A-state and B-state when the 

processed job enters into active state. Additionally, A-state locally collects resource data 

(memory consumption, cpu time, network bandwidth, disk bandwidth) every day during 

the week. 

The policies for such scenario are as follows: 
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<policy_set> := <policies>
 

<policies> := <policy> <policies> | <policy>
 

<policy> := <action_specification> | <representatives>
 

<representatives>:=<Acc_data> <symbol> <representatives> | <Acc_data>
 

<Acc_data> := <job_flow_based> | <job_assigns> | <strings> | 


<boolean> | <pair> | <grid_node_based>
 

<pair> := (<job_type><symbol><state>)
 

<resources> := <resource> <period> | <constraints>
 

<state> := submitted | created | started | completed | pending | aborted | 


queued | suspended | active | done
 

<job_type> := computational | transfer
 

<job_flow_based> := handle | job_id | process_id | executable | SP_id |
 

IdP_id | file_names | platform | timestamp
 

<grid_node_based> := memory consumption | CPU time | 


network bandwidth | disk bandwidth | IP_destination | port
 

<constraints> := all_process | life_time | all_day | weekdays | weekend
 

<job_assigns> := SP_id ! job_id
 

<strings> := authorization_policy | usage_policy
 

<boolean> := authorization_decision
 

<symbol> := (AND) | (OR)
 
<period> := : NUM | null
 

Figure 2.10 Accountability Grammar in BNF 

[Purdue] 

shared_policyPurdue := 


send_job_data (agent@Purdue, agents_in_job_relationPurdue, active, dataSetactive, job-id)
 

collect_job_data (agent@Purdue, active, dataSetactive, DBPurdue)
 

agents_in_job_relationPurdue := agent@A-state (AND) agent@B-state
 

dataSetactive := handle (AND) job-id (AND) subjob-id (AND) RP-id (AND) timestamp
 

[A-state] 

local_policyA-state := 
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collect_resource_data (agent@A-state, dataSetlocal, time_constraintsA-state, DBA-state)
 

dataSetlocal := memory consumption (AND) cpu time (AND) network bandwidth (AND) 


disk bandwidth
 

time_constraintsA-state := weekdays (AND) all.days
 

Example 4. (Continued from example 3) When the resource misusage (memory and 


CPU) is found at A-state and reported to Purdue, Purdue requests accountability 


information (handle, job-id, subjob-id, RP-id, timestamp, memory comsumption, CPU
 

time) both to A-state and B-state based upon the agreed contract.
 

The policies for such scenario are as follows: 

[Purdue] 

shared_policyPurdue := 


request_job_data (agent@Purdue, agents_in_job_relationPurdue, dataSetfail, job-id)
 

dataSetfail := 


handle (AND) job-id (AND) subjob-id (AND) RP-id (AND) timestamp (AND) memory 


consumption (AND) cpu time
 

combine_job_data (agent@Purdue, agents_in_job_relationPurdue, dataSetcombined, job-id)
 

dataSetcombined := dataSetPurdue (AND) dataSetA-state (AND) dataSetB-state, dataSetPurdue := 


dataSetA-state := dataSetB-state
 

[A-state] 

shared_policyA-state := 


forward_job_data (agent@A-state, agent@Purdue, dataSetfail, job-id)
 

combine_job_data (agent@A-state, $, dataSetA-state, job-id)
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3. PROFILE-BASED SELECTION OF ACCOUNTABILITY 

POLICIES 

When a job is submitted to a node, the accountability agent starts collecting job-

related data based on the shared accountability policy. However, although the shared 

policy specifies the data to collect, some nodes may not have the capability to comply 

with this policy because of their own limitations, such as insufficient log information, 

different software versions, and different applications, etc. The different nodes have also 

different limitations in what they can collect depending on their role in the grid. For 

example, if the shared policy enforces to collect an element that is only available at a 

gatekeeper node, the compute node cannot comply with the policy. 

Figure 3.1 Examples of Policy Conflict 

Accountability Policy 

“Collect Job id, Node id, Subjob id, Subjob node 

id, Authentication token, access control policy, 

Process id, cmd and Timestamp when a job is 

submitted and Send Job id, Subjob id, Node id 

to predecessor node(s) when a job is running…” 

“cmd is not necessary 

for this job’s 

accountability…” 

“I cannot collect 

subjob id because no 

application support to 

find it…” 

“access control 

policy is not 

available…” 

N1 N2 N3 N4 

job 
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An example in Figure 3.1 shows such conflict. When a job is submitted to a node 

N1 and then executed at N4 via N2 and N3, the accountability policy in Figure 3.1 is 

enforced at each node. Access control data such as the pertinent access control policy or 

the outcome of its enforcement is also relevant information for accountability. This data 

is generally collected at the first node to which the job is submitted, to grant or deny the 

permission to use the grid resources. However if the policy that requires collecting access 

control data is enforced at node N4, which does not involve access control, a conflict 

arises. When the job is transported to N3 via N2 from N1, the policy requires collecting 

sub-job id. However N3 cannot collect such data because there is no application to 

support for collecting this data. As a result, N3 violates the policy and causes a critical 

deterioration in accountability. When the job is fairly safe, but the node is logging too 

much detailed monitored data, complex policy should be prevented. For example, in 

Figure 3.1 if the job is transited to N2 from N1, the policy requires collecting cmd, that is, 

a path and filename of the job to be executed as one of elements to collect in the node N2. 

However, such detailed information is redundant for accountability in N2 because the 

actual execution will be performed in N4. 

What if the accountability policy to be shared is very simple such as “Collect Job 

id, and Subjob id and Send them to Subjob’s destination”? This simple policy could lead 

to insufficient accountability data, therefore resulting ineffective. In summary, as thesis 

examples show, guaranteeing full accountability while addressing conflicting issues is 

not a simple problem. 

If a node cannot fully support the shared policy, it is still however desirable to 

collect only mandatory data within its capabilities, satisfying the purpose of sharing 

policy, rather than aborting the job. To this extent, each agent performs a selection 
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Figure 3.2 The Lifecycle of the Accountability Policies 
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process for an appropriate set of collectible data. This selection process plays an 

important role in the design of an accountability policy that will be enforced at each node. 

The accountability policy sets the level of accountability that indicates how much the job 

and node is accountable by the policy. The higher the level of accountability is, the more 

accountable it is considered to be. Such policy is influenced by the job’s level of potential 

risk as well as the significance of the node with respect to the system. 

The accountability agent that performs policy selection process is suited with two 

logical components as shown in Figure 3.2. One is profile matcher and the other is 

accountability matcher. In this Chapter, we focus on the policy selection process, that is, 

on the tasks performed by these two matchers. These two steps are the most challenging 

and interesting, while the other steps focus on the enforcement of the policies and are 

common in other policy-based systems. 

3.1. Profile Matcher 

In grids, jobs are submitted with a description expressed in a job description 

language [75]. Different types of schedulers provide different job description languages; 

however, despite such heterogeneity, the description contents are very much the same 

across the various types of scheduler. The job profile, specified by one of such job 

description languages, contains information about how many processors and nodes are 

requested for the job execution, how much running time or memory is required, where 

the job is coming from, etc. The accountability agent transports this job profile from the 

entry node to each node where the job or its sub-jobs are assigned or executed. Each node 

is also characterized by a profile containing information about its hardware, software, and 

network. The node’s profile is specified before jobs are submitted and it is not subject to 

change. Thus, the agent uses the same node’s profile for all jobs. Examples of profiles for 

job and node are shown in Figure 3.3. 

The profile matcher, a component of the accountability agent, maintains two 

metrics indicating how risky a job is and how important a node is. We refer to such 

metrics as to risk factor and significance factor. The job that potentially consumes 

computing resources by requesting a high number of CPUs or a huge amount of memory 
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Profile for Job A =
 
{
 
Type := “Job”;
 
SentFrom := “country A”;
 
NumberOfRequestedCPU := 660;
 
NumberOfRequestedNode := 300;
 
RequestedMemory := 24 GB;
 
InputFile := /home/wlee/input.txt;
 
WallTime := 720:0:0;
 
Project := “TG-AIG009382”;
 
}
 

Profile for Node X =
 
{
 
Type := “Machine”;
 
Role := “Gatekeeper”;
 
Name := “gk.rcac.purdue.edu”;
 
Disk := 160; // giga bytes
 
Memory := 4000; // mega bytes
 
LoadAverage := 0.098341;
 
Arch := “Intel Core 2 Duo”; 

ProcessorSpeed := 2.16 GHz;
 
Premium := True;
 
}
 

Profile for Job B =
 
{
 
Type := “Job”;
 
SentFrom := “country Z”;
 
NumberOfRequestedCPU := 80;
 
NumberOfRequestedNode := 40;
 
RequestedMemory := 128 KB;
 
WallTime := 90:0:0;
 
Project := “TG-BWG009386”;
 
}
 

Profile for Node Y = 

{
 
Type := “Machine”;
 
Role := “Compute Node”;
 
Name := “hn.rcac.purdue.edu”;
 
Disk := 140; // giga bytes
 
Memory := 1000; // mega bytes
 
LoadAverage := 0.022869;
 
Arch := “Intel”; 

ProcessorSpeed := 1.28 GHz;
 
Premium := False;
 
}
 

Figure 3.3 Example of Profiles For a Job 

and is submitted to a critical node, may be malicious and needs to be monitored more 

closer than other jobs. The introduced risk and significance factors help classify how 

much accountability data should be collected for a given job in a node. The risk factor is 

a pair of an element from the attribute set of the job profile and its value. The value 

specifies how much the element in that attribute of the job is risky. The values are 

positive real numbers and are same through all nodes for consistent comparison. We 

initially assume that if the job requests many resources and is submitted from potentially 

dangerous sites as specified by the administrators, the job appears to be riskier than 

others. The significance factor considers how important the node is, compared to other 

nodes. If a node has a special and unique role such as authenticating users and 

http:hn.rcac.purdue.edu
http:gk.rcac.purdue.edu
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Risk factor for a Job =
 
{
 
Type := “Job”;
 
SentFrom := {
 

{“country A”, “country B”, “country C”} = 2, 

{“country D”, “country E”} = 1.5, 

Others = 1;} 

NumberOfRequestedCPU := { 

{701 ~ 1000} = 2, 

{401 ~ 700} = 1.5, 

{1 ~ 400} = 1;} 

NumberOfRequestedNode := { 

{301 ~ 500} = 2, 

{101 ~ 300} = 1.5, 

{1 ~ 100} = 1;} 

RequestedMemory := { 

{24GB ~ 32GB} = 2, 

{4GB ~ 24GB} = 1.5, 

{~ 4GB} = 1;} 

IsInputFileRequired := { 

“Yes” = 1, 

“No” = 0;} 

WallTime := {501 hr ~ 720 hr} = 2, 

{171 hr ~ 500 hr} = 1.5, 

{1 hr ~ 170 hr} = 1;} 

} 

Significance factor for a Node = 

{ 

Type := “Machine”; 

Role := { 

“Gatekeeper” = 2, 

“Service Provider” = 1.8, 

“Head Node” = 1.5, 

“Compute Node” = 1;} 

LoadAverage := { 

{0.08 ~ 0.1} = 2, 

{0.03 ~ 0.0799} = 1.5, 

{~ 0.0299} = 1;} 

Quality := {“Premium” = 1, 

Others = 0;} 

} 

Figure 3.4 Example of Risk Factor and Significance Factor 

authorizing user’s requests or scheduling jobs to CNs, such node should be considered 

more significantly than the ones with a less critical role such as providing only computing 

cycles or memory. Even for the same role, if a node deals with more jobs than others, the 

node should be considered more significantly and thus be more accountable than the 

others. The value of the significance factor can also vary based on the agreement of 

administrators. The higher the value is, the more accountable the node should be. The 

range of the factor can span to any size and the classification is determined based on the 

agreement by administrators. A diverse range gives more fine-grained accountability 

since it can result in different levels of accountability. The example about risk factor and 
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significance factor in Figure 3.4 shows two to four classes of the profile for each attribute 

having values between 0 and 2. 

The requested level of accountability for a job, that is, how much detailed data has 

to be collected for a job, is set based on the job itself and the node profiles. In order to 

determine such level, the attributes in the job and node profiles are converted into risk 

and significance factors. The overall level is calculated by multiplying the two metrics. If 

a job that according to its profile appears to be at high risk is submitted both to a critical 

node and to a non-critical node, the resulting risk value for this job should take into 

account the impact on these two nodes. 

For example, if a job with a risk factor of 2 is submitted to two different nodes 

N1, N2, whose significance factor is 1 and 2 respectively, then the risk that one incurs 

when submitting the job to N2 is two times higher than the risk of submitting the job to 

N1. Likewise, if two different jobs with risk factor equal to 1 and 2, respectively, were 

submitted to the same node, the job whose risk factor is 2 would have twice as large 

combined risk as that of 1. From these observations, we can assume that the significance 

factor and risk factor are two independent factors that can thus be linearly combined to 

obtain combined risk. We define this combined risk as the requested accountability. The 

requested accountability is proportional to the combined risk, which means the higher the 

combined risk is, the higher the requested accountability has to be. Therefore the 

accountability requested for a job submitted to a node can be described as follows. 

Requested accountability = ReqAcc = c "X Yj (3.1) 
i

i, j 

Normalized requested accountability = ReqAcc / "PiQj (3.2) 

i, j 

where c 
5 

is a coefficient, 1 " i " n , 1 " j " m , X is the set of metric elements in the 

job’s profile, Y is the set of metric elements in the node’s profile, P is the set of highest 

metric elements in the job’s profile, Q is the set of highest metric elements in the 

node’s profile, n is the number of elements in X and P, m is the number of elements in 

Y and Q 

We consider coefficient as 1 for simplicity from now 
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The highest value in the range of the requested accountability levels is obtained 

by the multiplication of the highest risk factors by the highest significant factors, and the 

lowest value is from low risk factors by least significant factors. Examples of requested 

accountability for jobs A and B at Node X and Y of Figure 3.3 are given below. 

