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ABSTRACT 
Maximizing data usage and minimizing privacy risk are two 
conflicting goals. Organizations always hide the owners’ 
identities and then apply a set of transformations on their 
data before releasing it. While determining the best set of 
transformations has been the focus of extensive work in the 
database community, most of this work suffered from one 
or two of the following major problems: scalability and pri­
vacy guarantee. To the best of our knowledge, none of the 
proposed scalable anonymization techniques provides pri­
vacy guarantees supported with well-formulated theoretical 
foundation. Differential privacy provides a theoretical for­
mulation for privacy that ensures that the system essentially 
behaves the same way regardless of whether any individual, 
or small group of individuals, are included in the database. 

In this paper, we address both scalability and privacy risk 
of data anonymization. We propose a scalable algorithm 
that meets differential privacy when applying a specific ran­
dom sampling. The contribution of the paper is three-fold: 
(1) We prove that determining the optimal transformations 
is an NP-hard problem and propose a heuristic approxima­
tion based on genetic algorithms, (2) we propose a personal­
ized anonymization technique based on Lagrangian formu­
lation and prove that it could be solved in polynomial time, 
and (3) we prove that a variant of the proposed Lagrangian 
technique with specific sampling satisfies differential privacy. 

Through experimental studies we compare our proposed 
algorithm with other anonymization schemes in terms of 
both time and privacy risk. We show that the proposed al­
gorithm is scalable. Moreover, we compare the performance 
of the proposed approximate algorithm with the optimal al­
gorithm and show that the sacrifice in risk is outweighed by 
the gain in efficiency. 

1. INTRODUCTION 
Although data disclosure is advantageous for many rea­

sons such as research purposes, it may incur some risk due 
to security breaches. Releasing health care information, for 
example, though useful in improving the quality of service 
that patients receive, raises the chances of identity exposure 
of the patients. Disclosing the minimum amount of informa­
tion (or no information at all) is compelling specially when 
organizations try to protect the privacy of individuals. To 
achieve such a goal, the organizations typically try to hide 
the identity of an individual to whom data pertains and 
apply a set of transformations to the microdata before re­

leasing it. These transformations include (1) data suppres­
sion (disclosing the value ⊥, instead), (2) data generaliza­
tion (releasing a less specific variation of the original data 
such as in [37]), and (3) data perturbation (adding noise 
directly to the original data values such as in [27]). Study­
ing the risk-utility tradeoff has been the focus of much re­
search. Resolving this tradeoff by determining the optimal 
data transformation has suffered from two major problems, 
namely, scalability and privacy risk. To the best of our 
knowledge, most of the work in determining the optimal 
transformation to be performed on a database before it gets 
disclosed is so inefficient that increasing the table dimension 
will substantially exacerbate the performance. Moreover, 
data anonymization techniques [35, 36, 26, 29, 4, 24] do not 
provide enough theoretical evidence that the disclosed ta­
ble is immune from security breaches. Indeed, hiding the 
identities by having each record indistinguishable from at 
least k − 1 other records [35] (k-anonymity), ensuring that 
the distance between the distribution of sensitive attributes 
in a class of records and the distribution of them in the 
whole table is no more than t [26] (t-closeness), or ensuring 
that there are at least l distinct values for a given sensitive 
attribute in each indistinguishable group of records [29] (l­
diversity); do not completely prevent re-identification [25]. 
It is shown in [1] that the k-anonymity [35, 36] technique 
suffers from the curse of dimensionality: the level of infor­
mation loss in k-anonymity may not be acceptable from a 
data mining point of view because the specifics of the inter-
attribute behavior have a very powerful revealing effect in 
the high dimensional case. 

A realization of t-closeness is proposed in [7], called SABRE. 
It partitions a table into buckets of similar sensitive attribute 
values in a greedy fashion, then it redistributes tuples from 
each bucket into dynamically configured equivalence classes 
(EC). SABRE adopts the information loss measures [16, 6, 
20, 39] for each EC as a unit rather than treating released 
records individually. Moreover, although experimental eval­
uation demonstrates that SABRE is superior to schemes 
that merely applied algorithms tailored for other models to 
t-closeness in terms of quality and speed, it lacks the theo­
retical foundations for privacy guarantees and efficiency. 

In [13], an algorithm called ARUBA is proposed to ad­
dress the tradeoff between data utility and data privacy. 
The proposed algorithm determines a personalized optimum 
data transformations based on predefined risk and utility 
models. However, ARUBA provides neither scalability nor 
theoretical foundations for privacy guarantees. 
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The notion of Differential privacy [9, 11] introduced an 
additional challenge to anonymization techniques. Namely, 
can you ensure that there will be no information gain if a 
single data item is added (removed) to (from) the disclosed 
data set? Differential privacy provides a mathematical way 
to model and bound such an information gain. 

Our Contribution: In this paper we address the prob­
lem of minimizing the risk of data disclosure while main­
taining its utility above a certain acceptable threshold. We 
propose a differential privacy preserving algorithm for data 
disclosure. The algorithm provides personalized transforma­
tion on individual data items based on the risk tolerance of 
the person to whom the data pertains. We first consider 
the problem of obtaining such a transformation for each 
record individually without taking the differential privacy 
constraint into consideration. We prove that determining 
the optimal transformation is an NP-hard problem and pro­
pose three different methods to deal with this hardness: (1) 
a genetic search heuristic to find an approximate solution, 
which we justify experimentally; (2) an approximation algo­
rithm that we prove (under some conditions) it produces a 
data transformation within constant guarantees of the opti­
mum; finally, (3) a slightly modified variant of the formula­
tion in [13] that can be used to get a polynomial-time algo­
rithm for the data transformation. For achieving the latter 
two results, we explore the fact that the risk function is a 
fractional program with supermodular denominator. Thus, 
the solution of this fractional program can be reduced to a 
number of supermodular function maximization problems, 
which can be solved in polynomial time. 

Next, we consider the problem of obtaining a set of data 
transformations, one for each record in the database, in such 
a way that satisfies differential privacy and at the same time 
maximizes (minimizes) the average utility (risk) per record. 
Towards this end, we adopt the exponential mechanism re­
cently proposed in [30]. The main technical difference that 
distinguishes our application of this mechanism, compared 
to previous applications (e.g., in [30, 19]), is the fact that in 
our case the output set is also a function of the input, and 
hence it changes if a record is dropped from the database. 
In fact, a simple example shows that it is not possible to 
obtain differential privacy without sacrificing utility maxi­
mization. To resolve this issue, we sample only from “fre­
quent elements”, that is, those generalizing a large number 
of records in the database, and show that differential pri­
vacy can be achieved with any desired success probability 
arbitrarily close to 1. Another technical difficulty that we 
need to overcome is how to perform the sampling needed by 
the exponential mechanism. Again, we explore the super­
modulariy of the (denominator of the) risk function to show 
that such sampling can be done efficiently, even for a large 
number of attributes. 

The rest of the paper is organized as follows. In Section 2 
we formally describe our model for data generalization, and 
prove that solving the optimization model is an NP-hard 
problem. We also propose a genetic search algorithm to find 
an approximately optimal solution. In addition, we intro­
duce a modified Lagrangian formulation of the optimization 
problem and prove that the underlying model based on this 
formalism could be solved in polynomial time. Differential 
Privacy is investigated in Section 3 wherein we prove that 
applying exponential sampling based on the proposed La­
grangian model preserves differential privacy. Experimental 

results that show the superiority of our proposed algorithm 
over existing algorithms are reported in Section 4. Section 5 
surveys related work. Finally, Section 6 presents some con­
cluding remarks and future directions. 
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2. THE DATA GENERALIZATION MODEL 
In this section, we recall the data transformation model 

proposed in [13]. For reasons that will become clear soon, 
as in Section 2.1, we shall refer to this model as the thresh­
old model. We show in Section 2.2 that finding an optimal 
solution for this model is an NP-hard problem in general. 
Then in the next three subsections, we propose three dif­
ferent methods to deal with such NP-hardness. Specifically, 
in Section 2.3, we modify the model by bringing the con­
straint on the utility into the objective and show that this 
modified objective can be optimized in polynomial time. In 
section 2.4, we develop an approximation algorithm for the 
threshold model which can be used to produce a solution 
within a constant factor of the optimal risk, yet violating 
the utility constraint by a constant factor. In Section 2.5, 
we give a genetic search heuristic which we justify experi­
mentally to produce reasonably good solutions. 

2.1 The Threshold Formulation 
The model described in this section is based on [13]. 

2.1.1 The Informal Model 

Figure 1: Space of disclosure rules and their risk 
and expected utility. 

The relationship between the risk and expected utility is 
schematically depicted in Fig. 1 which displays different in­
stances of a disclosed table by their 2-D coordinates (r, u) 
representing their risk and expected utility, respectively. In 
other words, different data generalization procedures pose 
different utility and risk which lead to different locations in 
the (r, u)-plane. The shaded region in the figure corresponds 
to the set of feasible points (r, u) (that is, the risk and util­
ity are achievable by a certain disclosure policy) whereas the 
unshaded region corresponds to the infeasible points. The 
vertical line corresponds to all instances whose risk is fixed 
at a certain level. Similarly, the horizontal line corresponds 
to all instances whose expected utility is fixed at a certain 
level. Since the disclosure goal is to obtain both low risk 
and high expected utility, naturally we are most interested 
in these disclosure policies occupying the boundary of the 
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shaded region. Policies in the interior of the shaded region 
can be improved upon by projecting them to the boundary. 

The vertical and horizontal lines suggest the following way 
of resolving the risk-utility tradeoff. Assuming that it is 
imperative that the utility remains above a certain level c, 
the optimization problem becomes 

min r subject to u ≥ c. 

2.1.2 The Formal Model 
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Figure 2: A partial VGH for the city attribute. 

