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Abstract—Attribute based systems enable fine-grained access control among a group of users each identified by a set of attributes. 
Secure collaborative applications need such flexible attribute based systems for managing and distributing group keys. However, current 
group key management schemes are not well designed to manage group keys based on the attributes of the group members. In this 
paper, we propose novel key management schemes that allow users whose attributes satisfy a certain access control policy to derive 
the group key. Our schemes efficiently support rekeying operations when the group changes due to joins or leaves of group members. 
During a rekey operation, the private information issued to existing members remains unaffected and only the public information is 
updated to change the group key. Our schemes are expressive; they are able to support any monotonic access control policy over a set 
of attributes. Our schemes are resistant to collusion attacks; group members are unable to pool their attributes and derive the group 
key which they cannot derive individually. Experimental results show that our underlying constructs are efficient and practical. 

Index Terms—Broadcast group key management, attribute based policies, secret sharing 
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1 INTRODUCTION 

New application domains have pushed novel paradigms 
and tools for supporting collaboration among (possi­
bly very dynamic) user groups (see for example the 
notion of group-centric information sharing [1]). An 
important requirement in collaborative applications is 
to support operations for user group memberships, like 
join and leave, based on identity attributes (attributes, 
for short) of users; we refer to this requirement as 
attribute-based group dynamics. As today enterprises and 
applications are adopting identity management solu­
tions, it is crucial that these solutions be leveraged on 
for managing groups. Typically, a user would be auto­
matically assigned (de-assigned) a group membership 
based on whether his/her attributes satisfy (cease to 
satisfy) certain group membership conditions. Another 
critical requirement is to provide mechanisms for group 
key management (GKM), as very often the goal of a 
group is to share data. Thus data must be encrypted with 
keys made available only to the members of the group. 
The management of these keys, which includes selecting, 
distributing, storing and updating keys, should directly 
and effectively support the attribute-based group dy­
namics and thus requires an attribute-based group key 
management (AB-GKM) scheme, by which group keys are 
assigned (or de-assigned) to users in a group based on 
their identity attributes. This scheme recalls the notion 
of attribute-based encryption (ABE) [2], [3], [4]; however, 
as we discuss later on, ABE has several shortcomings 
when applied to GKM. Therefore, a different approach 
is needed. 
A challenging well known problem in GKM is how 

to efficiently handle group dynamics, i.e., a new user 
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joining or an existing group member leaving. When the 
group changes, a new group key must be shared with the 
existing members, so that a new group member cannot 
access the data transmitted before she joined (forward 
secrecy) and a user who left the group cannot access 
the data transmitted after she left (backward secrecy). 
The process of issuing a new key is called rekeying or 
update. Another challenging problem is to defend against 
collusion attacks by which a set of colluding fraudulent 
users are able to obtain group keys which they are not 
allowed to obtain individually. 

In a traditional GKM scheme, when the group 
changes, the private information given to all or some 
existing group members must be changed which requires 
establishing private communication channels. Establish­
ing such channels is a major shortcoming especially 
for highly dynamic groups. Recently proposed broad­
cast GKM (BGKM) schemes [5], [6] have addressed 
such shortcoming. BGKM schemes allow one to perform 
rekeying operations by only updating some public in­
formation without affecting private information existing 
group members possess. However, BGKM schemes do 
not support group membership policies over a set of 
attributes. In their basic form, they can only support 
1-out-of-n threshold policies by which a group member 
possessing 1 attribute out of the possible n attributes is 
able to derive the group key. In this paper we develop 
novel expressive AB-GKM schemes which allow one to 
express any threshold or monotonic 1 conditions over a 
set of identity attributes. 

A possible approach to construct an AB-GKM scheme 
is to utilize attribute-based encryption (ABE) primi­
tives [2], [3], [4]. Such an approach would work as 
follows. A key generation server issues each group 
member a private key (a set of secret values) based on 

1. Monotone formulas are Boolean formulas that contain only con­
junction and disjunction connectives, but no negation. 
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the attributes and the group membership policies. The 
group key, typically a symmetric key, is then encrypted 
under a set of attributes using the ABE encryption 
algorithm and broadcast to all the group members. 
The group members whose attributes satisfy the group 
membership policy can obtain the group key by using 
the ABE decryption primitive. One can use such an 
approach to implement an expressive collusion-resistant 
AB-GKM scheme. However, such an approach suffers 
from some major drawbacks. Whenever the group dy­
namic changes, the rekeying operation requires to up­
date the private keys given to existing members in 
order to provide backward/forward secrecy. This in turn 
requires establishing private communication channels 
with each group member which is not desirable in a 
large group setting. Further, in applications involving 
stateless members where it is not possible to update the 
initially given private keys and the only way to revoke a 
member is to exclude it from the public information, an 
ABE based approach does not work. Another limitation 
is that whenever the group membership policy changes, 
new private keys must be re-issued to members of the 
group. Our constructions address these shortcomings. 
Our AB-GKM schemes are able to support a large 

variety of conditions over a set of attributes. When the 
group changes, the rekeying operations do not affect 
the private information of existing group members and 
thus our schemes eliminate the need of establishing 
private communication channels. Our schemes provide 
the same advantage when the group membership con­
ditions change. Furthermore, the group key derivation 
is very efficient as it only requires a simple vector inner 
product and/or polynomial interpolation. Additionally, 
our schemes are resistant to collusion attacks. Multiple 
group members are unable to combine their private 
information in a useful way to derive a group key which 
they cannot derive individually. 
Our AB-GKM constructions are based on an opti­

mized version of the ACV-BGKM (Access Control Vector 
BGKM) scheme [6], a provably secure BGKM scheme, 
and Shamir’s threshold scheme [7]. In this paper, we 
construct three AB-GKM schemes each of which is 
more suitable over others under different scenarios. 
The first construction, inline AB-GKM, is based on the 
ACV-BGKM scheme. Inline AB-GKM supports arbitrary 
monotonic policies over a set of attributes. In other 
words, a user whose attributes satisfy the group policies 
is able to derive the symmetric group key. However, 
inline AB-GKM does not efficiently support d-out-of-m 
(d ≤ m) attribute threshold policies over m attributes. 
The second construction, threshold AB-GKM, addresses 
this requirement. The third construction, access tree AB­
GKM, is an extension of threshold AB-GKM and is the 
most expressive scheme. It efficiently supports arbitrary 
policies. The second and third schemes are constructed 
by using a modified version of ACV-BGKM, also pro­
posed in this paper. 
The reminder of the paper is organized as follows: 

TABLE 1
 
Acronyms
 

Acronym Description 
GKM Group Key Management 
BGKM Broadcast GKM 
ABE Attribute Based Encryption 
CP-ABE Ciphertext Policy ABE 
KP-ABE Key Policy ABE 
ACV Access Control Vector 
KEV Key Extraction Vector 
ABAC Attribute Based Access Control 
AB-GKM Attribute Based GKM 
PI Public Information tuple 
UA User-Attribute matrix 

Section 2 describes related work. Section 3 summarizes 
the ACV-BGKM scheme [6]. Sections 4, 5, 6 present 
the construction of the inline AB-GKM, threshold AB­
GKM, and access tree AB-GKM schemes, respectively, 
and analyze their security and performance. Section 7 
shows an example application using the access tree AB­
GKM scheme. Section 8 provides experimental results of 
our underlying optimized ACV-BGKM scheme used in 
all three schemes against the CP-ABE (ciphertext policy 
attribute based encryption) scheme. Section 9 concludes 
the paper. Table 1 lists, for the convenience of the reader, 
the acronyms used in the paper. 