Example 1. Consider Job A at Node X. Requested 

accountability=[{2,2,2,2,1,2}*{2,2,1}]/[{2,2,2,2,1,2}*{2,2,1}]=((2+2+2+2+1+2)*(2+2+ 

1))/((2+2+2+2+1+2)*(2+2+1))=1. Job A that has many highly risky factors is submitted 

to a node classified as most significant node, i.e. Node X. By equation 3.1 and 3.2, the 

calculated risk value requires a highest accountability level; thus when Job A is submitted 

to Node X, the accountability agent located at Node X needs the fully requested 

accountability, which is the highest level of accountability for Job A. 

Example 2. Consider Job B at Node X. Requested 

accountability=[{1,1,1,1,0,1}*{2,2,1}]/[{2,2,2,2,1,2}*{2,2,1}]=((1+1+1+1+0+1)*(2+2+ 

1))/((2+2+2+2+1+2)*(2+2+1))=0.455. Even though Node X is significant, because Job B 

does not have highly risky factors, only 0.455 worth of accountability level is requested. 

Example 3. Consider Job B at Node Y. Requested 

accountability=[{1,1,1,1,0,1}*{1,1,0}]/[{2,2,2,2,1,2}*{2,2,1}]=((1+1+1+1+0+1)*(1+1+ 

0))/((2+2+2+2+1+2)*(2+2+1))=0.182. Since Job B in Example 2 is submitted to a less 

significant node (i.e. Node Y) than Node X, the risk is lower than the one obtained in 

RP2 

CN1 CN2 

job1 

job1-b job1-a 

job1-b-2 
job1-b-3 

job1-b-1 

RP1 RP2 

CN1 CN2 

SP1 job1 
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job1-b-2 
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Figure 3.5 (a) An Incomplete Job-graph Due to Insufficient Accountability 

(b) The Reconstructed Job-graph 
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Example 2. The agent at Node Y needs the minimum requested accountability, which is 

the lowest level of accountability for Job B. 

3.2. Accountability Matcher 

Since each node has different constraints for collecting elements specified in a 

policy, the level of support for accountability is different from node to node. Here, we 

define the level of accountability that can be supported by each node as the supported 

accountability. While the requested accountability is generated for each job, the 

supported accountability is statically defined for each node. Definitions of accountability 

levels and related terminologies are listed in Table 3.1. 

By integrating and coordinating the requested and supported accountability, the 

accountability matcher selects the best policy based on the shared accountability. The 

shared policy specifies the elements required for the agent to complete the cover-record 

as introduced in Chapter 2. If these elements are not available at the node, then the agent 

has insufficient accountability. Therefore, the cover-record cannot be created, thus 

resulting in an incomplete job-graph (Figure 3.5-a). In such case, the node that gives 

insufficient accountability is dangling in the job-graph and does not connect any 

successor node. To reconstruct the job-graph, the agent in the dangling node sends all 

information about the cover-record received from the direct predecessor node to the 

direct successor nodes (See Figure 3.5-b for a reconstructed job-graph). For example, if 

node-id is not available in CN2 and cannot be sent to CN1, the agent in CN1 cannot send 

job1-b-3 to CN2 due to missing address of the node represented as node-id, thus resulting 

in a lost connection. In this case, the agent in CN2 forwards {handle, ‘job1-b’, ‘RP2’, and 

timestamp} received from RP2 to the agent in CN1, which is the direct successor of CN2 

to reconstruct the job-graph. Though the connection between CN1 and CN2 for the job 

‘job1-b-2’ is lost, the accountability for the jobs ‘job1-b-2’ and ‘job1-b-3’ is still 

guaranteed because CN2 and CN1 are still connected to RP2 in the job-graph for the 

‘job1-b-2’ and ‘job1-b-3’ respectively. 
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Table 3.1 Definitions of Terminologies Used by Matchers 

Terminology Definition 

Risk factor The degree that shows how risky a job is 

Significance factor The degree that shows how important a node is 

Price 
The degree of importance in terms of accountability for 

accountability data 

Essential accountability 
The minimum accountability level of shared policy 

required to complete a cover-record 

Specified accountability 
The accountability level defined to collect specified data 

in the shared policy 

Supported accountability 
The level of accountability that can be supported by a 

node. The sum of prices put on elements 

Requested accountability 
Linearly combined risk of risk factor about a job with 

significance factor about a node 

In a significant node, applications such as grid middleware and job-schedulers, 

that make the node significant, provide high possibility for collecting job-related 

information. For example, in a gatekeeper where the Globus Toolkit (GT4) [18] is 

installed, the agent can collect job status, node-id, and subjob’s id information directly 

from Globus. In a head node where the job scheduling is performed, the agent can obtain 

some useful accountability information, such as sub-job ids assigned at each CN, and 

cmd from the scheduler’s log file. From this observation, it is thus clear that the 

possibility of having sufficient accountability in a significant node is very high, while it is 

low in a less significant node, such as a computational node. Thus the CN2 in Figure 3.5-

b has high probability that it is less significant node expecting a low accountability. 

The first task of the accountability matcher is to compare the requested 

accountability transmitted from the profile matcher with the supported accountability. 

The supported accountability is computed by summing up numeric values put on each 

collectible data element in a node. We define such numeric value as price, which means a 

degree of importance in terms of accountability. The higher the value of the price is, the 

more important the element is for accountability. There are several criteria to decide the 

degree of importance of accountability for each element. First if the element is essential 

to construct a job-relation, it has a high price because it provides provenance data 

concerning the executed jobs, which is crucial information in accountability. Second, the 
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data obtained from the job-flow based strategy has higher price than elements collected 

from grid-node based strategy. Tracing back a job and its action across various nodes is 

one of important tasks of accountability system. Data obtained from multiple nodes in 

job-flow based strategy fulfill this task better than data obtained in a fixed node under the 

grid-node based strategy. Third data related to security such as authentication tokens, and 

access control decision or policy has high price. Because for example, access control 

determines which jobs are executed on the grid, access control decision is crucial to 

determining if and why wrong decisions were made. Through the three criteria in the 

specified order the unit price that is identical for all nodes, is put on the elements upon 

agreement of administrators. The detailed process about determining the price for each 

element is out of scope of this thesis. The goal of using price is to show a level of 

accountability a node can support for requested accountability in a number. 

Each node owns a list of elements that can be collected with a summed price. 

When summing up the prices for supported accountability, a constraint is enforced. If any 

of elements required to construct a cover-record for the original shared policy is not 

supported, other elements besides these required elements cannot be summed up. This 

constrains is to guarantee the essential accountability of the shared policy. 

Table 3.2 shows examples of elements with different cases and prices, (A) 

through (G), that a node can support. For example, if a node supports, only Handle, Job-

Id, {Subjob-Id, Subjob-node-Id}, and TS, which are the elements to satisfy the essential 

accountability, the supported accountability of the node becomes 0.582 summed of all 

priced values – case (B). For case (G), the accountability is fully supported. The range of 

the supported accountability is the same as the requested accountability (i.e., Minimum 

supported accountability = Minimum requested accountability = 0.182 < {Supported 

accountability, Requested accountability} < Fully supported accountability = Fully 

requested accountability = 1) so that the accountability matcher can compare them. For 

each comparison between the supported accountability and requested accountability, the 

shared accountability represented as bidirectional arrows (1) through (5) in Figure 3.7 is 

compared again. Each arrow spans from the level of essential accountability (i.e., the left-
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Figure 3.6 Flow Chart Diagram for Selecting Shared Accountability Policy 
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most of the arrow) to the level of specified accountability (i.e., the right-most of the 

arrow). Depending on the actual data being collected at the node, the size of the arrow 

varies. For example, it can be smaller than requested accountability or supported 

accountability like examples A-(1) and B-(1) in Figure 3.7 respectively. Or, the range of 

the shared accountability is in between requested accountability and supported 

accountability like examples A-(3) and B-(3). 

In case that a requested accountability is fully supported (case A in Figure 3.7) in 

the node, the requested accountability is selected as long as it covers the essential 

accountability. This is the case A-(1) and A-(2) where the essential accountability is 

satisfied by selecting the requested accountability. The difference between the requested 

accountability (A-x) and the specified accountability of A-(1) is incorporated with the 

price that should be added to the shared policy by increasing the specified accountability 

to much of subtracted price. In case of A-(2), the difference between the specified 

accountability and requested accountability (A-x) is also incorporated with the price that 

should be removed from the specified accountability. This is because we only need the 

requested accountability. The overhead that occurred by collecting data represented as the 

price of such difference can be prevented. 

If the essential accountability is not guaranteed due to the selection of policy with 

the requested accountability as the case A-(3) in Figure 3.7, instead of the requested 

accountability, the essential accountability is selected by the accountability matcher. In 

this case, since selecting the policy with the essential accountability satisfies the 

requested accountability, nothing is added or removed from the selected policy. For the 

case, A-(4), even though the specified accountability is not supported, if the policy only 

with the essential accountability is selected, the policy satisfies the requested 

accountability, thus nothing is added or removed from the selected policy. When the 

shared accountability has a range of accountability level such as A-(5) – i.e., essential and 

specified accountability are not supported, the node is dangling in the job-graph and the 

modified policy from the shared policy will be applied. 

In the case of a node that cannot support the requested accountability (case B), if 

the shared policy has the level of accountability with the range B-(1), selecting the policy 
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Table 3.2 Supported Accountability (Pr: price, ACL: Access Control, PID: Process ID, 

TS: Timestamp, Attr: Attributes, cmd: file name and path of executable)
 

Handle 
Node-

Id 
Job-Id 

ACL-

Decision 

ACL-

Policy 

Subjob-

Id 

Subjob-

node-Id 
PID 

Job 

State 
TS 

Auth 

Token 
Attr cmd 

Supported 

Accountability 

Pr 0.091 0.1 0.091 0.075 0.075 0.1 0.1 0.075 0.025 0.1 0.093 0.025 0.05 

(A) ! ! 0.182 

(B) ! ! ! ! ! ! 0.582 

(C) ! ! ! ! ! ! ! ! 0.7 

(D) ! ! ! ! ! ! ! ! ! 0.807 

(E) ! ! ! ! ! ! ! ! ! ! ! 0.882 

(F) ! ! ! ! ! ! ! ! ! ! ! ! 0.907 

(G) ! ! ! ! ! ! ! ! ! ! ! ! ! 1 

with supported accountability satisfies the specified accountability as well as the essential 

accountability. This selection makes the new shared policy close to the requested 

accountability. If the shared accountability is in the range (case B-(2)), the selection of 

supported accountability satisfies the essential accountability and specified accountability 

to the level that the node can support (i.e., to B-x from the essential accountability). If the 

essential accountability is not supported as in case B-(3),(4),(5), these cases become 

insufficient accountability and the corresponding resolution technique is applied as 

described above. This node will have the policy modified from the original shared policy. 

The modified policy will have the same elements as the original one for the essential part 

and will change SEND to FORWARD in Figure 2.9-b, without the need to collect data 

since the data has already been received from the predecessor node. The following 

examples show the selection process in terms of price. 

Example 4. A profile matcher requests accountability at Node Z for Job C to be 0.85. 

Assume that Table 3.2-F is the supported accountability at Node Z (i.e. supported 

accountability = 0.907). 

For case A-(1) in Figure 3.7: If the essential accountability is Table 3.2-B (i.e. 0.582) 

and the specified accountability is Table 3.2-C (i.e. 0.7), which is less than the requested 

accountability (i.e. 0.85), the policy with 0.85 is selected and the elements of which 

whole price is the difference between A-x (0.85) and the specified accountability (0.7) 

(i.e. 0.15 = 0.85 – 0.7) should be added to the shared policy. In this case, candidates that 

can be added are selected from the supported elements, i.e., from the list Table 3.2-F. 
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Thus {“ACL-Decision”, “ACL-Policy}, or {“PID”, “Attr”, “cmd”} priced altogether 

0.15, could be added to the shared policy. 

For case A-(2) in Figure 3.7: If the essential accountability is Table 3.2-C (i.e. 0.7) and 

the specified accountability is Table 3.2-E (i.e. 0.882) that is greater than requested 

accountability (i.e. 0.85) and less than supported accountability (i.e. 0.907), then the 

policy with 0.85 is selected and the elements of which whole price is the difference 

between the specified accountability, A-(2) (i.e., 0.882) and A-x (0.85) (i.e. 0.032 = 0.882 

– 0.85) should be removed from the shared policy except elements in Table 3.2-C. In this 

case, because there is not an element that exactly matches to 0.032 and the specified 

accountability is lower than the supported accountability, the highest priced element out 

of ones smaller than 0.032 is chosen to be removed such as {“Attr”} priced 0.025. 

For case A-(3)(4) in Figure 3.7: If the essential accountability (i.e., Table 3.2-E) and 

specified accountability of the shared policy are greater than the requested accountability 

(i.e., 0.85), the policy with the essential accountability (i.e., 0.882) is selected. 

Accreq < Accsup Accsup < Accreq 
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Figure 3.7 Cases of Comparisons with Shared Accountability 
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4. VULNERABILITIES IN GRID COMPUTING SYSTEMS 

Because of the scalable and dynamic nature of the grid, and the lack of grid-

specific security protection mechanisms, grid systems suffer from several vulnerabilities. 

Vulnerabilities can be found at each grid layer and can be exploited by an intruder to 

bypass the system’s authentication or authorization, or by malicious user’s code 

submitted as part of a grid job. Attackers can also take advantage of grid resources to 

launch distributed denial of service (DDoS) attacks, or to crash one of the grid 

components, resulting in the grid outage. If, for example, a head node of a cluster where 

the actual grid job scheduling is performed is attacked and cannot execute its normal 

functions, all computing resources connected to that head node will not be available to 

legitimate users. If the web-services running at gatekeeper of a RP are denied due to a 

DDoS attack, the legitimate users’ requests to that gatekeeper cannot be transferred to 

other gatekeepers or to the scheduler. Attackers can also target servers located outside the 

grids such as mission-critical government websites or popular commercial hosts. 

In this chapter an overview of the most common grid vulnerabilities are presented. The 

following sections describe possible or known vulnerabilities, classified according to 

their locations in the grid layers from the low to the high layers. 

4.1. Vulnerabilities of the Connectivity Layer 

GSI [11] provides a set of fundamental security services that are specifically 

designed to support grids. GSI relies on certificates to handle authentication [11]. In a 

GSI certificate, there are four important elements: a subject name; a public key that 

belongs to the subject; the identity of a certificate authority (or CA) that has signed the 

certificate; and digital signature of the CA [11]. If the CA that signed the certificate is not 
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Figure 4.1 Attack Scenario by MD5 Collision 

genuine but has a real signature of the genuine CA, a malicious user can manipulate a 

GSI certificate signed by that CA. Stevens et al. [33] report that it is possible to hash two 

different messages to the same MD5 hash value by MD5 cryptographic hash function. 