More formally, we assume that we have k attributes, and 
let L1, . . . , Lk be the corresponding value generalization hi­
erarchies (VGH’s). We will consider VGH’s that allow for 
modeling taxonomies (see Fig. 2 for an example of the VGH 
for the city attribute)). Each such Li, equipped with the 
hierarchical relation Ci, defines a join semi-lattice, that is, 

'for every pair x, x' ∈ Li, the least upper bound x ∨ x exists: 
'	 'x Ci x in Li if x is a generalization of x in the correspond­

ing VGH. Let L := L1 × . . . ×Lk be the semi-lattice defined 
'by the product such that for every x = (x1, . . . , xk), x = 

' ' '	 '(x1, . . . , xk ) ∈ L; x C x if and only if xi Ci xi for all 
i ∈ [k] := {1, . . . , k}. The unique upper bound of L cor­
responds to the most general element and is denoted by 
(⊥, . . . , ⊥). For x ∈ L and i ∈ [k], let us denote by xi 

+ := 
{y ∈ Li : y Ci xi} the chain (that is, total order) of ele­

+ + +ments that generalize xi, and let x = x1 × . . . × xk be the 
chain product that generalizes x. 

When considering a chain Ci, we will assume, without loss 
of generality, that Ci := {0, 1, 2, . . . , hi}, where hi = |Ci| and 
the ordering on Ci is given by the natural ordering on the 
integers. 

The utility function: The utility is defined by non­
negative monotonically decreasing functions d1 : L1 → R+, 
. . . , dk : Lk → R+, (i.e., di(x) ≤ di(y) for x, y ∈ Li such 
that x Ci y). For x ∈ L, the utility is given by u(x) = 

1
Lk

i=1 di(xi). For instance, in [13, eq.(5)], di(xi) = ,
ni (xi ) 

and in [13, eq.(6)], di(xi) = ln( ni(⊥) ); for xi ∈ Li, where 
ni(xi) 

ni(xi) is the the number of leaf nodes of the VGH subtree 
rooted at xi. 

The risk function: We use the risk model proposed 
in [13]. For a record a, given the side database Θ, the risk 
of a generalization x ∈ a + is given by r a(x) = r a(x, Θ) = 
Φa(x)	 a a . The function Φa(x) = 

Lk wi (xi), where wi :|ρ(x,Θ)| i=1 
+ ai → R+ is a non-negative monotonically non-increasing 

function, representing the sensitivity of the ith attribute to 
the user owning a, and ρ(x, Θ) = {t ∈ Θ | t � x} is the 
set of records in the external database Θ consistent with 

the disclosed generalization x. In Model I of [13], wi 
a(xi) is 

either 0 if xi = ⊥ or some fixed weight wi 
a if xi  ⊥; in = 

a	 +Model II, wi (xi) = 
k 
1 for all xi ∈ ai 

Definition 1. The Threshold Model 
In data privacy context, given a record a = (a1, a2, · · · , ai, 
· · · , ak), a utility measure u(x), and a risk measure r(x), 
the threshold model determines the generalization x ∈ a + 

that minimizes r(x) subject to u(x) ≥ c, where c ∈ R+ is a 
given parameter and a + is the set of all generalizations of 
the record a. 

2.2	 NP-Hardness of Solving the Threshold
Model 

Unfortunately, when the number of attributes k is part 
of the input, the threshold formulation cannot be solved in 
polynomial time unless P=NP. 

Theorem 1. Computing an optimal solution for the thresh­
old formulation is NP-hard. 

Proof. We give a reduction from the densest i-subgraph 
problem (i-DSP): Given a graph G = (V, E) and integers 
i, m, is there a subset X ⊆ V of size i such that the induced 
subgraph G[X] =< X, E(X) > has at least m edges, where 
E(X) := {{i, j} ∈ E : i, j ∈ X}? ? 

Given an instance (G =< V, E >, i) of i-DSP, we con­
struct an instance of the threshold formulation (Definition 1) 
as follows. We have k = |V | VGH’s wherein the ith VGH 
Li = {⊥, ai, bi} with the only relations ⊥ Ci ai and ⊥ Ci bi. 
For each edge e = {i, j} ∈ E, we introduce a record t(e) in 
the database Θ with components: 

{ 
bl, if l = i, j,

tl(e) := 
al, otherwise. 

Let Θ := {t(e) : e ∈ E}∪{a}, where we set a = (a1, . . . , ak). 
For x ∈ a +, the utility function u(x) is defined by di(xi) = 

1 , for i ∈ [k]; so di(⊥) = 1 and di(ai) = di(bi) = 
ni(xi)	 2 

Φa(x)1. The risk function is defined as , where Φa(x) = |ρ(x,Θ)|
a	 aLk wi (xi), and we set wi (xi) = 1 if xi ∈ {ai, bi} and 0 i=1 

otherwise. Finally, we set c = k − 1
2 i. 

Suppose that there is a set X of size i such that |E(X)| ≥ 
m. We construct a feasible solution x for the threshold 

k−;model with value r(x) ≤ 
m+1 as follows: 

{ ⊥, if i ∈ X, 
xi := 

ai, otherwise. 

Then t(e) � x if and only if the edge e is in the induced 
subgraph G[X] := {{i, j} ∈ E : i, j ∈ X}, and hence 

k−|X||ρ(x, Θ)| = |E(X)| + 1 ≥ m + 1. Thus r(x) = |E(X)|+1 ≤ 
k−; . Furthermore, u(x) = 1 |X|+(k−|X|) = k− 1 |X| = k− 
m+1	 2 2 
1	 k−;i. It follows that x is feasible with the value r(x) ≤ .
2	 m+1 

On the other hand, suppose that x is a feasible solution 
k−;for the threshold model with the value r(x) ≤ 
m+1 . Let 

k−|X|X = {i : xi = ⊥}. Then r(x) = |E(X)|+1 and u(x) = 
1 k − 1|X| + k − |X| = |X|. It follows from u(x) ≥ k − 1 i
2 2	 2 

k−;that |X| ≤ i, and then from r(x) ≤ that |E(X)| ≥ m,
m+1 

that is, X is a set of size at most i that induces at least m 
edges. 
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'2.3 A Polynomial-Time Solvable Optimization For x, x ∈ C1 × . . . × Ci−1 × {z} × Ci+1 × . . . × Ck, (2) 
'	 'Model	 implies that ∂g (x, i, z) ≥ ∂g (x , i, z), whenever x C x . 

2.3.1 Preliminaries 
Our results in the next two sections and also in Section 3.4 

are mainly based on the fact that the risk function exhibits 
certain submodularity properties. The very desirable prop­
erty of submodular (respectively, supermodular) functions 
is that they can be minimized (respectively, maximized) in 
polynomial time [18]. In this section we collect the basic 
facts we need about such functions. 

Definition 2. A function f : C → R on a chain (or a 
lattice) product C = C1 × . . . ×Ck is said to be monotonically 
increasing (or simply monotone) if f(x) ≤ f(x ' ) whenever 
x C x ' , and monotonically decreasing (or anti-monotone) if 
f(x) ≤ f(x ' ) whenever x C x ' . 

Definition 3. A function f : C → R is said to be super-
modular if 

' ' ' f(x ∧ x ) + f(x ∨ x ) ≥ f(x) + f(x ), (1) 

for every pair x and x ' in C, where x ∧ x ' is the meet (the 
greatest lower bound of x and x ' ), and x ∨ x ' is the join (the 
least upper bound). f is submodular if the reverse inequality 
in (1) holds for every pair x and x ' in C. 

Clearly f is submodular if and only if −f is supermodular. 
To show that a given function is supermodular, the following 
proposition will be useful. 

Proposition 1. A function f : C → R is supermodular 
if and only if, for any i ∈ [k], for any z ∈ Ci, and for any 
x ∈ C1 × . . . × Ci−1 × {z} × Ci+1 × . . . × Ck; the difference 

def i∂f (x, i, z) = f(x + e ) − f(x) 

as a function of x is monotonically increasing in x, where 
e i is the ith unit vector. 

When restricted on the chain product a + , for a ∈ L, 
the utility function defined in Section 2.1.2 is modular, that 
is, for x, x ' ∈ a +, equality (1) holds. Indeed, u(x ∧ x ' ) + 

' '	 ' u(x ∨ x ) = 
Lk di(min{xi, x i}) + 

Lk di(max{xi, x i}) = i=1	 i=1 
' 'Lk	 di(xi) + 

Lk di(xi) = u(x) + u(x ). The following i=1 i=1 
proposition will be used to establish that a certain combi­
nation of risk and utility is supermodular. 

Proposition 2. 

(i) The function g(x) = |ρ(x, Θ)|, over x ∈ a +, is super-
modular and monotonically increasing. 

(ii) Let	 p : a + → R+ be a monotonically decreasing su­
permodular function and q : a + → R+ be a non­
negative monotonically decreasing modular function. 
Then, h(x) = q(x)p(x), over x ∈ a + is monotonically 
decreasing supermodular. 

Proof. 

(i) Clearly g is monotonically increasing. Using the nota­
+tion of Proposition 1, with Ci = ai , we have 

This implies the supermodularity of g by Proposition 
1. 

(ii) There exist non-negative monotonically decreasing func­
' ' +	 ' tions w1, . . . , w n : a → R such that q(x) = 

Ln
i=1 wi(xi). 

Note that 

∂h(x, i, z) 

= h(x + e i) − h(x) = q(x + e i)p(x + e i) − q(x)p(x) ⎛	 ⎞ 

' ' i= wj (xj ) + wi(z + 1) ⎠ p(x + e ) − q(x)p(x)⎝t

j  =i 

k
(	 )

' ' ' i=	 
t

wj (xj ) + wi(z + 1) − wi(z) p(x + e ) 
j=1 

−q(x)p(x) 
' ' i=	 q(x)∂p(x, i, z) + (wi(z + 1) − wi(z))p(x + e ). (3) 

The anti-monotonicity of wi 
' implies that wi

' (z + 1) ≤ 
wi
' (z), while the supermodularity of p implies, by Propo­

sition 1, that the function partialp(x, i, z) is monoton­
ically increasing in x. This, combined with (3), the 
non-negativity and anti-monotonicity of wj 

' for all j, 
and the anti-monotonicity of p; implies in turn that 
∂h(x, i, z) ≥ ∂h(x ' , i, z), for x C x ' . The supermodu­
larity of h then follows from Proposition 1. 

