
CERIAS Tech Report 2011-29
Accountability for Grid Computing Systems

 by Wonjun Lee
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By Wonjun Lee

Entitled
Accountability for Grid Computing Systems

For the degree of Doctor of Philosophy

Is approved by the final examining committee:

ELISA BERTINO
SAURABH BAGCHI

 Chair

ANNA C. SQUICCIARINI

ARIF GHAFOOR

NINGHUI LI

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________ ELISA BERTINO

Approved by: M. R. Melloch 07-18-2011
Head of the Graduate Program Date

Graduate School Form 20
(Revised 6/09)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

Accountability for Grid Computing Systems

Doctor of PhilosophyFor the degree of __

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with
the United States’ copyright law and that I have received written permission from the copyright
owners for my use of their work, which is beyond the scope of the law. I agree to indemnify and save
harmless Purdue University from any and all claims that may be asserted or that may arise from any
copyright violation.

Wonjun Lee
Printed Name and Signature of Candidate

07-18-2011
Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

ACCOUNTABILITY FOR GRID COMPUTING SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Wonjun Lee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2011

Purdue University

West Lafayette, Indiana

UMI Number: 3481071

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3481071

Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.

789 East Eisenhower Parkway

P.O. Box 1346

Ann Arbor, MI 48106 - 1346

ii

Dedicated to my God, my Lord, Jesus Christ, and Holy Spirit.

iii

ACKNOWLEDGEMENTS

Special thanks to my wife, Eunsung Choi for her love and support. Without her

prayer and support, I could not have finished the thesis. I am praying for her complete

recovery and believe that God will help her. My mother and parents-in-law gave a lot of

encouragement for continuing this work to completion. I thank them.

I deeply thank my advisor Elisa Bertino for her research direction, challenge, and

guidance. I also thank Professor Anna Squicciarini for her comments and advising

concerning projects and papers.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES.. vii

LIST OF FIGURES ...viii

LIST OF GRAPHS ... x

ABSTRACT... xi

1. INTRODUCTION .. 1

1.1 Requirements for Accountability Mechanism for Grids ... 2

1.2 Contributions ... 4

1.3 Background.. 5

1.3.1 Grid Computing .. 5

1.3.2 Grid Job Scheduler .. 9

1.3.3 Authentication and Authorization Infrastructure .. 10

2. ACCOUNTABILITY DATA, AGENTS, AND POLICIES .. 11

2.1 Accountability Agents ... 11

2.1.1 Accountability Data... 11

2.1.2 Locations of Accountability Agents.. 12

2.2 Two Strategies to Collect Accountability Data ... 14

2.2.1 Job-flow Based and Grid Node Based Approaches .. 14

2.2.2 Combination of Two Approaches ... 16

2.3 Log Sharing Mechanism.. 17

2.3.1 Job-graph with Cover-records... 17

2.3.2 Log Sharing Mechanism in Multiple Domains ... 20

2.4 Guaranteeing Privacy and Non-repudiation .. 22

2.5 Accountability Policy Specification .. 25

2.5.1 Actions’ Representation .. 25

2.5.2 Accountability Policies ... 31

3. PROFILE-BASED SELECTION OF ACCOUNTABILITY POLICIES 36

3.1 Profile Matcher .. 38

v

Page

3.2 Accountability Matcher ... 43

4. VULNERABILITIES IN GRID COMPUTING SYSTEMS 50

4.1 Vulnerabilities of the Connectivity Layer ... 50

4.2 Vulnerabilities of the Resource Layer ... 53

4.3 Vulnerabilities of the Collective Layer ... 55

4.4 Vulnerabilities of the Application Layer ... 57

5. DETECTION AND PROTECTION AGAINST DISTRIBUTED DENIAL OF

SERVICE ATTACKS.. 62

5.1 Distributed Denial of Service Attacks Involving the Grid 62

5.1.1 Attacks to a Server Located Inside the Grid ... 63

5.1.2 Attacks to a Server Located Outside the Grid... 64

5.2 Tasks of Accountability Agents for DDoS Attacks... 64

5.3 Detection Strategies... 68

5.3.1 Detection at the Victim Node.. 68

5.3.2 Detection at the Source Node.. 71

6. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 74

6.1 Implementations of Agents.. 74

6.2 Configuration of Experiments in Emulab Test-bed... 77

6.3 Experiments ... 78

6.3.1 Scalability with respect to the number of Computing Nodes............................ 78

6.3.2 Scalability with respect to the number of Resource Providers.......................... 81

6.3.3 Scalability across Multiple Domains .. 84

6.3.4 Scalability with respect to the Data Volume... 85

6.3.5 shared policies vs local policies Evaluation.. 87

6.3.6 Detection and Protection from DDoS Attacks from the Victim-End with Time-

Window 1 .. 88

6.3.7 Detection and Protection from DDoS Attacks from the Victim-End with Time-

Window 2 .. 91

6.3.8 Detection and Protection from DDoS Attacks from the Source-End................ 93

6.3.9 False Positive Detection with Two Types of Threshold 95

6.4 An Environment of Accountability Data Queries ... 97

6.4.1 User Interface and Architecture .. 97

6.4.2 Querying a Job-graph When Attacks are Detected ... 99

6.4.3 Querying Accountability Data .. 102

7. RELATED WORK ... 107

vi

Page

8. CONCLUSIONS... 111

LIST OF REFERENCES.. 113

APPENDIX... 119

VITA... 121

vii

LIST OF TABLES

Table Page

1.1 Grid Services at Each Layer for Multidisciplinary Job .. 8

2.1 Symbols Used in the Specification of Actions ... 24

2.2 Action Specification.. 29

3.1 Definitions of Terminologies Used by Matchers.. 44

3.2 Supported Accountability ... 48

5.1 Classification of Alarms ... 67

5.2 Collection of Handles and Job-id.. 70

6.1 Data for H1 and H2 from Table 5.2 in Chapter 5 ... 95

viii

LIST OF FIGURES

Figure Page

1.1 Layer Grid Architecture.. 6

1.2 An Example of Running a Multidisciplinary Job in Multiple Grids 7

2.1 Architecture of the Accountability System... 13

2.2 Combination of Two Approaches... 16

2.3 An example of Job-graph.. 18

2.4 Views of a Job-graph. The Circled Portions Denote Different Views 19

2.5 Cover-records for Job-graph of Figure 2.3 When a Job is Submitted 21

2.6 SAML Assertion Containing Handle.. 22

2.7 Job Contract Publication Process.. 24

2.8 Job Flow and Corresponding Accountability Data... 25

2.9 Abstract Representation of Local Policy and Shared Policy 32

2.10 Accountability Grammar in BNF.. 34

3.1 Examples of Policy Conflict ... 36

3.2 The Lifecycle of the Accountability Policies.. 37

3.3 Example of Profiles for a Job.. 39

3.4 Example of Risk Factor and Significance Factor ... 40

3.5 Job-graph Due to Insufficient Accountability... 42

3.6 Flow Chart Diagram for Selecting Shared Accountability Policy.............................. 46

3.7 Cases of Comparisons with Shared Accountability.. 49

4.1 Attack Scenario by MD5 Collision... 51

ix

Figure Page

4.2 An Example of SQL Injection Attacks in Grid Web-Services 58

4.3 Examples of XML Attack by Using CDATA... 60

5.1 Distributed Attacks on a Server Located Inside the Grid ... 63

5.2 Distributed Attacks on a Server Located Outside the Grid... 64

5.3 Steps for Issuing Alarms... 66

6.1 One Use-case of Job Submission.. 77

6.2 Job Submission to Multiple Compute Nodes.. 79

6.3 Job Submission Across Multiple RPs ... 81

6.4 An Example of the Inconsistency in the Handle for Jobs Forwarded through Multiple

RPs ... 81

6.5 An Example of the Handle Consistency for Jobs Forwarded Across Multiple RPs... 81

6.6 Topology for Experiment 6.3.3... 84

6.7 Main Screen of the Accountability Grid Computing Portal Before and After Login. 98

6.8 A Cover-record for a Normal Job ... 99

6.9 An Experiment of Job-Relation (LIST) .. 100

6.10 A Grid Topology from Emulab... 101

6.11 An Example of Job-graph ... 103

6.12 Initial Screen for Querying Accountability Data .. 104

6.13 Selecting Options for Querying Accountability Records 105

6.14 Result of the Query ... 106

x

LIST OF GRAPHS

Graph Page

6.1 Overall Response Time of Job Completion for Different Number of Nodes 79

6.2 Overall Response Time of Job Completion for Different Execution Time 80

6.3 Response Time for Different Number of RPs... 83

6.4 Average Response Time for Multiple Job Submissions ... 84

6.5 Data Volume for Different Policies .. 86

6.6 Comparison of Policy Process Time for Shared and Local .. 87

6.7 Search Time for Policy Elements ... 87

6.8 Normal Job’s Wait Time for Different Time Windows.. 89

6.9 Detection and Recovery Time When the Attacks are Completely Launched for

Different Time Windows ... 92

6.10 Detection and Recovery Time for Different Attack Durations................................. 94

6.11 Probability Distributed for Normal Submissions with Two Different Types of

Entropy... 96

xi

ABSTRACT

Lee, Wonjun. Ph.D., Purdue University, August 2011. Accountability for Grid

Computing Systems. Major Professor: Elisa Bertino.

Accountability is an important security property of distributed systems. It assures

that every action executed in the system can be traced back to some entity.

Accountability is even more crucial for assuring the safety and security in grid computing

systems. Grid computing systems provide a vast amount of computing resources such as

computing power, data storage, and network bandwidth. However, to date no

comprehensive approach to accountability exists for the increasingly complex grid

environments, wherein the number of users and the types of resources are large, diverse,

and heterogeneous. Our work addresses this inadequacy by developing a comprehensive

accountability system driven by policies and supported by accountability agents. In this

thesis, we first discuss the key elements of our accountability framework and types of

accountability data obtained in two strategies. We introduce accountability policy that

specifies which data to collect and when to collect them, and more importantly how to

coordinate data collection among different administrative domains. We then show that

the proposed strategies can be realized upon accountability policy by sharing it among

accountability agents.

In order to guarantee full accountability without conflicts when the policy is

shared, the enforced accountability policies should be adapted based on the different risk

levels of jobs and the different significance levels of a node. The support of flexible

policies helps protect grid computing systems against malicious jobs, by increasing the

level of accountability. To enable support of adaptable accountability policies, we

propose a profile-based policy selection mechanism. This mechanism uses profiles of

xii

each job and node and considers node’s capability to determine the level of

accountability policy for the job and the node. We show how this mechanism can adapt

the accountability policies, while at the same time achieving at least a minimum level of

accountability.

Accountability data collected by the accountability agents according to the

flexible accountability policies provides a basis for analyzing resource usage and finding

bottlenecks and detecting security breaches. Additionally, data concerning user activities

and actions enables mechanisms for timely identifying malicious users of faulty nodes

and helping administrators to take proper defensive actions. In this thesis, we show how

accountability data can be used to detect distributed denial of service attacks performed

by exploiting resources made available by grid systems to suspend mission-critical

websites or the grid itself and then to protect systems from these attacks. We present two

approaches for protecting against attacks targeting sites outside or inside the grid.

In the thesis, we also describe a fully operational implementation of our

accountability system and report the results from extensive experimental evaluations of it.

Our experiments, carried out using the Emulab [1] test-bed, demonstrate that the

implemented system is efficient and scalable for grid systems consisting of large numbers

of resources and users. In addition, our experiments show that our system efficiently

detects the distributed denial of service attacks and is effective in protecting the normal

jobs.

1

1. INTRODUCTION

Grid systems [2] integrate computational and data resources located at numerous

facilities, which users can access directly at resource providers or through science

gateways. The dynamic and multi-organizational nature of grid computing systems

requires effective and efficient accountability systems able to scale for large number of

users and resources. The availability of detailed and complete accountability data about

users’ accesses to grid resources and job executions is crucial for both the grid

administrators and the overall grid community. Such data provides a basis for analyzing

resource usage, and finding bottlenecks and detecting security breaches. It can also help

in managing peer-reviewed resource allocations, authorization, resource accounting and

other coordinated services. Additionally, data concerning user activities and actions

enables mechanisms for timely identifying malicious users of faulty nodes and helping

administrators to take proper defensive actions. Note that limiting the damages in case of

security incidents is a major requirement as the consequences of attacks exploiting high

performance computing are potentially devastating [3][4].

In current grid systems, OS accounting and monitoring mechanisms [5][6]

provide methods to associate CPU, memory, network, and disk usage with specific

processes and local principals. A significant amount of information about processes can

also be extracted from operating systems, for example from the /proc file system in

Linux. However, current mechanisms are not sufficient to support full accountability

because they do not allow resource usage in the system to be monitored at various levels

of aggregation. Moreover, in systems in which jobs are decomposed and merged,

sometimes unpredictably, mechanisms are required to monitor activities performed across

multiple domains.

2

The design of accountability mechanisms is particularly challenging due to the

heterogeneous nature of grid software and system components. To date, there is no grid

computing system that addresses multi-domain accountability as part of its information

assurance component. Our research addresses this critical inadequacy by developing an

accountability system characterized by a rich and flexible language for the specification

of accountability policies and an agent-based system to enforce the policies expressed in

this language.

1.1. Requirements for Accountability Mechanism for Grids

The design of accountability mechanisms is a complex task that has to meet

several requirements in order to overcome the limitations of current logging systems

developed for monitoring users’ activities and jobs execution. Based on our hands-on

experience in the context of the TeraGrid system [7], we have identified several crucial

requirements for a suitable accountability mechanism for grids:

Decentralization. It implies the distribution of the accountability tasks across grid nodes.

Because of the distributed nature of grid systems, accountability cannot be addressed in a

single location, but it must involve all the nodes where a job is processed. This

requirement also calls for a harmonic and consistent view of the logging information that

follows from the job flow across nodes.

Scalability. Scalability in our context has two dimensions: users and nodes. Today, grids

have become widely accessible to large user communities because of the availability of

web-based portals. Such communities have an impact on the number of job requests that

are typically submitted to grids. Additionally the size of grid systems is increasing

because more and more organizations are interested in sharing resources across grids. It is

important to devise solutions that scale, and thus work properly for grids of almost any

size, from the ones consisting of few nodes to large infrastructures with thousands of

nodes.

Flexibility. A rich collection of information should be collected and efficiently stored for

later use and analysis, ranging from user authorization data to resource usage

information. The system should be able to combine heterogeneous accountability

3

information as needed. It is however important to identify and select only the data

relevant for accountability, as it is not feasible to simply collect all the potentially useful

data. The identification of the type of data to collect including information about the

users, jobs, and nodes should be specified by using a high-level policy language to

simplify administration tasks.

Minimum Impact. The accountability tools must be lightweight and must not interfere

with the ordinary computation and activities performed by the grid nodes.

Administration Autonomy. In the design of the system, non-technical barriers such as the

coexistence of multiple administrative domains in the same grid system should be taken

into account. Note that this requirement is challenging, because of the difficulty to

exactly predict how grid administrators will manage their resources. For instance, it is

hard to predict to what extent different administrative domains will trust each other in

sharing local information with other sites. A good design should thus preserve the

autonomy of grid sites, and limit as much as possible the level of collaboration required

for the sharing of accountability data.

Integration with Digital Identity Management and Access Control Systems. Because

actions executed in a grid system ultimately have to be traced back to real users, it is

important that the accountability system be integrated with the system in place for

managing user identities. In addition, in order to connect all accountability information

related to the same job, the accountability system must be aware of how users are

identified across different domains. Integration with access control systems is important

in order to determine which access control policies and/or which credentials permitted

access to a given user, when an unintended access by this user occurs. The administrators

may obtain information useful for revising the access control policies in place and the

credentials required to gain access to the grid resources by analyzing accountability data

concerning access control decisions.

Detection and Protection from Distributed Attacks. The scalable nature and the complex

architectures of grids suffer of several vulnerabilities, since grids were designed with no

security in mind. By exploiting its existing vulnerabilities, malicious parties can take

advantage of resources made available by grid systems to attack mission critical websites

4

or the grids directly. Since the attacks we consider here are caused by grid resource and

lead to serious consequences, the accountability system should be able to detect the signs

of such distributed attacks by monitoring jobs and resources usage and simultaneously

protect the grid system.

1.2. Contributions

In this thesis we propose a comprehensive approach addressing the identified

requirements based on a layered architecture for end-to-end accountability. We introduce

the concept of accountability agents or agents for short, which are entities in charge of

collecting accountability data and monitoring submitted jobs and their users. We develop

a simple yet effective language to specify the relevant accountability data according to

some policies, referred to as accountability policies. The accountability policies specify

which data to collect and when to collect them, and more importantly how to coordinate

data collection among different administrative domains. Our architecture supports

different types of accountability policies. One of them is the shared policy that specifies

the elements required from an agent in order to obtain a unified form of job execution

record. Agents should keep a consistent shared policy in order to guarantee full

accountability. However, if elements of the data to be sent from a node to another are

missing or different from the ones required by the policy, a conflict may occur. A conflict

indicates the inability of a node to comply with the policy shared by nodes. In addition

because of different node capabilities and limited amounts of resources available for

collection of accountability data, it should be possible to have different shared policy for

each job and node. In order to address such conflicts and yet achieve a flexible

accountability system, we propose a profile-based policy selection mechanism. Under

this approach, the best accountability policy is chosen based on the attributes of jobs and

grid nodes, and the capability of each node to collect accountability data. The selected

policy preserves the minimum level of accountability and approximates the requirements

of the shared policy.

Accountability data collected in a distributed manner according to these dynamic

accountability policies provides information about job’s trace and its origin and is

5

analyzed for runtime anomalies. This real-time based diagnostic approach through data

analysis plays an important role in detecting the source of malicious activities and

identifying the misbehaving parties via a distributed query during forensic analysis. To

show how the accountability system can be used for such purposes, we propose an

accountability-based mechanism for protection from Distributed Denial of Service

(DDoS) attacks conducted by using the resources of a grid computing system. A DDoS

attack makes a computer resource unavailable to legitimate users. We discuss two

different kinds of DDoS attacks that could exploit grids, and the detection strategies for

each kind. Accountability agents leverage information about jobs and resources

consumption to quickly detect suspicious patterns that could be symptoms of a DDoS

attack. Through a distributed notification protocol, all agents are informed of ongoing

attacks and are able to timely react to protect the jobs of legitimate users.

We implemented the prototype of the accountability system on an emulated grid test-bed,

which consists of a hundred nodes. Our experiment show that the implemented system is

efficient and effective in terms of scalability and protection against DDoS attacks.

1.3. Background

We begin with the overview of the key components of a grid systems followed by

an illustration of the authentication and authorization protocols typically adopted in grid

systems. We assume that authorization protocols are based on the well-known attribute-

based access control model, which is a widely used model for open distributed systems

today. Examples of such protocols are those developed as part of the GridShib [8]

initiative.

1.3.1. Grid Computing

Grid computing or computational grid is the application of multiple computing

resources to a single problem at the same time. A complex scientific or technical problem

typically requires a large number of computer CPU cycles and/or a large amount of data.

Grids enable sharing and aggregating a wide variety of resources such as supercomputers,

6

Application

Collective

Resource

Connectivity

Fabric

Figure 1.1 Layer Grid Architecture

storage systems, data sources that are geographically distributed and owned by different

organizations to solve a large scale computational problems in science, engineering, and

commercial enterprises. Grid computing is a form of distributed computing where many

networked computers compose a set of clusters [9] to perform very large tasks.

The grid architecture can be viewed as having several “layers” [10] (see Figure

1.1): The grid Fabric layer provides shared resources such as computational resources,

storage systems, catalogs, network resources, and sensors to which the access is mediated

by grid protocols. A “resource” can be defined as logical entity such as a distributed file

system, computer cluster, or distributed computer pool. Grid-specific network

transactions require communication and authentication protocols. The Connectivity layer

implements and makes available these protocols. The communication protocols enable

exchanging of data between Fabric layer resources, while authentication protocols built

on communication services support secure communication with the verification of users’

identity and resources. Communication functions include transport, routing, and naming.

Authentication solutions have following characteristics: Single-Sign-On (SSO),

delegation, integration with various local security solutions, and user-based trust

relationships. Grid Security Infrastructure (GSI) [11] is one of services in this layer. The

Resource layer supports protocols for the secure negotiation, initiation, monitoring,

control, accounting, and payment of sharing operations on individual resources. The

resource layer protocols are only concerned with individual resources. The Grid Resource

Access and Management (GRAM) [12] and GridFTP [13] are examples of protocols in

7

resource layer. The Collective layer supports protocols for interactions across collections

of multiple resources such as Condor-G [14] for co-allocating and scheduling services

and MPICH [15] for programming systems enabled by grid, while the Resource layer is

focused on interactions with a single resource. The final layer, aka Application layer,

comprises the user applications. This layer provides end-users with access to the

underlying resources in the form of command line tools, desktop applications, or web-

based interfaces.

The following example shows a usage scenario that commonly occurs in practice

and corresponding grid services.

Example 1. Pete, a participant of the open science grid (Virtual Organization, VO) which

links shared resources, performs a multidisciplinary simulation, nwFluid_linux that uses

programs and data located at multiple locations as Figure 1.2. Even though Pete is

affiliated with Purdue University, he can run program A at A-state University, and B at

B-state University using input data from C-state University.

Based on such scenario we may illustrate how the grid architecture works. Table

1.1 shows the services at each grid layer that might be used to implement the

multidisciplinary simulation application in our scenario.

Key components in the grid computing are represented by grid nodes. A grid node

is any machine or cluster of machines that processes a job or portion of it. On a typical

Pete

SP Run program A

Run program B

Read data C

RPx

RPz

Purdue Univ.
A-state Univ.

RPy

IdP

C-state Univ. B-state Univ.

Figure 1.2 An example of running a multidisciplinary job in multiple grids

8

grid, such as the NSF TeraGrid and Open Science Grid (OSG), each contributing

organization, aka Resource Provider (RP), makes available to the grid various kinds of

resources, such as computational and visualization resources, datasets, storage, and

applications. RPs are typically composed of multiple machines, which may be organized

into high-performance computing clusters (HPC). HPC clusters are sets of tightly

connected computing machines typically deployed to increase performance by supporting

parallel execution of different parts of a job across several nodes in the cluster. In the

case of computing resources, each RP typically makes available one or more clusters.

Service Providers (SPs) provide specialized services at the application layer, and perform

functions such as account management, certificate management and user support. In

general SPs make available those services as web services that can be invoked through

web portals, also known as science gateways such as [16][17].

There are two ways by which grid users gain access to grid resources. The

traditional paradigm is for a user to log in to the RP site on its grid entry nodes, which we

Table 1.1 Grid Services at Each Layer for the Example Scenario from Figure 1.3

Layer Grid services Remarks

Application Multidisciplinary simulation User applications

Collective

Querying an information to

determine availability of

computers, storage, and the

location of input data

Brokering services for resource

discovery; Membership and

policy services for keeping track

of who is allowed to access

resources

Resource

Submitting request to appropriate

computer, storage to start

computations, and move data;

Monitoring the progress of

computations and data transfer

Running the same program on

different computer systems

depends on resource-layer

protocol

Connectivity

Obtaining required authentication

credentials to submit a job

Must be implemented

everywhere, and relatively small;

Core protocols are

Communication (IP, TCP/UP)

and authentication (SSO,

delegation)

Fabric

Storage systems, computers,

networks, code repositories,

catalogs

Physical devices or resources that

grid user want to share and

access

9

call grid entry point, and submit applications directly to grid nodes using grid middleware

commands. With science gateway portals, a researcher can become a user of the portal

and, after authenticating at the portal, request services through the portal, which in turn

executes the application requested on local or remote grid resources on behalf of the user.

In this case, the access to grid resources is transparent to the user, making it possible for a

much broader community to utilize high performance grid resources.

It is critical to have common grid infrastructure software in order to construct a

grid computing environment. Globus Toolkit [18] is the de-facto standard for grid world.

By providing a PKI-based certificate solution for security, it contributed to enable cross-

institutional resource access control. As important functions, it provides protocol and

services for job submission and resource discovery.