Using the collision in the MD5 hash function in digital signatures that can lead to an 

attack against the GSI, the rogue CA creates a rogue CA certificate. This certificate is 

trusted and accepted by all common hosts providing grid resources since it bears a valid 

signature singed by the genuine CA. 

Figure 4.1 shows an attack scenario that exploits the MD5 weakness discussed in 

[33]. The main steps are as follows. 

1. An attacker who wants to exploit grid resource searches a CA that uses the MD5 

hash function to generate the signature of the certificate and requests a host certificate if 

such CA is found. 

2. A commercial CA signs the legitimate host certificate and issues a host certificate 

(the gray one tagged as B). 
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3. The attacker creates a rogue CA certificate (the blue one tagged as C), and then copies 

the signature obtained in step 2 to the rogue CA certificate. Therefore certificate C 

appears as being issued by the CA though the CA has never signed it. This rogue CA 

certificate is an intermediary CA certificate that can be used to sign other host certificates 

the attacker wants to issue. Because MD5 hashes both the legitimate and the rogue 

certificate to the same signature, the digital signature signed by the genuine CA can be 

copied to the rogue CA certificate resulting in making the rogue CA certificate remain 

valid. 

4. The rogue CA creates a rogue host certificate that bears the legal host’s identity but 

another public key, and signs the created certificate to issue to a rogue host. 

5. If two hosts have certificates, and they trust the CAs that signed each other’s 

certificates, then the two hosts mutually authenticate. Before the mutual authentication is 

carried out, the rogue host sends the issued rogue host certificate with the rogue 

intermediary CA certificate to the genuine host to make the genuine host verify the issued 

rogue host certificate from the rogue intermediary CA certificate. 

6. The genuine host verifies the signature of the rogue host’s certificate with the rogue 

CA certificate. The signature of the rogue CA certificate is verified with CA root 

certificate. The genuine host is therefore lured into trusting the rogue host. 

After successfully compromising the host, the attacker can crack the PEM pass-

phrase that protects the user certificate in order to access grid resource by using a 

publicly known tools. 

The potential attack exploiting MD5 vulnerability could occur in any Globus 

[18]-enabled grid system. Globus Toolkit [18], the de-facto standard for grid middleware, 

is a web-service container for grid services. It provides protocols and services spanning 

multiple layers of the grid. Globus Toolkit 4.2.1, 4.0.8, and earlier versions use MD5-

based signatures in proxy certificates for authentication. In addition, gLite [34], which is 

another grid middleware developed by collaborative groups of academic and industrial 

research centers as part of the EGEE [35] Project uses MD5. Some versions of virtual 

organization membership service (VOMS) [36] included in both gLite 3.1 and gLite 3.2 

use MD5 hash function. 
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The best way to mitigate the risk of this type of attack is to use other types of 

strong hash function such as SHA2 by updating with the new release of version for 

Globus Toolkit and gLite. 

Another vulnerability related to GSI has been reported in GSI-enabled OpenSSH. 

GSI-OpenSSH is a modified version of OpenSSH that includes supporting authentication 

and delegation and is included in Globus Toolkit. The OpenSSH versions prior to version 

5.0 contain locally exploitable security vulnerabilities. When a personal computer needs 

graphical access to a computer on another network, it runs some applications that allow 

graphical information to pass through firewalls by using a feature called X11-forwarding. 

Unprivileged local users can hijack the X11-forwarded connections by listening on port 

6010 when IPv6 is enabled on the server [37]. From the example in [37], assume that a 

malicious user listens on port 6010 in a certain server by using netcat and another user 

logs in to the same server in order to use emacs on the remote system with X11-

forwarding. In this case, OpenSSH fails to listen on port 6010 with IPv4 because netcat is 

listening on that port. The OpenSSH however does not try to use other ports since the 

IPv6 is enabled. Then the OpenSSH sets DISPLAY to “:10” which is set to the malicious 

user and the emac sends cookie to 127.0.0.1:6010. As a result, the malicious user can 

eavesdrop what the remote user does [38]. 

4.2. Vulnerabilities of the Resource Layer 

In many cases, vulnerabilities are a result of the way the software has been 

written. Such consideration also applies to the software, which enables secure integration 

and access to the distributed computing resources owned by different providers. Many 

vulnerabilities in middleware for grid and parallel computing systems have been reported 

[39]. GLExec [40] is a standalone executable that maps a grid identity to a Unix/Linux 

identity. GLExec allows a grid system to execute a user’s job so that it is isolated from 

the grid middleware and from other user’s jobs. Vulnerabilities in this software result 

from a software design error that improperly allows users to specify the name and the 

location of the log file as reported by Kupsch et al. [41]. Kupsch and colleagues describe 

that the log file is used by some libraries (i.e., LCAS and LCMAPS) and opened with 
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root privileges. An attack scenario from [41] is as follows. The attacker specifies the 

name of the log file as /etc/passwd in the environment variable and uses some 

environment variable (for example, LCAS_DB_FILE) whose content can be appended to 

the end of log record. This small amount of crafted data contains a new line with a valid 

password and user id as 0 (i.e., root), and group id as 0 (i.e., root) to inject into the log 

file, which has been changed to the password file. In this scenario, the attacker can gain 

access to other accounts including the root user. 

Some vulnerabilities in the protocol of the Globus Toolkit that monitors and 

controls computation on the grid resources (i.e., GRAM) have also been reported [12]. 

When a GRAM job is submitted, the globus-job-manager opens and listens on three 

temporal ports. Two of these ports are known to be vulnerable. If a remote attacker 

requests these ports for a GRAM job or its MPICH-G2 applications by sending multiple 

specially-crafted messages, all the available physical and swap memory can be consumed 

eventually causing the kernel panic and halting the system as a result [42]. 

Another vulnerability caused by incomplete sanity check, has been found in 

Globus Toolkit RFT (reliable transfer service) and MDS (monitoring and discovery 

system). Multiple local temporary files allow local users to create or overwrite arbitrary 

files with elevated privileges or to view sensitive information [43]. For example, a 

generated proxy certificate by default is stored in the /tmp shared directory. When such 

sensitive files are generated in a shared directory, the process ensures if the file being 

written is really created by itself and checks that the file has correct permissions. 

However it has been reported that some file handling procedure in the Globus Toolkit 

does not perform the above checks. Attackers can exploit such vulnerability by creating a 

temporary file with permissions allowing open access. If an attacker has a permission on 

/tmp and knows the identifier of the process that creates the temporary file and then links 

a temporary file to a proxy file, the attacker can access the proxy file and use it for 

malicious purpose. 
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4.3. Vulnerabilities of the Collective Layer 

The collective layer contains protocol, services, and APIs that captures 

interactions across collections of resources [10]. Examples of the collective services are 

resource discovery, scheduling of tasks on the appropriate resources, monitoring and 

diagnostics services, data replication services, community authorization, certificate 

revocation, etc. Intruders can also exploit vulnerabilities caused by software design errors 

in the middleware being used for such collective services. They are for example, grid 

schedulers such as the Sun Grid Engine (SGE), Condor-G, PBS Pro, or parallel 

computing software, or credential management software. 

Condor-G [14] is a job-submission agent that runs user’s grid jobs on the multi-

domain resources as if they all belong to one domain. Some software bugs leading to 

buffer overflow vulnerabilities have been found in Condor-G [41]. An unprivileged local 

user can gain elevated privileges by exploiting these vulnerabilities. Specifically, there 

are two potential buffer overflows in the function Accountant::GetResourceName in the 

file Accountant.C [41]. The function looks up two attributes (Name, and StartdIpAddr) 

whose values are located in two 64-byte buffers. Because users can change the value of 

these attributes by calling condor_advertise, attackers can set these values to overflow 

the stack. 

PBS Pro is another type of software used to schedule grid jobs like Condor-G. By 

exploiting the vulnerability such that PBS Pro creates temporary files in an unsecure 

manner, an attacker with local access could perform symbolic-link attacks. An execution 

demon, pbs_mom of PBS Pro uses a world writable directory /var/spool/pbs/spool for 

storing jobs’ standard output and standard error files. The pbs_mom checks whether the 

file name that it will create with the user’s UID and GID exists in the directory. If a file 

with the same name exists, the file is overwritten. Because the attacker can guess the 

user’s temporary file name, the attacker creates a symbolic link to the file that he created 

for the guessed temporary file. When the attacker’s temporary file is overwritten by the 

job’s standard output and error streams, the attacker can gain access to the user’s file with 

a local access for the link [44]. With this access right, the attacker can delete or corrupt 
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sensitive files, which may cause a denial of service, by exploiting unsecure temporary 

files. 

The message passing interface (MPI) is an application programming interface 

(API) for parallel programming used in grid computing systems. The MPI runtime 

environment for Mandrake Linux is prone to an insecure account creation vulnerability 

that allows an attacker to create an account ‘mpi’ with no corresponding password during 

installation. 

MyProxy also has been reported to be vulnerable, adding one more significant 

vulnerability of the collective layer. MyProxy is included in Globus Toolkit for managing 

X.509 public key infrastructure (PKI) credentials. MyProxy allows users to store and 

manage short-lived X.509 certificate by combining an on-line credential repository with a 

certificate authority. Different types of vulnerabilities that lead to denial of service 

attacks are found in the MyProxy. 

The following discussion about the MyProxy vulnerabilities is based on the work 

by [41]. If a client tries to connect to the MyProxy server, the server forks a copy of the 

server to handle the request. However the forked server can be potentially delayed due to 

three reasons: lack of time-outs on reads and writes; lack of limits on the amount of data 

read; and potential deadlocks with child processes. Such vulnerability of the MyProxy 

server leads to denial of service attacks. After opening a connection, if the client does not 

send data in the middle of communication with the forked server, the server will wait 

forever for the data to arrive or until the client closes the connection. The server will 

clearly waste operating system resources such as processes, memory, and network 

sockets. The second vulnerability relates to the lack of limitations on the amount of data 

that the server reads. As a part of a TLS stream, all the data is transmitted as a packet and 

is encrypted by the client and decrypted at the server after concatenating all packets. The 

server consumes buffer space to store the decrypted text. However, because the size of 

the data is not transmitted in advance, the server continuously takes packet streams. If an 

attacker sends multiple big sized data, for example giga-bytes of data at a time, the server 

will be out of service. The potential deadlock between the forked MyProxy server and the 

child process spawned by the server can also lead to denial of service attacks. The 
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MyProxy server can invoke external programs by calling function myproxy_popen in 

certain configurations. This function returns standard file descriptors such as stdout, 

stdin, and stderr connected to the spawned process. The steps for using this function are 

as follows: (1) writing to the stdin; (2) closing stdin and waiting for the spawned process 

to exit; and (3) then reading the data from stdout and stderr. If the process writes data in 

the pipe that exceeds the specified limit, the spawned process will be blocked while 

writing on the read file descriptor but the myProxy server will not read data until the 

spawned process exits thus resulting in deadlock. When a malicious user who can 

connect and authenticate to a myproxy-server, crafts a set of parameters in a particular 

configuration, the availability of the myproxy-server decreases. 

The software design errors that cause such reported vulnerabilities in the 

middleware related to the grid have been timely fixed, and the appropriate development 

teams have released patches. However, as the possibility that causes other vulnerabilities 

always exists due to the unknown errors or lack of code validation and verification, the 

software should be kept up to date in order to defend attacks such as those discussed in 

this Section. 

4.4. Vulnerabilities of the Application Layer 

The attackers can exploit vulnerabilities in grid web-services. Grid security 

incidents related to web-services are reported in [45]. To by-pass site security, attackers 

use known hacking techniques specific to web-services, such as web-services description 

language (WSDL) probing, SQL injection attacks, XML attacks, etc. 

WSDL probing (or scanning). The web-services advertise their capabilities in WSDL 

by describing methods and parameters needed to access a specific web-service. A WSDL 

file is a major source of information for an attacker. The attacker scans the WSDL 

interface to get sensitive information such as invocation patterns, underlying 

technologies, and associated vulnerabilities. The WSDL probing is the first step to 

perform more serious attacks such as parameter tampering, malicious content injection, 

etc. 
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The WSDL is often generated automatically in tools such as Java2WSDL. Using 

such tool, methods in a class or interface are exposed as web-services. Due to automatic 

generation of WSDL, some critical functions in applications not intended for public use 

can be converted to web-services unintentionally. Attackers can gain access to private 

methods by scanning WSDL. 

As another WSDL attack, attackers use naming conventions (i.e., get, update, 

execute, show, etc.) to find the names of methods that are not published in the WSDL but 

available on the server. For example, suppose that a service that provides climate 

modeling and simulating service publishes query methods such as 

listClimateSimulationCase in WSDL. When there is an unpublished method but only 

available on the server such as executeClimateSimulationCase, the attacker can discover 

unpublished application programming interface by guessing in the naming conventions 

and access to private data and functionality. 

SQL injection attacks. Belapurkar and colleagues [46] mention that, according to their 

real-world experience, web-services typically have higher risk of injection attacks than 

web applications as services are exposed in human-readable interface formats, making it 

easier for attackers to inject fraudulent requests. If the server providing the services does 

<simulationList> 

<user_code> X&apoa; OR 1=1 --</user_code> 

<simulation_type>P</simulation_type> 

String sql = “Select case_name, configuration, creation_time, job_status, 

Queue_name, wall_time”
 
From Simulation
 
Where user_code = “ ‘+SimulationRequest.getUserCode()+’ ” And 

user_status=‘C’
 

Select case_name, configuration, creation_time, job_status, Queue_name, 

wall_time
 
From Simulation
 
Where user_code = ‘X’ OR 1=1 - -’ And user_status=‘C’
 

Figure 4.2 An Example of SQL Injection Attacks in Grid Web-services. 