Repeated application of Proposition 2 yields the following. 

Corollary 1. The function h(x) = Φa(x)(u(x))κ , over 
x ∈ a +, is supermodular. 

2.3.2 The Modified Model 
One other way to deal with the NP-hardness of the thresh­

old formulation is to use the following model which aggre­
gates both risk and utility into one objective function: 

Given a record a, it is required to find a generalization 
x ∈ a +, that maximizes the “Lagrangian” relaxation 

fa λ κ(x) := + (u(x)) , (4) 
ra(x) 

where λ ∈ R+ and κ ∈ Z+ are given parameters. Here we 
assume that the risk parameters wi = wi 

a are functions of 
a to reflect the dependence on the user owning the data 
record. We also use λ and κ as design parameters to control 
how much importance to give to utility maximization/risk 
minimization. 

Theorem 2. Assuming rational input, α ∗ = maxx∈a+ fa(x) 
+can be computed in polynomial time in 

Lk |a |, |θ|, and i=1	 i 
the bit length of the input weights. 

Proof. Write 

∂g (x, i, z)	 λ|ρ(x, Θ)| + Φa(x)(u(x))κ 

fa(x) =	 . 
i	 Φa(x)= g(x + e ) − g(x)
 

=
  {t ∈ θ | t x + e }

  −
  {t ∈ θ | t x}

 

i By the rationality of the input, the value of fa(x) for any  

x ∈ a is a rational number whose bit length is bounded 
=	

  {t ∈ θ | tj xj , 
+ 

by the bit length of the input. Thus, by binary search we 
for j = i and ti z, ti z + 1}  . (2) can reduce the problem of computing α ∗ into a polynomial 
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number (in the bit length of the input) of problems of the 
form: Given a constant α, determine if there is an x ∈ a + , 
such that fa(x) ≥ α. The latter problem can be solved by 
checking if 

max λ|ρ(x, Θ)| + Φa(x)(u(x))κ − αΦa(x) ≥ 0. 
+x∈a

Note that the function g(x) := λ|ρ(x, Θ)| + Φa(x)(u(x))κ − 
αΦa(x) is the sum of two supermodular functions and a 
modular function. It follows that g is supermodular and 
hence can be maximized over the chain product a + in poly­
nomial time. 

2.3.3 Working On a Ring Family 
Since it is easier to work on the 0/1-hypercube (and more­

over there are available software for maximizing supermod­
ular/minimizing submodular set-functions), we recall here 
how to reduce the optimization problem over a chain prod­
uct to one over the cube. 

By Birkhoff’s representation theorem (for e.g., [17, Chap­
ter II]), we may regard a chain product C as a sublattice of 
the Boolean lattice. More precisely, we consider the set of 
joint-irreducible elements 

J = {(1, 0, . . . , 0), (2, 0, . . . , 0), . . . , (h1, 0, . . . , 0), 

(0, 1, . . . , 0), (0, 2, . . . , 0), . . . , (0, h2, . . . , 0), . . . , 

(0, 0, . . . , 1), (0, 0, . . . , 2), . . . , (0, 0, . . . , hk )}, 
and, for x ∈ C, define S(x) := {y ∈ J : y C x}. Then a 
supermodular (respectively, submodular, or modular) func­
tion f : C → R gives rise to another supermodular (re­
spectively, submodular, or modular) function g : F → R, 
defined over the ring family F = {S(x) : x ∈ C} as 
g(S(x)) = f(x) (recall that a set family F is called a ring 
family if X, Y ∈ F ⇒ X ∩ Y, X ∪ Y ∈ F). 

Thus, we maximize a supermodular function on C by solv­
ing a maximization problem for a supermodular set-function 
over a ring family. 

Using known techniques (for e.g., [18, Chapter 10] and [32, 
Chapter 10]), the problem can be further reduced to maxi­
mizing a supermodular function over the hypercube 2J . For 
completeness, let us sketch the reduction from [32] here. For 
v ∈ J , denote by Nv the largest member of F not containing 
v. For X ⊆ J , define the closure X := S(∨x∈X x). Equiv­
alently, X is the smallest member in F that contains X. It 
is readily verified that 

X = 


 

S(v), Nv = 


 

S(u). 
v∈X u:v ∈Mu 

Let us now extend the function g : F → R into the function 
ḡ : 2J → R by setting 

ḡ(X) := g(X) + c(X) − c(X) for X ⊆ J , 

where c ∈ RJ is given by 

c(v) = max{0, g(Nv ∪ {v}) − g(Nv)} for v ∈ J . 

As shown in [32], the following holds: (1) ḡ is supermod­
ular, and (2) for all X ⊆ J , g(X) ≥ ḡ(X). In particular, 
X ∈ argmax ̄g implies X ∈ argmax g. Thus, we can maxi­
mize g over F by maximizing ḡ over the hypercube. Alter­
natively [18], we may also use the extension ḡ(X) = g(X) − 
K|X \ X|, for sufficiently large K > maxX⊆J ,v∈J g(X ∪ 
{v}) − g(X). 

2.4 An Approximation Algorithm 
When the utility threshold c is “large”, we can use convex 

optimization, as described in this section, to obtain a gen­
eralization of the given record a that approximately mini­
mizes the risk and is only within a constant from the utility 
threshold. We need a few more preliminaries first. 

The Lovász extension [18]: 
Let V be a finite set of size n, and F ⊆ 2V be a ring family 
over V , such that ∅, V ∈ F . We assume that the family F 
is defined by a membership oracle, that is an algorithm that 
can decide for a given S ⊆ V whether S ∈ F or not. For 
S ⊆ V , denote by χ(S) ∈ {0, 1}V the characteristic vector 
of S, that is, χi(S) = 1 if and only if i ∈ S. Let us denote 
by P (F) := conv{χ(S) : S ∈ F} the convex full of the 
characteristic vectors of the sets in F . Given x ∈ [0, 1]V , 
and writing Ui(x) := {j : xj ≥ xi}, for i = 1, . . . , n, one 
can easily check that x ∈ P (F) if and only if Ui(x) ∈ F 
for all i ∈ [n]. Thus, a membership oracle for P (F) can be 
obtained from the given membership oracle for F . 

Given a set function f : F → R over F , the Lovász 
extension f̂ : P (F) → R of f , is defined as follows: For 
any x ∈ P (F), assuming without loss of generality, that 
x1 ≥ x2 ≥ · · · ≥ xn and defining (throughout) xn+1 := 0, 

n 

f̂(x) = 
t

(xi − xi+1)
(
f({1, . . . , i}) − f(∅)) + f (∅). 

i=1 

Equivalently, f̂ = E[f ({i : xi > λ}) − f(∅)] + f(∅) for a ran­
domly chosen λ ∈ [0, 1]. It is known (for e.g., [18, chapter 
10], and [32, Chapter 10]) that f is supermodular (respec­

tively, submodular) over F , if and only if f̂  is concave (re­
spectively, convex) over P (F). In particular, the extension 
of a modular function is linear. 

Randomized rounding of a vector in the extension: 
Let f : F → R be a set function and f̂  be its Lovász ex­
tension. Given a vector x̂ from P (F), we can get back 
a point in the discrete domain F as follows. Assuming 
x̂1 ≥ x̂2 ≥ · · · ≥ x̂n, for i = 1, . . . , n − 1, we return the 
characteristic vector of the set {1, . . . , i} with probability 
x̂i − x̂i+1, return the vector 1 of all ones with probability 

¯ x̂n, and return the vector 0 of all zeros with the remaining 
¯ probability 1 − x̂1. Let RR(x̂) be the random set returned 

by this procedure. It is easy to see that if X := RR(x̂), 
then E[f(X)] = f̂(x̂). Now we can state our result for this 
section. 

Theorem 3. Consider a record a in the database. Let 
ν(k) := max + u(x) and suppose that the utility threshold x∈a

c = θ · ν(k), for some constant θ ∈ (0, 1). Then, there is 
an algorithm that, for any constants E > 0, σ1 ∈ (0, 1), 

1−θ 1and σ2 > 1 such that + < 1; outputs in expected 
1−θσ1 σ2 

polynomial time an element x ∈ a + such that 
[ 

1 
] 

1E ≥ and u(x) ≥ σ1c, 
ra(x) ∗σ2(1 + E)z 

where z ∗ = minx/∈a+ , u(x/)≥c r a(x). 

Proof. Let J a and Fa be the set of joint-irreducible el­
ements of a + and the corresponding ring family defined in 
Section 2.3.3, respectively. Thus, the functions Φa(·), u(·) 
and T (·) := |ρ(·, Θ)| can also be thought of as functions over 
the ring family Fa ⊆ 2J a 

. Let Φ̂a u, T̂ : P (Fa, ˆ ) → R+ be the 
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Lovász extensions of these functions. Moreover, let φl(k) := 
minx∈a+:Φa(x)>0 Φ

a(x) and φu(k) := maxx∈a+ Φa(x), and 
φu (k)for i = 0, 1, 2, . . . , U := llog(1+c) l, define τi := φl(k)(1+
φl(k) 

E)i . Then, we consider the following set of problems, for 
i = 0, 1, 2. . . . , U : 

zi 
∗ := max T̂ (x) subject to û(x) ≥ c, Φ̂a(x) ≤ τi (5) 

over x in the set P (F) (given by a membership oracle). 
Since Φa , u are modular and T is supermodular, it follows 
that (5) is a concave maximization problem over a convex 
set given by a membership oracle, and hence can be solved 
in polynomial time [5]. Once we get an optimal solution x̂i 

to (5) we return the randomized rounding Xi := RR(x̂i), 
which then corresponds to an element x i ∈ a + . If it happens 

i Φa ithat u(x ) < σ1c or (x ) > σ2τi, then we repeat the 
randomized rounding step. Finally, among all the obtained 
rounded solutions, we return the solution x that maximizes 
1/ra(x i). The details are given in Algorithm 1. 

