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ABSTRACT 

Kerr, Samuel T. M.S., Purdue University, May 2012. Secure Physical System Design 
Leveraging PUF Technology. Major Professor: Elisa Bertino. 

Physical systems are becoming increasingly computationally powerful as faster 

microprocessors are installed. This allows many types of applications and function­

ality to be implemented. Much of the security risk has to do with confirming the 

device as an authentic device. This risk can be mitigated using a technology known 

as Physically Unclonable Functions (PUFs). PUFs use the intrinsic differences in 

hardware behavior to produce a random function that is unique to that hardware 

instance. When combined with existing cryptographic techniques, these PUFs enable 

many different types of applications, such as read once keys, secure communications, 

and secure smart grids. 
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1. INTRODUCTION 

There are many different computer systems in the world today. Many of these systems 

are general purpose computing systems, such as consumer desktops and laptops. 

However, there are many more systems with a very specific use and that interact 

with the world in a physical way. Examples of this include sensor arrays, surveillance 

systems, or utility pipelines. These are called “physical systems”. These systems 

incorporate a large amount of computation to perform their tasks, but their main 

tasks are accomplished by interacting with the physical world in some way. 

These physical systems are beginning to become more and more complex. Origi­

nally, these systems computational abilities were very limited, maybe being restricted 

to a few hard coded operations, potentially only accessible by an on site technician. 

Today, many of these systems have a much greater computing capacity, have more 

dynamic capabilities, and, especially, are more connected to some sort of network, 

such as the Internet. These improvements have allowed for much greater control over 

systems, better remote interfacing, and greater efficiency. 

With all the improvements however also comes security risks. Suddenly, physical 

systems are vulnerable to malicious control from an adversary connected over the 

Internet. Besides just a networked adversary, it is possible that malicious code, such 

as a virus, might infect the system. Due to the increased processing power and more 

generalized computing resources, these viruses would have a greater attack surface 

and more opportunities to compromise such a system. 

One of the main problems of physical systems is that it is difficult to uniquely 

identify them. That is, when allowing remote communication with a physical sys­

tem, parties are not completely sure that the system they are communicating with is 

authentic. An attacker might have made a copy of the device and could be imper­

sonating the device. Alternatively, the device could be a counterfeit. What is needed 
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is an approach to ensure that the device is actually the intended device. 

A novel technology called Physically Unclonable Function (PUF) provides the sort 

of device identification that is needed to solve the previous issue. A PUF is a device 

that can be used to generate a response that is unique to a given device. PUFs are 

made by leveraging small inconsistencies in the manufacturing process. As such, it is 

impossible to duplicate a PUF. Since the PUF cannot be duplicated, if a device ever 

returns the expected response from its PUF, the other party can be confident that 

the device is the intended device. 

The rest of the thesis is structured as followed. 

Chapter 2 describes physical systems and their nature, including several of the 

difficulties that are involved with them, in more depth. 

Chapter 3 introduces some of the necessary cryptography background needed for 

understanding the rest of the paper. 

Chapter 4 introduces PUF technology and creates an initial connection to physical 

systems. Several different PUF architectures are presented as well as a discussion of 

some implementation issues. 

Chapters 5, 6, and 7 all describe an applications of PUF technology as it incor­

porated into physical systems. These applications demonstrate the use of PUF as a 

way of resolving the issues facing physical systems. 

Chapter 5 describes a project called Read Once Keys. These are keys that once 

being read are destroyed and are irrecoverable. The PUF device is used in this case 

as a way of providing trusted execution. 

Chapter 6 describes an authentication approach called Physically Enhanced Au­

thentication Ring. This approach uses a PUF to combat a potentially compromised 

communication channel, such as when a key logger is installed. 

Chapter 7 describes an approach for key management in smart grids and smart 

meters. A PUF is incorporated into a smart meter and is used to securely authenticate 

with a utility company, in spite of potential threats. 

Chapter 8 draws final conclusions and presents closing thoughts. 
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2. PHYSICAL SYSTEMS 

Physical systems present an interesting problem domain for study. In contrast to 

software systems, they are subjected to multiple different factors that all require 

consideration during design. Physical systems frequently must be able to cope with 

environmental factors such as temperature change, moisture, or questionable power 

systems. 

A purely software system may be able to assume it will only receive input from 

a standard input and output channel. In contrast, a physical system must be able 

to account for multiple different input sources, especially input types that might 

not have been intended. A physical system might receive input directly from end 

users, networking devices, sensors. A physical system could also consider environment 

changes as a sort of secondary, unintended input. For example, the device’s power 

may fluctuate, potentially changing the behavior of internal circuits. A temperature 

change could cause the sensitivity of a certain component to increase or decrease, 

which will in turn alter the behavior of the system. These are but a few examples of 

the various factors that a physical system must be properly designed to handle and 

account for. 

2.1 Typical Organization and Use Case of Physical Systems 

Physical systems are a very broad category that covers a large set of devices, 

applications, and use cases. Because of this, it is difficult to discuss physical systems 

generically. Rather, this section details some of the common configurations that 

physical systems take. The rest of the work will regard physical systems as belonging 

to one of the configurations discussed. 

Despite it being difficult to characterize physical systems in general terms, their 



4 

operation can be viewed using the mathematical relation below. Physical inputs are 

inputs from physical interfaces, such as buttons, control terminals, or radio signals. 

Other inputs might be information received over the network or from some sort of 

attached peripheral. 

Output = SystemP hysical(P hysicalInputs, OtherInputs, Environment) 

The three configurations of physical systems that will be considered are that of 

the standalone, deployed, or peripheral physical systems. Each is distinct based upon 

how much interaction it has, not only with the physical world, but also with other 

physical systems or remote devices. Peripheral systems have the most interaction 

with remote parties and other systems while standalone systems have the least. In 

terms of the equation above, the three categories vary based on what sort of ’Other 

Inputs’ are passed to them. 

2.1.1 Standalone Physical Systems 

One common configuration of a physical system is that of a standalone physical 

system. This means that the physical system is not reliant on communicating with 

another physical system; it is deployed and functions independently. An example of 

this could be a garage door opener. There might be a control pad on the side of 

the garage which can open or close the garage door. Additionally, there could be an 

option to open the door remotely using some sort of radio frequency device. 

Standalone physical systems are more straightforward to deal with in a lot of 

cases. The garage opener example has a very specific use case, defined inputs (control 

pad and remote control) and defined outputs (open or close the garage door). These 

qualities typically do not change nor are updated often, if ever. As such, it is typically 

easy to create a sort of state diagram to model the behavior of standalone physical 

systems. 
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2.1.2 Deployed Physical Systems 

Another category of physical systems is that of the ’deployed physical system’. 

This is a type of physical system that not only interacts with the environment it is 

in, but may also communicate with another physical system or some sort of remote 

server. A cash register is a good example of a deployed physical system. It takes 

input from cashiers, who can record transactions, print receipts, and insert or remove 

currency from it. However, it also communicates with remote servers in certain cases, 

such as when a credit card is used. It must interact with the physical environment, 

but also must interact with remote servers to verify the credit card transactions. 

Because a deployed physical system must potentially interact with a remote party, 

it is more complex than a standalone physical system. It must contend with the same 

sorts of issues that standalone systems do, but also has to deal with issues that could 

relate to the remote communication or other physical system. As such, it is more 

complex and difficult to model a deployed physical system than a standalone physical 

system. 

2.1.3 Peripheral Physical Systems 

Peripheral physical systems are the most complex type of physical system. These 

are normally called ’peripherals’. That is, they do not provide the main functionality 

of a system, but augment its ability in some way. An example could be a pro­

grammable sensor array. The sensor array could be connected to a network through 

which it receives commands. The array would then take sensor readings and com­

municate them back over the network. Not only does the array have to interact with 

the physical environment to take readings, but there is also the component of dealing 

with the command and control element from the network connection. 

Peripheral physical systems are characterized by the fact that they not only require 

interaction with the physical world, but also with other physical systems or with a 

remote connection. Because of this, it is very difficult to model the system, since 
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there are a very large number of ways that the other communicating party could 

potentially behave, in addition to any difficulties involved with modeling the physical 

inputs themselves. 

2.2 Failure Considerations 

There are multiple ways that a physical system or device could fail. There are 

multiple benign ways that a system could fail. That is, the system is not attacked 

in any way, but some circumstances cause the system to fail or degrade in some way. 

There any many different ways to reduce these risks, as discussed below. 

2.2.1 Device Failure 

One failure model is for a complete device failure. In this instance, the device has 

failed to such a point that it is no longer able to perform any of its intended function. 

This typically occurs to some catastrophic component failure or a lack of preventative 

maintenance as a system’s performance degrades over time. 

To mitigate the danger of a complete system failure, it is necessary to impose a 

schedule for periodic maintenance and monitoring of the operating environment for 

dangerous conditions. An example of this would be inspecting all the moving parts 

and springs on a garage door opener to ensure they are not cracking or otherwise at 

risk of failing. Monitoring the environment is critical to ensure that a system is not 

operating in conditions it was not designed for. If a sensor array was designed for 

operating indoors and it is placed outside and subjected to weather, of course it will 

fail. 

2.2.2 Device Degradation 

One of the few “good” aspects about a complete device failure is that it is readily 

noticeable. If the system fails completely, it is not possible to interact with it any 



7 

more. In contrast, if a device degrades, the degradation may not be noticed for a long 

time, while in the interim, the degraded system will be used under the assumption it 

is properly functioning. 

An example of this is if a sensor array were to be degraded in some way, its readings 

might be skewed. The skewed readings would then be recorded and fed into a process­

ing program or used by some other party. Depending on the application, this could 

cause the intended application to then function improperly. In certain instances, this 

degradation can even prove to be life threatening, such as when temperature sensors 

in the Fukishima nuclear plant were incorrectly reporting the internal temperature of 

nuclear reactors. [1] 

2.3 Attacks 

In addition to the problems that are inherently present in physical systems, it is 

necessary to consider problems that may occur from attackers maliciously using the 

system. They may be attempting to gain unauthorized access to the system, prevent 

legitimate users from using the system, disable the system entirely, or any number of 

other motivations. 

2.3.1 Denial of Services Attacks 

It is entirely possible that a malicious entity wants to simply disable and disrupt 

access to a physical system, preventing legitimate access to the system. If the phys­

ical system is unable to deliver valid services to its intended users, it is essentially 

worthless. 

Denial of service attacks against physical systems are unique with regards to the 

denial of service attacks against software. Some are very complex, while others are 

very simple. In the simplest case, an attacker can simply use a hammer to smash the 

system. More complex denial of service attacks may include inputting erroneous data, 

which may crash or slow the system. Attackers might also disrupt the environment 
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that the physical system resides in, such that it is not useful. For instance, an attacker 

might put a heating element near a thermometer, which would essentially mean the 

system is unusable for its intended purpose. 

As far as defenses against these types of attacks go, a first step is usually to 

ensure that the system is protected against a reasonable amount of tampering. This 

could include protective cases, placing the system behind a fence, or having a guard 

present. As mentioned previously, proper maintenance can also be helpful, to prevent 

an attacker from manipulating and disturbing the surrounding environment. 

2.3.2 Man in the Middle Attacks 

There is a class of attack known as Man in the Middle (MITM) attacks. This is 

when an attacker sits between two parties and eavesdrops on their communications. 

The attacker is then able to learn sensitive data that the two parties are transmitting. 

This type of attack is especially relevant for physical systems. Physical systems 

frequently transmit data over cables, infrared, radio, or other wireless communication 

methods. If an attacker was able to splice a listening device into a cable or construct 

the appropriate type of receiver, it is plausible he would be able to easily recover the 

communications between the two parties. 

Depending on the type of data being sent, this could compromise the security and 

integrity of the system. For instance, maybe an attacker would be able to recover the 

command sequence to reset a sensor array. He could then reset the sensor array at 

will. 

To combat this type of threat, it is important to assume that any communication 

being done is being eavesdropped on. This then necessitates encrypting the data 

being transmitted. In this way, even if an adversary was to recover the data, he 

would not be able to make sense of it. Chapter 3 goes into more detail on encryption 

techniques. 