Box A, B, C from Top to Bottom.
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not correctly validate the input data, attackers can use a SOAP message to create XML 

data that inserts a parameter into an SQL query and executes it with the rights of the web-

services. For example, suppose that an organization has built a grid based simulation 

model system and exposed a set of services for simulation case management to its 

members. Figure 4.2-A shows a web-service request. From this request, a user can see all 

cases submitted by him. Figure 4.2-B shows the original execution of web-service 

request. Then the data from the web-service request is replaced and the final SQL 

represented to the database would be Figure 4.2-C. Because most of the database servers 

consider “--” as comment, only “user_code = ‘X’ OR 1=1” before “--” is considered to 

be the condition in the Where clause and makes the condition always TRUE due to 

“1=1”. From this attack, the attacker can see all cases being simulated by other users. 

XML attacks. XML has become the de-facto language for interaction among 

applications. XML includes an element, CDATA defined as unparsed character data. 

CDATA allows the use of illegal characters in its field since the text data in the field is 

ignored by the XML parser. Suppose that the XML document is processed to generate an 

HTML page. If an attacker provides an input such as the example in Figure 4.3-A, the 

CDATA section delimiters are eliminated during the processing without inspecting their 

contents. The HTML tags are included in the generated page as shown in Figure 4.3-B 

bypassing the existing sanitization routines. From this scenario, the application that runs 

XML with CDATA is vulnerable to cross-site scripting (XSS) attacks [46]. 

Attackers who want to send possible system commands to the underlying systems 

use this CDATA element resulting in potential disasters. When querying a XML parser, 

the CDATA component is removed, and the dangerous characters are generated in the 

script as shown in Figure 4.3-C and 4.3-D. 

XML denial of service (XDoS) attack is another form of XML attack. Attackers 

carry XDoS attacks to make the services unavailable to legitimate users by flooding the 

services with huge numbers of requests. XML allows one to use complex nested payload 

representations. However when attackers intentionally increase the nesting level, such 

complex payloads lead to a high consumption of resources for parser. Finally a complex 

recursion of elements crashes the parser. Attackers can also use an alternative strategy to 
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create DoS attacks. Instead of using complex payloads, they flood the parser by sending a 

huge message payload. A common method is to convert the creation of an <any> 

element defined as unbounded to a largely automatic operation. By this technique, 

attackers can create an unlimited number of elements and crash the parser. 

In order to protect from attacks related to malicious input and attacks against 

XML, XML firewalls can be used. XML firewalls provide functionalities such as 

checking data authenticity, integrity and validity when inspecting SOAP messages [47]. 

Grid portals are also possible targets. For example username enumeration attacks 

[48] have been reported for grid portals deployed by old versions of GridSphere [49], 

used as a front-end to the TeraGrid [7]. Another weakness of the portal application of 

GridSphere is the use of form-based authentication by default. This type of authentication 

conveys the submitted credentials simply as part of the HTML or XHTML <FORM> 

data; it thus requires encrypted transmission. Although GridSphere can run on HTTPS, it 

<html> 

<![CDATA[<]]>script<![CDATA[>]]>alert('attack') 

<![CDATA[<]]>/script<![CDATA[>]]> 

</html> 

<html> 

<script>alert(‘attack’)</script> 

</html> 

<script> 

<![CDATA[x=new ActiveXObject(“myScript.sh”); 

x.Run (“*.dll”);]]> 

</script> 

<script> 

x=new ActiveXObject(“myScript.sh”); 

x.Run (“*.dll”); 

</script> 

Figure 4.3 Examples of XML Attack by Using CDATA. 

Box A, B, C, and D from Top to Bottom
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does not require such a configuration and it is thus exposed to HTTP non-encrypted 

communications in its default configuration [50]. Attackers can exploit this vulnerability 

by capturing the HTTP message to impersonate legitimate users. While currently there 

seems to be no reported problem for this issue, the grid portal equipped with GridSphere 

should convert the default configuration to run the site on the HTTPS by installing a 

certificate on the server. The community should no longer accept HTTP to exchange the 

information. 

In terms of authorization, attackers can exploit default configurations of access 

control for the newly installed web application [50]. Many default configurations include 

default administrative accounts with either simple passwords easy to crack, or they allow 

everybody to access. In addition, the administrators mostly control access through user-

centric identities or resource-centric capabilities. Although this approach works correctly 

when the set of users and resources is very simple, when the number of users and 

resources increases, it is very difficult to manage the access control lists. As a result, a 

poorly managed access control system can grant low authorization level users access to 

resources that only high authorization level users can access. To resolve this complexity 

issue, effective access control mechanisms, such as role-based access control (RBAC) 

and attribute based access control, should be applied. By assigning users to roles and 

roles to privileges under RBAC, administrators can effectively give authorizations to 

users in a fine-grained way. Some researchers have already tried integrating RBAC to 

existing grid computing systems as reported in [51]. In attribute-based access control, 

users express their rights by using attributes such as their affiliation, roles in groups, 

locations, etc. Under attribute-based access control systems such as GridShib [8], 

although the grid system scales in terms of number of users and resources, the complexity 

issue is addressed. 
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5. DETECTION AND PROTECTION AGAINST DISTRIBUTED 

DENIAL OF SERVICE ATTACKS 

By taking advantage of the distributed nature of the grids by processing in parallel 

and in a short time multiple jobs, the attacker can use resources at critical servers, such as 

grid schedulers or gatekeepers of resource-providing entities located inside grids, and 

congest popular commercial and governmental websites located outside the grid, by 

launching DDoS attacks. Such type of attacks makes grid resources unavailable to 

legitimate users. 

The accountability agents leverage accountability data obtained from the two 

strategies introduced in Chapter 2 to detect suspicious patterns with the help of existing 

intrusion detection techniques. The detection takes advantage of certain unique aspects 

that characterize the behavior of jobs running in grids. In this chapter, we show how a 

distributed accountable grid computing system can help in detecting DDoS attacks 

originated from grid itself. 

Section 5.1 introduces the models of the attacks that might be possible in grid 

systems, followed by the introduction of additional functions of the accountability agents 

for detection and protection in Section 5.2. Section 5.3 describes how the agents detect 

the attacks by using the accountability data. 

5.1. Distributed Denial of Service Attacks Involving the Grid 

Karig et al. [52] classify remote DDoS attacks into five different types: network 

device level attacks, operating system (OS) level attacks, application level attacks, data 

flooding, and attacks that exploit protocol features. Although DDoS attacks involving the 

grid can be of any type among these five types, we focus on the application level attacks 
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and data flooding attacks, so as to better understand the mechanisms of detection and 

protection from the DDoS attacks. 

Depending on the location of target, we divide the DDoS attacks by grids into the 

following two types. 

5.1.1. Attacks to a Server Located Inside the Grid 

Attacks of this type, shown in Figure 5.1, target critical objects of the grids. These 

attacks make particular services inoperable by using grid resources to exhaust grid 

objects [52]. For example, if a centralized grid scheduler fails due to an attack, the whole 

system can fail [53]. Likewise, if the web services running at the gatekeeper are out of 

service, user requests through that gatekeeper can be denied. 

A scheduler in a HN can become unavailable due to heavy load. If a large number 

of jobs need to be resubmitted to a scheduler within a very short time interval from the 

CNs located at different clusters, a queue that stores jobs according to the submission 

order cannot properly process all the submitted jobs. Therefore, due to the limited 

capacity of the queue, jobs continuously submitted by a malicious user can saturate all 

available queue space, resulting in legitimate users’ jobs to be dropped or suspended. In 

this scenario, if the attacker sends the jobs at a speed faster than the job processing speed, 

the queue will be filled with the attacker’s resubmitted jobs. Until all of the attacker’s 

queued jobs are complete and exit from the queue, legitimate jobs cannot further proceed. 

By sending the same number of jobs to the same HN over time, the attacker can totally 

use up the queue, thereby making it impossible for legitimate users to submit their jobs. 

For example, if a legally submitted GRAM [12] job waits to be queued for a very long 

A malicious job 
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Fig. 5.1 Distributed Attacks on a Server Located Inside the Grid 
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time, the job manager terminates the job by cancelling the operation when the operation 

is timed out. Even if a queue does not become saturated, when the attacker continuously 

sends jobs from the CNs, a legitimate user will have to wait until the attacker’s queued 

jobs are processed. 

5.1.2. Attacks to a Server Located Outside the Grid 

Grid resources can be exploited to make it impossible for any user, within and 

outside the grid, to connect to a remote server. Attackers can target high-profile web 

servers of banks, credit payment gateways, or mission-critical governmental hosts by 

executing code or by invoking shell programs that contain applications in order to 

generate network traffic toward the victim node. This out-bounding network traffic can 

consume the entire network bandwidth in a short time, thus making the connections 

unavailable to legitimate users (Figure 5.2). If the malicious code in each CN 

concurrently and continuously sends packets or generates heavy loads of page requests to 

the victim, the victim’s server continues to be out-of-service until the job execution is 

completed. 

5.2. Tasks of Accountability Agents for DDoS Attacks 

In order for the accountability agents to be able to thwart possible DDoS attacks, 

the agents’ capabilities need to include additional capabilities, such as detecting 

anomalies, issuing alarms, and taking proper responsive actions. 

A malicious job 
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Fig. 5.2 Distributed Attacks on a Server Located Outside the Grid 
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Detecting anomalies. In order to detect possible attacks the agents gather information 

from monitoring tools, such as process accounting tools [54], or bandwidth monitors 

[55], according to the specific object being monitored. When no dedicated tool 

monitoring a specific grid object, such as a queue in the HN, the set of files opened by a 

grid portal, and so forth, is deployed, the agents directly collect consumption data about 

the object through the logs generated by the processes that utilize the object or through 

system commands such as ‘lsof’ and ‘strace’ [56]. The agents employ a statistics-based 

[57] or entropy-based approach [58] to detect usage anomalies using the collected 

consumption data about the grid object. Upon detection of anomalies, the agents further 

investigate signs of attack by raising alarms. 

Raising alarms. To notify of a possible attack, agents coordinate with each other by 

means of alarms. An alarm contains not only the warning itself, but also job information, 

such as handle, job id, process id, alarm-issuer’s identity, and information about the 

possible target. Based on the detection stage and the likelihood of the attack, the alarm is 

classified as light, moderate, or critical. The alarm starts from a light level and then 

escalates to a critical level via a moderate level. The agent located at the node where the 

signs of an attack are first detected raises a light alarm to the agent in the predecessor 

node in the job-graph. Upon further detection of anomalies, a moderate alarm is 

promulgated. When many agents at CNs send a light alarm to a HN within a short time, 

the agent at the HN checks the information sends a light alarm for further detection and 

then sends a moderate alarm to the RP if it confirms that the multiple indications are in 

fact a sign of the attack. The existence of these indications depends on the job 

relationship that in our approach is modeled by the job-graph (As an example consider 

the job-graph in Figure 2.5). In such job-graph, the CN2 of job relationship (Figure 2.5-f) 

has only one adjacency list (i.e., one outgoing edge from CN2); thus the agent in CN2 

will have only one light alarm from the successor node. Data sent in one light alarm does 

not provide further indicators of attacks. In this case the agent just transmits the 

information received in the alarm to the direct predecessor node in the job-graph. The 

destination where to send the alarm is indicated in the cover-records that contain the job 

relationship. If the sub jobs used for attacks from distributed CNs have a common handle 



 

 

 

 

   

 

 

 

 

  

   

 

   

  

 

 
 

 

     

   
  

 

     

 

   

 

  

 

     

 

 

   

 

       

 

 

     

 

   

 

 
 

 

 

 

 

 

   

   
  

 

66 

Figure 5.3 Steps for Issuing Alarms 
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Is the monitored 

object anomalous? 
Ignore 

No 

Yes 

Statistics or Entropy based model 

Accountability data collected from 
Grid-node based strategy 

Issue “Moderate Alarm” to predecessor node 

Are the multiple 

indications in fact a sign 

of attack? 

Is the node root of 

a job-graph? 

Kill malicious jobs 

Issue “Critical Alarm” to all nodes in a job-graph 
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Are there multiple 
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Accountability data collected from 
Job-flow based strategy 

Statistics or Entropy based model 

or are originated from the same location, this can be evidence indicating possible attacks 

because it is very atypical behavior in grid. The RP sends a moderate alarm received 

from another RP, as a carrier of the alarm to the agent in the root node when it is not a 

root node. When the agent in the root node is informed of the reported moderate alarm, it 

triggers a critical alarm to all nodes in the job-graph. Once a node is notified of the 
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Table 5.1 Classification of Alarms 

Type Severity Sender Receiver Action when received 

Light Low 

First node that 

detects sign 

(CN/HN/RP) 

HN/RP/SP 
Ignore/Issue another 

Light/Elevate to Moderate 

Moderate Medium 
Intermediate node 

(HN/RP) 
RP/SP 

Issue another Moderate/Issue 

Critical to all node 

Critical High Entry node (RP/SP) All nodes Kill Process 

critical alarm, the agent in that node takes responsive actions based on the information, 

such as job id and process id, sent in the critical alarm. The issuing steps and 

classification of alarms are summarized in Figure 5.3 and Table 5.1, respectively. 

Taking responsive actions. When the agents are notified of the attack by a critical alarm, 

intuitively, the first action to take is to terminate the malicious jobs, by sending a kill 

signal to the specified processes running on behalf of the malicious jobs or deleting jobs 

waiting in a queue. For example, in LINUX/UNIX, the ‘kill -1 process_id’ operation for 

removing process even with child processes in memory or ‘qdel’ operation for PBS [20] 

scheduler can be used. The agent identifies the process to kill by the process id and the 

jobs to delete by the job id sent in the critical alarm. As next step, they block or cancel 

the sub-jobs that are assigned to other nodes existing in a job-graph and have not yet been 

activated or executed since such sub-jobs represent a potential danger. The agents in 

potentially dangerous nodes check the jobs at the first stage of job status (i.e., pending for 

example) with the handle sent in the critical alarm for a given amount of time to block 

the attacks. Finally the identified patterns of the performed attacks are recorded and 

analyzed for future prevention to assist with decisions such as determining the threshold 

values used for alarms. 

A detailed example of execution of these tasks is described in the next Section. 