Algorithm 1 Approx(a, E, θ, σ) 

Input: a record a ∈ D, real numbers E, θ, σ1 ∈ (0, 1), and 
1−θ 1σ2 > 1 such that + < 1

1−θσ1 σ2 

Output: a point x ∈ a + 

1. for i ∈ {0, 1, . . . , U} do 
2. let x̂i be an optimal solution to (5) 
3. repeat 
4.	 Xi := RR(x̂i) and let x i := ∨x∈Xi x be the corre­

sponding element in a + 

5. until u(x i) ≥ σ1c and Φa(x i) ≤ σ2τi 

6. return x := argmaxi 
1 

ra(xi) 

Now we argue about the quality of the solution. We begin 
with some observations: For all i, (1) E[T (x i)] = T̂ (x̂i) = 
zi 
∗ , (2) E[u(x i)] = û(x̂i) ≥ c, and (3) E[Φa(x i)] = Φ̂a(x̂i) ≤ 

τi; these follow from the properties of the randomized round­
ing procedure, and the feasibility of x̂i for (5), and imply by 
Markov’s Inequality1 that 

i i 1 − θ 1 
β := Pr[u(x ) ≥ σ1c and Φa(x ) ≤ σ2τi] ≥ 1− − . 

1 − θσ1 σ2 

It follows that the expected number of iterations until the 
condition in step 5 is satisfied is at most 

β 
1 . Since u(x i) ≥ 

σ1c, for all i, the bound on the utility follows: u(x) ≥ σ1c. 
Now it remains to bound the expected risk. Let x i be the 
element computed in step 4 at the ith iteration of the algo­

∗	 + a ∗ ∗ rithm, and x be an element in a such that r (x ) = z . 
Choose i ∈ {0, 1, . . . , U} such that τi−1 ≤ Φa(x ∗ ) ≤ τi. Note 
that 

Φa ∗ 
i ∗ (x ) τi−1E[T (x )] = zi ≥ ≥ , 

z ∗ z ∗ 

∗	 Φ̂asince x is feasible for (5) (as and û are extensions of 
Φa and u, and hence agree on the elements of a +). On 
the other hand, since Φa(x i) ≤ σ2τi (with probability 1), it 
follows that 

i i
[ 

T (x ) 
] [ 

T (x ) 
] 

τi−1 1E ≥ E ≥ = . (6)
Φa(xi)	 ∗ ∗σ2τi σ2τiz σ2(1 + E)z 

1Let Y be a random variable taking non-negative values. 
Then, Markov’s inequality states that for any y > 0, Pr[Y ≥ 

E[Y ]y] ≤	 
y . In particular, if Y ' is a random variable taking 

values bounded by M , then Pr[Y < y] ≤ M −E[Y ] .
M −y 

By our choice in step 6, we have E[1/ra(x)] ≥ E[1/ra(x i)], 
and the theorem follows. 

2.5 A Genetic Search Algorithm 
In [13], a record with all its possible generalizations form 

a complete lattice wherein the record itself constitutes the 
least element and (⊥, ⊥, · · · , ⊥) constitutes the greatest el­
ement. Fig. 3 shows an example of a generalization lattice 
formed on a two-attribute record. 

Figure 3: 2D lattice. 

one 

There are three types of special nodes in the lattice: (1) 
The feasible node is the node that satisfies the utility con-
straint, (2) the frontier node is a feasible node that has at 
least one infeasible immediate parent, and (3) the optimal 
node is a frontier node that has the least risk. A feasible 
path is the path from the lattice greatest element to a feasi-
ble node. The goal is to identify the optimal path. Moving 
one step down a path means we specialize it based on only 

attribute in the record by replacing the value of this 
attribute with its direct specialization. 

 

 

 

 

 

 

 

 

 

 <⊥ , ⊥> 

a1 a2 

frontier node 

Figure 4: A path in the genetic algorithm. 

In this section we transform the optimization problem 
into an analogous genetic problem. Genetic algorithms [31] 
represent an approximate method for solving optimization 
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problems. We define mutations and crossovers of chromo­
somes in the context of data privacy and use it to determine 
an approximate optimal node. The basic unit of the algo­
rithm is a path in the lattice from the most general node 
(⊥, ⊥, · · · , ⊥) to a frontier node. This path is represented 
as a string S of attribute names ai. Having the attribute ai 

in the jth position of S indicates an immediate specializa­
tion of the record in hand with respect to attribute ai. For 
simplicity of notation, and throughout the rest of this sec­
tion, we use integers to represent different attribute rather 
than the actual attribute names. For example, Fig. 4 shows 
the lattice path corresponding to S = 12212. Algorithm 2 
shows the application of genetics to solve our optimization 
problem. 

Algorithm 2 Genetic 

Input: a database A record a = (a1, a2, · · · , ai, · · · , ak), 
a utility threshold c, and risk and utility functions 
r(a), u(a), respectively 

Output: The optimal node a ∗ 

1. start with random probing to collect initial population 
P 

2. compute the fitness for each element v ∈ P 
3. call a ∗ the optimum node 
4. while accuracy is low do 
5. perform Mutation(P) 
6. perform Crossover(P) 
7. add new immigrants 
8. compute a ∗ 

9. return a ∗ 

The analogy between genetic algorithm and the optimiza­
tion problem in hand is described as follows. Any possible 
solution is a lattice frontier node. A a path on the lattice 
from (⊥, ⊥, · · · , ⊥) to such a node is treated as a blueprint 
for this specific solution and is analogous to a chromosome. 
Each lattice node has both utility and risk associated with 
it. We assume that, without loss of generality, the problem 
is to minimize the risk. The risk associated with each node 
will be used as a quality indicator of such a node and will 
be referred to as a fitness function. 

Starting with a random population of possible solutions, 
basic genetic operations are applied to generate a new pop­
ulation. At each step, the fitness function is used to rank 
individual solutions. The process continues until a suitable 
solution has been found or a certain number of steps have 
passed. The basic genetic operations include selection, mu­
tation, crossover, and creating new immigrants. We briefly 
explain how these operations are deployed in the context of 
privacy risk optimization. A comparison between the per­
formance of this genetic search algorithm and the exact al­
gorithm in terms of risk, utility, and time is provided in 
Section 4. 

Probing: An initial population may be determined by ran­
domly selecting a set of chromosomes to start with. Our al­
gorithm applies random probing by generating random fea­
sible paths to collect the initial set of nodes. 

Selection: In genetics, chromosomes with advantageous 
traits tend to contribute more offsprings than their peers. 
The algorithm mocks this property by associating a rank 
to each solution that is in direct proportion to its utility 
and making those solutions with high rank more likely to be 

selected in the next step. 
Mutation: Genetic mutations are changes in the DNA se­

 

 

 

 

 

 

 

 

 

 <⊥ , ⊥> 

a1 a2 

frontier node 

(a) 

 

 <⊥ , ⊥> 

a1 a2 

frontier node 

(b) 

Figure 5: An individual solution (a) before muta­
tion, (b) after mutation. 

quence of a cell. We apply this notion to our scheme by 
altering the one attribute that we specialize on towards the 
middle of the sequence of attributes that leads to a frontier 
node. Fig. 5 depicts how a single mutation is represented in 
the optimization problem. Two special cases arise when the 
mutated path (1) goes beyond a frontier node, or (2) never 
reaches a frontier node. We address (1) by ending the path 
as soon as it hits a frontier node and (2) by randomly select­
ing the remaining part of the path that leads to a frontier 
node as in Fig. 6. 
Crossover: Crossover is a genetic operator that combines 
two chromosomes (parents) to produce a new chromosome 
(offspring). The idea behind crossover is that the new chro­
mosome may be better than both of the parents if it takes 
the best characteristics from each of the parents. The algo­
rithm presents crossover in our scheme by having two paths 
interchange their second half. That is, the algorithm swaps 
the second half of their specialization sequences. Fig. 7 de­
picts how crossover is represented in the optimization prob­
lem. We deal with the two special cases mentioned before 
with mutation the exact same way. 
New Immigrants: In our genetic algorithm, and at the 
end of each iteration, the algorithm makes sure that a new 
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a1 a2 

(b) 
 

 

 

 

 

 

 

 

 

 <⊥ , ⊥> 

a1 a2 

(c) 

Figure 6: Special cases of mutation. 

population is added to introduce new search space that guides 
the search in different directions. 

3.	 TOWARDS SATISFYING DIFFERENTIAL 
PRIVACY 

Differential privacy [10, 11] provides a mathematical way 
to model and bound the information gain when an individual 
is added (removed) to (from) a data set D ⊆ L. Let D−a 

denote the dataset D after removing the record a. 

Definition 4. Differential Privacy 
A randomized algorithm A : D → 2L is said to satisfy the 

(E, δ)-differential privacy if 

Pr[A(D) ∈ G] 
e −c ≤ ≤ e c , (7)

Pr[A(D−a) ∈ G] 

with probability ≥ (1 − δ) for any dataset D, any record 
a ∈ D, and any subset of outputs G ⊆ Range(A). 

3.1	 Challenges 
For every record a in the database D, we define an “aggre­

gate utility” function fa as in (4). Our ultimate goal is to 
design a (randomized) mechanism A : D → 2L that outputs 
a set G ⊆ L that satisfies the following 3 conditions: 

(C1) Complete cover: for each a ∈ D, there is a g a ∈ A(D) 
such that g a generalizes a, that is, g a C a (with prob­
ability 1); 

(c)	 (d) 

Figure 7: Crossover: (a) Parent 1, (b) Parent 2, (c) 
Child 1, (d) Child 2. 

(C2)	 Differential privacy: A(D) satisfies the (E, δ)-differential 
privacy, for some given constants E and δ; 

(C3) Utility maximization: the average expected utility 
  

1 aE
t 

f a(g ) (8)|D| 
a∈D 

is maximized. 

We may also consider the threshold version wherein the 
function fa above is replaced by r a and, therefore, the con­
ditions (C1) and (C3) are replaced by: 

a(C1 ' )	 Complete cover: for each a ∈ D, there is a g ∈ A(D) 
such that g a C a and u a(g a) ≥ c with probability 1; 

(C3 ' ) Risk minimization: the average expected risk 
 

1 a a

 
E

t 
r (g )|D| 

a∈D 

is minimized. 