1.3.2. Grid Job Scheduler

Many scientific and engineering applications need to carry large-scale

computations. Efficient parallel implementations (e.g., using MPI library – Message

Passing Interface [19]) allowed them to run such computational tasks on multiple nodes

simultaneously. As a result, a grid job is often a composite of sub-jobs that are scheduled

onto available computing nodes by the grid scheduler at the RP.

Portable Batch System (PBS) [20] is a widely used software application that

performs job scheduling. The primary job of PBS is to allocate computational tasks

among available computing nodes. PBS is a scheduler mechanism supported by GRAM,

a component of the Globus Toolkit. As another framework, Condor [14] is prevalently

used for job scheduling and supported by GRAM. Condor is a high-throughput

computing software framework for coarse-grained distributed parallelization for

computationally intensive tasks. It can be used to manage workload on a dedicated cluster

of computers or send out work to idle desktop computers. Condor supports the standard

MPI and PVM (Parallel Virtual Machine [21]) for the world of parallel jobs.

Like PBS and Condor, most job schedulers run on the dedicated clusters. Each

cluster has a head node and several compute nodes (or called worker nodes). The Head

Node (HN) is responsible for scheduling jobs based on the resource state as reported by

10

the compute or worker nodes (CN/WN), the priority of the job owner on the resource. In

the case of computing resources, one RP typically makes available one or more clusters.

1.3.3. Authentication and Authorization Infrastructure

As accountability has strong ties with authentication and authorization, it is

important to clarify the underlying mechanisms adopted for these crucial security

functions. Our accountability system is integrated with the federated approaches used for

managing grid user identities, as developed by the GridShib [8] or ShibGrid [22] project.

Such approaches do not require cumbersome static pre-registration phases typical of

conventional access methods for grid users.

Each user in a Shibboleth [23]-enabled grid system is associated with a unique

Identity Provider (IdP), which is the user’s home organization. The IdP manages the

user’s registration, by issuing an X.509 [24] certificate to the user, or if the authentication

is not PKI-based, by assigning a login name which is unique within the home

organization. The IdP also manages user identity attributes and issues temporary

identifiers, referred to as handles that are used by the IdP to provide user’s attributes to

relying parties requesting these attributes. By exploiting the GridShib SAML [25] tool,

handles can be embedded in X.509 certificates and pushed to the RP when the user

submits a job request. This approach allows the RP to immediately verify the users’

attributes and decide whether or not to grant access. The use of handles protects the

privacy of user identification from the RP, because RP does not need to know them.

However, it makes harder to associate the identity of the user with the submitted job upon

its completion, as the actual identity is not included in the temporary handles for privacy

purposes. How to achieve accountability when handles are used will be discussed at

section 2.2.4.

11

2. ACCOUNTABILITY DATA, AGENTS, AND POLICIES

To hold individual users accountable for their activities in grid systems,

appropriate information should be collected. We have devised two basic approaches to

gather such accountability data; job-flow based, grid-node based. Data obtained

according to those two approaches are then combined to get more detailed aggregate

accountability data. In what follows, we begin with describing the type of relevant data

collected for accountability, followed by the two basic approaches. Section 2.1 introduces

the notion of accountability agent. We propose two strategies to collect accountability

data by accountability agents in Section 2.2 followed by the log sharing mechanism in

Section 2.3. Section 2.4 shows a mechanism of non-repudiation required in accountable

grid computing systems. We then introduce a policy language in Section 2.5.

2.1. Accountability Agents

Accountability agent is the entity that collects and processes accountability data

based on the two strategies that we proposed. Since the main purpose of accountability

agents is to collect data, it is important to identify the type of data that is relevant for

accountability.

2.1.1. Accountability Data

Specifically, the following data types are of interest for accountability purpose:

Access control data. Such data is extracted from software at the application layer. It

refers to the authentication tokens used by users to access the Grid, the type of credentials

(or handles) requested for obtaining authorization, and the corresponding access control

12

policies utilized, if any
1
. Because access control determines which jobs are executed on

the grid, monitoring access control decisions by recording all information related to such

decisions is crucial to determine if and why wrong access control decisions have been

made and thus take proper corrective actions.

Job-related data. This data is associated with the job and its execution, and is extracted

from components of the middleware layer. It includes information such as the number of

sub jobs, the machines where the jobs are hosted, the resource (computational and/or

storage) consumption for processing the job, the process id, the SP id. Additionally,

information related to the protected files accessed by the job can be collected.

Resource oriented data. This data includes the entire information specific to the machine

where grid computations are executed, such as resource usage, frequency, number of

CPU cycles.

Agents employ different techniques for data collection, according to the type of data they

extract
2
. For example, accountability information can be extracted from text logs typical

of job schedulers or by intercepting information logged at user portals. Such information

tracks users' requests and authorizations about job scheduling.

2.1.2. Locations of Accountability Agents

The functions of agents are twofold. First they monitor resource consumption

and/or users’ access to the nodes they are associated with. Second, they provide

accountability data to other agents. Consequently, to provide a global solution to

accountability within the grid and to maximize the bene!t of our accountability

mechanism, agents must be carefully distributed across the grid nodes.

1
In some grid system access is static and predefined. In those cases, grid mapfiles mapping local accounts

2
Not all nodes have the same functionality, so different nodes will be mapped onto agents with specific

techniques for accountability data extraction

13

Figure 2.1 Architecture of the Accountability System

Several distribution strategies could be adopted, based on the number of administrative

domains, sites and/or distribution of computational nodes. For instance, one could

distribute agents so that all administrative domains have a single centralized agent, or

agents could be independently distributed using a machine-centric approach and then

connected according to the dynamic connections generated by the submitted jobs. We

thus identify two main criteria when placing the agents. For each administrative domain

we require that there exist at least one agent collecting data for each type of

accountability data; and that each possible job "ow be monitored by one or more agents

from the time of submission until completion regardless of the number of nodes involved

and the number of crossed domains.

Based on these criteria we have developed an articulated strategy for agent

location. At each RP - corresponding to an administrative domain -, agents are located by

layers, as shown in Figure 2.1 (AccA is a shorthand for Accountability Agents). A !rst

layer of agents is located at the entry points of the grid. As discussed, these nodes take

authentication and authorization decisions. Moreover, users handles and/or authorization

tokens are created at these nodes. Agents can thus record here the policies used to

authenticate users and/or to grant the required job request. Agents at this layer are

14

associated with SP machines and/or RPs offering direct access.

A second layer of agents is located with the schedulers such as Condor-G [14] or

PBS. These agents collect information related to the job scheduling strategy, such as the

RPs where the job will be processed and, in the event of a job split into multiple sub-jobs,

the number and destinations of these sub-jobs.

Finally, a last layer of agents is located at the compute resources. Our design

requires at least one agent for each head node. The cluster head node hosts agents

because the head node schedules jobs to the compute nodes and has job related

information. The head node is responsible for compute nodes, as its main function is to

control and monitor compute nodes. Existing monitoring primitives allow head nodes to

retrieve aggregate accountability data about compute nodes.

However, such primitives do not neither track how the job is split, nor do they

track the resource consumption for each sub-job created. To obtain such !ne-grained

information and achieve full accountability we require each compute node to have an

agent. Data at compute nodes is collected using an accounting tool and sent back to the

head node upon request.

2.2. Two Strategies To Collect Accountability Data

2.2.1. Job-flow Based and Grid Node Based Approaches

Agents operate according to two different strategies, namely job-flow based and

grid node based, with emphasis, respectively, on data related to jobs and their "ow; and

on the sources of speci!c data types.

Jobs flow from the entry point to the remote grid nodes based on resource

availability and job description. As mentioned in Chapter 1, a job that requires a long

computation is often split into many sub-jobs to be executed in parallel. Sub-jobs are

distributed across different grid nodes, and move from nodes to nodes. Hence, monitoring

sub-job transfer is crucial. A possible approach is to employ point-to-point agents, which

collect data at each node that the job traverses. We refer to this approach as a job-flow

15

based strategy. Such approach enables tracking a job process throughout its whole life-

cycle, from the time when a process is created to the time when its execution is

completed. Each agent only controls the node where it is located, because due to the

distributed nature of grids it is not practical to collect all information about a job at a

centralized location.

The data collected according to the job-flow based approach is of two kinds:

access control data and job-related data.

In order to obtain a complete picture of the grid active jobs and the related

resource consumption, the job-flow strategy is complemented with an approach

collecting resource-oriented data. This approach, referred to as the grid-node based

strategy, collects data at a given spatial location for all jobs active at such location a

given time point. The spatial location may be set at one or multiple nodes [26] of the grid

system. With respect to the type of data collected, the grid-node based strategy focuses on

collecting resource-related information, which includes entire information specific to the

machine where jobs move and computations are executed. The viewpoint can be

restricted at data related to a single grid layer.

In the grid-node based strategy data is collected by exploiting appropriate

resource monitoring tools, which periodically collect resource usage information at each

fixed points. Specifically, if the focus is on the fabric layer, such information includes

used CPU cycles, state information such as current load, queue state, memory usages for

computational resource. If the focus is on the connectivity layer, since data is exchanged

through communication protocols, transport, routing, and naming information for each

job can be logged for all the active transactions. Finally, if the focus is on the resource

layer, where operations, such as process creation and data access, are performed, process

information and/or file names transferred may be of interest. The agents take advantage

of such existing information sources -so to meet the minimum impact requirement -

without adding new monitoring mechanisms when possible.

16

2.2.2. Combination of Two Approaches

As accountability data can potentially be used for diverse types of analysis, an

approach focusing on one single aspect may be inadequate. Moreover, only the

combination of different types of data can provide a solid basis for analyzing the use of

the grid and identifying possible misuse of grid resources.

The aforementioned approaches are complementary to each other, and can be

used to collect detailed information about the executed job, along with its resource

consumption and status progress at each traversed node. For example, if a job misused

the resources available at a certain node (by for example accessing protected files), by

retrieving its job-id and analyzing resource data collected by the grid-node based method,

we can identify the actual principal who submitted the job. Furthermore, we can

investigate other possible errors of related jobs, which used the same resources and have

been submitted by other principals. Such detailed analysis is possible only by cross

correlating the data collected using the job-flow based method.

Figure 2.2 shows a simple example of data sets collected by the two approaches.

The first two tables show the names of data and their values extracted by the job-flow

strategy. One of jobs, identified as PBS.3839, is submitted to an SP named

gk.rcac.purdue.edu. The handle 3f7b3dcf-1674-4ecd-92c8-1544f346baf8 is generated by

IdP idp.rcac.purdue.edu. Since the job is a multi-job divided and submitted to RP2 and

RP3, the identifiers of sub-jobs, PBS.3839-2 and PBS.3839-3, should be collected as

paired with their destinations. Assume that the sub-job, PBS.3839-3, is suspended for

some reasons and the accountability policy specifies to log the process identifier that is,

Handle
3f7b3dcf-1674-4ecd-

92c8-1544f346baf8

Job Id PBS.3839

{Sub jobs, Dest.} PBS.3839-2 --> RP2

{Sub jobs, Dest.} PBS.3839-3 --> RP3

Job-Relation Graph 1

Date/Time 2007:02:08:09:48:22

Checking-Point Job Queued

Node Id gk.rcac.purdue.edu

IdP Id idp.rcac.purdue.edu

Handle
3f7b3dcf-1674-4ecd-

92c8-1544f346baf8

Job Id PBS.3839-3

Job-Relation Graph 3

Process Id 11325

Date/Time 2007:02:08:10:11:19

Checking-Point Job Suspended

Node Id cn5.rcac.purdue.edu

Process Id 7193

Memory Usage (MB) 65

Process Id 11325

Memory Usage (MB) 1910

Resource: Memory

Host: cn5.rcac.purdue.edu

2007:02:08:10:52:00

SP CN CN

Figure 2.2 Combination of Two Approaches

http:idp.rcac.purdue.edu
http:gk.rcac.purdue.edu

17

11325, for the job suspended in the compute node, cn5.rcac.purdue.edu, then the agent

would find the process id mapped to abnormal memory usage at the resource table

located at the same node, that is, cn5.rcac.purdue.edu. Once the sub-job, PBS.3839-3 is

identified as one that caused misuse of the memory resource from the second table,

PBS.3839-2 assigned at RP2 is identified as a job that may potentially cause bad

operations, because sub-jobs may be heavily interdependent. In this example, the

information in the resource table is obtained according to grid-node based strategy by

fixing the point at Fabric layer, while the first two tables are generated according to job-

flow based strategy.

2.3. Log Sharing Mechanism

2.3.1. Job-graph with Cover-records

Many scientific applications require multiple computing nodes and run efficient

parallelized implementations. As a result, a grid job is divided into many sub-jobs and

scheduled to run many nodes. These nodes may reside in different network domains. In

practice, a sub-task of a job is sometimes further divided and executed at other nodes. We

call such composite jobs the workflows of sub-jobs. A common approach to model job-

flows is to employ a directed graph that directly describes how the sub-jobs of a job are

interconnected. We refer to such directed graph, representing the flow of job/sub-jobs, as

job-graph. The vertices of the job-graph represent grid nodes where jobs are forwarded,

scheduled and/or processed. The directed edges denote job movements resulting by the

scheduling or/and rescheduling of the job and/or sub-jobs onto another grid node because

of parallelization, lack of resources in a node, and so forth. Job-graphs are not always

generated in real time base.

Definition 2.1 (Job-graph). Let N be a non-empty set of grid nodes. A job-graph G = {N,

E} is a directed graph satisfying the following conditions: 1) each node n ! N

corresponds to a grid node characterized by indexes i, j, where i denotes the unique node

http:cn5.rcac.purdue.edu
http:cn5.rcac.purdue.edu

18

identi!er and j the computational units of the nodes
3

2) each edge e = (ni, n!i’) ! E

denotes a sub-job assignment from the parent node ni to the child node n!i’ 3) there is a

unique root node of the graph, that is "n ! N s.t. (n!, n) # E.

Thus, the number of edges in a graph is the same as the number of job

assignments. A same node may have multiple entering edges if the same node is assigned

to process two or more sub jobs of the same job, i.e., an overloaded node. Job schedulers

typically adopt this approach in case of overloaded nodes or computationally intensive

jobs.

The graph in Figure 2.3 illustrates an example of job-graph. Suppose that a multi-

job job1 that comprises two sub-jobs, job1-a, job1-b, is submitted for execution at service

provider SP1. A sub-job, job1-b that is scheduled at resource provider, RP2, is further

split onto job1-b-1 and job1-b-2 to be run in parallel at compute nodes CN1 and CN2,

respectively. The directed edge from CN2 to CN1 shows that job1-b-2 is rescheduled at

CN1 because of, for example, insufficient resource at CN2 for job job1-b-2. If job1-b-2 is

evicted from node CN1 for the same reason and then rescheduled to CN2 again, the

identifier of job1-b-3 should be assigned a name, for example, job1-b-4, different from

already assigned names in order to distinguish activities performed before and after the

evictions. Especially when the suspicious operation is repeated making loops between

nodes, renaming helps to trace back to the original job by constructing cover-records

based on the modified job names.

Once created, the job is a moving object that traverses grid layers to reach

multiple nodes, and finally consumes resources in the fabric layer.

job1-a job1-b

job1-b-1

job1-b-3

job1-b-2

SP1

RP1 RP2

CN1 CN2

Figure 2.3 An Example of Job-graph

3
Recall that as specified in the past section a same grid node can have multiple computational units

c

19

The main challenge in enforcing the job-flow based strategy is represented by the

ability of tracking a job, in presence of complex job scheduling techniques adopted by

grid nodes. Our approach to capture provenance information during the execution of a job

is based on two key factors: 1) the use of shared policies, and 2) the design of a graph

based log sharing mechanism. Specifically, the accountability agents share the job-

relation data with communicating agents, as specified by the shared policies.

Each agent stores a view of the job-graph defined by Def. 2.1. The view is defined

from the perspective of one grid node (controlled by one agent) corresponding to a node

in the job-graph. Graph views are defined as follows:

Definition 2.2 (Graph View). Let G = {N, E} be a job-graph, defined according to

Definition 2.1. A view of a job-graph from a node nz,t is defined as V= {N’, E’} where:

1. "ni,j ! N’ s.t. ni,j = nz,t ;

2. E’ = {e | (e ! $ % e = (nz,t, n) & e ! $ % e = (n, nz,t,))};

3. N = {n | (n ! ' % (e = (n, nz,t,) % e ! E’) & (e = (n, nz,t,) % e ! E’))}

By definition, each agent has a partial vision of the job path (see Figure 2.4) that

includes the immediate predecessor node and the immediate successor node(s) (subject

nodes).

Each accountability agent keeps a cover-record that keeps track of the job-

relation between predecessor and successor nodes.

The cover-record maintains the local graph view as Def. 2.2, along with additional

N5,10

job1

job1-a job1-b

job1-b-1

job1-b-3

job1-b-2 N6,12

N1,1

N2,1 N3,8

Figure 2.4 Views of a Job-graph. The Circled Portions Denote Different Views

20

information, such as job-id, handle value for unique identi!cation, and other data as

speci!ed by the shared accountability policies (see Section 2.3). Cover-records also

maintain a log of the job state, along with the timestamp tracking the job state transition

from one state to another. The union of the graph views determined by the job sharing

mechanism corresponds to the whole graph, provided that the shared policies support a

correct sharing of the information required to connect the shared jobs. The truth of such

claim follows from condition 1 of Def. 2.2, which ensures that all nodes in the graph are

considered, and from the fact that all the relationships among nodes are captured, as a

consequence of condition 2 in Def. 2.2.

2.3.2. Log Sharing Mechanism in Multiple Domains

To implement the job-flow based logging method, the agent in each node follows

two rules as discussed in subsection 2.1.2. First, the agent logs a partial path of the job

that includes the direct predecessor and direct successor nodes. Second, each agent shares

the collected information obtained at its node with other agents based on the stated

accountability policy. An accountability policy specifies the exact accountability

information to be collected, as we will discuss in Section 2.5. This approach, referred to

as graph-based log sharing mechanism, is highly decentralized, in that no single agent

keeps track of the whole job-flow. In other words, the agents maintain complete view of a

job as a group, without generating a large amount of overhead at a single node.

Operationally, each agent keeps a cover-record that shows the relation between

the job, or a portion of it, in its node (namely, the subject node) and the ones allocated at

direct predecessor and/or direct successor nodes (object node). The cover-record

maintains the local view of the whole graph in the job-relation information. The agent

generates a cover-record when specific changes in a job state occur. Examples of such

states as supported by Globus Toolkit [18] are pending, active, suspended, completed. For

instance, when the job moves into a pending state, the corresponding cover-records are

generated in each node as shown in Figure 2.5.

21

Handle 3f7b3dcf

JobId job1

SP1

Job

relation

{job1-a, {job1-b,
RP1} RP2}

TS
2010:01:03:

11:31:56

Actions queued

Handle 3f7b3dcf

JobId job1-a

Job

relation

RP1

{job1, SP1}

TS
2010:01:03:

11:32:22

Actions queued

Handle 3f7b3dcf

JobId job1-b

Job

relation

{job1, SP1}

{job1-b-1, CN1}{job1-b-2, CN2}

RP2

TS 2010:01:03:11:32:37

Actions queued

Handle 3f7b3dcf

JobId job1-b-1

{job1-b, RP2}

Job

relation

CN1

TS
2010:01:03:

11:32:43

Actions queued

Handle 3f7b3dcf

JobId job1-b-2

Job

relation

{job1-b-2, CN2}

CN1

TS
2010:01:03:

11:32:53

Actions queued

Handle 3f7b3dcf

JobId job1-b-2

Job

relation

{job1-b-2, CN1}

CN2

{job1-b, RP2}

TS 2010:01:03:11:32:59

Actions queued

Figure 2.5 Cover-records for Job-graph of Figure 2.3 When a Job Is

Submitted. – Clockwise from Upper Left, (a), (b), (c), (d), (e), and (f)

Merging the local views represented by cover-records results in a whole graph. The job-

graph is a single rooted graph structure, and the root node is the job entry point (i.e., the

service provider or gateway where the job is submitted). The job entry point is the natural

root since it stores at first the job record. When the whole graph structure is to be

completed for a split or forwarded job, the agents relay job information to their father

nodes, so that the agent at the root node is able to assemble the whole job information of

a job-graph. The agent at each node is responsible for forwarding the job and/or resource

information collected locally to the predecessor node. When the node does not have a

child node in the cover-record (e.g., nodes in Figure 2.5-(b), (d), (e)), the agent at the

node just sends the resource related data. However if there are successor nodes for the

subject node, like in the examples in Figure 2.5-(c), (f), the agent is in charge of

collecting data that its successor nodes received or collected. Finally the agent at the root

node, SP1 in Figure 2.5-(a), is able to collect all accountability data.

22

2.4. Guaranteeing privacy and non-repudiation

One of Internet2 working groups [23] for Shibboleth has implemented two

methods for implementing handles in the transactions. These are the

SharedMemoryShibHandle [27] and the CryptoShibHandle. Shibboleth Single Sign On

(SSO) Service generates the handle, which is opaque, transient identifier associated with

the authenticated user, and then stores the handle and local user name corresponding to

that handle at cache memory. This handle is then used to request all available attributes

for the user referred to by this handle to the user’s home organization. To request a user’s

attributes the Shibboleth daemon at the SP sends the same handle it received from the

user. Between the IdP and SP, the following SAML [25] authentication assertion which

contains the NameIdentifier [28] is used. In a SAML, the IdP creates a NameIdentifier

and embeds it in an authentication assertion; SP include the NameIdentifier in the SAML

assertion to request to IdP.

With the handle received from the SP, Attribute Authority (AA) at the IdP verifies

whether the handle is recently generated by the SSO Service and to which user it refers.

In general, the user’s actual identity is hidden outside of the home organization by

explicitly referring to this handle. The randomness of handles is good for privacy since

neither SP nor RP can determine real user’s identity from handles. Handles are always

unique for every individual Shibboleth transaction across SPs. These identifiers have a

one-time use semantics since they are kept in a cache and then terminated after being

used to search a local user and thus providing the user’s attributes to the requesting SP.

Instead of storing the handle at cache memory, with the cryptographic scheme, we

are no longer to keep the handle in the cache memory at IdP side. This is another

implementation of handle, which is called CryptoShibHandle provided by Shibboleth. In

CryptoShibHandle, the local user name and a random string are encrypted directly into

<saml:Subject>

Format=”urn:mace:shibboleth:1.0:nameIdentifier”

NameQualifier=https://idp.example.org/shibboleth>

3f7b3dcf-1674-4ecd-92c8-1544f346baf8

</saml:NameIdentifier>

Figure 2.6 SAML Assertion Containing Handle

23

the handle value. Therefore it does not require keeping a state at the IdP at the expense of

using a symmetric key.

In accountability system where all handles should be kept both at the IdP and at

the SP to determine the real user identity from the handles, the first method is not

appropriate because if the number of users in an organization is high, the handles to be

created should be multiplied by the number of job requests and keeping all handles in

caches or secondary storages all the time is very expensive.

Although the CryptoShibHandle satisfies issues both about privacy and memory

usages, it does not satisfy non-repudiation. The term, non-repudiation crypto-technically

means a way to provide proof of the integrity and origin of action [29], which can be

verified by any third party. It is an important property of accountability to protect against

false denial of a certain action. However there is no way to verify that the user is the real

identity who is claimed to be when using CryptoShibHandle. While the Shibboleth does

not specify the authentication method adopted by the IdP, we propose that Public Key

Infrastructure (PKI) should be used to give a medium to guarantee non-repudiation to the

system. When authenticating a user in PKI, the web server verifies the user at first by

sending a nonce, which is a random string, and then by receiving the encrypted nonce by

user’s private key. Authentication is completed when decrypting the received encrypted

nonce with a public key, which is embedded at the certificate, and then matching the

original nonce with the decrypted nonce. The IdP should have an additional component to

encrypt user’s unique identity such as Distinguished Name (DN), email address, etc.,

both with encrypted and plain nonce for a handle. The handle is as follows.