 

 

 

 

 

 

 

 

 

  

 

 

68 

5.3. Detection Strategies 

5.3.1. Detection at the Victim Node 

To detect patterns indicative of attacks, we use the accountability data collected 

according to the strategies introduced in Chapter 2. From the data obtained in the grid-

node based strategy, the agent is able to detect anomalies concerning the usage of the grid 

objects including grid resources. However the techniques used to detect such anomalies 

are often not accurate and can result in a high rate of false detection, especially when 

applied to complex systems such as a grid. For example, if many grid users submit their 

jobs to a certain grid gatekeeper or to a certain queue of a cluster by chance, for a short 

time, it is very difficult for existing intrusion detection tools to accurately distinguish a 

DDoS attack resulting from intentional malicious submissions from a peak in the server 

resulting from legal submissions. If multiple attack servers operate in coordinated fashion 

against the victim, it is almost impossible to detect such an attack [59]. 

Under our approach, upon detection of a potential DDoS attack, the agents do not 

immediately consider it as an attack attempt. By using the accountability data concerning 

the job’s flow collected from the job-flow based strategy, the agents trace back the job 

transmission path to send the detected information in an alarm message. By combining 

accountability data collected from multiple nodes, our approach is able to gather more 

clear signs of attacks. The agent in the upper node applies the existing anomaly analysis 

methodologies (for example a statistical model) to data obtained by the children nodes 

again. 

When monitoring grid objects including grid resources, the agent checks them 

periodically at the end of a given time interval called a sliding time window or time 

window. The size of the time window depends on the characteristics of objects. We use a 

queue as an example of critical grid objects to show the detection and protection 

mechanism at the victim node. 

In order to set an adequate size for the sliding time window to monitor a queue, 

the following factors should be considered: the average number of jobs entering the 

queue per time unit, the average processing time per job, the available queue size, and the 
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number of CNs where the actual execution is performed. The difference between an 

outgoing and incoming job’s flow per time unit is the rate of the remaining jobs per time 

unit. By dividing the maximum queue size by the calculated remaining rate of jobs in the 

queue, we can obtain the time required to fill the queue to capacity. Thus, the time 

window (TW) is calculated as follows. 

J 
max (5.1)TW = 

J c 
( in ) " 

Tt 
( ) 
jout 

where Jin / t is the average number of jobs entering the queue per time unit, t; T / jout is 

the average processing time per job; Jmax is the queue size; and c is the cluster size, 

which is the number of CNs for the queue. 

If the denominator in Equation 5.1 is less than or equal to 0, then there are no 

remaining jobs in the queue because the rate according to which jobs are processed is 

higher than or equal to the rate according to which the jobs enter the queue. Since such 

case is not indicative of a malicious action, we ignore it and assume that the denominator 

is always greater than 0. 

To saturate a queue, the attacker will try to increase both the number of nodes 

from which to submit jobs and the execution time of jobs, which can be modeled in 

Equation 5.1 by increasing Jin / t and T / jout. From the estimation of the increase in Jin / t, 

and T / jout with the known size of the queue and the cluster, the size of the time window 

TW can be obtained. If TW becomes small, the agent will keep track of the queue usage 

more often. Clearly, a small window size implies higher costs in terms of resource 

consumption for monitoring purposes. 

Table 5.2-b shows the number of queued jobs with job identifiers at the end of a 

given time interval called time window. We use a queue as an example of critical grid 

objects to show the detection and protection mechanism starting from the victim node. 

The assumptions in this example are as follows: a time window slides every 10 seconds; 

statistically filling 90% of the queue is considered abnormal; and the queue size is 25. 

Under such assumptions, when the sliding time window is at 10:03:18, a number of 
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Table 5.2 a. Collection of Handles for Each Job Id Based on Cover-records Created in 

the Job-flow Based Strategy (Left table); b. Data Collected According to the Grid-

node Based Strategy (Right table). Hndl=Handle, Q’d=Number of Queued Jobs, 

Queue Size=25 

Hndl Job Id Hndl Job Id Hndl Job Id 

ske job1 abc job9 abc job17 

ske job2 abc job10 abc job18 

wai job3 abc job11 abc job19 

wai job4 abc job12 abc job20 

abc job5 abc job13 abc job21 

abc job6 abc job14 abc job22 

abc job7 abc job15 abc job23 

abc job8 abc job16 abc job24 

Job Id Q’d Time 

job1~2 2 10:03:09 

job3 1 10:03:13 

job4~5 2 10:03:18 

job6~9 4 10:03:20 

job10~13 4 10:03:22 

job14~17 4 10:03:24 

job18~20 3 10:03:26 

job21~24 4 10:03:28 

monitored queued jobs down to 10:03:09 appears to be legitimate because the sum is 5, 

thus only 20% (i.e., 5 out of 25) of the queue is filled. At the end of next time window 

(i.e., at 10:03:28), the number of queued jobs looks abnormal because the sum of the 

remaining jobs in the queue until 10:03:28 is 24 (assuming jobs 1 through 5 are still in 

the queue); thus 96% (i.e., 24 out of 25) of the queue has been filled at 10:03:28 for a 

short time (i.e., for two time windows). However, even though the status of the monitored 

queue is considered abnormal, this anomaly does not immediately trigger a defensive 

action against a potential DDoS attack, but it simply raises a light alarm to the direct 

predecessor nodes in the job-graph. If the victim node in Figure 5.1 is a HN which is a 

scheduling node, the agent in the HN by referring to the job-relation in the cover-record 

finds out that the job is submitted from CNs and then sends a light alarm to these CNs. 

The light alarm includes collected accountability data, such as {job id, handle, and 

timestamp} from the cover-record, and {executable name, process id} from the resource 

usage record. Because a CN in Figure 5.1, for example, has only one adjacency list in the 

graph, the agent in such CN just needs to send the received data to the RP/HN in the job-

relation of its cover-record in the light alarm. The agent in the HN counts, using Table 

5.2-a, which combines the matching handle and job-id sent by the CNs, how many job-

ids are associated with the handle. If within the monitored time interval the same handle 
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is associated with a number of jobs within the threshold, the attack is not considered as a 

DDoS and the light alarm is ignored. If it is out of the threshold, the agent located at the 

victim’s node raises a moderate alarm to the agent located at the direct predecessor node. 

In this example, Table 5.2-a reports 20 jobs for the handle, ‘abc’ and 4 jobs with different 

handles (‘ske’, ‘wai’). Hence, 20 out of 24 (83%) of the jobs are multiple submissions of 

the same job. In a grid computing system where a job is split into many sub-jobs to be 

run in parallel at multiple CNs, multiple sub-jobs resubmitted to a scheduler are 

considered suspicious. As a result, the moderate alarm is sent to SP or another RP in 

Figure 5.1. 

If the malicious job flows through multiple RPs in order to take advantage of 

more computing resources from different domain as shown in Figure 5.1, the moderate 

alarm will be relayed by each RP and finally will arrive at the root node (SP) of the job-

graph. When the agent in the root node receives a moderate alarm, it triggers a critical 

alarm to all nodes in the job-graph. Upon receiving a critical alarm, the agent increases 

the priority of jobs identified as legal or deletes malicious jobs in the queue. By 

exchanging the accountability data in real-time, the agents can quickly identify the nodes 

where the signs of attacks are not yet actually detected, and timely terminate sub jobs that 

may potentially perform malicious actions before launching the attacks (i.e., at pending 

status or before submission). 

5.3.2. Detection at the Source Node 

During an attack against servers located outside the grid (see Section 5.1.2), the 

agents do not have any control over the victim’s server. Thus, it is almost impossible to 

detect the source of attacks and stop the ongoing attacks in the victim’s server outside the 

grid, since the agents do not reside in such victim’s server. In order to address this issue, 

an approach to detect and stop the malicious activities at the attacking nodes is required. 

In an accountable grid computing system, the agents have the right to collect data at each 

node and the ability to monitor the job activities across the different domains. By 

analyzing the data collected according to the grid-node based strategy, we can obtain 

useful indications to detect a DDoS attack based on the following observations: 1) the 
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normal behavior of the CNs is to execute jobs at computational resources; 2) If the job 

executions induce heavy out-bounding network transactions in every CN, they can be 

considered as abnormal as such behavior is very atypical of jobs executed in grids. When 

the destinations of most network transactions of a job have the same address, this job can 

be considered very suspicious and is most likely launching a DDoS attack against the 

server or website located at that address. 

Monitoring the processes created by the job running in a CN can help in analyzing 

the behavior of the CN. If the job is scheduled by a PBS and placed into execution by a 

PBS Machine Oriented Mini-server (pbs_mom) [Staples, 2006], monitoring should be 

performed by first tracing the pbs_mom. Because a pbs_mom places jobs into execution 

mode, monitors the job’s usage, and notifies the server when the job completes, tracing 

the daemon running for the pbs_mom provides enough information about the job, 

including system calls, name of script, name of executables, each with the process id. If 

the job is scheduled by a Condor-G scheduler [14], the condor_startd [60] daemon is the 

right process to start monitoring in order to trace the currently running jobs. The profiled 

process information can also be used to check whether a job results in heavy out-

bounding network transactions (see observation 2). We monitor the files and especially 

the network files opened by the program executing in the CN. Such network open files 

show the source and destination address, each with process id and application name. By 

combining the profiled process id or the name of the executable with the process of 

interest, we can obtain destination information bounded outside the grid. 

When the agent in a CN applies existing anomaly detection models, such as 

entropy or statistical models, to the obtained destination information and detects that 

many packets are sent outside the grid as a result of executing the submitted job, the 

agent accesses the job flow information recorded in the job-relation of the cover-record. 

From this information, the agent at the CN determines where the jobs that caused the 

anomalous behavior originated and sends a light alarm to the direct predecessor’s agent, 

for example RP2 or HN2 in Figure 2.5-d. The agent in HN2 determines from the alarms 

reported by the CNs how many sub-jobs have the same destination for their network 

transactions again in the applied model. Based on a comparison with the threshold 
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defined according to the statistical model, the agent in HN2 decides whether it will issue 

a moderate alarm to the upper node (i.e. RP2 or SP1 in Figure 2.5-c). This threshold is 

required in order to capture the fact that some legitimate sub-jobs can have out-bounding 

network transactions, such as sending outcome files to other nodes, but not all of them 

send the outcomes or data packets to the same server at the same time. Without an 

intentional purpose, it is unlikely that the same destination will receive several packets 

within a short time from the CNs. Even if the attacker generates packets for various 

destinations to hide the attack, at least a certain number of requests to the same target 

must be issued in order to saturate the bandwidth. This large number of requests 

represents a possible symptom of a DDoS attack. 

Once the sub-jobs with malicious code have been delegated through multiple RPs, 

as shown in Figure 5.2, the agent in each RP reports a moderate alarm to its direct 

predecessor node (i.e. the delegating RP). Since each agent has a partial view of the job-

graph, the accountability system can trace the original job. The agent at the root node 

finally issues a critical alarm when it receives moderate alarm to all nodes in the job-

graph, and all queued and running sub-jobs are then terminated. The detection and the 

decision are made very quickly to shorten as much as possible the out-of-service time. 
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6. IMPLEMENTATION AND EXPERIMENTAL EVALUATION
 

A prototype of the accountability system has been implemented and evaluated on 

an emulated grid test-bed. Our test-bed consists of a hundred nodes, allocated using 

Emulab [1] as SPs and RPs and clusters. Each RP is connected to a scheduler, which has 

multiple compute nodes comprising a cluster. The GT4 [18] is installed at the SP and 

RPs. We placed the agents according to the two strategies introduced in the previous 

Chapter; agents are placed at the SP, the gatekeepers of RPs, the scheduler and the 

compute nodes. We used the PBS [20] for job scheduling. Accountability data are stored 

according to a distributed strategy in which each agent has its own local database system. 

We used postgresql for its good performance [61]. 

6.1. Implementations of Agents 

Each agent is composed of a library of functions, the most important of which are: 

the function that retrieves data from GT4 [18] and PBS; the function that updates the 

database; the function that supports the interactions with the other nodes according to a 

client/server mechanism; the function that manages the accountability policies; the 

function that applies existing anomaly detection tools for collected data; and the function 

that protects the system from attacks. Below we highlight the most interesting 

implementation issues we had to face during deployment. 

Dealing with Grid middleware and Schedulers. One critical issue is whether existing 

monitoring approaches and log !les available at job schedulers and gatekeepers are 

suf!cient to support our accountability approach. An obvious source for job-related 

information is the log !le generated by the Globus container. However, we found that the 

Globus log !les alone did not provide suf!cient job information at the level of detail we 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

75 

require. For example, when a composite job is submitted, information about the sub-jobs, 

such as sub-job id and destinations, is not recorded in the log !les, although this 

information exists as properties of sub-jobs. To address this problem, we extended 

Globus so that when a GRAM [12] job is submitted, accountability data, which at time of 

submission consists of the initial user’s handle and job id and associated resources that 

the user intends to submit, is recorded in the agent’s database. 

We also modi!ed Globus to support the communication of job state changes to 

accountability agents. During its normal execution, a Globus GRAM job can be in 

different states, including ‘StageIn’, ‘Pending’, ‘Active’, ‘Done’. With our modification, 

the accountability agent is notified by an instance of StateMachine() (a Globus routine) 

whenever the job state changes. We parsed PBS log files at the head nodes for job 

scheduler. These log files provide additional information about jobs and grid resources, 

including the job flow information (e.g., name of the compute node where the sub-jobs 

are assigned, and names of the sub-jobs). Such information is obtained and passed to the 

agent when sub jobs are assigned to the compute nodes by the scheduler. Because the 

PBS job id is also used in the Gobus log, our agents can uniquely map a GRAM job id to 

a PBS job id – this linkage provides the necessary information to create a job-relation 

graph. Notice that the agent has no way to connect the two identifiers until the agent in 

the predecessor node pushes such information. 

For simplicity, in the implementation, we simulated the GridShib handle with the 

handle uniquely generated by Globus for each job submission. Each cover-record thus 

maintains a unique identifier given by the unique user handle and the job id. 

Primitives. We embedded fine-grained monitoring primitives, encoded using Java, in few 

Globus routines. Specifically, we capture the information necessary to create and 

maintain the graph-based logging, such as handle, job id, sub job id, the destinations 

where sub-jobs are assigned, and timestamp. We also extended the StateMachine.java to 

include certain agent’s information and data, especially the data speci!ed by the policies. 

This extension allows the state machine to pass such information to the agent. The 

routine ManagedMultiJobResources was modi!ed for collecting composite jobs-data. 