2 RELATED WORK 

Group Key Management (GKM): Early approaches to 
GKM rely on a key server to share a secret with users 
to distribute decryption keys [8], [9]. Such approaches 
do not efficiently handle join and leave operations, as 
in order to achieve forward and backward security, they 
require sending O(n) private rekey information, where 
n is the number of users. Hierarchical key manage­
ment schemes [10], [11] were introduced to reduce this 
overhead. However, they only reduce the size of the 
rekey information to O(log n), and furthermore each 
user needs to manage at worst O(log n) hierarchically 
organized redundant keys. 
Broadcast GKM (BGKM) schemes perform the rekey 

operation with only one broadcast without affecting the 
secret information issued to existing users. Approaches 
have also been proposed to make the rekey operation 
a one-off process [12], [5]. However, these schemes are 
not formally proven to be secure. Recently Shang et. 
al. introduced the first provably secure BGKM scheme 
called ACV-BGKM [6]. Existing BGKM schemes require 
sending O(n) public information when rekeying. We 
improve the complexity by utilizing subset-cover tech­
niques [13], [14]. Such improved BGKM schemes effi­
ciently handle group dynamics and lay the foundation 
for AB-GKM. However such schemes cannot directly 
handle expressive conditions against attributes. 
Attribute-Based Encryption (ABE) and GKM: In an 
ABE system [2], the plaintext is encrypted with a set 
of attributes. The key generation server, which possesses 
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the master key, issues different private keys to users after 
authenticating the attributes they possess. Thus, these 
private keys are associated with the set of attributes each 
user possesses. In its basic form, a user can decrypt a 
ciphertext if and only if there is a match between the 
attributes of the ciphertext and the user’s key. The initial 
ABE system was limited to only threshold policies by 
which there should be at least k out of n attributes 
common between the attributes used to encrypt the 
plaintext and the attributes users possess. Since the 
definition of the initial threshold scheme, a few variants 
have been introduced to provide more expressive ABE 
systems. Goyal et al. [3] introduced the idea of key-
policy ABE (KP-ABE) systems and Bethencourt et al. [4] 
introduced the idea of CP-ABE systems. Even though 
these constructs are expressive and provably secure, they 
are unable to efficiently support group management, 
and especially to provide backward secrecy when a user 
leaves the group (i.e. attribute revocation) and to provide 
forward secrecy when a new user joins the group. These 
schemes require sending O(n) private rekey messages 
in order to handle group management operations. The 
proposers of some of these schemes have suggested 
using an expiration attribute along with other attributes 
for attribute revocation. However, such a solution is 
not suitable for highly dynamic groups where joins 
and leaves are frequent. Traynor et al. [15] propose to 
improve the performance of ABE by grouping users 
and assigning a unique group attribute to each group. 
However, their approach only considers one attribute 
per user and does not support membership policy based 
group key management. 
Despite the limitations of ABE schemes with respect 

to revocation, flat table based GKM schemes 2 based 
on ABE have been proposed [16], [17]. These schemes 
further suffer from the inherent limited expressibility 
and scalability of flat table based GKM [18], [19]. 
GKM Schemes for Selective Dissemination Systems: 
Selective dissemination or broadcast encryption systems 
allow one to encrypt a message once and broadcast it 
to all the users in a group, but only a subset of users 
who have the correct key can decrypt the message. 
The database and security communities have carried out 
extensive research concerning techniques for the selec­
tive dissemination of documents based on access control 
policies with their own GKM schemes [20], [21], [22], 
[23], [24]. In such approaches, users are able to decrypt 
the subdocuments, that is, portions of documents, for 
which they have the keys. However, such approaches 
require all [21] or some [22] keys be distributed in ad­
vance during user registration phase. This requirement 
makes it difficult to assure forward and backward key 
secrecy when user groups are dynamic with frequent join 
and leave operations. Further, the rekey operation is not 
transparent, thus shifting the burden of acquiring new 

2. A flat table GKM scheme assigns each member a unique n-bit 
string. The group key is managed through a set of auxiliary keys which 
are tied to the unique strings given to the group members. 

keys on existing users when others leave or join. Thus 
the proposed GKM schemes are not efficient. In contrast, 
our GKM schemes make rekey transparent to users by 
not distributing actual keys. 

3 BACKGROUND 

In this section, we provide an overview of the Broadcast 
Group Key Management (BGKM) scheme in general and 
a description of a provably secure BGKM scheme called 
ACV-BGKM (Access Control Vector BGKM) proposed 
by Shang et al. [6], [25] in order for readers to better 
understand our constructions. It should be noted that 
we use ACV-BGKM in Section 4 and a modified version 
of ACV-BGKM in our constructions in Sections 5, and 6. 
BGKM schemes are a special type of GKM scheme 

where the rekey operation is performed with a sin­
gle broadcast without using private communication 
channels. Unlike conventional GKM schemes, BGKM 
schemes do not give users the private keys. Instead users 
are given a secret which is combined with public infor­
mation to obtain the actual private keys. Such schemes 
have the advantage to require a private communication 
only once for the initial secret sharing. The subsequent 
rekeying operations are performed using one broadcast 
message. Further, in such schemes achieving forward 
and backward secrecy requires only to change the public 
information and does not affect the secret shares given 
to existing users. In general, a BGKM scheme consists of 
the following five algorithms: 
Setup(ℓ): It initializes the BGKM scheme using a security 
parameter ℓ. It also initializes the set of used secrets S, 
the secret space SS, and the key space KS. 
SecGen(): It picks a random bit string s /∈ S uniformly 
at random from SS , adds s to S and outputs s. 
KeyGen(S): It picks a group key k uniformly at random 
from KS and outputs the public information tuple PI 
computed from the secrets in S and the group key k. 
KeyDer(s, PI): It takes the user’s secret s and the public 
information PI to output the group key. The derived 
group key is equal to k if and only if s ∈ S. 
Update(S): Whenever the set S changes, a new group 
key k ′ is generated. Depending on the construction, it ei­
ther executes the KeyGen algorithm again or incremen­
tally updates the output of the last KeyGen algorithm. 

Using the above abstract algorithms, we now provide 
an overview of the construction of the ACV-BGKM 
scheme under a client-server architecture. The ACV-
BGKM scheme satisfies the requirements of minimal trust, 
key indistinguishability, key independence, forward secrecy, 
backward secrecy and collusion resistance [26]. The ACV­
BGKM algorithms are executed by a trusted key server 
Svr and a group of users Usri, i = 1, 2, . . . , n. 
Setup(ℓ): Svr initializes the following parameters: an ℓ­
bit prime number q, the maximum group size N (≥ n 
and N is usually set to n + 1), a cryptographic hash 
function H(·) : {0, 1}∗ → Fq , where Fq is a finite field 
with q elements, the keyspace KS = Fq , the secret space 
SS = {0, 1}ℓ and the set of issued secrets S = ∅. 
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SecGen(): Svr chooses the secret si ∈ SS uniformly at
 
random for Usri such that si ∈/ S, adds si to S and finally
 
outputs si.
 
KeyGen(S): Svr picks a random k ∈ KS as the group key.
 
Svr chooses N random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ .
 
Svr creates an n × (N + 1) Fq-matrix
 


1 a1,1 a1,2 . . . a1,N 

 

1 a2,1 a2,2 . . . a2,N 
 

A = 


. . . . . 


, 
. . . . .
. . . . . 

  
1 an,1 an,2 . . . an,N 

where 

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ N, si ∈ S. (1) 

Svr then solves for a nonzero (N + 1)-dimensional col­
umn Fq-vector Y such that AY = 0. Note that such 
a nonzero Y always exists as the nullspace of matrix 
A is nontrivial by construction. Here we require that 
Svr chooses Y from the nullspace of A uniformly at 
random. Svr constructs an (N+1)-dimensional Fq-vector 

TACV = k · e + Y , where e1 = (1, 0, . . . , 0) is a standard 1 
basis vector of FN

q 
+1 , vT denotes the transpose of vector 

v, and k is the chosen group key. The vector ACV 
controls the access to the group key k and is called an 
access control vector. Svr lets PI = (ACV, (z1, z2, . . . , zN )), 
and outputs public PI and private k. 
KeyDer(si, PI): Using its secret si and the public in­
formation tuple PI , Usri computes ai,j , 1 ≤ j ≤ N, 
as in formula (1) and sets an (N + 1)-dimensional row 
Fq-vector vi = (1, ai,1, ai,2, . . . , ai,N ). vi is called a Key 
Extraction Vector (KEV) and corresponds to a unique 
row in the access control matrix A. Usri derives the key 
k ′ from the inner product of vi and ACV : k ′ = vi · ACV . 
The derived key k ′ is equal to the actual group key k 

if and only if si is a valid secret used in the computation 
of PI , i.e., si ∈ S. 
Update(S): It runs the KeyGen(S) algorithm and outputs 

′ the new public information PI and the new group key 
k ′ . 
The above construction becomes impractical with 

large numbers of users since the complexity of the 
matrix and the public information is O(n). We proprose 
an improved scheme in Section 4.4 while keeping the 
underlying scheme unchanged. 