As a final note, it is important to note that MITM are not relevant for only 
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signals being transmitted over wireless and wires, but also on the internal buses of 

the circuits themselves. An attacker might be able to attach logic probes to bus lines 

between the processor and memory of the system and deduce sensitive data. In this 

case, it is important to take measures to prevent these bus lines from being exposed, 

through the use of potting and other tamper-proofing methods. Another option is 

to incorporate the entire design (or at least the sensitive bus lines) on a single chip, 

such as a Field Programmable Gate Array (FPGA) or a System on a Chip (SOC). 

2.3.3 Impersonation 

Another issue for physical system designers to be aware of is that any party they 

are communicating with is actually an authorized party. This is especially relevant 

for deployed physical systems and peripheral physical systems. Since they require 

external communication as a major component of their proper operation, they are 

especially sensitive to these attacks. 

It is plausible that an attacker could disconnect the cables used to communicate 

and re-attach them to his own machine. He could then issue commands and commu­

nicate with the physical system. Unless protective measures are in place, the system 

would then interact back with the attacker. The attacker could then issue any sorts 

of commands that he wished of the system. 

The issue of impersonation harkens to the need for authentication. Chapter 3 

goes into more details on authentication protocols, but essentially, all communications 

between the system and the other party would have to be signed. If the signatures 

do not match the expected values, the communication is rejected and dropped. In 

this way, an attacker would have to be able to forge the signature of the valid party, 

which is considered computationally difficult if a proper signature scheme is used. 
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2.3.4 Replay Attacks 

There is a class of attacks that is related to MITM attacks. Replay attacks leverage 

the fact that certain protocols might consistently send the same data every execution 

of the protocol. For instance, consider a system that requires the sender to send an 

encrypted version of an ID number before every message to identify itself. If that 

ID is always the same, an attacker could simply capture the encrypted text and send 

that; he does not need to actually know the plaintext version of the ID to impersonate 

the sending party. 

This type of attack can be remedied by ensuring that every execution of a protocol 

is unique. This is done through the use of time stamps or “nonce” values, which are 

randomly chosen, one time use values. Then, if an attacker tried to replay previous 

communications, the attack would fail since the time stamp or the nonce value would 

not match. So in the example above, the sender might encrypt his ID number con­

catenated with the current time. Then, an attacker would not be able to re-use any 

communications he captures in the future. 

2.3.5 Signals Injection 

Due to the nature of electronics, physical systems are susceptible to external 

signals being directed at them. If an electric or magnetic field is directed at certain 

elements of internal circuitry, it is possible to alter the behavior of those circuits. An 

attacker can potentially bombard a physical system in some way to elicit a response 

from the device. 

An example of this type of signal injection was shown in the Cold War with ’The 

Thing’. [2] In 1945, a Soviet made Seal of the Republic was given as a gesture of 

friendship and installed in a sensitive office. When bombarded with radio waves, the 

device internals would resonate, modulate the radio waves, and it was possible to 

listen to conversations in the room where it was installed. This is a classical example 

of how physical systems can be manipulated through signal injection. In this case, the 
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signal injection was a desired feature, but it is important to be aware of this danger 

when designing physical systems. 

Another example is disruption of GPS signals. This typically occurs because radio 

frequency signals are using the same wavelengths as GPS signals. GPS signals are 

usually weaker than RF signals, so the RF signals dominate and drown out the GPS 

signals. A report [3] was delivered in 2001 and details some of these risks and defenses 

associated with GPS interference, both unintentional and intentional. 

To mitigate signal injection, it is important that system designers consider and 

plan for signal injection attacks. Defenses against this could include shielding equip­

ment against magnetic and electrical fields or using multiple frequencies and receivers 

when possible [3]. These are just some techniques to defend against the signal injec­

tion threat which must be considered. 

2.3.6 Signal Emissions 

Adversaries may also attempt to harvest a physical systems signal emissions in 

an attempt to gather information. This is because during normal operation, many 

devices give off electromagnetic and radio signals, at least to some extent, even if 

unintended. There have been examples showing that it is possible to recreate what is 

on a user’s CRT or LCD computer monitor by recording the emissions of the monitor 

from a far, using a process known as “Van Eck phreaking”. [4] [5] 

NATO created a program called TEMPEST to investigate and report on the 

risks associated with signal emissions and defenses against these threats. [6] Some of 

the easily implementable changes they suggest are to put electromagnetic shielding 

around devices. Suggestions presented also include signal filtering such that certain 

frequencies are attenuated or completely removed from emission. 
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2.3.7 Tampering 

If a system is not protected, tampering with the system itself is one of the easiest 

attacks for an adversary to execute. He can attach logic probes or some device to 

record traffic being sent over signal buses to learn sensitive information. He could 

also tamper with certain portions of the system so that error handling and recovery 

routines were triggered, which might be easier to exploit in some way. 

There are many different techniques to deal with physical tampering of a system. 

One of these includes potting, which involves sealing all components in a type of 

epoxy, so that no wires are exposed. Another technique would be to put the sensitive 

components in an enclosure that had some sort of alarm on it. When the enclosure 

was opened, an authority would be notified, who could then deal with the tampering. 

Physical tampering is a very large problem and these are just a few techniques to 

address it, but every system designer should consider how to protect his system from 

tampering. 
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3. CRYPTOGRAPHY OVERVIEW 

3.1 Overview 

Before delving into the details of various applications for secure physical system 

design, it is necessary to define and understand several different cryptographic prim­

itives, as they form a foundation on which the applications build. The following 

sections present a brief introduction to the necessary cryptographic primitives that 

will be used in the rest of the thesis. 

3.2 Encryption 

It is often necessary to scramble and protect data so that only certain parties, 

such as those who possess a key value, can de-scramble and read the protected data. 

This might be necessary when sending any sort of sensitive data, such as financial 

records or e-mail messages. Presumably, if a person does not have the correct key 

value, he or she will not be able to scramble or unscramble the data properly. 

The act of scrambling the data is called encryption. The corresponding act of 

descrambling encrypted data is called decryption. 

Encryption and decryption operations and relevant parameters are denoted using 

the following notation below. 

C = EKE (M) (3.1) 

M = DKD (C) (3.2) 

Above, C is the ciphertext, or encrypted text. M is the message or plaintext. E 

represents the encryption algorithm, of which there are several types. This algorithm 

takes plaintext as a parameter and returns ciphertext. D represents the decryption 

algorithm, which takes ciphertext and return plaintext. K represents the key value. 
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KE is used with the encryption algorithm, while KD is used with the decryption 

algorithm. 

A sender would use his plaintext message to generate the ciphertext and transmit 

it. The receiver would then process the received data using the decryption algorithm 

and then be able to successfully recover the plaintext message. 

3.2.1 Symmetric Encryption 

Symmetric encryption is a fairly intuitive method of using encryption. In this 

style of encryption, both the sender and receiver share the same key value, K. In this 

scenario KE = KD. There are several, different symmetric encryption algorithms, 

such as AES [7], DES [8], Blowfish [9], and many others. For my purposes, I typically 

use AES. It is fast and considered fairly secure. 

One difficulty with symmetric encryption is the establishment of a shared sym­

metric keys between the two communicating parties. If there is a secure channel 

between the sender and recipient, it is trivial to simply send the value K across the 

secure channel. If there is no secure channel however, there are protocols, such as 

the Diffie-Hellman Key Exchange [10] algorithm. This is a somewhat cumbersome 

step to do for every communication. Additionally, a party must maintain a different 

symmetric key for each other party he or she wishes to contact. 

3.2.2 Asymmetric Encryption 

Asymmetric encryption is an interesting cryptographic building block. In this 

system, KE  KD. Typically, KE is a public key, while KD is a private key. That= 

is, KE may be published somewhere publicly, which then allows anyone to encrypt 

messages. However, without KD, these messages cannot be decrypted. As such, 

(typically) only one person will have KD. 

This is a useful system because it allows anyone to send a given person an en­

crypted message easily: Simply retrieve the public key, encrypt the message, and send 
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it to the recipient. Unlike symmetric encryption, there is no need for a protocol to 

establishing a shared symmetric key. This greatly alleviates the problems that key 

management systems impose. 

There are several systems for asymmetric encryption schemes. One popular 

scheme is RSA [11]. In this scheme, a user picks a value which becomes KD and 

uses that to derive KE . It is considered unreasonably difficult to derive KD from KE 

though, which makes this scheme secure. Interested users may refer to [11] for more 

specific details on the RSA scheme. 

3.3 Digital Signatures 

An important ability when sending messages is for one party to “sign” the message. 

This allows a recipient to be confident that the sender is actually who he claims to 

be, much like a physical signature on a physical document. Due to the fact that 

electronic media is so easily manipulated, it is somewhat difficult to ensure that the 

sender of electronic materials is who he claims to be. 

Several algorithms exist that can be used for digital signatures. In general terms, 

the signer will know some secret, or a private key, which he will use to sign messages. 

He will also publish some value related to the private key, known as the public key. 

When he wishes to send a signed message, the sender will use his private key to 

perform some operation on the message and send the message and result of the 

operation to the recipient. The recipient will then perform some operation on what he 

received from the sender, using the sender’s public key. If the signature is authentic, 

the recipient will be able to determine this, or if not, this will also become more 

apparent. Figure 3.1 illustrates this process. 
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Figure 3.1. A graphical representation of the digital signature process [12]

3.4 Zero Knowledge Proof of Knowledge

A party might need to prove that it knows some value. Sometimes it is acceptable

to simply reveal the value, but in other cases, this might not be acceptable. For

instance, imagine if Peggy, Victor, and Eve are in the same room. Victor wants to

make sure Peggy knows his phone number, but does not want Eve to learn her phone

number. Peggy cannot simply repeat Victor’s phone number, lest Eve overhear and

write it down. In this case, Peggy will use what is called a zero knowledge proof of

knowledge or ZKPK.

A ZKPK is a way to prove for one party to prove to another that it knows a secret

without actually revealing the secret. A basic use case was just described, but there

are many reasons why a ZKPK might be useful. A ZKPK can be used when there is

concern that a man­in­the­middle is present and could determine the secret (as was
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the case in the previous example), but to defeat this, encryption is usually a better 

alternative. Where a ZKPK is very useful is when the sender does not want to reveal 

the secret to the recipient. So in a similar example, say that Peggy wanted to prove 

to Victor that she knew her own phone number, but did not want to give it to Victor. 

This is when the use of a ZKPK is most applicable. 

There are multiple different schemes that implement ZKPK behaviors. The scheme 

the author is most familiar with is called the Feige-Fiat-Shamir Identification Scheme 

(FFS). The scheme works using modular arithmetic, similar to the RSA algorithm 

above. Interested readers are referred to the original paper in [13] for more details. 

3.5 Commitment Schemes 

It is often necessary for a party to be bound to some decision it has made in the 

past, but without actually revealing that decision. For example, suppose Alice and 

Bob are talking on the phone and want to flip a coin to solve a dispute. This is clearly 

subject to much distrust, since whoever flips the coin could lie about the result so he 

or she always wins. This is where a commitment scheme would be useful. 

More formally, a commitment scheme is defined as a two step procedure. In the 

first step, a value is chosen and committed. This commitment does not reveal the 

value chosen, so it may be publicly published somewhere if desired. The second step 

is revealing. In this step, the private value is revealed and then verified against the 

commitment previously made. 

In the coin-flipping example, a commitment scheme could be employed as follows. 

Alice would secretly decide whether to call heads or tails. She would then commit 

this value to Bob. Recall that this commitment does not reveal Alice’s choice. Bob 

would then tell Alice the result of the coin flip. Alice would then tell Bob what she 

committed previously. Bob checks this value against Alice’s commitment. If the value 

checks out, Bob accepts that Alice actually did call that value. 