ManagedMultiJobResources creates sub-jobs, collects data upon state change, and pushes 
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it to the agent. The speci!c information actually collected and stored in the database is 

!ltered based on the policies. 

De!nition and evaluation of policies. An interesting challenge was how to implement 

local and shared policies. To properly enforce such policies, outputs from several 

primitives must be gathered. Moreover, when enforcing a shared policy, each local agent 

must coordinate with other agents. We implemented such policies as XML !les, to be 

created by administrators off line and then stored in the local directory of the agents. 

Shared policies are evaluated whenever a job state change occurs. Precisely at SP/RP 

policies are evaluated when a noti!cation from Globus is received about a change in the 

job status. At other locations, the job state change always triggers a policy lookup 

process, to search for potential policies that need to be applied. When evaluated at first, 

policy !les are parsed into database tables only once to save the file accessing expense, 

and then the tables are accessed to identify the data that need to be collected. When 

available, such data is !rst locally stored. Then, speci!c agents’ functions are executed to 

send/receive the data speci!ed by the policies. For example, when a job state changes 

from StageIn to Pending, basic accountability data is gathered. Additionally, when the 

job moves to the Active state, an agent interacts with other agents located at nodes where 

the job is assigned in order to send sub-job information (as speci!ed by the action 

expressions) gathered at Pending state to agents located at successor nodes of the job-

relation graph. 

Unique Identi!cation of sub-jobs at the compute nodes. In the case of PBS, when a job 

is split and processed in parallel, PBS does not assign any new job id to it. Thus, in order 

to be able to determine all the nodes at which portions of the job are allocated, the local 

agent needs to maintain additional information and locally generate unique sub-job ids. 

Speci!cally, the agent collects mapping information to !nd resource information 

associated with the job. In case of parallelized sub-jobs (e.g., the node has several 

computational units) the agent maintains rank and node information in the PBS log !le 

that allows to distinguish job portions at the !nest level of granularity. Finally, in case of 

loops, that is, when the same job is assigned multiple times at the same compute node, 

the timestamp helps in differentiating the various job records. 
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In order to enable communication between agents, the client/server model is used. The 

agent acting as a client is implemented by a thread so to handle multiple concurrent 

executions. For example, the agent at head node of clusters works as a multi-threaded 

client when it contacts compute nodes to provide the accountability data. Threads are also 

employed for the PBS logging modules. Implementing the agent using threads makes the 

agents monitoring tasks completely transparent to the ordinary job execution. This level 

of parallelization results in a very efficient and light-weight approach, as shown by our 

experimental results. 

6.2. Configuration of Experiments in the Emulab Test-bed 

As already introduced, the experiments have been performed by using the Emulab 

test-bed. The machines used at the various nodes for the experiments are of the following 

types: pc600; pc850 hosts which are 600MHz Intel Pentium 3; pc3000, 3GHz Intel 64-bit 

Figure 6.1 One Use-case of Job Submission 
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Xeon; pc2400w and pc2400c2, 2.4GHz Intel Core 2 Duo; pc2000, 2GHz Intel Pentium 4; 

pc3000w, 3GHz Intel Pentium 4. To begin the Emulab experiments (it is called swap-in), 

a number of free PCs are selected based on the machine node types and assigned to the 

experiment according to the number specified by the Network Simulation (NS) script. In 

our experiment, the NS script specifies the number of nodes by distinguishing them 

between head nodes and compute nodes. In the experiments we use the Emulab 

Operating System Image created in Fedora 2.6.23.15-13. This image contains 

installations of OS and GT4, the basic software required by GT4, postgresql-8.2, PBS 

(torque-2.1.8), compilers (gcc-4.1.2, java-1.5.0_14, mpich2-1.0.5p4, etc), and the basic 

configurations to install software applicable to all nodes. When starting the experiment, 

the OS image is loaded by reading the NS script where the node-dependent tasks are also 

specified. Examples of such tasks are: configuring the GT4 by issuing certificates for the 

hosts, Globus container, and user; installing additional software required to specific 

nodes; and configuring the installed software depending on the node’s roles such as RP, 

HN, and CN. At the last step, the Globus container, PBS, and agent are started to run. By 

changing the NS script, we generated different grid topologies. One basic sample 

configuration in a topology is introduced at Figure 6.1. 

6.3. Experiments 

The goal of our experiments is to assess the scalability of our approach and the 

performance of the protection system. Resources in terms of grid nodes scale by adding 

compute nodes at the same administrative or by federating other institutions. Following 

sections show the scalability assessment in two approaches and some policy evaluations 

followed by performance evaluation for detection and protection against DDoS attacks. 

6.3.1. Scalability with respect to the number of computing nodes 

In the first experiment, we measured the job execution response time for 

increasing values in the number of compute nodes [see Figure 6.2]. We also evaluate the 

scalability with respect to the applications size by running different applications that have 

different execution times 
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Graph 6.1 Overall Response Time for Job Completion for Different Number of Nodes. 

Graph 6.1 shows the response time for a job submission; the response time is 

computed as the difference between the time at which the user receives the result and the 

time at which a user submits the job. We measured the overall time for conducting these 

operations in a grid with and without the accountability system in place. The same job is 

used for all different cases of the experiment. Such job computes prime numbers between 

0 and 100 millions and returns the highest prime number and the total number of prime 

numbers within a certain range specified by the user. The job is split onto a number of 
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Figure 6.2 Job Submission to Multiple Compute Nodes 
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Graph 6.2 Overall Response Time for Job Completion for Different Execution Time. 

compute nodes for parallel execution. As shown by Graph 6.1, the overhead introduced 

by the accountability system is negligible. 

Graph 6.2 shows the response time for varying runtimes of the applications. We 

make the application used in experiment run for input data of different values required. 

We measured the execution time for a grid composed by 40 nodes, and compared the 

execution time in the case in which the accountability system is in place and in the case 

in which it is not. The number of nodes does not change (it was 40 in all cases). 

The blue bars (in graph 6.1), and yellow bars (representing the differences between the 

times reported by blue bars and the times reported by the white bars at graph 6.2) in both 

graphs indicate that the overhead introduced by the accountability system is constant 

(between 2 and 3 seconds) with respect to the number of nodes in the grid and the size of 

the applications. As shown in graph 6.1, even though the job involves 100 nodes, the 

accountability system does not impact the performance because our implementation 

strategy, according to whole time-consuming functions work asynchronously with respect 

to the GT4 and PBS. Graph 6.2 shows that the overhead for the accountability system is 

not dependent from the application execution times, and is negligible, especially when 

running long jobs. In conclusion, this experiment clearly demonstrates that our 
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accountability system is lightweight and does not interfere with the ordinary computation 

and activities of a grid computing system. 

6.3.2. Scalability with respect to the number of Resource Providers 

In this experiment, a job is repeatedly submitted to multiple RPs under the 

assumption that there is a gatekeeper at each RP. This scenario can occur when a RP does 

Job 

Submission 

Figure 6.3 Job Submission Across Multiple RPs 
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Forwarded Through Multiple RPs 
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not have enough resources to perform the job execution, and thus it submits the job to 

another RP, or when a part of the job is submitted again to another RP. By increasing the 

number of RP nodes, we measured the job response time with and without the 

accountability agents. The job submission path assumed for this experiment is shown in 

Figure 6.3. 

The number of compute nodes controlled by the final RP does not vary. Since 

GT4 does not schedule jobs between gatekeepers, we used a script to submit the first 

submitted job to another RP then repeating this submission, and then execute the job at 

the final RP. Users can actually submit a job in this way, by delegating the user 

credentials to multiple RPs. Thus, the scenario used in this experiment can happen in 

practice. When a job script is submitted and then re-submitted at a different RP, the job 

script execution and the job submission in the job script are considered as two 

independent operations by GT4. The OS does not provide any information about the 

relation of such executions back to GT4. Such lack of information introduces 

inconsistency in the handle generated at the entry point for a job. For example consider 

the example in Figure 6.4. In such example, though job_A at the SP is the same job as 

job_B, and job_C forwarded to RP2, and RP3 respectively, the job is considered a new job 

at each RP, resulting in three different handles. Figure 6.4 shows that job_A, which is 

executed at RP1, is submitted from SP with handle_X; thus handle_X is maintained at 

RP1. The invoked job submission (job_B) from job_A is submitted to RP2 with a 

different handle, handle_Y even though job_B is delegated from job_A and should have 

the same handle, handle_X. The handle information is again changed when the job is 

submitted again. 

We addressed this issue by linking the various handles with the jobs they are 

associated with, at the job completion. For example, although job_A and job_B are 

considered different jobs by GT4, they are performed within one period of a job 

completion, which starts from the “Start” state to the “Completed” state. With this 

knowledge, we retrieve the pair of the previous handles and the new handle, which are 

then sent to the successor node, and construct the cover-records for job_A, and job_B at 

each RP. At the successor node (RP2), the agent updates handle_Y to handle_X by 
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searching for handle_Y from the handle pair information. After the update at RP2, the 

handle pair becomes handle_X:handle_Z. With this information, handle_Z is again 

updated to handle_X. We update every new generated handle for the same job with the 

original handle generated at entry point (see Figure 6.5). 

Although the handle searching process may seem time consuming because of the 

many interactions with the database, the overhead introduced by the accountability 

system is negligible, like in the previous experiments, because of the thread-based 

implementation. When we tested a job submission on multiple RPs, we observed an 

overhead within 2% of the overall job response time as graph 6.3 shows. We expect 

similar results, also for larger number of RPs. 
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Figure 6.6 Topology for Experiment 6.3.3 
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6.3.3. Scalability across Multiple Domains 

A crucial requirement is to assess to which extent our accountability system 
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degrades the performance of the grid computing system when multiple jobs by multiple 

users are submitted. In this experiment, by submitting several jobs from multiple 

locations at the same time, we measured the average job response time and evaluated the 

performance of our system. 

The topology that we created in the Emulab test-bed for this experiment is shown 

in Figure 6.6. For this experiment, we considered the topology different from the one 

used in the previous experiments. In this grid networks nodes-0, nodes-3, and nodes-6 

work both as a RP and HN. Each HN has two compute nodes. Multiple jobs are 

submitted to different RPs from each terminal nodes (i.e., nodes-1, nodes-2). 

Our goal is to evaluate whether in case of multiple RPs involved in the multiple job 

submissions process at the same time, the impact of the accountability system is 

negligible as observed in the previous experiments. Multiple jobs are submitted from the 

compute nodes to two other RPs at the same time. We measured the average response 

time with and without accountability system. The results of this experiment, shown in 

Graph 6.4, confirm the results obtained by Experiment 1. The accountability system does 

not affect the performance of the grid system. The reason is that the agents at each 

location are implemented using multi-threads. The average time to process the shared 

policy at SP, RP, and HN, and the local policy at HN as represented at Figure 2.9, and to 

perform the actions required by the policy takes only around or less than 1% of the 

average job completion time. This percentile value decreases when more jobs are 

submitted. 

6.3.4. Scalability with respect to the Data Volume 

Most of the monitoring and accounting systems accumulate a huge amount of 

data. Data volume is the main concern for administrators. Since our accountability system 

is designed based on the notion of distributing the job-graph based-log, different portions 

of the accountability data required for constructing a job-graph are stored at different 

each agent’s location, thus reducing the overall volume of data at a single location point. 

Furthermore, the use of accountability policies makes it possible for the administrators to 

save only selected accountability data. Using the policy language the administrators can 
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configure the accountability system so to record only some data. Therefore, if data 

volume is a concern for an administrator, the administrator can trade off accountability 

accuracy for performance. Graph 6.5 shows the relation between the different policies 

and data volume according to the number of submitted jobs. We employed different 

policies, with different complexities, and measured the data volume for a number of jobs 

ranging from 30 to 210. The policy complexity varies according to the number of 

elements of the policy ranging from 4 until 12.  

While a shared policy concerning job-flow based data is enforced upon a change 

of the job status, the local policies are applied when the agent at a node starts collecting 

data. The agent checks if the job is submitted and then scans the log files to obtain 

resource data based on the local policy. When several jobs are submitted, a complex local 

policy generates higher data volumes than a less complex policy as the result shows. 

However searching the optimal point between accuracy and storage volumes is a 

responsibility of resource administrators. 
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6.3.5. Evaluation of shared policies vs local policies 

This experiment analyzes the policy processing time for local and shared policies 

Graph 6.6 Comparison of Policy Process Time for Shared and Local 
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at a head node, where both local and shared policies are enforced. Policy processing 

includes reading the policy from the xml file at local computer, and collecting or 

searching elements specified at the policy. It does not include the time for database 

operations since we assumed that updating the database for the same list of fields does 

not make difference. Note that we used the same policy complexity for both sample 

policies even though they have different elements. This is enabled by counting an 

element that belongs to different action specifications as different element.  