Handle = EIdP’s symmetric key (local User’s identity + EUser’s private key(nonce) + nonce)

If an intentional or unintentional misuse of the resources is detected, the

accountability agent requests IdP with the handle for claims. The IdP can identify real

user by decrypting the handle with its symmetric key and verify that he/she is who

requested the service to the SP, through the user’s signature. Since the nonce, which is

encrypted by the user’s private key, is given in the handle, IdP can easily verify the user’s

24

SP

CA
5. EIdP’s symmetric key

(Id+Euser’s private key(nonce)+nonce)

1. cert:

Ek(Id+user’s pub. key)

2. cert

3. nonce

4. Euser’s private key(nonce)

IdP

Webserver

Figure 2.7 Job Contract Publication Process

identity by matching the plain string nonce with the one decrypted by user’s public key.

If they match, the user is not able to deny his/her past actions.

In this mechanism, IdP does not need to keep nonce information since it is already

included at handle, and users’ identity information is protected by the IdP’s symmetric

key against SP/RP. The malicious user cannot deny his/her malicious action conducted as

identity in the handle because no one except him/her can know his/her private key that

encrypted the nonce. Thus additionally malicious IdP cannot forge the nonce and

Table 2.1 Symbols Used in the Specification of Actions

Name Symbol Description

Agents A is the set of accountability agents. Each agent a ! A

is uniquely identified by combination of agent id

and node location

States S is the set of possible states a job can assume

Data DS is the set of possible data items to collect. It is

partitioned into three subsets, one for each possible

data type

Access Control Data DSac subset of DS that collects access control data

Resource Data DSres subset of DS that collects resource related data

Job Data Set DSjob subset of DS that collects job related data

Repository Rep denotes the storage repository where accountability

data can be located

T T Temporal expressions, specified as [30][31]

25

encrypted nonce by generating another private key to claim non-malicious user since IdP

cannot modify user’s certificate where the user’s public key exists.

2.5. Accountability Policy Specification

Accountability policies specify what to track and when, and more importantly

how each agent has to coordinate with other sites' agents. In this section we introduce a

high-level representation of such policies. Policies are expressed by actions, capturing the

main activities of an agent.

2.5.1. Actions’ Representation

We model the agents' basic actions using seven expressions. The main symbols

Job processing Job flow Data

main steps

Job executed

Job queued

Job started

Job pending

Job submission

Authorized

Job processed

Job created

Job completed Job aborted

User name, authentication

token, authorization token,

Authentication policy,

authorization policy, IP

address, IdP id, SP id

Job id,

Program used, Platform,

Server where the job is

created, Time stamp,

Checkpoint

Sub jobs id,

Sub jobs location, Resource

usage (CPU-Cycle, Memory),

Time elapsed,

Process id

Job split Sub jobs id,

Parent job id

Files accessed,

created/modified

Figure 2.8 Job Flow and Corresponding Accountability Data

26

used for our expressions are listed in Table 2.1.

Actions describe the agents' operations to be executed, and may or may not relate

to jobs. When jobs are involved, agent’s actions are also influenced by the job state,

which changes over time, from the creation to the completion (successful or abnormal).

The set of states that we consider are denoted as S. A generic list of possible states is

provided in Figure 2.8
4
.

Actions can be of seven different types, and are defined as presented in Table 2.2.

Detailed descriptions of each type are as follows.

collect_job_data(x, state, data_set, storage): x denotes an agent and takes values from A

; state denotes a set of job state and takes values from S ; data_set denotes the set of data

to be collected; storage denotes the data repository Rep where the collected data have to

be stored.

This type of action specifies the information that agent in node has to collect for

all jobs locally processed. Note that the mandatory element to be collected for all job

actions is the job-id, which is fundamental for binding the job with its data. The exact

data to be possibly retrieved changes according to the state of the job at the time of

collection. When several state values are listed in the same action, the semantics is that

the action is triggered when the job enters one of these states. Intuitively, some states

imply others. For example, if a job is queued, it means that it has been already submitted.

However, the action should occur only when the specified state is reached. As shown in

Figure 2.8, the state can be expressed at different granularity levels. A coarse grained

expression may only consider the executing state of job while a fine-grained one may

differ among the various job processing steps. We assume data collection to be an atomic

operation with respect to the job state. Agents collect the data available upon job

transition from one state to the subsequent one, with the obvious exception for terminal

states.

collect_resource_data(x, data_set, time_constraints, storage): x denotes an agent and

takes values from A; data_set denotes the set of data to be collected and takes values

4
Specific transition state diagrams can slightly differ depending on the specific job type, whether it is a

computing-intensive job or a long-running one.

27

from DSac (DSres ; time_constraints denotes a temporal expression and takes values in T;

storage denotes the data repository Rep where the collected data have to be stored.

The second type of action specifies the information that has to be collected for a

resource according to the temporal constraints specified in time_constraints;

time_constraints is a compound temporal expression, specifying both a periodic

expression and the retention time, to mandate respectively how often the data needs to be

collected and for how long has to be maintained. Periodic and temporal expressions are

expressed using formalism proposed in [30][31].

send_job_data(x, agent_job_relation, state, data_set, job_id): x denotes an agent and

takes values from A ; agent_job_relation denotes agents who will receive values from A ;

state denotes a set of job state and takes values from S ; data_set denotes the set of data

to be collected and takes values from DSjob ; job_id denotes job_id and takes values from

DSjob

In order to build a partial view of the job-graph, agents at each node should send a

job-relation information to the node to where the job flows.

receive_job_data(x, agent_job_relation, state, data_set, job_id): x denotes an agent and

takes values from A ; agent_job_relation denotes agents who will send values to A ; state

denotes a set of job state and takes values from S : data_set denotes the set of data to be

collected and takes values from DSjob ; job_id denotes job_id and takes values from DSjob

In order to build a partial view of the job-graph, agent in each node should receive

a job-relation information from the node from where the job flows.

request_job_data(x, agent_job_relation, data_set, job_id): x denotes an agent and takes

values from A; agent_job_relation denotes agents to which request will be made by x ;

data_set denotes the set of data to be collected and takes values from DSjob ; job_id

denotes job_id and takes values from DSjob

The agent of the root node in a job-graph can trace every traversal of the job

across the domains as if every grid node exists in the domain local to the root node. To do

this, the root node needs to request data to agents located at a job-graph to ask forwarding

their collected data. Agents requested this action would repeat requesting job data to

successor nodes until all terminal nodes are reached.

28

forward_job_data(x, requester, data_setcombined, job_id): x denotes an agent and takes

values from A; requester denotes agents who requested the values; data_setcombined

denotes the set of data to be collected and takes values from DSjob (DSac (DSres ; job_id

denotes job_id and takes values from DSjob

The agents requested by the root node or the predecessor node for sending data,

are responsible for forwarding the collected data to the requester.

combine_job_data(x, agent_job_relation, data_setcombined, job_id): x denotes an agent

and takes values from A; agent_job_relation denotes agents who will receive values from

A ; data_setcombined denotes the set of data to be collected and takes values from DSjob (

DSac (DSres ; job_id denotes job_id and takes values from DSjob

To build a complete view of the job-graph, agents at the root nodes need to collect

overall information of a job. Before forwarding data, an agent combines collected data

obtained from successor nodes with the locally collected data.

The following is an example of actions. In our analysis and examples, we

consider the two traditional types of high performance computing job; computations and

data transfers.

Example 2. The following action specification states that agent AA@Purdue at Purdue

University will collect user's handle, job_id, process_id, and time stamp when a job is

either transferred or completed.

collect_job_data(AA@Purdue, {Transferred, Completed}, {handle, job_id, process_id,

timestamp}, purdue_db)

Next actions specify the collection of the resource data associated with agent

AA@Purdue to be executed every week day once an hour. Following we show examples

of action speci!cations for sending job data.

collect_resource_data(AA@Purdue, DATA, Week+{2,...,6}+1h, purdue_db)

DATA:={CPU cycle, memory consumption, network bandwidth}

send_job_data(AA@Purdue, AA@B-State, completed, {}, job_id)

receive_job_data(AA@Purdue, AA@C-State, submitted, timestamp, job_id)

29

Table 2.2 Action Specification

Action Type Arguments Semantics

collect_job_data
(x, state, data_set,

storage)

agent x collects data in data_set

about job_id, where job_id is a

mandatory element in data_set,

when job_id reaches a state

among the ones appearing in state

and stores it at repository, storage

collect_resource_data
(x, data_set,

time_constraints, storage)

agent x collects data in data_set at

repository, storage according to

the temporal time constraints,

time_constraints

send_job_data
(x, agent_job_relation,

state, data_set, job_id)

agent x sends data in data_set to

agents that belong to

agent_job_relation for a job,

job_id when the job state turns to

state

receive_job_data
(x, agent_job_relation,

state, data_set, job_id)

agent x receives data in data_set

from agents that belong to

agent_job_relation for a job,

job_id when the job state turns to

state

request_job_data

(x,

agent_job_relation,

data_set, job_id)

agent x requests data in data_set

to agents that belong to

agent_ob_relation for a job,

job_id

forward_job_data

(x,

requester,

data_setcombined, job_id)

agent x forwards data in

data_setcombined to agents for a job,

job_id

combine_job_data

(x,

agent_job_relation,

data_setcombined, job_id)

agent x combines data forwarded

from agents that belongs to

agent_job_relation into

data_setcombined for a job, job_id

Actions can be combined and merged in case they are redundant. In order to

check for redundancy, actions need to be expressed in a minimal, also called canonic,

30

form. We say that an action is in a canonic form if it only conveys one value for each

possible input parameter, excluding the data_set parameter.

Redundancy is defined as follows. In the definition, A denotes an action, and let

A.par denote the parameter name in A and let A.parval denote the corresponding values.

Definition 2.3 (Redundant actions). Let A and A' be actions in a canonic form. We say

that A is redundant with respect to A' if

! A and A' are of the same type;

! "A.par' s.t. A.par = A'.par'

! and A.parval=A'.par'val and A.data_setval " A'data_set'val'.

Example 3. Consider the following canonic actions.

(1) collect_job_data(AA@Purdue, Completed, {handle, job_id, process_id, file_name,

timestamp}, purdue_db)

(2) collect_job_data(AA@Purdue, Completed, {job_id, file_name, timestamp},

purdue_db)

Since {job_id, file_name, timestamp}) {handle, job_id, process_id, file_name,

timestamp} (2) is redundant with respect to action (1).

Redundant actions can be eliminated – action (2) of Example 3 is eliminated. A

set of non-redundant actions mandates a protocol for agents to execute. We define such

protocols as action expressions.

Definition 2.4 (Action expressions). Action expressions (AE) are defined recursively as

follows:

! All actions defined according to the specification of Table 2.2 are action expressions.

! If A and A’ are action expressions, then the set AE={A, A’} is an action expression.

Action expressions do not mandate an execution order. However some of action

expressions are meaningful only if executed in a certain sequence. For example, if one

type of action expressions is of forward_job_data, then the action expression should also

contain a combine_job_data, i.e. expressed as (forward_job_data # combine_job_data).

Other examples are as follows (send_job_data # collect_job_data); (request_job_data

send_job_data).

31

2.5.2. Accountability Policies

The accountability policies are of two types: local and shared. The two types are

the result of the different strategies that an agent can adopt. We recall that these

correspond to the job-flow based and grid-node based strategies. Policies local to a given

location capture data as required by the grid-node based approach. By contrast, shared

policies apply to the job-flow based approach, and specify which job information has to

be sent or received upon job change of state, from an agent.

An abstract representation of the policies is provided in Figure 2.9. The policies

are actually encoded using XML [32]. Such encoding is represented in Appendix A.

The local policy shown in Figure 2.9-(a) specifies that the agent’s action,

COLLECT-RESOURCE-DATA must be executed in order to collect resource data when

the job is located at head node. The shared policy reported in Figure 2.9-(b) specifies

which data elements (handle, jobid, node-id, subjob-id, subjob-node-id, authentication-

token, access-control-decision, access-control-policy, process-id, and timestamp) have to

be collected by execution of the agent’s action, COLLECT-JOB-DATA, when the job

state becomes Pending. The policy also specifies that agents have to send (agent’s action,

SEND) the required data (handle, jobid, node-id, and timestamp) to sub-job’s destination

when state changes to Active. The elements to send according to a shared policy are

crucial in order to generate the cover-record. The handle is the temporary identifier

generated at the IdP or entry point and unique for each job. Since the handle keeps a

direct connection to a real user’s identity, it is valuable for accountability. When a job

travels across multiple domains, the job changes its name. Thus, for the shared-policies

defined according to job-flow based approach, the local job identifier is considered an

important element. Additionally source information (node-id) from which sub-jobs are

sent is of interest for constructing the job-relation graph on cover-record. Finally

timestamp is also important element for both shared and local policies to specify when

the action is performed. In addition to the elements shown in the example, the policies

may also include the retention-time specifying for how long the collected data should be

kept.

32

<?xml version=”1.0” …?> <?xml version=”1.0” …?>
<AccA_Policy> <AccA_Policy>
<HeadNode>

<COLLECT-RESOURCE-DATA>

<data>jobid</data>

<data>ctime</data>

<data>qtime</data>

<data>etime</data>

<data>cput</data>

<data>mem</data>

<data>vmem</data>

<data>walltime</data>

<data>cpu</data>

<ts>timestamp</ts>

</COLLECT-RESOURCE-DATA>

</HeadNode>

</AccA_Policy>

<Pending>

<COLLECT-JOB-DATA>

<data>handle</data>

<data>jobid</data>

<data>node-id</data>

<data>subjob-id</data>

<data>subjob-node-id</data>

<data>authentication-token</data>

<data>access-control-decision</data>

<data>access-control-policy</data>

<data>process-id</data>

<ts>timestamp</ts>

</COLLECT-JOB-DATA>

</Pending>

<Active>

<SEND>

<data>handle</data>

<data>jobid</data>

<data>node-id</data>

<ts>timestamp</ts>

</SEND>

<RECEIVE>

<data>subjob-id</data>

<data>subjob-node-id</data>

</RECEIVE>

</Active>

</AccA_Policy>

Figure 2.9 Abstract Representation of (a) Local Policy, and (b) Shared Policy

The shared policy consists of essential accountability and specified

accountability. The essential accountability is the minimum level of accountability

required to complete a cover-record. The data elements of essential accountability are

handle, jobid, node-id, timestamp, subjob-id, and subjob-node-id in the example of

Figure 2.9. The specified accountability is the accountability level defined to collect

specified data in the shared policy. The data of specified accountability are handle, jobid,

33

node-id, subjob-id, subjob-node-id, authentication-token, access-control-decision,

access-control-policy, and process-id from the Figure 2.9.

We abstract from the underlying policy encoding by using the following simple

formalism for the two policy types.

Definition 2.5 (Accountability policies). An accountability policy is an expression of one

of the following form:

! A shared policy shared_policy is an action expression AE = {A1,...,Am}, specified

according to Definition 2.4, such that *i ! [1, m], *j, k ! [1, n], j"k, Ai.Sitej = Ai.Sitek

! A local policy local_policy (among n organizations) is an action expression AE =

{A1,...,Am}, specified according to Definition 2.4, such that "i ! [1, m], *j, k ! [1, n],

j"k, Ai.Sitej " Ai.Sitek

In other terms, accountability policies are action expressions speci!ed for the

same agent, as speci!ed in the de!nition by the condition on the parameter x of actions in

AE. Local policies have the additional constraint of being expressed only in terms of

actions expressing data collection. By contrast, shared policies may include any

combination of actions. If collection actions are included, the intended meaning is that

the data is shareable with other agents upon request.

Shared and local policies are specified according to the grammar in Figure 2.10

We use the Backus-Naur notation to describe the syntax of the accountability policy

language. Our grammar mainly consists of action_specification, Acc_data, which is

job_flow_based or grid_node_based, and terminal variables such as state, names of data

supported in the languages.

We give an example of shared and local policies in what follows.

Example 3. A job is submitted to Purdue University SP and then assigned for execution

to the RPs, A-state University, and B-state University. Purdue agrees to send job-relation

data (handle, job-id, subjob-id, RP-id, timestamp) to A-state and B-state when the

processed job enters into active state. Additionally, A-state locally collects resource data

(memory consumption, cpu time, network bandwidth, disk bandwidth) every day during

the week.

The policies for such scenario are as follows:

34

<policy_set> := <policies>

<policies> := <policy> <policies> | <policy>

<policy> := <action_specification> | <representatives>

<representatives>:=<Acc_data> <symbol> <representatives> | <Acc_data>

<Acc_data> := <job_flow_based> | <job_assigns> | <strings> |

<boolean> | <pair> | <grid_node_based>

<pair> := (<job_type><symbol><state>)

<resources> := <resource> <period> | <constraints>

<state> := submitted | created | started | completed | pending | aborted |

queued | suspended | active | done

<job_type> := computational | transfer

<job_flow_based> := handle | job_id | process_id | executable | SP_id |

IdP_id | file_names | platform | timestamp

<grid_node_based> := memory consumption | CPU time |

network bandwidth | disk bandwidth | IP_destination | port

<constraints> := all_process | life_time | all_day | weekdays | weekend

<job_assigns> := SP_id ! job_id

<strings> := authorization_policy | usage_policy

<boolean> := authorization_decision

<symbol> := (AND) | (OR)

<period> := : NUM | null

Figure 2.10 Accountability Grammar in BNF

[Purdue]

shared_policyPurdue :=

send_job_data (agent@Purdue, agents_in_job_relationPurdue, active, dataSetactive, job-id)

collect_job_data (agent@Purdue, active, dataSetactive, DBPurdue)

agents_in_job_relationPurdue := agent@A-state (AND) agent@B-state

dataSetactive := handle (AND) job-id (AND) subjob-id (AND) RP-id (AND) timestamp

[A-state]

local_policyA-state :=

35

collect_resource_data (agent@A-state, dataSetlocal, time_constraintsA-state, DBA-state)

dataSetlocal := memory consumption (AND) cpu time (AND) network bandwidth (AND)

disk bandwidth

time_constraintsA-state := weekdays (AND) all.days

Example 4. (Continued from example 3) When the resource misusage (memory and

CPU) is found at A-state and reported to Purdue, Purdue requests accountability

information (handle, job-id, subjob-id, RP-id, timestamp, memory comsumption, CPU

time) both to A-state and B-state based upon the agreed contract.

The policies for such scenario are as follows:

[Purdue]

shared_policyPurdue :=

request_job_data (agent@Purdue, agents_in_job_relationPurdue, dataSetfail, job-id)

dataSetfail :=

handle (AND) job-id (AND) subjob-id (AND) RP-id (AND) timestamp (AND) memory

consumption (AND) cpu time

combine_job_data (agent@Purdue, agents_in_job_relationPurdue, dataSetcombined, job-id)

dataSetcombined := dataSetPurdue (AND) dataSetA-state (AND) dataSetB-state, dataSetPurdue :=

dataSetA-state := dataSetB-state

[A-state]

shared_policyA-state :=

forward_job_data (agent@A-state, agent@Purdue, dataSetfail, job-id)

combine_job_data (agent@A-state, $, dataSetA-state, job-id)

36

3. PROFILE-BASED SELECTION OF ACCOUNTABILITY

POLICIES

When a job is submitted to a node, the accountability agent starts collecting job-

related data based on the shared accountability policy. However, although the shared

policy specifies the data to collect, some nodes may not have the capability to comply

with this policy because of their own limitations, such as insufficient log information,

different software versions, and different applications, etc. The different nodes have also

different limitations in what they can collect depending on their role in the grid. For

example, if the shared policy enforces to collect an element that is only available at a

gatekeeper node, the compute node cannot comply with the policy.

Figure 3.1 Examples of Policy Conflict

Accountability Policy

“Collect Job id, Node id, Subjob id, Subjob node

id, Authentication token, access control policy,

Process id, cmd and Timestamp when a job is

submitted and Send Job id, Subjob id, Node id

to predecessor node(s) when a job is running…”

“cmd is not necessary

for this job’s

accountability…”

“I cannot collect

subjob id because no

application support to

find it…”

“access control

policy is not

available…”

N1 N2 N3 N4

job

37

An example in Figure 3.1 shows such conflict. When a job is submitted to a node

N1 and then executed at N4 via N2 and N3, the accountability policy in Figure 3.1 is

enforced at each node. Access control data such as the pertinent access control policy or

the outcome of its enforcement is also relevant information for accountability. This data

is generally collected at the first node to which the job is submitted, to grant or deny the

permission to use the grid resources. However if the policy that requires collecting access

control data is enforced at node N4, which does not involve access control, a conflict

arises. When the job is transported to N3 via N2 from N1, the policy requires collecting

sub-job id. However N3 cannot collect such data because there is no application to

support for collecting this data. As a result, N3 violates the policy and causes a critical

deterioration in accountability. When the job is fairly safe, but the node is logging too

much detailed monitored data, complex policy should be prevented. For example, in

Figure 3.1 if the job is transited to N2 from N1, the policy requires collecting cmd, that is,

a path and filename of the job to be executed as one of elements to collect in the node N2.

However, such detailed information is redundant for accountability in N2 because the

actual execution will be performed in N4.

What if the accountability policy to be shared is very simple such as “Collect Job

id, and Subjob id and Send them to Subjob’s destination”? This simple policy could lead

to insufficient accountability data, therefore resulting ineffective. In summary, as thesis

examples show, guaranteeing full accountability while addressing conflicting issues is

not a simple problem.

If a node cannot fully support the shared policy, it is still however desirable to

collect only mandatory data within its capabilities, satisfying the purpose of sharing

policy, rather than aborting the job. To this extent, each agent performs a selection

Accountability

Matcher

Profile

Matcher

Policy

Enforcement

System

JOB

Supporting

Elements

Profile

Policy

Authoring

Tool

Profile

Node

Figure 3.2 The Lifecycle of the Accountability Policies

38

process for an appropriate set of collectible data. This selection process plays an

important role in the design of an accountability policy that will be enforced at each node.

The accountability policy sets the level of accountability that indicates how much the job

and node is accountable by the policy. The higher the level of accountability is, the more

accountable it is considered to be. Such policy is influenced by the job’s level of potential

risk as well as the significance of the node with respect to the system.

The accountability agent that performs policy selection process is suited with two

logical components as shown in Figure 3.2. One is profile matcher and the other is

accountability matcher. In this Chapter, we focus on the policy selection process, that is,

on the tasks performed by these two matchers. These two steps are the most challenging

and interesting, while the other steps focus on the enforcement of the policies and are

common in other policy-based systems.

3.1. Profile Matcher

In grids, jobs are submitted with a description expressed in a job description

language [75]. Different types of schedulers provide different job description languages;

however, despite such heterogeneity, the description contents are very much the same

across the various types of scheduler. The job profile, specified by one of such job

description languages, contains information about how many processors and nodes are

requested for the job execution, how much running time or memory is required, where

the job is coming from, etc. The accountability agent transports this job profile from the

entry node to each node where the job or its sub-jobs are assigned or executed. Each node

is also characterized by a profile containing information about its hardware, software, and

network. The node’s profile is specified before jobs are submitted and it is not subject to

change. Thus, the agent uses the same node’s profile for all jobs. Examples of profiles for

job and node are shown in Figure 3.3.