Some further notation: We define h to be the maxi­
mum possible height of the k VGH’s. As before, we as­
sume that φl(k) ≤ Φa(x) ≤ φu(k) and u(x) ≤ ν(k) for all 
a ∈ D and all x ∈ a + , and some functions φl(k), φu(k) 
and ν(k) that depend only on the dimension k. We as­
sume also that the database is large enough: |D| ≥ ν(k)κ , 
where κ is the constant defined in (4). For L ' ⊆ L, we de­
note by Optimum(D, L) the maximum average utility (8) 
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when each generalization g is chosen from the sublattice 
L ' . We define fmax := maxa∈D, x∈a+ fa(x), and rmax := 

a λ|D| 
a∈D, max x∈a+ r (x). By our assumptions, fmax ≤ +

φl(k) 

ν(k)κ , rmax ≤ φu(k), and hence, fmax ≤ tf (k) and rmax ≤|D| 
tr (k) are bounded constants that depend on the dimension, 
but not on the size of the database. 

3.2 t-Frequent Elements 
Ideally, one would like to generalize the database records 

with two goals in mind: (1) maximize the total utility ob­
tained from the generalization, and (2) satisfy differential 
privacy. Unfortunately, the following example shows that it 
is not possible to achieve the two objectives in general. 

Example 1. Consider a database D whose attributes are 
generalized through k VGH’s. The ith VGH is of the form: 
Li = {⊥, ai, bi 

1, b2 
i , . . . , bi

h} with only the relations ⊥ Ci ai 

and ⊥ Ci i Ci i Ci · Ci i . Suppose that there is only b1 b2 bh 

one record a0 in D whose attributes are a1, . . . , ak, while all 
other records have the ith attribute belonging to the chain 
{b1 

i , b
2 
i , . . . , b

h
i } for all i. 

Let G := {γa : a ∈ D} be a set of generalizations such that 
γa0 ∈ {(ai, x−i) : x−i ∈ 

I
j=i Lj }. Then, for any mech­

anism A, Pr[A(D−a0 ) ∈ G] = 0 since none of the records 
in D−a0 have attribute ai, for some i. Thus, in order to 
satisfy (7), we must have Pr[A(D) ∈ G] ≤ δ, implying that 
the “trivial” generalization γa0 = ⊥ must be chosen for a0 

with probability at least 1 − δ. In particular, if the utility of 
a0 is very large compared to the maximum average utilities 
of all other records, then only a fraction δ of this utility can 
be achieved by any differentially private mechanism. 

Examining the above example, we observe that the main 
obstacle for obtaining differential privacy is that some of 
the elements in L (such as a0 in the example) are not gen­
eralizing “enough” number of records. This motivates us 
to consider only those elements in L which are generalizing 
many records in D. More formally, following [2, 12], we say 
that an element x ∈ L is t-frequent for a given integer t with 
respect to the given database D, if it generalizes at least t 
records in D: |ρ(x, D)| ≥ t. 

3.3 The Mechanism 
We will apply the framework of McSherry and Talwar [30]. 

For a ∈ D and x ∈ a +, define 

c/fa(x)/|D| / e 
qf

c
a (x) = , or/f a(x/)/|D| L

x/∈a+ ec

/−c r a(x)/|D| / e 
qr

c
a (x) = . (9)−c/ra(x/)/|D| L

x/∈a+ e

This distribution has the property that it tends to give pref­
erence to elements with larger utility (hence, approximately 
maximizing the utility), but in such a smooth way that the 
output of the mechanism does not change much if the size of 
the database changes by a constant (hence, satisfying differ­
ential privacy). Note that, since we assume below that the 
external database Θ = D, fa(·) and r a(·) are functions of D, 
therefore we sometimes refer to them as fa,D (·) and r a,D(·). 
However, assuming that Θ is independent of D, then we may 
assume that r a(·) is independent of D. 

For convenience, we assume in the algorithm that ⊥ ' is 
another copy of ⊥. We introduce a parameter β such that 

β ≥ e −c . We define η(k) := 2 
( 

λ + ν(k)κ 
) 

and choose t
φ(k) |D| 

such that 
/c tf (k)

 
2 
 

2 
 

βhk e 
 

t > max ln( ) + k ln h ,	 , (10)
βτ1

2 δ (1 − β)(1 − τ1)

for some constant τ1 ∈ (0, 1), where δ is the error toler­
ance specified in Definition 4. It is worth noting that the 
right hand side of (10) does not depend on |D| and, hence, 
choosing for instance t = θ|D|, for some constant θ ∈ (0, 1), 
would satisfy (10) (assuming |D| is sufficiently large). In 
case of risk minimization conditions (C1 ' ) and (C3 ' ), we de­(	 )
fine η(k) := φu(k) 1 + 1 . 

t(t−1) (|D|−1)(t−1) 

Algorithm 3 shows the mechanism which initially sam­
ples each record with probability 1 − β (step 3). Then for 
each sampled record a ∈ D, it outputs an element from the 
generalization a + according to the exponential distribution 
(9) defined by the utility. Note that the sampling step 1 is 
necessary, or otherwise the outputs on two databases with 
different sizes will be different with probability 1. 

In the next section, we show how the sampling step 5 can 
be performed in polynomial time, when the dimension is not 
fixed (i.e., it is part of the input). 

Algorithm 3 A(D, β, E, t) 

Input: a database D ⊆ L, a number β ∈ (0, 1), an accuracy 
E, and a frequency threshold t 

Output: a subset G ⊆ L satisfying (C1) 
1. find the sublattice L ' ⊆ L of t-frequent elements 

c+ln β2. let E ' := 
3η(k)(1−β) 

3. sample a set Is ⊆ D such that Pr[a ∈ Is] = 1 − β for all 
a ∈ D (independently) 

4. for all a ∈ Is do /c5.	 sample x ∈ a + ∩ L ' with prob. qfa (x); 
(or sample x ∈ a + ∩ {g ∈ L ' : u(g) ≥ c} with prob. 
/

qr
c
a (x) in case of the threshold version) 

6.	 set g a := x 
a7. return the (multiset) {⊥ ' } ∪ {g : a ∈ Is} 

Clearly, the output of the algorithm satisfies (C1) (or 
(C1 ' ) for the threshold version). We show that it satisfies 
(C2) and (in some cases) approximately (C3) (or (C3 ' ) for 
the threshold version). 

Theorem 4. 

(i) A(D) satisfies (C2); 

(ii)	 A(D) satisfies (C3) (respectively, (C3 ' )) approximately: 
the expected average utility obtained is at least 
(1 − β)(1 − 3 

; )Optimum(D, L ' ) whenever the optimum 

average utility satisfies Optimum(D, L ' ) ≥ ;k
c
|D| ln(hi)./ 

Outline of the proof and some additional notation: 
To show that (C2) holds, it is enough to consider an output 
G (which is a set of generalizations some of which are just 
the trivial ⊥ ' ) of the mechanism, and show that for some 
fixed record a0, 

−c Pr[A(D) = G] c e	 ≤ ≤ e (11)
Pr[A(D−a0 ) = G] 

holds except when the size of G (and hence Is) is “too large”, 
+or there is an element in a0 ∩ L ' that does not generalize 
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large enough number of records from the set Is sampled in Similarly, we can bound the sensitivity of the risk function 
step 3. By Chernoff bounds we can bound the probability ΔRI , as follows: 
of the first event, since the expected size of the set Is is (1 − 
β)m, where m := |D|, and the probability that it deviates 
much from this value goes down exponentially with m. To 
bound the probability of the second event, we use the fact 
that each element in L ' is t-frequent and hence, it is expected 
to generalize many of the sampled records in Is. Chernoff 
bounds can be then applied to get the desired bound on the 
probability. 

To show that (11) holds, we condition on the chosen sub­
set Is, and use the fact proved in [30] that the exponential 
mechanism applied to the vector of variables in Is satis­
fies differential privacy (i.e., an inequality similar to (11)). 
More precisely, for a subset I ⊆ D, and a vector γ ∈ SI := I

a∈I |a + ∩ L ' |, we denote by γI := (γa)a∈I the restriction 
of γ to I and define the function F I (·, D) : SI → R+ by 

I 1 
fa,DF (γ, D) := 

t 
(γa). |D| 

a∈I 

Define the sensitivity of F I as 
I I IΔF := max max |F (γ, D) − F (γ, D ' )|, 

D,D/ γ∈S 

where the maximum is over all databases D and D ' that 
differ in size by at most 1. Similarly, we define the sensitivity 
of the risk function ΔRI := maxD,D/ maxγ∈S |RI (γ, D) − 
RI (γ, D ' )|, where RI (γ, D) := 1 r a,D (γa).|D| 

L
a∈I 

Lemma 1 (Theorem 6 in [30]). For any a0 ∈ D, I ⊆ 
D \ {a0} and G ⊆ SI , 

−2c/ ΔF I Pr[g I (D) ∈ G] 2c/ΔF I 
e ≤ ≤ e , (12)

Pr[gI (D−a0 ) ∈ G] 

where ΔF I is the sensitivity of F I . 