The average time of executing a job under the local policy is twice longer than the 

time taken by the shared policy as shown in Graph 6.6. This difference comes from the 

operations that have to be executed on log files. Such operation is required by the local 

policy. As we described in the Section 6.1, collecting accountability data directly from 

the grid middleware takes much shorter time than searching for the resource usage data 

from local file system. As a result, we conclude that using local policies is more 

expensive than using shared policies. This result is confirmed by next experiment, which 

analyzes the search time required for the policy elements specified in different policies 

(see Graph 6.7). The rightmost four elements (handle, job-id, sub-job-id, and sub-job-

destination) are elements collected by the shared policies used in the experiment, while 

the others are of local policies. Searching one element of local policies takes from 1 to 18 

milliseconds, while it takes only from 3 to 35 microseconds for elements of the shared 

policies. The majority of the time required by the shared policies (reported in Graph 6.6) 

is due to read operations on the policy file and to the construction of the data structures 

for storing the element values before obtaining the values of elements. This experimental 

result is important for advising guideline to administrators for the design of the 

accountability policies 

6.3.6. Detection and Protection from DDoS Attacks from the Victim-End with Time-

Window 1 

Our first experiment concerning DDoS attacks aimed at identifying a good time 

window size. A malicious job was submitted to an RP and then divided into 35 CNs to 

attack an HN located at the same grid by resubmitting jobs from 35 CNs to a queue in 
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that HN. While the attack was in progress, legitimate jobs were also submitted to the 

target HN. For each test run, we used 10, 20, 30, and 35 submitted jobs as the attacker’s 

jobs. We assumed that the maximum size of the queue was 35
6
. We checked the queue 

size at every end of time window to see if the queue is filled to the degree that we 

consider anomalous. In our test-bed, an average of 19 jobs were queued every 100 

seconds, and one job ran for about 78 seconds before exiting the queue. Since there were 

two CNs attached to an HN in this experiment, according to Equation 5.1, the time 

window size TW is calculated as 

TW =
35

19

100
!
2

78

"

#
$

%

&
'

( 210

 

In this experiment, we modeled three PBS queues (i.e., standby, standby-8, and 

tg_workq) operating in the Teragrid [7] computing system at Purdue University to obtain 

practical threshold values. We checked the normal behaviour of the queues and 

determined that, on average, 25% to 44% of the queue was usually filled and only 

extraordinarily filled up to 81%. Based on this observation, we initially set the percentage 

                                                
6
 In our emulated environment it is not actually feasible to saturate a queue.  
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of usage anomaly for the queue at 81%. We also observed that users submitted the same 

job multiple times to the same queue. However, such submissions did not fill the queue 

above 80%. From this second observation, we set the threshold of sub-jobs separated 

from a job with the same handle in a queue as 80%. Each time the queue size was 

checked, if the usage was over 81%, the agent that received this incident in upper node 

checked the job record to see whether the jobs were resubmitted. If the number of 

resubmitted jobs with the same handle was greater than 80%, then a critical alarm was 

issued to the HN from the agent in the entry node to kill the queued jobs submitted by the 

attacker. As a result, the legitimate jobs in the queue were not delayed and started 

running. The chart in Graph 6.8 shows the wait time of legitimate jobs until the job status 

went to the “active” state (i.e., the running phase) for different time window sizes. 

Legitimate jobs were submitted when the queue was filled with an attacker’s job for 

30%(10 jobs), 60%(20 jobs), 90%(30 jobs), and 100%(35 jobs). The top line denotes our 

baseline case, which is the wait time when the time window is too large or our system is 

not active. Since the attacker’s jobs are queued before the legitimate jobs and run for a 

long time, the wait time increased as the number of the attacker’s queued jobs increased. 

This means that, without the accountability agents or with a too large time window, the 

legitimate jobs submitted after the queue was filled with the attacker’s jobs experienced a 

long wait to be queued and were thus unsubmitted.  

The windows of size 210 and 110 appear to be the optimal. Windows larger than 

210 seconds resulted in a loss of legitimate jobs after the queue was full for worst case, 

which is, when the attack starts together with the sliding time window. For windows that 

are 1.5 times and two times larger than 210, the wait time was much longer because 

malicious jobs were eliminated after the entire time window had passed. For windows 

smaller than 210 seconds, we did not observe much difference because the number of 

jobs in the queue do not exceed the threshold to detect the attack. This experiment shows 

that the legitimate jobs can be efficiently and effectively restored back to the normal 

execution with the help of the optimal time window obtained from Equation 5.1. 
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6.3.7. Detection and Protection from DDoS Attacks from the Victim-End with Time 

Window 2 

This experiment measured the time elapsed from the moment the attacks have 

been launched until when the attacks are removed. A malicious job was submitted to a SP 

and then divided into 6 RPs. Each RP has 1 HN and 3 CNs; thus 18 CNs from 6 RPs 

submitted the sub-jobs to a target queue of another HN. The job submitted by the CNs 

computes prime numbers between 0 and 250,000,000 and can be split into sub-jobs for 

parallel execution after having been compiled in message passing interface (MPI) [19]. In 

the experiment, we assume that the attacks are completely launched when all the 18 jobs 

are queued on the target HN and as a result, legal jobs cannot be queued or processed 

after 18 jobs are queued.  

The first check for the queue usage is performed at the end of each time window. 

The threshold used in the first check was calculated from the PBS queues (i.e., standby, 

standby-8, and tg_workq), which were used for the Experiment in Section 6.3.6. The 

number of queued jobs are counted and recorded every 10 minutes for 1 month from the 

three queues. To detect anomalies in the queue usage, we used an entropy-based 

approach [58] because of its sensitivity and accuracy. The entropy [62] is the degree of 

uncertainty associated with a random variable. The entropy (H) of a discrete random 

variable X with possible values {x1, x2,!!!, xn} and the normalized entropy (NE) are 

defined as  

H (X) = ! P(x
i
)log2

i=1

n

" P(x
i
),    NE =

H

log2 n0
 

where P(xi) is the probability that X takes value xi, and n0 is the number of distinct   

values xi. 

By using entropy Equation 6.1, the minimum entropy was calculated for any 

range of the collected data from the 3 PBS queues. The calculated value was greater than 

0.9, thus we referred to this value and chose a little lower value as the first threshold (i.e., 

0.87) to consider obvious anomalies concerning resource consumption. The jobs 

submitted by the 18 CNs were quickly queued and the entropy was also calculated at the 

end of time window and compared with 0.87. The second check was performed at each 

RP to issue a moderate alarm to the root. We used the second threshold calculated in the 

(6.1) 
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entropy-based model from data reporting how many identical jobs with different PBS job 

id are submitted to the same queue of the steele cluster [63] at Purdue University by the 

owner of the job to reflect real situations. The lowest entropy was 0.91; thus we chose 0.9 

assuming that multiple submissions by a user to the same queue leading to entropy lower 

than 0.9 in entropy couldn’t happen in a legal submission. After the second check, the 

time elapsed until all queued jobs are deleted by the critical alarm was also measured. 

The measured time can be classified as follows. Time 1: the time elapsed from the time 

the attack is completely launched to the first check; Time 2: the time elapsed from the 

time of the first check to the time of the second check; Time 3: the time elapsed from the 

time of the second check to the time when all the malicious jobs are killed. In our 

experiment, Time 1 took most of the overall time. When the time window is large, the 

average time for Time 1 becomes also large accordingly. However no matter how large is 

the window size, the sum of Time 2 and Time 3 taken for the agents to process 

accountability data and to communicate among them in the system was almost constant 

ranging from 2 to 4 seconds. These values are shown as the minimum time in Graph 6.9. 

When the attacks are launched right after the previous time window has just passed, Time 

1 takes as much as the time window shown as the maximum time in Graph 6.9.  
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The average times for each time window for the detection of randomly launched multiple 

attacks are shown as the medium time in Graph 6.9. 

6.3.8. Detection and Protection from DDoS Attacks from the Source-End 

This experiment deals with the attack model shown in Figure 5.2. The attack 

program used for this experiment is an apache HTTP server-benchmarking tool, ‘ab’ 

[64]. This tool generates huge numbers of multiple page requests to an apache web 

server. The attacker’s jobs were assigned at 50 and 80 CNs and executed ab to 

simultaneously send multiple page requests to a web server with the command 

$HOME/wlee/ab –kc 50 –t 900 http://wonjun.rcac.purdue.edu:8080/bigFile. 

Each run at a CN performed 50 simultaneous multiple (with option k and c) 

requests from 50 CNs resulting in 2,500 (50"50) requests and from 80 CNs resulting in 

4,000 (50"80) requests within one HTTP session. In order to increase the load, bigFile 

that is a big sized file was requested with the page. The attack duration ranged from 100 

to 900 seconds (with option t), during which the requests by legitimate users were 

rejected. In our system, the time taken from the initiation to the termination of the attacks 

was 61 seconds for 50 CNs and 74 seconds for 80 CNs on average. However the time for 

80 CNs did not necessarily take longer than the one for 50 CNs as shown in Graph 6.10. 

This time is measured as the interval from the time when the job starts to run to the time 

when the job completes due to the termination of all processes running on its behalf. 

During such interval, detection and protection were performed according to the following 

steps. First, the agent in the HN checked the PBS log file to find the CNs where the sub-

jobs were assigned and sent the job information to the agents in these CNs. Second, the 

agent in each CN traced one by one the processes related to the PBS client process. This 

tracing was performed using the diagnostic and debugging tool strace [58]. Through 

strace, the agents collected the PBS job id and the name of the script submitted in this 

PBS job id and the name of the executable run in this script in turn. In the experiment, the 

last traced identifier of the process running as the executable was retrieved from the 

output file of trace. Third, the agent in each CN checked out the opened network files 
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using lsof [56]. This tool was executed every second to update information about files 

newly opened by the processes. The IP addresses of the destination for opened network 

files were recorded with the process ids in the log file and were searched by the identifier 

of the process running for the executable, that is, ab in the updated log file. The retrieved 

destination information was sent to the HN as a possible target IP address with the handle 

linked to the job. When deciding whether to send such information to the HN in a light 

alarm, a high threshold (i.e. entropy 0.95 for this experiment) was used because it is 

atypical to see many network files opened by a process running on behalf of the 

executable in a CN with the same destination resulting in very low entropy. The next step 

was performed by the agent in the HN. When the destination and handle information 

were sent to the HN from each CN, the agent in the HN calculated the entropy again and 

compared it with the threshold to issue the moderate alarm.    

Finally the agent in each CN killed the currently running processes if the CN 

received a critical alarm from the agent in the entry node. Our experimental results 

reported in Graph 6.10 show that the attacked apache server was expected to be out of 

service for an interval ranging from 100 seconds to 15 minutes when the attacks were 

launched from the normal grid CNs without accountability agents. In the accountability 

grid computing system with 50 or 80 CNs, the attacks were stopped after 67 seconds on 

average. This Graph also shows that the detection and protection times are not dependent 
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on the attack duration. Therefore, even for long-lasting attacks, our system can detect the 

attack and take a response action within or around one minute.  

6.3.9. False Positive Detection with Two Types of Threshold 

In this experiment, we show how much the false positive rate detection typical of 

existing resource monitoring mechanisms can be reduced when integrated with our 

accountability system. We were interested in measuring the entropy of jobs over both the 

unique time window and unique handle and considered two types of thresholds, defined 

from two different types of entropy. The entropy, referred to as H1 at x-axis in Graph 

6.11, denotes the degree of randomness over the data obtained from the grid-node based 

strategy, while the entropy referred to as H2 at y-axis is from the job-flow based strategy. 

When calculating H1 the random variable X represents the time window at which the 

number of queued jobs is counted, while for H2 X represents the handle assigned to jobs. 

In Table 6.1, H1 and H2 are calculated from the data given in Table 5.2 in Chapter 5. 

Table 6.1-a shows the number of jobs associated with the unique time window at the end 

of each time window in a queue with the calculated entropy, respectively. Table 6.1-b 

shows the entropy of the queued jobs associated with the unique handle for an anomaly 

detected at the end of time window t3. Table 6.1-b can have a different number of jobs 

associated with the handle, resulting in many different values of entropy H2 (for 

TW # of Q’d jobs Entropy 

t1 4 0.369 

t2 5 0.412 

t3 24 0.334 

Sum of Entropy 1.115 

 

Handle # of jobs Entropy 

ske 2 0.299 

wai 2 0.299 

abc 20 0.219 

Sum of Entropy 0.817 

 

Table 6.1 Data for H1 and H2 from Table 5.2 in Chapter 5. To apply 
Equation 6.1 – a. n is 33, n0 is 3, TW Denotes Time-window, Q’d Denotes 
queued  (Left Table); b. n is 24, and n0 is 3 (Right Table).  

NE(H1) = 1.115/log23 = 0.703, NE(H2) = 0.817/log23 = 0.515 
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example, H2=0.515 when ske=2, wai=2, abc=20; or H2=1 when ske=8, wai=8, abc=8, 

etc.) with respect to the anomalous data H1.  

By employing another threshold (i.e., th2) defined in H2, the seemingly 

anomalous usage is classified as normal. In Graph 6.11, when the threshold (i.e., th1) 

defined in H1 is equal to 0.906 (the highest value in the x-axis), an entropy value lower 

than th1 indicates an abnormality regardless of what value entropy H2 (i.e., y-axis value 

of any point in area A+B+C+D+E+F) has. However, if th2 is equal to 0.8 and th1 ranges 

between 0.86 (i.e., the x-axis value that meets the min entropy line with the point 0.8 in 

the y-axis) and 0.906, we can expect that any case with th1 and th2 should be considered 

as normal because any point in area A is higher than 0.8 for such th1. If the th2 equals to 

0.8 and the th1 is below 0.86, as much as area B+C out of B+C+D+E+F can be 

considered as normal because every point in area B+C has a value higher than 0.8 for 

such th1. Therefore we can expect a correction rate as much as area A+B+C out of 

A+B+C+D+E+F for all cases with th2 that is equal to 0.8 and any value of th1. Likewise, 

if th2 is equal to 0.6, we can expect that the false positive can be corrected as much as 

area A+B+C+D+E out of A+B+C+D+E+F. 

This experiment thus shows that the accountability data collected by an agent 

according to the two different strategies can compensate the false positive problem 
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typical of the existing anomaly detection model. 

6.4. An Environment of Accountability Data Queries 

The purpose of providing an environment of accountability data queries is to 

analyze the accountability data and to visualize the moves of the malicious jobs. In this 

environment, the administrators are able to query different types of data from different 

types of tables that are created for accountability. In addition, when the agents detect 

DDoS attacks, the overall job-graph is formulated in visualization to provide better 

understanding of a job’s movement from the submission node to execution nodes. 

6.4.1. User Interface and Architecture 

We used a gridsphere portal framework [49] that provides an open-source portlet 

based web portal. The querying environment is developed as a portlet web application 

and powered by apache tomcat. The gridsphere core portlets provide login, logout, and 

local settings, profile personalization, administration settings for creation of users, 

groups. Figure 6.7 captures screens of the first page for user authentication and the next 

page with major menu. Data-query portlet is written in Java and JavaServer Pages (JSP) 

technology. Data queries are sent to a selected database server running at each node. 

The portal is available in each node. However, the root node of a job-graph can 

only show a complete job-graph in case that agents detect DDoS attacks because 

complete job-relation data are sent to the root node. 

The interface of the accountability data query is composed of three tabs. They are ‘Query 

Cover-record’, ‘Query Job-graph’, and ‘Query Record’. 

