
CERIAS Tech Report 2012-05
Attribute Based Group Key Management

 by Mohamed Nabeel, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

1

Attribute Based Group Key Management

Mohamed Nabeel, Student Member, IEEE, and Elisa Bertino, Fellow, IEEE

Abstract—Attribute based systems enable fine-grained access control among a group of users each identified by a set of attributes.
Secure collaborative applications need such flexible attribute based systems for managing and distributing group keys. However, current
group key management schemes are not well designed to manage group keys based on the attributes of the group members. In this
paper, we propose novel key management schemes that allow users whose attributes satisfy a certain access control policy to derive
the group key. Our schemes efficiently support rekeying operations when the group changes due to joins or leaves of group members.
During a rekey operation, the private information issued to existing members remains unaffected and only the public information is
updated to change the group key. Our schemes are expressive; they are able to support any monotonic access control policy over a set
of attributes. Our schemes are resistant to collusion attacks; group members are unable to pool their attributes and derive the group
key which they cannot derive individually. Experimental results show that our underlying constructs are efficient and practical.

Index Terms—Broadcast group key management, attribute based policies, secret sharing

✦

1 INTRODUCTION

New application domains have pushed novel paradigms
and tools for supporting collaboration among (possi­
bly very dynamic) user groups (see for example the
notion of group-centric information sharing [1]). An
important requirement in collaborative applications is
to support operations for user group memberships, like
join and leave, based on identity attributes (attributes,
for short) of users; we refer to this requirement as
attribute-based group dynamics. As today enterprises and
applications are adopting identity management solu­
tions, it is crucial that these solutions be leveraged on
for managing groups. Typically, a user would be auto­
matically assigned (de-assigned) a group membership
based on whether his/her attributes satisfy (cease to
satisfy) certain group membership conditions. Another
critical requirement is to provide mechanisms for group
key management (GKM), as very often the goal of a
group is to share data. Thus data must be encrypted with
keys made available only to the members of the group.
The management of these keys, which includes selecting,
distributing, storing and updating keys, should directly
and effectively support the attribute-based group dy­
namics and thus requires an attribute-based group key
management (AB-GKM) scheme, by which group keys are
assigned (or de-assigned) to users in a group based on
their identity attributes. This scheme recalls the notion
of attribute-based encryption (ABE) [2], [3], [4]; however,
as we discuss later on, ABE has several shortcomings
when applied to GKM. Therefore, a different approach
is needed.
A challenging well known problem in GKM is how

to efficiently handle group dynamics, i.e., a new user

•	 M. Nabeel and E. Bertino are with the Department of Computer Science,
Purdue University, West Lafaytte, IN, 47907.
E-mail: nabeel@cs.purdue.edu

joining or an existing group member leaving. When the
group changes, a new group key must be shared with the
existing members, so that a new group member cannot
access the data transmitted before she joined (forward
secrecy) and a user who left the group cannot access
the data transmitted after she left (backward secrecy).
The process of issuing a new key is called rekeying or
update. Another challenging problem is to defend against
collusion attacks by which a set of colluding fraudulent
users are able to obtain group keys which they are not
allowed to obtain individually.

In a traditional GKM scheme, when the group
changes, the private information given to all or some
existing group members must be changed which requires
establishing private communication channels. Establish­
ing such channels is a major shortcoming especially
for highly dynamic groups. Recently proposed broad­
cast GKM (BGKM) schemes [5], [6] have addressed
such shortcoming. BGKM schemes allow one to perform
rekeying operations by only updating some public in­
formation without affecting private information existing
group members possess. However, BGKM schemes do
not support group membership policies over a set of
attributes. In their basic form, they can only support
1-out-of-n threshold policies by which a group member
possessing 1 attribute out of the possible n attributes is
able to derive the group key. In this paper we develop
novel expressive AB-GKM schemes which allow one to
express any threshold or monotonic 1 conditions over a
set of identity attributes.

A possible approach to construct an AB-GKM scheme
is to utilize attribute-based encryption (ABE) primi­
tives [2], [3], [4]. Such an approach would work as
follows. A key generation server issues each group
member a private key (a set of secret values) based on

1. Monotone formulas are Boolean formulas that contain only con­
junction and disjunction connectives, but no negation.

mailto:nabeel@cs.purdue.edu

2

the attributes and the group membership policies. The
group key, typically a symmetric key, is then encrypted
under a set of attributes using the ABE encryption
algorithm and broadcast to all the group members.
The group members whose attributes satisfy the group
membership policy can obtain the group key by using
the ABE decryption primitive. One can use such an
approach to implement an expressive collusion-resistant
AB-GKM scheme. However, such an approach suffers
from some major drawbacks. Whenever the group dy­
namic changes, the rekeying operation requires to up­
date the private keys given to existing members in
order to provide backward/forward secrecy. This in turn
requires establishing private communication channels
with each group member which is not desirable in a
large group setting. Further, in applications involving
stateless members where it is not possible to update the
initially given private keys and the only way to revoke a
member is to exclude it from the public information, an
ABE based approach does not work. Another limitation
is that whenever the group membership policy changes,
new private keys must be re-issued to members of the
group. Our constructions address these shortcomings.
Our AB-GKM schemes are able to support a large

variety of conditions over a set of attributes. When the
group changes, the rekeying operations do not affect
the private information of existing group members and
thus our schemes eliminate the need of establishing
private communication channels. Our schemes provide
the same advantage when the group membership con­
ditions change. Furthermore, the group key derivation
is very efficient as it only requires a simple vector inner
product and/or polynomial interpolation. Additionally,
our schemes are resistant to collusion attacks. Multiple
group members are unable to combine their private
information in a useful way to derive a group key which
they cannot derive individually.
Our AB-GKM constructions are based on an opti­

mized version of the ACV-BGKM (Access Control Vector
BGKM) scheme [6], a provably secure BGKM scheme,
and Shamir’s threshold scheme [7]. In this paper, we
construct three AB-GKM schemes each of which is
more suitable over others under different scenarios.
The first construction, inline AB-GKM, is based on the
ACV-BGKM scheme. Inline AB-GKM supports arbitrary
monotonic policies over a set of attributes. In other
words, a user whose attributes satisfy the group policies
is able to derive the symmetric group key. However,
inline AB-GKM does not efficiently support d-out-of-m
(d ≤ m) attribute threshold policies over m attributes.
The second construction, threshold AB-GKM, addresses
this requirement. The third construction, access tree AB­
GKM, is an extension of threshold AB-GKM and is the
most expressive scheme. It efficiently supports arbitrary
policies. The second and third schemes are constructed
by using a modified version of ACV-BGKM, also pro­
posed in this paper.
The reminder of the paper is organized as follows:

TABLE 1

Acronyms

Acronym Description
GKM Group Key Management
BGKM Broadcast GKM
ABE Attribute Based Encryption
CP-ABE Ciphertext Policy ABE
KP-ABE Key Policy ABE
ACV Access Control Vector
KEV Key Extraction Vector
ABAC Attribute Based Access Control
AB-GKM Attribute Based GKM
PI Public Information tuple
UA User-Attribute matrix

Section 2 describes related work. Section 3 summarizes
the ACV-BGKM scheme [6]. Sections 4, 5, 6 present
the construction of the inline AB-GKM, threshold AB­
GKM, and access tree AB-GKM schemes, respectively,
and analyze their security and performance. Section 7
shows an example application using the access tree AB­
GKM scheme. Section 8 provides experimental results of
our underlying optimized ACV-BGKM scheme used in
all three schemes against the CP-ABE (ciphertext policy
attribute based encryption) scheme. Section 9 concludes
the paper. Table 1 lists, for the convenience of the reader,
the acronyms used in the paper.