Commitment schemes are often used in conjunction with zero knowledge proof 



18 

of knowledge schemes; A prover proves to a verifier that he knows the value used 

to generate a commitment without having to reveal to the verifier such value. The 

verifier only accepts the committed value. The method the author is most familiar 

with is known as Pedersen commitments. Readers interested in more details of this 

scheme are referred to the original paper [14]. 
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4. PHYSICALLY UNCLONABLE FUNCTIONS 

It is desirable for a user to be sure that the device that he is using is authentic. 

However, due to the sophistication of forgeries or possible communication tampering, 

a user might be suspicious that the system is the system it claims to be. A device 

called a Physically Unclonable Function, or PUF, is a technology that addresses this 

problem. 

A PUF device provides a unique challenge-response capability. That is, when two 

PUFs are provided the identical challenge, they will each produce unique responses. 

In this way, a PUF, and the system it contains, can be identified by the response value 

it generates to a specific challenge. A more formalized definition of this relationship 

is given below. 

PUF1(C) = R1 

PUF2(C) = R2 

R1 = R2 

This relationship can thus be used to bind certain information to a given system 

by adding a PUF to it. That is, when a system produces a specific response, it is 

possible to unique identify that specific system from another. 

4.1 Types of PUFs 

A PUF device provides this sort of relationship by leveraging the physical prop­

erties of the materials in which it is instantiated. There are several different ways of 

doing this, from measuring the distortions of reflected light to leveraging the manu­

facturing inconsistencies from one chip to another. 

The Ring Oscillator PUF is presented first and in somewhat greater detail than 
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other types of PUF since this is the type of PUF that the author worked with pri­

marily. As such, it was incorporated in many of the different applications presented

later in Chapters 5, 6, and 7.

4.1.1 Ring Oscillator PUF

A Ring Oscillator PUF is a PUF design that utilizes a circuit called a Ring Oscil­

lator (RO). An RO is an odd number of inverter gates tied together. Because there

are an odd number of gates, this will produce a continuously changing, or oscillating,

signal. Because it is a combination of circuits, the RO PUF can be instantiated on a

piece of silicon, such as an FPGA or ASIC device.

Figure 4.1. A 3­gate ring oscillator

Depending on the number of inverter gates being used as well as the propagation

delay of every individual inverter, the output frequency of one RO may be different

from another RO. In Figure 4.1, this output signal corresponds to the signal marked

Q.

When used as part of a PUF, the unique behavior of an RO will be examined.

Consider again the 3 stage RO shown in Figure 4.1. All three inverter gates are

assumed to have the same propagation delay and the interconnecting wires are as­

sumed to impose a negligible delay. However, in an actual instantiation of an RO,

these assumptions are invalid. All three inverters should have the same propagation

delay, but, due to uncontrollable manufacturing inconsistencies and tolerances, they

do not. In a similar vein, the interconnecting wires will also impose a non­zero delay

time in signal propagation. Both of these factors will combine so that even if two ROs

are produced on the same manufacturing line, they will generate a slightly different



21

output frequency.

The slightly different output frequencies of two ring oscillators forms the basis

of randomness for the Ring Oscillator PUF. Because the output frequencies of the

ROs cannot be predicted, their actual frequency at run time gives a way to uniquely

identify the individual PUF that contains them. In Figure 4.2, a more detailed

diagram of a PUF based off of ring oscillators is presented.

Figure 4.2. A 1­bit ring oscillator PUF

The ring oscillator PUF shown above uses a challenge bit and feeds it to a mul­

tiplexer. If the challenge bit is zero, the top ring oscillator will be fed to the top

counter and the bottom ring oscillator to the bottom counter. If the challenge bit is

one, the top ring oscillator will be fed to the bottom counter and the bottom ring os­

cillator will be fed to the top counter. The counters will then be executed for a given

amount of time. At the expiration of this time duration, the values of the counters

are compared. If the top counter has a larger total, a zero is output as the response.

If the bottom counter has a larger total, a one is output as the response. While the

diagram only displays two ring oscillators and only 1 bit of challenge and response,

this diagram can be extrapolated to form arbitrarily large PUFs.

That is the most basic design of an RO PUF. In practice, this design is somewhat

inefficient, since for an N­bit PUF, 2*N ring oscillators are needed, which is fairly
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expensive. There has been work done for alternative designs of an RO PUF to reduce 

the number of ring oscillators needed [15]. Typically, this involves using a pool of 

ring oscillators and then using a multi-bit challenge to select some permutation of 

them. Details presented in [15] illustrate that 35 oscillators can be used to generate 

133-bits of output by using this pool strategy. 

4.1.2 Butterfly PUF 

Another design of a PUF is called a Butterfly PUF. This design is similar to the 

previous RO design in that it can be instantiated on a piece of silicon. This allows 

for easy incorporation into existing FPGA designs or through the production of a 

custom ASIC chip. Figure 4.3 shows a circuit example of a butterfly PUF and how 

it might be designed. 

The Butterfly PUF works by tying the output of two D flip flops to each others 

inputs. By applying the CLR signal to one flip flop and the PRE signal to the other 

flip flop, the circuit will enter an undefined state. It will eventually go to one of two 

defined states (0 or 1). The circuit will typically settle in the same state, which forms 

the basis for the PUF response. 

Interested readers are referred to [16] for more information about the Butterfly 

PUF. 
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Figure 4.3. A depiction of a Butterfly PUF 

4.1.3 Optical PUF 

An optical PUF is a design that leverages physical randomness that is explicitly 

introduced during a manufacturing process. The typical optical PUF is constructed 

by taking a transparent material and randomly coating it with particles to disperse the 

light. A laser light is then shone on the material and the resulting pattern is recorded. 

The image is then processed and this is the response of the PUF. Interested readers 

are referred to the original thesis that proposed this idea in [17]. 

4.1.4 Coating PUF 

A coating PUF works by creating a mesh of wires and then filling the cavities 

with some sort of dielectric material. Based on how the dielectric is applied, there 

will be varying levels of capacitance between the wires in the mesh. This capacitance 
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can then be measured as the unique response for the given PUF design. Details are 

presented in [18]. 

The coating PUF is typically used as a sort of anti-tamper device. The coating 

PUF is wrapped around an existing circuit and is used to enable its operation. That 

is, the proper PUF response is needed to unlock the device. If an adversary is to alter 

the coating in anyway (though reverse engineering for example), this will alter the 

PUF response and cause the underlying circuit to not function. 

4.2 PUF Error and Error Correction 

An important part to consider for any PUF device is the stability of its output 

for the same input. If the PUF device yields different outputs for the same challenge, 

the utility of a PUF is greatly reduced. As such, it is important to examine and 

investigate the stability and error rates of PUF. As the author worked primarily with 

RO PUFs, unless otherwise noted, this section refers to RO PUFs. 

The basic use case that should be examined is when a PUF is executed twice 

in the same environment; that is, temperature, humidity, and other environmental 

factors are constant. For the RO PUF design in Figure 4.2, error rates can be reduced 

by increasing the time that the ring oscillators are executed. In this way, the faster 

ring oscillator’s counter will clearly dominate the slower ring oscillator’s counter. If 

the execution time is very brief, start-up times and routing delays may impose a 

noticeable difference and induce additional error. Note that when the author refers 

to increasing timer execution time, he is discussing orders of milliseconds. The ring 

oscillators were typically run at upwards of 100 MHz, so several milliseconds was 

enough time for frequency differences to become apparent. 

A source of error that can be introduced is a change in temperature. Circuits will 

run either faster or slower as temperature changes, due to the changing resistance 

of the internal components. Note that this is not a behavior specific to PUFs, but 

electronics in general. As such, it is important to consider the effect of temperature 
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on PUF devices. Work in [19] presents detailed, empirical studies of temperature’s 

effect on PUFs. 

Circuit aging is another source of error that can potentially affect PUFs. Over 

time, certain pathways and routes of the PUF may change in their propagation delay. 

Since the PUF is predicated upon the same routes being used over and over, this 

can cause drastic problems for the PUF. At the least, aging can make a PUF more 

susceptible to other sources of error, but at worst case, it could cause enough bits of 

the PUF to change from their original values so that the PUF is no longer identifiable 

as the original PUF. Interested readers are referred to work in [20] which discusses 

PUF aging in greater detail. 

4.2.1 Error Correction Schemes 

As previously described, there are multiple different factors that can affect PUFs 

and their execution. If these are not mitigated, the functionality and utility of a 

PUF is greatly reduced. As such, an error correction scheme is typically needed when 

employing a PUF device. 

Usually, the raw PUF response is not directly output, but rather, is fed into an 

error correction block. The error correction block processes the raw PUF output and 

removes any small errors that may be apparent and outputs the corrected response. 

This is diagrammed in Figure 4.4. While it is possible to do the error correction on a 

discrete chip separate from the PUF itself, it is safer to perform the error correction on 

the same chip as the PUF. This prevents an adversary from potentially intercepting 

the raw PUF output as it is transmitted to the error correction block. Note that in 

Figure 4.4, there is a notation that the PUF and the error correction are self contained 

to illustrate this. 

The author has typically employed the use of Reed-Solomon (RS) error correction 

codes to do error correction. By adding t RS symbols, up to t bit errors can be 

detected, while t/2 bit errors can actually be corrected. This is a fairly large amount 
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Figure 4.4. A high level concept of PUF error correction 

of errors to correct. For a ring oscillator PUF, [21] found that inter-chip variation 

(that is, the same challenge) in response was approximately 0.86%. For a 128 bit 

PUF, that equates to around 1 bit of error per execution. As such, not a lot of error 

correction is needed, but some is indeed needed. In the author’s work [22] [23] [24], 

he has typically used 32 bits of Reed-Solomon error codes. This allows for detection 

of up to 32 bit errors in the 128 bits and correct up to 16 bit errors, which is usually 

sufficient. 

4.3 Vulnerabilities 

Besides just correcting for benign errors due to the nature of PUFs, it is important 

to consider malicious tampering and how vulnerable the PUF is. Again, the use of 

PUF in this section refers to the ring oscillator design previously described unless 

otherwise noted. 

There is a class of attacks called differential power analysis, DPA, that needs 

to be considered for PUFs. This involves monitoring the power consumption of a 

circuit during its execution. It is then possible to deduce what bits of data are 

being processed at a given time. For example, if the floating point processor takes 

a considerable amount of power in a micro controller, an attacker could monitor the 

power during execution. When he saw the power usage spike, he could infer that a 

floating point operation was taking place. This attack is detailed in several papers 
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and a fairly good overview is given in the book [25]. 

The ring oscillator PUF design is fairly resilient against this type of attack how­

ever. During execution of the PUF, every ring oscillator will be executing simulta­

neously as well as the other support circuitry. Because every execution utilizes the 

ring oscillators, power consumption will be constant. This thus eliminates the power 

differences needed for DPA. 

Tampering with the PUF itself is a vulnerability that needs to be considered. An 

attacker may attempt to reverse engineer the PUF so that he could model and im­

personate it. This would involve measuring the distances between wires, capacitance 

values, and propagation delays of the various elements of the PUF. However, these 

elements are so small (nanometers) that the invasive techniques for measuring them 

would likely alter their qualities, so any measurements taken would not be usable 

for impersonating the original PUF. As such, tampering can destroy a PUF and its 

usability, but the risk of being able to duplicate and impersonate the PUF is very 

very low. 

Another important aspect that needs to be considered is if the PUF is tampered 

with at any point during the manufacturing or delivery process. The main concern 

is that an attacker could intercept the PUF and create a model of it; that is, the 

response for every possible challenge. It is possible to offset this risk however by 

using sufficiently large PUFs. If a 128 bit PUF is used, this sort of attack would 

require storing 2128 different values. There are estimated to be about 280 atoms in 

the universe so this attack is not very realistic. 

4.4 Comparison to Alternatives 

Several technologies exist that fulfill roles similar to the of PUF technology. The 

Trusted Platform Module (TPM) and Radio Frequency Identification Tags (RFID 

Tags) are described below, as these are two very common technologies that are in 

practice today. 
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4.4.1 Trusted Platform Module 

Trusted Platform Modules (TPM) are a technology that is similar, but different 

than PUFs. They are typically integrated into a computer’s motherboard, though 

they are also present in other applications. 