Thus, for the proof of (C2), we need to show that the sensi­
tivity is small. 

|I| |I|Lemma 2. ΔF I ≤ η(k) (respectively, ΔRI ≤ η(k) ).|D| |D| 
Proof. Assuming, without loss of generality, that |D| = 

|D ' | + 1, 

|F I (γ, D) − F I (γ, D ' )| 
1 

fa,D 1 
f a,D = 

t 
(γa) − 

t 
(γa)|D| |D'|

a∈I a∈I 

1 λ|ρ(γa , D)| κ
( t 

+ u(γa
= |D| Φa(γa)
)


a∈I 

1 λ|ρ(γa , D ' )| κ− 
t 

+ u(γa)|D'| Φa(γa)
a∈I 

1 t λ(|ρ(γa , D)| − |ρ(γa , D ' )|)≤ |D| Φa(γa)
a∈I 

1 λ|ρ(γa , D ' )| κ + 
t 

+ u(γa) , (13)|D| · |D'| Φa(γa)
a∈I 

where κ and λ are the constants defined in (4). Using 
ρ(x, D) − ρ(x, D ' ) ≤ 1, |ρ(x, D ' )| ≤ |D ' |, Φa(x) ≥ φl(k), 
and u(γa) ≤ ν(k) in (13); we can bound ΔF I as follows: 

I 2|I| λ ν(k)κ |I|
ΔF ≤ + = η(k) . |D| φl(k) |D| |D| 

|RI (γ, D) − RI (γ, D ' )| 
1 1a,D a,D = 
t 

r (γa) − 
t 

r (γa)|D| |D'|
a∈I a∈I 

1 Φa(γa) 1 Φa(γa) 
= 

t 
− 

t 

|D| |ρ(γa , D)| |D'| |ρ(γa , D' )|
a∈I a∈I 

1 1 ≤ 
t 

Φa(γa) − |D'| · |ρ(γa , D' )| |D| · |ρ(γa , D)|
a∈I 

1 ≤ 
t 

Φa(γa) 
(|D| − 1)(|ρ(γa , D)| − 1)

a∈I 

1 − |D| · |ρ(γa , D)| 
|D| + |ρ(γa , D)| − 1 

= 
t 

Φa(γa) |D| · |ρ(γa , D)|(|D| − 1)(|ρ(γa , D)| − 1)
a∈I 

implying that 

I |I| 1 1 |I|
ΔR ≤ φu(k) + = η(k) . |D| t(t − 1) (|D| − 1)(t − 1) |D| 

For x ∈ a +0 ∩L ' , denote by jx the number of copies of x in 
G (recall that G is a multiset). We further use the notation 
G \{⊥ ' , x} to mean multiset obtained by deleting ⊥ ' and all 
copies of x from G, and I(G) to mean the set Is selected in 
step 3, resulting in the output G. 

Proof. (of Theorem 4) 
We will consider, without loss of generality, the case of aggre­
gate utility functions fa,D, and point out the places where 
the proof has to be modified to deal with the threshold for-

amulation (C1 ' and C3 ' ). Let g(D) := (g (D))a∈D be a ran­
dom variable in which the component g a(D) indicates the 
element sampled in step 5 of Algorithm 3 when consider­
ing the record a ∈ D. For a subset I ⊆ D, we denote by 
g I (D) := (g a(D))a∈I the restriction of g(D) to I, and de­

1 fa,D afine F I (g(D), D) := |D| 
L

a∈I (g (D)). We will write 

F (g(D), D) as F D (g(D), D). Since, for a = a ' , the vec­
/

tors g a(D) and g a (D) are sampled independently, the vector 
g I (D) is a random variable defined over the product space 

/SI I cwith probability distribution: Pr[g = γ] = q (γ),F I ,D 

for γ = (γa)a∈I ∈ SI , where 

c/F I (γ,D)/ / ec cqF I (γ) := 
� 

qf a,D (γ
a) = . ,D ec/F I (γ,D) 

a∈I 

L
γ/∈SI 

Let further Xa ∈ {0, 1} be a random variable that takes 
value 1 if and only if a ∈ D was picked in the random set 
Is in step 3. For I ⊆ D, let XI = 

I
Xa I (1 − Xa).a∈I a∈I 

βm−iThen, Pr[XI = 1] = Pr[Is = I] = (1 − β)i , where i 
is the size of I and m = |D|. For a multiset G of vectors 
from L, denote by πI (G) the set of unordered permutations 
γ ∈ SI such that γa ∈ a + for all a ∈ I. 
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(i) Fix an output G of the algorithm of size i + 1. Then, 

Pr[A(D) = G] 
I I = 

t 
Pr[A(D) = G | X = 1] Pr[X = 1] 

I⊆D: |I|=i 

= P1(i, D) + P2(i, D), (14) 

where 

I IP1(i, D) = 
L
I⊆D: |I|=i Pr[g (D) ∈ π (G \ {⊥ ' })] 

a0 ∈I 

βm−i ·(1 − β)i (15) 
I IP2(i, D) = 

L
I⊆D: |I|=i Pr[g (D) ∈ π (G \ {⊥ ' })] 

a0∈I 

βm−i ·(1 − β)i . (16) 

Similarly, 

Pr[A(D−a0 ) = G] = 
I It 

Pr[g (D−a0 ) ∈ π (G \ {⊥ ' })] 
I⊆D−a0 : |I|=i 

iβm−1−i · (1 − β) . 

We will derive (C2) from the following claims 1, 2 and 3 
below. 

Claim 1. Pr[A(D) = G] ≥ e −c Pr[A(D−a0 ) = G], pro­
vided that 

E + ln β 
i ≤ i1 := m. (17)

2E'η(k) 

Proof. Using (14), (15), and Lemmas 1 and 2, we get 

Pr[A(D) = G] ≥ P1(i, D) 
−2c/η(k) i 

m≥ 
t 

e 
I⊆D\{a0}: |I|=i 

· Pr[g I (D−a0 ) ∈ πI (G \ {⊥ ' })] 
iβm−i ·(1 − β)


≥ e −c Pr[A(D−a0 ) = G].
 

Claim 2. Let t ' = (1 − τ1)βt. Then,
 

Pr[A(D) = G] ≤ e c Pr[A(D−a0 ) = G],
 

provided that 

|ρ(x, D) \ I(G)| ≥ t ' + 1 ∀x ∈ a + ∩ L ' , (18)0 

E 
i ≤ i2 := m, and (19)

2E'η(k) 

( 
ln(( 1 − 1)t ' ) + E − k ln h − E ' fmax 

)
i ≤ i3 := β m 

m + 1. 
2E ' η(k) 

(20) 

Proof. 

a0 a0P2(i, D) = 
t 

P2(i, D | g = x) Pr[g = x], 
+ x∈a0 ∩L/ 

where 

P2(i, D | g a0 = x) = 
I I a0

t 
Pr[g (D) ∈ π (G \ {⊥ ' }) | g = x] 

I⊆D: |I|=i
 
a0∈I
 

iβm−i(1 − β) . 

Then it suffices to show that 

P1(i, D) ≤ βec Pr[A(D−a0 ) = G], and 

P2(i, D | g a0 = x) ≤ (1 − β)e c Pr[A(D−a0 ) = G].(21) 

The first bound in (21) follows using (15), Lemmas 1 and 
2, since 

i2c/η(k) 
mP1(i, D) ≤ 

t 
e 

I⊆D\{a0}: |I|=i 

· Pr[g I (D−a0 ) ∈ πI (G \ {⊥ ' })] 
iβm−i ·(1 − β)

≤ βec Pr[A(D−a0 ) = G], 

assuming (19) holds. 

We can expand P2(i, D | g a0 = x) as follows: 

P2(i, D | g a0 = x) = 
Jt t 

Pr[g (D) = {x, . . . , x}] 
I⊆D\{a0} J⊆I 
|I|=i−1 |J |=jx 

I\J I\J iβm−i · Pr[g (D) ∈ π (G \ {⊥ ' , x})(1 − β) , 
2c/η(k) J 

m≤ e 
i−1 t t 

Pr[g (D−a0 ) = {x, . . . , x}] 
I⊆D\{a0} J⊆I 
|I|=i−1 |J |=jx 

I\J I\J · Pr[g (D−a0 ) ∈ π (G \ {⊥ ' , x})] 
iβm−i ·(1 − β) , (22) 

where the inequality follows from Lemmas 1 and 2. On the 
other hand, 

Pr[A(D−a0 ) = G] = 
a

t t t 
Pr[g (D−a0 ) = x] 

I⊆D−a0 
J ⊆I a∈D−a0 \I
 

|I|=i−1 |J |=jx
 

· Pr[g J (D−a0 ) = {x, . . . , x}] × 
I\J I\J · Pr[g (D−a0 ) ∈ π (G \ {⊥ ' , x})] 

iβm−1−i ·(1 − β) . (23) 

Comparing (22) and (23), it is clear that the second inequal­
ity in (21) holds if 

i−12c/η(k) c aβe m ≤ (1 − β)e 
t 

Pr[g (D−a0 ) = x], (24) 
a∈D−a0 \I 

for all sets I ⊆ D \ {a0} of size i − 1, such that I = I(G). 
/

Note that if x C a, then by the definition of qf
c
a (x), we have 

a 1 
Pr[g (D−a0 ) = x] ≥ , (25)

hkec/fmax/m 

since 0 ≤ fa(x) ≤ fmax. Using (18), we get that the right 
hand side of (24) is at least 

(1 − β)t ' e c 

hkec/fmax/m 
, 
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which is at least the left hand side of (24), provided that 
(20) holds. 

Now it remains to bound the probability that any of the 
events (17), (18), (19), or (20) occurs. 

Claim 3. Let 

G1 D := {G ∈ (L ' ) : |I(G)| > min{i1, i2, i3} + 1}, 
G2 D ' := {G ∈ (L ' ) : |ρ(x, D) \ I(G)| < t 

for some x ∈ a + ∩ L ' }.0 

Then, Pr[A(D) ∈ G1 ∪ G2] ≤ δ. 

Proof. By the choice of t, min{i1, i2, i3} = i1. Let X := 
|Is| = 

L
a∈D−a0 

. By Chernoff bounds [8], with E[X] =Xa 

c+ln β(1 − β)m, and τ2 := − 1 > 0, we have 
2c/η(k)(1−β) 

Pr[A(D) ∈ G1]
 

= Pr[|Is| > min{i1, i2, i3} + 1]
 
E + ln β
 ≤ Pr[X > m] = Pr[X > (1 + τ2E[X])]
2E'η(k) 

τ (1−β)m 
e δ ≤ ≤ ,

(1 + τ2)1+τ2 2 

for sufficiently large m. 
+For x ∈ a0 ∩ L ' , let Y x = 

L
(1 − Xa). Then,a∈ρ(x,D)

E[Y x] ≥ βt, since x ∈ L ' . It follows by Chernoff bounds 
that 

Pr[A(D) ∈ G2] = Pr[∃x ∈ a + ∩ L ' : |ρ(x, D) \ Is| ≤ t ' ]0 

≤ 
t 

Pr[Y x ≤ (1 − τ1)βt] 
+
0x∈a ∩L/ B/⊆B 

≤ 
t 

Pr[Y x ≤ (1 − τ1)E[Y x]] where q̂(B ' ) = 
J
x∈B/ q̂(x)dx, and δ ' is a given desired accu­

1 
/ ln( Optimum(D,L/)|SD |provided that t ≥ ), where 

c t|St |
Optimum(D, L ' ) := maxγ∈SD F (γ, D) is the maximum util­

ity, and St = {x ∈ SD : g(D) ≥ Optimum(D, L ' ) − t}. Us-
Optimum(D,L/)ing |St| ≥ 1 and |S| ≤ hk|D|, and setting t = ,

; 
we obtain 

1 a 1 aE 
t 

fa(g (D)) = E 
t 

Xafa,D (g (D))|D| |D| 
a∈D a∈D 

≥ (1 − β)(Optimum − 3t) 
3 ≥ (1 − β)(1 − )
i 

·Optimum(D, L ' ), (26) 

provided that Optimum(D, L ' ) ≥ ;k
c
|D| ln(hi)./ 

3.4 Sampling 
In this section we consider the problem of sampling from 

an exponential distribution defined by (9). We start with a 
few preliminaries. 