2 RELATED WORK

Group Key Management (GKM): Early approaches to
GKM rely on a key server to share a secret with users
to distribute decryption keys [8], [9]. Such approaches
do not efficiently handle join and leave operations, as
in order to achieve forward and backward security, they
require sending O(n) private rekey information, where
n is the number of users. Hierarchical key manage­
ment schemes [10], [11] were introduced to reduce this
overhead. However, they only reduce the size of the
rekey information to O(log n), and furthermore each
user needs to manage at worst O(log n) hierarchically
organized redundant keys.
Broadcast GKM (BGKM) schemes perform the rekey

operation with only one broadcast without affecting the
secret information issued to existing users. Approaches
have also been proposed to make the rekey operation
a one-off process [12], [5]. However, these schemes are
not formally proven to be secure. Recently Shang et.
al. introduced the first provably secure BGKM scheme
called ACV-BGKM [6]. Existing BGKM schemes require
sending O(n) public information when rekeying. We
improve the complexity by utilizing subset-cover tech­
niques [13], [14]. Such improved BGKM schemes effi­
ciently handle group dynamics and lay the foundation
for AB-GKM. However such schemes cannot directly
handle expressive conditions against attributes.
Attribute-Based Encryption (ABE) and GKM: In an
ABE system [2], the plaintext is encrypted with a set
of attributes. The key generation server, which possesses

3

the master key, issues different private keys to users after
authenticating the attributes they possess. Thus, these
private keys are associated with the set of attributes each
user possesses. In its basic form, a user can decrypt a
ciphertext if and only if there is a match between the
attributes of the ciphertext and the user’s key. The initial
ABE system was limited to only threshold policies by
which there should be at least k out of n attributes
common between the attributes used to encrypt the
plaintext and the attributes users possess. Since the
definition of the initial threshold scheme, a few variants
have been introduced to provide more expressive ABE
systems. Goyal et al. [3] introduced the idea of key-
policy ABE (KP-ABE) systems and Bethencourt et al. [4]
introduced the idea of CP-ABE systems. Even though
these constructs are expressive and provably secure, they
are unable to efficiently support group management,
and especially to provide backward secrecy when a user
leaves the group (i.e. attribute revocation) and to provide
forward secrecy when a new user joins the group. These
schemes require sending O(n) private rekey messages
in order to handle group management operations. The
proposers of some of these schemes have suggested
using an expiration attribute along with other attributes
for attribute revocation. However, such a solution is
not suitable for highly dynamic groups where joins
and leaves are frequent. Traynor et al. [15] propose to
improve the performance of ABE by grouping users
and assigning a unique group attribute to each group.
However, their approach only considers one attribute
per user and does not support membership policy based
group key management.
Despite the limitations of ABE schemes with respect

to revocation, flat table based GKM schemes 2 based
on ABE have been proposed [16], [17]. These schemes
further suffer from the inherent limited expressibility
and scalability of flat table based GKM [18], [19].
GKM Schemes for Selective Dissemination Systems:
Selective dissemination or broadcast encryption systems
allow one to encrypt a message once and broadcast it
to all the users in a group, but only a subset of users
who have the correct key can decrypt the message.
The database and security communities have carried out
extensive research concerning techniques for the selec­
tive dissemination of documents based on access control
policies with their own GKM schemes [20], [21], [22],
[23], [24]. In such approaches, users are able to decrypt
the subdocuments, that is, portions of documents, for
which they have the keys. However, such approaches
require all [21] or some [22] keys be distributed in ad­
vance during user registration phase. This requirement
makes it difficult to assure forward and backward key
secrecy when user groups are dynamic with frequent join
and leave operations. Further, the rekey operation is not
transparent, thus shifting the burden of acquiring new

2. A flat table GKM scheme assigns each member a unique n-bit
string. The group key is managed through a set of auxiliary keys which
are tied to the unique strings given to the group members.

keys on existing users when others leave or join. Thus
the proposed GKM schemes are not efficient. In contrast,
our GKM schemes make rekey transparent to users by
not distributing actual keys.

3 BACKGROUND

In this section, we provide an overview of the Broadcast
Group Key Management (BGKM) scheme in general and
a description of a provably secure BGKM scheme called
ACV-BGKM (Access Control Vector BGKM) proposed
by Shang et al. [6], [25] in order for readers to better
understand our constructions. It should be noted that
we use ACV-BGKM in Section 4 and a modified version
of ACV-BGKM in our constructions in Sections 5, and 6.
BGKM schemes are a special type of GKM scheme

where the rekey operation is performed with a sin­
gle broadcast without using private communication
channels. Unlike conventional GKM schemes, BGKM
schemes do not give users the private keys. Instead users
are given a secret which is combined with public infor­
mation to obtain the actual private keys. Such schemes
have the advantage to require a private communication
only once for the initial secret sharing. The subsequent
rekeying operations are performed using one broadcast
message. Further, in such schemes achieving forward
and backward secrecy requires only to change the public
information and does not affect the secret shares given
to existing users. In general, a BGKM scheme consists of
the following five algorithms:
Setup(ℓ): It initializes the BGKM scheme using a security
parameter ℓ. It also initializes the set of used secrets S,
the secret space SS, and the key space KS.
SecGen(): It picks a random bit string s /∈ S uniformly
at random from SS , adds s to S and outputs s.
KeyGen(S): It picks a group key k uniformly at random
from KS and outputs the public information tuple PI
computed from the secrets in S and the group key k.
KeyDer(s, PI): It takes the user’s secret s and the public
information PI to output the group key. The derived
group key is equal to k if and only if s ∈ S.
Update(S): Whenever the set S changes, a new group
key k ′ is generated. Depending on the construction, it ei­
ther executes the KeyGen algorithm again or incremen­
tally updates the output of the last KeyGen algorithm.

Using the above abstract algorithms, we now provide
an overview of the construction of the ACV-BGKM
scheme under a client-server architecture. The ACV-
BGKM scheme satisfies the requirements of minimal trust,
key indistinguishability, key independence, forward secrecy,
backward secrecy and collusion resistance [26]. The ACV­
BGKM algorithms are executed by a trusted key server
Svr and a group of users Usri, i = 1, 2, . . . , n.
Setup(ℓ): Svr initializes the following parameters: an ℓ­
bit prime number q, the maximum group size N (≥ n
and N is usually set to n + 1), a cryptographic hash
function H(·) : {0, 1}∗ → Fq , where Fq is a finite field
with q elements, the keyspace KS = Fq , the secret space
SS = {0, 1}ℓ and the set of issued secrets S = ∅.

4

SecGen(): Svr chooses the secret si ∈ SS uniformly at

random for Usri such that si ∈/ S, adds si to S and finally

outputs si.

KeyGen(S): Svr picks a random k ∈ KS as the group key.

Svr chooses N random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ .

Svr creates an n × (N + 1) Fq-matrix


1 a1,1 a1,2 . . . a1,N



1 a2,1 a2,2 . . . a2,N
 

A =


.


,
.
.

 
1 an,1 an,2 . . . an,N

where

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ N, si ∈ S. (1)

Svr then solves for a nonzero (N + 1)-dimensional col­
umn Fq-vector Y such that AY = 0. Note that such
a nonzero Y always exists as the nullspace of matrix
A is nontrivial by construction. Here we require that
Svr chooses Y from the nullspace of A uniformly at
random. Svr constructs an (N+1)-dimensional Fq-vector

TACV = k · e + Y , where e1 = (1, 0, . . . , 0) is a standard 1
basis vector of FN

q
+1 , vT denotes the transpose of vector

v, and k is the chosen group key. The vector ACV
controls the access to the group key k and is called an
access control vector. Svr lets PI = (ACV, (z1, z2, . . . , zN)),
and outputs public PI and private k.
KeyDer(si, PI): Using its secret si and the public in­
formation tuple PI , Usri computes ai,j , 1 ≤ j ≤ N,
as in formula (1) and sets an (N + 1)-dimensional row
Fq-vector vi = (1, ai,1, ai,2, . . . , ai,N). vi is called a Key
Extraction Vector (KEV) and corresponds to a unique
row in the access control matrix A. Usri derives the key
k ′ from the inner product of vi and ACV : k ′ = vi · ACV .
The derived key k ′ is equal to the actual group key k

if and only if si is a valid secret used in the computation
of PI , i.e., si ∈ S.
Update(S): It runs the KeyGen(S) algorithm and outputs

′ the new public information PI and the new group key
k ′ .
The above construction becomes impractical with

large numbers of users since the complexity of the
matrix and the public information is O(n). We proprose
an improved scheme in Section 4.4 while keeping the
underlying scheme unchanged.

4 SCHEME 1: INLINE AB-GKM
Recall that in its basic form, a BGKM scheme can be
considered as a 1-out-of-m AB-GKM scheme. If Usri
possesses the attribute attrj , Svr shares a unique secret
si,j with Usri. Usri is thus able to derive the symmetric
group key if and only if Usri shares at least one secret
with Svr and that secret is included in the computation
of the public information tuple PI . In order for Svr to
revoke Usrj , it only needs to remove the secrets it shares
with Usrj from the computation of PI ; the secrets issued
to other group members are not affected. We extend this
scheme to support arbitrary monotonic policies, Ps, over

a set of attributes. A user is able to derive the symmetric
group key if and only if the set of attributes the user
possesses satisfy P.
As in the basic BGKM scheme, Usri having attrj is

associated with a unique secret value si,j . However,
unlike the basic BGKM scheme, PI is generated by
using the aggregated secrets that are generated com­
bining the secrets issued to users according to P. For
example, if P is a conjunction of two attributes, that is
attrr ∧ attrs, the corresponding secrets si,r and si,s for
each Usri are combined as one aggregated secret si,r||si,s
and PI is computed using these aggregated secrets. By
construction, the aggregated secrets are unique since the
constituent secrets are unique. Any Usri is able to derive
the symmetric group key if and only if Usri has at least
one aggregated secret used to compute PI . Notice that
multiple users cannot collude to create an aggregated
secret which they cannot individually create since si,j ’s
are unique and each aggregated secret is tied to one spe­
cific user. Hence, colluding users cannot derive the group
symmetric key. Now we give a detailed description of
our first AB-GKM scheme, inline AB-GKM.