TPMs typically provide a large variety of services, as they are technically a cryp­

toprocessor. This is in contrast to a PUF device, which is just a provider of the 

challenge-response capability. TPMs are used to provide remote attestation, binding, 

and data sealing. These services leverage an endorsement key, which is installed in 

the TPM at manufacture time. 

One area where TPMs and PUFs differ is that TPMs only have their one secret 

endorsement key to act as the key to all operations. If this is ever compromised, such 

as when it is being burned in at manufacturing time, all TPM security is lost. In 

contrast, PUFs behavior is characteristic of the challenge provided. If a sufficiently 

large key space is chosen, such as 128 bits, then it is unrealistic that an attacker could 

ever model the entire response space, which would encompass 2128 possible choices. 

Readers interested in more about TPMs are referred to the TPM standards in [26]. 

4.4.2 Radio Frequency Identification Tags 

Radio Frequency Identification Tags, or RFID, are devices that are exposed to 

radio waves, which then allow a reader device to read the information stored on the 

tag. They sometimes do not require power and can operate off the power from the 

reader itself. 

The information stored on tags is typically personally identifiable information, 

such as ID numbers, location of origin, or related data. RFID tags are used in 

applications such as livestock inventory, shipping containers, or warehouse progress. 

A security concern with RFID tags is that they can be read passively and silently 

by unintended parties. For instance, someone might carry a reader in his pocket and 

record the data about people walking by him. This is a security risk and there has 
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been some controversy over it. 

RFID tags are a contrast to PUF. An RFID tag simply stores data and reads it 

out when queried. In contrast, a PUF is a function that requires a specific input to 

get the desired response. In this way, a PUF is thus more secure. 
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5. READ ONCE KEYS 

5.1 Overview 

In this section, we present the definition, design, and implementation of read-once 

keys (ROKs). The presentation is this chapter follows after [23]. 

The term read-once key (ROK) describes the abstract notion that a cryptographic 

key can be read and used for encryption and decryption only once. While it seems 

intuitive that a trusted piece of software could be designed that deletes a key right 

after using it, such a scheme näıvely depends on the proper execution of the program. 

This approach could be easily circumvented by running the code within a debugging 

environment that halts execution of the code before the deletion occurs. That is, the 

notion of a ROK entails a stronger protection method wherein the process of reading 

the key results in its immediate destruction. 

ROKs could be applied in a number of interesting scenarios. One application 

could be to create one-time programs [27], which could be beneficial for protecting 

the intellectual property of a piece of software. A potential client could download 

a fully functional one-time program for evaluation before committing to a purchase. 

A similar application would be self-destructing email. In that case, the sender could 

encrypt a message with a ROK; the message would then be destroyed immediately 

after the recipient reads the message. More generally, there is considerable interest 

in self-destructing data, both commercially [28] and academically [29]. In addition, 

the use of trusted hardware tokens have been proposed for applications including 

program obfuscation [30], monotonic counters [31], oblivious transfer [32], and gen­

eralized secure computation [33]. ROKs can provide the required functionality for 

these applications. 

Another interesting application of PUF ROKs is to defend against physical attacks 
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on cryptographic protocols. For example, consider fault injection attacks on RSA [34– 

38]. In these attacks, the algorithm is repeatedly executed with the same key, using a 

controlled fault injection technique that will yield detectable differences in the output. 

After enough such iterations, the attacker is able to recover the key in full. Similarly, 

“freezing” is another class of physical attack that can extract a key if it was ever stored 

in an accessible part of memory [39]. PUF ROKs offer a unique defense against all 

of these attacks because repeated execution with the same key cannot occur, and the 

key is never actually present in addressable physical memory. 

The ability to generate ROKs in a controlled manner could also lead to an ex­

tension where keys can be generated and used a multiple, but limited, number of 

times. For example, consider the use of ROKs to encrypt a public key pk. If an iden­

tical ROK can be generated twice, the owner of pk could first use the key to create 

eROK (pk) (indicating the encryption of pk under with the ROK). Later, an authorized 

party could create the ROK a second time to decrypt the key. Such a scheme could 

be used to delegate the authority to cryptographically sign documents. 

In a sense, a ROK is an example of a program obfuscator. An obfuscator O 

takes a program P as input and returns O(P), which is functionally identical to 

P but indecipherable. A ROK, then, involves an obfuscator that makes only the 

key indecipherable. While ROKs are promising ideals, the disheartening fact is that 

program obfuscators–of which ROKs are one example–cannot be created through 

algorithmic processes alone [40]. Instead, trusted hardware is required to guarantee 

the immediate destruction of the key [27]. However, we are aware of no work that 

has specifically undertaken the task of designing and creating such trusted hardware 

for the purpose of generating a ROK. 

Our insight for the design of such “PUF ROKs” is to incorporate the PUF in a 

feedback loop for a system-on-chip (SoC) design.1 That is, our design is for the PUF 

to reside on the same chip as the processor core that performs the encryption. This 

1Our design could also be made to work for application-specific integrated circuits (ASICs), but we 
limit our discussion to SoC designs for simplicity. 
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integration of the PUF and the processor core protects the secrecy of the key. An 

attempt to read the key from memory (given physical access) will fail, because the 

key never exists in addressable memory. Also, attempts to learn the key from bus 

communication will be difficult or impossible, as each key is used to encrypt only a 

single message, and the key is never transmitted across the bus. 

The unpredictable nature of PUFs provides a high probability that each iteration 

of a ROK generation will produce a unique, seemingly random key. Yet, to ensure 

that a key can be generated to perform both encryption and decryption, the PUF 

must be initialized repeatedly to some state, thus providing the same sequence of 

keys. To accomplish this, Alice could provide an initial seed to produce a sequence 

of keys that are used to encrypt a set of secrets. Alice could then reset the seed value 

before making the device available to Bob. Bob, then, could use the PUF to recreate 

the keys in order, decrypting the secrets. As Bob has no knowledge of the seed value, 

he is unable to reset the device and cannot recreate the key just used. 

Astute readers will note the similarities between our approach and using a chain 

of cryptographic hashes to generate keys. That is, given a seed x0, the keys would be 

H(x0), H(H(x0)), etc., where H denotes a cryptographic hash function. The insight of 

our approach is that a PUF, as a trusted piece of hardware, can provide a hardware-

based implementation that is analogous to a hash function, but is more secure than 

software implementations of such algorithms. 

5.2 Read Once Keys (ROK) 

Our formal notion of a ROK is based on an adaptation of Turing machines. Specif­

ically, define the machine T to be 

T =< Q, q0, δ, Γ, ι > 

where Q is the set of possible states, q0 is the initial state, δ defines the transition 

from one state to another based on processing the symbols Γ, given input ι. Readers 

familiar with Turing machines will note that ι is new. In essence, we are dividing 
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the traditional input symbols into code (Γ) and data (ι). For the sake of simplicity, 

we assume that ι only consists of messages to be encrypted or decrypted and ignore 

other types of input data. Thus, the definition of δ is determined by the execution 

of instructions γ1, γ2, . . . , γi, where consuming γi ∈ Γ results in the transition from 

state qi to qi+1. Based on this formalism, we propose the following primitives. 

•	 The encrypt primitive Enc(γi, qi,m) encrypts the message m ∈ ι given the 

instruction γi and the state qi. The system then transitions to qi+1 and produces 

the returned value as e(m) as a side effect. 

•	 The decrypt primitive Dec(γj , qj , e) decrypts the ciphertext e ∈ ι given the 

instruction γj and the state qj. If the decryption is successful, the primitive re­

turns m. Otherwise, the return value is denoted ∅. The system then transitions 

to qj+1. 

Informally, γi and qi describe the current instruction and the contents of memory 

for a single execution of a program, and capture the state of the system just before 

executing the encrypt or decrypt primitive. That is, if the execution of the program 

is suspended for a brief time, γi, qi would describe a snapshot of the stack, the value 

stored in the instruction pointer (IP) register, the values of all dynamically allocated 

variables (i.e., those on the heap), etc. In short, it would contain the full software 

image for that process for that precise moment in time. Once the program is re­

sumed, the symbol γi would be consumed, and the system would transition to state 

qi+1. Given these primitives, we present the following definition. 

Definition: A read-once key (ROK) is a cryptographic key K subject to the fol­

lowing conditions: 

•	 Each execution of Enc(γi, qi,m) generates a new K and yields a transition to a 

unique qi+1. 
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•	 The first execution of Dec(γj , qj , e) returns m and transitions to qj+1. All sub­

'sequent executions return ∅ and transitions to qj+1, even when executing the 

machine < Q, q0, δ, Γ, ι > with e, except with negligible probability. 

•	 The probability of successfully decrypting e without the primitive Dec(γj , qj , e) 

is less than or equal to a security parameter t (0 < t < 1), even when given 

identical initial states. t must be no smaller than the probability of a successful 

attack on the cryptographic algorithms themselves. 

What these definitions say is that the ROK Turing machine is non-deterministic. 

Specifically, during the first execution of a program2 that encrypts a message m, δ 

will define a transition from qi to qi+1 based on the primitive Enc(γi, qi,m). However, 

the second time, the key will be different, and the state transition will be from qi to 

'q Similarly, the first execution of a program that decrypts e(m) will traverse the i+1. 

states q0, . . . , qj , qj+1, where qj+1 is the state that results from a successful decryption. 

However, returning the machine to its initial state q0, using the same instructions 

'Γ, the state traversal will be q0, . . . , qj , q = qj+1, because the decryption fails. j+1 

Thus, ROKs incorporate some unpredictable element that does not exist in traditional 

Turing machines: the history of prior machine executions. That is, for any given 

machine T , only the first execution (assuming either the encrypt or decrypt primitive 

is executed) will use the transitions defined by δ. The second (and subsequent) 

executions will use δ', as the state after the primitive is invoked will differ. 

Clearly, these definitions capture the intuitive notion of a ROK. The key K is 

generated in an on-demand fashion in order to encrypt a message. Later, K can be 

used to decrypt the message, but only once. After the first decryption, the key is 

obliterated in some manner. Specifically, even if the contents of memory are returned 

to match the program state γj , qj as it existed before the first call to Dec(γj , qj , e), the 

2Observe that the program doing the encryption is separate from the one doing the decryption. If 
the encryption and decryption occurred in the same program, the decryption would succeed, as the 
key would have just been dynamically generated. In contrast, when the programs are distinct, only 
the first execution of the decryption program will succeed. 
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decryption will fail. The intuition here is that a special-purpose hardware structure 

must provide this self-destructing property. 

Observe that an adversary A may opt to attack the cryptographic algorithms 

themselves. In such an attack, the number of times the key K can be read by an 

authorized party is irrelevant: A is never authorized. If the cryptographic scheme is 

sufficiently weak, A may succeed in recovering the message (or the key itself). The 

ROK property offers no additional security against such an attack. That is, we are 

making no special claims of cryptographic prowess. For this reason, we require that t 

be no smaller than the probability of a successful attack on the cryptographic scheme 

employed. 

What is unique about our technique is that we are offering a means to limit 

the usage of a key by an authorized party. Clearly, with sufficient motivation, this 

authorized party may become an adversary himself, attempting to recover the key 

K and subvert the system. The parameter t offers a means to specify the system’s 

defense against such an insider threat. For the most sensitive data, an implementation 

of our design could require a very low level of t, making the probability of subverting 

the ROK property equal to the probability of a brute-force attack on the cryptographic 

algorithm. In applications that are less sensitive (i.e., the ROK property is desirable, 

but not critically important), t could be larger. In short, t captures the flexibility 

to adjust the security guarantees of the ROK according to desired implementation 

characteristics. 

5.3 PUF-based ROKs 

Figure 5.3 shows a block level diagram of a basic PUF rok design. It consists of 

several different components. The Processor Core (PC) is what interacts with the 

computer itself and the internal components of the PUF ROK. It also handles the 

various input and output tasks required. The PC is connected to the Cryptography 

Core (CC), which is responsible for performing the various cryptographic operations 
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as well as communicating with the internal feedback loop. The internal feedback loop 

consists of a register wired to the PUF which is wired to an error correction unit, 

which is then in turn wired back to the register and the CC. 