The profile matcher, a component of the accountability agent, maintains two

metrics indicating how risky a job is and how important a node is. We refer to such

metrics as to risk factor and significance factor. The job that potentially consumes

computing resources by requesting a high number of CPUs or a huge amount of memory

and a node

39

Profile for Job A =

{

Type := “Job”;

SentFrom := “country A”;

NumberOfRequestedCPU := 660;

NumberOfRequestedNode := 300;

RequestedMemory := 24 GB;

InputFile := /home/wlee/input.txt;

WallTime := 720:0:0;

Project := “TG-AIG009382”;

}

Profile for Node X =

{

Type := “Machine”;

Role := “Gatekeeper”;

Name := “gk.rcac.purdue.edu”;

Disk := 160; // giga bytes

Memory := 4000; // mega bytes

LoadAverage := 0.098341;

Arch := “Intel Core 2 Duo”;

ProcessorSpeed := 2.16 GHz;

Premium := True;

}

Profile for Job B =

{

Type := “Job”;

SentFrom := “country Z”;

NumberOfRequestedCPU := 80;

NumberOfRequestedNode := 40;

RequestedMemory := 128 KB;

WallTime := 90:0:0;

Project := “TG-BWG009386”;

}

Profile for Node Y =

{

Type := “Machine”;

Role := “Compute Node”;

Name := “hn.rcac.purdue.edu”;

Disk := 140; // giga bytes

Memory := 1000; // mega bytes

LoadAverage := 0.022869;

Arch := “Intel”;

ProcessorSpeed := 1.28 GHz;

Premium := False;

}

Figure 3.3 Example of Profiles For a Job

and is submitted to a critical node, may be malicious and needs to be monitored more

closer than other jobs. The introduced risk and significance factors help classify how

much accountability data should be collected for a given job in a node. The risk factor is

a pair of an element from the attribute set of the job profile and its value. The value

specifies how much the element in that attribute of the job is risky. The values are

positive real numbers and are same through all nodes for consistent comparison. We

initially assume that if the job requests many resources and is submitted from potentially

dangerous sites as specified by the administrators, the job appears to be riskier than

others. The significance factor considers how important the node is, compared to other

nodes. If a node has a special and unique role such as authenticating users and

http:hn.rcac.purdue.edu
http:gk.rcac.purdue.edu

40

Risk factor for a Job =

{

Type := “Job”;

SentFrom := {

{“country A”, “country B”, “country C”} = 2,

{“country D”, “country E”} = 1.5,

Others = 1;}

NumberOfRequestedCPU := {

{701 ~ 1000} = 2,

{401 ~ 700} = 1.5,

{1 ~ 400} = 1;}

NumberOfRequestedNode := {

{301 ~ 500} = 2,

{101 ~ 300} = 1.5,

{1 ~ 100} = 1;}

RequestedMemory := {

{24GB ~ 32GB} = 2,

{4GB ~ 24GB} = 1.5,

{~ 4GB} = 1;}

IsInputFileRequired := {

“Yes” = 1,

“No” = 0;}

WallTime := {501 hr ~ 720 hr} = 2,

{171 hr ~ 500 hr} = 1.5,

{1 hr ~ 170 hr} = 1;}

}

Significance factor for a Node =

{

Type := “Machine”;

Role := {

“Gatekeeper” = 2,

“Service Provider” = 1.8,

“Head Node” = 1.5,

“Compute Node” = 1;}

LoadAverage := {

{0.08 ~ 0.1} = 2,

{0.03 ~ 0.0799} = 1.5,

{~ 0.0299} = 1;}

Quality := {“Premium” = 1,

Others = 0;}

}

Figure 3.4 Example of Risk Factor and Significance Factor

authorizing user’s requests or scheduling jobs to CNs, such node should be considered

more significantly than the ones with a less critical role such as providing only computing

cycles or memory. Even for the same role, if a node deals with more jobs than others, the

node should be considered more significantly and thus be more accountable than the

others. The value of the significance factor can also vary based on the agreement of

administrators. The higher the value is, the more accountable the node should be. The

range of the factor can span to any size and the classification is determined based on the

agreement by administrators. A diverse range gives more fine-grained accountability

since it can result in different levels of accountability. The example about risk factor and

!

!

! !

41

significance factor in Figure 3.4 shows two to four classes of the profile for each attribute

having values between 0 and 2.

The requested level of accountability for a job, that is, how much detailed data has

to be collected for a job, is set based on the job itself and the node profiles. In order to

determine such level, the attributes in the job and node profiles are converted into risk

and significance factors. The overall level is calculated by multiplying the two metrics. If

a job that according to its profile appears to be at high risk is submitted both to a critical

node and to a non-critical node, the resulting risk value for this job should take into

account the impact on these two nodes.

For example, if a job with a risk factor of 2 is submitted to two different nodes

N1, N2, whose significance factor is 1 and 2 respectively, then the risk that one incurs

when submitting the job to N2 is two times higher than the risk of submitting the job to

N1. Likewise, if two different jobs with risk factor equal to 1 and 2, respectively, were

submitted to the same node, the job whose risk factor is 2 would have twice as large

combined risk as that of 1. From these observations, we can assume that the significance

factor and risk factor are two independent factors that can thus be linearly combined to

obtain combined risk. We define this combined risk as the requested accountability. The

requested accountability is proportional to the combined risk, which means the higher the

combined risk is, the higher the requested accountability has to be. Therefore the

accountability requested for a job submitted to a node can be described as follows.

Requested accountability = ReqAcc = c "X Yj (3.1)
i

i, j

Normalized requested accountability = ReqAcc / "PiQj (3.2)

i, j

where c
5

is a coefficient, 1 " i " n , 1 " j " m , X is the set of metric elements in the

job’s profile, Y is the set of metric elements in the node’s profile, P is the set of highest

metric elements in the job’s profile, Q is the set of highest metric elements in the

node’s profile, n is the number of elements in X and P, m is the number of elements in

Y and Q

We consider coefficient as 1 for simplicity from now
5

42

The highest value in the range of the requested accountability levels is obtained

by the multiplication of the highest risk factors by the highest significant factors, and the

lowest value is from low risk factors by least significant factors. Examples of requested

accountability for jobs A and B at Node X and Y of Figure 3.3 are given below.

Example 1. Consider Job A at Node X. Requested

accountability=[{2,2,2,2,1,2}*{2,2,1}]/[{2,2,2,2,1,2}*{2,2,1}]=((2+2+2+2+1+2)*(2+2+

1))/((2+2+2+2+1+2)*(2+2+1))=1. Job A that has many highly risky factors is submitted

to a node classified as most significant node, i.e. Node X. By equation 3.1 and 3.2, the

calculated risk value requires a highest accountability level; thus when Job A is submitted

to Node X, the accountability agent located at Node X needs the fully requested

accountability, which is the highest level of accountability for Job A.

Example 2. Consider Job B at Node X. Requested

accountability=[{1,1,1,1,0,1}*{2,2,1}]/[{2,2,2,2,1,2}*{2,2,1}]=((1+1+1+1+0+1)*(2+2+

1))/((2+2+2+2+1+2)*(2+2+1))=0.455. Even though Node X is significant, because Job B

does not have highly risky factors, only 0.455 worth of accountability level is requested.

Example 3. Consider Job B at Node Y. Requested

accountability=[{1,1,1,1,0,1}*{1,1,0}]/[{2,2,2,2,1,2}*{2,2,1}]=((1+1+1+1+0+1)*(1+1+

0))/((2+2+2+2+1+2)*(2+2+1))=0.182. Since Job B in Example 2 is submitted to a less

significant node (i.e. Node Y) than Node X, the risk is lower than the one obtained in

RP2

CN1 CN2

job1

job1-b job1-a

job1-b-2
job1-b-3

job1-b-1

RP1 RP2

CN1 CN2

SP1 job1

job1-b job1-a

job1-b-2
job1-b-3

job1-b-1

RP1

SP1

Figure 3.5 (a) An Incomplete Job-graph Due to Insufficient Accountability

(b) The Reconstructed Job-graph

43

Example 2. The agent at Node Y needs the minimum requested accountability, which is

the lowest level of accountability for Job B.

3.2. Accountability Matcher

Since each node has different constraints for collecting elements specified in a

policy, the level of support for accountability is different from node to node. Here, we

define the level of accountability that can be supported by each node as the supported

accountability. While the requested accountability is generated for each job, the

supported accountability is statically defined for each node. Definitions of accountability

levels and related terminologies are listed in Table 3.1.

By integrating and coordinating the requested and supported accountability, the

accountability matcher selects the best policy based on the shared accountability. The

shared policy specifies the elements required for the agent to complete the cover-record

as introduced in Chapter 2. If these elements are not available at the node, then the agent

has insufficient accountability. Therefore, the cover-record cannot be created, thus

resulting in an incomplete job-graph (Figure 3.5-a). In such case, the node that gives

insufficient accountability is dangling in the job-graph and does not connect any

successor node. To reconstruct the job-graph, the agent in the dangling node sends all

information about the cover-record received from the direct predecessor node to the

direct successor nodes (See Figure 3.5-b for a reconstructed job-graph). For example, if

node-id is not available in CN2 and cannot be sent to CN1, the agent in CN1 cannot send

job1-b-3 to CN2 due to missing address of the node represented as node-id, thus resulting

in a lost connection. In this case, the agent in CN2 forwards {handle, ‘job1-b’, ‘RP2’, and

timestamp} received from RP2 to the agent in CN1, which is the direct successor of CN2

to reconstruct the job-graph. Though the connection between CN1 and CN2 for the job

‘job1-b-2’ is lost, the accountability for the jobs ‘job1-b-2’ and ‘job1-b-3’ is still

guaranteed because CN2 and CN1 are still connected to RP2 in the job-graph for the

‘job1-b-2’ and ‘job1-b-3’ respectively.

44

Table 3.1 Definitions of Terminologies Used by Matchers

Terminology Definition

Risk factor The degree that shows how risky a job is

Significance factor The degree that shows how important a node is

Price
The degree of importance in terms of accountability for

accountability data

Essential accountability
The minimum accountability level of shared policy

required to complete a cover-record

Specified accountability
The accountability level defined to collect specified data

in the shared policy

Supported accountability
The level of accountability that can be supported by a

node. The sum of prices put on elements

Requested accountability
Linearly combined risk of risk factor about a job with

significance factor about a node

In a significant node, applications such as grid middleware and job-schedulers,

that make the node significant, provide high possibility for collecting job-related

information. For example, in a gatekeeper where the Globus Toolkit (GT4) [18] is

installed, the agent can collect job status, node-id, and subjob’s id information directly

from Globus. In a head node where the job scheduling is performed, the agent can obtain

some useful accountability information, such as sub-job ids assigned at each CN, and

cmd from the scheduler’s log file. From this observation, it is thus clear that the

possibility of having sufficient accountability in a significant node is very high, while it is

low in a less significant node, such as a computational node. Thus the CN2 in Figure 3.5-

b has high probability that it is less significant node expecting a low accountability.

The first task of the accountability matcher is to compare the requested

accountability transmitted from the profile matcher with the supported accountability.

The supported accountability is computed by summing up numeric values put on each

collectible data element in a node. We define such numeric value as price, which means a

degree of importance in terms of accountability. The higher the value of the price is, the

more important the element is for accountability. There are several criteria to decide the

degree of importance of accountability for each element. First if the element is essential

to construct a job-relation, it has a high price because it provides provenance data

concerning the executed jobs, which is crucial information in accountability. Second, the

45

data obtained from the job-flow based strategy has higher price than elements collected

from grid-node based strategy. Tracing back a job and its action across various nodes is

one of important tasks of accountability system. Data obtained from multiple nodes in

job-flow based strategy fulfill this task better than data obtained in a fixed node under the

grid-node based strategy. Third data related to security such as authentication tokens, and

access control decision or policy has high price. Because for example, access control

determines which jobs are executed on the grid, access control decision is crucial to

determining if and why wrong decisions were made. Through the three criteria in the

specified order the unit price that is identical for all nodes, is put on the elements upon

agreement of administrators. The detailed process about determining the price for each

element is out of scope of this thesis. The goal of using price is to show a level of

accountability a node can support for requested accountability in a number.

Each node owns a list of elements that can be collected with a summed price.

When summing up the prices for supported accountability, a constraint is enforced. If any

of elements required to construct a cover-record for the original shared policy is not

supported, other elements besides these required elements cannot be summed up. This

constrains is to guarantee the essential accountability of the shared policy.

Table 3.2 shows examples of elements with different cases and prices, (A)

through (G), that a node can support. For example, if a node supports, only Handle, Job-

Id, {Subjob-Id, Subjob-node-Id}, and TS, which are the elements to satisfy the essential

accountability, the supported accountability of the node becomes 0.582 summed of all

priced values – case (B). For case (G), the accountability is fully supported. The range of

the supported accountability is the same as the requested accountability (i.e., Minimum

supported accountability = Minimum requested accountability = 0.182 < {Supported

accountability, Requested accountability} < Fully supported accountability = Fully

requested accountability = 1) so that the accountability matcher can compare them. For

each comparison between the supported accountability and requested accountability, the

shared accountability represented as bidirectional arrows (1) through (5) in Figure 3.7 is

compared again. Each arrow spans from the level of essential accountability (i.e., the left-

72

4
6

Add subtracted price
1

to

specified accountability

Does requested

accountability cover specified

accountability?

Remove subtracted price
2

from

specified accountability
Add subtracted price

3
to

specified accountability
Remove subtracted price

4

from specified accountability

Insufficient

accountability

Does a node support

essential accountability?

Does supported

accountability cover specified

accountability?

Does a node support

essential accountability?

Select policy with

essential accountability
Insufficient

accountability

subtracted price
1

= requested accountability – specified accountability

subtracted price
2

= specified accountability – requested accountability

subtracted price
3

= supported accountability – specified accountability

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Yes

Does requested accountability

cover essential accountability?

Select policy with

requested accountability Select policy with

supported accountability

Select Accountability Policy

Does a node support requested

accountability?

subtracted price
4

= specified accountability – supported accountability

Figure 3.6 Flow Chart Diagram for Selecting Shared Accountability Policy

47

most of the arrow) to the level of specified accountability (i.e., the right-most of the

arrow). Depending on the actual data being collected at the node, the size of the arrow

varies. For example, it can be smaller than requested accountability or supported

accountability like examples A-(1) and B-(1) in Figure 3.7 respectively. Or, the range of

the shared accountability is in between requested accountability and supported

accountability like examples A-(3) and B-(3).

In case that a requested accountability is fully supported (case A in Figure 3.7) in

the node, the requested accountability is selected as long as it covers the essential

accountability. This is the case A-(1) and A-(2) where the essential accountability is

satisfied by selecting the requested accountability. The difference between the requested

accountability (A-x) and the specified accountability of A-(1) is incorporated with the

price that should be added to the shared policy by increasing the specified accountability

to much of subtracted price. In case of A-(2), the difference between the specified

accountability and requested accountability (A-x) is also incorporated with the price that

should be removed from the specified accountability. This is because we only need the

requested accountability. The overhead that occurred by collecting data represented as the

price of such difference can be prevented.

If the essential accountability is not guaranteed due to the selection of policy with

the requested accountability as the case A-(3) in Figure 3.7, instead of the requested

accountability, the essential accountability is selected by the accountability matcher. In

this case, since selecting the policy with the essential accountability satisfies the

requested accountability, nothing is added or removed from the selected policy. For the

case, A-(4), even though the specified accountability is not supported, if the policy only

with the essential accountability is selected, the policy satisfies the requested

accountability, thus nothing is added or removed from the selected policy. When the

shared accountability has a range of accountability level such as A-(5) – i.e., essential and

specified accountability are not supported, the node is dangling in the job-graph and the

modified policy from the shared policy will be applied.

In the case of a node that cannot support the requested accountability (case B), if

the shared policy has the level of accountability with the range B-(1), selecting the policy

48

Table 3.2 Supported Accountability (Pr: price, ACL: Access Control, PID: Process ID,

TS: Timestamp, Attr: Attributes, cmd: file name and path of executable)

Handle
Node-

Id
Job-Id

ACL-

Decision

ACL-

Policy

Subjob-

Id

Subjob-

node-Id
PID

Job

State
TS

Auth

Token
Attr cmd

Supported

Accountability

Pr 0.091 0.1 0.091 0.075 0.075 0.1 0.1 0.075 0.025 0.1 0.093 0.025 0.05

(A) ! ! 0.182

(B) ! ! ! ! ! ! 0.582

(C) ! ! ! ! ! ! ! ! 0.7

(D) ! ! ! ! ! ! ! ! ! 0.807

(E) ! ! ! ! ! ! ! ! ! ! ! 0.882

(F) ! ! ! ! ! ! ! ! ! ! ! ! 0.907

(G) ! ! ! ! ! ! ! ! ! ! ! ! ! 1

with supported accountability satisfies the specified accountability as well as the essential

accountability. This selection makes the new shared policy close to the requested

accountability. If the shared accountability is in the range (case B-(2)), the selection of

supported accountability satisfies the essential accountability and specified accountability

to the level that the node can support (i.e., to B-x from the essential accountability). If the

essential accountability is not supported as in case B-(3),(4),(5), these cases become

insufficient accountability and the corresponding resolution technique is applied as

described above. This node will have the policy modified from the original shared policy.

The modified policy will have the same elements as the original one for the essential part

and will change SEND to FORWARD in Figure 2.9-b, without the need to collect data

since the data has already been received from the predecessor node. The following

examples show the selection process in terms of price.

Example 4. A profile matcher requests accountability at Node Z for Job C to be 0.85.

Assume that Table 3.2-F is the supported accountability at Node Z (i.e. supported

accountability = 0.907).

For case A-(1) in Figure 3.7: If the essential accountability is Table 3.2-B (i.e. 0.582)

and the specified accountability is Table 3.2-C (i.e. 0.7), which is less than the requested

accountability (i.e. 0.85), the policy with 0.85 is selected and the elements of which

whole price is the difference between A-x (0.85) and the specified accountability (0.7)

(i.e. 0.15 = 0.85 – 0.7) should be added to the shared policy. In this case, candidates that

can be added are selected from the supported elements, i.e., from the list Table 3.2-F.

49

Thus {“ACL-Decision”, “ACL-Policy}, or {“PID”, “Attr”, “cmd”} priced altogether

0.15, could be added to the shared policy.

For case A-(2) in Figure 3.7: If the essential accountability is Table 3.2-C (i.e. 0.7) and

the specified accountability is Table 3.2-E (i.e. 0.882) that is greater than requested

accountability (i.e. 0.85) and less than supported accountability (i.e. 0.907), then the

policy with 0.85 is selected and the elements of which whole price is the difference

between the specified accountability, A-(2) (i.e., 0.882) and A-x (0.85) (i.e. 0.032 = 0.882

– 0.85) should be removed from the shared policy except elements in Table 3.2-C. In this

case, because there is not an element that exactly matches to 0.032 and the specified

accountability is lower than the supported accountability, the highest priced element out

of ones smaller than 0.032 is chosen to be removed such as {“Attr”} priced 0.025.

For case A-(3)(4) in Figure 3.7: If the essential accountability (i.e., Table 3.2-E) and

specified accountability of the shared policy are greater than the requested accountability

(i.e., 0.85), the policy with the essential accountability (i.e., 0.882) is selected.

Accreq < Accsup Accsup < Accreq

x

(5)

(3)

(4)

(2)

(1)

A

•
•

•
•

y

(4)

(1)

(2)

y

(5)

(3)•

x

•

B

Selection of accountability•
Insufficient accountability

Essential accountability Specified accountability

Figure 3.7 Cases of Comparisons with Shared Accountability

50

4. VULNERABILITIES IN GRID COMPUTING SYSTEMS

Because of the scalable and dynamic nature of the grid, and the lack of grid-

specific security protection mechanisms, grid systems suffer from several vulnerabilities.

Vulnerabilities can be found at each grid layer and can be exploited by an intruder to

bypass the system’s authentication or authorization, or by malicious user’s code

submitted as part of a grid job. Attackers can also take advantage of grid resources to

launch distributed denial of service (DDoS) attacks, or to crash one of the grid

components, resulting in the grid outage. If, for example, a head node of a cluster where

the actual grid job scheduling is performed is attacked and cannot execute its normal

functions, all computing resources connected to that head node will not be available to

legitimate users. If the web-services running at gatekeeper of a RP are denied due to a

DDoS attack, the legitimate users’ requests to that gatekeeper cannot be transferred to

other gatekeepers or to the scheduler. Attackers can also target servers located outside the

grids such as mission-critical government websites or popular commercial hosts.

In this chapter an overview of the most common grid vulnerabilities are presented. The

following sections describe possible or known vulnerabilities, classified according to

their locations in the grid layers from the low to the high layers.

4.1. Vulnerabilities of the Connectivity Layer

GSI [11] provides a set of fundamental security services that are specifically

designed to support grids. GSI relies on certificates to handle authentication [11]. In a

GSI certificate, there are four important elements: a subject name; a public key that

belongs to the subject; the identity of a certificate authority (or CA) that has signed the

certificate; and digital signature of the CA [11]. If the CA that signed the certificate is not

51

Attacker

1. Request

certificate

2. Sign,
& issue

Certificate

B Certificate

C

Certificate

D

3. Create rogue CA

certificate, copy

signature

Certificate
Authority

Rogue

Certificate Authority

Certificate

B

4. Sign, & issue

Rogue HostGenuine Host

Certificate

D
Certificate

C
Certificate

A
Certificate

C Certificate

D

5. Send certificate

Verify Verify 6

Certificate

D

Certificate

C

Certificate

A

Certificate

B

CA root certificate

Host certificate

Rogue CA certificate

Rogue Host certificate

Figure 4.1 Attack Scenario by MD5 Collision

genuine but has a real signature of the genuine CA, a malicious user can manipulate a

GSI certificate signed by that CA. Stevens et al. [33] report that it is possible to hash two

different messages to the same MD5 hash value by MD5 cryptographic hash function.

Using the collision in the MD5 hash function in digital signatures that can lead to an

attack against the GSI, the rogue CA creates a rogue CA certificate. This certificate is

trusted and accepted by all common hosts providing grid resources since it bears a valid

signature singed by the genuine CA.

Figure 4.1 shows an attack scenario that exploits the MD5 weakness discussed in

[33]. The main steps are as follows.

1. An attacker who wants to exploit grid resource searches a CA that uses the MD5

hash function to generate the signature of the certificate and requests a host certificate if

such CA is found.

2. A commercial CA signs the legitimate host certificate and issues a host certificate

(the gray one tagged as B).

52

3. The attacker creates a rogue CA certificate (the blue one tagged as C), and then copies

the signature obtained in step 2 to the rogue CA certificate. Therefore certificate C

appears as being issued by the CA though the CA has never signed it. This rogue CA

certificate is an intermediary CA certificate that can be used to sign other host certificates

the attacker wants to issue. Because MD5 hashes both the legitimate and the rogue

certificate to the same signature, the digital signature signed by the genuine CA can be

copied to the rogue CA certificate resulting in making the rogue CA certificate remain

valid.

4. The rogue CA creates a rogue host certificate that bears the legal host’s identity but

another public key, and signs the created certificate to issue to a rogue host.

5. If two hosts have certificates, and they trust the CAs that signed each other’s

certificates, then the two hosts mutually authenticate. Before the mutual authentication is

carried out, the rogue host sends the issued rogue host certificate with the rogue

intermediary CA certificate to the genuine host to make the genuine host verify the issued

rogue host certificate from the rogue intermediary CA certificate.

6. The genuine host verifies the signature of the rogue host’s certificate with the rogue

CA certificate. The signature of the rogue CA certificate is verified with CA root

certificate. The genuine host is therefore lured into trusting the rogue host.

After successfully compromising the host, the attacker can crack the PEM pass-

phrase that protects the user certificate in order to access grid resource by using a

publicly known tools.

The potential attack exploiting MD5 vulnerability could occur in any Globus

[18]-enabled grid system. Globus Toolkit [18], the de-facto standard for grid middleware,

is a web-service container for grid services. It provides protocols and services spanning

multiple layers of the grid. Globus Toolkit 4.2.1, 4.0.8, and earlier versions use MD5-

based signatures in proxy certificates for authentication. In addition, gLite [34], which is

another grid middleware developed by collaborative groups of academic and industrial

research centers as part of the EGEE [35] Project uses MD5. Some versions of virtual

organization membership service (VOMS) [36] included in both gLite 3.1 and gLite 3.2

use MD5 hash function.

53

The best way to mitigate the risk of this type of attack is to use other types of

strong hash function such as SHA2 by updating with the new release of version for

Globus Toolkit and gLite.

Another vulnerability related to GSI has been reported in GSI-enabled OpenSSH.

GSI-OpenSSH is a modified version of OpenSSH that includes supporting authentication

and delegation and is included in Globus Toolkit. The OpenSSH versions prior to version

5.0 contain locally exploitable security vulnerabilities. When a personal computer needs

graphical access to a computer on another network, it runs some applications that allow

graphical information to pass through firewalls by using a feature called X11-forwarding.