4 SCHEME 1: INLINE AB-GKM 
Recall that in its basic form, a BGKM scheme can be 
considered as a 1-out-of-m AB-GKM scheme. If Usri 
possesses the attribute attrj , Svr shares a unique secret 
si,j with Usri. Usri is thus able to derive the symmetric 
group key if and only if Usri shares at least one secret 
with Svr and that secret is included in the computation 
of the public information tuple PI . In order for Svr to 
revoke Usrj , it only needs to remove the secrets it shares 
with Usrj from the computation of PI ; the secrets issued 
to other group members are not affected. We extend this 
scheme to support arbitrary monotonic policies, Ps, over 

a set of attributes. A user is able to derive the symmetric 
group key if and only if the set of attributes the user 
possesses satisfy P. 
As in the basic BGKM scheme, Usri having attrj is 

associated with a unique secret value si,j . However, 
unlike the basic BGKM scheme, PI is generated by 
using the aggregated secrets that are generated com­
bining the secrets issued to users according to P. For 
example, if P is a conjunction of two attributes, that is 
attrr ∧ attrs, the corresponding secrets si,r and si,s for 
each Usri are combined as one aggregated secret si,r||si,s 
and PI is computed using these aggregated secrets. By 
construction, the aggregated secrets are unique since the 
constituent secrets are unique. Any Usri is able to derive 
the symmetric group key if and only if Usri has at least 
one aggregated secret used to compute PI . Notice that 
multiple users cannot collude to create an aggregated 
secret which they cannot individually create since si,j ’s 
are unique and each aggregated secret is tied to one spe­
cific user. Hence, colluding users cannot derive the group 
symmetric key. Now we give a detailed description of 
our first AB-GKM scheme, inline AB-GKM. 

4.1 Our construction 

Inline AB-GKM consists of the following five algorithms: 
Setup(ℓ): The Svr initializes the following parameters: 
an ℓ-bit prime number q, a cryptographic hash function 
H(·) : {0, 1}∗ → Fq , where Fq is a finite field with 
q elements, the keyspace KS = Fq , the secret space 
SS = {0, 1}ℓ, and the set of issued secrets S = ∅. 
The user-attribute matrix UA is initialized with empty 
elements and the maximum group size N is decided 
in the KeyGen. It defines the universe of attributes 
A = {attr1, attr2, · · · , attrm}. 
SecGen(γi): For each attribute attrj ∈ γi, where γi ⊂ A 
and γi is the attribute set of Usri, the Svr chooses the 
secret si,j ∈ SS uniformly at random for Usri such that 
si,j ∈/ S, adds si,j to S, sets UA(i, j) = si,j , where UA(i, j) 
is the (i, j)th element of the user-attribute matrix UA, 
and finally outputs si,j . 
KeyGen(P): We first give a high-level description of 
the algorithm and then the details. Svr transforms the 
policy P to disjunctive normal form (DNF). For each 
disjunctive clause of P in DNF, it creates an aggregated 
secret (8s) from the secrets corresponding to each of 
the attributes in the conjunctive clause. s8 is formed by 
concatenation only if secrets exist for all the attributes 
in a given row of the user-attribute matrix UA. The 
construction creates a unique aggregated secret s8 since 
the corresponding secrets are unique. For example, if 
the conjunctive clause is attrp ∧ attrq ∧ attrr, for 
each row i in UA, the aggregated secret s8i is formed 
only if all elements UA(i, p), UA(i, q) and UA(i, r) have 
secrets assigned. All the aggregated secrets are added to 
the set AS. Finally, Svr invokes algorithm KeyGen(AS) 
from the underlying BGKM scheme to output the public 
information PI and the symmetric group key k. 

http:affected.We
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Now we give the details of the algorithm. Svr converts 
P to DNF as follows 

α

P = 
a

conjuncti where there are α conjuncts and 
i=1 

φi

conjuncti = 
<

cond(
j
i) 
, 

j=1 

where each conjuncti has φi conditions. 
A simple multiplication of clauses (x∧(y∨z) = (x∧y)∨ 

(x ∧ z)) and then application of the absorption law (x ∨ 
(x∧y = x)) are sufficient to convert monotone policies to 
DNF. Even though there can be an exponential blow up 
of clauses during multiplication, it has been shown that 
with the application of the absorption law the number 
of clauses in the DNF, at the end, is always polynomially 
bounded. Svr selects N such that 

αL
N ≥ NUi = NU 

i=1 

3where NUi is the number of users satisfying conjuncti . 
Svr creates NU s8i’s and adds them to AS. Svr picks a 
random k ∈ KS as the shared group key. Svr chooses N 
random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ . Svr creates an 
m × (N + 1) Fq-matrix A such that for 1 ≤ i ≤ NU 

=

 
1 if j = 1 

(2) ai,j H(s8i||zj) if 2 ≤ j ≤ N ; s8i ∈ AS 

Svr then solves for a nonzero (N + 1)-dimensional col­
umn Fq-vector Y such that AY = 0 and sets 

ACV = k · e T + Y, and 1 

PI = (ACV, (z1, z2, . . . , zN )) 

KeyDer(βi, PI): Given βi, the set of secrets for Usri, 
it computes the aggregated secret s8. Using s8 and the 
public information PI , it computes ai,j , 1 ≤ j ≤ N, as 
in formula 2 and sets an (N + 1)-dimensional row Fq ­
vector vi = (1, ai,1, ai,2, . . . , ai,N ). Usri derives the group 
key k ′ by the inner product of the vectors vi and ACV : 
k ′ = vi · ACV . The derived group key k ′ is equal to 
the actual group key k if and only if the computed 
aggregated secret s8∈ AS. 
Update(S): The composition of the user group changes 
when one of the following occurs: 

• Identity attributes are added or removed resulting 
4in the change in S and UA . 

• The underlying policy P changes. 
When such a change occurs, a new symmetric key k ′ 

is selected and KeyGen(P) is invoked to generate the 
updated public information PI ′ . Notice that the secrets 
shared with existing users are not affected by the group 

′ change. It outputs the public PI and private k ′ . 

3. It should be noted that NU can be reduced to n, the number of 
users in the group, by exploiting the relationships between conjuncts 
and letting the users know the conjunct, out of the many they satisfy, 
they have to use to derive the key. We leave this optimization to keep 
the scheme simple. 

4. A change in a user attribute is viewed as two events; removing 
the existing attribute and adding a new attribute. 

4.2 Security 

We can easily show that if an unbounded adversary A 
can break the inline AB-GKM scheme in the random 
oracle model, a simulator S can be constructed to break 
the ACV-BGKM scheme. 

Definition 1 (Security game for AB-GKM): 
Setup The challenger runs the Setup algorithm of AB­
GKM and gives the public parameters to the adversary. 
Phase 1 The adversary is allowed to request secrets 
for any set of attributes γi and the public information 
tuples for a policy satisfying these attributes. The public 
information along with the secrets allows the adversary 
to derive the private key. 
Challenge The adversary declares the set of attributes 
γ that it wishes to challenged upon. γ is different from 
any of the attribute sets γi that the adversary queried 
earlier. The adversary submits two keys k0 and k1. The 
challenger flips a random coin b and chooses kb. The 
challenger generates public information for a policy P 
satisfying γ, but not any γi, using the KeyGen algorithm 
and give it to the adversary. The public information 
hides the group key kb. 
Phase 2 Phase 1 is repeated as many times provided that 
the adversary’s attribute set does not satisfy P . 
Guess The adversary outputs a guess b ′ of b. 

The advantage of an adversary A in this game is 
defined as Pr[b ′ = b]− 1/2. 
Now we define security under the random oracle 

model. 