4.1 Our construction

Inline AB-GKM consists of the following five algorithms:
Setup(ℓ): The Svr initializes the following parameters:
an ℓ-bit prime number q, a cryptographic hash function
H(·) : {0, 1}∗ → Fq , where Fq is a finite field with
q elements, the keyspace KS = Fq , the secret space
SS = {0, 1}ℓ, and the set of issued secrets S = ∅.
The user-attribute matrix UA is initialized with empty
elements and the maximum group size N is decided
in the KeyGen. It defines the universe of attributes
A = {attr1, attr2, · · · , attrm}.
SecGen(γi): For each attribute attrj ∈ γi, where γi ⊂ A
and γi is the attribute set of Usri, the Svr chooses the
secret si,j ∈ SS uniformly at random for Usri such that
si,j ∈/ S, adds si,j to S, sets UA(i, j) = si,j , where UA(i, j)
is the (i, j)th element of the user-attribute matrix UA,
and finally outputs si,j .
KeyGen(P): We first give a high-level description of
the algorithm and then the details. Svr transforms the
policy P to disjunctive normal form (DNF). For each
disjunctive clause of P in DNF, it creates an aggregated
secret (8s) from the secrets corresponding to each of
the attributes in the conjunctive clause. s8 is formed by
concatenation only if secrets exist for all the attributes
in a given row of the user-attribute matrix UA. The
construction creates a unique aggregated secret s8 since
the corresponding secrets are unique. For example, if
the conjunctive clause is attrp ∧ attrq ∧ attrr, for
each row i in UA, the aggregated secret s8i is formed
only if all elements UA(i, p), UA(i, q) and UA(i, r) have
secrets assigned. All the aggregated secrets are added to
the set AS. Finally, Svr invokes algorithm KeyGen(AS)
from the underlying BGKM scheme to output the public
information PI and the symmetric group key k.

http:affected.We

5

Now we give the details of the algorithm. Svr converts
P to DNF as follows

α

P =
a

conjuncti where there are α conjuncts and
i=1

φi

conjuncti =
<

cond(
j
i)
,

j=1

where each conjuncti has φi conditions.
A simple multiplication of clauses (x∧(y∨z) = (x∧y)∨

(x ∧ z)) and then application of the absorption law (x ∨
(x∧y = x)) are sufficient to convert monotone policies to
DNF. Even though there can be an exponential blow up
of clauses during multiplication, it has been shown that
with the application of the absorption law the number
of clauses in the DNF, at the end, is always polynomially
bounded. Svr selects N such that

αL
N ≥ NUi = NU

i=1

3where NUi is the number of users satisfying conjuncti .
Svr creates NU s8i’s and adds them to AS. Svr picks a
random k ∈ KS as the shared group key. Svr chooses N
random bit strings z1, z2, . . . , zN ∈ {0, 1}ℓ . Svr creates an
m × (N + 1) Fq-matrix A such that for 1 ≤ i ≤ NU

=

1 if j = 1

(2) ai,j H(s8i||zj) if 2 ≤ j ≤ N ; s8i ∈ AS

Svr then solves for a nonzero (N + 1)-dimensional col­
umn Fq-vector Y such that AY = 0 and sets

ACV = k · e T + Y, and 1

PI = (ACV, (z1, z2, . . . , zN))

KeyDer(βi, PI): Given βi, the set of secrets for Usri,
it computes the aggregated secret s8. Using s8 and the
public information PI , it computes ai,j , 1 ≤ j ≤ N, as
in formula 2 and sets an (N + 1)-dimensional row Fq ­
vector vi = (1, ai,1, ai,2, . . . , ai,N). Usri derives the group
key k ′ by the inner product of the vectors vi and ACV :
k ′ = vi · ACV . The derived group key k ′ is equal to
the actual group key k if and only if the computed
aggregated secret s8∈ AS.
Update(S): The composition of the user group changes
when one of the following occurs:

• Identity attributes are added or removed resulting
4in the change in S and UA .

• The underlying policy P changes.
When such a change occurs, a new symmetric key k ′

is selected and KeyGen(P) is invoked to generate the
updated public information PI ′ . Notice that the secrets
shared with existing users are not affected by the group

′ change. It outputs the public PI and private k ′ .

3. It should be noted that NU can be reduced to n, the number of
users in the group, by exploiting the relationships between conjuncts
and letting the users know the conjunct, out of the many they satisfy,
they have to use to derive the key. We leave this optimization to keep
the scheme simple.

4. A change in a user attribute is viewed as two events; removing
the existing attribute and adding a new attribute.

4.2 Security

We can easily show that if an unbounded adversary A
can break the inline AB-GKM scheme in the random
oracle model, a simulator S can be constructed to break
the ACV-BGKM scheme.

Definition 1 (Security game for AB-GKM):
Setup The challenger runs the Setup algorithm of AB­
GKM and gives the public parameters to the adversary.
Phase 1 The adversary is allowed to request secrets
for any set of attributes γi and the public information
tuples for a policy satisfying these attributes. The public
information along with the secrets allows the adversary
to derive the private key.
Challenge The adversary declares the set of attributes
γ that it wishes to challenged upon. γ is different from
any of the attribute sets γi that the adversary queried
earlier. The adversary submits two keys k0 and k1. The
challenger flips a random coin b and chooses kb. The
challenger generates public information for a policy P
satisfying γ, but not any γi, using the KeyGen algorithm
and give it to the adversary. The public information
hides the group key kb.
Phase 2 Phase 1 is repeated as many times provided that
the adversary’s attribute set does not satisfy P .
Guess The adversary outputs a guess b ′ of b.

The advantage of an adversary A in this game is
defined as Pr[b ′ = b]− 1/2.
Now we define security under the random oracle

model.

Definition 2 (Security under the random oracle model):
An AB-GKM scheme is secure under the random oracle
model of security if all adversaries have at most a
negligible advantage in the above game.
Shang et al. [6], [25] have shown that the probability

of breaking ACV-BGKM is a negligible 1/q, where q is
the ℓ bit large prime number initialized in Setup. We
capture the hardness of the ACV-BGKM scheme in the
following assumption:

Definition 3 (ACV-BGKM Assumption): No adversary
without any valid secrets in the random oracle model
can break the ACV-BGKM scheme with more than a
negligible probability.
Theorem 1: If an adversary can break the inline AB­

GKM scheme in the random oracle model, then a simu­
lator can be constructed to break the ACV-BGKM scheme
with non-negligible advantage.

Proof: Suppose that there exists an adversary A that
can break our scheme in the random oracle model with
advantage ǫ. We build a simulator B that can break the
ACV-BGKM scheme with the advantage at most ǫ. The
simulation proceeds as follows:
The challenger runs the setup algorithm of ACV­

BGKM and generates secrets for each attributes per user
outside of B’s view. The simulator B runs A. B is given

6

an instance of ACV-BGKM and gives the public param­
eters to A. We assume that all policies are in DNF such
that each conjunctive term has only one attribute. The
intuition behind the assumption is that inline AB-GKM is
an extension of ACV-BGKM to support aggregate secrets
and, therefore, in the absent of aggregate secrets, inline
AB-GKM is equivalent to ACV-BGKM.
Phase 1 A submits sets of attributes γi to B and B sends
the secrets using the ACV-BGKM instance.
Challenge A submits the attribute set γ � γi as the =
challenge and two keys k0 and kb. B flips a random
coin b and chooses kb and then using the ACV-BGKM
instance, it generates the public information for a policy
P that only γ satisfies hiding kb.
Phase 2 A and B repeats Phase 1 as many times provided
A’s attribute sets do not satisfy P .
Guess Using the public information and the information
gathered from the two phases, A outputs a guess b ′ of b.
Notice that the view of A when it is run as a subroutine
of B and when it is run directly with the inline AB­
GKM scheme is identical. In other words, B simulates an
instance of the inline AB-GKM for A using an instance
of the ACV-BGKM scheme. The simulation is trivial as
the aggregate secrets in AB-GKM is the same the secrets
in ACV-BGKM. It should be noted that A does not have
an advantage more than ǫ from the information gather
from the repeated execution of Phase 1 due to the key
indistinguishability and key independence properties of
the ACV-BGKM scheme [25].
It can easily be seen that B has the same advantage of

breaking the ACV-BGKM scheme as A has on the inline
AB-GKM scheme. As per the definitions, B breaks the
ACV-BGKM with Pr[b ′ = b] = 1/2 + ǫ. According to the
assumption on the hardness of the ACV-BGKM scheme
in Theorem 1, it follows that ǫ must be negligible.