Unprivileged local users can hijack the X11-forwarded connections by listening on port

6010 when IPv6 is enabled on the server [37]. From the example in [37], assume that a

malicious user listens on port 6010 in a certain server by using netcat and another user

logs in to the same server in order to use emacs on the remote system with X11-

forwarding. In this case, OpenSSH fails to listen on port 6010 with IPv4 because netcat is

listening on that port. The OpenSSH however does not try to use other ports since the

IPv6 is enabled. Then the OpenSSH sets DISPLAY to “:10” which is set to the malicious

user and the emac sends cookie to 127.0.0.1:6010. As a result, the malicious user can

eavesdrop what the remote user does [38].

4.2. Vulnerabilities of the Resource Layer

In many cases, vulnerabilities are a result of the way the software has been

written. Such consideration also applies to the software, which enables secure integration

and access to the distributed computing resources owned by different providers. Many

vulnerabilities in middleware for grid and parallel computing systems have been reported

[39]. GLExec [40] is a standalone executable that maps a grid identity to a Unix/Linux

identity. GLExec allows a grid system to execute a user’s job so that it is isolated from

the grid middleware and from other user’s jobs. Vulnerabilities in this software result

from a software design error that improperly allows users to specify the name and the

location of the log file as reported by Kupsch et al. [41]. Kupsch and colleagues describe

that the log file is used by some libraries (i.e., LCAS and LCMAPS) and opened with

54

root privileges. An attack scenario from [41] is as follows. The attacker specifies the

name of the log file as /etc/passwd in the environment variable and uses some

environment variable (for example, LCAS_DB_FILE) whose content can be appended to

the end of log record. This small amount of crafted data contains a new line with a valid

password and user id as 0 (i.e., root), and group id as 0 (i.e., root) to inject into the log

file, which has been changed to the password file. In this scenario, the attacker can gain

access to other accounts including the root user.

Some vulnerabilities in the protocol of the Globus Toolkit that monitors and

controls computation on the grid resources (i.e., GRAM) have also been reported [12].

When a GRAM job is submitted, the globus-job-manager opens and listens on three

temporal ports. Two of these ports are known to be vulnerable. If a remote attacker

requests these ports for a GRAM job or its MPICH-G2 applications by sending multiple

specially-crafted messages, all the available physical and swap memory can be consumed

eventually causing the kernel panic and halting the system as a result [42].

Another vulnerability caused by incomplete sanity check, has been found in

Globus Toolkit RFT (reliable transfer service) and MDS (monitoring and discovery

system). Multiple local temporary files allow local users to create or overwrite arbitrary

files with elevated privileges or to view sensitive information [43]. For example, a

generated proxy certificate by default is stored in the /tmp shared directory. When such

sensitive files are generated in a shared directory, the process ensures if the file being

written is really created by itself and checks that the file has correct permissions.

However it has been reported that some file handling procedure in the Globus Toolkit

does not perform the above checks. Attackers can exploit such vulnerability by creating a

temporary file with permissions allowing open access. If an attacker has a permission on

/tmp and knows the identifier of the process that creates the temporary file and then links

a temporary file to a proxy file, the attacker can access the proxy file and use it for

malicious purpose.

55

4.3. Vulnerabilities of the Collective Layer

The collective layer contains protocol, services, and APIs that captures

interactions across collections of resources [10]. Examples of the collective services are

resource discovery, scheduling of tasks on the appropriate resources, monitoring and

diagnostics services, data replication services, community authorization, certificate

revocation, etc. Intruders can also exploit vulnerabilities caused by software design errors

in the middleware being used for such collective services. They are for example, grid

schedulers such as the Sun Grid Engine (SGE), Condor-G, PBS Pro, or parallel

computing software, or credential management software.

Condor-G [14] is a job-submission agent that runs user’s grid jobs on the multi-

domain resources as if they all belong to one domain. Some software bugs leading to

buffer overflow vulnerabilities have been found in Condor-G [41]. An unprivileged local

user can gain elevated privileges by exploiting these vulnerabilities. Specifically, there

are two potential buffer overflows in the function Accountant::GetResourceName in the

file Accountant.C [41]. The function looks up two attributes (Name, and StartdIpAddr)

whose values are located in two 64-byte buffers. Because users can change the value of

these attributes by calling condor_advertise, attackers can set these values to overflow

the stack.

PBS Pro is another type of software used to schedule grid jobs like Condor-G. By

exploiting the vulnerability such that PBS Pro creates temporary files in an unsecure

manner, an attacker with local access could perform symbolic-link attacks. An execution

demon, pbs_mom of PBS Pro uses a world writable directory /var/spool/pbs/spool for

storing jobs’ standard output and standard error files. The pbs_mom checks whether the

file name that it will create with the user’s UID and GID exists in the directory. If a file

with the same name exists, the file is overwritten. Because the attacker can guess the

user’s temporary file name, the attacker creates a symbolic link to the file that he created

for the guessed temporary file. When the attacker’s temporary file is overwritten by the

job’s standard output and error streams, the attacker can gain access to the user’s file with

a local access for the link [44]. With this access right, the attacker can delete or corrupt

56

sensitive files, which may cause a denial of service, by exploiting unsecure temporary

files.

The message passing interface (MPI) is an application programming interface

(API) for parallel programming used in grid computing systems. The MPI runtime

environment for Mandrake Linux is prone to an insecure account creation vulnerability

that allows an attacker to create an account ‘mpi’ with no corresponding password during

installation.

MyProxy also has been reported to be vulnerable, adding one more significant

vulnerability of the collective layer. MyProxy is included in Globus Toolkit for managing

X.509 public key infrastructure (PKI) credentials. MyProxy allows users to store and

manage short-lived X.509 certificate by combining an on-line credential repository with a

certificate authority. Different types of vulnerabilities that lead to denial of service

attacks are found in the MyProxy.

The following discussion about the MyProxy vulnerabilities is based on the work

by [41]. If a client tries to connect to the MyProxy server, the server forks a copy of the

server to handle the request. However the forked server can be potentially delayed due to

three reasons: lack of time-outs on reads and writes; lack of limits on the amount of data

read; and potential deadlocks with child processes. Such vulnerability of the MyProxy

server leads to denial of service attacks. After opening a connection, if the client does not

send data in the middle of communication with the forked server, the server will wait

forever for the data to arrive or until the client closes the connection. The server will

clearly waste operating system resources such as processes, memory, and network

sockets. The second vulnerability relates to the lack of limitations on the amount of data

that the server reads. As a part of a TLS stream, all the data is transmitted as a packet and

is encrypted by the client and decrypted at the server after concatenating all packets. The

server consumes buffer space to store the decrypted text. However, because the size of

the data is not transmitted in advance, the server continuously takes packet streams. If an

attacker sends multiple big sized data, for example giga-bytes of data at a time, the server

will be out of service. The potential deadlock between the forked MyProxy server and the

child process spawned by the server can also lead to denial of service attacks. The

57

MyProxy server can invoke external programs by calling function myproxy_popen in

certain configurations. This function returns standard file descriptors such as stdout,

stdin, and stderr connected to the spawned process. The steps for using this function are

as follows: (1) writing to the stdin; (2) closing stdin and waiting for the spawned process

to exit; and (3) then reading the data from stdout and stderr. If the process writes data in

the pipe that exceeds the specified limit, the spawned process will be blocked while

writing on the read file descriptor but the myProxy server will not read data until the

spawned process exits thus resulting in deadlock. When a malicious user who can

connect and authenticate to a myproxy-server, crafts a set of parameters in a particular

configuration, the availability of the myproxy-server decreases.

The software design errors that cause such reported vulnerabilities in the

middleware related to the grid have been timely fixed, and the appropriate development

teams have released patches. However, as the possibility that causes other vulnerabilities

always exists due to the unknown errors or lack of code validation and verification, the

software should be kept up to date in order to defend attacks such as those discussed in

this Section.

4.4. Vulnerabilities of the Application Layer

The attackers can exploit vulnerabilities in grid web-services. Grid security

incidents related to web-services are reported in [45]. To by-pass site security, attackers

use known hacking techniques specific to web-services, such as web-services description

language (WSDL) probing, SQL injection attacks, XML attacks, etc.

WSDL probing (or scanning). The web-services advertise their capabilities in WSDL

by describing methods and parameters needed to access a specific web-service. A WSDL

file is a major source of information for an attacker. The attacker scans the WSDL

interface to get sensitive information such as invocation patterns, underlying

technologies, and associated vulnerabilities. The WSDL probing is the first step to

perform more serious attacks such as parameter tampering, malicious content injection,

etc.

58

The WSDL is often generated automatically in tools such as Java2WSDL. Using

such tool, methods in a class or interface are exposed as web-services. Due to automatic

generation of WSDL, some critical functions in applications not intended for public use

can be converted to web-services unintentionally. Attackers can gain access to private

methods by scanning WSDL.

As another WSDL attack, attackers use naming conventions (i.e., get, update,

execute, show, etc.) to find the names of methods that are not published in the WSDL but

available on the server. For example, suppose that a service that provides climate

modeling and simulating service publishes query methods such as

listClimateSimulationCase in WSDL. When there is an unpublished method but only

available on the server such as executeClimateSimulationCase, the attacker can discover

unpublished application programming interface by guessing in the naming conventions

and access to private data and functionality.

SQL injection attacks. Belapurkar and colleagues [46] mention that, according to their

real-world experience, web-services typically have higher risk of injection attacks than

web applications as services are exposed in human-readable interface formats, making it

easier for attackers to inject fraudulent requests. If the server providing the services does

<simulationList>

<user_code> X&apoa; OR 1=1 --</user_code>

<simulation_type>P</simulation_type>

String sql = “Select case_name, configuration, creation_time, job_status,

Queue_name, wall_time”

From Simulation

Where user_code = “ ‘+SimulationRequest.getUserCode()+’ ” And

user_status=‘C’

Select case_name, configuration, creation_time, job_status, Queue_name,

wall_time

From Simulation

Where user_code = ‘X’ OR 1=1 - -’ And user_status=‘C’

Figure 4.2 An Example of SQL Injection Attacks in Grid Web-services.

Box A, B, C from Top to Bottom.

59

not correctly validate the input data, attackers can use a SOAP message to create XML

data that inserts a parameter into an SQL query and executes it with the rights of the web-

services. For example, suppose that an organization has built a grid based simulation

model system and exposed a set of services for simulation case management to its

members. Figure 4.2-A shows a web-service request. From this request, a user can see all

cases submitted by him. Figure 4.2-B shows the original execution of web-service

request. Then the data from the web-service request is replaced and the final SQL

represented to the database would be Figure 4.2-C. Because most of the database servers

consider “--” as comment, only “user_code = ‘X’ OR 1=1” before “--” is considered to

be the condition in the Where clause and makes the condition always TRUE due to

“1=1”. From this attack, the attacker can see all cases being simulated by other users.

XML attacks. XML has become the de-facto language for interaction among

applications. XML includes an element, CDATA defined as unparsed character data.

CDATA allows the use of illegal characters in its field since the text data in the field is

ignored by the XML parser. Suppose that the XML document is processed to generate an

HTML page. If an attacker provides an input such as the example in Figure 4.3-A, the

CDATA section delimiters are eliminated during the processing without inspecting their

contents. The HTML tags are included in the generated page as shown in Figure 4.3-B

bypassing the existing sanitization routines. From this scenario, the application that runs

XML with CDATA is vulnerable to cross-site scripting (XSS) attacks [46].

Attackers who want to send possible system commands to the underlying systems

use this CDATA element resulting in potential disasters. When querying a XML parser,

the CDATA component is removed, and the dangerous characters are generated in the

script as shown in Figure 4.3-C and 4.3-D.

XML denial of service (XDoS) attack is another form of XML attack. Attackers

carry XDoS attacks to make the services unavailable to legitimate users by flooding the

services with huge numbers of requests. XML allows one to use complex nested payload

representations. However when attackers intentionally increase the nesting level, such

complex payloads lead to a high consumption of resources for parser. Finally a complex

recursion of elements crashes the parser. Attackers can also use an alternative strategy to

60

create DoS attacks. Instead of using complex payloads, they flood the parser by sending a

huge message payload. A common method is to convert the creation of an <any>

element defined as unbounded to a largely automatic operation. By this technique,

attackers can create an unlimited number of elements and crash the parser.

In order to protect from attacks related to malicious input and attacks against

XML, XML firewalls can be used. XML firewalls provide functionalities such as

checking data authenticity, integrity and validity when inspecting SOAP messages [47].

Grid portals are also possible targets. For example username enumeration attacks

[48] have been reported for grid portals deployed by old versions of GridSphere [49],

used as a front-end to the TeraGrid [7]. Another weakness of the portal application of

GridSphere is the use of form-based authentication by default. This type of authentication

conveys the submitted credentials simply as part of the HTML or XHTML <FORM>

data; it thus requires encrypted transmission. Although GridSphere can run on HTTPS, it

<html>

<![CDATA[<]]>script<![CDATA[>]]>alert('attack')

<![CDATA[<]]>/script<![CDATA[>]]>

</html>

<html>

<script>alert(‘attack’)</script>

</html>

<script>

<![CDATA[x=new ActiveXObject(“myScript.sh”);

x.Run (“*.dll”);]]>

</script>

<script>

x=new ActiveXObject(“myScript.sh”);

x.Run (“*.dll”);

</script>

Figure 4.3 Examples of XML Attack by Using CDATA.

Box A, B, C, and D from Top to Bottom

61

does not require such a configuration and it is thus exposed to HTTP non-encrypted

communications in its default configuration [50]. Attackers can exploit this vulnerability

by capturing the HTTP message to impersonate legitimate users. While currently there

seems to be no reported problem for this issue, the grid portal equipped with GridSphere

should convert the default configuration to run the site on the HTTPS by installing a

certificate on the server. The community should no longer accept HTTP to exchange the

information.

In terms of authorization, attackers can exploit default configurations of access

control for the newly installed web application [50]. Many default configurations include

default administrative accounts with either simple passwords easy to crack, or they allow

everybody to access. In addition, the administrators mostly control access through user-

centric identities or resource-centric capabilities. Although this approach works correctly

when the set of users and resources is very simple, when the number of users and

resources increases, it is very difficult to manage the access control lists. As a result, a

poorly managed access control system can grant low authorization level users access to

resources that only high authorization level users can access. To resolve this complexity

issue, effective access control mechanisms, such as role-based access control (RBAC)

and attribute based access control, should be applied. By assigning users to roles and

roles to privileges under RBAC, administrators can effectively give authorizations to

users in a fine-grained way. Some researchers have already tried integrating RBAC to

existing grid computing systems as reported in [51]. In attribute-based access control,

users express their rights by using attributes such as their affiliation, roles in groups,

locations, etc. Under attribute-based access control systems such as GridShib [8],

although the grid system scales in terms of number of users and resources, the complexity

issue is addressed.

62

5. DETECTION AND PROTECTION AGAINST DISTRIBUTED

DENIAL OF SERVICE ATTACKS

By taking advantage of the distributed nature of the grids by processing in parallel

and in a short time multiple jobs, the attacker can use resources at critical servers, such as

grid schedulers or gatekeepers of resource-providing entities located inside grids, and

congest popular commercial and governmental websites located outside the grid, by

launching DDoS attacks. Such type of attacks makes grid resources unavailable to

legitimate users.

The accountability agents leverage accountability data obtained from the two

strategies introduced in Chapter 2 to detect suspicious patterns with the help of existing

intrusion detection techniques. The detection takes advantage of certain unique aspects

that characterize the behavior of jobs running in grids. In this chapter, we show how a

distributed accountable grid computing system can help in detecting DDoS attacks

originated from grid itself.

Section 5.1 introduces the models of the attacks that might be possible in grid

systems, followed by the introduction of additional functions of the accountability agents

for detection and protection in Section 5.2. Section 5.3 describes how the agents detect

the attacks by using the accountability data.

5.1. Distributed Denial of Service Attacks Involving the Grid

Karig et al. [52] classify remote DDoS attacks into five different types: network

device level attacks, operating system (OS) level attacks, application level attacks, data

flooding, and attacks that exploit protocol features. Although DDoS attacks involving the

grid can be of any type among these five types, we focus on the application level attacks

63

and data flooding attacks, so as to better understand the mechanisms of detection and

protection from the DDoS attacks.

Depending on the location of target, we divide the DDoS attacks by grids into the

following two types.

5.1.1. Attacks to a Server Located Inside the Grid

Attacks of this type, shown in Figure 5.1, target critical objects of the grids. These

attacks make particular services inoperable by using grid resources to exhaust grid

objects [52]. For example, if a centralized grid scheduler fails due to an attack, the whole

system can fail [53]. Likewise, if the web services running at the gatekeeper are out of

service, user requests through that gatekeeper can be denied.

A scheduler in a HN can become unavailable due to heavy load. If a large number

of jobs need to be resubmitted to a scheduler within a very short time interval from the

CNs located at different clusters, a queue that stores jobs according to the submission

order cannot properly process all the submitted jobs. Therefore, due to the limited

capacity of the queue, jobs continuously submitted by a malicious user can saturate all

available queue space, resulting in legitimate users’ jobs to be dropped or suspended. In

this scenario, if the attacker sends the jobs at a speed faster than the job processing speed,

the queue will be filled with the attacker’s resubmitted jobs. Until all of the attacker’s

queued jobs are complete and exit from the queue, legitimate jobs cannot further proceed.

By sending the same number of jobs to the same HN over time, the attacker can totally

use up the queue, thereby making it impossible for legitimate users to submit their jobs.

For example, if a legally submitted GRAM [12] job waits to be queued for a very long

A malicious job

RP/HN

CN

RP/HN RP/HN SP

CN CN
CN

CNCN
CN CN

Victim

Fig. 5.1 Distributed Attacks on a Server Located Inside the Grid

64

time, the job manager terminates the job by cancelling the operation when the operation

is timed out. Even if a queue does not become saturated, when the attacker continuously

sends jobs from the CNs, a legitimate user will have to wait until the attacker’s queued

jobs are processed.

5.1.2. Attacks to a Server Located Outside the Grid

Grid resources can be exploited to make it impossible for any user, within and

outside the grid, to connect to a remote server. Attackers can target high-profile web

servers of banks, credit payment gateways, or mission-critical governmental hosts by

executing code or by invoking shell programs that contain applications in order to

generate network traffic toward the victim node. This out-bounding network traffic can

consume the entire network bandwidth in a short time, thus making the connections

unavailable to legitimate users (Figure 5.2). If the malicious code in each CN

concurrently and continuously sends packets or generates heavy loads of page requests to

the victim, the victim’s server continues to be out-of-service until the job execution is

completed.

5.2. Tasks of Accountability Agents for DDoS Attacks

In order for the accountability agents to be able to thwart possible DDoS attacks,

the agents’ capabilities need to include additional capabilities, such as detecting

anomalies, issuing alarms, and taking proper responsive actions.

A malicious job

RP/HN

CN

RP/HN RP/HN SP

CN CN
CN

CNCN
CN CN

Victim

Fig. 5.2 Distributed Attacks on a Server Located Outside the Grid

65

Detecting anomalies. In order to detect possible attacks the agents gather information

from monitoring tools, such as process accounting tools [54], or bandwidth monitors

[55], according to the specific object being monitored. When no dedicated tool

monitoring a specific grid object, such as a queue in the HN, the set of files opened by a

grid portal, and so forth, is deployed, the agents directly collect consumption data about

the object through the logs generated by the processes that utilize the object or through

system commands such as ‘lsof’ and ‘strace’ [56]. The agents employ a statistics-based

[57] or entropy-based approach [58] to detect usage anomalies using the collected

consumption data about the grid object. Upon detection of anomalies, the agents further

investigate signs of attack by raising alarms.

Raising alarms. To notify of a possible attack, agents coordinate with each other by

means of alarms. An alarm contains not only the warning itself, but also job information,

such as handle, job id, process id, alarm-issuer’s identity, and information about the

possible target. Based on the detection stage and the likelihood of the attack, the alarm is

classified as light, moderate, or critical. The alarm starts from a light level and then

escalates to a critical level via a moderate level. The agent located at the node where the

signs of an attack are first detected raises a light alarm to the agent in the predecessor

node in the job-graph. Upon further detection of anomalies, a moderate alarm is

promulgated. When many agents at CNs send a light alarm to a HN within a short time,

the agent at the HN checks the information sends a light alarm for further detection and

then sends a moderate alarm to the RP if it confirms that the multiple indications are in

fact a sign of the attack. The existence of these indications depends on the job

relationship that in our approach is modeled by the job-graph (As an example consider

the job-graph in Figure 2.5). In such job-graph, the CN2 of job relationship (Figure 2.5-f)

has only one adjacency list (i.e., one outgoing edge from CN2); thus the agent in CN2

will have only one light alarm from the successor node. Data sent in one light alarm does

not provide further indicators of attacks. In this case the agent just transmits the

information received in the alarm to the direct predecessor node in the job-graph. The

destination where to send the alarm is indicated in the cover-records that contain the job

relationship. If the sub jobs used for attacks from distributed CNs have a common handle

66

Figure 5.3 Steps for Issuing Alarms

Monitor specific

object of Grids

Is the monitored

object anomalous?
Ignore

No

Yes

Statistics or Entropy based model

Accountability data collected from
Grid-node based strategy

Issue “Moderate Alarm” to predecessor node

Are the multiple

indications in fact a sign

of attack?

Is the node root of

a job-graph?

Kill malicious jobs

Issue “Critical Alarm” to all nodes in a job-graph

No

Issue “Light Alarm” to predecessor node

Are there multiple

indications of attack?

Yes

Ignore

No

Yes

No

Yes

Accountability data collected from
Job-flow based strategy

Statistics or Entropy based model

or are originated from the same location, this can be evidence indicating possible attacks

because it is very atypical behavior in grid. The RP sends a moderate alarm received

from another RP, as a carrier of the alarm to the agent in the root node when it is not a

root node. When the agent in the root node is informed of the reported moderate alarm, it

triggers a critical alarm to all nodes in the job-graph. Once a node is notified of the

67

Table 5.1 Classification of Alarms

Type Severity Sender Receiver Action when received

Light Low

First node that

detects sign

(CN/HN/RP)

HN/RP/SP
Ignore/Issue another

Light/Elevate to Moderate

Moderate Medium
Intermediate node

(HN/RP)
RP/SP

Issue another Moderate/Issue

Critical to all node

Critical High Entry node (RP/SP) All nodes Kill Process

critical alarm, the agent in that node takes responsive actions based on the information,

such as job id and process id, sent in the critical alarm. The issuing steps and

classification of alarms are summarized in Figure 5.3 and Table 5.1, respectively.

Taking responsive actions. When the agents are notified of the attack by a critical alarm,

intuitively, the first action to take is to terminate the malicious jobs, by sending a kill

signal to the specified processes running on behalf of the malicious jobs or deleting jobs

waiting in a queue. For example, in LINUX/UNIX, the ‘kill -1 process_id’ operation for

removing process even with child processes in memory or ‘qdel’ operation for PBS [20]

scheduler can be used. The agent identifies the process to kill by the process id and the

jobs to delete by the job id sent in the critical alarm. As next step, they block or cancel

the sub-jobs that are assigned to other nodes existing in a job-graph and have not yet been

activated or executed since such sub-jobs represent a potential danger. The agents in

potentially dangerous nodes check the jobs at the first stage of job status (i.e., pending for

example) with the handle sent in the critical alarm for a given amount of time to block

the attacks. Finally the identified patterns of the performed attacks are recorded and

analyzed for future prevention to assist with decisions such as determining the threshold

values used for alarms.

A detailed example of execution of these tasks is described in the next Section.

68

5.3. Detection Strategies

5.3.1. Detection at the Victim Node

To detect patterns indicative of attacks, we use the accountability data collected

according to the strategies introduced in Chapter 2. From the data obtained in the grid-

node based strategy, the agent is able to detect anomalies concerning the usage of the grid

objects including grid resources. However the techniques used to detect such anomalies

are often not accurate and can result in a high rate of false detection, especially when

applied to complex systems such as a grid. For example, if many grid users submit their

jobs to a certain grid gatekeeper or to a certain queue of a cluster by chance, for a short

time, it is very difficult for existing intrusion detection tools to accurately distinguish a

DDoS attack resulting from intentional malicious submissions from a peak in the server

resulting from legal submissions. If multiple attack servers operate in coordinated fashion

against the victim, it is almost impossible to detect such an attack [59].