The CC is a stand-alone hardware component that provides cryptographic services 

to the PC. The CC provides the following service interface to the PC: 

•	 Init(x0) : an initialization routine that takes an input x0 as a seed value for the 

PUF. There is no return value. 

•	 Enc(m) : an encryption primitive that takes a message m as input and returns 

the encrypted value e(m). 

•	 Dec(e(m)) : a decryption primitive that takes a ciphertext as input. This 

service returns the plaintext m only on the first execution. Subsequent calls to 

this service return ∅. 

Upon a call to the encryption function, the PUF is executed with the contents of 

the register, error correction is stored, and then the response overwrites the contents 

of the register. The response is also passed back to the cryptography core where it 

can be used to generate an encryption key. This feedback loop ensures that once a 

key has been used once, it cannot be used again, since it has been overwritten in the 

register. 

When decryption is desired, the Init function must be used to re-seed the device 

so that the proper value is in the register. Then, when Decrypt is called, the value 

in the register will be used as the challenge to the PUF, any errors will be corrected 

by the error correction unit, and the result will overwrite the register and also be 

passed into the CC. The response will then be used to derive the decryption key for 

the message. 
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Figure 5.1. Block level view of a basic PUF ROK device 

Note that the CC uses the error corrected PUF response to derive a key, but does 

not use it as a key directly. Typically a hash algorithm is applied to the key first. 

This prevents the PUF from potentially being modeled, as described in Chapter 4. 

5.3.1 PUF ROKs as a Physical System 

Because of their nature, PUF ROKs would be considered a peripheral physical 

system. This is because they rely on an interaction between themselves and a com­

puter to augment the functionality of the computer; they do not necessarily interact 

with the world just by themselves. 

As a peripheral physical system, the PUF ROK must be resilient against various 

types of environmental attacks, such as freezing and power analysis, as discussed in 

the next section, but they also must be very aware of the interactions they have with 

a host system and the dangers that can pose. 
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5.4 Security Considerations 

For our security analysis, we consider the case of a probabilistic polynomial-time 

(PPT) attacker A, with two goals. First, the goal of A is to recover just the key 

used to encrypt or decrypt a single message. The second goal considered is to model 

the PUF, which would enable the attacker to emulate the PUF ROK in software, 

thereby negating the hardware ROK guarantee. Initially, in both cases, we assume 

the adversary is capable of (at most) eavesdropping on bus communication. That 

is, the adversary is unable to observe communication between the cores in the SoC 

design. 

Under this model, A is able to observe the data passing between the PC and 

memory, or between the PC and a network. Observe, though, that these messages 

consist exclusively of the plaintext m and the encrypted e(m). Thus, the attack is a 

known-plaintext attack. However, this information offers no additional knowledge to 

A. Even if A managed to reconstruct the key K (with negligible probability under 

the PPT model), this key is never used again. 

The only use of reconstructing K in this manner is to attempt to reverse engineer 

the behavior of the PUF. However, recall that our design involved hashing the PUF 

output when creating the keys. Consequently, K = H(Ri), where H is a robust 

cryptographic hash function. As a result, A again has only a negligible probability of 

reconstructing Ri. Yet, we can take this analysis even further, because Ri by itself is 

useless. That is, A would also need to know the corresponding Ci (or Ri+1) to begin 

to model the PUF. Thus, A would have to accomplish a minimum of four feats, each 

of which has only a negligible probability of occurring. Thus, we do not find such an 

attack to be feasible. 

To continue the analysis, we loosen our assumed restrictions and grant A the 

ability to probe inside the SoC and observe all data transferred between the cores. 

Clearly, such an adversary would succeed, as the data passed between the PUF and the 

CC occurs in the open. However, this attack model is so extreme that only the most 
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dedicated and motivated adversaries would undertake such a task. Similarly, users 

who are faced with such powerful adversaries are likely to have extensive resources 

themselves. Thus, these users are likely to shield the processor using known tamper-

resistance techniques, and we find this threat to be minimal. 

Moving away from the PPT model, we can return to the discussion of fault in­

jection [34–38] and freezing [39] attacks. Fault injection attacks fail to threaten the 

confidentiality of the system, because these attacks are based on repeatedly inducing 

the fault with the same key. However, PUF ROKs can only be used once. At best, 

a fault injection would become a denial-of-service, as the key would not correctly 

encrypt or decrypt the message. Freezing attacks are similarly unsuccessful, because 

they operate on the assumption that the key existed in addressable memory at some 

point. However, that is not the case with PUF ROKs. These keys are generated 

dynamically and are never explicitly stored outside the processor itself. Thus, PUF 

ROKs offer robust defenses against these physical attacks. 

One final class of attacks to consider is power analysis [41]. Simple power analysis 

(SPA) involves monitoring the system’s power fluctuation to differentiate between 

portions of cryptographic algorithms. This information leakage can reveal how long, 

for instance, a modular exponentiation takes, which reveals information about the key 

itself. Differential power analysis (DPA) observes the power fluctuations over time 

by repeatedly executing the cryptographic algorithm with the targeted key. Ironically, 

DPA is considered harder to defend against than SPA. And yet, PUF ROKs are im­

mune to DPA (since repeated execution is not allowed) while vulnerable to SPA. Even 

though SPA is a potential threat, known techniques can prevent these attacks [42]. 

5.5 Out of Order Execution 

One limitation of the basic PUF ROK design in 5.3 is that it does not allow out 

of order execution. That is, if five messages are encrypted and then the third is 

requested to be decrypted, the PUF ROK must be re-seeded, the PUF cycled twice, 
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and then the third cycle can be used to actually perform the decryption. To decrypt 

the first message, the PUF would again need to be re-seeded. 

Supposing this had to be done many times, this process would quickly become 

cumbersome. As such, it is desirable to have a PUF ROK system that allows out of 

order execution. Figure 5.5 shows the block level design for a PUF ROK that allows 

this out of order execution. 

Figure 5.2. Block level view of a PUF ROK allowing out of order execution 

The modified PUF ROK is able to perform out of order executions by replacing the 

one original register with three new registers, a seed register, an encryption register, 

and a decryption register. A cache is added to the error correction unit as well. Note 

that all these new components are still internal to the PUF ROK design, so that no 

buses are exposed externally. The new design requires a new parameter, N . This 

parameter specifies the number of keys that will be stored in the error correcting 

cache. The PUF ROK can then perform out of order execution on up to N different 

keys. The new design also introduces the Sync action, which is used to update the 

seed register and is further described below. 

Upon the initial seeding of the PUF ROK, the seed value is stored in the seed 

register. When the first encryption is requested, the seed register is fed into the PUF. 

The response is then passed through error correction and stored in both the error 
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correcting cache as well as the encryption register. Note that the seed register is not 

updated here. Upon request for another encryption, the contents of the encryption 

register will be used, rather than the seed register. 

Upon a request for a decryption, if the requested key is still marked as valid in the 

error correcting cache, the seed register is copied into the decryption register. The 

PUF is then cycled and writes back to the decryption register enough times for the 

proper response to be obtained. Note that the error correcting unit is correcting any 

potential errors after each cycling of the PUF. At the conclusion of this, the requested 

key is marked as used in the error correcting cache, meaning the PUF ROK will not 

use it again. 

Because the error correcting cache has a finite amount of space, it will be necessary 

to clear the cache from time to time. This is done using the Sync action. Sync is 

triggered when the first key in the cache has been marked as invalid. (Note that this 

first key will be associated with the value currently in the seed register.) Since the 

values are invalid, this means that they will never be used again, so the value in the 

seed register is obsolete and can be updated. The error correction cache thus takes 

control of the feedback loop. It decides which key is the last used, and then cycles the 

PUF, using the contents of the seed register that many times and writing the results 

back into the seed register. For example, if there are 4 values stored in the cache and 

values 1 and 2 are invalid, the PUF will be cycled twice, with the resulting response 

being written into the seed register. 

5.6 Implementation 

For a prototype implementation, the Saxo-L board from KNJN.com was used. [43] 

It contains an Altera Cyclone FPGA and an NXP LPC2132 ARM processor. The 

two chips are connected together by a Serial Peripheral Interface (SPI). Additionally, 

a USB and a JTAG port are available, which makes for easy communication with the 

various chips. 

http:KNJN.com
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For the ease of development, we implemented only the PUF and the register on the 

FPGA and then implemented the error correction unit, cryptography core, processor 

core, and other supporting computation on the ARM chip. When the PUF or register 

was needed, the ARM would issue a request over the SPI link to access the appropriate 

component. Figure 5.6 shows details of the implementation graphically. 

Figure 5.3. Implementation of a ROK device 

The Saxo-L board is 44 x 60 mm, which makes it very portable. A production 

quality device would likely be smaller. This would allow the ROK to be implemented 

as a small dongle that could be plugged into a USB port potentially. 

For the software portion of the project, the PolarSSL [44] library was used, which is 

an SSL library specifically optimized for small microprocessors, such as the LPC2132. 
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5.6.1 Limitations 

There are some limitations to the implementation, since it is simply a prototype. 

The fact that the SPI bus is exposed is a huge problem. As it currently exists, an 

attacker could simply attach logic probes to the bus and intercept or modify any 

traffic between the FPGA and ARM chip. As such, he would be able to manipulate 

the values of the register as well as what the error correction unit receives. Clearly, 

this is not a good thing. 

This vulnerability could be mitigated by using some sort of tamper proofing, such 

as potting, but this is a relatively expensive solution. Instead, the ideal solution would 

be to incorporate all the different components on one chip, as shown in the original 

design. There are soft core ARM processors available which can be instantiated on 

an FPGA already. It would be possible to simply move the entire ARM processor 

onto the same chip as the PUF and register. Not only would this be more secure, but 

it would most likely be less expensive to manufacture a device with only one chip, 

rather than two. 

There are a variety of soft core microprocessors available, depending on the brand 

of FPGA selected, so there are alternatives available to the ARM architecture. 

5.6.2 Results 

Our PUF design consisted of 32 1-bit ring oscillator PUFs. Each of these circuits 

consisted of a ring oscillator constructed from 37 inverting gates. In our experiments, 

we found that using fewer than 37 gates yielded less consistency in the PUF behavior. 

That is, smaller PUFs increase the number of bit errors that must be corrected. The 

output from the ring oscillators was linked to 20-bit counters that were controlled by 

a 16-bit timer. The timer was synchronized with a 24 MHz clock, indicating that 

the timer would expire (as a result of an overflow) after 2.73 ms. When the timer 

expires, the values in the counters are compared, producing a 1 or 0 depending on 

which counter had the higher value. This design used 2060 of the 2910 (71%) logic 
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cells available on the FPGA. Each execution of the PUF produced 32 bits of output. 

Consequently, to generate larger keys, the ARM processor polled the PUF multiple 

times, caching the result until the key size was met. 

To put the performance of the PUF into perspective, we compared the execution 

time with measurements [45] reported by NXP, the device manufacturer. Some of 

NXP’s measurements are reported in Figure 5.1. As each PUF execution (producing 

32 bits of output) requires 2.73 ms to overflow the timer, it is slower than encrypting 

one kB of data in AES. Observe, though, that larger PUFs would still only require 2.73 

ms. Consequently, the overhead of executing the PUF can remain small, especially 

as large amounts of data are encrypted or decrypted. 