4.3 Performance

Now, we discuss the efficiency of inline AB-GKM with
respect to computational costs and required bandwidth
for rekeying.
For any Usri in the group, deriving the shared group

key requires N hashing operations (evaluations of H(·))
and an inner product computation vi · ACV of two
(N + 1)-dimensional Fq-vectors, where N is the max­
imum group size. Therefore the overall computational
complexity is O(n).
For every rekeying operation, Svr needs to form a

matrix A by performingN2 hashing operations, and then
solve a linear system of size N × (N + 1). Solving the
linear system is the most costly operation as N gets large
for computation on Svr. It requires O(n3) field operations
in Fq when the method of Gauss-Jordan elimination [27]
is applied. Experimental results about the ACV-BGKM
scheme [6] have shown that this can be performed in a
short time when N is small.
When a rekeying process takes place, the new informa­

tion to be broadcast is PI = (ACV, (z1, . . . , zN)), where

ACV is a vector consisting of (N+1) elements in Fq , and
without loss of generality we can pick zi to be strings
of fixed length. This gives an overall communication
complexity O(n). An advantage of inline AB-GKM is
that no peer-to-peer private channel is needed for any
persisting group members when rekeying is executed.
Nowadays we generally care less about storage costs

on both Svr and Usrs. Nevertheless, for a group of
maximum N users, in the worst case, inline AB-GKM
only requires each Usr to store (O(|A|)) secrets, one secret
per attribute that Usr possesses, and Svr to keep track
of all O(n|A|) secrets.

4.4 Improving the Complexity using Subset-Cover

The above approach becomes inefficient if each NUi val­
ues are large as the computational and communication
complexities are still proportional to NUi values. We
utilize the result from previous research on broadcast
encryption [13], [14] to improve the complexity. Based
on that, one can make the complexity sub-linear in the
number of users by giving more than one secret during
SecGen for each attribute users possess. The secrets
given to each user overlaps with different subsets of
users. During the KeyGen, Svr identifies the minimum
number of subsets to which all the users belong and
uses one secret per the identified subset. During KeyDer,
a user identifies the subset it belongs to and uses the
corresponding secret to derive the group key. Group
dynamics are handled by making some of the secrets
given to users invalid.
We give a high-level description of the basic subset-

cover approach. In the basic scheme, n users are orga­
nized as the leaves of a balanced binary tree of height
log n. A unique secret is assigned to each vertex in the
tree. Each user is given log n secrets that correspond
to the vertices along the path from its leaf node to
the root node. In order to provide provide backward
secrecy when a single user is revoked, the updated tree
is described by log n subtrees formed after removing all
the vertices along the path from the user leaf node to the
root node. To rekey, Svr executes Update using the log n
secrets corresponding to the roots of these subtrees. Naor
et. al. [13] improve this technique to simultaneously
revoke r users and describe the exiting users using
r log (n/r) subtrees. Since then, there have been many
improvements to the basic scheme. In the remainder of
the paper, in order to maintain the simplicity the SecGen
algorithm generates only one secret per attribute but the
schemes can be trivially modified to use any subset-
cover approach.

5 SCHEME 2: THRESHOLD AB-GKM
Consider now the case of policies by which a user
can derive the symmetric group key k, if it possesses
at least d attributes out of the m attributes associated
with the group. We refer to such policies as threshold
policies. Under the inline AB-GKM scheme presented in

7

Section 4, with such threshold policies the size of the
access control matrix (A) increases exponentially if users
are not informed which attributes to use. Specifically,
to support d-out-of -m, the inline AB-GKM scheme may
require creating a matrix of dimension up to O(nmd)
where n is the number of users in the group. Thus,
the inline AB-GKM scheme is not suitable for threshold
policies. In this section, we construct a new scheme,
threshold AB-GKM, which overcomes this shortcoming.
An initial construction to enforce threshold policies

is to associate each user with a random d − 1 degree
polynomial, q(x), with the restriction that each polyno­
mial has the same value at x = 0 and q(0) = k, where
k is the symmetric group key. For each attribute users
have, they are given a secret value. The secret values
given to a user are tied to its random polynomial q(x).
A user having d or more secrets can perform a Lagrange
interpolation to obtain q(x) and thus the symmetric
group key k = q(0). Since the secrets are tied to random
polynomials, multiple users are unable to combine their
secrets in any way that makes possible collusion attacks.
However, revocation is difficult in this simple approach
and requires re-issuing all the secrets again.
Our approach to address the revocation problem is to

use a layer of indirection between the secrets given to
users and the random polynomials such that revocations
do not require re-issuing all the secrets again. We use
a modified ACV-BGKM construction as the indirection
layer. We cannot directly use the ACV-BGKM construc­
tion since, multiple instances of ACV-BGKM allow col­
lusion attacks in which colluding users can recover
the group key which they cannot obtain individually.
We first show the details of the modified ACV-BGKM
scheme and then present the threshold AB-GKM which
uses the modified ACV-BGKM scheme and Shamir’s
secret sharing scheme.

5.1 Modified ACV-BGKM Scheme

The modified ACV-BGKM works under similar condi­
tions as ACV-BGKM, but instead of giving the same key
k to all the users, the KeyDer algorithm gives each Usri
a different key ki when the public information tuple PI
is combined with their unique secret si.
The algorithms are executed with a trusted key server

Svr and a group of users Usri, i = 1, 2, · · · , n with
the attribute universe A = {attr1, attr2, · · · , attrm}. The
construction is as follows:
Setup(ℓ): Svr initializes the following parameters: an ℓ­
bit prime number q, the maximum group size N (≥ n), a
cryptographic hash function H(·) : {0, 1}∗ → Fq , where
Fq is a finite field with q elements, the key space KS =
Fq , the secret space SS = {0, 1}ℓ and the set of issued
secret tuples S = ∅. Each Usri is given a unique secret
index 1 ≤ i ≤ N .
SecGen(): The Svr chooses the secret si ∈ SS uniformly
at random for Usri such that si is unique among all the
users, adds the secret tuple (i, si) to S, and outputs (i, si).

KeyGen(S, K): Given the set of secret tuples S =
{(i, si)|1 ≤ i ≤ N} and a random set of keys K = {ki|1 ≤
i ≤ N}, it outputs the public information tuple PI which
allows each Usri to derive the key ki using its secret si.
The details follow.

Svr chooses N random bit strings z1, z2, . . . , zN ∈
{0, 1}ℓ and creates an N × 2N Fq-matrix A where for
a given row i, 1 ≤ i ≤ N

1 if i = j

= 0 if 1 ≤ j ≤ N and i = jai,j
H(si||zj) if N < j ≤ 2N

Like in the ACV-BGKM scheme, Svr computes the null
space of A with a set of its N basis vectors, and selects
a vector Y as one of the basis vectors. Svr constructs an
2N -dimensional Fq-vector

N

TACV = (
L

ki · e) + Y, i

i=1

where ei is the i
th standard basis vector of F2N . Notice q

that, unlike ACV-BGKM, a unique key corresponding
to Usri, ki ∈ K is embedded into each location corre­
sponding to a valid index i. Like, ACV-BGKM, Svr sets
PI = (ACV, (z1, z2, . . . , zN)), and outputs PI via the
broadcast channel.
KeyDer(si, PI): Usri, using its secret si and public
PI , derives the 2N -dimensional row Fq-vector vi which
corresponds to a row in A. Then Usri derives the specific
key as ki = vi · ACV .
Update(S, K’): If a user leaves or join the group, a new

′ set of keys K is selected. KeyGen(S, K’) is invoked to
generate the updated public information PI ′ . Notice that
the secrets shared with existing users are not affected by

′ the group change. It outputs the public PI .
We refer the reader to our technical report [28] for

the proof of security of the above modified ACV-BGKM
scheme.

5.2 Our Construction

Now we provide our construction of the threshold AB­
GKM scheme which utilizes the modified ACV-BGKM
scheme.
Recall that in this scheme, we wish to allow a user to

derive the symmetric group key k if the user possesses
at least d attributes out of m. For each user Usri we
associate a random d − 1 degree polynomial qi(x) with
the restriction that each polynomial has the same value k,
the symmetric group key, at x = 0, that is, qi(0) = k. We
associate a random secret value with each user attribute.
For each attribute attri, we generate a public information
tuple (PIi) using the modified ACV-BGKM scheme with
the restriction that the temporary key that each Usrj
derives is tied to its random polynomial qj(x), that
is qj(i) = ki. Notice that each user obtains different
temporary keys from the same PI . If a user can derive
d temporary keys corresponding to d attributes, it can
compute its random function q(x) and obtain the group

8

symmetric key k. Notice that, since the temporary keys
are tied to a unique polynomial, multiple users are
unable to collude and combine their temporary keys in
order to obtain the symmetric group key which they are
not allowed to obtain individually. Thus, our construc­
tion prevents collusion attacks.
A detailed description of our threshold AB-GKM

scheme follows.
Setup(ℓ) Svr initializes the parameters of the under­
lying modified ACV-BGKM scheme: the ℓ-bit prime
number q, the maximum group size N (≥ n), the
cryptographic hash function H , the key space KS , the
secret space SS , the set of issued secrets S, the user-
attribute matrix UA and the universe of attributes A =
{attr1, attr2, · · · , attrm}.