Under our approach, upon detection of a potential DDoS attack, the agents do not

immediately consider it as an attack attempt. By using the accountability data concerning

the job’s flow collected from the job-flow based strategy, the agents trace back the job

transmission path to send the detected information in an alarm message. By combining

accountability data collected from multiple nodes, our approach is able to gather more

clear signs of attacks. The agent in the upper node applies the existing anomaly analysis

methodologies (for example a statistical model) to data obtained by the children nodes

again.

When monitoring grid objects including grid resources, the agent checks them

periodically at the end of a given time interval called a sliding time window or time

window. The size of the time window depends on the characteristics of objects. We use a

queue as an example of critical grid objects to show the detection and protection

mechanism at the victim node.

In order to set an adequate size for the sliding time window to monitor a queue,

the following factors should be considered: the average number of jobs entering the

queue per time unit, the average processing time per job, the available queue size, and the

!

69

number of CNs where the actual execution is performed. The difference between an

outgoing and incoming job’s flow per time unit is the rate of the remaining jobs per time

unit. By dividing the maximum queue size by the calculated remaining rate of jobs in the

queue, we can obtain the time required to fill the queue to capacity. Thus, the time

window (TW) is calculated as follows.

J
max (5.1)TW =

J c
(in) "

Tt
()
jout

where Jin / t is the average number of jobs entering the queue per time unit, t; T / jout is

the average processing time per job; Jmax is the queue size; and c is the cluster size,

which is the number of CNs for the queue.

If the denominator in Equation 5.1 is less than or equal to 0, then there are no

remaining jobs in the queue because the rate according to which jobs are processed is

higher than or equal to the rate according to which the jobs enter the queue. Since such

case is not indicative of a malicious action, we ignore it and assume that the denominator

is always greater than 0.

To saturate a queue, the attacker will try to increase both the number of nodes

from which to submit jobs and the execution time of jobs, which can be modeled in

Equation 5.1 by increasing Jin / t and T / jout. From the estimation of the increase in Jin / t,

and T / jout with the known size of the queue and the cluster, the size of the time window

TW can be obtained. If TW becomes small, the agent will keep track of the queue usage

more often. Clearly, a small window size implies higher costs in terms of resource

consumption for monitoring purposes.

Table 5.2-b shows the number of queued jobs with job identifiers at the end of a

given time interval called time window. We use a queue as an example of critical grid

objects to show the detection and protection mechanism starting from the victim node.

The assumptions in this example are as follows: a time window slides every 10 seconds;

statistically filling 90% of the queue is considered abnormal; and the queue size is 25.

Under such assumptions, when the sliding time window is at 10:03:18, a number of

70

Table 5.2 a. Collection of Handles for Each Job Id Based on Cover-records Created in

the Job-flow Based Strategy (Left table); b. Data Collected According to the Grid-

node Based Strategy (Right table). Hndl=Handle, Q’d=Number of Queued Jobs,

Queue Size=25

Hndl Job Id Hndl Job Id Hndl Job Id

ske job1 abc job9 abc job17

ske job2 abc job10 abc job18

wai job3 abc job11 abc job19

wai job4 abc job12 abc job20

abc job5 abc job13 abc job21

abc job6 abc job14 abc job22

abc job7 abc job15 abc job23

abc job8 abc job16 abc job24

Job Id Q’d Time

job1~2 2 10:03:09

job3 1 10:03:13

job4~5 2 10:03:18

job6~9 4 10:03:20

job10~13 4 10:03:22

job14~17 4 10:03:24

job18~20 3 10:03:26

job21~24 4 10:03:28

monitored queued jobs down to 10:03:09 appears to be legitimate because the sum is 5,

thus only 20% (i.e., 5 out of 25) of the queue is filled. At the end of next time window

(i.e., at 10:03:28), the number of queued jobs looks abnormal because the sum of the

remaining jobs in the queue until 10:03:28 is 24 (assuming jobs 1 through 5 are still in

the queue); thus 96% (i.e., 24 out of 25) of the queue has been filled at 10:03:28 for a

short time (i.e., for two time windows). However, even though the status of the monitored

queue is considered abnormal, this anomaly does not immediately trigger a defensive

action against a potential DDoS attack, but it simply raises a light alarm to the direct

predecessor nodes in the job-graph. If the victim node in Figure 5.1 is a HN which is a

scheduling node, the agent in the HN by referring to the job-relation in the cover-record

finds out that the job is submitted from CNs and then sends a light alarm to these CNs.

The light alarm includes collected accountability data, such as {job id, handle, and

timestamp} from the cover-record, and {executable name, process id} from the resource

usage record. Because a CN in Figure 5.1, for example, has only one adjacency list in the

graph, the agent in such CN just needs to send the received data to the RP/HN in the job-

relation of its cover-record in the light alarm. The agent in the HN counts, using Table

5.2-a, which combines the matching handle and job-id sent by the CNs, how many job-

ids are associated with the handle. If within the monitored time interval the same handle

71

is associated with a number of jobs within the threshold, the attack is not considered as a

DDoS and the light alarm is ignored. If it is out of the threshold, the agent located at the

victim’s node raises a moderate alarm to the agent located at the direct predecessor node.

In this example, Table 5.2-a reports 20 jobs for the handle, ‘abc’ and 4 jobs with different

handles (‘ske’, ‘wai’). Hence, 20 out of 24 (83%) of the jobs are multiple submissions of

the same job. In a grid computing system where a job is split into many sub-jobs to be

run in parallel at multiple CNs, multiple sub-jobs resubmitted to a scheduler are

considered suspicious. As a result, the moderate alarm is sent to SP or another RP in

Figure 5.1.

If the malicious job flows through multiple RPs in order to take advantage of

more computing resources from different domain as shown in Figure 5.1, the moderate

alarm will be relayed by each RP and finally will arrive at the root node (SP) of the job-

graph. When the agent in the root node receives a moderate alarm, it triggers a critical

alarm to all nodes in the job-graph. Upon receiving a critical alarm, the agent increases

the priority of jobs identified as legal or deletes malicious jobs in the queue. By

exchanging the accountability data in real-time, the agents can quickly identify the nodes

where the signs of attacks are not yet actually detected, and timely terminate sub jobs that

may potentially perform malicious actions before launching the attacks (i.e., at pending

status or before submission).

5.3.2. Detection at the Source Node

During an attack against servers located outside the grid (see Section 5.1.2), the

agents do not have any control over the victim’s server. Thus, it is almost impossible to

detect the source of attacks and stop the ongoing attacks in the victim’s server outside the

grid, since the agents do not reside in such victim’s server. In order to address this issue,

an approach to detect and stop the malicious activities at the attacking nodes is required.

In an accountable grid computing system, the agents have the right to collect data at each

node and the ability to monitor the job activities across the different domains. By

analyzing the data collected according to the grid-node based strategy, we can obtain

useful indications to detect a DDoS attack based on the following observations: 1) the

72

normal behavior of the CNs is to execute jobs at computational resources; 2) If the job

executions induce heavy out-bounding network transactions in every CN, they can be

considered as abnormal as such behavior is very atypical of jobs executed in grids. When

the destinations of most network transactions of a job have the same address, this job can

be considered very suspicious and is most likely launching a DDoS attack against the

server or website located at that address.

Monitoring the processes created by the job running in a CN can help in analyzing

the behavior of the CN. If the job is scheduled by a PBS and placed into execution by a

PBS Machine Oriented Mini-server (pbs_mom) [Staples, 2006], monitoring should be

performed by first tracing the pbs_mom. Because a pbs_mom places jobs into execution

mode, monitors the job’s usage, and notifies the server when the job completes, tracing

the daemon running for the pbs_mom provides enough information about the job,

including system calls, name of script, name of executables, each with the process id. If

the job is scheduled by a Condor-G scheduler [14], the condor_startd [60] daemon is the

right process to start monitoring in order to trace the currently running jobs. The profiled

process information can also be used to check whether a job results in heavy out-

bounding network transactions (see observation 2). We monitor the files and especially

the network files opened by the program executing in the CN. Such network open files

show the source and destination address, each with process id and application name. By

combining the profiled process id or the name of the executable with the process of

interest, we can obtain destination information bounded outside the grid.

When the agent in a CN applies existing anomaly detection models, such as

entropy or statistical models, to the obtained destination information and detects that

many packets are sent outside the grid as a result of executing the submitted job, the

agent accesses the job flow information recorded in the job-relation of the cover-record.

From this information, the agent at the CN determines where the jobs that caused the

anomalous behavior originated and sends a light alarm to the direct predecessor’s agent,

for example RP2 or HN2 in Figure 2.5-d. The agent in HN2 determines from the alarms

reported by the CNs how many sub-jobs have the same destination for their network

transactions again in the applied model. Based on a comparison with the threshold

73

defined according to the statistical model, the agent in HN2 decides whether it will issue

a moderate alarm to the upper node (i.e. RP2 or SP1 in Figure 2.5-c). This threshold is

required in order to capture the fact that some legitimate sub-jobs can have out-bounding

network transactions, such as sending outcome files to other nodes, but not all of them

send the outcomes or data packets to the same server at the same time. Without an

intentional purpose, it is unlikely that the same destination will receive several packets

within a short time from the CNs. Even if the attacker generates packets for various

destinations to hide the attack, at least a certain number of requests to the same target

must be issued in order to saturate the bandwidth. This large number of requests

represents a possible symptom of a DDoS attack.

Once the sub-jobs with malicious code have been delegated through multiple RPs,

as shown in Figure 5.2, the agent in each RP reports a moderate alarm to its direct

predecessor node (i.e. the delegating RP). Since each agent has a partial view of the job-

graph, the accountability system can trace the original job. The agent at the root node

finally issues a critical alarm when it receives moderate alarm to all nodes in the job-

graph, and all queued and running sub-jobs are then terminated. The detection and the

decision are made very quickly to shorten as much as possible the out-of-service time.

74

6. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

A prototype of the accountability system has been implemented and evaluated on

an emulated grid test-bed. Our test-bed consists of a hundred nodes, allocated using

Emulab [1] as SPs and RPs and clusters. Each RP is connected to a scheduler, which has

multiple compute nodes comprising a cluster. The GT4 [18] is installed at the SP and

RPs. We placed the agents according to the two strategies introduced in the previous

Chapter; agents are placed at the SP, the gatekeepers of RPs, the scheduler and the

compute nodes. We used the PBS [20] for job scheduling. Accountability data are stored

according to a distributed strategy in which each agent has its own local database system.

We used postgresql for its good performance [61].

6.1. Implementations of Agents

Each agent is composed of a library of functions, the most important of which are:

the function that retrieves data from GT4 [18] and PBS; the function that updates the

database; the function that supports the interactions with the other nodes according to a

client/server mechanism; the function that manages the accountability policies; the

function that applies existing anomaly detection tools for collected data; and the function

that protects the system from attacks. Below we highlight the most interesting

implementation issues we had to face during deployment.

Dealing with Grid middleware and Schedulers. One critical issue is whether existing

monitoring approaches and log !les available at job schedulers and gatekeepers are

suf!cient to support our accountability approach. An obvious source for job-related

information is the log !le generated by the Globus container. However, we found that the

Globus log !les alone did not provide suf!cient job information at the level of detail we

75

require. For example, when a composite job is submitted, information about the sub-jobs,

such as sub-job id and destinations, is not recorded in the log !les, although this

information exists as properties of sub-jobs. To address this problem, we extended

Globus so that when a GRAM [12] job is submitted, accountability data, which at time of

submission consists of the initial user’s handle and job id and associated resources that

the user intends to submit, is recorded in the agent’s database.

We also modi!ed Globus to support the communication of job state changes to

accountability agents. During its normal execution, a Globus GRAM job can be in

different states, including ‘StageIn’, ‘Pending’, ‘Active’, ‘Done’. With our modification,

the accountability agent is notified by an instance of StateMachine() (a Globus routine)

whenever the job state changes. We parsed PBS log files at the head nodes for job

scheduler. These log files provide additional information about jobs and grid resources,

including the job flow information (e.g., name of the compute node where the sub-jobs

are assigned, and names of the sub-jobs). Such information is obtained and passed to the

agent when sub jobs are assigned to the compute nodes by the scheduler. Because the

PBS job id is also used in the Gobus log, our agents can uniquely map a GRAM job id to

a PBS job id – this linkage provides the necessary information to create a job-relation

graph. Notice that the agent has no way to connect the two identifiers until the agent in

the predecessor node pushes such information.

For simplicity, in the implementation, we simulated the GridShib handle with the

handle uniquely generated by Globus for each job submission. Each cover-record thus

maintains a unique identifier given by the unique user handle and the job id.

Primitives. We embedded fine-grained monitoring primitives, encoded using Java, in few

Globus routines. Specifically, we capture the information necessary to create and

maintain the graph-based logging, such as handle, job id, sub job id, the destinations

where sub-jobs are assigned, and timestamp. We also extended the StateMachine.java to

include certain agent’s information and data, especially the data speci!ed by the policies.

This extension allows the state machine to pass such information to the agent. The

routine ManagedMultiJobResources was modi!ed for collecting composite jobs-data.

ManagedMultiJobResources creates sub-jobs, collects data upon state change, and pushes

76

it to the agent. The speci!c information actually collected and stored in the database is

!ltered based on the policies.

De!nition and evaluation of policies. An interesting challenge was how to implement

local and shared policies. To properly enforce such policies, outputs from several

primitives must be gathered. Moreover, when enforcing a shared policy, each local agent

must coordinate with other agents. We implemented such policies as XML !les, to be

created by administrators off line and then stored in the local directory of the agents.

Shared policies are evaluated whenever a job state change occurs. Precisely at SP/RP

policies are evaluated when a noti!cation from Globus is received about a change in the

job status. At other locations, the job state change always triggers a policy lookup

process, to search for potential policies that need to be applied. When evaluated at first,

policy !les are parsed into database tables only once to save the file accessing expense,

and then the tables are accessed to identify the data that need to be collected. When

available, such data is !rst locally stored. Then, speci!c agents’ functions are executed to

send/receive the data speci!ed by the policies. For example, when a job state changes

from StageIn to Pending, basic accountability data is gathered. Additionally, when the

job moves to the Active state, an agent interacts with other agents located at nodes where

the job is assigned in order to send sub-job information (as speci!ed by the action

expressions) gathered at Pending state to agents located at successor nodes of the job-

relation graph.

Unique Identi!cation of sub-jobs at the compute nodes. In the case of PBS, when a job

is split and processed in parallel, PBS does not assign any new job id to it. Thus, in order

to be able to determine all the nodes at which portions of the job are allocated, the local

agent needs to maintain additional information and locally generate unique sub-job ids.

Speci!cally, the agent collects mapping information to !nd resource information

associated with the job. In case of parallelized sub-jobs (e.g., the node has several

computational units) the agent maintains rank and node information in the PBS log !le

that allows to distinguish job portions at the !nest level of granularity. Finally, in case of

loops, that is, when the same job is assigned multiple times at the same compute node,

the timestamp helps in differentiating the various job records.

77

In order to enable communication between agents, the client/server model is used. The

agent acting as a client is implemented by a thread so to handle multiple concurrent

executions. For example, the agent at head node of clusters works as a multi-threaded

client when it contacts compute nodes to provide the accountability data. Threads are also

employed for the PBS logging modules. Implementing the agent using threads makes the

agents monitoring tasks completely transparent to the ordinary job execution. This level

of parallelization results in a very efficient and light-weight approach, as shown by our

experimental results.

6.2. Configuration of Experiments in the Emulab Test-bed

As already introduced, the experiments have been performed by using the Emulab

test-bed. The machines used at the various nodes for the experiments are of the following

types: pc600; pc850 hosts which are 600MHz Intel Pentium 3; pc3000, 3GHz Intel 64-bit

Figure 6.1 One Use-case of Job Submission

78

Xeon; pc2400w and pc2400c2, 2.4GHz Intel Core 2 Duo; pc2000, 2GHz Intel Pentium 4;

pc3000w, 3GHz Intel Pentium 4. To begin the Emulab experiments (it is called swap-in),

a number of free PCs are selected based on the machine node types and assigned to the

experiment according to the number specified by the Network Simulation (NS) script. In

our experiment, the NS script specifies the number of nodes by distinguishing them

between head nodes and compute nodes. In the experiments we use the Emulab

Operating System Image created in Fedora 2.6.23.15-13. This image contains

installations of OS and GT4, the basic software required by GT4, postgresql-8.2, PBS

(torque-2.1.8), compilers (gcc-4.1.2, java-1.5.0_14, mpich2-1.0.5p4, etc), and the basic

configurations to install software applicable to all nodes. When starting the experiment,

the OS image is loaded by reading the NS script where the node-dependent tasks are also

specified. Examples of such tasks are: configuring the GT4 by issuing certificates for the

hosts, Globus container, and user; installing additional software required to specific

nodes; and configuring the installed software depending on the node’s roles such as RP,

HN, and CN. At the last step, the Globus container, PBS, and agent are started to run. By

changing the NS script, we generated different grid topologies. One basic sample

configuration in a topology is introduced at Figure 6.1.

6.3. Experiments

The goal of our experiments is to assess the scalability of our approach and the

performance of the protection system. Resources in terms of grid nodes scale by adding

compute nodes at the same administrative or by federating other institutions. Following

sections show the scalability assessment in two approaches and some policy evaluations

followed by performance evaluation for detection and protection against DDoS attacks.

6.3.1. Scalability with respect to the number of computing nodes

In the first experiment, we measured the job execution response time for

increasing values in the number of compute nodes [see Figure 6.2]. We also evaluate the

scalability with respect to the applications size by running different applications that have

different execution times

HN

HN

RP

RP

RP

79

0

4 10 20 40 80 100

2.83 1.33 4 2.3 2.5 2.8

T
im

e
 (

s
e
c
o

n
d

s
)

Number of Nodes

with accountability

without
accountability

overhead

300

250

200

150

100

50

Graph 6.1 Overall Response Time for Job Completion for Different Number of Nodes.

Graph 6.1 shows the response time for a job submission; the response time is

computed as the difference between the time at which the user receives the result and the

time at which a user submits the job. We measured the overall time for conducting these

operations in a grid with and without the accountability system in place. The same job is

used for all different cases of the experiment. Such job computes prime numbers between

0 and 100 millions and returns the highest prime number and the total number of prime

numbers within a certain range specified by the user. The job is split onto a number of

SP

CN

RP RP

HN

CN CN

Job

Submission

!!!!

HN

Figure 6.2 Job Submission to Multiple Compute Nodes

80

0

25 50 100 250 500

0 3 3.5 4.7 2.5T
im

e
 (

s
e
c
o

n
d

s
)

Size of input data (unit: million)

with accountability

without
accountability

overhead

600

500

400

300

200

100

Graph 6.2 Overall Response Time for Job Completion for Different Execution Time.

compute nodes for parallel execution. As shown by Graph 6.1, the overhead introduced

by the accountability system is negligible.

Graph 6.2 shows the response time for varying runtimes of the applications. We

make the application used in experiment run for input data of different values required.

We measured the execution time for a grid composed by 40 nodes, and compared the

execution time in the case in which the accountability system is in place and in the case

in which it is not. The number of nodes does not change (it was 40 in all cases).

The blue bars (in graph 6.1), and yellow bars (representing the differences between the

times reported by blue bars and the times reported by the white bars at graph 6.2) in both

graphs indicate that the overhead introduced by the accountability system is constant

(between 2 and 3 seconds) with respect to the number of nodes in the grid and the size of

the applications. As shown in graph 6.1, even though the job involves 100 nodes, the

accountability system does not impact the performance because our implementation

strategy, according to whole time-consuming functions work asynchronously with respect

to the GT4 and PBS. Graph 6.2 shows that the overhead for the accountability system is

not dependent from the application execution times, and is negligible, especially when

running long jobs. In conclusion, this experiment clearly demonstrates that our

RP2

job1

-a

job1

-b-1

job1

-b-3

job1

-a

c

81

accountability system is lightweight and does not interfere with the ordinary computation

and activities of a grid computing system.

6.3.2. Scalability with respect to the number of Resource Providers

In this experiment, a job is repeatedly submitted to multiple RPs under the

assumption that there is a gatekeeper at each RP. This scenario can occur when a RP does

Job

Submission

Figure 6.3 Job Submission Across Multiple RPs

SP

HN

CN

CN

RP

RP

!!!!RP

HN

Job

Submission

SP RP1 RP2 RP3

job_C:

handle_X

job_A: job_B:
handle_Z handle_Y

job_B: job_C: job_A:
handle_Y handle_Z handle_X

Figure 6.4 An Example of the Inconsistency in the Handle for Jobs

Forwarded Through Multiple RPs

Job

Submission
RP1

job_A:

SP

job_B: job_C:

handle_X handle_Xhandle_X

handle_X:

RP3RP2

handle_X:

handle_Y handle_Z
job_B: job_A: job_C:
handle_Y handle_X handle_Z

Figure 6.5 An Example of the Handle Consistency for Jobs

Forwarded Across Multiple RPs

82

not have enough resources to perform the job execution, and thus it submits the job to

another RP, or when a part of the job is submitted again to another RP. By increasing the

number of RP nodes, we measured the job response time with and without the

accountability agents. The job submission path assumed for this experiment is shown in

Figure 6.3.

The number of compute nodes controlled by the final RP does not vary. Since

GT4 does not schedule jobs between gatekeepers, we used a script to submit the first

submitted job to another RP then repeating this submission, and then execute the job at

the final RP. Users can actually submit a job in this way, by delegating the user

credentials to multiple RPs. Thus, the scenario used in this experiment can happen in

practice. When a job script is submitted and then re-submitted at a different RP, the job

script execution and the job submission in the job script are considered as two

independent operations by GT4. The OS does not provide any information about the

relation of such executions back to GT4. Such lack of information introduces

inconsistency in the handle generated at the entry point for a job. For example consider

the example in Figure 6.4. In such example, though job_A at the SP is the same job as

job_B, and job_C forwarded to RP2, and RP3 respectively, the job is considered a new job

at each RP, resulting in three different handles. Figure 6.4 shows that job_A, which is

executed at RP1, is submitted from SP with handle_X; thus handle_X is maintained at

RP1. The invoked job submission (job_B) from job_A is submitted to RP2 with a

different handle, handle_Y even though job_B is delegated from job_A and should have

the same handle, handle_X. The handle information is again changed when the job is

submitted again.

We addressed this issue by linking the various handles with the jobs they are

associated with, at the job completion. For example, although job_A and job_B are

considered different jobs by GT4, they are performed within one period of a job

completion, which starts from the “Start” state to the “Completed” state. With this

knowledge, we retrieve the pair of the previous handles and the new handle, which are

then sent to the successor node, and construct the cover-records for job_A, and job_B at

each RP. At the successor node (RP2), the agent updates handle_Y to handle_X by

83

searching for handle_Y from the handle pair information. After the update at RP2, the

handle pair becomes handle_X:handle_Z. With this information, handle_Z is again

updated to handle_X. We update every new generated handle for the same job with the

original handle generated at entry point (see Figure 6.5).

Although the handle searching process may seem time consuming because of the

many interactions with the database, the overhead introduced by the accountability

system is negligible, like in the previous experiments, because of the thread-based

implementation. When we tested a job submission on multiple RPs, we observed an

overhead within 2% of the overall job response time as graph 6.3 shows. We expect

similar results, also for larger number of RPs.

0

20

40

60

80

100

120

140

4 6 8

1.81% 1.35% 1.71%T
im

e
 (

s
e
c
o

n
d

s
)

Number of Resource Providers

with
accountability

without
accountability

overhead

Graph 6.3. Response Time for Different Number of RPs

84

Figure 6.6 Topology for Experiment 6.3.3

0

100

200

300

400

500

600

1 12 30 60

1.76% 1.23% 0.30% 0.24%

T
im

e
 (

s
e
c
e
n

d
s
)

Number of Jobs

with
accountability

without
accountability

overhead

Graph 6.4. Average Response Time for Multiple Job Submissions

6.3.3. Scalability across Multiple Domains

A crucial requirement is to assess to which extent our accountability system

85

degrades the performance of the grid computing system when multiple jobs by multiple

users are submitted. In this experiment, by submitting several jobs from multiple

locations at the same time, we measured the average job response time and evaluated the

performance of our system.