Definition 2 (Security under the random oracle model): 
An AB-GKM scheme is secure under the random oracle 
model of security if all adversaries have at most a 
negligible advantage in the above game. 
Shang et al. [6], [25] have shown that the probability 

of breaking ACV-BGKM is a negligible 1/q, where q is 
the ℓ bit large prime number initialized in Setup. We 
capture the hardness of the ACV-BGKM scheme in the 
following assumption: 

Definition 3 (ACV-BGKM Assumption): No adversary 
without any valid secrets in the random oracle model 
can break the ACV-BGKM scheme with more than a 
negligible probability. 
Theorem 1: If an adversary can break the inline AB­

GKM scheme in the random oracle model, then a simu­
lator can be constructed to break the ACV-BGKM scheme 
with non-negligible advantage. 

Proof: Suppose that there exists an adversary A that 
can break our scheme in the random oracle model with 
advantage ǫ. We build a simulator B that can break the 
ACV-BGKM scheme with the advantage at most ǫ. The 
simulation proceeds as follows: 
The challenger runs the setup algorithm of ACV­

BGKM and generates secrets for each attributes per user 
outside of B’s view. The simulator B runs A. B is given 
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an instance of ACV-BGKM and gives the public param­
eters to A. We assume that all policies are in DNF such 
that each conjunctive term has only one attribute. The 
intuition behind the assumption is that inline AB-GKM is 
an extension of ACV-BGKM to support aggregate secrets 
and, therefore, in the absent of aggregate secrets, inline 
AB-GKM is equivalent to ACV-BGKM. 
Phase 1 A submits sets of attributes γi to B and B sends 
the secrets using the ACV-BGKM instance. 
Challenge A submits the attribute set γ � γi as the = 
challenge and two keys k0 and kb. B flips a random 
coin b and chooses kb and then using the ACV-BGKM 
instance, it generates the public information for a policy 
P that only γ satisfies hiding kb. 
Phase 2 A and B repeats Phase 1 as many times provided 
A’s attribute sets do not satisfy P . 
Guess Using the public information and the information 
gathered from the two phases, A outputs a guess b ′ of b. 
Notice that the view of A when it is run as a subroutine 
of B and when it is run directly with the inline AB­
GKM scheme is identical. In other words, B simulates an 
instance of the inline AB-GKM for A using an instance 
of the ACV-BGKM scheme. The simulation is trivial as 
the aggregate secrets in AB-GKM is the same the secrets 
in ACV-BGKM. It should be noted that A does not have 
an advantage more than ǫ from the information gather 
from the repeated execution of Phase 1 due to the key 
indistinguishability and key independence properties of 
the ACV-BGKM scheme [25]. 
It can easily be seen that B has the same advantage of 

breaking the ACV-BGKM scheme as A has on the inline 
AB-GKM scheme. As per the definitions, B breaks the 
ACV-BGKM with Pr[b ′ = b] = 1/2 + ǫ. According to the 
assumption on the hardness of the ACV-BGKM scheme 
in Theorem 1, it follows that ǫ must be negligible. 

4.3 Performance 

Now, we discuss the efficiency of inline AB-GKM with 
respect to computational costs and required bandwidth 
for rekeying. 
For any Usri in the group, deriving the shared group 

key requires N hashing operations (evaluations of H(·)) 
and an inner product computation vi · ACV of two 
(N + 1)-dimensional Fq-vectors, where N is the max­
imum group size. Therefore the overall computational 
complexity is O(n). 
For every rekeying operation, Svr needs to form a 

matrix A by performingN2 hashing operations, and then 
solve a linear system of size N × (N + 1). Solving the 
linear system is the most costly operation as N gets large 
for computation on Svr. It requires O(n3) field operations 
in Fq when the method of Gauss-Jordan elimination [27] 
is applied. Experimental results about the ACV-BGKM 
scheme [6] have shown that this can be performed in a 
short time when N is small. 
When a rekeying process takes place, the new informa­

tion to be broadcast is PI = (ACV, (z1, . . . , zN )), where 

ACV is a vector consisting of (N+1) elements in Fq , and 
without loss of generality we can pick zi to be strings 
of fixed length. This gives an overall communication 
complexity O(n). An advantage of inline AB-GKM is 
that no peer-to-peer private channel is needed for any 
persisting group members when rekeying is executed. 
Nowadays we generally care less about storage costs 

on both Svr and Usrs. Nevertheless, for a group of 
maximum N users, in the worst case, inline AB-GKM 
only requires each Usr to store (O(|A|)) secrets, one secret 
per attribute that Usr possesses, and Svr to keep track 
of all O(n|A|) secrets. 

4.4 Improving the Complexity using Subset-Cover 

The above approach becomes inefficient if each NUi val­
ues are large as the computational and communication 
complexities are still proportional to NUi values. We 
utilize the result from previous research on broadcast 
encryption [13], [14] to improve the complexity. Based 
on that, one can make the complexity sub-linear in the 
number of users by giving more than one secret during 
SecGen for each attribute users possess. The secrets 
given to each user overlaps with different subsets of 
users. During the KeyGen, Svr identifies the minimum 
number of subsets to which all the users belong and 
uses one secret per the identified subset. During KeyDer, 
a user identifies the subset it belongs to and uses the 
corresponding secret to derive the group key. Group 
dynamics are handled by making some of the secrets 
given to users invalid. 
We give a high-level description of the basic subset-

cover approach. In the basic scheme, n users are orga­
nized as the leaves of a balanced binary tree of height 
log n. A unique secret is assigned to each vertex in the 
tree. Each user is given log n secrets that correspond 
to the vertices along the path from its leaf node to 
the root node. In order to provide provide backward 
secrecy when a single user is revoked, the updated tree 
is described by log n subtrees formed after removing all 
the vertices along the path from the user leaf node to the 
root node. To rekey, Svr executes Update using the log n 
secrets corresponding to the roots of these subtrees. Naor 
et. al. [13] improve this technique to simultaneously 
revoke r users and describe the exiting users using 
r log (n/r) subtrees. Since then, there have been many 
improvements to the basic scheme. In the remainder of 
the paper, in order to maintain the simplicity the SecGen 
algorithm generates only one secret per attribute but the 
schemes can be trivially modified to use any subset-
cover approach. 

5 SCHEME 2: THRESHOLD AB-GKM 
Consider now the case of policies by which a user 
can derive the symmetric group key k, if it possesses 
at least d attributes out of the m attributes associated 
with the group. We refer to such policies as threshold 
policies. Under the inline AB-GKM scheme presented in 
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Section 4, with such threshold policies the size of the 
access control matrix (A) increases exponentially if users 
are not informed which attributes to use. Specifically, 
to support d-out-of -m, the inline AB-GKM scheme may 
require creating a matrix of dimension up to O(nmd) 
where n is the number of users in the group. Thus, 
the inline AB-GKM scheme is not suitable for threshold 
policies. In this section, we construct a new scheme, 
threshold AB-GKM, which overcomes this shortcoming. 
An initial construction to enforce threshold policies 

is to associate each user with a random d − 1 degree 
polynomial, q(x), with the restriction that each polyno­
mial has the same value at x = 0 and q(0) = k, where 
k is the symmetric group key. For each attribute users 
have, they are given a secret value. The secret values 
given to a user are tied to its random polynomial q(x). 
A user having d or more secrets can perform a Lagrange 
interpolation to obtain q(x) and thus the symmetric 
group key k = q(0). Since the secrets are tied to random 
polynomials, multiple users are unable to combine their 
secrets in any way that makes possible collusion attacks. 
However, revocation is difficult in this simple approach 
and requires re-issuing all the secrets again. 
Our approach to address the revocation problem is to 

use a layer of indirection between the secrets given to 
users and the random polynomials such that revocations 
do not require re-issuing all the secrets again. We use 
a modified ACV-BGKM construction as the indirection 
layer. We cannot directly use the ACV-BGKM construc­
tion since, multiple instances of ACV-BGKM allow col­
lusion attacks in which colluding users can recover 
the group key which they cannot obtain individually. 
We first show the details of the modified ACV-BGKM 
scheme and then present the threshold AB-GKM which 
uses the modified ACV-BGKM scheme and Shamir’s 
secret sharing scheme. 