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq

and a set, Q of elements in Fq :

x − jI
Δi,Q(x) = .

i− j
j∈Q,j #=i

SecGen(γi) For each attribute attrj ∈ γi, where γi ⊂ A
and γi is the attribute set of Usri, Svr invokes SecGen()
of the modified ACV-BGKM scheme in order to obtain
the random secret si,j . It returns βi, the set of secrets for
all the attributes in γi.
KeyGen(α, d) Taking α, a subset of attributes from the
attribute universe A and d, the threshold value, for each
user Usri, Svr assigns a random degree d−1 polynomial
qi(x) with qi(0) set to the group symmetric key k. For
each attribute attrj in the set of attributes α (α ⊂ A and
|α| ≥ d), it selects the set of secrets corresponding to attrj ,
Sj and invokes KeyGen(Sj , {q1(j), q2(j), · · · , qN (j)}) of
the modified ACV-BGKM scheme to obtain PIj , the
public information tuple for attrj . It outputs the private
group key k and the set of public information tuples PI
= {PIj | for each attrj ∈ α}.
KeyDer(βi,PI) Using the set of d secrets βi = {si,j |1 ≤
j ≤ N} for the d attributes attrj , 1 ≤ j ≤ N , and the
corresponding d public information tuples PIj ∈ PI, 1 ≤
j ≤ N , it derives the group symmetric key k as follows.
First, it derives the temporary key kj for each attribute

attrj using the underlying modified ACV-BGKM scheme
as KeyDer(si,j , PIj). Then, using the set of d points Qi =
{(j, kj)|1 ≤ j ≤ N}, it computes qi(x) as follows:

x − jI
Δj,Q

i
(x) =

i− j
j∈Q

i
,j=# i

qi(x) =
L

kjΔj,Q
i
(x).

j∈Q
i

It outputs the group key k = qi(0).
Update(α, d) The Update algorithm is invoked whenever
α, the attribute set considered, or d, the threshold value,
or the group members satisfying the threshold policy
change. The group membership changes due to similar
reasons mentioned under the Update algorithm in Sec­
tion 4.1. In such a situation, a new symmetric group key

k ′ is selected and KeyGen(α, d) is invoked to generate
the set of new public information tuples PI’. Notice that
the secrets shared with existing users are not affected by
the group change.

5.3 Security

If an unbounded adversary can break our threshold AB­
GKM scheme, a simulator can be constructed to break
the modified ACV-BGKM scheme. We only give a high­
level detail of the reduction based proof due to the space
constraint.

Proof: Suppose that an unbounded adversary A
having a set of d− 1 attributes α can break our scheme
in the random oracle model with advantage ǫ. Note that
this is the most powerful adversary as it possesses d− 1
attributes out of the d attributes required to derive the
group key. We build a simulator B that can derive the
key kd from PId corresponding to attrd �∈ α with the
same advantage ǫ using A as subroutine. In other words,
we build a simulator to break the modified ACV-BGKM
scheme.
The intuition behind our proof is that, by construction,

the modified ACV-BGKM instances corresponding to
the attributes are independent. In other words, a user
who can access the key for one attribute only has a
negligible advantage in obtaining the key for another
attribute using the known attributes due to the key
indistinguishability and independence properties of the
ACV-BGKM scheme [25].
The challenger creates an instance of the modified

ACV-BGKM scheme for each of the n attributes. A
obtains secrets {si|i = 1, 2, · · · , d − 1} for the attributes
α it has from B. The challenger constructs the public
information tuples {PIi|i = 1, 2, · · · , d}, each having a
random key ki and gives them to B. B in turn gives them
to A. Notice that the view of A is identical to that of A
interacting directly with an instance of the threshold AB-
GKM scheme, even though it is simulated. The random
keys correspond to a random degree d − 1 polynomial
q(x). Notice that A possesses secrets to obtain the ran­
dom keys ki, 1 ≤ i ≤ d − 1 and can derive the secret
key kd with an advantage ǫ from the public information
tuples.
We omit the details of the security game defined in

the previous section. As mentioned in the game, A may
execute the threshold AB-GKM scheme for different sets
of attributes that do not satisfy the challenge threshold
policy and do not include attrd. As mentioned earlier,
A does not gain any additional advantage by such
executions.
After executing the phase 1 of the security game as

many times, A outputs k, which is equal to q(0). This
allows B to fully determine q(x) as it now has d points
and derive the key kd = q(d). In other words, it allows
B to break the modified ACV-BGKM scheme to recover
the intermediate key kd from the public information
tuple PId without the knowledge of the secret sd. In

9

our technical report [28], we show that the probability
of breaking the modified ACV-BGKM scheme is a neg­
ligible 1/qN where q is the ℓ bit prime number and N
is the maximum number of users. Therefore, it follows
that ǫ must be negligible.

5.4 Performance

We now discuss the efficiency of the threshold AB­
GKM with respect to computational costs and required
bandwidth for rekeying.
For any Usri in the group deriving the shared group

key requires:
�d

Ni hashing operations (evaluations i=1
of H(·)), where Ni is the maximum number of users
having attri; and d inner product computations vi · ACVi

of two (2Ni)-dimensional Fq-vectors and the Lagrange
interpolation O(m log2 m), where m = |A|. Therefore, the
overall computational complexity is O(dn + m log2 m).
Notice that the inner product computations are indepen­
dent and can be parallelized to improve performance.
For every rekeying phase, for each attri, Svr needs to

form a matrix Ai by performing N2 hashing operations, i

and then solve a linear system of size Ni×(2Ni). Solving
the linear system is the most costly operation as Ni gets
large for computation on Svr; it requires O(

�m 3)i=1 n
field operations in Fq .
When a rekeying process takes place, the new infor­

mation to be broadcast is PIi = (ACVi, (z1, . . . , zNi)),
i = 1, 2, · · · ,m, where ACVi is a vector consisting of
(2Ni) elements in Fq , and without loss of generality we
can pick zi to be strings with a fixed length. This gives
an overall communication complexity O(

�m
i=1 n).

For a group of maximum N users, in the worst case,
the threshold AB-GKM only requires each Usr to store
(O(m)) secrets, one secret per attribute that Usr possesses
and Svr to keep track of all O(nm) secrets.

6 SCHEME 3: ACCESS TREE AB-GKM
In the inline AB-GKM scheme, the policy P is em­
bedded into the BGKM scheme itself. As discussed in
Section 5, while this approach works for many different
types of policies, such an approach is not able to effi­
ciently support threshold access control policies. Scheme
2, threshold AB-GKM, on the other hand, is able to
efficiently support threshold policies, but it is unable
to support other policies. In order to support more
expressive policies, we extend the threshold AB-GKM
scheme. Like threshold AB-GKM, instead of embedding
P in the BGKM scheme, we construct a separate BGKM
instance for each attribute. Then, we embed P in an
access structure T . T is a tree with the internal nodes
representing threshold gates and the leaves representing
attributes. The construction of T is similar to that of the
approach by Goyal et al. [3]. However, unlike Goyal et
al.’s approach, the goal of our construction is to derive
the group key for the users whose attributes satisfy the
access structure T .

TABLE 2

Access tree functions

Function Description
index(x) Returns the index of node x
parent(x) Returns the parent node of node x
attr(x) Returns the index of the attribute

associated with a leaf node x
qx The polynomial assigned to node x
sat(Tx, α) Returns 1 if the set of attributes α

satisfies Tx, the subtree rooted at
node x, and 0 otherwise

6.1 Access Tree

Let T be a tree representing an access structure. Each
internal node of the tree represents a threshold gate.
A threshold gate is described by its child nodes and a
threshold value. If nx is the number of children of a node
x and tx is its threshold value, then 0 < tx ≤ nx. Notice
that when tx = 1, the threshold gate is an OR gate and
when tx = nx, it is an AND gate. Each leaf node x of the
tree is described by an attribute, a corresponding BGKM
instance and a threshold value tx = 1. The children of
each node x are indexed from 1 to nx.

We define the functions in Table 2 in order to construct
our scheme. All the functions except sat are straightfor­
ward to implement. A brief description of sat follows:
The function sat(Tx, α) works as a recursive function.

If x is a leaf node, it returns 1, provided that the attribute
associated with x is in the set of attributes α and 0
otherwise. If x is an internal node, if at least tx child
nodes of x return 1, then sat(Tx, α) returns 1 and 0
otherwise.

6.2 Our Construction

The access tree AB-GKM scheme consists of five algo­
rithms:
Setup(ℓ): Svr initializes the parameters of the underlying
modified ACV-BGKM scheme: the prime number q, the
maximum group size N (≥ n), the cryptographic hash
function H , the key space KS , the secret space SS , the
set of issued secrets S, the user-attribute matrix UA and
the universe of attributes A = {attr1, attr2, · · · , attrm}.

Svr defines the Lagrange coefficient Δi,Q for i ∈ Fq

and a set, Q of elements in Fq :

x − j
Δi,Q(x) =

I
.

i− j
j∈Q,j #=i

SecGen(γi): Taking γi, the attribute set of Usri, as input,
for each attribute attrj ∈ γi, where γi ⊂ A, Svr invokes
SecGen() of the modified ACV-BGKM scheme to obtain
the random secret si,j . It returns βi, the set of secrets for
all the attributes in γi.
KeyGen(P): Svr transforms the policy P into an access
tree T . The algorithm outputs the public information
which a user can use to derive the group key if and
only if the user’s attributes satisfy the access tree T built

10

for the policy P. The algorithm constructs the public
information as follows.