The topology that we created in the Emulab test-bed for this experiment is shown

in Figure 6.6. For this experiment, we considered the topology different from the one

used in the previous experiments. In this grid networks nodes-0, nodes-3, and nodes-6

work both as a RP and HN. Each HN has two compute nodes. Multiple jobs are

submitted to different RPs from each terminal nodes (i.e., nodes-1, nodes-2).

Our goal is to evaluate whether in case of multiple RPs involved in the multiple job

submissions process at the same time, the impact of the accountability system is

negligible as observed in the previous experiments. Multiple jobs are submitted from the

compute nodes to two other RPs at the same time. We measured the average response

time with and without accountability system. The results of this experiment, shown in

Graph 6.4, confirm the results obtained by Experiment 1. The accountability system does

not affect the performance of the grid system. The reason is that the agents at each

location are implemented using multi-threads. The average time to process the shared

policy at SP, RP, and HN, and the local policy at HN as represented at Figure 2.9, and to

perform the actions required by the policy takes only around or less than 1% of the

average job completion time. This percentile value decreases when more jobs are

submitted.

6.3.4. Scalability with respect to the Data Volume

Most of the monitoring and accounting systems accumulate a huge amount of

data. Data volume is the main concern for administrators. Since our accountability system

is designed based on the notion of distributing the job-graph based-log, different portions

of the accountability data required for constructing a job-graph are stored at different

each agent’s location, thus reducing the overall volume of data at a single location point.

Furthermore, the use of accountability policies makes it possible for the administrators to

save only selected accountability data. Using the policy language the administrators can

86

configure the accountability system so to record only some data. Therefore, if data

volume is a concern for an administrator, the administrator can trade off accountability

accuracy for performance. Graph 6.5 shows the relation between the different policies

and data volume according to the number of submitted jobs. We employed different

policies, with different complexities, and measured the data volume for a number of jobs

ranging from 30 to 210. The policy complexity varies according to the number of

elements of the policy ranging from 4 until 12.

While a shared policy concerning job-flow based data is enforced upon a change

of the job status, the local policies are applied when the agent at a node starts collecting

data. The agent checks if the job is submitted and then scans the log files to obtain

resource data based on the local policy. When several jobs are submitted, a complex local

policy generates higher data volumes than a less complex policy as the result shows.

However searching the optimal point between accuracy and storage volumes is a

responsibility of resource administrators.

30

60
90

120
150

180
210

3850

3870

3890

3910

3930

3950

3970

3990

4010

4
12

Number of
submitted

jobs

D
a
ta

 v
o

lu
m

e
 (

K
B

)

Policy complexity

Graph 6.5 Data Volume for Different Policies

87

6.3.5. Evaluation of shared policies vs local policies

This experiment analyzes the policy processing time for local and shared policies

Graph 6.6 Comparison of Policy Process Time for Shared and Local

0

200

400

600

800

1000

1200

1400

1600

Local Shared

T
im

e
 (

m
il
i-

s
e
c
o

n
d

)

CPU time comparison

0!

5000!

10000!

15000!

20000!

element types!

33 8 35 3

ti
m

e
(m

ic
ro

s
e
c
o

n
d

)!

job-id! cpu! memory!
ctime! qtime! etime!
start! exit_status! cput!
vmem! walltime! handle(33)!
job-id(8)! subjob-id(35)! subjob-destination(3)!

Graph 6.7 Search Time for Policy Elements

88

at a head node, where both local and shared policies are enforced. Policy processing

includes reading the policy from the xml file at local computer, and collecting or

searching elements specified at the policy. It does not include the time for database

operations since we assumed that updating the database for the same list of fields does

not make difference. Note that we used the same policy complexity for both sample

policies even though they have different elements. This is enabled by counting an

element that belongs to different action specifications as different element.

The average time of executing a job under the local policy is twice longer than the

time taken by the shared policy as shown in Graph 6.6. This difference comes from the

operations that have to be executed on log files. Such operation is required by the local

policy. As we described in the Section 6.1, collecting accountability data directly from

the grid middleware takes much shorter time than searching for the resource usage data

from local file system. As a result, we conclude that using local policies is more

expensive than using shared policies. This result is confirmed by next experiment, which

analyzes the search time required for the policy elements specified in different policies

(see Graph 6.7). The rightmost four elements (handle, job-id, sub-job-id, and sub-job-

destination) are elements collected by the shared policies used in the experiment, while

the others are of local policies. Searching one element of local policies takes from 1 to 18

milliseconds, while it takes only from 3 to 35 microseconds for elements of the shared

policies. The majority of the time required by the shared policies (reported in Graph 6.6)

is due to read operations on the policy file and to the construction of the data structures

for storing the element values before obtaining the values of elements. This experimental

result is important for advising guideline to administrators for the design of the

accountability policies

6.3.6. Detection and Protection from DDoS Attacks from the Victim-End with Time-

Window 1

Our first experiment concerning DDoS attacks aimed at identifying a good time

window size. A malicious job was submitted to an RP and then divided into 35 CNs to

attack an HN located at the same grid by resubmitting jobs from 35 CNs to a queue in

89

that HN. While the attack was in progress, legitimate jobs were also submitted to the

target HN. For each test run, we used 10, 20, 30, and 35 submitted jobs as the attacker’s

jobs. We assumed that the maximum size of the queue was 35
6
. We checked the queue

size at every end of time window to see if the queue is filled to the degree that we

consider anomalous. In our test-bed, an average of 19 jobs were queued every 100

seconds, and one job ran for about 78 seconds before exiting the queue. Since there were

two CNs attached to an HN in this experiment, according to Equation 5.1, the time

window size TW is calculated as

TW =
35

19

100
!
2

78

"

#
$

%

&
'

(210

In this experiment, we modeled three PBS queues (i.e., standby, standby-8, and

tg_workq) operating in the Teragrid [7] computing system at Purdue University to obtain

practical threshold values. We checked the normal behaviour of the queues and

determined that, on average, 25% to 44% of the queue was usually filled and only

extraordinarily filled up to 81%. Based on this observation, we initially set the percentage

6
 In our emulated environment it is not actually feasible to saturate a queue.

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

'$!!"

'!" #!" (!" ()"

!
"
#
$
%
&
'

%()*"+'$,'-("("&'.$*!'*/'0110#2"+'

*+,-./+012/3''!"

*+,-./+012/3'$!"

*+,-./+012/3#'!"

*+,-./+012/3(')"

*+,-./+012/3$#!"

/+*425*"67-0*"

Graph 6.8 Normal Job’s Wait Time for Different Time Windows

90

of usage anomaly for the queue at 81%. We also observed that users submitted the same

job multiple times to the same queue. However, such submissions did not fill the queue

above 80%. From this second observation, we set the threshold of sub-jobs separated

from a job with the same handle in a queue as 80%. Each time the queue size was

checked, if the usage was over 81%, the agent that received this incident in upper node

checked the job record to see whether the jobs were resubmitted. If the number of

resubmitted jobs with the same handle was greater than 80%, then a critical alarm was

issued to the HN from the agent in the entry node to kill the queued jobs submitted by the

attacker. As a result, the legitimate jobs in the queue were not delayed and started

running. The chart in Graph 6.8 shows the wait time of legitimate jobs until the job status

went to the “active” state (i.e., the running phase) for different time window sizes.

Legitimate jobs were submitted when the queue was filled with an attacker’s job for

30%(10 jobs), 60%(20 jobs), 90%(30 jobs), and 100%(35 jobs). The top line denotes our

baseline case, which is the wait time when the time window is too large or our system is

not active. Since the attacker’s jobs are queued before the legitimate jobs and run for a

long time, the wait time increased as the number of the attacker’s queued jobs increased.

This means that, without the accountability agents or with a too large time window, the

legitimate jobs submitted after the queue was filled with the attacker’s jobs experienced a

long wait to be queued and were thus unsubmitted.

The windows of size 210 and 110 appear to be the optimal. Windows larger than

210 seconds resulted in a loss of legitimate jobs after the queue was full for worst case,

which is, when the attack starts together with the sliding time window. For windows that

are 1.5 times and two times larger than 210, the wait time was much longer because

malicious jobs were eliminated after the entire time window had passed. For windows

smaller than 210 seconds, we did not observe much difference because the number of

jobs in the queue do not exceed the threshold to detect the attack. This experiment shows

that the legitimate jobs can be efficiently and effectively restored back to the normal

execution with the help of the optimal time window obtained from Equation 5.1.

91

6.3.7. Detection and Protection from DDoS Attacks from the Victim-End with Time

Window 2

This experiment measured the time elapsed from the moment the attacks have

been launched until when the attacks are removed. A malicious job was submitted to a SP

and then divided into 6 RPs. Each RP has 1 HN and 3 CNs; thus 18 CNs from 6 RPs

submitted the sub-jobs to a target queue of another HN. The job submitted by the CNs

computes prime numbers between 0 and 250,000,000 and can be split into sub-jobs for

parallel execution after having been compiled in message passing interface (MPI) [19]. In

the experiment, we assume that the attacks are completely launched when all the 18 jobs

are queued on the target HN and as a result, legal jobs cannot be queued or processed

after 18 jobs are queued.

The first check for the queue usage is performed at the end of each time window.

The threshold used in the first check was calculated from the PBS queues (i.e., standby,

standby-8, and tg_workq), which were used for the Experiment in Section 6.3.6. The

number of queued jobs are counted and recorded every 10 minutes for 1 month from the

three queues. To detect anomalies in the queue usage, we used an entropy-based

approach [58] because of its sensitivity and accuracy. The entropy [62] is the degree of

uncertainty associated with a random variable. The entropy (H) of a discrete random

variable X with possible values {x1, x2,!!!, xn} and the normalized entropy (NE) are

defined as

H (X) = ! P(x
i
)log2

i=1

n

" P(x
i
), NE =

H

log2 n0

where P(xi) is the probability that X takes value xi, and n0 is the number of distinct

values xi.

By using entropy Equation 6.1, the minimum entropy was calculated for any

range of the collected data from the 3 PBS queues. The calculated value was greater than

0.9, thus we referred to this value and chose a little lower value as the first threshold (i.e.,

0.87) to consider obvious anomalies concerning resource consumption. The jobs

submitted by the 18 CNs were quickly queued and the entropy was also calculated at the

end of time window and compared with 0.87. The second check was performed at each

RP to issue a moderate alarm to the root. We used the second threshold calculated in the

(6.1)

92

entropy-based model from data reporting how many identical jobs with different PBS job

id are submitted to the same queue of the steele cluster [63] at Purdue University by the

owner of the job to reflect real situations. The lowest entropy was 0.91; thus we chose 0.9

assuming that multiple submissions by a user to the same queue leading to entropy lower

than 0.9 in entropy couldn’t happen in a legal submission. After the second check, the

time elapsed until all queued jobs are deleted by the critical alarm was also measured.

The measured time can be classified as follows. Time 1: the time elapsed from the time

the attack is completely launched to the first check; Time 2: the time elapsed from the

time of the first check to the time of the second check; Time 3: the time elapsed from the

time of the second check to the time when all the malicious jobs are killed. In our

experiment, Time 1 took most of the overall time. When the time window is large, the

average time for Time 1 becomes also large accordingly. However no matter how large is

the window size, the sum of Time 2 and Time 3 taken for the agents to process

accountability data and to communicate among them in the system was almost constant

ranging from 2 to 4 seconds. These values are shown as the minimum time in Graph 6.9.

When the attacks are launched right after the previous time window has just passed, Time

1 takes as much as the time window shown as the maximum time in Graph 6.9.

!"

'!"

#!"

(!"

$!"

)!"

%!"

)" ')" (!" $)"

8
+,
-
"9
:
-
;
2
0
1
<"

8+,-""=+012/>"

,+0"

,-1"

,?@"

Graph 6.9 Detection and Recovery Time When the Attacks Are Completely

Launched for Different Time-windows

93

The average times for each time window for the detection of randomly launched multiple

attacks are shown as the medium time in Graph 6.9.

6.3.8. Detection and Protection from DDoS Attacks from the Source-End

This experiment deals with the attack model shown in Figure 5.2. The attack

program used for this experiment is an apache HTTP server-benchmarking tool, ‘ab’

[64]. This tool generates huge numbers of multiple page requests to an apache web

server. The attacker’s jobs were assigned at 50 and 80 CNs and executed ab to

simultaneously send multiple page requests to a web server with the command

$HOME/wlee/ab –kc 50 –t 900 http://wonjun.rcac.purdue.edu:8080/bigFile.

Each run at a CN performed 50 simultaneous multiple (with option k and c)

requests from 50 CNs resulting in 2,500 (50"50) requests and from 80 CNs resulting in

4,000 (50"80) requests within one HTTP session. In order to increase the load, bigFile

that is a big sized file was requested with the page. The attack duration ranged from 100

to 900 seconds (with option t), during which the requests by legitimate users were

rejected. In our system, the time taken from the initiation to the termination of the attacks

was 61 seconds for 50 CNs and 74 seconds for 80 CNs on average. However the time for

80 CNs did not necessarily take longer than the one for 50 CNs as shown in Graph 6.10.

This time is measured as the interval from the time when the job starts to run to the time

when the job completes due to the termination of all processes running on its behalf.

During such interval, detection and protection were performed according to the following

steps. First, the agent in the HN checked the PBS log file to find the CNs where the sub-

jobs were assigned and sent the job information to the agents in these CNs. Second, the

agent in each CN traced one by one the processes related to the PBS client process. This

tracing was performed using the diagnostic and debugging tool strace [58]. Through

strace, the agents collected the PBS job id and the name of the script submitted in this

PBS job id and the name of the executable run in this script in turn. In the experiment, the

last traced identifier of the process running as the executable was retrieved from the

output file of trace. Third, the agent in each CN checked out the opened network files

94

using lsof [56]. This tool was executed every second to update information about files

newly opened by the processes. The IP addresses of the destination for opened network

files were recorded with the process ids in the log file and were searched by the identifier

of the process running for the executable, that is, ab in the updated log file. The retrieved

destination information was sent to the HN as a possible target IP address with the handle

linked to the job. When deciding whether to send such information to the HN in a light

alarm, a high threshold (i.e. entropy 0.95 for this experiment) was used because it is

atypical to see many network files opened by a process running on behalf of the

executable in a CN with the same destination resulting in very low entropy. The next step

was performed by the agent in the HN. When the destination and handle information

were sent to the HN from each CN, the agent in the HN calculated the entropy again and

compared it with the threshold to issue the moderate alarm.

Finally the agent in each CN killed the currently running processes if the CN

received a critical alarm from the agent in the entry node. Our experimental results

reported in Graph 6.10 show that the attacked apache server was expected to be out of

service for an interval ranging from 100 seconds to 15 minutes when the attacks were

launched from the normal grid CNs without accountability agents. In the accountability

grid computing system with 50 or 80 CNs, the attacks were stopped after 67 seconds on

average. This Graph also shows that the detection and protection times are not dependent

!"

'!!"

#!!"

(!!"

$!!"

)!!"

%!!"

A!!"

&!!"

B!!"

'!!!"

8
+,
-
""
9>
-
;
2
0
1
<"

6**?;C"D5E?*+20"

)!"FG>"

&!"FG>"

Graph 6.10 Detection and Recovery Time for Different Attack Durations

95

on the attack duration. Therefore, even for long-lasting attacks, our system can detect the

attack and take a response action within or around one minute.

6.3.9. False Positive Detection with Two Types of Threshold

In this experiment, we show how much the false positive rate detection typical of

existing resource monitoring mechanisms can be reduced when integrated with our

accountability system. We were interested in measuring the entropy of jobs over both the

unique time window and unique handle and considered two types of thresholds, defined

from two different types of entropy. The entropy, referred to as H1 at x-axis in Graph

6.11, denotes the degree of randomness over the data obtained from the grid-node based

strategy, while the entropy referred to as H2 at y-axis is from the job-flow based strategy.

When calculating H1 the random variable X represents the time window at which the

number of queued jobs is counted, while for H2 X represents the handle assigned to jobs.

In Table 6.1, H1 and H2 are calculated from the data given in Table 5.2 in Chapter 5.

Table 6.1-a shows the number of jobs associated with the unique time window at the end

of each time window in a queue with the calculated entropy, respectively. Table 6.1-b

shows the entropy of the queued jobs associated with the unique handle for an anomaly

detected at the end of time window t3. Table 6.1-b can have a different number of jobs

associated with the handle, resulting in many different values of entropy H2 (for

TW # of Q’d jobs Entropy

t1 4 0.369

t2 5 0.412

t3 24 0.334

Sum of Entropy 1.115

Handle # of jobs Entropy

ske 2 0.299

wai 2 0.299

abc 20 0.219

Sum of Entropy 0.817

Table 6.1 Data for H1 and H2 from Table 5.2 in Chapter 5. To apply
Equation 6.1 – a. n is 33, n0 is 3, TW Denotes Time-window, Q’d Denotes
queued (Left Table); b. n is 24, and n0 is 3 (Right Table).

NE(H1) = 1.115/log23 = 0.703, NE(H2) = 0.817/log23 = 0.515

96

example, H2=0.515 when ske=2, wai=2, abc=20; or H2=1 when ske=8, wai=8, abc=8,

etc.) with respect to the anomalous data H1.

By employing another threshold (i.e., th2) defined in H2, the seemingly

anomalous usage is classified as normal. In Graph 6.11, when the threshold (i.e., th1)

defined in H1 is equal to 0.906 (the highest value in the x-axis), an entropy value lower

than th1 indicates an abnormality regardless of what value entropy H2 (i.e., y-axis value

of any point in area A+B+C+D+E+F) has. However, if th2 is equal to 0.8 and th1 ranges

between 0.86 (i.e., the x-axis value that meets the min entropy line with the point 0.8 in

the y-axis) and 0.906, we can expect that any case with th1 and th2 should be considered

as normal because any point in area A is higher than 0.8 for such th1. If the th2 equals to

0.8 and the th1 is below 0.86, as much as area B+C out of B+C+D+E+F can be

considered as normal because every point in area B+C has a value higher than 0.8 for

such th1. Therefore we can expect a correction rate as much as area A+B+C out of

A+B+C+D+E+F for all cases with th2 that is equal to 0.8 and any value of th1. Likewise,

if th2 is equal to 0.6, we can expect that the false positive can be corrected as much as

area A+B+C+D+E out of A+B+C+D+E+F.

This experiment thus shows that the accountability data collected by an agent

according to the two different strategies can compensate the false positive problem

!"
!H!)"
!H'"
!H')"
!H#"
!H#)"
!H("
!H()"
!H$"
!H$)"
!H)"
!H))"
!H%"
!H%)"
!HA"
!HA)"
!H&"
!H&)"
!HB"
!HB)"
'"

!H)$#" !H)AA" !H%'A" !H%%#" !HA')" !HAA%" !H&$(" !HB!%"

E
n
tr

o
p
y
 o

v
er

 d
at

a
fr

o
m

 j
o
b
-f

lo
w

b
as

ed
 s

tr
at

eg
y
 (

H
2
)

Entropy over data from grid-node based strategy (H1)

min entropy

max entropy

Graph 6.11 Probability Distribution for Normal Submissions with Two Different

Types of Entropy

97

typical of the existing anomaly detection model.

6.4. An Environment of Accountability Data Queries

The purpose of providing an environment of accountability data queries is to

analyze the accountability data and to visualize the moves of the malicious jobs. In this

environment, the administrators are able to query different types of data from different

types of tables that are created for accountability. In addition, when the agents detect

DDoS attacks, the overall job-graph is formulated in visualization to provide better

understanding of a job’s movement from the submission node to execution nodes.

6.4.1. User Interface and Architecture

We used a gridsphere portal framework [49] that provides an open-source portlet

based web portal. The querying environment is developed as a portlet web application

and powered by apache tomcat. The gridsphere core portlets provide login, logout, and

local settings, profile personalization, administration settings for creation of users,

groups. Figure 6.7 captures screens of the first page for user authentication and the next

page with major menu. Data-query portlet is written in Java and JavaServer Pages (JSP)

technology. Data queries are sent to a selected database server running at each node.

The portal is available in each node. However, the root node of a job-graph can

only show a complete job-graph in case that agents detect DDoS attacks because

complete job-relation data are sent to the root node.

The interface of the accountability data query is composed of three tabs. They are ‘Query

Cover-record’, ‘Query Job-graph’, and ‘Query Record’.

Query Cover-record. The initial screen from this tab shows a cover-record that contains

job-relation information such as where the job comes from, where the job goes to at the

time of timestamp for job-id with handle information. Figure 6.8 shows a queried cover-

record for a normal job at node, 60, which was chosen as a SP. Since node 60 is the entry

node where the job is first submitted to, there is no Job-Relation (FROM) data. Job-

Relation (TO) information shows that job (70e45498-954b-11e0-9f4d-001143e43a94) is

98

divided into (721cf0e0-954b-11e0-841f-96153c17c356) and (72acd4d0-954b-11e0-ace3-

Figure 6.7 Main Screen of the Accountability Grid Computing Portal Before and After Login

99

c65637039387) and then moved to servers (155.98.39.5) and (155.98.39.6) respectively.

Job-Relation (LIST) is only available when the misuse of resources is detected.

Query Job-graph. In this tab, a job-graph is drawn for each handle in case that cover-

record contains Job-Relation (LIST).

Query Record. In this option, the administrators can query accountability data in various

ways. The accountability data collected at each node can be seen in a place from this

interface.

6.4.2. Querying a Job-graph When Attacks are Detected

The job-graph is completed and visualized when the agents at each node send

their job-relation data to upper nodes with alarms hierarchically up to the root node. The

column Job-Relation (LIST) in Figure 6.9 shows pairs of job-id and its destination in

order. In order to find out direct predecessor node, the agent in a node refers Job-Relation

(FROM). In entropy-based analysis, when the calculated entropy reaches below the

threshold (i.e., when an alarm is issued), the agent sends Job-Relation (TO) data together

with its job-id and server IP address to direct predecessor node. After receiving such job-

relation data, the agent in upper internal nodes send the received Job-Relation (LIST) data

Figure 6.8 A Cover-record for a Normal Job

100

to its direct predecessor node by attaching its job id and IP address. This process is

repeated at upper nodes until reaching a root node. Finally the agent in a root node

collects all job-relation information.

Figure 6.10 is a grid topology constructed in Emulab test-bed. When an attacker

exploits two clusters with two head nodes (nodes-20 and nodes-40) to attack a head node

 Figure 6.9 An Example of Job-Relation (LIST)

101

(nodes-0) in Figure 6.10, the constructed job-graph in the root node (nodes-60) reflects a

part of constructed topology of Figure 6.10. This attack scenario is as follows. A job is

submitted to a SP (nodes-60) and then assigned at a RP (nodes-20). The sub-job at nodes-

20 is divided into 17 sub-jobs to be run at 17 nodes. One of 17 nodes is another RP

(nodes-40) and a sub-job assigned at that RP is divided into 9 nodes again. The sub-job

submitted to CNs from two RPs is rescheduled into a victim HN located in a RP (nodes-

0).

Figure 6.10 A Grid Topology from EmulabFigure 3.7 Cases of Comparisons with

Shared Accountability

102

When inserting a handle from Figure 6.9 at the portlet (Figure 6.11, top) and

clicking the button, the portlet application draws a complete job-graph (Figure 6.11,

down) by reading in the data in Job-Relation (LIST) from Figure 6.9. This job-graph

shows job’s movement from SP (nodes-60, 155.98.36.77) to the victim node (nodes-0,

155.98.36.69). Each node in the job-graph is represented with a subjob-id and its IP

address.

6.4.3. Querying Accountability Data

An accountability agent in a node keeps its own database to collect accountability

data. From this portlet, administrators can select any node (Step 1, Figure 6.12) to

connect database in the node. In Step 2, available tables in the database are displayed. In

our system, there are three types of tables. One table contains job-relation information

shown in Figure 6.8. Other tables contain resource data and DDoS related information.

The step 3 queries the column titles from the selected table so that the administrator can

select the field of the table in multiple. The administrator can specify a condition in the

same format as used in the postgreSQL query statement in step 4. An example such as

querying job-id with timestamp from accatable for a specific handle (for a malicious job)

in the victim node (nodes-0) is presented in Figure 6.13. In the result of the query (Figure

6.14), the sub-jobs used for attacks at each submitted time are displayed.