Query Cover-record. The initial screen from this tab shows a cover-record that contains 

job-relation information such as where the job comes from, where the job goes to at the 

time of timestamp for job-id with handle information. Figure 6.8 shows a queried cover-

record for a normal job at node, 60, which was chosen as a SP. Since node 60 is the entry 

node where the job is first submitted to, there is no Job-Relation (FROM) data. Job-

Relation (TO) information shows that job (70e45498-954b-11e0-9f4d-001143e43a94) is 
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divided into (721cf0e0-954b-11e0-841f-96153c17c356) and (72acd4d0-954b-11e0-ace3-

 

 
Figure 6.7 Main Screen of the Accountability Grid Computing Portal Before and After Login 
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c65637039387) and then moved to servers (155.98.39.5) and (155.98.39.6) respectively. 

Job-Relation (LIST) is only available when the misuse of resources is detected. 

Query Job-graph. In this tab, a job-graph is drawn for each handle in case that cover-

record contains Job-Relation (LIST). 

Query Record. In this option, the administrators can query accountability data in various 

ways. The accountability data collected at each node can be seen in a place from this 

interface.  

6.4.2. Querying a Job-graph When Attacks are Detected 

The job-graph is completed and visualized when the agents at each node send 

their job-relation data to upper nodes with alarms hierarchically up to the root node. The 

column Job-Relation (LIST) in Figure 6.9 shows pairs of job-id and its destination in 

order. In order to find out direct predecessor node, the agent in a node refers Job-Relation 

(FROM). In entropy-based analysis, when the calculated entropy reaches below the 

threshold (i.e., when an alarm is issued), the agent sends Job-Relation (TO) data together 

with its job-id and server IP address to direct predecessor node. After receiving such job-

relation data, the agent in upper internal nodes send the received Job-Relation (LIST) data 

 

Figure 6.8 A Cover-record for a Normal Job 
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to its direct predecessor node by attaching its job id and IP address. This process is 

repeated at upper nodes until reaching a root node. Finally the agent in a root node 

collects all job-relation information.  

Figure 6.10 is a grid topology constructed in Emulab test-bed. When an attacker 

exploits two clusters with two head nodes (nodes-20 and nodes-40) to attack a head node 

 

 
 

 Figure 6.9 An Example of Job-Relation (LIST) 
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(nodes-0) in Figure 6.10, the constructed job-graph in the root node (nodes-60) reflects a 

part of constructed topology of Figure 6.10. This attack scenario is as follows. A job is 

submitted to a SP (nodes-60) and then assigned at a RP (nodes-20). The sub-job at nodes-

20 is divided into 17 sub-jobs to be run at 17 nodes. One of 17 nodes is another RP 

(nodes-40) and a sub-job assigned at that RP is divided into 9 nodes again. The sub-job 

submitted to CNs from two RPs is rescheduled into a victim HN located in a RP (nodes-

0).  

 

Figure 6.10 A Grid Topology from EmulabFigure 3.7 Cases of Comparisons with 

Shared Accountability 
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When inserting a handle from Figure 6.9 at the portlet (Figure 6.11, top) and 

clicking the button, the portlet application draws a complete job-graph (Figure 6.11, 

down) by reading in the data in Job-Relation (LIST) from Figure 6.9. This job-graph 

shows job’s movement from SP (nodes-60, 155.98.36.77) to the victim node (nodes-0, 

155.98.36.69). Each node in the job-graph is represented with a subjob-id and its IP 

address.  

6.4.3. Querying Accountability Data 

An accountability agent in a node keeps its own database to collect accountability 

data. From this portlet, administrators can select any node (Step 1, Figure 6.12) to 

connect database in the node. In Step 2, available tables in the database are displayed. In 

our system, there are three types of tables. One table contains job-relation information 

shown in Figure 6.8. Other tables contain resource data and DDoS related information. 

The step 3 queries the column titles from the selected table so that the administrator can 

select the field of the table in multiple. The administrator can specify a condition in the 

same format as used in the postgreSQL query statement in step 4. An example such as 

querying job-id with timestamp from accatable for a specific handle (for a malicious job) 

in the victim node (nodes-0) is presented in Figure 6.13. In the result of the query (Figure 

6.14), the sub-jobs used for attacks at each submitted time are displayed. 
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Figure 6.11 An Example of Job-graph 
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Figure 6.12 Initial Screen for Querying Accountability Data 
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Figure 6.13 Selecting Options for Querying Accountability Records 
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Figure 6.14 Result of the Query 
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7. RELATED WORK 

Researchers have investigated accountability mostly as a provable property 

through cryptographic mechanisms. A representative work in this area is by [65]. Their 

approach, based on a logic language, proposes the usage of policies attached to the data 

and specified by the owner's data. The proposed logic differs from our approach in three 

main respects. First, their focus is on users' authorization data, while we deal with larger 

and richer types of accountability data. Our attention is on the nodes' site that needs to 

make sure jobs are properly submitted and not misused. Second, we do not impose any 

policy to be used at the submitter end, but let the agents collect the required information 

as needed. To this extent we employ a simple policy language to specify required data to 

collect. Third they do not report any actual implementation or experimental evaluation 

result, whereas we have a full working implementation and we have experimentally 

tested it. 

Accountability has also been investigated in the context of electronic commerce 

protocols [66][67]. In particular Crispo and Ruffo propose an interesting approach related 

to accountability in the case of delegation. We do not directly consider delegation, 

although the graph shared mechanism implements a form of delegation process. Another 

interesting work is given by [68]. They propose layered architecture for achieving end-to-

end trust and accountability. They adopt techniques for monitoring trust relationships 

over time so that abusive behavior can be tracked down. The authors drawn similar 

conclusions to ours, stating that current primitives for resource monitoring are not 

sufficient to support of fully accountability. However, they do not provide any specific 

language for specifying accountability policies, and they simply focus on users' data 

rather than providing aggregate accountability data combined with resource usage and 

job data.  



 

 

108 

Another interesting contribution is represented by the QUILL project [5]. A 

mechanism to capture provenance information during the execution of job in a distributed 

environment has been developed as part of such project. Although our work shares some 

commonalities with [5], we look at accountability as a general property instead of 

focusing on a speci!c technology, and ensure efficiently it in a distributed setting. Our 

solution does not rely on a speci!c underlying technology - we devise a general approach 

that can be mapped to actual mechanisms according to the speci!c technology 

considered. To that extent we introduce the notion of policies to support the specification 

of what to store and when, and provide a shared logging mechanism. We see the QUILL 

mechanism as a potential component of our system: it can be used to better extract data 

from Condor [14]. 

A number of techniques and tools have been proposed for monitoring grid 

resources, and services. However these systems restrict the notion of accountability to 

resource consumption monitoring or user account management. Currently many grid 

organizations typically adopt as resource monitoring tool one among the OGF-RU 

standard [69], Monalisa [70], Ganglia [6].  

The OGF-RU standard represents an interesting approach. To share resources, 

sites exchange basic accounting and usage data in a common standard format defined by 

OGF. The record format facilitates the sharing of usage information for the purpose of 

job accounting among grid sites. Although our approach may seem similar to the 

approach by the OGF-RU standard, the major difference is that we focus on the 

connection among users, jobs and resources. Since our system uses two approaches to 

guarantee the principal’s accountability, we achieve more fine-grained accountability 

than OGF-RU. Monalisa and Ganglia have very complicated and fault tolerant 

monitoring mechanisms. Agent plays similar roles as in our system. However such agents 

do not provide full accountability [68] because they do not provide information 

aggregated both horizontally (grid node based) and vertically (job-flow based). 

Moreover, they are not flexible in that they do not provide any policy language 

supporting the configuration of the accountability system while our accountability system 

is driven by accountability policies expressed in a policy language. 
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Resource monitoring alone is not enough to detect DDoS attacks and protect grid 

computing systems. Kar et al. [58] proposed an anomaly detection system for DDoS 

attacks in grids. This system uses an entropy-based model to detect anomalies caused by 

DDoS attacks and a grid topology model to implement the system. Compared to their 

approach, our approach covers a much broader set of grid layers and different types of 

DDoS attacks, while the approach by Kar et al. is limited to only a single network router. 

Though they employ additional thresholds defined from the entropy rate of the suspected 

flow in that router and the routers downstream, this mechanism only works when there 

are other objects to compare with. In addition, this router level detection cannot 

distinguish malicious job submissions from normal ones. Thus attacks introduced in 

Chapter 5 of this thesis will succeed, because the submitted jobs will be handled as 

legitimate jobs.       

A related approach is by Xiang et al. [57], who proposed a distributed defense 

system composed of sub-systems to protect grids from DDoS attacks. Such system 

applies statistical methods to analyze the network characteristics. Like our system, when 

the system’s sensors detect malicious activities, the detection system alerts the control 

system that then traces back the job through the system. Though this approach shares 

some similarities with ours, in our system each agent shares job-flow information with 

other agents as well as resource consumption information so that the two types of data 

can be combined to collect fine-grained accountability information. In addition, the 

system by Xiang et al. does not include any protection mechanism.    

Chen et al. [71] propose an idea similar to the job flow discussed in this thesis. 

They propose a distributed approach to detecting DDoS attacks at the traffic-flow level. 

The job flow graph looks similar to their Change Aggregation Tree (CAT). However, the 

CAT differs from our job flow graph in several respects. First a CAT is constructed with 

the routers through which the attacks transit for detecting abrupt changes in traffic flows, 

while our job flow graph is constructed for accountability purposes with the nodes that a 

job traverses. Second, by analyzing the accountability data of jobs in the job flow graph, 

potential attacks can be prevented. Third, the centralized CAT servers play an important 
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role and make a decision while our job flow graph technique does not employ any 

centralized server and each node can make a final decision.  

Another paper that discusses an idea similar to ours is by Mirkovic et al. [72]. Our 

detection mechanism in the source node is similar to their source-end detection (D-

WARD) mechanism. However, when differentiating a malicious packet from a legal 

packet, they use semantic-based information such as ‘one-way traffic’, etc. while in our 

case, we use the behavior of the node in the context of the grid. 

In terms of selecting different policies and resolving conflicts in distributed 

systems, Lupu et al. [73] propose an interesting approach. This approach aims at 

specifying implementable authorization policies, and then refining these policies into 

implementable actions, although policies are initially defined by the organization. 

Evolving a policy to the refined state seems similar to our work in terms of making the 

accountability policy close to a shared policy; however the final goals of this approach 

and ours are different. Lupu et al. focus on problems of conflict detection and resolution 

and propose various precedence relationships between policies to solve inconsistencies 

within the system. However our approach focuses on satisfying both the minimum level 

of accountability and the requested accountability for the shared policy when there is a 

conflict. In addition, their refining process is different from ours. In their approach the 

policy is refined from a high-level abstract level into an implementable policy, whereas in 

our approach the policy exists in an implementable form from the beginning and then 

evolves into an adapted policy after the minimum level accountability is guaranteed. 

Another interesting approach for the resolution of policy conflict is by Davy et al. 

[74]. Their paper discusses how to facilitate conflict analysis of policies for services on 

multiple network devices. In this approach, ontology is generated from the information 

model of the system to embody knowledge about the relationships between policies. 

From such knowledge, policy analysis, incorporating policy selection and conflict 

analysis, is performed. Such approach uses application-specific information and 

knowledge required for conflict analysis. However the profile information in our 

approach is used not to detect conflicts but to select a level of accountability. 
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8. CONCLUSIONS 

In this thesis, we introduced a distributed approach to achieve distributed 

accountability in grid computing systems. We introduced an architecture based on the 

notion of accountability agents that are software agents in charge of collecting a wide 

range of data and keeping track of connections among jobs, users, and resources. The 

accountability agents proposed in this work are distributed across the grid to collect 

accountability data and then coordinate to share the accountability data obtained locally 

based on a shared policy. The shared policy should be consistent among nodes to 

guarantee full accountability without conflicts. However each submitted job is exposed to 

a certain level of risk, according to the job type and importance. Similarly, according to 

the job’s resource needs, nodes have different significance levels. In addition because of 

different node capabilities and a limited amounts of resources available for collection of 

the accountability data required by the shared policy, the shared policy should be 

different for each job and from node to node. To satisfy two properties of the shared 

policy, we have proposed a profile-based policy selection mechanism to adapt the shared 

policy to each node’s ability within the requested and supported accountability while 

guaranteeing the minimum level of accountability. 

Accountability data formed in distributed manner provide provenance information 

for real-time diagnostic of runtime anomalies. This real-time based diagnostic through 

data analysis plays an important role in helping to detect the source of malicious 

activities. To apply this obtained accountability data, we discussed different types of 

distributed denial of service attacks that could exploit grids and related detection 

strategies. Upon detection of an attack, the accountability agent system is able to protect 

the legitimate users’ jobs by using accountability data. 
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We developed a fully working implementation of our accountability system and 

carried out extensive experimental evaluations. The experimental results show 

that our system does not impact the efficiency of current grid computing systems even for 

large-scale grids. In addition, our experiments showed that our system efficiently detects 

the attacks and is effective in protecting the normal jobs. 
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A. EXTENSIBLE MARKUP LANGUAGE (XML) 

The XML grammar that is used at section 2.3.2 is introduced in appendix A. 

 

XML declaration: 

  <?xml version=#1.0# encoding=#UTF-8#?> 

 

Comments:  

  <?--comments--> 

 

Element:  

  <element>content</element> 

 

Element Nesting: 

  <element_A><element_B>content</element_B></element_A> 

 

Empty Element: 

  <info auther=”jame joyce” date=”1960-Jan-01” /> 

 

Attribute: 

  <element_name attribute_name=#attribute_value#>element contents</element_name> 

 

Well-formed: 

  A well-formed document conforms to the XML syntax.  

 

Valid: 

  A valid document, in addition, conforms to semantic rules either in an XML schema or 

  user defined schema. If a document contains an undefined element, it is called not 

  valid 
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Structured XML document: 

  Generic XML document contains a tree-based data structure. 

  Example: 

  <recipe name="bread" prep_time="10 mins" cook_time="2 hours"> 

   <title>Bread Recipe</title> 

   <ingredient amount="8" unit="dL">Flour</ingredient> 

   <ingredient amount="10" unit="grams">Yeast</ingredient> 

   <ingredient amount="1" unit="teaspoon">Salt</ingredient> 

   <instructions> 

     <step>Mix all ingredients together</step> 

     <step>Leave for five hour in warm room</step> 

     <step>Turn on baking oven</step> 

     <step>Leave oven for 30 minutes</step> 

     <step>Bake in the oven at 450 for 30 minutes.</step> 

   </instructions> 

  </recipe> 
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