5.1 Modified ACV-BGKM Scheme 

The modified ACV-BGKM works under similar condi­
tions as ACV-BGKM, but instead of giving the same key 
k to all the users, the KeyDer algorithm gives each Usri 
a different key ki when the public information tuple PI 
is combined with their unique secret si. 
The algorithms are executed with a trusted key server 

Svr and a group of users Usri, i = 1, 2, · · · , n with 
the attribute universe A = {attr1, attr2, · · · , attrm}. The 
construction is as follows: 
Setup(ℓ): Svr initializes the following parameters: an ℓ­
bit prime number q, the maximum group size N (≥ n), a 
cryptographic hash function H(·) : {0, 1}∗ → Fq , where 
Fq is a finite field with q elements, the key space KS = 
Fq , the secret space SS = {0, 1}ℓ and the set of issued 
secret tuples S = ∅. Each Usri is given a unique secret 
index 1 ≤ i ≤ N . 
SecGen(): The Svr chooses the secret si ∈ SS uniformly 
at random for Usri such that si is unique among all the 
users, adds the secret tuple (i, si) to S, and outputs (i, si). 

KeyGen(S, K): Given the set of secret tuples S = 
{(i, si)|1 ≤ i ≤ N} and a random set of keys K = {ki|1 ≤ 
i ≤ N}, it outputs the public information tuple PI which 
allows each Usri to derive the key ki using its secret si. 
The details follow. 

Svr chooses N random bit strings z1, z2, . . . , zN ∈ 
{0, 1}ℓ and creates an N × 2N Fq-matrix A where for 
a given row i, 1 ≤ i ≤ N 

 
1 if i = j 

= 0 if 1 ≤ j ≤ N and i  = jai,j 
H(si||zj ) if N < j ≤ 2N 

Like in the ACV-BGKM scheme, Svr computes the null 
space of A with a set of its N basis vectors, and selects 
a vector Y as one of the basis vectors. Svr constructs an 
2N -dimensional Fq-vector 

N

TACV = (
L

ki · e ) + Y, i 

i=1 

where ei is the i
th standard basis vector of F2N . Notice q 

that, unlike ACV-BGKM, a unique key corresponding 
to Usri, ki ∈ K is embedded into each location corre­
sponding to a valid index i. Like, ACV-BGKM, Svr sets 
PI = (ACV, (z1, z2, . . . , zN )), and outputs PI via the 
broadcast channel. 
KeyDer(si, PI): Usri, using its secret si and public 
PI , derives the 2N -dimensional row Fq-vector vi which 
corresponds to a row in A. Then Usri derives the specific 
key as ki = vi · ACV . 
Update(S, K’): If a user leaves or join the group, a new 

′ set of keys K is selected. KeyGen(S, K’) is invoked to 
generate the updated public information PI ′ . Notice that 
the secrets shared with existing users are not affected by 

′ the group change. It outputs the public PI . 
We refer the reader to our technical report [28] for 

the proof of security of the above modified ACV-BGKM 
scheme. 

5.2 Our Construction 

Now we provide our construction of the threshold AB­
GKM scheme which utilizes the modified ACV-BGKM 
scheme. 
Recall that in this scheme, we wish to allow a user to 

derive the symmetric group key k if the user possesses 
at least d attributes out of m. For each user Usri we 
associate a random d − 1 degree polynomial qi(x) with 
the restriction that each polynomial has the same value k, 
the symmetric group key, at x = 0, that is, qi(0) = k. We 
associate a random secret value with each user attribute. 
For each attribute attri, we generate a public information 
tuple (PIi) using the modified ACV-BGKM scheme with 
the restriction that the temporary key that each Usrj 
derives is tied to its random polynomial qj(x), that 
is qj(i) = ki. Notice that each user obtains different 
temporary keys from the same PI . If a user can derive 
d temporary keys corresponding to d attributes, it can 
compute its random function q(x) and obtain the group 
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symmetric key k. Notice that, since the temporary keys 
are tied to a unique polynomial, multiple users are 
unable to collude and combine their temporary keys in 
order to obtain the symmetric group key which they are 
not allowed to obtain individually. Thus, our construc­
tion prevents collusion attacks. 
A detailed description of our threshold AB-GKM 

scheme follows. 
Setup(ℓ) Svr initializes the parameters of the under­
lying modified ACV-BGKM scheme: the ℓ-bit prime 
number q, the maximum group size N (≥ n), the 
cryptographic hash function H , the key space KS , the 
secret space SS , the set of issued secrets S, the user-
attribute matrix UA and the universe of attributes A = 
{attr1, attr2, · · · , attrm}. 

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq 

and a set, Q of elements in Fq : 

x − jI
Δi,Q(x) = . 

i− j
j∈Q,j #=i 

SecGen(γi) For each attribute attrj ∈ γi, where γi ⊂ A 
and γi is the attribute set of Usri, Svr invokes SecGen() 
of the modified ACV-BGKM scheme in order to obtain 
the random secret si,j . It returns βi, the set of secrets for 
all the attributes in γi. 
KeyGen(α, d) Taking α, a subset of attributes from the 
attribute universe A and d, the threshold value, for each 
user Usri, Svr assigns a random degree d−1 polynomial 
qi(x) with qi(0) set to the group symmetric key k. For 
each attribute attrj in the set of attributes α (α ⊂ A and 
|α| ≥ d), it selects the set of secrets corresponding to attrj , 
Sj and invokes KeyGen(Sj , {q1(j), q2(j), · · · , qN (j)}) of 
the modified ACV-BGKM scheme to obtain PIj , the 
public information tuple for attrj . It outputs the private 
group key k and the set of public information tuples PI 
= {PIj | for each attrj ∈ α}. 
KeyDer(βi,PI) Using the set of d secrets βi = {si,j |1 ≤ 
j ≤ N} for the d attributes attrj , 1 ≤ j ≤ N , and the 
corresponding d public information tuples PIj ∈ PI, 1 ≤ 
j ≤ N , it derives the group symmetric key k as follows. 
First, it derives the temporary key kj for each attribute 

attrj using the underlying modified ACV-BGKM scheme 
as KeyDer(si,j , PIj). Then, using the set of d points Qi = 
{(j, kj)|1 ≤ j ≤ N}, it computes qi(x) as follows: 

x − jI
Δj,Q

i 
(x) = 

i− j
j∈Q

i
,j=# i 

qi(x) = 
L

kjΔj,Q
i 
(x). 

j∈Q
i 

It outputs the group key k = qi(0). 
Update(α, d) The Update algorithm is invoked whenever 
α, the attribute set considered, or d, the threshold value, 
or the group members satisfying the threshold policy 
change. The group membership changes due to similar 
reasons mentioned under the Update algorithm in Sec­
tion 4.1. In such a situation, a new symmetric group key 

k ′ is selected and KeyGen(α, d) is invoked to generate 
the set of new public information tuples PI’. Notice that 
the secrets shared with existing users are not affected by 
the group change. 

5.3 Security 

If an unbounded adversary can break our threshold AB­
GKM scheme, a simulator can be constructed to break 
the modified ACV-BGKM scheme. We only give a high­
level detail of the reduction based proof due to the space 
constraint. 

Proof: Suppose that an unbounded adversary A 
having a set of d− 1 attributes α can break our scheme 
in the random oracle model with advantage ǫ. Note that 
this is the most powerful adversary as it possesses d− 1 
attributes out of the d attributes required to derive the 
group key. We build a simulator B that can derive the 
key kd from PId corresponding to attrd �∈ α with the 
same advantage ǫ using A as subroutine. In other words, 
we build a simulator to break the modified ACV-BGKM 
scheme. 
The intuition behind our proof is that, by construction, 

the modified ACV-BGKM instances corresponding to 
the attributes are independent. In other words, a user 
who can access the key for one attribute only has a 
negligible advantage in obtaining the key for another 
attribute using the known attributes due to the key 
indistinguishability and independence properties of the 
ACV-BGKM scheme [25]. 
The challenger creates an instance of the modified 

ACV-BGKM scheme for each of the n attributes. A 
obtains secrets {si|i = 1, 2, · · · , d − 1} for the attributes 
α it has from B. The challenger constructs the public 
information tuples {PIi|i = 1, 2, · · · , d}, each having a 
random key ki and gives them to B. B in turn gives them 
to A. Notice that the view of A is identical to that of A 
interacting directly with an instance of the threshold AB-
GKM scheme, even though it is simulated. The random 
keys correspond to a random degree d − 1 polynomial 
q(x). Notice that A possesses secrets to obtain the ran­
dom keys ki, 1 ≤ i ≤ d − 1 and can derive the secret 
key kd with an advantage ǫ from the public information 
tuples. 
We omit the details of the security game defined in 

the previous section. As mentioned in the game, A may 
execute the threshold AB-GKM scheme for different sets 
of attributes that do not satisfy the challenge threshold 
policy and do not include attrd. As mentioned earlier, 
A does not gain any additional advantage by such 
executions. 
After executing the phase 1 of the security game as 

many times, A outputs k, which is equal to q(0). This 
allows B to fully determine q(x) as it now has d points 
and derive the key kd = q(d). In other words, it allows 
B to break the modified ACV-BGKM scheme to recover 
the intermediate key kd from the public information 
tuple PId without the knowledge of the secret sd. In 
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our technical report [28], we show that the probability 
of breaking the modified ACV-BGKM scheme is a neg­
ligible 1/qN where q is the ℓ bit prime number and N 
is the maximum number of users. Therefore, it follows 
that ǫ must be negligible. 