Table 5.1 NXP cryptographic measurements 

Symmetric Time RSA Time 

Algorithm (ms/kB) Operation (s) 

AES-CBC 1.21 1024-bit encrypt 0.01 

AES-ECB 1.14 1024-bit decrypt 0.27 

3DES-CBC 3.07 2048-bit encrypt 0.05 

3DES-ECB 3.00 2048-bit decrypt 2.13 

The comparison the RSA encryption and decryption is stark. Observe that the 

2.73 ms required to execute the PUF is 27.3% of the time to perform a 1024-bit 

encryption in RSA. As the key size increases (assuming the PUF size is increased 

accordingly so that only one polling is needed), the PUF execution time becomes 

0.13% overhead for 2048-bit RSA decryption. Thus, the performance impact of polling 

the PUF during key generation is minimal.3 

3Obviously, there is additional work required to convert the PUF output into a usable key. However, 
the precise timing of this work is implementation-dependent, and the algorithms typically employed 
are significantly more efficient than the modular exponentiation. As such, we focus solely on the 
PUF measurement in our analysis. 
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6. PHYSICALLY ENHANCED AUTHENTICATION RING 

6.1 Overview 

In this section, we present the definition, design, and implementation of the PEAR 

system. The presentation is this chapter follows after [22]. 

One problem that is present when using computers is that users typically are 

not aware of the security of the system they are using. For instance, an attacker 

could have installed a key logger on a user’s system to harvest every user name and 

password they have. Even with the best security systems on the machine in place, if 

the attacker is able to capture a user’s keystrokes, the other security is moot. 

A way to prevent this type of attack is by using an external device or an alternate 

channel to enter sensitive information, such as passwords or credit card numbers. In 

this way, if a key logger or the original system is compromised, the attacker will not 

be able to recover those passwords, credit cards, or other sensitive information. 

PEAR, or Physically Enhanced Authentication Ring, was designed to counteract 

this key logger threat to a system. In addition to defending against key loggers 

specifically, it increases security in general because it is the second part of a “two 

factor authentication” system. It also is a physical system, specifically a peripheral 

physical system, since it incorporates its own processing and interacts with the user’s 

normal computer system. Thirdly, the PEAR system incorporates a PUF device, so 

it is a good example of when PUF technology is useful. 

From a high level perspective, a PEAR device is a device consisting of a PUF, 

a keypad, and some supporting circuitry. When a user wishes to log on to a given 

service, rather than using the keyboard for a password, he enters a 4 digit PIN on 

the PEAR device. The PEAR device then executes the PUF and then initiates a 

zero-knowledge proof of knowledge with the service provider. Note that no sensitive 
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data is actually input to the PC, which potentially has a key logger. Any data that 

the PC is requested to ferry between the PEAR device and the service provider is 

encrypted, so recording this data does not reveal any information. 

The typical use case is that a user requests a PEAR device from a service provider, 

such as a bank. The bank then configures and mails the PEAR device to the user. 

The user sets his PIN number on the device and completes the enrollment protocol. 

Then, when he desires to use the service, he requests the authentication protocol. 

He enters his PIN into the PEAR device and the device then executes the rest of 

the authentication protocol. If successful, the service provider then allows the user 

to access the service. Note that if a user already has a PEAR device from another 

service provider, he can easily use the same device for another service; he simply must 

re-execute the enrollment procedure and enter a new PIN for the new service (or use 

the old PIN). 

The system works by having every service provider associated with an ID number 

of some kind. Each user of the service will also have an ID number associated with 

it. This allows both parties to identify themselves to each other. 

6.2 Protocol Details 

The PEAR system consists of two parts, an enrollment step, which is executed 

once initially and then an authentication step, which is executed every time the user 

desires to use the service. Table 6.2 presents a formalized description of the protocols, 

while Figure 6.1 and Figure 6.2 give graphical representations of the different stages 

occurring. 

As seen in the diagrams below, the four players in the PEAR system are the user 

himself, the PEAR device, the user’s computer, and the service provider. Note that 

the user’s computer and the service provider are assumed to be connected over the 

Internet. 
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Figure 6.1. The enrollment stage of PEAR 

The user initially requests an enrollment procedure from the service provider. 

The service provider then sends the tuple of < WebsiteID,UserLabel > and a nonce 

to the PEAR device directly, over a secure channel. The user then enters his new 

PIN number to the PEAR device. Once the PEAR device has these different pieces 

of information, it is able to execute the steps contained inside the blue box in the 

diagram. All the pieces of information are hashed together. The resulting hash is then 

used as input to the Password Generator and Verifier (PGV). Note that a PUF is an 

acceptable PGV. The results from the PGV are then used in a commitment protocol. 

In addition to sending the results of the commitment to the service provider, the 

device also sends the < WebsiteID, UserLabel > tuple and a hash of the tuple 

combined with the committed value. 

An interesting point to note is that during the enrollment stage, an “out of band” 

communication is required to deliver the combination of the service provider’s ID, the 

user’s corresponding ID for that service, and a nonce value. This could be done by 

installing these values on the hardware device before it is given to an end user. For 

instance, if PEAR was being used with a bank, the bank might install these values 

before mailing the device to the user. If the user was adding a new service to a 

PEAR device he already had, the tuple of < WebsiteID,UserLabel > and the nonce 
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might be delivered through post or given over the phone to the user. The key point 

is that they are not delivered over the same channel as will be used for the rest of the 

protocols (such as the Internet), since if an attacker is able to recover these values, 

he would be able to make a fraudulent account. 

Table 6.1 Formalized version of the PEAR protocols 

Enroll(U) — Device T (using input data from user U) computes a 

commitment and enrolls the results with S. 

• C requests enrollment from S 

• S sends the tuple <Label, ID> and nonce N to T over a secure channel 

• U sends PIN to T 

• T computes H(ID, Label, PIN) as Hresult 

• T executes PGV(Hresult) as Presult 

• T sends Commit(Presult), <Label, ID>, H(Commit(Presult),Label,ID,N) to S, 

via C 

Authenticate(U) — Device T (using input data from user U) 

authenticates itself as a registered user of S. 

• C initiates the authentication request from S 

• S sends the tuple <Label, ID> and Chal(Presult) to T 

• U sends PIN to T 

• T computes H(ID, Label, PIN) as Hresult 

• T executes PGV(Hresult) as Presult 

• T responds with Prove(Presult), which C forwards to S 
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Figure 6.2. The authentication stage of PEAR 

6.3 Additional Usage Scenarios 

In addition to allowing authentication over an insecure channel as originally in­

tended, PEAR also provides two other beneficial usage scenarios. 

6.3.1 Unlinkability Property 

Currently, users may be enrolled under several service providers for various rea­

sons. Each service provider might hold some pieces of sensitive information about 

the user, but not necessarily every piece of sensitive information. However, if the two 

service providers were to collude, they would be able to learn a lot more about an 

individual user, which is not desirable. 
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Figure 6.3. The unlinkability property of PEAR 

As such, it is desirable to only give information out in a way such that service 

providers cannot collude to violate a user’s privacy. The PEAR system provides this 

capability. When enrolling with two different service providers, the user would use a 

different screen name with each and send a commitment. Because the commitments 

do not leak any information (and the website IDs and user IDs are different), even 

if the service providers colluded, they would not be able to determine which pair of 

accounts belong to the same user very easily. 

6.3.2 Organizational Anonymity 

Another issue that frequently arises is that users may need to contact a party 

outside of their organization, but they do not want to be individually identified; they 

wanted to be recognized as a university member only. For instance, a Purdue student 

may wish to access the ACM digital library. She does not want to register with the 

library as an individual; she simply wants access granted due to her Purdue affiliation. 

However, the university, or whoever the authority is, still needs to maintain some sort 

of auditing capability. 

PEAR is able to fulfill this use case as well. Users will use a PEAR device to enroll 

under the authority (the university in the previous example). When they desire some 



51 

service (such as digital library access), users will use PEAR to authenticate to the 

authority, who will then authenticate to the service provider on their behalf. 

Figure 6.4. The organizational anonymity aspect of PEAR 

In this way, users remain anonymous to the outside world and external service 

providers. However, if a problem occurs, the authority can still hold users accountable 

for any actions they took. 

6.4 Security Considerations 

Several lemmas are presented below which address various different security as­

pects of the PEAR system. Following the lemmas is a discussion of some of the 

different security issues facing physical systems that were discussed in Chapter 2 and 

how the lemmas relate to those concerns. 

6.4.1 Lemmas 

Lemma 1. 

A man-in-the-middle attacker cannot recover any useful data communicated over the 

network between the service provider and the computer. 

Proof: The only data that is transmitted between the computer and network is 

the tuple containing the service ID and the user’s ID initially and then steps of the 

zero-knowledge proof (see Figures 6.1 and 6.2). The tuple will only be sent during 

authentication, so we can assume that users are already enrolled. An attacker gains 

nothing by intercepting the tuple during authentication, since it still requires both the 

user PIN number and the device itself to impersonate a user. Intercepting the steps 
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of the zero-knowledge proof also gives him no information since these zero-knowledge 

protocols do not reveal any information about the committed value. 

Lemma 2. 

A man-in-the-middle attacker cannot recover any useful data communicated between 

the user computer and the device. 

Proof: As shown in Figures 6.1 and 6.2, the only data that is being transmitted over 

this channel is the tuple from the server and the zero-knowledge steps. As shown in 

Lemma 1, an attacker cannot gain any useful information from this. Also note that 

the PUF secret is never transferred outside of the device, but rather a commitment 

or proof is sent. As such, a MITM attack would not reveal the user’s secret, but 

only the various steps of the zero-knowledge proofs, which are secure against MITM 

attacks. In addition, the service provider does not even ever know the user’s PIN. 

Lemma 3. 

An active man-in-the-middle attacker cannot recover any useful information by mod­

ifying data between the device and computer or computer and network during the 

authentication stage. 

Proof: An attacker who modifies the tuple being sent to the device or computer 

from the network would cause the device to create an incorrect zero-knowledge proof. 

This would disrupt the user’s ability to authenticate. However, the attacker would 

not be able to glean any information from the proof generated from this modified 

tuple, due to the use of the zero-knowledge proof. Note that an attacker would be 

able to recover useful information if it could modify the tuple during enrollment. It 

could substitute a malicious tuple for the valid tuple, which would cause users to be 

authenticating to the MITM, rather than the service provider. We avoid this problem 

by requiring that the tuple be sent securely during enrollment. 

Lemma 4. 

A PPT adversary can impersonate a legitimate user to the server with only negligible 

probability. 

Proof: As the final authentication step is to complete a zero-knowledge proof, an 
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attacker would have to be able to defeat a zero-knowledge proof, which happens only 

with a negligible probability if an attacker does not know the user’s secret. 

Lemma 5. 

Given physical access to the device, an attacker could impersonate the legitimate user 

with only negligible probability. 

Proof: If an attacker had access to the device, it would not be able to compute the 

proper hash value unless it supplied the correct PIN to the device. If the attacker 

attempted a brute force attack on the user’s PIN, it would be trivial for a server to 

detect and disable the user’s account temporarily. As long as the key space for the 

PIN is sufficient, this attack is not realistic. 

Lemma 6. 

A legitimate user can authenticate to a legitimate S, except with negligible probability. 

Proof: As a legitimate user would have access to the user PIN and a valid tuple from 

the server, he would be able to successfully complete the zero-knowledge proof, thus 

authenticating. 

Lemma 7. 

An attacker cannot enroll using an existing or past user’s credentials, except with 

negligible probability. 

Proof: An attacker would be able to capture a user’s tuple during authentication. 

It is plausible that he could attempt to enroll using this tuple. To prevent this, when 

the service provider issues the tuple initially, it also provides a nonce. During the 

enrollment protocol, the user submits the committed value, the tuple, and a hash of 

the tuple, nonce, and committed value. The service provider will verify that this tuple 

is valid. If the tuple is not valid or has already been enrolled, the service provider 

denies the enrollment request. 
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6.4.2 Man in the Middle 

One of the considerations for system design is the presence of a man in the middle 

(MITM) attacker. If the MITM attacker is able to capture sufficient sensitive data, 

he could potentially compromise the security and integrity of the system. 

Lemmas 1, 2, and 3 address the capabilities of an MITM attacker. Notably, 

since the attacker would only capture public information or interim steps of the zero 

knowledge proof, he is unable to recover anything of interest. However, an active 

MITM attacker would be able to drop all traffic between the various parties and 

commit a denial of service attack, though this case is not of great interest. 

6.4.3 Replay Attacks 

It is important to ensure that an attacker cannot record communication and then 

replay these communications later on. 