For each user Usri having the intermediate set of
keys Ki = {ki,j |1 ≤ j ≤ m}, where ki,j represents
the intermediate key for Usri and attrj , the following
construction is performed. For each attribute attri, there
is a leaf node in T . The construction of the tree is
performed top-down. Each node x in the tree is assigned
a polynomial qx. The degree dx of the polynomial qx is
set to tx − 1, that is, one less than the threshold value of
the node. For the root node r, qr(0) is set to the group key
k and dr other points are chosen uniformly at random so
that qr is a unique polynomial of degree dr fully defined
through Lagrange interpolation. For any other node x,
qx(0) is set to qparent(x)(index(x)) and dx other points
are chosen uniformly at random to uniquely define qx.
For each leaf node x corresponding to a unique attribute
attrj , qx(0) is set to qparent(x)(1) and ki,j = qx(0).

At the end of the above computation, we have all the
sets of intermediate keys K = {Ki|Usri, 1 ≤ i ≤ N}.
For each leaf node x, the modified BGKM algorithm
KeyGen(Sx, Kx), where Sx is the set of secrets cor­
responding to the attribute associated with the node
x and Kx = {ki,j |1 ≤ i ≤ N, attrj}, j = attr(x),
is invoked to generate public information tuple PIx.
We denote the set of all the public information tuples
PI = {PIj |attrj , 1 ≤ j ≤ m}.

KeyDer(βi, PI): Given βi, a set of secret values corre­
sponding to the attributes of Usri, and the set of public
information tuples PI, it outputs the group key k.

The key derivation is a recursive procedure that takes
βi and PI to derive k bottom-up. Note that a user
can obtain the key if and only if its attributes satisfy
the access tree T , i.e., sat(Tr, βi) = 1. The high-level
description of the key derivation is as follows.

For each leaf node x corresponding to the attribute
with the user’s secret value sx ∈ βi, the user derives
the intermediate key kx using the underlying modified
BGKM scheme KeyDer(sx, P Ix). Using Lagrange inter­
polation, the user recursively derives the intermediate
key kx for each internal ancestor node x until the root
node r is reached and kr = k. Notice that since interme­
diate keys are tied to unique polynomials, users cannot
collude to derive the group key k if they are unable to
derive it individually. A detailed description follows.

If x is a leaf node, it returns an empty value ⊥ if
attr(x) �∈ βi, otherwise it returns the key kx = vx · ACVx,
where vx is the key derivation vector corresponding to
the attribute attrattr(x) and ACVx the access control vector
in PIx.

If x is an internal node, it returns an empty value ⊥ if
the number of children nodes having a non-empty key
is less than tx, otherwise it returns kx as follows:

Let the set Q contain the indices of tx children nodes x

having non-empty keys {ki|i ∈ Q }.x

y − i
Δi,Q

x
(y) =

I
j − i

i∈Q ,i#=j

qx(y) =
L x

kiΔi,Q
x
(y)

i∈Q
x

kx = qx(0).

The above computation is performed recursively until
the root node is reached. If Usri satisfies T , Usri gets
k = qr(0), where r is the root node. Otherwise, Usri gets
an empty value ⊥.
Update(P) The group members change due to the similar
reasons mentioned for the Update algorithm in Sec­
tion 4.1. In such a situation, a new symmetric group
key k ′ is selected and KeyGen(P) is invoked to generate
the set of new public information tuples PI’. Like the
previous two schemes, the secrets shared with existing
users are not affected by the group change.

6.3 Security

If an unbounded adversary can break our access tree AB-
GKM scheme, a simulator can be constructed to break
the modified ACV-BGKM scheme. Like the previous
scheme, we only give a high-level detail of the reduction
based proof.

Proof: Suppose that an unbounded adversary A
using a set of attributes α as the challenge set that
does not satisfy the access tree T breaks our scheme
in the random oracle model with advantage at most
ǫ. Let the root node of T be r and the group key
k = qr(0). Notice that since A does not satisfy T and
qr(x) a tr-out-of-nr threshold scheme, which represents
any type of threshold node, A satisfies no more than
tr − 1 subtrees rooted at children of r out of the nr

subtrees. By inference, it is easy to see that A does not
satisfy at least one leaf node.
The challenger constructs modified ACV-BGKM in­

stances for each of the attributes and gives them to B. A
obtains secrets for each of the attributes in α. B sends the
public information tuples and the access tree T to A. No­
tice that A can easily derive the keys for any attribute in
α, but it can derive the keys for any other attribute only
with an advantage of ǫ. According to the assumption, A
does not satisfy at least one attribute required to satisfy
T . Let that attribute be attrx. A derives kx from PIx
corresponding to one such unsatisfied leaf node with
advantage ǫ. Therefore, A derives the group key k with
an advantage of at most ǫ.

Like the proof in Section 5, A derives the group key
k, after executing the phase 1 of the security game as
many times and give k to B. Now, B works downwards
T to recover the keys for nodes originally unsatisfied by
A using Lagrange interpolation. For example, using k
and tr − 1, B obtains the key ktr for the t

th child node r

of r. Finally, B obtains the key kx for an unsatisfied
leaf node x corresponding to attrx. In other words, it

11

allows B to break the modified ACV-BGKM scheme to
recover the key kx from the public information tuple PIx
without the knowledge of the secret sx. As mentioned
earlier, the probability of breaking the modified ACV­
BGKM scheme by applying the KeyDer algorithm is a
negligible 1/qN where q is the ℓ bit prime number and N
is the maximum number of users. Therefore, it follows
that ǫ must be negligible.

6.4 Performance

We now discuss the efficiency of access tree AB-GKM
with respect to computational costs and required band­
width for rekeying.
For any Usri in the group, deriving the shared group

key requires:
�d

Ni hashing operations (evaluations i=1
of H(·)), where d = |βi|, Ni is the maximum num­
ber of users having attri, and d inner product compu­
tations vi · ACVi of two (2Ni)-dimensional Fq-vectors
and M Lagrange interpolations O(Mm log2 m), where
M is equal to the number of internal nodes in T and
m = |A|. Therefore, the overall computational complex­
ity is O(dn+ Mm log2 m). Notice that the inner product
computations are independent and can be parallelized
to improve performance.
The cost of rekeying, communication and storage are

comparable to those of the threshold scheme presented
in Section 5.

7 EXAMPLE APPLICATION

Among other applications, fine-grained access control
in a group setting using broadcast encryption is an
important application of the AB-GKM schemes. We illus­
trate the access-tree AB-GKM scheme using a healthcare
scenario [29], [6]. We refer the reader to our technical
report [28] for more examples. A hospital (Svr) sup­
ports fine-grained access control on electronic health
records (EHRs) [30], [31] by encrypting and making
the encrypted records available to hospital employees
(Usrs). Typical hospital users include employees playing
different roles such as receptionist, cashier, doctor, nurse,
pharmacist, system administrator and non-employees
such as patients. An EHR document is divided into sub-
documents including BillingInfo, ContactInfo, Medica­
tion, PhysicalExam, LabReports and so on. In accordance
with regulations such as health insurance portability and
accountability act (HIPAA), the hospital policies specify
which users can access which subdocument(s). A cashier,
for example, need not have access to data in EHRs except
for the BillingInfo, while a doctor or a nurse need not
have access to BillingInfo. These policies can be based on
the content of EHRs itself. An example of such policies is
that “information about a patient with cancer can only
be accessed by the primary doctor of the patient”. In
addition, patients define their own privacy policies to
protect their EHRs. For example, a patient’s policy may
specify that “only the doctors and nurses who support
her insurance plan can view her EHR”.

In order to support content-based access control, the
hospital maintains some associations among users and
data. Table 3 shows the insurance plans supported by
each doctor and nurse, identified by the pseudonym
“Employee ID”.

TABLE 3

Insurance Plans Supported by Doctors/Nurses

EmployeeID Role/level Insurance Plan(s)
emp

1 doctor MedB, ACME
emp

2 doctor ACME
emp

3 nurse/junior ACME
emp

4 nurse/senior MedA
emp

5 nurse/senior MedC
emp

6 doctor MedA
emp

7 doctor MedB, ACME
emp

8 nurse/senior MedA
emp

9 nurse/senior MedA, MedB, ACME

The hospital runs Setup algorithm to initialize system
parameters and issues secrets to employees by running
the SecGen algorithm. Table 4 shows the content of the
user attribute matrix UA that the hospital maintains.
(Small numbers are used for illustrative purposes.)