5.4 Performance 

We now discuss the efficiency of the threshold AB­
GKM with respect to computational costs and required 
bandwidth for rekeying. 
For any Usri in the group deriving the shared group 

key requires: 
�d 

Ni hashing operations (evaluations i=1 
of H(·)), where Ni is the maximum number of users 
having attri; and d inner product computations vi · ACVi 

of two (2Ni)-dimensional Fq-vectors and the Lagrange 
interpolation O(m log2 m), where m = |A|. Therefore, the 
overall computational complexity is O(dn + m log2 m). 
Notice that the inner product computations are indepen­
dent and can be parallelized to improve performance. 
For every rekeying phase, for each attri, Svr needs to 

form a matrix Ai by performing N2 hashing operations, i 

and then solve a linear system of size Ni×(2Ni). Solving 
the linear system is the most costly operation as Ni gets 
large for computation on Svr; it requires O(

�m 3)i=1 n
field operations in Fq . 
When a rekeying process takes place, the new infor­

mation to be broadcast is PIi = (ACVi, (z1, . . . , zNi )), 
i = 1, 2, · · · ,m, where ACVi is a vector consisting of 
(2Ni) elements in Fq , and without loss of generality we 
can pick zi to be strings with a fixed length. This gives 
an overall communication complexity O(

�m
i=1 n). 

For a group of maximum N users, in the worst case, 
the threshold AB-GKM only requires each Usr to store 
(O(m)) secrets, one secret per attribute that Usr possesses 
and Svr to keep track of all O(nm) secrets. 

6 SCHEME 3: ACCESS TREE AB-GKM 
In the inline AB-GKM scheme, the policy P is em­
bedded into the BGKM scheme itself. As discussed in 
Section 5, while this approach works for many different 
types of policies, such an approach is not able to effi­
ciently support threshold access control policies. Scheme 
2, threshold AB-GKM, on the other hand, is able to 
efficiently support threshold policies, but it is unable 
to support other policies. In order to support more 
expressive policies, we extend the threshold AB-GKM 
scheme. Like threshold AB-GKM, instead of embedding 
P in the BGKM scheme, we construct a separate BGKM 
instance for each attribute. Then, we embed P in an 
access structure T . T is a tree with the internal nodes 
representing threshold gates and the leaves representing 
attributes. The construction of T is similar to that of the 
approach by Goyal et al. [3]. However, unlike Goyal et 
al.’s approach, the goal of our construction is to derive 
the group key for the users whose attributes satisfy the 
access structure T . 

TABLE 2
 
Access tree functions
 

Function Description 
index(x) Returns the index of node x 
parent(x) Returns the parent node of node x 
attr(x) Returns the index of the attribute 

associated with a leaf node x 
qx The polynomial assigned to node x 
sat(Tx, α) Returns 1 if the set of attributes α 

satisfies Tx, the subtree rooted at 
node x, and 0 otherwise 

6.1 Access Tree 

Let T be a tree representing an access structure. Each 
internal node of the tree represents a threshold gate. 
A threshold gate is described by its child nodes and a 
threshold value. If nx is the number of children of a node 
x and tx is its threshold value, then 0 < tx ≤ nx. Notice 
that when tx = 1, the threshold gate is an OR gate and 
when tx = nx, it is an AND gate. Each leaf node x of the 
tree is described by an attribute, a corresponding BGKM 
instance and a threshold value tx = 1. The children of 
each node x are indexed from 1 to nx. 

We define the functions in Table 2 in order to construct 
our scheme. All the functions except sat are straightfor­
ward to implement. A brief description of sat follows: 
The function sat(Tx, α) works as a recursive function. 

If x is a leaf node, it returns 1, provided that the attribute 
associated with x is in the set of attributes α and 0 
otherwise. If x is an internal node, if at least tx child 
nodes of x return 1, then sat(Tx, α) returns 1 and 0 
otherwise. 

6.2 Our Construction 

The access tree AB-GKM scheme consists of five algo­
rithms: 
Setup(ℓ): Svr initializes the parameters of the underlying 
modified ACV-BGKM scheme: the prime number q, the 
maximum group size N (≥ n), the cryptographic hash 
function H , the key space KS , the secret space SS , the 
set of issued secrets S, the user-attribute matrix UA and 
the universe of attributes A = {attr1, attr2, · · · , attrm}. 

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq 

and a set, Q of elements in Fq : 

x − j
Δi,Q(x) = 

I 
. 

i− j
j∈Q,j #=i 

SecGen(γi): Taking γi, the attribute set of Usri, as input, 
for each attribute attrj ∈ γi, where γi ⊂ A, Svr invokes 
SecGen() of the modified ACV-BGKM scheme to obtain 
the random secret si,j . It returns βi, the set of secrets for 
all the attributes in γi. 
KeyGen(P): Svr transforms the policy P into an access 
tree T . The algorithm outputs the public information 
which a user can use to derive the group key if and 
only if the user’s attributes satisfy the access tree T built 
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for the policy P. The algorithm constructs the public 
information as follows. 

For each user Usri having the intermediate set of 
keys Ki = {ki,j |1 ≤ j ≤ m}, where ki,j represents 
the intermediate key for Usri and attrj , the following 
construction is performed. For each attribute attri, there 
is a leaf node in T . The construction of the tree is 
performed top-down. Each node x in the tree is assigned 
a polynomial qx. The degree dx of the polynomial qx is 
set to tx − 1, that is, one less than the threshold value of 
the node. For the root node r, qr(0) is set to the group key 
k and dr other points are chosen uniformly at random so 
that qr is a unique polynomial of degree dr fully defined 
through Lagrange interpolation. For any other node x, 
qx(0) is set to qparent(x)(index(x)) and dx other points 
are chosen uniformly at random to uniquely define qx. 
For each leaf node x corresponding to a unique attribute 
attrj , qx(0) is set to qparent(x)(1) and ki,j = qx(0). 

At the end of the above computation, we have all the 
sets of intermediate keys K = {Ki|Usri, 1 ≤ i ≤ N}. 
For each leaf node x, the modified BGKM algorithm 
KeyGen(Sx, Kx), where Sx is the set of secrets cor­
responding to the attribute associated with the node 
x and Kx = {ki,j |1 ≤ i ≤ N, attrj}, j = attr(x), 
is invoked to generate public information tuple PIx. 
We denote the set of all the public information tuples 
PI = {PIj |attrj , 1 ≤ j ≤ m}. 

KeyDer(βi, PI): Given βi, a set of secret values corre­
sponding to the attributes of Usri, and the set of public 
information tuples PI, it outputs the group key k. 

The key derivation is a recursive procedure that takes 
βi and PI to derive k bottom-up. Note that a user 
can obtain the key if and only if its attributes satisfy 
the access tree T , i.e., sat(Tr, βi) = 1. The high-level 
description of the key derivation is as follows. 