Lemma 7 addresses this type of threat. Since the enrollment stage requires a 

nonce, it is not possible to record a user’s tuple from the authentication step and use 

that to enroll. Lemma 1, 2, and 3 make mention of the fact that only interim steps 

of the zero knowledge proof would be recoverable, which are not usable in a replay 

attack. 

6.4.4 Impersonation 

Impersonation is another threat that must be considered; it is unacceptable if an 

adversary is able to pose as the service provider or as a user. 

Lemmas 4 and 5 discuss the threat of impersonation. Simple brute force imper­

sonation of a user to a service provider would require defeating a zero knowledge 

proof, which is computationally unfeasible. If the attacker was able to steal the phys­

ical device, he would be able to execute the zero knowledge proof, assuming he could 

guess the user’s PIN. If a brute force attack was used, the service provider would 
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easily be able to detect it. 

6.5 Implementation 

From a high level view, Figure 6.5 describes the initial implementation of a PEAR 

enabled device. The Saxo-L board from KNJN.com [43] was used to do this work. 

The board contained both an FPGA and an ARM micro controller. The FPGA was 

used to implement the PUF device and supporting circuitry. The ARM micro con­

troller was used to do the general purpose computation, including all the different 

cryptographic processing. The two were connected to each other with a Serial Pe­

ripheral Interface. A keypad for entering PINs was connected using a breadboard and 

directly wiring it to I/O pins of the ARM. The entire system was then connected to 

the PC over a USB connection. 

Figure 6.5. Implementation of a PEAR device 

The entire Saxo-L board is 44mmx60mm, which is smaller than a typical credit. 

As such, a production level PEAR device could be implemented in a variety of user 

friendly sizes. A dongle or a smart card are two possible form factors that would 

be usable and convenient. The keypad for PINs could be overlayed as an array of 

touch-capacitive buttons on top of either form factor as well. 

http:KNJN.com
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6.5.1 Limitations 

Because the initial implementation was proof of concept, there are several ways 

it could be improved. Several vulnerabilities are also present that were discussed in 

Chapter 2. 

One glaring shortcoming is the fact that the PUF and the ARM are connected over 

an SPI interface which is completely open on the Saxo-L board. As such, an adversary 

could easily put logic probes on the SPI bus and record the PUF challenge/response 

values as they were transmitted to the ARM, since they are sent unencrypted. There 

are a few ways to remedy this. 

One solution is to put sorts of tamper proofing in place, such as potting, power 

filtering, among others. This would be effective, but would most likely be expensive 

and not completely effective. Another solution would be to encrypt the traffic being 

sent over the SPI bus. This would be fairly easy to do, but would impose some 

computational overhead on the entire device, which may or may not be acceptable. 

The ideal solution to this problem is to incorporate the micro controller onto the 

same chip as the PUF itself. This is possible since there are “soft core” versions of 

ARM available which can be instantiated on the FPGA. Additionally, Altera (who 

makes the FPGA on the Saxo-L) provides a soft core micro controller for their FPGAs, 

as do many other FPGA vendors. This is probably the best solution since it eliminates 

the need for two discrete chips, since both portions can be put in one FPGA. It is 

still possible to use the same SPI bus concept, but the SPI bus will be internal to 

the FPGA, so it will not be possible to put logic probes on it. If an attempt is 

made to strip portions of the FPGA to insert probes, this will likely disturb the PUF 

and corrupt it, so any results will be unhelpful. Tampering with the FPGA and its 

relation to the PUF inside was discussed in Chapter 4 in more detail. 

If the entire device was incorporated on to an FPGA, there would need to also 

be some sort of power filtering done. This would prevent differential power analysis 

attacks from being done on the cryptographic portions of the FPGA. 
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While it is necessary to prevent tampering to some degree, Lemma 5 means that 

a large amount of tamper proofing is not necessarily needed. The device is in its most 

vulnerable state after the PIN has been entered and the device is executing the zero 

knowledge proof. If an attacker has attached logic probes and other tools necessary 

to conduct many kinds of attacks, it would be very obvious to the legitimate users, 

who would then refuse to enter their PINs. 

6.6 Future Work 

The PEAR system as it exists is quite functional. However, some extensions could 

be done as future work to improve the system. 

One such improvement is the concept of “transaction levels”. Typically, service 

providers grant a user all services after he has logged in, regardless of the sensitivity 

of the requested action. For instance, a web application will require a user to log in 

before starting a new session, after which, all requests are granted. Transaction levels 

are the use of different credentials or the requiring of re-authentication upon requests 

for certain actions. 

In a banking website example, one transaction level may allow a user to perform 

non-destructive operations, such as checking an account balance. However, for de­

structive operations, such as making an online bill payment, a different transaction 

level would be needed. 

Transaction levels would be possible to implement so that a user only needed one 

physical PEAR device. This is desirable, because requiring a user to carry around 

multiple PEAR devices is not necessarily realistic. 

Properly implementing transaction levels would require addressing a number of 

technical challenges. First, we would need an appropriate policy language to capture 

the behavior. Next, we would need to explore how to present the user with a usable 

interface that abstracts the behavior. Finally, we would need to consider the trade-offs 

in usability and security that would result from applying these approaches. 
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7. SMART GRID AND SMART METERS 

7.1 Overview 

There has been a move recently towards the design and implementation of what 

is called a “smart grid.” A smart grid is an electrical power grid which can gather 

information about the meters, houses, and consumers of electricity that are attached 

to it. 

By gathering information from a smart grid, a power company can more efficiently 

manage its production and delivery of electricity, thus reducing cost. Not only does 

the smart grid help the power company, but by providing analytics to its customers, 

customers can adjust their consumption habits to lower their bills as well. With 

the increasing cost of fossil fuels and the increasing energy consumption of today’s 

consumer, reducing wasted electricity will be very useful. 

Naturally, with this increase in functionality, there is an increase of risk as well. 

While the power company can use the smart grid to smartly redirect power to where 

it is needed, an attacker might try to direct power away from an area or direct so 

much power to an area that the system becomes overloaded and fails. 

As a response to the increased dangers that a smart grid provides, we describe a 

system that is designed to allow for secure, yet convenient, communication and man­

agement between consumers and the utility company. Existing systems are leveraged, 

such as the ZigBee mesh network [46], which is further described below. One of the 

main things that is critical in this new system is that individual meters are able to be 

uniquely identified so billing can be done correctly, but also so no one can impersonate 

them. This is a perfect opportunity for PUF technology. 
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7.2 Actors 

For the rest of the chapter, it will be useful to discuss the different players in the 

smart grid scenario. 

7.2.1 Utility Company 

One of the major players in the smart grid scenario is the utility company. The 

utility company is responsible for generation of the electricity using techniques such as 

coal power, hydroelectric, wind, among others. The utility company is also responsible 

for managing the dynamic delivery of power to areas that need it. 

Finally, the utility company is also responsible for maintaining information on all 

of its customers and billing them appropriately. 

7.2.2 Substations 

Substations receive large amounts of high voltage power from the utility company. 

However, this power is not ready for end user consumption. The substation thus takes 

the power from and converts it to more reasonable levels that is suitable for being to 

delivered to end users. 

The substation will communicate with the utility company to tell the utility how 

much load it is under. Depending on the load, it will then receive more or less power. 

It also acts as a sort of “collector” node for different smart meters. Smart meters will 

communicate with the substation which will then relay the data back to the utility 

company. 

7.2.3 Smart Meters 

A smart meter is much like a regular power meter but with some added features. 

Smart meters measure power as a normal meter, but they can typically be configured 

so that they can also “rewind” if a user is pumping power back into the grid. Addi­



60 

tionally, smart meters have many different features which allow real time information 

and analytics about power consumption to be obtained. 

One of the large benefits of smart meters is that the utility company can com­

municate and read them without necessarily sending a worker out to read the values. 

This is much faster and more cost effective than traditional power meters. This is 

accomplished using some sort of wireless interface. Typically, the ZigBee [46] [47] 

wireless protocol is used and is set up so that all meters form a mesh network with 

each other. This allows meters that are not within wireless range of a substation (or 

some other communication center) to still talk to the substation. This is accomplished 

since each smart meter not only transmits its own data, but it also acts as a relay for 

other nodes in the mesh network. 

Note that smart meters have some amount of general purpose computation, but 

they are not very powerful. As such, it is necessary to optimize programs so that 

they can be run on the smart meters. 

The smart meters used in this project are produced by Landis+Gyr. They con­

sist of two components of interest. One board is called the “metering board” and 

is responsible for measuring and recording information about the actual power con­

sumption of attached devices. The other board is called the “communication board”. 

It is responsible for performing the different types of communication as necessary. The 

two are connected over an event-based interface, but this interface is not encrypted. 

There are 5 security levels on the smart meter, each giving a different amount of 

privilege to different meter controls, with level 0 being read only access and level 5 

giving control of everything. There is a table in the smart meter which stores each of 

the corresponding keys for the levels; These keys are referred to as access level keys. 

Communication between the utility and smart meter is encrypted using a random 

session key, which is derived from an encryption key. 
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7.3 Physical Systems 

The actors above are clearly examples of physical systems. All three heavily 

interact with the environment around them to fulfill the power needs of consumers. 

The utility company as a whole might not be considered a physical system, but 

parts of it will definitely be considered examples of deployed physical systems. The 

utility must manage the production of electricity by its generators as well as well as 

manage the communication of commands to the various smart meters, via the mesh 

network. 

Substations could also be considered deployed physical systems, since they perform 

a large amount of interaction with the physical world to transform the power from 

the utility company into power that is usable by consumers. They additionally must 

take a large amount of input from both consumer smart meters and the utility to 

decide how to manage the power resources in a dynamic way. 

The smart meters are deployed physical systems. A large part of the smart meters 

job is to record and analyze the power usage of the home or building they are attached 

to. This requires interaction with the physical world. However, smart meters are also 

clearly networked, since they can have so much interaction across them (in the concept 

of the mesh network) and the utility company. 

7.4 Protocol 

Our goal is to provide a protocol that allows for secure, authenticated communi­

cation between the utility company and smart meters, in the presence of and despite 

different types of adversaries. We leverage the use of a PUF device in conjunction 

with the smart meter to uniquely identify the smart meter to the utility company. 

Before describing the protocol itself, it will be helpful to discuss the information 

each party is expected to maintain. The utility company will maintain a database 

containing two tables, one for zero knowledge commitments and the other for access 

level keys. The first table, referred to as the authentication table, will correlate a 
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specific meter with a zero knowledge proof. The second table, referred to as the 

access level key table, will correlate a smart meter with the five keys for the five 

different security levels of the meter. This table also stores the encryption key. 

The smart meter needs to store the public key of the utility company and also 

maintain a “master key” that is generated internally using the PUF. 

Both parties also need enough information about the mesh network to ensure that 

they can communicate with each other. Both parties also need to share the encryption 

key, which is used to derive temporary session keys. 

The first step that must be done is that the utility company must record a zero-

knowledge commitment from the smart meter for a specific challenge. This is illus­

trated in Figure 7.1. This step is required so that later in the protocol, the smart 

meter can execute a zero-knowledge proof to prove its identity. Note that this step 

must be done out-of-band from the mesh network, lest an adversary enter an invalid 

commitment. This could be done at manufacture time or at installation time by a 

technician, as long as it is executed through a secure channel. 

Figure 7.1. Enrollment of the commitment 

After the commitment phase has been completed and the meter has been deployed, 

the keying operation can be performed. This operation starts by executing a key 

derivation protocol. Recall that the smart meter maintains a “master key” which 

is generated by the PUF. This master key is passed through some sort of one-way 

function, such as a hash in the style of K1 = H(MK|1), K2 = H(MK|2)... so that six 
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new keys are derived, but the original master key is never revealed. These six keys are 

then encrypted under the public key of the utility company. All the encrypted keys 

as well as a zero knowledge proof are then sent to the utility company. The ZKPK 

allows the utility company to authenticate the encrypted keys before updating its 

database with the six new entries. This transmission step is detailed graphically 

in 7.2. Figure 7.3 graphically describes the key derivation process. 