Sampling from a log-concave distribution over a con­
vex body: 
Let B be a convex set, and q : B → R+ be a log-concave den­
sity function, that is, log q is concave over B. For instance, 

/
the density function qf

c
a (x) defined in (9) is log concave. 

It known [3, 28, 14] that we can sample from B according 
to such a distribution q approximately in polynomial time. 
More precisely, there is polynomial-time algorithm that sam­
ples a point x ∈ B with density q̂ : B → R+, such that 

q̂(B ' ) q(B ' ) ' sup − ≤ δ , (27) 
q̂(B) q(B) 

racy (q(B ' x∈a +0 ∩L/ ) could be defined similarly.) We will ignore the 
representation on B and q, since for our purposes, both are 
given explicitly. We only require that q has a polynomial bit-

t 
e −τ2

1 E[Y x]/2 ≤ hk −τe 
2
1 βt/2≤ 

+
0 ∩L/ length representation, that is, log(maxx∈B f(x)/ minx∈B f(x))x∈a 

δ ≤ ,
2 

by our choice of t. 

(ii) Define the random variable 

1 
fa,D aF (X, g(D), D) := 

t 
Xa (g (D)). |D| 

a∈D 

Note that, 

1E[F (X, g(D), D) | g a(D)] = 
t 

E[Xa]fa,D (g a(D))|D| 
a∈D 

1 
fa,D a= (1 − β) 

t 
(g (D)). |D| 

a∈D 

Thus, 

E[F (X, g(D), D)] = E[E[F (X, g(D), D) | g a(D)]] 

= (1 − β)E[F (g(D), D)], 

where the last expectation is over the elements γ ∈ SD , 
c/F (γ,D)drawn with probability proportional to e . Using 

Theorem 8 in [30], we obtain 

E[F (g(D), D)] ≥ Optimum(D, L ' ) − 3t, 

is bounded by a polynomial in the input size. Note also that 
the running time of the sampling algorithm depends polyno­
mially on log 

δ
1 
/ , so we can set δ ' to be exponentially small 

in |D|. 
Recall that for Theorem 4 to hold, it is enough to be 

able to sample x ∈ a + with probability proportional to 
c/f a(x)/|D| e for each record a ∈ D. If the dimension (number 

of attributes in D) is sufficiently small, then the sampling is 
trivial. Therefore, we assume in this section that the dimen­
sion k is part of the input. Due to the nature of the sampling 
procedure described below, we will have to extend the func­
tion fa(x) over a the hypercube, and then sample from the 
exponential distribution over the hypercube. Once we get 
a point sampled from the hypercube, we apply randomized 
rounding to get back a point in a + . While the resulting dis­
tribution over a + might not be exponential2, we will prove 
that it is still sufficient for proving differential privacy. 

Let us consider a single function fa : Ca → R+, and as­
ξa(x)sume that fa(x) = , where ξa : Ca → R+ is supermod­
Φa(x) 

ular, Φa : Ca → R+ is modular, and Ca is the chain product 
a + . The function fa is not necessarily supermodular, and 
hence its extension is not generally concave. To deal with 

2at least we are not able to prove it 

12 



   

   

this issue, we will divide the lattice into layers according to 
the value of Φa, and sample from each layer independently. 
More precisely, let E '' ∈ (0, 1) be a constant to be chosen 

later.	 For i = 0, 1, 2, . . . , U := log1+c// 
( 

φu(k) 
)
, define the 

φl(k) 

layer 

Ca,i ''	 '' i '' i+1(E ) := {x ∈ Ca : (1 + E ) ≤ Φa(x) ≤ (1 + E ) }. 
Let J a and Fa be the set of joint-irreducible elements of Ca 

and the corresponding ring family defined in Section 2.3.3, 
respectively. For X ⊆ J a, define	 ≤ 

for every a, a0 ∈ D and any output γa ∈ a +, when g a(D) is 
sampled according to Algorithm Sample-Point(a, E ' , t). 

ψ̂a,i	 ψ̂a,i,DProof. We first bound the sensitivity of = . 
Consider two databases D and D ' that differ in size by at 

(E '' most 1. Then, for any x ∈ Ba,i ), assuming x1 ≥ x2 ≥ 
· · · ≥ xn, we have 

Ψa,i,D Ψa,i,D/| ̂ 	 (x) − ˆ (x)|
n t

(xi − xi+1) 
( 

Ψa,i,D 

E ' ξa i=1 

Ψa,i (∨x∈X x)
(X)	 = , −Ψa,i,D/|D|(1 + E'')i ({1, . . . , i}) 

Φa 
1 (X) = Φa 

1 (∨x∈X x), +|Ψa,i,D(∅)| − Ψa,i,D/ 

({1, . . . , i}) 

the probability that X is σt-frequent with constant proba­

)
(∅)

T (X) = |{S(a) : a ∈ D and S(a) ⊇ X}|, 
+|Ψa,i,D(∅) − Ψa,i,D/ (∅)| 
2x1ΔΨa,i ≤ 3ΔΨa,iwhere S(·) is the operators defined in Section 2.3.3. Since 

+ ΔΨa,i≤ , (29)
Ψa,i	 Ψa,iand R are supermodular, their Lovász extensions ˆ , T̂ : 
P (Fa) → R are concave. Likewise, Φa 

1 is modular and hence where 
its Lovász extension Φ̂1 

a : P (Fa) → R is linear. It follows 
ΔΨa,i := max max |Ψa,i,D(X) − Ψa,i,D/ (X)|, 

D,D/:||D|−|D/||≤1 X∈P (Fa) 
that the set 

Ba,i	 '' '' iˆ	 Φa(E ) := {x ∈ P (Fa) : T (x) ≥ t, (1 + E ) ≤ ˆ1 (x) 
'' i+1≤ (1 + E ) } 

is convex. Note that the constraint T̂ (x) ≥ t is added to en­
sure that we sample from t-frequent elements. The details of 
the sampling procedure are shown in Algorithm 4. The sam­
pling is performed by first picking a layer at random from 
0, 1, . . . , U . Then a point x̂ is picked from (the continuous 
extension of) this layer according to the log-concave density 

Ψa,i(x)q(x) := e 
ˆ

. We then round x̂ by procedure RR to a 
set X in the family F , which corresponds to a point ∨x∈X x 
in the lattice Ca . If X is not approximately t-frequent, we 
apply RR again to x̂. If t is large enough, we can argue that 

which can be bounded (by a similar argument as in (13)) by 
(1 + E '' ) η(k) .|D| 

Let L ∈ {0, 1, . . . , U} be a random variable indicating 
the layer selected in step 2. We will denote by Pri[E] := 
Pr[E | L = i] the probability of the event E conditioned on 
the event that L = i, and fix γa ∈ Ca . It is enough to prove 
(28) with Pr[·] replaced by Pri[·]. For x ∈ [0, 1]J a 

, denote by 
πx : [n] → [n] the permutation that puts x in non-increasing 
order: xπx(1) ≥ xπx(2) ≥ · · · ≥ xπx(n), where n := |J a|, and 
let Uj (x) be as defined earlier and xπx(n+1) := 0. Let x̂ be 
a random point sampled in step 3. Then, 

Pri[g a(D) = γa | x̂ = x] 

= 
V

xπx(j) − xπx(j+1) if γa y,y∈Uj (x)

⎧
⎨ 

⎩ 
1 − xπx(1) if γa = ∅, 
0	 otherwise, 

= bility, for some constant σ. 

Algorithm 4 Sample-Point(a, E ' , E '' , θ, σ) and this probability is independent of D. In particular, 
a	 aInput: a record a ∈ D, and real numbers E ' , E '' , θ, σ ∈ (0, 1) Pri[g (D) = γa | x̂ = x] = Pri[g (Da0 ) = γa | x̂ = x]. 

a,i,D a,i,Dsuch that θσ < 1 Denote by q and q̂ the density functions used in 
Output: a point x ∈ Ca step 3. Then we can write 
1. let t := θ|D| 
2. pick i ∈ {0, 1, . . . , U} at random	 Pri[g a(D) = γa] 

3. sample ˆ
j

j 

x ∈ Ba,i(E '' ) with density q̂ satisfying (27), where a,i,D (x)Pri[g a(D) = γa | x̂ = x]ˆ

qa,i,D (P (Fa)) 
q 

dx 
q(x) := e Ψ

a,i(x)	 =ˆ	
for x ∈ [0, 1]J a 

4. repeat 
5. X := RR(x̂)	 ≤

x∈Ba,i(c//) ˆ

a	 a,i,DPri[g (D) = γa | x̂ = x]q (x) ' dx + δ 
qa,i,D (P (Fa))x∈Ba,i(c//)6. until T (X) ≥ σt j

x∈B/ 

6ΔΨa,i

a,i,D7. return ∨x∈X x 

Examining the proof of Theorem 4, we notice that the only 

=
(xπx(j) − xπx(j+1))q (x) ' dx + δ , 

qa,i,D (P (Fa)) 
j

x∈B/ 

Pri[g a(D ' ) = γa] + δ ' 

a,i,D/(xπx(j) − xπx(j+1))q (x) 
dx + δ ' place where we use the fact that the exponential distribution ≤ e 

qa,i,D/ (P (Fa))is needed for satisfying differential privacy is (12). In fact,
 
ignoring small constant factors in the exponents, it is enough 6ΔΨa,i
 

= e , 
to show the following. 