For each leaf node x corresponding to the attribute 
with the user’s secret value sx ∈ βi, the user derives 
the intermediate key kx using the underlying modified 
BGKM scheme KeyDer(sx, P Ix). Using Lagrange inter­
polation, the user recursively derives the intermediate 
key kx for each internal ancestor node x until the root 
node r is reached and kr = k. Notice that since interme­
diate keys are tied to unique polynomials, users cannot 
collude to derive the group key k if they are unable to 
derive it individually. A detailed description follows. 

If x is a leaf node, it returns an empty value ⊥ if 
attr(x) �∈ βi, otherwise it returns the key kx = vx · ACVx, 
where vx is the key derivation vector corresponding to 
the attribute attrattr(x) and ACVx the access control vector 
in PIx. 

If x is an internal node, it returns an empty value ⊥ if 
the number of children nodes having a non-empty key 
is less than tx, otherwise it returns kx as follows: 

Let the set Q contain the indices of tx children nodes x 

having non-empty keys {ki|i ∈ Q }.x

y − i 
Δi,Q

x 
(y) = 

I 
j − i 

i∈Q ,i#=j 

qx(y) = 
L x 

kiΔi,Q
x 
(y) 

i∈Q
x 

kx = qx(0). 

The above computation is performed recursively until 
the root node is reached. If Usri satisfies T , Usri gets 
k = qr(0), where r is the root node. Otherwise, Usri gets 
an empty value ⊥. 
Update(P) The group members change due to the similar 
reasons mentioned for the Update algorithm in Sec­
tion 4.1. In such a situation, a new symmetric group 
key k ′ is selected and KeyGen(P) is invoked to generate 
the set of new public information tuples PI’. Like the 
previous two schemes, the secrets shared with existing 
users are not affected by the group change. 

6.3 Security 

If an unbounded adversary can break our access tree AB-
GKM scheme, a simulator can be constructed to break 
the modified ACV-BGKM scheme. Like the previous 
scheme, we only give a high-level detail of the reduction 
based proof. 

Proof: Suppose that an unbounded adversary A 
using a set of attributes α as the challenge set that 
does not satisfy the access tree T breaks our scheme 
in the random oracle model with advantage at most 
ǫ. Let the root node of T be r and the group key 
k = qr(0). Notice that since A does not satisfy T and 
qr(x) a tr-out-of-nr threshold scheme, which represents 
any type of threshold node, A satisfies no more than 
tr − 1 subtrees rooted at children of r out of the nr 

subtrees. By inference, it is easy to see that A does not 
satisfy at least one leaf node. 
The challenger constructs modified ACV-BGKM in­

stances for each of the attributes and gives them to B. A 
obtains secrets for each of the attributes in α. B sends the 
public information tuples and the access tree T to A. No­
tice that A can easily derive the keys for any attribute in 
α, but it can derive the keys for any other attribute only 
with an advantage of ǫ. According to the assumption, A 
does not satisfy at least one attribute required to satisfy 
T . Let that attribute be attrx. A derives kx from PIx 
corresponding to one such unsatisfied leaf node with 
advantage ǫ. Therefore, A derives the group key k with 
an advantage of at most ǫ. 

Like the proof in Section 5, A derives the group key 
k, after executing the phase 1 of the security game as 
many times and give k to B. Now, B works downwards 
T to recover the keys for nodes originally unsatisfied by 
A using Lagrange interpolation. For example, using k 
and tr − 1, B obtains the key ktr for the t

th child node r 

of r. Finally, B obtains the key kx for an unsatisfied 
leaf node x corresponding to attrx. In other words, it 
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allows B to break the modified ACV-BGKM scheme to 
recover the key kx from the public information tuple PIx 
without the knowledge of the secret sx. As mentioned 
earlier, the probability of breaking the modified ACV­
BGKM scheme by applying the KeyDer algorithm is a 
negligible 1/qN where q is the ℓ bit prime number and N 
is the maximum number of users. Therefore, it follows 
that ǫ must be negligible. 

6.4 Performance 

We now discuss the efficiency of access tree AB-GKM 
with respect to computational costs and required band­
width for rekeying. 
For any Usri in the group, deriving the shared group 

key requires: 
�d 

Ni hashing operations (evaluations i=1 
of H(·)), where d = |βi|, Ni is the maximum num­
ber of users having attri, and d inner product compu­
tations vi · ACVi of two (2Ni)-dimensional Fq-vectors 
and M Lagrange interpolations O(Mm log2 m), where 
M is equal to the number of internal nodes in T and 
m = |A|. Therefore, the overall computational complex­
ity is O(dn+ Mm log2 m). Notice that the inner product 
computations are independent and can be parallelized 
to improve performance. 
The cost of rekeying, communication and storage are 

comparable to those of the threshold scheme presented 
in Section 5. 

7 EXAMPLE APPLICATION 

Among other applications, fine-grained access control 
in a group setting using broadcast encryption is an 
important application of the AB-GKM schemes. We illus­
trate the access-tree AB-GKM scheme using a healthcare 
scenario [29], [6]. We refer the reader to our technical 
report [28] for more examples. A hospital (Svr) sup­
ports fine-grained access control on electronic health 
records (EHRs) [30], [31] by encrypting and making 
the encrypted records available to hospital employees 
(Usrs). Typical hospital users include employees playing 
different roles such as receptionist, cashier, doctor, nurse, 
pharmacist, system administrator and non-employees 
such as patients. An EHR document is divided into sub-
documents including BillingInfo, ContactInfo, Medica­
tion, PhysicalExam, LabReports and so on. In accordance 
with regulations such as health insurance portability and 
accountability act (HIPAA), the hospital policies specify 
which users can access which subdocument(s). A cashier, 
for example, need not have access to data in EHRs except 
for the BillingInfo, while a doctor or a nurse need not 
have access to BillingInfo. These policies can be based on 
the content of EHRs itself. An example of such policies is 
that “information about a patient with cancer can only 
be accessed by the primary doctor of the patient”. In 
addition, patients define their own privacy policies to 
protect their EHRs. For example, a patient’s policy may 
specify that “only the doctors and nurses who support 
her insurance plan can view her EHR”. 

In order to support content-based access control, the 
hospital maintains some associations among users and 
data. Table 3 shows the insurance plans supported by 
each doctor and nurse, identified by the pseudonym 
“Employee ID”. 

TABLE 3
 
Insurance Plans Supported by Doctors/Nurses
 

EmployeeID Role/level Insurance Plan(s) 
emp

1 doctor MedB, ACME 
emp

2 doctor ACME 
emp

3 nurse/junior ACME 
emp

4 nurse/senior MedA 
emp

5 nurse/senior MedC 
emp

6 doctor MedA 
emp

7 doctor MedB, ACME 
emp

8 nurse/senior MedA 
emp

9 nurse/senior MedA, MedB, ACME 

The hospital runs Setup algorithm to initialize system 
parameters and issues secrets to employees by running 
the SecGen algorithm. Table 4 shows the content of the 
user attribute matrix UA that the hospital maintains. 
(Small numbers are used for illustrative purposes.) 

TABLE 4
 
User Attribute Matrix
 

Emp ID doctor nurse senior junior MedA MedB MedC ACME 
emp1 100 ⊥ ⊥ ⊥ ⊥ 111 ⊥ 102 
emp2 120 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 105 
emp3 ⊥ 106 ⊥ 120 ⊥ ⊥ ⊥ 121 
emp4 ⊥ 103 150 ⊥ 175 ⊥ ⊥ ⊥ 
emp5 ⊥ 133 151 ⊥ ⊥ ⊥ 161 ⊥ 
emp6 129 ⊥ ⊥ ⊥ 141 ⊥ ⊥ ⊥ 
emp7 119 ⊥ ⊥ ⊥ ⊥ 133 ⊥ 137 
emp8 ⊥ 143 152 ⊥ 115 ⊥ ⊥ ⊥ 
emp9 ⊥ 109 156 ⊥ 117 119 ⊥ 124 

Now we illustrate the use of the access tree AB-GKM 
scheme. Consider the following policy specification on 
the Medication subdocument of the EHR. “A senior 
nurse supporting at least two insurance plans can access 
Medication of any patient”. In order to implement this 
access control policy, we need to consider attributes role, 
level and insurance plan. The access control policy looks 
as follows: 

P = (“role = nurse” ∧ “level = senior” ∧ “2-out-of­
{MedA, MedB, MedC, ACME}”) 