Note that the PUF uses an internal feedback loop, so that every invocation of the 

keying procedure will generate a different PUF response, which will in turn generate 

different derived keys. 

Figure 7.2. Storage of the derived keys
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Figure 7.3. The key derivation process 

After the utility company has received these five access level keys and the en­

cryption key, interactions between the smart meter and the utility company will then 

proceed as it currently does. That is, the smart meter and utility company will use 

the shared encryption key to compute a temporary, symmetric session key which will 

be used to encrypt data that is sent between the two. 

Note that since the smart meter has limited computation powers, the operations 

above are fairly expensive. This is acceptable though, since the enrollment and key­

ing operations will be done very infrequently. If they need to be re-run, this can be 

planned ahead for off peak times, such as in early morning and consumers can be no­

tified of this. The symmetric session key is frequently used, but symmetric encryption 

is much less computationally expensive than asymmetric encryption. 

Additionally, note that the utility company signs any correspondence during the 

enrollment or keying stages. This allows the smart meter to validate the signature 

and thus ensure that commands are actually coming from the utility company. 
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7.5 Security Considerations 

Because there are several different ways in which the system could be compromised 

and the gravity that such a compromise could have, it is necessary to consider and 

discuss the different security issues. 

Note that a distinction is made between the set of initial enrollment and keying 

operations that we defined versus the existing system of encryption using session keys. 

7.5.1 Meshnet Transmission Security 

One potential problem is that when data is being transmitted across the meshnet, 

rather than relaying, a node may attempt to read the data in transit. This would be 

considered a man in the middle attack. There are encryption layers imposed by the 

ZigBee protocol and other transmission protocols, but it stands to reason that if a 

node were malicious, it might be able to crack these layers. 

As such, we add another layer of security at the application layer. Data is en­

crypted under the public key of the utility company during the keying operation. As 

such, an adversary would be required to compromise the public key algorithm, which 

is considered computationally unfeasible. A more likely attack would be to compro­

mise the private key of the utility company. This possibility is considered separately 

below. 

Data being transmitted using the session key between the utility company and 

smart meter is encrypted under a symmetric key algorithm, EAX’, which is a variant 

of AES that is defined under ANSI standard C12.22 [48] [49]. As such, an adversary 

would have to be able to defeat this algorithm to make any progress. An attack on 

EAX’ has been reported [50], but this attack is new and may not be effective enough 

to compromise the total integrity of the communication. 

The system is also resilient against replay attacks in this situation, since both 

time stamps and nonces are incorporated. As such, any replay will have invalid time 

stamps and nonces, so will not be valid. 
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There is a risk of a denial of service if an active adversary simply drops all traffic, 

but this is considered an acceptable risk. 

7.5.2 Compromised Smart Meter Key or Encryption Key Compromise 

It is possible that somehow, one of the five smart meter keys or the encryption key 

used to derive session keys could be compromised. This might happen if an employee 

copies a key from the database or for any other number of reasons. Even if this 

happens, security is only temporarily effected. 

Recall that the master key generated from the PUF is passed through a one way, 

key derivation process. As such, even if one of the derived keys (the smart meter keys 

or the authentication key) is compromised, the master key is still secure. To re-secure 

the system, the keying procedure will then be re-run, which will provide a brand new 

set of smart meter keys and authentication key. 

This procedure is essentially analogous to a re-key request, even if there is no 

compromise. 

Note that this case is separate from the databases containing this information, 

which is considered below. 

7.5.3 Utility Database Compromise - Commitment Table 

If the commitment table in the utility database is compromised, the results will 

not be catastrophic. Since the committed values for the ZKPK do not leak any 

information, the adversary will not be able to impersonate any users or garner any 

new information about the underlying authentication key. 

The worst case is when the adversary changes the committed values in the database. 

This would essentially create a denial of service attack. However, he could also update 

the database with his own commitment value and place himself between the smart 

meter and the utility company as an active MITM and then impersonate the smart 

meter. 
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Since he would be able to authenticate to the utility server, he could thus send 

false data about consumption or whatever he wanted. This threat could be dealt with 

by making sure that the database is very secure and that the entries are carefully 

monitored and updates are only allowed during the keying operation. 

Note that in this case, the adversary would not be able to impersonate the utility 

company to the smart meter, since he would not know the private key of the utility, 

which is necessary to sign the various messages. 

This compromise would have no effect on the messages being sent under the tem­

porary session key, since there is no need for the authentication key during that stage. 

7.5.4 Utility Database Compromise - Key Tables 

It is possible that the database storing the smart meter access level keys or en­

cryption key could be compromised. If these keys were compromised, the adversary 

could then access the sensitive commands of the smart meter or read the interim 

traffic between the two parties. 

However, this is not necessarily a real danger, since the keys are encrypted under 

the utility’s private key before being stored into the database. As such, the adversary 

would only recover ciphertext. Assuming he cannot break the public key algorithm, 

the data will remain secure. 

There is a possibility that if the database was compromised, the adversary might 

have been able to recover a key as it is being decrypted in memory and record that. 

As such, it is wise to execute a re-keying operation for any meters whose information 

was stored in that database. 

7.5.5 Utility Company Private Key Compromise 

One of the worst case scenarios is that the private key of the utility would become 

compromised. As previously described, the smart meter’s PUF-derived master key 

would remain secure, since it is never transmitted. 
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However, all smart meter access level keys and encryption keys could potentially be 

compromised, since the adversary would record all traffic during the keying operation 

and use the private key to recover the keys. 

Once those keys were recovered, it would be trivial for the adversary to communi­

cate with the smart meter to execute sensitive commands, request re-key operations, 

or whatever the adversary desired. 

To recover from this attack, the old private key would first need to be discarded. 

Following that, the new public key would need to be installed in every single meter 

in the grid. This would have to be done by hand, since any network transmissions 

could not be trusted. Additionally, every smart meter would then need to execute 

the keying operation so that the utility company could then update its database with 

the new values. 

These recovery procedures would be very expensive and time consuming. As such, 

it is critical that the private key never becomes compromised. Key management is a 

difficult, open problem that needs to be solved. 

7.5.6 Smart Meter Physical Security 

Since smart meters are physical systems, it is necessary to discuss and consider 

some of the physical threats they face. 

The smart meters are actually designed to be fairly tamper resistant. If the 

external glass shell is removed without the use of a technician’s key, a signal is sent 

over the network to alert the utility company. After that happens, the utility company 

can then flag any future traffic as suspicious and send a technician out to investigate 

and fix the meter. Regardless, improving the tamper resistance of smart meters would 

be a good step to take. 

Because the smart meter is doing cryptographic operations, it could potentially 

be vulnerable to power analysis attacks as well as monitoring of emitted signals. To 

resolve this, some sort of potting mechanism, power filtering, and shielding should be 
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implemented. 

As previously described, the PUF is extremely resilient against tampering, so it 

will likely not be a problem. Incorporating all the different components on a system 

on chip will be a good step towards security, since this will hide all the internal buses 

as well as protect the areas with sensitive information stored on them. 

7.6 Implementation 

For the proposed scenario and protocol, we developed a proof of concept imple­

mentation. In the interest of time and difficulty, rather than creating an entire smart 

meter from scratch, we opted to implement the PUF inside an FPGA and perform 

some of the network communication and computations on a PC, the smart meter 

PC, which was connected to another PC, which is modeling the utility company. The 

smart meter PC is connected to an actual smart meter via an optical port. The smart 

meter is also connected to the utility PC via a ZigBee interface, as would be used in 

the actual field. Figure 7.4 represents the prototype architecture. 
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Figure 7.4. Prototype implementation of smart grid project 

We used the Xilinx Spartan-6 Embedded Development board for our FPGA plat­

form. This board was useful since we were able to incorporate an existing PUF design 

on it. Additionally, we were able to use the Microblaze soft core microprocessor which 

Xilinx provides. As mentioned in Chapter 6 and Chapter 5, it is a good idea to in­

clude the microprocessor on the same chip as the PUF device. This allows buses 

sending sensitive information, such as PUF responses, to be better protected against 

adversaries. Again, inserting logic probes into the inner parts of the chip would most 

likely disrupt the PUF, so any results obtained about the PUF would thus be useless. 

For the smart meter PC, we created an application in C++ which uses standard 

networking libraries to communicate with the utility PC. The smart meter PC inter­

acts with the PUF board via a serial port connection. The PC also contains drivers 

and code to communicate with the actual smart meter over an optical port interface. 
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7.6.1 Limitations 

Our approach has many different components that are not necessarily going to be 

present in an actual, deployed system. For instance, the fact that the PUF board and 

the smart meter PC are separate from the smart meter is a major issue that would 

not work in the field. 

In the future, it would be better to integrate all the control circuitry, PUF device, 

and metering circuitry into a single chip, such as a large FPGA or even an ASIC 

design. In this way, only one chip would need to be installed into the smart meter, 

rather than the large amount of devices currently needed. 
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8. SUMMARY 

Systems that interact with the physical world are not only becoming more perva­

sive, but also more powerful from a computing perspective. It is helpful to classify 

these systems into groups of standalone, deployed, and peripheral physical systems. 

The distinction lies in how they communicate with other systems, such as the ones 

connected over the internet. 

There are many different security issues facing physical systems. Not only must 

they compensate for threats similar to those faced in software, such as impersonations, 

man-in-the-middles, and replay attacks, they must also contend with threats specific 

to a system that exists in the physical world. These include power analysis attacks, 

which can glean information from power consumption, signal injection attacks, which 

can alter system behavior by bombarding the system with wireless signals, and simple 

tampering, such as breaking components or attaching logic probes. 

The technology of Physically Unclonable Function (PUF) was presented, which 

allows strong guarantees of device authenticity to be made by leveraging the challenge-

response properties of PUF. These devices are able to offer these guarantees since 

they cannot be duplicated using a manufacturing process, so the responses they give 

to given challenges are always distinct from other PUFs. PUFs require a certain 

amount of support circuitry to deal with bit errors that occasionally occur, but this 

is acceptable and solvable using existing error correction techniques. 

It is possible to utilize PUF devices in conjunction with certain cryptographic 

protocols, such as zero knowledge proof of knowledge (ZKPK) proofs, to implement 

interesting applications. Several different applications were presented, each of which 

demonstrated the use of PUF in a different context. 

The PUF ROK application leveraged a PUF device to create keys that, once used, 

are unrecoverable. This was done by giving the PUF an initial “seed” value and then 
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creating a feedback loop with the PUF. When the PUF generated a response, it would 

overwrite the previously stored value. Since PUFs are one-way functions, there is no 

way to go backwards and recover the value that was previously used. These ROKs 

could then be used to create “self-destructing” documents or for an authority to give 

a delegate a limited number of a higher privilege level. 

The PEAR application used PUFs in a way to uniquely and securely identify 

devices, despite insecure communication channels. In addition to a PUF, a ZKPK 

protocol was used to provide this benefit. The PUF as well as an external keypad 

make up a PEAR device so that data can be entered securely. The initial goal was 

to allow users to be able to log in to websites securely, even if a hardware key logger 

was attached to the keyboard. This is possible, but PEAR also allows this capability 

in the presence of software threats on the PC, since all traffic is encrypted. 

Finally, the smart grid project utilized PUFs to provide strong guarantees of 

smart meters’ identity. This is critical because if the utility company was not sure of 

meters it was communicating with, catastrophic attacks would be possible, such as 

overloading of power handling circuits. The PUF was again used in conjunction with 

ZKPK proofs to protect information in transit between the two parties. Additionally, 

since the utility company is required to maintain a large database, storing ZKPK 

commitments, rather than secrets directly, is a much more secure approach. Another 

interesting point of this application was that the PUF generated and maintained a 

master key internally, but derived keys were used in all steps of the protocol. This 

protects the long term security of the device, even in the event of certain security 

compromises. 

These different applications show the versatility of PUF technology in helping to 

secure physical systems. Depending on which cryptographic tools and protocols they 

are used in conjunction with, PUFs can be used in a variety of different ways, as was 

demonstrated. 
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