TABLE 4

User Attribute Matrix

Emp ID doctor nurse senior junior MedA MedB MedC ACME
emp1 100 ⊥ ⊥ ⊥ ⊥ 111 ⊥ 102
emp2 120 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 105
emp3 ⊥ 106 ⊥ 120 ⊥ ⊥ ⊥ 121
emp4 ⊥ 103 150 ⊥ 175 ⊥ ⊥ ⊥
emp5 ⊥ 133 151 ⊥ ⊥ ⊥ 161 ⊥
emp6 129 ⊥ ⊥ ⊥ 141 ⊥ ⊥ ⊥
emp7 119 ⊥ ⊥ ⊥ ⊥ 133 ⊥ 137
emp8 ⊥ 143 152 ⊥ 115 ⊥ ⊥ ⊥
emp9 ⊥ 109 156 ⊥ 117 119 ⊥ 124

Now we illustrate the use of the access tree AB-GKM
scheme. Consider the following policy specification on
the Medication subdocument of the EHR. “A senior
nurse supporting at least two insurance plans can access
Medication of any patient”. In order to implement this
access control policy, we need to consider attributes role,
level and insurance plan. The access control policy looks
as follows:

P = (“role = nurse” ∧ “level = senior” ∧ “2-out-of­
{MedA, MedB, MedC, ACME}”)

TABLE 5

List of employees satisfying each insurance plan

Attribute Employee IDs
MedA emp

4
, emp

6
, emp

8
, emp

9
MedB emp

1
, emp

7
, emp

9
MedC emp

5
ACME emp

1
, emp

2
, emp

3
, emp

7
, emp

9

In addition to Table 5 containing the list of employees
satisfying insurance plans, the hospital maintains the list
of employees satisfying the attributes nurse and senior
as shown in Table 6.

http:ofEHRsitself.An

12

TABLE 6 TABLE 7

List of employees satisfying attributes Average Time for CP-ABE algorithms

Attribute Employee IDs
nurse emp

3
, emp

4
, emp

5
, emp

8
, emp

9
senior emp

4
, emp

5
, emp

8
, emp

9

Algorithm Time (ms)
Setup 34.395
Key generation 26.725
Encryption 24.453
Decryption 13.415

The above policy can be represented using an access
tree with two internal nodes and six leaf nodes. The
root node is an AND gate and has three children. The
first and second children of the root node represent the
attributes nurse and senior, respectively, and the third
child of the root node is a 2-out-of-4 threshold gate which
has four children representing the four insurance plans.
The hospital executes the KeyGen algorithm to gen­

erate six PI tuples and encrypts the Medication subdoc­
uments with the group symmetric key k:

PIMedA = (ACVMedA, (z1, z2, z3, z4))

PIMedB = (ACVMedB , (z5, z6, z7))

PIMedC = (ACVMedC , (z8))

PIACME = (ACVACME , (z9, z10, z11, z12, z13))

PInurse = (ACVnurse, (z14, z15, z16, z17, z18))

PIsenior = (ACVsenior, (z19, z20, z21, z22))

Expressive access control. Notice that only one employee,
emp9, can derive the group key k using KeyDer algo­
rithm to decrypt Medication subdocuments.
Collusion resistance. Notice that emp4 supports MedA
and emp5 supports MedC and both of them are senior
nurses. It may appear that these two employees can
collude to derive the group key k. Since, in this particular
example, the access tree AB-GKM scheme associates each
user with two unique polynomials, one for the AND
gate and another for the threshold gate, none of them
individually satisfies the access tree and KeyDer results
in an incorrect key.
Handling user dynamics. Assume that emp4 starts to sup­
port the insurance plan ACME in addition to MedA. The
hospital re-generates the public information by adding
emp4 to the calculation of PIACME and associating a
new group key k ′ . Now emp4 is able to derive k

′ using
KeyDer as its attributes satisfy the access tree. Notice
that the change in the user attributes does not affect
the secret information each existing employees have. A
similar approach is taken when one or more of these
attributes are revoked from an existing employee. It
should be noted that, like the first two schemes, this
scheme has the added flexibility to support changes to
the access tree by requiring only changes to the public
information.

8 EXPERIMENTAL RESULTS

In this section we provide experimental results for the
underlying optimized ACV-BGKM scheme used with all

three AB-GKM schemes presented earlier. We compare
our results with CP-ABE scheme with comparable secu­
rity parameters.

The experiments were performed on a machine run­
ning GNU/Linux kernel version 2.6.32 with an Intel R@
CoreTM 2 Duo CPU E8400 3.00GHz and 3.2 Gbytes
memory. Only one processor was used for computation.
Our prototype system is implemented in C/C++. We use
V. Shoup’s NTL library [32] version 5.4.2 for finite field
arithmetic, and SHA-1 and AES-128 implementations of
OpenSSL [33] version 1.0.0d for cryptographic hashing
and symmetric key encryption. We use Bethencourt et.
al.’s cpabe [34] library to gather experimental results for
CP-ABE. The cpabe library uses PBC library [35] for
pairing based cryptography.

We implemented the ACV-BGKM scheme with subset
cover optimization. We utilized the complete subset
algorithm introduced by Naor et al. [13] as the subset
cover. All finite field arithmetic operations in ACV­
BGKM scheme are performed in an 512-bit prime field.
We used comparable and efficient pairing parameters for
CP-ABE. The size of the base finite field is set to the 512­
bit prime number
87807107996633125224377819847540498158068831994
14208211028653399266475630880222957078625179422
66222142315585876958231745927771336731748132492
5129998224791
and the group order to the 160-bit number
730750818665451621361119245571504901405976559617.

Following the well-known security practice, we gen­
erate symmetric keys and use them for encrypting doc­
uments. Then we encrypt such encryption keys with
either the ACV-BGKM generated symmetric keys or
the CP-ABE generated public keys. Therefore, in the
experiments we measure the time to encrypt and decrypt
the document encryption keys only. For all the ACV­
BGKM experiments, we assume that 5% of users have
left the group after executing the setup.

First we give experimental results for the most sim­
plest case where a single attribute condition is consid-
ered. Then we provide, experimental results for multiple
attribute conditions.

Table 7 shows the average time required to execute
setup, key generation, encryption and decryption algo­
rithms of CP-ABE scheme for one attribute condition.

Figure 1 reports the average time required to execute
the key generation algorithm of ACV-BGKM and CP­
ABE with different group sizes. In both ACV-BGKM
and CP-ABE the time increases linearly with the group

http:systemisimplementedinC/C++.We

13

 30 200

 25

ACV-BGKM
CP-ABE

160

 140

 180

T
im

e
(in

 s
ec

on
ds

)
20

T
im

e
(in

 m
s) 120

 15 100

 80
 10

 60

 40
5

ACV-BGKM
CP-ABE

0
 100 200 300 400 500 600 700 800 900 1000

Group Size

Fig. 1. Average Key Generation Time for Different Group
Sizes

size. However, ACV-BGKM is much more efficient as
it does not involve any expensive pairing operations. It
only uses efficient hashing and binary operations over a
finite field. Further, the subset cover technique applied
to ACV-BGKM reduces the computational complexity of
the underlying scheme. Without the subset cover opti­
mization, ACV-BGKM has a non-linear computational
complexity and becomes inefficient for large groups. We
omit the comparison experimental result due to lack of
space.

 35

 30

 20

 0

 1 2 3 4 5 6 7 8 9 10

Numumber of Attribute Conditions

Fig. 3. Average Key Generation Time for Varying Attribute
Counts

the ACV-BGKM key generation is much more efficient
than the CP-ABE key generation.
As can be seen from the experiments, our constructs

are more efficient in handling scenarios where the key
generation algorithm has to be executed frequently due
to changes in user dynamics.

9	 CONCLUSION

In this paper, we have presented three attribute based
group key management (AB-GKM) schemes: inline AB-
GKM, threshold AB-GKM, and access tree AB-GKM. In
all our schemes, when the group changes, the rekeying ACV-BGKM encryption

ACV-BGKM decryption
CP-ABE encryption
CP-ABE decryption

100 200 300 400 500 600 700 800 900 1000

operations do not affect the private information of ex­25

T
im

e
(in

 m
s)

20 isting group members and thus our schemes eliminate
15 the need of establishing private communication chan­
10

nels. Our schemes provide the same advantage when
5

the group membership policies change. We have also
Group Size shown that our schemes are resistant to collusion attacks.

Our constructions are based on a provably secure ACV­

0

Fig. 2. Average Encryption/Decryption Time for Different
BGKM scheme and Shamir’s threshold scheme. Our

Group Sizes
experimental results show that our underlying construc­
tion is more efficient than the popular CP-ABE scheme.