TABLE 5
 
List of employees satisfying each insurance plan
 

Attribute Employee IDs 
MedA emp

4
, emp

6
, emp

8
, emp

9 
MedB emp

1
, emp

7
, emp

9 
MedC emp

5 
ACME emp

1
, emp

2
, emp

3
, emp

7
, emp

9 

In addition to Table 5 containing the list of employees 
satisfying insurance plans, the hospital maintains the list 
of employees satisfying the attributes nurse and senior 
as shown in Table 6. 
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TABLE 6 TABLE 7
 
List of employees satisfying attributes Average Time for CP-ABE algorithms
 

Attribute Employee IDs 
nurse emp

3
, emp

4
, emp

5
, emp

8
, emp

9 
senior emp

4
, emp

5
, emp

8
, emp

9 

Algorithm Time (ms) 
Setup 34.395 
Key generation 26.725 
Encryption 24.453 
Decryption 13.415 

The above policy can be represented using an access 
tree with two internal nodes and six leaf nodes. The 
root node is an AND gate and has three children. The 
first and second children of the root node represent the 
attributes nurse and senior, respectively, and the third 
child of the root node is a 2-out-of-4 threshold gate which 
has four children representing the four insurance plans. 
The hospital executes the KeyGen algorithm to gen­

erate six PI tuples and encrypts the Medication subdoc­
uments with the group symmetric key k: 

PIMedA = (ACVMedA, (z1, z2, z3, z4)) 

PIMedB = (ACVMedB , (z5, z6, z7)) 

PIMedC = (ACVMedC , (z8)) 

PIACME = (ACVACME , (z9, z10, z11, z12, z13)) 

PInurse = (ACVnurse, (z14, z15, z16, z17, z18)) 

PIsenior = (ACVsenior, (z19, z20, z21, z22)) 

Expressive access control. Notice that only one employee, 
emp9, can derive the group key k using KeyDer algo­
rithm to decrypt Medication subdocuments. 
Collusion resistance. Notice that emp4 supports MedA 
and emp5 supports MedC and both of them are senior 
nurses. It may appear that these two employees can 
collude to derive the group key k. Since, in this particular 
example, the access tree AB-GKM scheme associates each 
user with two unique polynomials, one for the AND 
gate and another for the threshold gate, none of them 
individually satisfies the access tree and KeyDer results 
in an incorrect key. 
Handling user dynamics. Assume that emp4 starts to sup­
port the insurance plan ACME in addition to MedA. The 
hospital re-generates the public information by adding 
emp4 to the calculation of PIACME and associating a 
new group key k ′ . Now emp4 is able to derive k 

′ using 
KeyDer as its attributes satisfy the access tree. Notice 
that the change in the user attributes does not affect 
the secret information each existing employees have. A 
similar approach is taken when one or more of these 
attributes are revoked from an existing employee. It 
should be noted that, like the first two schemes, this 
scheme has the added flexibility to support changes to 
the access tree by requiring only changes to the public 
information. 

8 EXPERIMENTAL RESULTS 

In this section we provide experimental results for the 
underlying optimized ACV-BGKM scheme used with all 

three AB-GKM schemes presented earlier. We compare 
our results with CP-ABE scheme with comparable secu­
rity parameters. 

The experiments were performed on a machine run­
ning GNU/Linux kernel version 2.6.32 with an Intel R@ 
CoreTM 2 Duo CPU E8400 3.00GHz and 3.2 Gbytes 
memory. Only one processor was used for computation. 
Our prototype system is implemented in C/C++. We use 
V. Shoup’s NTL library [32] version 5.4.2 for finite field 
arithmetic, and SHA-1 and AES-128 implementations of 
OpenSSL [33] version 1.0.0d for cryptographic hashing 
and symmetric key encryption. We use Bethencourt et. 
al.’s cpabe [34] library to gather experimental results for 
CP-ABE. The cpabe library uses PBC library [35] for 
pairing based cryptography. 

We implemented the ACV-BGKM scheme with subset 
cover optimization. We utilized the complete subset 
algorithm introduced by Naor et al. [13] as the subset 
cover. All finite field arithmetic operations in ACV­
BGKM scheme are performed in an 512-bit prime field. 
We used comparable and efficient pairing parameters for 
CP-ABE. The size of the base finite field is set to the 512­
bit prime number 
87807107996633125224377819847540498158068831994 
14208211028653399266475630880222957078625179422 
66222142315585876958231745927771336731748132492 
5129998224791 
and the group order to the 160-bit number 
730750818665451621361119245571504901405976559617. 

Following the well-known security practice, we gen­
erate symmetric keys and use them for encrypting doc­
uments. Then we encrypt such encryption keys with 
either the ACV-BGKM generated symmetric keys or 
the CP-ABE generated public keys. Therefore, in the 
experiments we measure the time to encrypt and decrypt 
the document encryption keys only. For all the ACV­
BGKM experiments, we assume that 5% of users have 
left the group after executing the setup. 

First we give experimental results for the most sim­
plest case where a single attribute condition is consid-
ered. Then we provide, experimental results for multiple 
attribute conditions. 

Table 7 shows the average time required to execute 
setup, key generation, encryption and decryption algo­
rithms of CP-ABE scheme for one attribute condition. 

Figure 1 reports the average time required to execute 
the key generation algorithm of ACV-BGKM and CP­
ABE with different group sizes. In both ACV-BGKM 
and CP-ABE the time increases linearly with the group 
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Fig. 1. Average Key Generation Time for Different Group 
Sizes 

size. However, ACV-BGKM is much more efficient as 
it does not involve any expensive pairing operations. It 
only uses efficient hashing and binary operations over a 
finite field. Further, the subset cover technique applied 
to ACV-BGKM reduces the computational complexity of 
the underlying scheme. Without the subset cover opti­
mization, ACV-BGKM has a non-linear computational 
complexity and becomes inefficient for large groups. We 
omit the comparison experimental result due to lack of 
space.
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Fig. 3. Average Key Generation Time for Varying Attribute 
Counts 

the ACV-BGKM key generation is much more efficient 
than the CP-ABE key generation. 
As can be seen from the experiments, our constructs 

are more efficient in handling scenarios where the key 
generation algorithm has to be executed frequently due 
to changes in user dynamics. 

9	 CONCLUSION 

In this paper, we have presented three attribute based 
group key management (AB-GKM) schemes: inline AB-
GKM, threshold AB-GKM, and access tree AB-GKM. In 
all our schemes, when the group changes, the rekeying ACV-BGKM encryption 

ACV-BGKM decryption 
CP-ABE encryption 
CP-ABE decryption 
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15 the need of establishing private communication chan­
10

nels. Our schemes provide the same advantage when 
5

the group membership policies change. We have also 
Group Size shown that our schemes are resistant to collusion attacks. 

Our constructions are based on a provably secure ACV­

0

Fig. 2. Average Encryption/Decryption Time for Different 
BGKM scheme and Shamir’s threshold scheme. Our 

Group Sizes 
experimental results show that our underlying construc­
tion is more efficient than the popular CP-ABE scheme. 

Figure 2 reports the average time required to perform 
encryption and decryption in ACV-BGKM and CP-ABE 
schemes for one attribute condition with different group 
sizes. The decryption time of ACV-BGKM is taken as 
the time to derive the key as well as to decrypt the 
encryption key. The encryption and decryption times of 
CP-ABE remain constant whereas the decryption time of 
ACV-BGKM increases linearly with the group size. As 
the group size increases, the key derivation algorithm 
of ACV-BGKM requires to spend more time to build 
larger KEVs. The encryption time of ACV-BGKM is 
negligible and remains constant as it involves an efficient 
symmetric encryption only. The average encryption time 
of ACV-BGKM is 8.8 microseconds (as these times are 
very small, the line plotting them is very close to zero 
in the graph in Figure 2 and thus overlaps with the x-
axis). It should be noted that if one caches the KEVs, the 
decryption time of ACV-BGKM also becomes negligible 
as it involves only modular multiplications. 
Figure 3 reports the average time required to execute 

the key generation algorithm with varying number of 
attribute conditions with the group size set to 1000. The 
time of both techniques increases linearly with the num­
ber of attribute conditions. However, similar to Figure 1,
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