103

Figure 6.11 An Example of Job-graph

104

Figure 6.12 Initial Screen for Querying Accountability Data

105

Figure 6.13 Selecting Options for Querying Accountability Records

106

Figure 6.14 Result of the Query

107

7. RELATED WORK

Researchers have investigated accountability mostly as a provable property

through cryptographic mechanisms. A representative work in this area is by [65]. Their

approach, based on a logic language, proposes the usage of policies attached to the data

and specified by the owner's data. The proposed logic differs from our approach in three

main respects. First, their focus is on users' authorization data, while we deal with larger

and richer types of accountability data. Our attention is on the nodes' site that needs to

make sure jobs are properly submitted and not misused. Second, we do not impose any

policy to be used at the submitter end, but let the agents collect the required information

as needed. To this extent we employ a simple policy language to specify required data to

collect. Third they do not report any actual implementation or experimental evaluation

result, whereas we have a full working implementation and we have experimentally

tested it.

Accountability has also been investigated in the context of electronic commerce

protocols [66][67]. In particular Crispo and Ruffo propose an interesting approach related

to accountability in the case of delegation. We do not directly consider delegation,

although the graph shared mechanism implements a form of delegation process. Another

interesting work is given by [68]. They propose layered architecture for achieving end-to-

end trust and accountability. They adopt techniques for monitoring trust relationships

over time so that abusive behavior can be tracked down. The authors drawn similar

conclusions to ours, stating that current primitives for resource monitoring are not

sufficient to support of fully accountability. However, they do not provide any specific

language for specifying accountability policies, and they simply focus on users' data

rather than providing aggregate accountability data combined with resource usage and

job data.

108

Another interesting contribution is represented by the QUILL project [5]. A

mechanism to capture provenance information during the execution of job in a distributed

environment has been developed as part of such project. Although our work shares some

commonalities with [5], we look at accountability as a general property instead of

focusing on a speci!c technology, and ensure efficiently it in a distributed setting. Our

solution does not rely on a speci!c underlying technology - we devise a general approach

that can be mapped to actual mechanisms according to the speci!c technology

considered. To that extent we introduce the notion of policies to support the specification

of what to store and when, and provide a shared logging mechanism. We see the QUILL

mechanism as a potential component of our system: it can be used to better extract data

from Condor [14].

A number of techniques and tools have been proposed for monitoring grid

resources, and services. However these systems restrict the notion of accountability to

resource consumption monitoring or user account management. Currently many grid

organizations typically adopt as resource monitoring tool one among the OGF-RU

standard [69], Monalisa [70], Ganglia [6].

The OGF-RU standard represents an interesting approach. To share resources,

sites exchange basic accounting and usage data in a common standard format defined by

OGF. The record format facilitates the sharing of usage information for the purpose of

job accounting among grid sites. Although our approach may seem similar to the

approach by the OGF-RU standard, the major difference is that we focus on the

connection among users, jobs and resources. Since our system uses two approaches to

guarantee the principal’s accountability, we achieve more fine-grained accountability

than OGF-RU. Monalisa and Ganglia have very complicated and fault tolerant

monitoring mechanisms. Agent plays similar roles as in our system. However such agents

do not provide full accountability [68] because they do not provide information

aggregated both horizontally (grid node based) and vertically (job-flow based).

Moreover, they are not flexible in that they do not provide any policy language

supporting the configuration of the accountability system while our accountability system

is driven by accountability policies expressed in a policy language.

109

Resource monitoring alone is not enough to detect DDoS attacks and protect grid

computing systems. Kar et al. [58] proposed an anomaly detection system for DDoS

attacks in grids. This system uses an entropy-based model to detect anomalies caused by

DDoS attacks and a grid topology model to implement the system. Compared to their

approach, our approach covers a much broader set of grid layers and different types of

DDoS attacks, while the approach by Kar et al. is limited to only a single network router.

Though they employ additional thresholds defined from the entropy rate of the suspected

flow in that router and the routers downstream, this mechanism only works when there

are other objects to compare with. In addition, this router level detection cannot

distinguish malicious job submissions from normal ones. Thus attacks introduced in

Chapter 5 of this thesis will succeed, because the submitted jobs will be handled as

legitimate jobs.

A related approach is by Xiang et al. [57], who proposed a distributed defense

system composed of sub-systems to protect grids from DDoS attacks. Such system

applies statistical methods to analyze the network characteristics. Like our system, when

the system’s sensors detect malicious activities, the detection system alerts the control

system that then traces back the job through the system. Though this approach shares

some similarities with ours, in our system each agent shares job-flow information with

other agents as well as resource consumption information so that the two types of data

can be combined to collect fine-grained accountability information. In addition, the

system by Xiang et al. does not include any protection mechanism.

Chen et al. [71] propose an idea similar to the job flow discussed in this thesis.

They propose a distributed approach to detecting DDoS attacks at the traffic-flow level.

The job flow graph looks similar to their Change Aggregation Tree (CAT). However, the

CAT differs from our job flow graph in several respects. First a CAT is constructed with

the routers through which the attacks transit for detecting abrupt changes in traffic flows,

while our job flow graph is constructed for accountability purposes with the nodes that a

job traverses. Second, by analyzing the accountability data of jobs in the job flow graph,

potential attacks can be prevented. Third, the centralized CAT servers play an important

110

role and make a decision while our job flow graph technique does not employ any

centralized server and each node can make a final decision.

Another paper that discusses an idea similar to ours is by Mirkovic et al. [72]. Our

detection mechanism in the source node is similar to their source-end detection (D-

WARD) mechanism. However, when differentiating a malicious packet from a legal

packet, they use semantic-based information such as ‘one-way traffic’, etc. while in our

case, we use the behavior of the node in the context of the grid.

In terms of selecting different policies and resolving conflicts in distributed

systems, Lupu et al. [73] propose an interesting approach. This approach aims at

specifying implementable authorization policies, and then refining these policies into

implementable actions, although policies are initially defined by the organization.

Evolving a policy to the refined state seems similar to our work in terms of making the

accountability policy close to a shared policy; however the final goals of this approach

and ours are different. Lupu et al. focus on problems of conflict detection and resolution

and propose various precedence relationships between policies to solve inconsistencies

within the system. However our approach focuses on satisfying both the minimum level

of accountability and the requested accountability for the shared policy when there is a

conflict. In addition, their refining process is different from ours. In their approach the

policy is refined from a high-level abstract level into an implementable policy, whereas in

our approach the policy exists in an implementable form from the beginning and then

evolves into an adapted policy after the minimum level accountability is guaranteed.

Another interesting approach for the resolution of policy conflict is by Davy et al.

[74]. Their paper discusses how to facilitate conflict analysis of policies for services on

multiple network devices. In this approach, ontology is generated from the information

model of the system to embody knowledge about the relationships between policies.

From such knowledge, policy analysis, incorporating policy selection and conflict

analysis, is performed. Such approach uses application-specific information and

knowledge required for conflict analysis. However the profile information in our

approach is used not to detect conflicts but to select a level of accountability.

111

8. CONCLUSIONS

In this thesis, we introduced a distributed approach to achieve distributed

accountability in grid computing systems. We introduced an architecture based on the

notion of accountability agents that are software agents in charge of collecting a wide

range of data and keeping track of connections among jobs, users, and resources. The

accountability agents proposed in this work are distributed across the grid to collect

accountability data and then coordinate to share the accountability data obtained locally

based on a shared policy. The shared policy should be consistent among nodes to

guarantee full accountability without conflicts. However each submitted job is exposed to

a certain level of risk, according to the job type and importance. Similarly, according to

the job’s resource needs, nodes have different significance levels. In addition because of

different node capabilities and a limited amounts of resources available for collection of

the accountability data required by the shared policy, the shared policy should be

different for each job and from node to node. To satisfy two properties of the shared

policy, we have proposed a profile-based policy selection mechanism to adapt the shared

policy to each node’s ability within the requested and supported accountability while

guaranteeing the minimum level of accountability.

Accountability data formed in distributed manner provide provenance information

for real-time diagnostic of runtime anomalies. This real-time based diagnostic through

data analysis plays an important role in helping to detect the source of malicious

activities. To apply this obtained accountability data, we discussed different types of

distributed denial of service attacks that could exploit grids and related detection

strategies. Upon detection of an attack, the accountability agent system is able to protect

the legitimate users’ jobs by using accountability data.

112

We developed a fully working implementation of our accountability system and

carried out extensive experimental evaluations. The experimental results show

that our system does not impact the efficiency of current grid computing systems even for

large-scale grids. In addition, our experiments showed that our system efficiently detects

the attacks and is effective in protecting the normal jobs.

47

LIST OF REFERENCES

113

LIST OF REFERENCES

[1] Webb, K., Hibler, M., Ricci, R., Clements, A., Lepreau, J. (2004): Implementing

the emulab-planetlab portal: Experience and lessons learned. In WORLDS ‘04

[2] Foster, I., Kesselman, C. (1999): The Grid: Blueprint for a Future Computing

Infrastructure. Morgan Kaufmann: San Francisco, CA.

[3] Chivers, H. (2003): Grid Security: Problems and PotentialSolutions, Department

of Computer Science, University of York

[4] Humphrey, M., Thompson, M. R. (2001): Security Implications of Typical Grid

Computing Usage Scenarios, High Performance Distributed Computing

[5] Reilly, C. F., Naughton, J. F. (2006): Exploring provenance in a distributed job

execution system. Proceedings of the International Provenance and Annotation

Workshop, pages 237–245

[6] Massie, M. L., Chun, B. N., Culler, D. E. (2004): The Ganglia Distributed

Monitoring System: Design, Implementation, and Experience, Parralel

Computing, Vol. 30, Issue 7, Jul.

[7] Catlett, C. (2002): The philosophy of TeraGrid: building an open, extensible,

distributed TeraScale facility. In Cluster Computing and the Grid 2nd IEEE/ACM

International Symposium CCGRID

[8] Welch, V., Barton, T., Keahey, K., Siebenlist, F. (2005): Attributes, anonymity,

and access: shibboleth and globus integration to facilitate grid collaboration. In:

Proc of the 4th annual PKI R&D workshop

[9] Bader, D., Robert, P. (1996): Cluster Computing: Applications, Georgia Tech

College of Computing. June.

[10] Foster, I., Kesselman, C., Tuecke, S. (2001): The Anatomy of the Grid, Intl J.

Supercomputing Applications

[11] Foster, I., Kesselman, C., Tsudik, G., Tuecke, S. (1998): A Security

Architecture for Computational Grids. Proceedings of the 5
th

 ACM Conference on

Computer and Communications Security, Nov., San Francisco, CA, USA

114

[12] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.,

Tuecke, S. (1998): A Resource Management Architecture for Metacomputing

Systems. In the 4th Workshop on Job Scheduling Strategies for Parallel

Processing, 62—82

[13] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman,

C., Meder, S., Nefedova, V., Quesnal, D., Tuecke, S. (2002): Data Management

and Transfer in High Performance Computational Grid Environments, Parallel

Computing Journal, Vol. 28 (5), May, pp. 749-771

[14] Frey, J., Tannenbaum, T., Foster, I., Livny, M., Tuecke, S. (2002): Condor-G:

A Computation Management Agent for Multi-Institutional Grids, Cluster

Computing, 5 (3). 237-246

[15] Karonis, N., Toonen, B., Foster, I. (2003): MPICH-G2: A Grid-Enabled

Implementation of the Message Passing Interface. Journal of Parallel and

Distributed Computing

[16] Christie, M., Marru, S. (2007): The lead portal: a Teragrid gateway and

application service architecture. Concurrency and Computation: Practice &

Experience, 19:767-781

[17] Fortes, A., Figueiredo, J., Lundstrom, M. (2005): Virtual computing

infrastructure for nanoelectronics simulation, Proceedings of the IEEE, 93:1839-

1847, October

[18] Foster, I., Kesselman, C. (1997): Globus: A Metacomputing Infrastructure

Toolkit, Intl J. Supercomputer Applications, 11(2):115-128

[19] Gropp, W., Lusk, E., Doss, N., Skjellum, A. (1996): A high-performance,

portable implementation of the MPI message passing interface standard. Parallel

Computing. 22(6):789-828

[20] Staples, G. (2006): TORQUE resource manager, Proceedings of the 2006

ACM/IEEE conference on Supercomputing, Tampa, FL. Nov.

[21] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V.

(1994): PVM: Parallel Virtul Machine A Users’ Guide and Tutorial for

Networked Parallel Computing. MIT Press

[22] Wallom, D., Spence, D., Tang, K., Viljoen, M., Jensen, J., Trefethen, A. (2007):

ShibGrid, a Shibboleth based access method to the National grid service, AHM

[23] Morgan, R. L., Cantor, S., Hoehn, W., Klingenstein, K. (2004): Federated

Security: The Shibboleth Approach. Educase Quarterly 27, 12–17

115

[24] Housley, R., Polk, W., Ford, W., Solo, D. (2002): Internet x.509 public key

infrastructure certi!cate and certi!cate revocation list (CRL) profile. RFC 3280,

Apr.

[25] Hallam-Baker, P. (2001): Security Assertions Markup Language. May, 14:1–24

[26] Khan, L., Awad, M., Thuraisingham, B. (2007): A New Intrusion Detection

System using Support Vector Machines and Hierarchical Clustering, The VLDB

Journal 16, 4, Oct., 507-521

[27] Barton, T., Basney, J., Freeman, T., Scavo, T., Siebenlist, F., Welch, V.,

Ananthakrishnan, R., Baker, B., Keahey, K. (2006): Identity Federation and

Attribute-based Authorization through the Globus Toolkit, Shibboleth, Gridshib,

and MyProxy, 5th Annual PKI R&D Workshop. Apr.

[28] Cantor, S. (2005): Shibboleth Architecture.

http://shibboleth.internet2.edu/docs/internet2-mace-shibboleth-arch-protocols-

latest.pdf

[29] Caelli, W., Longley, D., Shain, M. (1991): Information Security Handbook.

London: Macmillan

[30] Bertino, E., Bettini, C., Ferrari, E., Samarati, P. (1998): An access control

model supporting periodicity constraints and temporal reasoning. ACM Trans.

Database Syst., 23(3):231-285

[31] Bertino, E., Bettini, C., Ferrari, E., Samarati, P. (1996): Supporting periodic

authorizations and temporal reasoning in database access control. In Proc.

International Conference on Very Large DataBases (VLDB), pages 472-483

[32] Shanmugasundaram, J. et al. (1999) Relational databases for querying XML

documents: Limitations and opportunities. In Proc. of VLDB, Edinburgh, Scotland

[33] Stevens, M., Sotrivo, A., Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D. A.,

Weger, B. (2009): Short Chosen-Prefix Collisions for MD5 and the Creation of a

Rogue CA Certificate, CRYPTO, LNCS 5677, pp. 55-69

[34] Laure, E. (2006): Programming the Grid with gLite, In Computational Methods

in Science and Technology, Scientific Publisher OWN, pp 33-46

[35] Laure, E., Jones, B. (2008): Enabling Grids for e-Science: The EGEE Project,

Grid Computing: Infrastructure, Service, and Application. CRC Press, Sep.

[36] Niinimaki, M., White, J., Cerff, W., Hahala, J. (2004): Using virtual

organizations membership system with EDG’s grid security and database acess, in
Procedings of the 15th International Workshop Database Expert System

Application, Sep., pp. 517–522

116

[37] Globus Security Advisory (2008): http://lists.globus.org/pipermail/security-

announce/2008-April/000009.html

[38] SSH: unprivileged users may hijack forwarded X connections by listening on

port 6010 (2008): http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=463011

[39] Grid Security vulnerability group (2011): http://www.gridpp.ac.uk/gsvg

[40] Groep, D., Koeroo, O., Venekamp, G. (2007): gLExec: Gluing Grid Computing

to the Unix World. In International Conference on Computing in High Energy

and Nuclear Physics (CHEP), volume 119 of Journal of Physics: Conference

Series, Victoria, British Columbia, Canada, Sep.

[41] Kupsch, J. A., Miller, B. P., Heymann, E., Cesar, E. (2010): First Principles

Vulnerability Assessment, Proceedings of the 2010 ACM workshop on Cloud

computing security workshop, Chicago, IL, USA, Oct.

[42] Globus-job-manager vulnerability (2007):

http://lists.globus.org/pipermail/security-announce/2007-May/000007.html

[43] Temporary file handling vulnerability (2006):

http://lists.globus.org/pipermail/security-announce/2006-August/000003.html

[44] Altair Engineering PBS (2010):

http://www.securityfocus.com/bid/41449/discuss

[45] Demchenko, Y., Gommans, L., Laat, C., Oudenaarde, B. (2005): Web-Services

and Grid security Vulnerabilities and Threats Analysis and Model, Proceedings of

the 6
th

 IEEE/ACM International Workshop on Grid Computing, Nov., Seattle,

WA, USA

[46] Belapurkar, A., Chakrabarti, A., Ponnapalli, H., Varadarajan, N.,

Padmanabhuni, S., Sundarrajan, S. (2009): Distributed Systems Security, WILEY

[47] Bloomberg, J. (2004): A Guide to Securing XML and Web-Services, ZapThink,

LLC, Jan.

[48] Siddharth, S., Doshi, P. (2006): Five Common Web Application

Vulnerabilities, SecurityFocus. http://www.securityfocus.com/infocus/1864

[49] Novotny, J., Russell, M., Wehrens, O. (2003): GridSphere: A portal framework

for building collaborations. In the first International Workshop o Middleware for

Grid Computing

[50] Vecchio, D. D., Hazlewood, V., Humphrey, M. (2006): Evaluating Grid Portal

Security, Super Computing (SC) 2006, Nov., Tampa, FL, USA

117

[51] Chadwick, D. (2005): Authorization in grid computing, Information Security

Technology Report, Jan.; 10(1): p. 33-34

[52] Karig, D., Lee, R. (2001): Remote Denial of Service Attacks and

Countermeasures, Technical Report CE-L2001-002, Oct.

[53] Feitelson, D. G., Rudolph, L., Schwiegelshohn, U. (2005): Parallel Job

Scheduling – A Status Report, Lecture Notes in Computer Science, Vol. 3277,

Job Scheduling Strategies for Parallel Processing, Pages 1-16

[54] Gilbertson, K. (2002): Process Accounting, Linux Journal, vol 2002, issue 104,

p.2

[55] Bandwidth Monitor (2010): http://www.bwmonitor.com

[56] Ward, B. (2004): How Linux Works, no starch press, p. 77-79, May

[57] Xiang, Y., Zhou, W. (2004): Protect Grids from DDoS Attacks, GCC 2004,

LNCS 3251, pp. 309-316

[58] Kar, S., Sahoo, B. (2009): An Anomaly Detection System for DDoS Attack in

Grid Computing, International Journal of Computer Applications in Engineering,

Technology and Sciences, Vol. 1, Issue 2

[59] Freiling, F. C., Hoiz, T., Wicherski, G. (2005): Botnet Tracking: Exploring a

Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks, In

Proceedings of 10
th

 European Symposium on Research in Computer Security,

ESORICS, Milan, Italy, Sep.

[60] Huang, J., Kini, A., Reilly, C., Robinson, E., Shankar, S., Shrinivas, L., DeWitt,

D., Naughton, J. (2006): An Overview of Quill++: A Passive Operational Data

Logging System for Condor, Technical report, University of Wisconsin at

Madison, Apr.

[61] Momjan, B. (2000): PostgreSQL: Introduction and Concepts. Pearson

Education. Reading, MA

[62] Cover, T. M., Thomas, J. A. (2007): Elements of Information Theory, WILEY,

second edition

[63] Steele (2008): http://www.rcac.purdue.edu/userinfo/resources/steele

[64] Apache software foundation (2010): Apache HTTP Server 2.2, Security and

Server Programs, Fultus, Vol II, p. 130-133.

118

[65] Corin, R., Etalle, S., Hartog, J. I., Lenzini, G., Staicu, I. (2005): A logic for

auditing accountability in decentralized systems. In 2
nd

 IFIP TCI WG1.7

Workshop on Formal Aspects in Security and Trust (FAST), Toulouse, France,

pages 187-201. Springer, August 22-27

[66] Crispo, B., Ruffo, G. (2001): Reasoning about accountability within delegation.

In ICICS, pages 251-260

[67] Kailar, R. (1996): Accountability in electronic commerce protocols. IEEE

Trans. Software Eng., 22(5):313-328

[68] Chun, B. N., Bavier, A. C. (2004): Decentralized trust management and

accountability in federated systems. 37
th

 Hawaii International Conference on

System Sciences, January

[69] Mach, R., Lepro-Metz, R., Jackson, S., McGinnis, L. (2006): Open Grid Forum

(OGF) Resource Usage (RU) standard – Format Recommendation, Sep.

[70] Newman, H. B., Legrand, I. C., Galvez, P., Voicu, R., Cirstoiu, C. (2003):

MonALISA: a distributed monitoring service architecture, Proceedings of the

2003 Computing in High Energy and Nuclear Physics

[71] Chen, Y., Hwang, K., Ku, W. (2007): Collaborative Detection of DDoS Attacks

over Multiple Network Domains, IEEE Transactions on Parallel and Distributed

Systems, Vol. 18, No. 12, Dec.

[72] Mirkovic, J., Reiher, P. (2005): D-WARD: A Source-End Defense against

Flooding Denial-of-Service Attacks, IEEE Transactions on Dependable and

Secure Computing, Vol. 2, Issue 3, Jul.

[73] Lupu, E. C., Sloman, M. (1999): Conflicts in policy-based distributed systems

management, Software Engineering, IEEE Transactions on Vol. 25, issue 6, Nov.-

Dec. Pages:852-869

[74] Davy, S., Jennings, B., Strassner, J. (2008): Using an Information Model and

Associated Ontology for Selection of Policies for Conflict Analysis, IEEE

international workshop on Policies for Distributed Systems and Networks,

Palisades, NY

[75] Job Description Schema Doc (2004):

http://www.globus.org/toolkit/docs/4.0/execution/wsgram/schemas/gram_job_des

cription.html

113

APPENDIX

119

A. EXTENSIBLE MARKUP LANGUAGE (XML)

The XML grammar that is used at section 2.3.2 is introduced in appendix A.

XML declaration:

 <?xml version=#1.0# encoding=#UTF-8#?>

Comments:

 <?--comments-->

Element:

 <element>content</element>

Element Nesting:

 <element_A><element_B>content</element_B></element_A>

Empty Element:

 <info auther=”jame joyce” date=”1960-Jan-01” />

Attribute:

 <element_name attribute_name=#attribute_value#>element contents</element_name>

Well-formed:

 A well-formed document conforms to the XML syntax.

Valid:

 A valid document, in addition, conforms to semantic rules either in an XML schema or

 user defined schema. If a document contains an undefined element, it is called not

 valid

120

Structured XML document:

 Generic XML document contains a tree-based data structure.

 Example:

 <recipe name="bread" prep_time="10 mins" cook_time="2 hours">

 <title>Bread Recipe</title>

 <ingredient amount="8" unit="dL">Flour</ingredient>

 <ingredient amount="10" unit="grams">Yeast</ingredient>

 <ingredient amount="1" unit="teaspoon">Salt</ingredient>

 <instructions>

 <step>Mix all ingredients together</step>

 <step>Leave for five hour in warm room</step>

 <step>Turn on baking oven</step>

 <step>Leave oven for 30 minutes</step>

 <step>Bake in the oven at 450 for 30 minutes.</step>

 </instructions>

 </recipe>

121

VITA

121

VITA

Wonjun Lee received a Master of Science degree in Electrical & Computer

Engineering from Purdue University in December 2002. Before coming to Purdue, he

worked for Samsung Electronics for two years at software development team of

information & communication branch as a researcher. He started Ph.D. program at 2003

at Purdue, and began to work with Prof. Bertino from 2005 about the Ph.D. thesis topic.

While pursuing the Ph.D. degree, he worked for Rosen Center for Advanced Computing

(RCAC) from 2005 to 2010 as a research assistant. In RCAC, he participated in grid

computing projects especially related to security issues such as identity management,

authentication and authorization issues.