= O(δ2−|D|
2 where j = |Uj (x)| and B ' is the set of points x in Ba,i(E '' )

Lemma 3. With some δ ' ), such that S(γa) = Uj (x), and where the last inequality fol­
a//) η(k) Pr[g (D) = γa] − δ ' //) η(k) lows from the sensitivity bound (29). Similarly, we can show −2c/(1+c	 2c/(1+ce ≤ ≤ e ,	 6ΔΨa,i a(D ' 

m	 

Pr[ga(D−a0 ) = γa] + δ ' 
m 

that Pri[g a(D) = γa] ≥ e Pri[g ) = γa] − δ ' . (28) 
(28)	 follows. 
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Running time: To show that the expected running time 
is polynomial, it is enough to bound the probability of the 
event that T (X) < σt in step 6. Let x̂ be the point sampled 
in step 3 and X = RR(x̂). Then, E[T (X)] = T̂ (x̂) ≥ t since 

(E '' x̂ ∈ Ba,i ). By Markov’s Inequality, Pr[T (X) < σt] ≤ 
1−θ 
1−θσ . Thus, the expected number of calls to RR(x̂) until 

we get T (X) ≥ σt is at most 1−θσ .
1−θ 

Expected utility: Denote by Ei[Y ] := E[Y | L = i] the 
expectation of random variable Y conditioned on the event 
that L = i. Then, 

Ei[f a(g a(D))] 

=

 
Ei[f

a(g a(D)) | x̂ = x]q̂ a,i,D (x)dx 
x∈x∈Ba,i(c//) 

≥
 

f̂a(x)q a,i,D (x)dx − o 

( 
1 

)

x∈x∈Ba,i(c//) |D|2 

( 
1 

)
= Ei[f̂

a(x̂)] − o ,|D|2 

afor our choice of δ ' . Thus, E[f a(g (D))] = E[f̂a(x̂)] −( 
1 
)

o |D|2 . 

By arguments similar to the ones used in the proof of 
Theorem 4-(ii) and Theorem 8 in [30], and using the fact 
that is an extension of fa for all a, we get a bound on f̂a 

the expected utility arbitrarily close to (26). 

4. EXPERIMENTAL ANALYSIS 
We conducted a number of experiments to evaluate the 

proposed algorithms. In the next subsection, we explain 
out experimental setup. The results for the genetic search 
algorithm, the Lagrangian utility function, and the sampling 
algorithm are given in Sections 4.2, and 4.3, respectively. 

4.1 Experimental Setup 
We use an experimental setup similar to that described 

in [13]. Specifically, we conducted our experiments on the 
item description table of Wal-Mart database. The table 
contains more than 400,000 records each with 30 attributes. 
The risk components are computed based on both identifia­
bility and sensitivity as described in [23]. We use a modified 
harmonic mean to compute the sensitivity of a parent node 
wp with l immediate children given the sensitivities of these 
children wi: wp = 1 

1 with the exception that the L
1≤i≤l wi 

root node (corresponding to suppressed data) has a sensi­
tivity weight of 0. Moreover, we use a simplified utility 
function u(a) to capture the information benefit of releasing 
a record a : u(a) = 

Lk
i=1 depth(ai) where depth(ai) repre­

sents the distance between the attribute value ai and the 
greatest value ⊥. 

4.2 The Genetic Search Algorithm 
In this set of experiments, we compare the performance 

of our proposed genetic algorithm with other date disclosure 
algorithms in the literature in terms of risk, utility, and time. 
Fig. 8 depicts the relationship between the running time for 
both genetic and ARUBA [13] algorithms at various number 
of attributes. The figure shows that the genetic algorithms 
are much more efficient than ARUBA in terms of time. It 
also shows that applying probing in the genetic algorithm 
will have a positive impact on the running time. However, 

 0
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tim
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Figure 8: Efficiency. 

Figure 9: Accuracy. 

this impact is insignificant compared to the improvement of 
applying the genetic algorithm over ARUBA. 

We compare the risk and utility associated with a dis­
closed table based on our proposed genetic algorithm and 
arbitrary k-anonymity rules for k from 1 to 100. At each 
value of k, we generate a set of 10 k-anonymous tables and 
then compute the average utility associated with these ta­
bles using the simplified utility measure mentioned earlier. 
For each specific utility value c, we run both the genetic 
algorithm and optimally selected disclosure rules ARUBA 
algorithm to identify the table that has not only the mini­
mum risk but also a utility greater than or equal to c. In 
Fig. 9 we plot the utility and risk of ARUBA genetic opti­
mization algorithm, and standard k-anonymity rules for dif­
ferent risk models. Although it is clear that ARUBA consis­
tently outperforms both of the genetic algorithm and stan­
dard k-anonymity rules, the risk sacrifices (7%, at worst) by 
applying the genetic algorithm over ARUBA is outweighed 
by the gain in efficiency (Fig. 8). 

4.3 The Modified Lagrangian Algorithm 
We compare the performance of both the threshold op­

timization algorithm and the modified (with supermodular 
objective function) Lagrangian algorithm. We implement 
the supermodular minimization using [22]. We run both 
algorithms with various (1) number of attributes, and (2) 
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utility thresholds. Fig. 10 depicts the impact of imposing 
supermodularity on the optimization objective function. It 
is clear that while both algorithms have comparable risks, 
the modified Lagrangian algorithm significantly outperforms 
the threshold algorithm in terms of running time. 

5.	 RELATED WORK 
Studying the risk-utility tradeoff has been the focus of 

much research. To the best of our knowledge most of the 
work in determining the optimal transformation to be per­
formed on a database before it gets disclosed is so inefficient 
that increasing the table dimension will substantially ex­
acerbate the performance. Moreover, data anonymization 
techniques [35, 36, 26, 29, 4, 24] do not provide enough the­
oretical evidence that the disclosed table is immune from se­
curity breaches. Hiding the identities by having each record 
indistinguishable from at least k − 1 other records [35], en­
suring that the distance between the distribution of sensitive 
attributes in a class of records and the distribution of them 
in the whole table is no more than t [26], or ensuring that 
there are at least l distinct values for a given sensitive at­
tribute in each indistinguishable group of records [29]; do 
not completely prevent re-identification [25]. 

In [13], an algorithm (ARUBA) to address the tradeoff 
between data utility and data privacy is proposed. The pro­
posed algorithm determines a personalized optimum data 
transformations based on predefined risk and utility mod­
els. However, ARUBA provides no scalability guarantees 
and lacks the necessary theoretical foundations for privacy 
risk. 

Samarati et al. [34] introduced the concept of minimal 
generalization in which k-anonymized tables are generated 
without distorting data more than needed to achieve k-
anonymity. Such approach, although it tries to minimize 
suppressions and generalizations, does not take into account 
sensitivity and utility of different attribute values at various 
levels of the generalization hierarchies. Moreover, it is shown 
in [1] that the level of information loss in k-anonymity [35, 
36] may not be acceptable from a data mining point of view 
because the specifics of the inter-attribute behavior have a 
very powerful revealing effect in the high dimensional case. 

The tradeoff between privacy and utility is investigated by 
Rastogi et al. [33]. A data-perturbation-based algorithm is 
proposed to satisfy both privacy and utility goals. However, 
they define privacy based on a posterior probability that 
the released record existed in the original table. This kind 
of privacy measure does not account for sensitive data nor 
does it make any attempt to hide the identity of the user 
to whom data pertains. Moreover, they define the utility as 
how accurate the results of the count() query are. Indeed, 
this definition does not capture many aspects concerning the 
usefulness of data. 

A top-down specialization algorithm is developed by Fung 
et al. [15] that iteratively specializes the data by taking into 
account both data utility and privacy constraints. A genetic 
algorithm solution for the same problem is proposed by Iyen­
gar [21]. Both approaches consider classification quality as 
a metric for data utility. However, to preserve classification 
quality, they measure privacy as how uniquely an individ­
ual can be identified by collapsing every subset of records 
into one record. The per-record customization nature of our 
algorithms makes them superior over other algorithms. 

A personalized generalization technique is proposed by 

Xiao and Tao [38]. Under such approach users define max­
imum allowable specialization levels for their different at­
tributes. That is, sensitivity of different attribute values are 
binary (either released or not released). In contrast, our 
proposed scheme provides users with the ability to specify 
sensitivity weights for their attribute values. 

6.	 CONCLUSION AND FUTURE 
DIRECTIONS 

In this paper we addressed both scalability and privacy 
risk when identifying the optimal set of transformations 
which, when carried out on a given table, generate a re­
sulting table that satisfies a set of optimality constraints. 
We proved that the problem is NP-hard and suggested sev­
eral methods to deal this hardness by utilizing the super-
modularity properties of the risk function. In particular, 
we gave an approximation algorithm that compute a nearly 
optimal solution when the utility threshold is high enough. 
We also proposed a genetic-based algorithm as a heuristic 
to solve the problem and showed and compared its perfor­
mance with other optimal methods. Finally, we proposed 
a scalable algorithm that meets differential privacy (with 
acceptable probability) by applying a specific random sam­
pling. 

There are several open problems that deserve investiga­
tion in relation to our work. Can the approximation algo­
rithm be extended to the cases when the utility threshold 
is small? Examining the NP-hardness reduction, one ob­
serves the connection to the notoriously hard densest sub-
graph problem. While this might shed some light on the 
difficulty of obtaining an optimal solution for the thresh­
old model, it may be also possible to extend some of the 
techniques used for the densest subgraph problem to our 
problem. 

One also notes the weakness of the exponential mecha­
nism with respect to the theoretically proved bound on the 
expected utility (Theorem 4-(ii)). A very interesting point 
would be to modify the mechanism such that better utility 
bounds can be obtained. 
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