Figure 2 reports the average time required to perform
encryption and decryption in ACV-BGKM and CP-ABE
schemes for one attribute condition with different group
sizes. The decryption time of ACV-BGKM is taken as
the time to derive the key as well as to decrypt the
encryption key. The encryption and decryption times of
CP-ABE remain constant whereas the decryption time of
ACV-BGKM increases linearly with the group size. As
the group size increases, the key derivation algorithm
of ACV-BGKM requires to spend more time to build
larger KEVs. The encryption time of ACV-BGKM is
negligible and remains constant as it involves an efficient
symmetric encryption only. The average encryption time
of ACV-BGKM is 8.8 microseconds (as these times are
very small, the line plotting them is very close to zero
in the graph in Figure 2 and thus overlaps with the x-
axis). It should be noted that if one caches the KEVs, the
decryption time of ACV-BGKM also becomes negligible
as it involves only modular multiplications.
Figure 3 reports the average time required to execute

the key generation algorithm with varying number of
attribute conditions with the group size set to 1000. The
time of both techniques increases linearly with the num­
ber of attribute conditions. However, similar to Figure 1,

ACKNOWLEDGMENTS

This material is based upon work supported by the
Air Force Office of Scientific Research under Awards
No. FA9550-08-1- 0260, FA9550-09-0468 and FA9550-08­
1-0265.

REFERENCES

[1]	 R. Krishnan, R. Sandhu, J. Niu, and W. H. Winsborough, “Foun­
dations for group-centric secure information sharing models,” in
Proceedings of the 14th ACM symposium on Access control models and
technologies, ser. SACMAT ’09. New York, NY, USA: ACM, 2009,
pp. 115–124.

[2]	 A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Eurocrypt 2005, LNCS 3494. Springer-Verlag, 2005, pp. 457–473.

[3]	 V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
CCS ’06: Proceedings of the 13th ACM conference on Computer and
communications security. New York, NY, USA: ACM, 2006, pp.
89–98.

[4]	 J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in SP ’07: Proceedings of the 2007 IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 321–334.

[5]	 X. Zou, Y. Dai, and E. Bertino, “A practical and flexible key
management mechanism for trusted collaborative computing,”
INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE, pp. 538–546, April 2008.

http:andbecomesinefficientforlargegroups.We

14

[6]	 N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-
preserving approach to policy-based content dissemination,” in
ICDE ’10: Proceedings of the 2010 IEEE 26th International Conference
on Data Engineering, 2010.

[7]	 A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[8]	 H. Harney and C. Muckenhirn, “Group key management protocol
specification,” Network Working Group, United States, Tech.
Rep., 1997.

[9]	 H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain, “A secure
multicast protocol with copyright protection,” SIGCOMM Com­
put. Commun. Rev., vol. 32, no. 2, pp. 42–60, 2002.

[10] C. Wong and S. Lam, “Keystone: a group key management
service,” in International Conference on Telecommunications, ICT,
2000.

[11] A. Sherman and D. McGrew, “Key establishment in large dynamic
groups using one-way function trees,” Software Engineering, IEEE
Transactions on, vol. 29, no. 5, pp. 444–458, May 2003.

[12] S. Berkovits, “How to broadcast a secret,” in EUROCRYPT ’91:
Proceedings of the 10th annual international conference on Advances
in Cryptology. Berlin, Heidelberg: Springer-Verlag, 1991, pp. 535–
541.

[13] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and tracing
schemes for stateless receivers,” in Proceedings of the 21st Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’01. London, UK: Springer-Verlag, 2001, pp. 41–62.

[14] D. Halevy and A. Shamir, “The lsd broadcast encryption scheme,”
in Proceedings of the 22nd Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’02. London, UK:
Springer-Verlag, 2002, pp. 47–60.

[15] P. Traynor, K. R. B. Butler, W. Enck, and P. McDaniel, “Realizing
massive-scale conditional access systems through attribute-based
cryptosystems,” in Proceedings of the Network and Distributed Sys­
tem Security Symposium, 2008, ser. NDSS 2008, 2008.

[16] L. Cheung, J. A. Cooley, R. Khazan, and C. Newport, “Collusion­
resistant group key management using attribute-aased encryp­
tion. cryptology eprint archive report 2007/161,” 2007.

[17] S. Yu, K. Ren, and W. Lou, “Attribute-based on-demand multicast
group setup with membership anonymity,” in Proceedings of the
4th international conference on Security and privacy in communication
netowrks, ser. SecureComm ’08. New York, NY, USA: ACM, 2008,
pp. 18:1–18:6.

[18] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha, “Key
management for secure internet multicast using boolean function
minimization techniques,” in INFOCOM 1999. The 18th Conference
on Computer Communications. IEEE, 1999, pp. 689–698.

[19] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The
versakey framework: versatile group key management,” Selected
Areas in Communications, IEEE Journal on, vol. 17, no. 9, pp. 1614
–1631, Sep. 1999.

[20] A. Fiat and M. Naor, “Broadcast encryption,” in Advances in
Cryptology - CRYPTO 93, ser. Lecture Notes in Computer Science,
D. Stinson, Ed., vol. 773. Springer Berlin / Heidelberg, 1994, pp.
480–491.

[21] E. Bertino and E. Ferrari, “Secure and selective dissemination of
XML documents,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 3, pp.
290–331, 2002.

[22] G. Miklau and D. Suciu, “Controlling access to published data
using cryptography,” in VLDB ’2003: Proceedings of the 29th inter­
national conference on Very large data bases. VLDB Endowment,
2003, pp. 898–909.

[23] D. Halevy and A. Shamir, “The lsd broadcast encryption scheme,”
in Advances in Cryptology CRYPTO 2002, ser. Lecture Notes in
Computer Science, M. Yung, Ed., vol. 2442. Springer Berlin /
Heidelberg, 2002, pp. 145–161.

[24] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” in Advances
in Cryptology CRYPTO 2005, ser. Lecture Notes in Computer
Science, V. Shoup, Ed., vol. 3621. Springer Berlin / Heidelberg,
2005, pp. 258–275.

[25] N. Shang, M. Nabeel, E. Bertino, and X. Zou, “Broadcast group
key management with access control vectors,” Department of
Computer Science, Tech. Rep., 4 2010.

[26] Y. Challal and H. Seba, “Group key management protocols: A
novel taxonomy,” International Journal of Information Technology,
vol. 2, no. 2, pp. 105–118, 2006.

[27] D. Dummit and R. Foote, “Gaussian-Jordan elimination,” in Ab­
stract Algebra, 2nd ed. Wiley, 1999, p. 404.

[28] M. Nabeel and E. Bertino, “Attribute based group key manage­
ment,” Purdue University, Tech. Rep. CERIAS TR 2010, 2010.

[29] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters, “Secure
attribute-based systems,” in CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications security. New York,
NY, USA: ACM, 2006, pp. 99–112.

[30] “XML in clinical research and healthcare industries,”
http://xml.coverpages.org/healthcare.html.

[31] M. Eichelberg, T. Aden, J. Riesmeier, A. Dogac, and G. B. Laleci,
“A survey and analysis of electronic healthcare record standards,”
ACM Comput. Surv., vol. 37, no. 4, pp. 277–315, 2005.

[32] V. Shoup, “NTL library for doing number theory,”
http://www.shoup.net/ntl/.

[33] “OpenSSL the open source toolkit for SSL/TLS,”
http://www.openssl.org/.

[34] J.	 Bethencourt, A. Sahai, and B. Waters, “Cipher­
text policy attribute based encryption library,”
http://http://acsc.cs.utexas.edu/cpabe/.

[35] B.	 Lynn, “Pairing based cryptography library,”
http://crypto.stanford.edu/pbc/.

Mohamed Nabeel is a PhD candidate at the department of computer
science, Purdue university. He is also a member of the Center for
Education and Research in Information Assurance and Security (CE­
RIAS), IEEE and ACM. His research interests are in data privacy,
distributed system security and applied cryptography. His PhD thesis
topic is “Privacy preserving content dissemination using attribute based
group key management”. His research adviser is prof. Elisa Bertino. He
has published in the areas of privacy preserving content dissemination
and group key management. He received the Fulbright fellowship in
2006, Purdue Cyper Center research grant in 2010 and Purdue research
foundation grant in 2011.

Elisa Bertino is Professor of Computer Science at Purdue University,
and serves as research director of the Center for Education and Re­
search in Information Assurance and Security (CERIAS) and Interim
Director of Cyber Center (Discovery Park). Previously, she was a faculty
member and department head at the Department of Computer Science
and Communication of the University of Milan. Her main research
interests include security, privacy, digital identity management systems,
database systems, distributed systems, and multimedia systems. She
is currently serving as chair of the ACM SIGSAC and as a member of
the editorial board of the following international journals: IEEE Security
& Privacy, IEEE Transactions on Service Computing, ACM Transactions
on Web. She also served as editor in chief of the VLDB Journal and
editorial board member of ACM TISSEC and IEEE TDSC. She co­
authored the book ”Identity Management - Concepts, Technologies,
and Systems”. She is a fellow of the IEEE and a fellow of the ACM.
She received the 2002 IEEE Computer Society Technical Achievement
Award for outstanding contributions to database systems and database
security and advanced data management systems and the 2005 IEEE
Computer Society Tsutomu Kanai Award for pioneering and innovative
research contributions to secure distributed systems.

http://crypto.stanford.edu/pbc
http://http://acsc.cs.utexas.edu/cpabe
http:http://www.openssl.org
http://www.shoup.net/ntl

